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1. INTRODUCTION

The aeroelastic stability of an aircraft is an important consideration in the overall process
of determining its airworthiness. When external bodies or stores are added to the wing of an
aircraft, the dynamic characteristics of the aircraft will be changed. Due to the inertial, elastic
and aerodynamic coupling between the wing and its stores the flutter speed of the aircraft may
be adversely affected. The aerodynamic coupling may be particularly important if the stores
have aerodynamic surfaces, such as fins, that can generate large oscillatory aerodynamic forces.

At ARL there are a number of computer programs which predict unsteady aerodynamic
forces acting on oscillating lifting surfaces. These programs, which are based on the doublet
lattice method of Albano and Rodden [Ref. 1], are described in Reference 2 and have been
optimised for simple interfering wing-tail-fin and control surface cases. They are not applicable
to general combinations of interfering lifting surfaces.

Thus a requirement exists for a computer program that can calculate unsteady aerodynamic
forces for general configurations of interfering lifting surfaces, including a capability for dealing
with store aerodynamics. Since the doublet lattice method is readily applicable to interfering
and nonplanar lifting surfaces, it is used as the basis of a program capable of dealing with general
configurations. The doublet lattice method is versatile and there are essentially no restrictions
on the configurations that can be handled as long as an aporopriate idealisation can be developed.

2. THE DOUBLET LATTICE METHOD

This report is primarily concerned with the unsteady aerodynamic forces generated by the
oscillatory motion of a lifting surface. The surface is idealised as a thin flat plate oscillating
in a potential flow. The steady forces associated with the thickness and camber of the lifting
surface are not considered.

The pressure difference which exists between the upper and lower surfaces of the plate is
integrated to give the aerodynamic forces of interest. This oscillatory pressure is calculated by
replacing the lifting surface by a planar array of unsteady pressure doublets which have strengths
that are chosen such that the boundary condition of tangential flow is satisfied. The doublet
strengths are related to the induced normalwash by an integral equation which for general
combinations of lifting surfaces must be solved by approximate numerical methods.

In Reference | Albano and Rodden give the linearised integral equation relating the induced
oscillatory normalwash w(x, y, z)e!“t to the pressure distribution p(xo, yo, zo)ei“t over all lifting
surfaces L.S. as:

(x, v, 1
MEYJ-;) = 4"PU§fJK(X —Xo. ¥ Yo, Z—20: M, w)p(xo, Yo, Z0)dS 2.1

LS

where K is the subsonic nonplanar Kernel function, which is a function only of geometry,
Mach number M, and frequency w. The symbolX indicates integration in the sense of Mangler
[Ref. 3]. The coordinates of the sending and receiving points are given by (xo, yo, za) and
(x, », 2) respectively.

In the doublet lattice method it is assumed that the lifting surface can be approximated by
segments of planes. The surface is divided into small trapezial panels with parallel sides which lie
streamwise and leading and trailing edges which are some linearly varying proportion of the
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local chord behind the leading edge of the surface (Fig. 1). The panels are selected such that any
surface discontinuities such as control surface edges or surface intersections lie on panel edges.
Also, the panels in any coplanar streamwise column are of the same width.

By assuming that the unknown pressure p is uniform over a panel, the integral of Equation
2.1 may be approximated as follows:

w('\_'lj" ?) ‘:24;’02* K(x ~xo, V=0, 2— 20 M, w)dS 2.2
J

Panel j

where j is an index indicating the sending panel. The integration of K in the streamwise direction
1s done simply by lumping the effect into a loaded line of pressure doublets at the 1/4-chord
line of each panel. Hence Equation 2.2 becomes:

.

wix, v, z) < P cicos B

- == K(x~xo, y=vo. 2 =200 M. w)dl 2-3

Ny i N {(X—Xo, 1~ ¥o 0 w)
i li

where

¢, is the mean chord of the j'th panel,
Bi is the sweep angle of the 1, 4-chord line of the j'th panel.

and the subscript /; denotes that the line integral is to be carried out over the 1 /4-chord line of the
J'th panel. Note that for any panel dS = ¢ cos B dl.

In Equation 2.3 the normalwash boundary condition w(x, y, z) is known (see Section 6)
and the pressure p; over each panel is unknown. A set of linear algebraic equations may be
formed from Equation 2.3 if the normalwash is satisfied at as many points as there are panels.
There is one control or receiving point per panel and the surface normalwash boundary condition
15 satisfied at each of these points. The control point is located at the mid-span 3 /4-chord point
of each panel.

3. MATRIX FORM OF DOUBLET LATTICE METHOD

As shown by Albano and Rodden [Ref. 1], the doublet lattice method reduces the integral
equation of Equation 2.1 to a sct of simultaneous equations. These may be written in matrix
form as:

] [D)A 3
where 1« 1s a4 complex column matrix. The i'th clement ts,

WXL vl 20
Ay -

U
and x, 15 the nondimensional normalwash at the mid-span 3:4-chord point, (xi. 1. o)),
of the /'th panel:

[D] 15 a complex square matrix of aerodynamic influence cocfficients.  The element in
the i'th row and j'th column s,

>
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:l‘gl
K} 0
RS
’ . and Dy; is the line integral of the Kernel function along the 1/4-chord line, /;, of the
4 i j’th panel ;
-“:"-'
{:‘a {A} is a complex column matrix. The j’th element is,
W
. Pi
A= — 34
o ! pU2
) and A; is the nondimensional pressure acting uniformly over the j'th panel;
N
i \ v ¢j is the mean chord of the j’th panel;
t) . .
"y B; is the sweep angle of the 1/4-chord line of the j’th panel ;
.a_‘:‘
e Kj; is the subsonic nonplanar Kernel function relating the normalwash at the control point
:::} on the i’th panel to the pressure occurring over the j’th panel.
At
e
ol :
T 4. EVALUATION OF THE KERNEL FUNCTION ‘
o
S 4.1 Expression for the Oscillatory Kernel Function
)
¢:) In Reference 4, Landahl has shown that the oscillatory subsonic nonplanar Kernel function
o K, which relates the complex normalwash w(x, y, z)e'¢t to the complex pressure p(xo, Yo, Zo)e'®t,
s can be written in the following form:
varay K = emixvU(K T + K3 T2)/r? 4.1
‘g ; where
i)
W T1 = cos (yr—7ys)
VAY . .
,/;) T2 = {21 €OS yr—y1 8in yr}{z1 COS y5s— 1 sin y.}/r?
W
.&)‘
- Mr .
"g;j Ky = h+ F(I +1y2)- 12—y
£
) ‘Fi ivM2r2
. = 3o —— . 2)y-125--ir
‘.‘ Ko = -3/ R? (I +u12)"12eiry
1 }:'::
[~ Mr (1+ 2)32r2+2 Mru, (1 +u12) 3 2 ivu
Soka - - u : u*® ¢ 't
3 R VRTT R :
3, h
S
Sl X1 = X Xp Y1=13 Yo v Zo
:..’_ B=(1—M3H12 (22 R (e g2 2
oy wr MR x
~ - v o= iy -
e U Ber
L'
o
_ . and yr and y, are the dihedral angles of the receiving and sending points located at (x, », 2)
,:{:” and (xo, yo, 20) (see Appendix A and Figure 2). The terms /, and /. represent the two infinite
- integrals:
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4.2 Evaluation of I; and I»

In order to evaluate the Kernel function the two infinite integrals /; and /> must be deter-
mined. Since they cannot be expressed in terms of known functions they must be evaluated
numerically. Computational efficiency is a prime consideration when developing a procedure
for calculating /y and /» since they will be calculaicd numerous times. A number of alternative
procedures for evaluating /; and /7 will now be described.

In Reference I, Albano and Rodden integrate Equation 4.2 by parts to yield :

‘xv
h=f1— o e, 1= ety 44
(I +u?)2 (I+u?)t2

1151

The integrand in the last term of the above equation is approximated by a three-term exponential
function and the integration is performed analytically. The integral /; is evaluated in a similar
fashion, requiring integration of Equation 4.3 by parts twice.

In Reference 2, Farrell makes use of the expansions given by Davies [Ref. 5] to express
Iy and 1 as:

| — 2 " e~iru

I = -5 ,:H-;(lv)+7-TK1(V) ”II(V)]— 0 (I'+u2)'37’§du 4.5
‘ITl/2 —_ . 2 > . ‘ul e‘il'u

I = — A [H z(lv)*ﬁl\-:(v)+l/2(V)j|* o ( +a2)§3_2d" 4.6

where Ay and H » are Struve functions, /; and [, are modified Bessel functions of the first
kind. and K, and K are modified Bessel functions of the second kind. These are evaluated by
direct series summation [Ref. 6], with the asymptotic expansions being used for larger values
of ». The finite integrals of Equations 4.5 and 4.6 are evaluated by a numerical technigue which
divides the range of integration into a number of regions, the lengths of which are functions
of v. The integravon is performed over each of these smaller regions using six-point Gaussian
quadrature. For values of w; that are large in magnitude the expressions for /; and /2 simplify
considerably since many of the terms may be neglected. Although this method is more accurate
than that of Reference |, the computation time is considerably greater.

In Reference 7. Geising er al. improve on the method used in Reference | by replacing
the three-term exponential approximation to the integrand of Equation 4.4 with an eleven-term
exponential approximation due to Laschka [Ref. 8], The maximum error of this approximation
15 0-135°  [Ref. 7]. and. as before. its use allows /i and /b to be evaluated analytically. A com-
parison between this method o nd that of Reference 2 was carried out by calculating trial values
of the Kernel function. Good agreement between the two approaches was noted, and the method
of Reference 7 was adopted since it reduced the computation time involved in the calculation
of the Kernel function, as well as vielding results of a high accuracy.

A detailed description of the method used for calculating /7y and /; is to be found in Appen-
dix B.
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7 4.3 Expression for the Steady Kernel Function

The expression for the steady Kernel function given in Reference 9 may be written in the
following form:

Ko = (Ki\'S'Ty + Kp'S'T) /r? 4.7

iy where
N
. 29.} T1 = cos (yr—7s)
Nt
: 2 ] Ty = {21 €OS yr—p1 Sin yr}{z1 COS ys—y1 sin ys}/r?
KAL
) _ X
‘.. Klm:l*wR}
N . x1 o (x1\?

o\ " SN — 9 __J_" —_
3} \ K> 2-3 R +(R)
E)

L r'

Xi X 2

A ={-=2) 5+
3 ‘-{'-_ (R )(R )

1

1 . . . .
\}'\ and the other symbols are as defined in Equation 4.1. The expression for the steady Kernel is
::.\»;‘. considerably simpler than that for the oscillatory Kernel function. Hence when the frequency
ot of oscillation can be assumed to be zero it is advantageous to use Equation 4.7 in preference to
o Equation 4.1.

o
‘ .I‘j‘.!

ot
p o 5. INTEGRATION OF THE KERNEL FUNCTION

w. v
A
_:..‘-:. At this point it is desirable to discuss the nonplanar Kernel function as contrasted with

3 the planar one, since the nature of the Kernel function will have a direct bearing on theintegration

e scheme that is adopted (see Appendices C and D).
et
‘\\;u;

-:'6_1; 5.1 Behaviour of the Steady Kernel Function

\'& )

B, o It is convenient to confine our investigation to the behaviour of the steady Kernel function
(. since this function is amenable to an analytical approach. The underlying assumption of this
o analysis is that the salient features of the steady Kernel function are representative of the behaviour

e displayed by the oscillatory Kernel function.

N Following the approach of Berman et al. [Ref. 10], Figure 3 provides a comparison of the
Hoby steady nonplanar Kernel function (Equation 4.7 with z; # 0) and the steady planar Kernel
-'}.‘ function (Equation 4.7 with z; = 0). In Figure 3 the values of the Kernel function are plotted
i against the spanwise variable p; in the vicinity of y; == 0 for several values of vertical distance =
R and for chordwise distance x; = 1. The chordwise variation is not shown since the nonplanar
~ Kernel function is very similar to the planar Kernel function for the x; coordinate [Ref. 10].

‘, e The figure clearly shows that the spanwise variation of the nonplanar Kernel function in

: i the vicinity of the control-point station is very different from that of the planar Kernel function.

e The singularity at 3; = O is no longer present. Instead. a sharp reversal in the trend of the
'q . Kernel function is experienced, resulting in a large negative, but finie, value at »1 = 0. Thus

523 the Mangler concept [Ref. 3] of the “finite part of infinite integrals™ (cf. Section 2) is no longer

u.g- required for the integration of the nonplanar Kernel function.
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In Reference 10, Berman et al. found that the twin positive peaks of the nonplanar Kernel
function are located at y; = + z14/3 where z; is the vertical separation between the nonplanar
(but parallel) lifting surfaces. Since the large gradients of this Kernel function occur between
these peaks, it is essential that the relatively small region —z1v/3<y1< +214/3 be provided
with a high density of integration stations.

Although the function shown in Figure 3 is symmetric about y; = 0, this is not the case
when dealing with general combinations of nonplanar nonparallel lifting surfaces. The amount
of asymmetry which arises is, however, small in comparison with the symmetric part of the
Kernel.

The above mentioned behaviour must be adequately accounted for in the line integral of
Equation 3.2. If suitable integration schemes are not implemented then the aerodynamic in-
fluence coefficients will lose accuracy as the vertical separation between any two surfaces is re-
duced. Finally, at very small values of vertical separation, as z;—0, the results will be completely
inaccurate.

The previous discussion applies to nonplanar horizontal lifting surfaces. For the general
case of combinations of nonplanar nonparallel lifting surfaces it is necessary to consider the
variable r2 = 12+ z;2 rather than the variable z; in isolation. For this general case numerical
difficulties in the integration will arise when r2—0.

5.2 Behaviour of Kor? for Nonplanar Panel Combinations

It is clear that the ill-conditioning of the integrand in Equation 3.2 presents computational
difficulties. By analytically incorporating the 1/r2 behaviour of the Kernel function into the line
integral we may write Equation 3.3 in the following form:

¢yeos B | KiTi+ KeT2
e . P
4 r2
/;

This has the effect of minimising the variations that must be dealt with by the integration scheme.
In order to maximise the accuracy of integration it is worthwhile examining the behaviour
of the numerator of Equation 5.1 for commonly occurring situations. Once again we confine
our attention to the steady Kernel function by utilising the assumptions presented in Section 5.1.
For the steady case the numerator of Equation 5.1 (neglecting ¢; cos 8;/4w) may be written
as:

Dij = ~lwx, Ud] 5.1

Kor?2 = K{"™'T) + Ko™ T 5.2

The typical behaviour of Kor? is illustrated in Figure 4. Values of Kor? are plotted against the
spanwise variable y; in the vicinity of v; = 0 for three values of vertical distance z; and a
chordwise distance x; = |. with both the sending and receiving panels lying in planes parallel to
the horizontal plane. Note that the variation in the vicinity of 31 = 0is now considerably less than
that of the corresponding curves in Figure 3. Furthermore, the curves are asymptotic to the
value of + 10 for values of y;— + oo, rather than zero as in Figure 3.

The occurrence of aerodynamic surfaces that are perpendicular to each other is quite com-
mon (e.g. a T-tail and the cruciform fins at the rear of a missile). For such cases the variation
of Kyr? differs considerably from that illustrated in Figure 4. The behaviour of Kor2 for perpen-
dicular surfaces is illustrated in Figure 5. It is seen that there is only one zero crossing in contrast
to the two zero crossings evident in Figure 4. Also, there are only two turning points instead
of three.

5.3 Prediction of Zero Crossings and Turning Points

Although the numerator of the integrand in Equation 5.1 is much better behaved than the
integrand of Equation 3.2, the highly localised nature of Kor? is still evident in Figures 4 and 5.
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In order to maximise the accuracy of integration it is essential that the relatively small region of
rapid variation be provided with a high density of integration stations. Hence it is necessary
to develop procedures for determining the location of this small region and deciding whether
it lies on the interval of integration /; (defined in Equation 3.3).

Following the approach of Berman [Ref. 10] an attempt was made to derive an analytical
technique for determining the turning points of Kor2, since these define the region of interest.
This particular approach was abandoned because of its complexity. Also, the long compu-
tation times would have made any calculations relatively expensive.

A considerably simpler and more efficient method resulted when attention was focussed
on the zero crossings of Kor?, rather than its turning points. It is possible to write x;, y1 and z;
in terms of a parameter ¢, where the range 0 < ¢ < | represents the interval of integration /;.
Hence, for any such interval, the Kernel function may be defined as a function of ¢. Turning
our attention to Figure 6, the left and right zero crossings, 7L and rg, are estimated using the
method described in Appendix E. The turning point, f1, is then located by numerical sub-
division of the interval between the zero crossings. Hence the two intervals, Aty and Arg, may
be calculated from:

Aty = tr—1L 5.3
Atp = 1p—11 54
Note that Figure 4 illustrates the special case where Aty = Atg and (1 = 05, since in general
Aty # Aty and t7 does not occur in the centre of the interval /;. From a further inspection of

Figure 4 it would appear that the region of greatest variation of Kor? lies approximately within
the interval

rT—6A1L < t < t7+6ArR 5.5
Hence this region should be provided with a high density of integration stations.

The above method is not valid for aerodynamic surfaces that are perpendicular to each
other since only one zero crossing exists for such cases. Due to a number of simplifications that
occur, it is possible to estimate the positions of the turning points for cases where the surfaces
are perpendicular. Referring to Figure 7, the left and right turning points, t11. and tyg, are
estimated using the method described in Appendix F, whereas the zero crossing, fo, may be

estimated using the method of Appendix E. Hence we may define the two left and right intervals,
Atty, and Afrg, using :

Aty = to—tITL 5.6
Atyr = tTrR— 1o 5.7

Clearly, the region of rapid variation falls within the interval :
It < fo < Ity 5.8

Once again, this region should be provided with a high density of integration stations.

6. NORMALWASH AND PRESSURE DISTRIBUTIONS

In setting up a system of panels to model an actual case it is assumed that the system is
capable of vibration in a number of modes of displacement. In mode p, the displacement normal to
the mean position of a point (x, ., =) on the surface is taken to be / fp(x, v, z). When the system is

7




-

™
raa e e

[N

Py ’
LA L

L)

-,
AA

8 Aty 2y

A A

o
e

O

sy

M

)
-
.

oscillating harmonically about its mean position, with circular frequency , in the mode p,
the displacement normal to the surface is taken to be

Zy(x, 3, 2, 1) = 1 fp(x, p, 2)eiot .l
where [ is the reference length.

Applying the boundary condition that the flow must be tangential to the surface requires
the relationship between the normalwash and the modal displacement to be

WX 3, 7)ot = Dz, B
m Dr |
This yields the following expression for the nondimensional normalwash
wplx, ¥, 2) 2 _
’ U = D(,\‘/[)fp('\" 3 -')+I/\jfp(,\'. ¥, _-_-) 63
= o +ika" e

where & is the frequency parameter w//U. Thus the real part «' of the normalwash matrix {«}
of Equation 4.1 contains the chordwise slopes of the displacement mode at the control point
in each panel and the scaled imaginary part «’' contains the modal displacements at these points.

When the normalwash influence coefficient matrix [D] has been calculated and the non-
dimensional normalwash {«} has been prescribed, the system of linear equations,

{a} = [DLA},

defined previously in Equation 3.1, may be solved to find the nondimensional pressure {A} acting
over all surfaces. Note that there are as many lifting pressure distributions as there are modes.

7. GENERALISED FORCES

For dynamical analyses of the vibration of aerodynamic surface combinations we generally
apply Lagrange's equations of motion. This requires expressions for the generalised airforces
that occur. These airforces act on the actual aerodynamic surfaces but within the linearised
approximation we can take the pressures described above and evaluate the generalised airforces.
The generalised force Py, in the mode p due to oscillation in the mode ¢ is given by

Phy Ho(x, v, DpU2A¢(x, p, 2)dS ei*t
L.S.
pU3l Slxo v 2YAg(x, v, 2)dS el
LS.
pU23Q,, 0t 7.1

where .8, represents the integral over all the lifting surfaces, f, is the p"th nondimensional dis-
placement mode, A, is the nondimensional pressure due to the ¢’th mode and £ is the frequency
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From Equation 7.1 the nondimensional generalised force Qpq is

|

" ‘
3 |

3¢ Qoa =5 | | folx 3 Do, y, 2)dS 72
S LS
)
‘:: J In the doublet lattice method, where the aerodynamic surfaces are approximated by panels
:, and the pressure is assumed to be constant over each panel, Equation 7.2 simplifies to

Y ¥,
- e
-’ .

n
QD(I = thi/\ini 7.3

i=1

N
A .l.‘ .

K Syt

S

where fp! is the nondimensional displacement at the mid-span quarter-chord point of the i’th
panel in the p'th mode, Ayl is the pressure on the j'th panel due to the g’th mode, /24; is the area of
thei"th paneland # is the total number of panels used to model the aerodynamic surfaces. The mid-

'-.'. span quarter-chord point is called the lift point and is illustrated in Figure |. Finally, we note
-4‘;: that it is customary, for dynamical analyses, to write Qpq in the form
"
:(:4::: Opa = Q'pa+ikQ""pq 74
L3 <.
- where Q’pq and Q''yq are real quantities.
{E
2
V."J
L 8. IDEALISATION OF GENERAL CONFIGURATIONS
i~ In order to minimise the amount of time spent in developing a panel distribution to idealise
AN ‘ a particular configuration, it is essential to use a procedure that defines the panel distribution by
; interpreting a concise and compact data set. Clearly, it is not desirable to h~ve to define each
“x panel individually as this would be very time consuming and the likelihoo« »>f errors would

N be high.

S
Nl . .
'_}-'J 8.1 Definition of Lifting Surface Groups
-."‘:-J
ek A lifting surface group is composed of one or more panels and it is a subset or element of
'Y the idealised configuration. For our purposes it is looked upon as being the basic unit or building
. block which allows us to generate sequences of panels compatible with the requirements of the
> doublet lattice method.
::"’. A group is defined by reference to four nodes. Figure 8 illustrates the node numbering
N0 system associated with the topology of a typical group. Nodes | and 2 define the leading edge
{j of the group. and nodes 3 and 4 specify the trailing edge. This node numbering convention
L) defines the topology of the group and must be strictly adhered to. Furthermore, nodes | and 3
t-J must lie on the same streamwise line. This requirement must also be satisfied by nodes 2 and 4.
" N It is useful to transform the trapezial group onto a square defined in a nondimensional
< coordinate system, wherein the coordinates of nodes 1. 2. 3 and 4 are as illustrated in Figure 9.
:-’\F Node 1 is taken as the origin of the nondimensional coordinate system associated with each
QS group. The chordwise and spanwise ordinates. ¢ and /., are positive in the directions shown.
o They have been nondimensionalised with respect to the local chord and total span of the group.
. Note that NC and NS refer to the number of chordwise rows and spanwise columns of panels

pertaining to the group. To facilitate panel generation. it is necessary to provide only the non-
dimensional chordwise and spanwise ordinates of the edges of panels in a particular group.

9
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. _' The panels within a given group are numbered 1, 2, 3, . . ., NCsNS in a columnwise pro- K

,.\t gression. As shown in Figure 9, the number of the panel in the /’th chordwise row and J'th .

Y-, spanwise column is given by the following equation: K
* ;

Nl panel number = (J—1)«NC+/ ISISNC 8.1 .

IS/KNS

woY . .

K ‘% Note that the chordwise rows of panels do not have to be a constant proportion of the local _:

?_\. chord across the span of the group : a linear variation is acceptable. Hence it is possible to have -

Y one or more rows of panels of constant (dimensional) chord defined within a group that is tapered. £

R Some of the possible combinations are illustrated in Figure 10. [t is also possible to define 4

L) evenly spaced panels in either the chordwise or spanwise directions, or both, without having to

' ,r:: specify the ordinates along the sides of the group.

";‘:'\ v

;

. ’

:‘L' ¢

" 8.2 Pressure and Normalwash ;

:‘::- The definition of the direction of positive pressure and positive normalwash acting on a set of ]

-!‘:.{ panels in a group is implicit in the topology of the group. Since all panels in a group share the q

1 topology of that group, the sense of positive pressure and normalwash is likewise defined. Note 4
that the normalwash is positive in the same sense as the topology-defined positive pressure.

1 ¥ Furthermore, the sense of positive pressure can be reversed from that defincd by the topology of
‘a the group. ]
- Figure 11 illustrates the pressure p and normalwash w acting on a panel. The pressure and 3
- normalwash are shown acting in their positive sense. As mentioned above, the topology of the

") panel, represented by the node numbers 1, 2, 3 and 4, echoes the topology of the group to which Ty

it belongs. :

W Figure 12 shows a view, looking forward, of some possible orientations of panels. The

"\ numbers | and 2 refer to the topology of the group from which the panels derive. The arrows ol

::% normal to the surface of each panel indicate the sense of positive pressure as defined by the ,

4§ *; topology of the panel. Although no vertical or horizontal panels are shown, their characteristics .

'C-",D) are readily deduced by simply projecting the existing panels onto the desired axis. 3

"y .

e <

.:f::

:: ;
:b‘:? 8.3 Symmetry and Reflection Planes ¥
o The majority of applications of the doublet latticc method involve configurations with one o

i or more planes of symmetry. The X-Z plane is a plane of symmetry for most cases; the right "
},’. side of a lifting surface is the mirror image of the left side. In other cases an additional planc of )
::, symmetry (the X-) plane) exists. For instance a lifting surface in the proximity of the ground :

o (aircraft in ground effect) represents a configuration with two planes of symmetry.

In general, all low conditions can be split up into symmetrical and/or antisymmetrical |

e parts in relation to cither plane of symmetry. If the configuration is symmetrical and the flow P

::.,-_‘ is either symmetrical or antisymmetrical then considerable savings in computational etfort can N

-,‘:‘2 be realised. These are apparent as a reduction in the number of normalwash influence coefficients \
) that need to be caleulated and stored in computer memory. This minimises the size of the system 5
'\"1 of equations that needs to be solved. )
[ In order to make use of any possible simplifications due to symmetry or antisymmetry it is .

»: \ necessary to be able to create a system of image lifting surfaces by reflecting groups in the X Z N

::; . and X ¥ planes. Consider the general case where a lifting surface configuration is made up of a N

! source group and three additional images.  This is illustrated in Figure 13, Once again the :

s .

e 10 .
&
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; numbers 1 and 2 refer to the topology of the group and the arrows indicate the sense of positive

PN 2 pressure. The superscripts (1), (2), (3) and (4) identify how the group was obtained as follows :
- (1)—source group from which all images are developed ;
Y '

(2)—image obtained by reflecting the source group in the X-Z plane;

" . (3)—image obtained by reflecting the source group in the X-Z plane followed by a reflection
“~ .

(o3s in the X-Y plane;

\{_ (4)—image obtained by reflecting the source group in the X-V plane.

,_-‘,' .

.\D Note that the topology of the image groups in relation to the source group follows the con-
vention established in Figure 12. Care must be exercised in using the image capability as anomo-
lous configurations can arise under some conditions.

3 Considering the most general case of a source and three image groups, as depicted in Figure

13, the matrix equation given by Equation 3.1 can be written as:

wib) dn dre diz dua pv
N w2 || do der dag dba p¥ 8.2
oo wd d31 dsz dsz d3a p¥ .
W wid) day daz dsz daa p¥
b

) - -\

o0

o where the di; are submatrices of matrix D.

!r For symmetric and antisymmetric cases the magnitudes of p'U, p2, p3 and p'4 are equal

S and only their phases can differ by 180° relative to p'V, say. Hence we may write :

b -, P P

1N

"T(.J pth EQgY

e p2 | ] &

! p3 { T\ 8@ P 8.3

‘ pih s

{.}h

Yl

YN where the terms 8"’ may take the following values

] :r:k

T S = 41, —1

40 82 = +1, - 1,0

i

W 8 = +1, —1,0

333
“
’
" W = +1, —-1,O

e Since it refers to the source group, 81" # 0, whereas since some image groups may not be

So included in a given configuration the appropriate 8 terms will be zero. If 8'i' =1 then the

A pressure is positive in the same sense as that defined by the topology of the source or image group.

';-._.'_', If 8 = 1 then the pressure is positive in the opposite sense to that defined by the topology.

P! By substituting Equation 8.3 into Equation 8.2 we obtain :

o]

< Wil . [8"’(/“ + 80+ B3+ 5(4)(/1411,(1) 8.4

o

N Hence the pressure distributions for all of the groups have been reduced to one distribution for

.::i the source group. Thus only that part of the interaction that involves the source group needs

Py

to be considered, since the others may be readily deduced from the symmetry or antisymmetry
conditions.

Whether it be symmetric, antisymmetric or asymmetric, each type of case is defined explicitly
by the chosen orientation of the positive senses of pressures for the source and image groups.
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The topology-defined senses are altered by the appropriate choice of values for the § factors in
Equation 8.4. An alternative interpretation is to view 8'!’ as an overall multiplier determining
the senses of the reference source pressures p'’. The remaining factors 82!, §3) and 84’ then
determine whether the effects of the image surfaces are to be added to or subtracted from the
source normalwash factor 41 in order to obtain the correct realisation of symmetry or anti-
symmetry.

8.4 Example of Symmetry and Reflection Planes

As an example of the concepts described in Section 8.3, let us idealise a model of a T-tail
in a wind tunnel. It is assumed that the fin and the floor of the wind tunnel provide two axes of
symmetry. The effects of the remaining wind tunnel boundaries are neglected. For symmetric
and antisymmetric modes only two source groups need be defined, the effects of the other surfaces
being obtained by the use of images. Figure 14 shows the idealisation of the T-tail where it is
assumed that the senses of pressures p,'!’ and p»'!" define the topology of the source groups.

In order to model symmetric motion of the T-tail we have that ;' = -1, §'3 = +1,
8" = | (assuming that ;' = +1). Since the fin does not sustain a pressure difference
821" and 8:'Y are both equal to zero, which means that the fin and its image do not need to be
included in the analysis. Keeping in mind the fact that p»'?’ = 0, Equation 8.4 may be written as :

wytl } _ | (+Ddu+(=Ddiz+(+Ddiz+(—)dra : n't ’ 85
walll [ O)da1+ (Odea+  (O)das+  (O)dea JL po'? '

where the fact that 82! = 0 indicates that the problem may be simplified by omitting the fin
from the symmetric analysis.
For the antisymmetric case Equation 8.4 becomes :

{ wyt }_ [ (+ Ddu+ (+ D2+ (— Dz +(— 1)dua ” 2% } 8.6
wae | | (+D)dzi+ (O)dea+  (O)daa+(— Ddas [ pa? '

Hence it is seen that symmetric and antisymmetric cases can be dealt with by appropriately
specifying the applicable 3 factors.

9. COMPARISON WITH OTHER METHODS

In order to illustrate the mcthod discussed above, which has been implemented at ARL
into the FORTRAN computer program AIRFORTP, three particular interfering lifting surface
configurations have been investigated over a range of frequency parameters, Mach numbers
and variations in geometry. These configurations are described in Sections 9.1 to 9.3 and the
results compared with those obtained using alternative approaches are shown in Tables | to 9.
The primary interest is the comparison of the results from the various computational formula-
tions of the doublet lattice method and the lifting surface results are included only as a secondary
compdrison.

Note that in all the Tables the generalised forces of the form @y, are presented in terms of
modulus ' Qpq  and phase - Q. The phase angle is given in degrees and lies in the range
0 < - Qpy <360
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9.1 AGARD Horizontal Wing and Tailplane

The AGARD horizontal wing and tail combination is showa in Figure 15. This is the
configuration which AGARD specified for calculation of generalised airforces and the wing and
tailplane are swept-back tapered wings in close proximity. The semi-spans of the wing and tail-
plane are both of unit length and the reference length is taken equal to the semi-span. The origin
of coordinates is at the apex of the wing.

The configuration is in a subsonic flow of free-stream Mach number M = 0'8 and is
oscillating with a frequency parameter k in the range 0 to 1-5 in one of two antisymmetric modes
of oscillation, defined analytically by

Nilx, y,2) = p(x—2-25 |y —0-85) on the wing 9.1
=y on the ta‘l 9.2
falx,y,2) =y lyl on the wing 9.3
= (x—3-35)sgn(y) on the tail 9.4

The first mode is torsion of the wing about an axis 38 9, of the local chord, coupled with roll of
the tail. The second is parabolic bending of the wing coupled with pitch of the tail.

The configuration with /# # 0 is obtained from the configuration when the wing and tail-
plane are coplanar simply by translating the tailplane a distance 4 parallel to the z-axis.

The comparison of results obtained for the AGARD configuration is largely based on data
collected and presented by Davies [Ref. 5]. Tables 1 to 4 compare the results published in
Reference S with the results of Farrell [Ref. 2] and the present theory. The results attributed
to Davies and Albano, Perkinson and Rodden [Ref. 11] are based on lifting surface methods,
the remainder being based on variations of the doublet lattice method.

In the application of the present method an array of 8 panels along the semi-span and 8
panels along the chord was used for both the wing and the tailplane. These panel distributions
were evenly spaced in the spanwise and chordwise directions  As a result the panels on the wing
and the tail were aligned in streamwise strips.

Table 1 presents generalised airforces for two values of frequency parameter, k = 0 and
k = 1-5, for the case where the wing and tailplane are coplanar (7 = 0). Inspection of Table 1
shows that the present method compares favourably with the results of the other doublet lattice
and lifting surface methods. Particularly good agreement is obtained with the refined doublet
lattice method of Kalman, Geising and Rodden [Ref. 12). However, for k = 1-5 the present
method consistently over-estimates the magnitudes of the generalised forces by an average
of 10-6°, when compared with the results obtained by Farrell, although the calculated phase
angles are in good agreement. This is in contrast to the generally good agreement obtained
for k =0.

Table 2 presents resul’s for generalised airforces for the nonplanar case with # = 0-6 for
frequency parameters & = 0 and k& == 1-5. Once again the results for the present method agree
favourably with those of other workers. Previously made comments regarding the comparison
of the present method and that due to Farrell for the case where & = 1-5 are equally applicable
to the results in Table 2.

Table 3 compares Davies lifting surface results for # - - 06 and a range of frequency para-
meters from k = 0to k - |5 with results obtained by the present method. The main purpose
of the comparison is to check the variation of the generalised forces with frequency parameter.
The agreement between the trends predicted by the two methods is satisfactory. The variation
between the results in this comparison is within the variation exhibited by the results shown in
the previous Tables.

Table 4 compares Davies lifting surface results for & 1-5 and a range of vertical separa-
tions fromh : Otoh - 0-6 with results obtained by the present method. The results for i = 0-01
and A - 0-04 are of particular interest since they represent a nonplanar case with a very small
vertical separation between the wing and tailplane. Small vertical separations between surfaces
can lead to problems with the doublet lattice method such as those discussed in Section 5.1.
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Comparison of the present method with that of Davies indicates that there is good agreement
in the trends predicted for the generalised airforces as the vertical separation is varied, together
with an acceptable match between individual pairs of generalised forces. In the critical region
of interest when / is less than 0-1 there is acceptable agreement between the two methods. .

9.2 Stark’s Swept and Tapered T-Tail

A swept and tapered T-tail, first analysed by Stark in Reference 13, is shown in Figure 16.
A feature of this particular T-tail configuration is that at the stabiliser-fin junction the trailing
edge of the stabiliser extends beyond the trailing edge of the fin. The reference length for this
configuration was taken to be the stabiliser semi-span.

The T-tail is oscillating in three rigid body modes. These consist of yawing about a vertical
axis through the centre of the root chord of the fin (positive nose right). sidesway (positive left)
and rolling about the fin-stabiliser intersection (positive right stabiliser down). These modes
may be expressed analytically as

filx, v 2): Hx+0-15577) on the fin 9.5

=0 on the stabiliser 9.6

fax oy )= 100 on the fin 9.7

-0 on the stabiliser 9.8

Salx, p o 2) = - ¢ on the fin 9.9
=y on the stabilizer 9.10 .

Figure 17 shows the panel distribution used in calculating generalised airforces for Staix’s
T-tail. In order to highlight the panel arrangement in the vicinity of the fin-stabiliser junction
only the starboard half of the stabiliser has been included. The present aerodynamic ideali-
sation of Stark’s T-tail is quite similar to that used by Kalman, Rodden and Geising [Ref. 12].
In particular, both meshes are refined in the vicinity of the fin-stabiliser junction and the tips of
the stabiliser in order to improve the estimates of pressures in these regions.

In developing a suitable pancl arrangement for Stark’s T-tail care was taken to ensure that
at the fin-stabiliser junction none of the aerodynamic panels overlapped. This feature of the
panel distribution is clearly evident in Figure 17 as the spanwise lines on the fin and stabiliser
meet at the fin-stabiliser junction.

If the panels at the fin-stabiliser junction overlap each other (i.e. the spanwise lines on the
fin and stabiliser do not line up at the fin-stabiliser junction) it has been found that the pressure
distributions in the vicinity of the junction differ from those obtained for the lined up case.

Figure 18 shows plots of the chordwise variation of nondimensional pressure A on the fin and )
stabtliser at the fin-stabiliser junction for modc /1 at a frequency parameter & - O and Mach 1
number A/ 0. For the case where the panels were lined up at the junction the panel distri- <
::-' bution of Fig. 17 was used. Another configuration was then investigated where the panel distri- HL
T bution on the stabiliser was varied from that of Fig. 17 in that the section of the chord from the )
A trathng edge of the fifth chordwise pancl to the trailing edge of the stabiliser was divided into 3
:'_.- six evenly spaced pancels. Only the rear half of the pressure distribution on cach surface is shown "]
b since the effect of the panel overlap was localised to this region. -]
.':-: Figure 1%(a) shows that the pressures on the fin arc only slightly modified by the overlap 4
:'.. of panels at the tin-stabiliser junction. In contrast, Figure 18(h) shows that the overlap of panels :
has stgnificantly modified the pressure distribution acting on the rear half of the stabiliser, =4

although only two pressure points have been significantly changed.
From the above example it is evident that the panels should be made to line up at any
Junctions if accurate and consistent predictions of the pressure distribution are destred. For
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this particular case the effect of panel overlap did not modify the generalised forces to any signi-
cant degree ; the variation was of the order of that which could be obtained by choosing a slightly
different (but still lined up) panel distribution. However, for an alternative set of modes that are
more sensitive to the pressures in the region of overlap, the effect could have been significant.

Table S presents generalised airforces calculated for zero frequency (& - 0) and two Mach
numbers M --0and M 0-8. The generalised forces @1, Q21 and Q31 represent the yvawing
moment due to yaw, the sideforce due to yaw and the rolling moment due to yaw. The agreement
between the results of the present method and those obtained by different workers is generally
good. If we focus attention on the doublet lattice calculations of Kalman, Rodden and Geising
[Ref. 12]. it is seen that the generalised airforces agree well with the largest difference being in
Q1. This generalised force is the fin yawing moment due to yvaw, and since the side force acting
on the fin, Q2. agrees well, this implies that while the present method and that of Reference 12
calculate the same force acting on the fin they ditfer in the chordwise location of the centre of
pressure.

Table 6 presents generalised airforces calculated for Mach number M - 0-8 and two
frequency parameters. A 06 and A 0-9.  The results obtained by Davies, Zwaan and
Kalman, Rodden and Geising were obtained from Reference 12, If we look at the results for
Ak 0-6and M 0¥ we see that the results for the present method lie well within the range of
values predicted by the other methods. However, the agreement between the magnitude of the
generalised forces Q@ and Qg caleulated by Farrell and the present method is comparatively
poor. These generalised forces represent the yawing moment due to yaw and sidesway, and are
obtained by a chordwise weighting of the pressure distributions due to modes /] and /. Since
Farrell used only four pancls down the chord of the fin and stabiliser [Ref. 2], compared to nine
and eleven for the present method. while the spanwise panel distributions were similar, the poorer
definiion of the chordwise pressure distribution thus obtained leads to quite different estimates
of Q11 and Q) caleulated by the two niethods. A second coarser chordwise panel distribution
was used with the present method with the result that the generalised forces Q1 and Qy2 were
in hetter agreement with those obtained by Farrell. A comparison of the results i1s presented in
Table 7 where 1t s scen that the agreement with the results of Farrell is improved by the use of
the coarser chordwise panei distribution,

Note that the Case 2 panel distribution consisted of four panels down the chord of the fin
and five panels down the chord of the stabiliser. This combination was chosen to allow the panels
along the fin-stabihiser junctton to line up. whereas with the panel distribution used by Farrell
this would not have been possible. This feature is likely to have contributed to the difference
between the Case 2 results of the present method and those of Farrell.

9.3 ONERA Horizontal Wing and Tailplane

The ONERA horizontal wing and tail combination is shown in Figure 19. In this particular
example the wing and tulplane are considered to be identical rectangles of chord ¢ 0-098
metres and senmi-span s O 1USES metres. The leading edge of the tailplane is a distance
cxmetres downstream of the trailing cdge of the wing and the plane of the tailplane is a distance
cH metres above the pliane of the wing,  The position of the tulplane relative to that of the
wing is then characterised by the nondimensional separation parameter A and height parameter
H.

In Reference 5. Davies has presented results obtaimed usig his lifting surface method for a
set of four combmations of frequency parameter and Mach number. These are given below,

NI/
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The frequency parameter 4 is based on a reference length equal to the chord of the wing. The
variation in Mach number and frequency parameter corresponds to an oscillation of almost
constant angular frequency in a compressible flow of varying velocity.

The modes of oscillation that were studied consisted of four rigid body modes, namely
vertical heave of the wing, vertical heave of the tailplane. nose-up pitch of the wing about its
mid-chord and nose-up pitch of the tailplane about its mid-chord. These four modes can be
described analytically as

fuxovozy 110 on the wing 9.11
0 on the tatlplane 9.12
ooz 0 on the wing 9.13
10 on the tailplane 9.14
falvo v, o) : ,], on the wing 9.15
0 on the tailplanc 9.16
flvovo oy 0 on the wing 9.17
\ 3
. (.\ - 2) on the tailplane 9.18

where the origin of the coordinates is at the centre of the leading edge of the wing.

In calculations with the present method a panel distribution of ten evenly spaced chord-
wise panels and twelve evenly spaced spanwise pancels was used for both the wing and tailplane.

From the extensive range of results obtained by Davies, which cover a range of values of
Afrom v Oto A v for /f Oand /1 | 8 the nonplanar case (H 1 8) with A = 2
and A1 2 were chosen to be used in caleulations with the present method. For this choice the
wing tailplune provumity etfects would be different from those encountered for the very closely
spaced AGARD wing and tlplane configuration. thus providing a somewhat different situation
compared to the AGARD configuration.

Table 8 gives results for the vartous M A combinations as obtained by Davies and the present
method for /f | Sund A 2. Comparison of the two methods indicates that there is generally
good agreement i the magnitudes of the generalised forces, the largest relative differences
occurring in the terms Oy and Qs These represent induced forees and pitching moments
on the wing due to oscillation of the tailplane. and as such they are more likely to vary since for
this particular case they represent a second order effect,

Turning our attention to the caleulated phase angles it is seen that there is good agreement
at the highest Mach number, 3/ -8 Then, as the Mach number decreases the agreement gets
progressively worse until at the Towest Mach number the ditference in phase angles falls between
Jand S degrees. However. this is only marginally worse than the maximum difference of 1-5
degrees encountered for the highest Mach number.

Table 9 gives results as obtained by Davies and the present method for /7 1 Rand 4 1
Tt s seen that the agreement m the generalised forees Oy and Qa4 has been improved compared
with the results shown i Table N [0 clear that by reducimg v the induced forces and pitching

5

moments on the wing due to osartlation of the tailplane have increased.

10, INTERACTIVE GRAPHICS DISPEAY FACILITY

When developg o data file for the wdealisation of a wiven conliguration it is desirable to
have avaifable the capability 1o generate o plot ol the panel distribution corresponding to the
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input data. This facilitates the checking of the panel distribution for any errors. as well as per-
mitting the visual comparison of various alternatives.

The present program incorporates the ability to generate a data file from a given panel
distribution which is compatible with the PAFEC finite element package that s in compron
use at ARL. This file is then processed by PAFEC so that the PAFEC Interactine <ir phics
System (PIGS) can be used to inspect the panel distribution. PIGS provides many powertul
commands that allow the user to study the panet distribution in great detait from any chosen
angle. A window facility permits close inspection of junctions at the mtersections of surfaces,
thus these critical areas can be easily checked to ensure that pancls line up correctly.

Very complex panel distributions, such as those involving multiple underwing stores with
aerodynamic surfaces, can be checked with ease. This, together with the ability 1o obtain hard
copies of any plots generated at the VDU terminal, makes PIGS an indispensable tool for the
validation of panel distributions.

The inherent compatibility of a doublet lattice panel distribution with most finite ¢lement
graphics packages means that the job of preparing a data file for such a package 1s a relatively
simple task. In program AIRFORTP only one additional subroutine was required and only
this subroutine would need to be modified if a finite element graphics package other than PIGS
were to be used. The advantage of such an approach is that existing computer graphics systems
can be utilised, thus obviating the need to develop additional programs to improve and speed up
the data development and checking phases involved in defining a panel distribution.

The possibility of creating the entire panel distribution using PIGS was considered. only
to be rejected for a number of reasons. Firstly, the common requirement that panels on different
surfaces line up streamwise imposes significant constraints on the panel generation scheme which
could lead to difficulties. Secondly. certain types of panel distributions cannot ke developed
casily using PIGS, since there may be many geometrical considerations that must be taken into
account. The present method which utilises a data input technique tailored 10 the requirements
of program AIRFORTP. as well as employing the graphics capabilities of PIGS. provides
capable and easy to use data preparation techniques.

11. DISCUSSION

The doubiet lattice method s a simple. versatile and accurate lifting surface theory which
is capable of analysing aerodynamic surfaces of arbitrary planform and dihedral.  Although
they were not considered in this report. control surfaces, ecither full- or partial-span may be
included. Problems of intersecting and interfering nonplanar configurations, such as a wing-
pylon-store combination. a T-tail or V-tail. a wing-tail combination, cte.. may be analysed.

The computer program AIRFORTP can handle most configurations provided that they are
idealised within the restrictions imposed by the doublet lattice method.  Hence the previous
capability at ARL for analysing wing-tail-fin combinations has been significantly extended.
Appendix G contains general considerations in regard to the development of panel distributions
used to model any given acrodynamic configurations.  Appendis H gives a description of the
format of the input dats file and mode gencration subroutine used by program AIRFORTP.
An example of an input data file and mode generation subroutine is given in Appendix 1 for the
analysis mvolving Stark’s T-tail configuration,

The results obtained by the present method for planar. nonplinar and intersecting hfting
surface combinations have been compared with the results of different workers. The latter were
obtained by both doublet lattice and lifting surface methods. The results of the present method
are seen 1o hie within the range of resalts obtained by the other methods, Problems with a small
vertical (non-zero) separation between streamwise columns of panels can be handled with ease
up to the point where the non-zero separation is so smid! as to be neghgible.
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12. CONCLUSIONS

The doublet lattice method is readily applicable to a large class of interfering lifting surfaces.
As currently programmed at ARL the method can be used for general nonplanar and nonparallel
lifting surfaces, both intersecting and nonintersecting in nature. Results have been obtained for a
number of configurations and comparisons of the results have been made with results obtained
by other workers. The comparisons show generally good agreement.
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APPENDIX A

Definitions relating to a general combination of a sending and receiving panel

Let us consider the interaction of a receiving panel r and a sending panel s which are defined
in a global axes system (X, Y, Z) as shown in Figure 2. These panels are inclined with dihedral

won N angles defined as yr and ys. The coordinates of points A and B at either end of the doublet
S line on the sending panel are A : (xa, ¥a, za) and B: (xg, yg, zB). The coordinates of the control
v‘;"~ point C on the receiving panel are C: (x, y, 2).
,,:;' The position vector corresponding to points along the doublet line may be written in terms
*-..' of the variable 1 as follows :
»)
f rap(f) = Xan(?)i+ Yap())j+Zant)k 0<r<l Al
i
: I; where
L
',\j XaB(t) = xa+(xp—xa)t A2
Y
Yas(t) = ya+(yB—ya)t A3
Y
| ,““. Zan(t) = Za+(zB—za) Ad
Se s
’{‘7'2 From the definitions of x), y; and z; in Equation 4.1 it is clear that when we calculate the
: e line integral of Equation 3.2 the variables x;, y; and z; may be written in the following form:
Fa
\-\\ X1 = ax+bx’
L\:L‘r
?.-‘j?, y1 = ay+byt A5
.':t‘-}
: " 21 = az+bat
‘ where
~A
-.‘:*ﬁ. axy = X—Xa dy = y—pa a; = Z2—2A A.6
SRS
\ t}r
WY by = xpa—xp by = va-yn b, = za—:zB A7
) »
LA

v

In the equations for the Kernel function the variable r2 is present. The equation for r*> may
be written as :
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If the minimum value of r2 for a given panel combination is denoted by r2yp, and the location
of this minimum by #min, then we have that:

tmin = —br/2a; A.12

2 be?
min = Cr— ;—

4ar

A.l3

A decision which determines the integration procedure to be used is made on the basis of the
values of r2min and rmin obtained for a given panel combination. Due to the organisation of
panels into streamwise columns, fmin and r2pi, need only be calculated for combinations of
columns rather than individual combinations of panels.

PP TS o = W, P




APPENDIX B

Calculation of the infinite integrals I, and I,

In calculating the Kernel function two infinite integrals, /1 and /5, occur. For completeness
the expressions are repeated below :

0

L, ) e B.1
1y, v) = —- du )
2132
u (1 +u?)
‘w e-ivu BZ
Is2(ty, v) = e du .
2y5:2
u (1 +u?)

where the symbols ¥, and v were defined in Section 4.1.
From Reference 7, integration of /, by parts once and integration of 3/ by parts twice

leads to:
. un X
nI(u,v) = e—“’ull:l H(ﬁlilr:u 2;)1,9_”/’0(“1' V)] B.3
22
—i . 1 i
3[2(1{1, V) = e~ U1{(2+Ivlll)|:l - (l +'u12)1 3] (l +u1é)3'2
—ivlp(uy. v)+v2Jo(, t)} B.4
where
o u
Intuy, vy - e \»I Ty _,:Ic b uddy B.5
Ju (1l +u*)
T u
Jotug vy eih u[l . .,:lc irugfy B.6
" (I +u=)t =

The integrals /o and Jo can be evaluated using approximations to w(1+u?) ' 2 developed
by Laschka [Ref. &) in an exponential form for v = 0:

11
u *
o X \ (l"‘, ney B7
(1 +u2)t e o
M |

where ¢ 0-372 and the ay are given in Table 10.
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e ;
N The integrals /o and Jg for ) > 0 then become :
i \ .
.'%::) 11 3
-~ e—ncu g
. j To(u, ») = Z an *—l(nc —iv) B.8 R
- (n2c?+42)
) n=1
N
B ".._{ .
T :
K - ape-"cy :
'::;{ Jo(ur, v) = Z (”chz+yz)z n2c? —v2+ neur(nc? +v2) B.9
l‘j n=1
Y ,
o ! —iv[2ne + ur(ndc? +v2))} B
" “:} ,.
Symmetry properties of the integrands of J; and /. have permitted the consideration of
only non-negative arguments i, since, for #; < 0, we have that :
R "
1SN -
L h(ur, v) = 2Re{1(0, v)} — Re{l\(—u1, v)} + il i(—1, v)} B.10
v
K
L I(ur, v) = 2Re{Ix0, v)} — Re{ o —u, V)} + ifm{fo( —u, v)} B.1l :
LAY e
Hence the desired integrals /, and /> have been explicitly defined for the range of cases |
\:‘ uy 2 0 and w < 0. v
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APPENDIX C

Integration procedure when r2 > 0 over the integration interval

The normalwash influence coefficient relating the normalwash on the i ‘th panel 10 the pressure
over the j'th panel is:

Di; = 74? " Kijdl C.1

where r2 < O over the interval /;, By analytically incorporating the 1/r* behaviour into the in-
tegral, Equation C.1 becomes :

»

Dij = ('1704(:7; ﬁj I:er]”d/ C2
I;
where
Glx1. v1 o) = (K T+ Ko T)emiexy U C.3

By subdividing the interval 1; into n smaller intervals we may write:

n
Bm
¢j cos B G
Di- ' 4 : Z [ﬂ] dl Ca4
Am H
m =1

where the line integral is evaluated over m straight line segments between points Am: (Yam,
Vam. Zam) and By (¥gm. Yrm. Zgm). For convenience the m., i and j subscripts will be dispensed
with, and so the integral of interest in Equation C.4 may be written as:

Let the line between points A : (xa. v¥a. 24) and B: (xp. vi. 2i) be represented by the para-
metric relationship:

ran(2)  Xan(pli+ Yastmj+Zanlpk 1< p< +1| C.6
where

Xan(p) - X+ 1p £ (a+an) 2 X {xpoxa)/2 C.7
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B
§
il
BN L. . <
o Yan(p) = y+Jjp 7 =a+ys)/2 J=(yB—ya)/2 Cc8
. q
:&: Zas(p) =Z2+13p Z = (za+2zp)/2 Z = (z—24)/2 C9
Ly .
. Equation C.5 may now be written in the form:
P
N +1 .
P G(x1(p), y1(p), 21(p)) dl
- l= —— s g C.10
oy 1 y(pl+zupy  dp

+
N ) where
:::.: x1(p) = xo— Xag(p) C.11
::;:: yi(p) = yo— Yas(p) C.12

i zW(p) = zo—ZaB(p) C.13
':.';::: and (xo, Jo, 20) is the location of the control point for the panel combination being considered.
" Now we have that :

H'::'

,4"- 4! . i. )1‘0

[) = (FaB . FaB

-4 . . .

N = (XaB(p)*+ Yan(p)*+ Zan(p)»)!/?

- :n

:r which yields the result :

A dl
A £ _ (242 ) C.14
-{}."’- dp

N

‘ & By substituting Equations C.11, C.12 and C.13 into Equation C.10 we obtain :
) +1

i dl

o =98Py, c1s

\T-.‘. dp‘ l D( p)
:::: where
4 Ll‘i:

D(p) = ap*+bp+ ¢ C.16 -
! N
N a=p2+ 2 C.17 ]
b= 2} (yo—)+ Hz0-2)] C.18 .
o ﬂ
L € = (yo P+ (z0— 22 C.19 _‘
R-. W
?3 Now, in order to evaluate the integral in Equation C.15, let us represent G(p) by a second-order >
:;, Lagrangian interpolation polynomial : >
e 3
i & .
2 Gp) O @pttbip+)Gip) .20 .
vt A .
o i=1 .
o .'3
&
<0 b

,\‘u. ‘ I
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.- where the abscissas p; arc the zeros of the Legendre polynomial. Substituting Equation C.20
Nud into Equation C.15 yields :

SAS. dl
N = Z Wi. G(pi) c.21
e where

+l‘p._, +l‘p +17
.

Wi=a Ip + b; Ip+ ¢ dj C.22
7 a |J D(p lJ D(p « lJDp

From the tables of integrals presented by Dwight in Reference 14 we find the following indefinite
integrals corresponding to the definite integrals in Equation (.22

R *

. 2 b bt 2ac | 1
o le)(lp P mipy o+ "‘J dp C.23

a 2a 2u*

p 1 b |
. ip In D - d|
..,_a_ D(p 2a : ZuJ “

C.24

2 b+ 2ap
tan ! . b*-4ac <0 C25
(dac bz (dac -b2)i 2 ac

s l b+2ap (b2 4uc)' 2

. b 4uc > 0
e (6> 4acit = " b+ dap+ (6% 4acy 2 ““

5

b+ 2ap b*-dac 0

‘h'.:- The coefticients ai. A and ¢; of Equation C.20 may be calculated from:

t';"i ayptibip o (popdp o p3)Apr ppr pa) C.26
apitbep e (popp p3) (p2 o pdpe pa) C.27
:: azp> s hap ey (p o pip p2) (ps piHpa pe) .23
< by equating ke powers of p. Thus we obtain .

ay L(pr podpr pa) (p2epaday 1 papay C.29

- a Lipe pidpe p3)y b (pryp3dae o2 prpade .30

Pt
-
s
A

az Ltpy pips p2) by (prepadas cx pipeas (G

14 A

x
L

‘l"

where the abscissas poand coeflicients ai. bi and ¢ are presented in Table 11,
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By choosing that the abscissas p; correspond to the abscissas in the common Gaussian
quadrature formula:

» n

S(p)dp = z Wiy

i=1

+1

-1

it is anticipated that the integration accuracy will be maximised compared to any other choice
of Di.

Note that since r? is greater than or equal to zero then the determinant b2 —4ac is less than
or equal to zero. Hence in Equation C.25 the integral when 62 -4ac > 0 is not applicable to
the problem at hand and should be neglected.
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APPENDIX D

Integration procedure when r° 0 in the centre of the integration interval

In the doublet lattice method, when the r* 0 singularity wecurs it must do so in the centre
of the interval /; over which the line integral of Equation 3.3 1s detined. Following the method of
Appendix C. the interval /; may be subdivided into # smaller intervals. Furthermore, if we assume
that the singularity falls symmetrically within the A'th interval. then the normalwash influence
coefficient Di; may be written as:

ko1
. ) v« Buw ", Bk (1.
ai:<iaw3{ N [GJ‘u, [OJ(H D.1
4w _— Am 1y Ak; r i
m
n
“ Bm ey
C
PN :] dl}
— e Jii
m—=k+1 Am

The integrals in the first and third terms may be calculated using the method detailed in Appendix
C. It now remains to derive a method for solving the finite part integral in Equation D.1. If we
dispense with the subscripts then the integral of interest is :

Now since 2 0 in the centre of the interval from point A (va. va. Z4) 1o point B: (xvp.
¥u. Zn). the line between these two points can be represented by the parametric relationship

rp)  N(pli+rip)+ z(pk I <p< +1 D.3
where

Xp)  I+3p AN (vp YY) 2 \ (va+ ) 2 .4

¥p) o va+ip Ty ra) 2 DS

op) zo+lp o (zw oza) 2 1.6
and the control point is located at (xo. vo, zo). Note that when 2 0 the control point and hit

point (shown in Fig. 2) lic on the same streamwise line.
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Using the above definitions of x(p), y(p) and z(p) we obtain :

Xi{(p) = xo—(X+ Xp) D.7
»n(p) = —Jjyp D.8
Z(p)= —2p D.9

Hence we see that r2 = y;2+ z;2 is simply :
r? = (4 P2)p? D.10

and, as in Appendix C, we have that:
= (XE4 P24l 2 D.11

Thus, using Equations D.7 to D.11. Equation D.2 becomes :

i
I d G
/- d j{ ), D.12

I (i[) I P

Following the method of Farrell [Ref. 2], the numerator G(p) may be approximated by a
polynomial of order (n - 1):

n n
G(p) == \ N hiipl 'G(pi) D.13
pra— et
Q=1

where the /i;; represent the cocfficients of the polynomial. The abscissas p; are the roots of the
n'th order Tchebycheff polynomial of the first kind. The abscissas may be determined from the
following equation [Ref, 15, p. 889]:

2i 1
pi cos( 12 I D.14
n

By substituting Equation D.13 into Equation D.12 we obtain :

n
TN el D.15
T+ IR dp

i I

where

H
.o+l
e N hii P dp. D.16
i *




By equating like powers of p, the A;; may be calculated from :

(p —Dpu)

n
u
Zh;ip"l == — i=1,2,..,n D.17

1 (pn _pV)

4. A

J

where I_I is the restricted product for w = 1,2,....n; u # i,

1

and | | is the restricted product for v = 1,2,...,n; v # I

v

As in Reference 2, an eighth order polynomial has been chosen. This corresponds to n = 9,
and the abscissas p; and weights C; have been calculated and are listed in Table 12.
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LAY
:j-& Estimating the position of the zero crossings of Kor2
. Let us consider the interaction of a receiving panel r and a sending panel s. We wish to
: determine estimates of the positions of the zero crossings of the numerator of Equation 5.1 for
:»;,‘ the steady case. These zero crossings will occur somewhere along the line which is colinear
Ay with the doublet line in the sending panel, and we are specifically interested in the case where
,,»}; they occur on the doublet line itself.
:{-‘»‘ The numerator discussed above is defined as :
LA .‘
\ , , : . . 5
R Kor? = Ki'™ cos (yr—vys)+ Ka'S¥(z1 cOs yr— 11 $in yr)(21 €OS ys — )1 sin ys)/r? E.l
¥
Ll S
:.-i: Multiplying through by
A% . ; ;
‘:&‘? r? =324 1,2
i,
we obtain :
o
t"I:| Kort = Ki'™ €os (yr - y)(012 + 212) + Ka'(21 €08 yr — 1 $in yr)(21 COS ys — 31 SN yy)
LI
Ane E.2
s
’;‘v By substituting for =y and »; using Equations A.5 to A.11 (see Appendix A) it is possible to write
@ . Equation E.2 in the following form:
N Kort = A12+ Br+C E.3
b where
T A = Kl‘s’[COS(Yr~ys)ar]+l<2‘5)[aza4] E4
<~ B = Ki"[cos (yr ~y<)br] + K2 ayas + aza3) E.5
A C = Ki*™'[cos (yr--yo)er] + Ka'S)[aras) E.6
Sy
R 9
s ay = by2+bz' E.7
br = 2[ayby + a;b,] E.8
oy r = ayt+ag? E.9
v
) 1 ap = @, cos yr dy Sin yr E.10
az - b, cos yr by sin yy E.11
az - @,cosy. aysin y. E.12
ay ~ b, cosy. by siny. E.13

In the above equations it is assumed that K, and K.'S' are constant for the panel com-
bination under consideration.
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With reference to Figure 2, the sine and cosine of the dihedral angle of the sending panel s
may be expressed as:

. ZB—2Za
$inve = — A E.14
YT (B —ya)l+ (zp—2za)2]V2
YB—)A
COS ve = L ZBTIA . E.IS
T (B —yal+(zp—za)]L2
By substituting
—by = (yB—ya)
and
—bs = (zB—24)
into the above expressions we obtain :
. —b,
sin yg = (b2 45,572 E.l6
—by
COs ys = (b;z-o-rb;él)‘ﬁz E.17
If we rewrite a4 (see Equation E.13) in the following form:
‘—bz —by .
ag = "(by2+b12)1/2|:('by2+BZZ)1/2 COS ‘}’s_(b“yaz;z')‘i'/é sin Ys] E.18

and then substitute Equations E.16 and E.17 into Equation E.18 we see that a4 is identically
equal to zero. Hence the coefficients 4, B and C of Equation E.3 become:

A = K1'®[cos (yr —ys)ar) E.19
B = K1'®[cos (yr —ys)br] + K2'¥'[azas) E.20
C = Ki¥[cos (yr —ys)er]+ Ko [aras] E.2I

Also, ay, a2 and as can be written as:

ar = —(ay+ a2 sin (yr —¢) E.22
az = +(by2+b:)12sin (vr - ) E.23
as = —{ay?+a;?) Zsin (y. - €) E.24
where
sine=_ “ E.25

(ay® +a?) 2

and e represents the dihedral angle of the line from point A on the sending panel to the control
point on the receiving panel. From this definition of « it is clear that sin (y¢ ¢) 0 when the
lift point on the sending pancl lies on the plane defined by the receiving panel.  Similarly,
sin(ys - €) 0 when the control point on the receiving panel lies on the plane defined by the
lifting panel. If the latter condition coincides with the sending and receiving panels lying perpen-
dicular to each other, then. as expected, no mutual interference occurs.




Inspection of Equation E.19 leads to the observation that there is only one zero crossing
when the sending and receiving panels are perpendicular to each other. An example of such
behaviour is presented in Figure §.

The positions of the zero crossings (in terms of the parameter f) of the numerator of Equa-
tion 5.1 can be estimated by solving the following equation :

At2+B1+C =0 E.26

for the values of 1.

In the above analysis it has been assumed that K;'> and K»>'’ may be taken to be constants
over the length of the doublet line in the sending panel. This approximation is valid since
both K)'$' and K2'S' are slowly varying functions and the interval over which they are assumed
to be constant is itself quite small. More often than not, the zero crossings will occur outside
the interval defined by the doublet line. In this case the assumed values of K18’ and K2 may
not be accurate, but this is unimportant since we are only interested when the zero crossings
occur along the doublet line. When the zero crossings occur along the doublet line the estimate
of their location may be improved by repeating the calculation using revised average values of
Ki*® and K»*® calculated over a smaller interval defined by the initial estimates of the zero
crossings.

For critical cases where the zero crossings are close together the approximation that K;'¥
and K, are constant over the small interval is particularly good. Geising et al. [Ref. 7] have
shown that when r2—0 the terms K;—2 and K:— —4, where K and K: are elements of the un-
steady Kernel function given in Equation 4.1. Hence, as r2—0 then K1 -2 and K2'®'— —4.




APPENDIX F

Estimating the position of the turning points of Kor for a perpendicular combination of sending and
receiving panels

Let us consider the interaction of a perpendicular combination of receiving panel r and
sending panel s. Utilising the expressions developed in Appendix E, the numerator of Equation
5.1 can be written, for the steady case, as:

B A2+ Bt+C

= - F.1
art> + byt + ¢¢

K or2

where the coefficients 4, B and C are defined in Equations E.19 to E.21 and the coefficients ar,
b: and ¢, are defined in Equations E.7 to E.9. Since the panels are perpendicular cos (yr - y.) - 0,
and Equation F.l1 becomes :

azKs'S'ast + ay)

: F.2
art?+ bt + ¢

K()""3 =

where the coefficients ;. a2 and a3 have been defined in Equations E.22 to E.24.
If we assume that K, is constant for the panel combination under consideration, then:

d(Kor®) - a3Ka™arast® + 2avart + beay - craz)

racrdll T F.3
dt (acr® + bt + or)?

After setting the above expression to zero, the positions of the turning points may be estimated
by solving the following equation :

arast® + 2arayt + by — cras = 0 F.4

for the values of 1.
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APPENDIX G

. Considerations in the selection of panel distributions
N
" In the doublet lattice method the surface is divided into a number of panels. A number of
i rules and considerations apply to the choice of panel distribution for a given configuration ;
L these are as follows :
T . . . .
’ o l. The panels are trapezial in shape and the sides of panels must be aligned streamwise.
& " Panels are arranged in strips parallel to the free-stream. The aspect ratio of the panels
‘l'ﬂ should not be large. For the unsteady case, an aspect ratio of order unity or less is
A preferred [Ref. 7].
L)
::-:_", 2. Surface intersections, surface edges, control surface boundaries, fold lines and other
«..‘[a.‘ discontinuities should lie on panel boundaries.
DA : . . . . . . .
3. For wing-tail type configurations the strip boundaries on the tail must be aligned with
" those on the wing.
b _ ‘
S 4. The analysis assumes that the pressure is constant over each panel. Thus the results
:{-’.: will be more accurate if the panels are smaller where the pressure distribution varies
l:‘q. ..: more rapidly. Consequently the panels should be concentrated near the wing tips, the
° leading and trailing edges of the surface and near control surface edges. This also
7Y applies to all regions where the normalwash boundary conditions are discontinuous.
:.‘:}
oo 5. Where surfaces intersect, the panels should be arranged such that the sides of panels
\". situated along the line of intersection do not overlap. This means that the spanwise
<8 lines must coincide as shown in Figure 17. .
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APPENDIX H

Input data for program AIRFORTP

Program AIRFORTP calculates the pressure distribution and generalised airforces for
general lifting surface configurations oscillating in subsonic flow. The data file, AIRFOR . DAT,

for this program has the following form :

GNU, AM, RL
IPLOT, IPRNTP
NONODE

I, XN®), YN(), ZN(I)

NGRPS

GROUPTITLE

J, JINODE(), J2NODE(J).J3NODE(J). J4NODE(J)
IREF(J. 1), IREF (J. 2). IREF (J, 3), IREF (J, 4)
NC(J), NS(J), NCEVEN, NSEVEN, ITCORD
(TCORDI (J, K), K = 1. NC(J)+ 1)
(TCORD2 (J, K). K ~ 1. NC(J)+ 1)
(TSORDS (J. K), K - 1. NS(J)+1)

NGRPSA

(IGRPSA (K), K — I, NGRPSA)
NMODEA
(IMODEA (K), K - |, NMODEA)
- where
wl
GNU frequency parameter, U
AM Mach number. AM < 1-0. .
RL reference length, /.
IPLOT Flag for initiating preparation of data file for use in PIGS graphics
package.
IPLOT = 0: no data preparation ;
IPLOT = |: PAFEC data file, BOX.DAT, is created and

program AIRFORTP stops execution.

IPRNT Flag for choosing format of print out of the calculated pressure
distributions.
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NONODE

XN
YN(I)
ZN(D

NGRPS

GROUPTITLE

JINODE()
J2ZNODE()
JINODEW)
JANODEW)

IREF (I, 1)
IREF 4. 2)
IREF (J. 3)
IREF (J. 4)

NCW
NSJ)

NCEVEN

NSEVEN

ITCORD

IPRNT = 0: no pressures printed ;

IPRNT = 1: pressures for each mode printed in column fashion ;

IPRNT = 2: pressures for each mode printed in matrix array
form for each group of panels.

number of nodes to be defined. Nodes need not be numbered
sequentially. 1 < NONODE < 100.

node identification number. | < 1 < 100.

X coordinate of node I.
Y coordinate of node I.
Z coordinate of node 1.

number of groups (of panels) to be defined. Groups need not be
numbered sequentially. | < NGRPS < 50.

title to describe the group whose input data follows. Up to 70
characters are allowed. ¢.g. PORT WINGLET.

group identification number. 1 < J < NGRPS. Groups need not
be numbered sequentially.

Node numbers defining the leading and trailing edges of group J.
The sequence |, 2, 3, 4 follows the group node numbering con-
vention (defined in Section 8.1 and Fig. 8).

numbers defining the senses of positive pressures on the source
group and any images that have been created. They may take the
values 0, - i, + 1 except for the source group IREF (J, 1). which
must be non-zero. Sec Section 8.3 for a detailed description.

number of chordwise panels on group J.
number of spanwise panels on group J.

Hag for choosing whether or not panels down the chord of group J
are to be evenly spaced.

NCEVEN . 0: panels not evenly spaced.

NCEVEN  |: panels arc evenly spaced.

flag for choosing whether or not spanwise columns of panels on
group J are to be evenly spaced.

NSEVEN  0:  columns not evenly spaced.

NSEVEN  I:  columns are evenly spaced.

flag for choosing whether or not the ordinates of chordwise edges
of pancls for the side containing nodes J2ZNODE()) and J4-
NODEUJ), TCORD2(J.K). arc to be provided as input data.
This feature allows pancels of constant chord to be located on a
tapered lifting surface.  If ITCORD 0 then the line of data
containing the ordmates TCORD2(J.K) is omitted and the pro-
gram defaults to TCORD2(J.K)  TCORDIUJ.K). IfITCORD

I then the line of data containing TCORD2(J.K) must be in-
cluded.

|
H




: i
!: TCORDI1{J,K) ordinates of the chordwise edges of panels on group J, non- "'
b dimensionalised with respect to the local chord, for the sidecontaining -
M nodes JINODE(J) and JANODE(J). TCORDI(,1) =0-0 at the -

T leading edge of the group and TCORDI(J,NC(J)+1) =1-0 at .:-
;'_. the trailing edge. This line of input data is omitted if NCEVEN=1. e
- TCORD2(J,K) ordinates of the chordwise edges of panels on group J, non- .

- dimensionalised with respect to the local chord, for the side con- f}-
taining nodes J2NODE(J) and JANODE(J). TCORD2(J,1) =00 .’_:
- at the leading edge of the group and TCORD2(J,NC(J)+1) = 1-0 e

. at the trailing edge. This line of input data is omitted if Lo
' NCEVEN = | or ITCORD = 0.

' '
:g TSORDS(J.K) ordinates of the spanwise edges of columns of panels on group J, "o
4 nondimensionalised with respect to the span of group J. 0
3: TSORDS(J.1) =0-0 at the streamwise side containing node \..:
JINODE(J), and TSORDS(J.NS(J)+ 1) = 1-0 at the streamwise ‘.
side containing node J2NODE(J). This line of input data is
omitted if NSEVEN = 1. \
)
| NGRPSA number of source groups, together with any defined images, to be W
‘.‘ included in the analysis. The groups for analysis are chosen from S‘g‘
the set of groups that have been defined earlier in the data file. ¢
‘ I < NGRPSA < 50.
™
. IGRPSA(K) list of NGRPSA group numbers identifying the subset of groups f~'
:’ to be included in the analysis from the set of groups defined R
Wy previously. The numbers may be in any sequence. B
¥ .
W . . ) . -

* NMODEA number of modes which are to be used in the analysis.

I < NMODEA < 20. v

-~ ~A
[\ IMODEA(K) list of NMODEA mode numbers that identifies the subset of o~
: modes for which the analysis is to be carried out. The numbers Nt
- in the list refer to the mode numbers defined in SUBROUTINE ::.‘
> MODES. The numbers may be in any order.

N Uhe data tile s primardy concerned with information related to the geometry of the con- ..
N figuration bemg analvsed. In order to obtain pressures and generalised forces it is necessary to o
- supply 0 SUBROU TINE MODES which defines the modal data to be used by program '&
. MREORTE  The modal data consisis of nondimensional displacements and slopes at the )‘5
~f Cermabsash collocation pomnts and. in order to calculate the generalised forces, the non- N
[ { dimensrenal deplacements at the It points must also be defined. This information must be

5 stercd o abdict CONMMON MODATA  as follows: :'_'
> VRANMETIR (NP 2600 NM - 20) k
Y COMNMON MODATA NOMODE, DZLINP.NM), DZID(NP.NM). DAD(NP.NM) g
' [ arabees ssacted with the abose COMMON block are defined as follows : .:4:
L NP mavimum number of panels which can be used. This is currently
: setto NP 260, 4\::
¥ N mavimum number of modes Tor which pressures can be catculated. :3: ]
This s currently set to NM 20, &
b Y

NONTODI total number of modes that are detined where NOMODE < NM.
The mput st of modes to be used in the analysis detines which
modes are to be used.
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DZL(N,M) nondimensional displacement at the lift point on panel N in
mode M.

DZD(N,M) nondimensional displacement at the normalwash collocation
point on panel N in mode M.

DAD(N,M) slope at the normalwash collocation point on panel N in mode M.

The nondimensional displacements are normalised with respect to the reference length. Panel N
corresponds to the panel in the /'th row and J’th column of the K'th group. N is given by :

N = INDEXS(K)+(J - )*NC(K)+1 < J € NS(K) H.1
I £ < NC(K)

and the vectors INDEXS, NC and NS are described in the following section.

In order to facilitate the preparation of the modal data, the specifications of a number of
labelled COMMON blocks are given below. These COMMON blocks contain data related to
the geometry of the configuration, as well as information associated with the organisation of
this data, and are given below (note that NP was defined previously):

PARAMETER (NE - 50)

COMMON, AERPAR GNU, AM, RL, AM2, BETA2. BETA, RL2

COMMON:  XYZLFT XL(NP4), YL(NP4), ZL(NP,4)

COMMON/XYZDSH XD(NP.4), YD(NP.4), ZD(NP4)

COMMON/ INDEX 'INDEXS(NE), INDEXA(NE)

COMMON/ELDATA /NOELEM, NC(NE), NS(NE), IREF(NE.4), IELUSE(NE)
COMMON/DIHEDL /DIHEDL(NE,4)

The definitions of the variables are :

NE maximum number of groups which can be defined.
This is currently set to NE = 50.

GNU frequency parameter

AM Mach number

RL reference length

AM2 = AM x AM

BETA2 10 AM x AM

BETA - SQRT (BETA)

RL2 RL * RL

XL(N.IR). dimensional (X, Y. Z) coordinates of the lift point on the N'th
YL(N.IR). panel in the /R'th reflection state. /R - 1 refers to the source
ZL(N.IR) group (sec Scction 8.3).

XD(N,IR). dimensional (X, Y, Z) coordinates of the normalwash collocation
YD(N.IR), point on the N'th pancl in the /R'th reflection state.

ZD(N.IR)

INDEXS(K) pointer indexing the position of the first panel associated with

the K'th group. This pointer refers to all source groups.




INDEXA(K) pointer indexing the position of the first panel associated with the
K’th group used in the analysis.

NOELEM number of groups (elements) defined in the data file.

NC(K) number of chordwise panels for the K'th group.

NS(K) number of spanwise panels for the K'th group.

IREF(K.IR) number defining the sense of positive pressure on the K'th source

group (IR = 1) and any image groups (IR = 2; 3 or 4). See the
definition of IREF used in relation to the input data file.

IELUSE(K) this variable indicates whether a particular group (element)
number has been used. [f IELUSE(K) = 0 then the K'th group
(element) has not been defined. If IELUSE(K) = | then the
K’th group has been defined.

DIHEDL(K.,IR) this is the dihedral angle (in radians) of the K'th group. IR = |
refers to the source group and IR — 2, 3 and 4 refer to any image
groups that were created,

Let us consider the N'th panel oscillating in mode M. The coordinates of the normalwash
collocation point may be given as (xx. y'n, 2x), and by applying Equation 6.1 the displacement
normal to the surface at the collocation point may be expressed in the following form :

XN, PNy 2N ) = L (e, ey, 2N) et H.2

The coordinates of the normalwash collocation point on the N’th source panel are given by the
following equation :

(YN. PN IN)  (XDIN) YDINL), ZD(N, 1)) H.3

Using Equation 6.3 the nondimensiona: normalwash may be expressed as

MY~ N, ON & - .
il \U L = b('\,’”(_lu(.\'x. TN, :.\')>+i/\‘_/.\l(.\‘x- ¥N.IN) H.4
DAD(N.M) +ik . DZD(N.M) H.5

In order to obtain the generalised lorces it is necessary to calculate the nondimensional
displacement at the mid-span quarter-chord point of the A'th source pancl. (Ix. fn. 2n). in the
M’th mode. The nondimensional displacement may be determined from the following equation :

Sl Fa 2n) o ACYLIND)L YLAN D) ZLN ) H.6
DZI(N.M) H.7

Although it is customary to define DZL in the manner depicted above, this convention need
not be followed i forees other than generalised forces are required.

A sign convention exists for the specification of the modal displacements and slopes used
in the caleulation of pressures and generalised forces.  The displacements perpendicular to the
surface. DZD and DZI. are taken to be positive when they are in the same direction on a group
as the direction of positive pressure for that group. The slope at the normalwash collocation
point. DADL s positive if the displacement at that point. DZD. is increasing in the streamwise
(o) dicection. An example stlustrating the application of the above consention is given in Appen-

din |
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APPENDIX 1

Example of input preparation for the analysis of Stark’s T-tail

As an illustrative example, the preparation of the input data file and SUBROUTINE
MODES for Stark’s T-tail will be described. The configuration is assumed to be oscillating with
a frequency parameter of 0-6, based on a reference length of one unit, in an airstream of Mach
number 0-8.

The data file for the panel distribution shown in Figure 17 is given in Table 13. A total of
7 nodes were used to define the configuration. The positions of the nodes can be deduced by
using the node coordinates in conjunction with Figure 16. Two groups were defined, with
group | corresponding to the starboard half of the stabiliser and group 2 corresponding to the fin.

Due to symmetry, only the starboard half of the stabiliser is modelled. Nodes 1 and 2 define
the leading edge and nodes 3 and 4 define the trailing edge of the stabiliser. TREF(1,1) = 1
indicates that the direction of positive pressure on the source group is in the negative =-direction.
This agrees with the topology of the group (see Section 8.2). The effect of the port half of the
stabiliser is included by setting IREF(1.2) -- 1. This creates an image of the source group by
reflection in the x—= plane.

The positive sense of pressure on the image is in the positive =-direction, which once again
corresponds with the topology of the group. The combination of positive pressures on the port
and starboard halves of the stabiliser corresponds to antisymmetric motion of the stabiliser.

The stabiliser is divided into 11 panels chordwise and 10 panels spanwise, with the chord-
wise panel distribution being the same on both sides of the half stabiliser. The chordwise and
spanwise ordinates of the panel sides are listed in lines 16 and 17 of the data file.

The leading edge of the fin is defined by nodes 2 and 5 and the trailing edge by nodes 6 and 7.
Since IREF(2,1) -~ —1, the sense of positive pressure on the fin is in the negative y-direction
which is opposite to that defined by the topology of this source group. Note that no image
surfaces are created. The fin is divided into 9 panels chordwise and 10 panels spanwise, and the
nondimensiona! ordinates of the panel sides are listed in lines 22 and 23 of the data file.

For this analysis. both the stabiliscr and fin are included, which is indicated in lines 24 and 25.
Three modes are to be used in the calculation of pressures and generalised forces. The numbers
1. 2 and 3 in the last line refer to the modes defined in SUBROUTINE MODES.

Since IPLOT - 0 (sce line 2) a PAFEC data file for use in PIGS will not be created. By
setting IPRNTP -- | the print out of pressures associated with the three modes will be presented
in a columnar format.

A SUBROUTINE MODES is required to generate the modal data and a detailed description
of the format of this subroutine is given in Appendix H. A listing of the FORTRAN source
code for the subroutine used to calculate modal displacements for Stark’s T-tail is presented in
Table 14,

As described in Section 9.2, the T-tail is assumed to be oscillating in three rigid body modes.
These are yawing about a vertical axis through the centre of the root chord of the fin (positive
nose right). sidesway (positive left) and rolling about the fin-stabiliser intersection (positive right
stabiliser down). These modes are expressed analytically in Equations 9.5 to 9.10. and when
they are used in Equations H.4 to H.7 the following equations are obtained for the stabiliser:

DZD(N.1) DADIN.) DZI(N.1) 00 L
DZDIN.2)  DADIN.2Y  DZI(N.2) - 0-0 1.2
DZD(N.3)  YID(N.I) 1.3




- aae A - o aal i A a e et B Mk abde e b son Raat Rt iet el S Ut i A i

. DAD(N,3) =0-0 14
0N
N DZL(N,3) = YL(N,1) .5
AN
-
A where
Koo~
N = INDEXS(K)+(J— 1)*NC(K) +1 1.6
AN 1 <1< NCK) L7
q.‘:\
;ﬁ 1 <J < N§(K) 1.8
; ) and K = | for the stabiliser group. The modal data for the fin is as follows :
s
.{,;. DZD(N,i) = 3-0 * (XD(N,1)+0-15577) .9
ALY
2N DAD(N,1) = 3-0 1.10
i DZL(N,1) = 3-0 * (XL(N,1)+0-15577) I.11
g DZD(N,2) = 1-0 112
S DAD(N,2) = 6-0 113
Ve
. -?«g DZL(N,2) = 1-0 1.14
e DZD(N,3) = —ZD(N,1) .15
- DAD(N,3) = 0-0 116
. DZL(N3) == —-ZL(N,}) 1.17
o
.':h: where N is obtained from Equations 1.6 to 1.8 by substituting K = 2 for the fin group.
'ﬂ:‘. Note that the displacements DZL and DZD are positive in the same direction as the sense
of positive pressure that is defined for the panels in a given group. The slope DAD is positive
p if the displacement is increasing in the streamwise x-direction.
) Figure 20 illustrates the mode shapes for the three modes used for Stark’s T-tail. The + sign
W indicates that the displacement is in the same direction as the sense of positive pressure acting on
>, the group, and the  sign indicates that the displacement is in the direction opposite to that of
""-.: the positive pressure. Hence, where the + sign applies the displacements are positive quantities
.h::. and where the  sign applies the displacements are negative quantities. It is seen that when the

) analytic expressions for the mode shapes are combined with the topology of the groups (as de-
fined in the input data file) then the displacements depicted in Figure 20 are obtained.
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TABLE 1

Values of Generalised Airforces, Qp,, for the AGARD Wing-Tailplane Configuration (for h .- 0)
as Obtained by Different Workers

Albanc Geising
h=20 Perkinson | Albano Kalman Present
M=038 Ouq Davies | Rodden Rodden | Rodden Farrell Method
On 0-4403 | 0-4425 0-4554 0-4401 0-4377 0-4557

/0n 359-9 359-9 359-9 359-9 360-0 360-0

| Q2| | 06202 0-6121 0-6655 0-6557 0-6457 0-6652

Z Q2 | 180°0 180-0 180-0 180-0 180-0 180-0
k=0 SR S .

| Qa1 | 0-1046 | 0-1054 | 0-1107 | 0-1044 | 0-1049 | 0-1083
/Qn | 1803 1803 180-3 1803 180-0 180-0
= Qa2 | 0-1759 | 0-1954 | 0-2237 | 0-2126 | 0-2184 | 0-2261
¢ / Qs | 1802 180-2 180-2 180-2 180-0 180-0
O 1-5865 | 16022 | 1-5496 | 1-5688 | 1-4212 | 1-5713
'_' S On | 3142 314-4 311-2 310-7 312-3 310-8
- Q12| 0-9180 | 0-8910 | 0-9081 | 0-9495 | 0-8752 | 0-9482
-3 / Qi | 2655 266-3 2672 265-4 265-0 265-8

e, k=1-5 B

| Q21 i-0043 1-0099 1-0550 1-0511 0-9507

) 1-0653
sOn | 29107 | 2014 | 2872 | 2885 | 2899 | 289-0
CQue | 12845 | 12386 | 12044 | 12719 | 1-1448 | 12745
S0ue | 2947 | 2943 | 2037 | 2029 | 204 2932
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- TABLE 2
»N
b Values of Generalised Airforces, Qp,, for the AGARD Wing-Tailplane Configurations as Obtained
% . by Different Workers
) Albano
\ ~; h=06 Perkinson Present
::__11 M=038 Ouq Davies Rodden Farrell Method
o | Qu 0-1470 0-1490 0-1374 0-1432
K /0n 3598 3598 360-0 3600
)
0 | Qe | 0-6402 0-6312 0-6661 0-6868
Rt £ Q2 180-1 180-1 180-0 180-0
F k=0
i | Qa1 | 0-2404 0-2405 0-2527 0-2669
ey / Qa1 1801 180-1 180-0 180-0
Qa2 0-1619 0-1817 0-1958 0-2117
NN / Q22 180-3 180-2 180-0 180-0
ane
' }"'.:1 FQn | 1-1009 1-1200 0-9780 1-0837
WG /0n 301-3 301-3 2999 2983
°
L Q12 | 1-1342 1-1128 1-0735 1-1583
R / Qe 2517 2519 249-5 250-0
L k=15
TN | Qo1 | 0-9072 0-9122 0-8259 0-9239
e / Q= 2780 2777 2769 275-8
R | Qa2 | 1-3867 1-3397 1-2082 1-3541
SO 7 Qs 289-2 288-6 2872 2864
:.-_;.
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e TABLE 3
‘.},\
)
{. - Generalised Airforces for the AGARD Wing-Tailplane Configuration (with h -- 0-6, M . 0-8)
‘SN for a Range of Frequency Parameters )
AN

: s h=0-6 Q| | Q1 | 1 Q2! | Qaz !

S M=0-8 /0n L Qe 2O £ Q2

% Present Present Present Present
el k Davies | Method | Davies | Method | Davies | Method | Davies | Method
)
,‘\l“. 0 0-1470 | 0-1432 | 0-6402 | 0-6868 | 0-2404 | 0:2669 | 0-1619 | 0-2117
Jq.l: 359-8 360-0 180-1 180-0 180-1 180-0 180-3 180-0
L
KA
oy 0-1 0-1588 | 0-1563 | 0-6418 | 0-6885 | 0-244° 0-2715 | 0-1763 | 0-2234
:.4' 339-8 3381 185-5 185-4 192-5 1923 205-4 200-7

IS 0-2 0-1899 | 0-1907 | 0-6466 | 0-6933 | 0-2571 0-2850 | 0-2140 | 0-2555
324-6 | 32241 191-1 190-7 | 2044 | 203-9 | 225-) 218-1
oo 0-4 | 0-2840 | 0-2916 | 0-6665 | 0-7123 | 0-3036 | 0-3346 | 0-3274 | 0-3589
'-:-"' 308-8 306-0 202-0 2013 224-8 2238 248-7 2420
o — S O I

J‘”" 0-6 0-400i 0-4114 | 0-7021 0-7462 | 0-3726 | 0-4071 0-4670 | 0-4924
e 3027 | 300-0 | 212-8 | 211-8 | 2404 | 2390 | 262-1 | 256-5
Pl

4‘.‘-' ]
‘ -:.' 0-8 0-5301 0-5428 | 0-7560 | 0-7984 | 0-4595 | 0-4966 | 0-6265 | 0-6461
.47 300-6 297-8 2230 221-9 252-3 250-6 2711 266-5
f b 1-0 06737 | 0-6844 | 0-8310 | 0-87t15 | 0-5632 | 0-6003 | 0-8079 | 0-8195
B 360-2 297-3 232-5 231-2 261-7 2597 278-0 274-0 .

. e
3 }, 1-2 0-8320 | 0-8358 | 0-9308 | 0-9676 | 0-6847 | 0-7179 1-0156 1-0148
h 300-5 297-5 241-1 239-6 2692 2671 283-4 279-9
) e e T

S I-5 11009 1-0837 1-1342 1-1583 | 0-9072 { 0-9239 |-3867 1-3541
:::_ 301-3 2983 251-7 250-0 278-0 275-8 2892 286-4
=
b
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e
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TABLE 4

Generalised Airforces for the AGARD Wing-Tail Configuration for Various Values of Vertical
Separation, h, Between Wing and Tail

k=1-5 | Q11| " Q12 | | Qoy Qa2 |
M=0-8 / On /O /7 Q= [ Qs
h Present Present Present Present

Davies | Method | Davies | Method | Davies | Method | Davies | Method

0 1-5865 | 1:5713 | 0-9180 | 0-9482 | 1:0043 | 1-0653 | 1-2845 1-2745
314-2 3108 2655 2658 291-7 289-0 2947 293-2

0-01 [-5519 | 1-5514 | 0-9332 | 0-9520 ; 0-9973 | 1-0574 | 1-2890 | 1-2734
313-3 3107 2640 264-9 290-4 288-7 2940 2928
0-04 1-4773 | 1-4777 | 0-9640 | 0-9789 | 0-9843 1-0347 | 1-:2992 | 1-2782
311-4 309-3 2612 2617 2877 286-6

292-6 291-3
0-1 1-3730 | 1-3605 | 1-0040 | 1-0303 | 0-9662 | 1-0042 | 1-315I 1-2946
308-7 306-1 258-0 257-5 284-3 282-8 291-3 2892

0-2 1-2624 | 1-2461 1-0479 | 1-0779 | 0-9428 | 0-9724 | 1-3376 | 1-3138

305-9 303-0 2552 2541 281-4 279-5 290-4 2878

0-3 1-1948 1-1787 1-0790 | 1:1072 | 0-9271 | 0-9520 | 1-3559 1-3270
3040 301-2 253-7 252-3 279-8 277-8 290-0 2872
0-4 L1511 11349 1-1024 | 1-1284 | 0-9174 | 0-9383 | 1-3695 | 1-3376
302-8 2999 2658 251-2 279-0 276-8 289-7 286-9
05 1-1216 | 1-1048 1-1204 | 1-1450 | 0-9113 | 0-9295 1-3795 1-3468
3019 299-0 2522 250-5 278-4 276-2 289-5 286-6

0-6 1-1009 1-0837 1-1342 | 1-1583 | 0-9072 | 0-9239 | 1-3867 | 1-3541
301-3 298-3 2517 250-0 278-0 2758 289-2 286-4
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TABLE § J
£
Generalised Airforces for Stark’s T-tail for Zero Frequency and Two Mach Numbers as Obtained :
by Different Workers J
k=20 k=20 .
M=0 M=08 }
Kalman Kalman
Rodden Present Rodden Present
Opu Stark Geising Method Stark Geising Method
S i
Ou —0-6220 --0-6095 -0-5428 ~0-8137 --0-7804 -0-7189
Qx -3-2503 ~3-3647 —3-4020 —3-7366 ~3-8768 —3-8924
QO —0-7813 --0-7965 —0-8229 -0-7858 —0-7985 —0-8257
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TABLE 6

Generalised Airforces for Stark’s T-tail as Obtained by Different Workers

k=206 k=09
M=08 M=08

Kalman

Rodden Present Present
Opa Stark | Davies | Zwaan | Geising | Farrell | Method | Stark | Farrell | Method
i Qi | 3-0826 | 3-2421 | 3-2873 | 3:3527 | 2-7470 | 3-0965 | 4-8800 | 4-1775 | 4-8056
/0O | 258-8 | 260-6 | 259-8 | 261-0 |260-6 | 260-5 | 2649 |266-2 | 2655
| Q121 | 0-3202 | 0-3399 | 0-3475 | 0-3431 | 0:2799 | 0-3214 | 0-7020 | 0-6016 | 0-7042
/O | 323-9 | 328:5 | 327-4 | 329-4 | 3281 328-1 330-6 | 333-7 | 3327
Q131 0-1695 | 0-1859 [ 0-1865 | 0-1830 | 0-1680 | 0-1825 | 0-3214 | O 797l 0-3358
/ Q13| 62-4 61-5 60-8 619 616 609 520 S0-4 49-7
[ Q21| 4-4628 [ 4-5670 | 4-5650 | 4-6612 | 4:4291 | 4-6085 | 5-3736 1 5-1126 | 5-4472
Z Qo | 210-7 | 2111 2109 1 212-3 {211-0 | 211-0 | 220-8 | 2201 2212
1 Q22| 07758 1 0-7930 { 0-7936 { 0-8134 { 0-7815 | 0-8072 | 1-2419 ' |1-2185 | 1-2822
/ Qoo | 281-2 | 282-1 281-9 | 283-3 | 282-3 | 2822 | 286-5 | 288-3 | 287-6
| Q23| | 0-2103 | 0-2191 | 0-2183 | 0-2269 | 0-2282 | 0-2330 | 0-3692 | 0-3882 | 0-4055
Z Q23| 298-2 [299-0 | 298-9 | 298-3 | 296-6 | 297-% | 310:2 | 307-6 | 3090
Qs | | 1:0772 | 1-1154 | 1-1006 | 1-1383 | 1-1483 | 1-1686 | 1:3760 | 1-4446 | 1-4903
Z Q31| 222:7 1 224-7 | 224-6 | 2249 | 225-3 | 2249 | 232-} 236:6 | 235-3
t Q321 | 0-1810 | 0-1897 | 0-1874 | 0-1948 | 0-2000 | 0-2022 | 0-3214 | 0-3484 | 0-3557
S Q32| 297-7 1 299-8 | 299:7 | 299-8 | 300-1 299-7 | 305-8 [ 308-5 | 307-6
"Qs3 || 0-3319 | 0-3349 | 0-3349 | 0-3523 | 03590 | 0-3617 | 0-5484 | 0-5794 | 0-5910
/ Q33| 289-8 | 289:6 | 2896 | 289-4 | 288:8 | 289-4 | 298-1 296-8 | 2975

i .

s p .4
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o0 TABLE 7 N
Ly -
) t_ Comparison of Results for Stark’s T-tail Obtained with Different Panel Distributions. The Top
::'. Table Indicates the Panel Distributions Used
'!'o 3
. No. Panels | No. Panels »
:‘::{ Surface | Chordwise Spanwise o
o ;
,-'\{3 Fin 9 10 ,
e Case | — A
v Stabiliser 11 10
Present Method |[—————— — .
o Fin 4 12 ;
N Case 2 | —— - ¢
- Stabiliser 5 12 ¢
3 4 S - - r
i Fin 4 12 °
Farrell —— ——— wt
. Stabiliser 4 12 ;.
& ;
£ 3
B "
@
k =06 M=0-8 :
o Present Method B!
b .. Ouy Farrell -
Case | Case 2 -9
| Qi | 3-0965 2-8362 27470 4
S 7/ Qu i 260-5 2603 2606 -
Q2| 0-3214 0-2908 0-2799 2
Qe 3281 327-5 3281 3
. ' Qi 0- 1828 0-1670 0- 1680 ,
o 7 Qs 609 626 616 ;
\:_ _ — 3
> Qo 4-6085 4-5025 4-4291 :
o 7 Qa2 2110 2013 211-0 ’
‘: —e— b [ S R
| Qoo ! 0-8072 0-7937 0-7815
/ Qa2 2822 2825 282-3 |
'v" . ——_—— L . . I o .
K-. | Qs ! 0-2330 0-2283 0-2282 ‘
>, / Q2 2978 296-9 2966
o L Om L1686 11467 11483
e 7 Q3 2249 2254 2253 :
b On 0-2022 02000 0-2000 .
o 7 Qs 2997 300-2 3001 J
S Q33 0-3617 0-3607 0-3590 .
o " Qs 289-4 289-0 288 8
'p:: | N
) "',' {
‘.J !
v ‘
\
L ::’

-
-
)
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.y TABLE 8 "
,. “u
: q Generalised Airforces for the ONERA Horizontal Wing and Tail Configuration for H 1/8 N
: 3 and A 2 .
ih'
; H=1/8 M=0-30 M=0-45 M =065 M=0-80
,~' . A=2 k=0-3856 k=0-2436 k=0-1513 k-=0-1112
- _
l”:“: Present Present Present | Present
T Opq Davies | Method | Davies | Method | Davies | Method | Davics | Method
' | Qa3 | 14-209 | 14-068 | 14-786 | 14-850 | 16-248 | 16-396 | 18-346 | 18-620 <
"{' / Qs | 3499 354-8 3532 355-6 354-0 355-7 353-4 354-9 B
,-:;: t Qs | 0-214 0-244 0-234 0-260 0-220 0-241 0-181 0-196
,v Z Q3 | 311-7 307-6 311-3 309-6 301-2 300-9 273-9 2739
Qs 8-057 8252 8-518 8-675 9-897 10-039 | 12:066 | 12-293
o S Qi | 116:4 | 112:5 | 1384 | 1360 | 152:3 | 150-8 | 1574 | 1563
_-(\‘. —_—| —— e | | e <~.
o (Qar | 14130 | 14-041 | 14-743 | 14-804 | 16-198 | 16:342 | 18-301 | 18-572 ;
N SQun | 3518 355-1 3534 355-8 354-2 355-9 3536 355-1 .
d O 1-066 1221 [-150 1-290 1081 1-194 0-872 0-957
" S Qu | 1477 | 1435 | 1449 | 1430 | 1358 | 135:3 | 114:7 | 1145 )
-:'1.: Q3 29102 | 30-196 | 30-456 | 31-464 | 34-703 | 35-716 | 41-054 | 42-315
Y':- 23 | 296-3 292-0 3187 3161 333-3 3316 339-2 3379 ‘
w ¢
N
.
[, 1%
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TABLE 9 e

Generalised Airforces for the ONERA Horizoatal Wing and Tailplane Configuration for H - 1/8 .

and A - 1/2 *

H=1/8 M=0-30 M=0-45 M—=0-65 M=0-80 . z

A=1,2 k=0-3856 k=0-2436 k=0-1513 k=0-1112 §

R 1

Present Present Present Present

o Davies | Method | Davies | Method | Davies | Method | Davies | Method Y.
Q33 13-847 13-797 14-417 14-503 15-889 16-058 18-075 18-381 ”

Qa3 | 352:7 356-39 354-3 356-8 354-9 356-7 354-4 355-8 -

Qsi | 0900 | 0-893 | 0-928 | 0929 | 0-857 | 0-852 | 0-702 | 0-693 v

S Qay | 3242 321-89 | 326-4 325-2 31%-3 3206 305-1 302-7

Qs 7-934 8118 8-415 8-561 9-732 9-865 11-813 12-025 ._-

Qs 156- 1 1521 1641 161-7 168-9 1673 170-1 169-0

O 13-279 13-163 13-794 13-812 15-200 15-298 17345 17-562 .‘

Qu | 3538 357-7 3551 3578 3155-6 3574 355-1 3567 iy

Ou 6-381 6-791 6-641 7-106 6-446 6886 5-666 6-067 3

O 165-5 164-0 164-5 163-8 1612 161 -1 153-4 153-7 K

_____ - Ve e » \

Qo3 | 28-082 | 29-073 | 29-469 | 30-370 | 33-518 | 34-429 | 39-664 | 40-805 o

Q-3 | 3349 330-7 3437 3411 349-3 347-6 351-4 350- | )
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Abscissas p; and Coefficients a;, b; and ¢; (for i

TABLE 10

Coefficients in Laschka’s Approximation to

u(1-+u®)~! (from Ref. 7)

n dan

1 + 0-24186198
2 - 2-7918027
3 + 24-991079
4 111-59196

5 +271-43549

6 305-75288

7 41-183630
8 +545-98537

9 —~644-78155
10 +328-72755
11 - 64-279511

TABLE 11

1 to 3) Used in Integration Scheme when r2>0

to

Pi

di

bi

Ci

0-774596669
0-0

0774596669

0-833333333

I - 666666667

0-833333333

-0-645497224

0-0

0-645497224

0-0

0-0
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TABLE 12

- @ .
a
[

Abscissas and Weights, p; and C,, for ‘*Finite Part”’ Integration

9
R I .
f( .,
' i))(/[)t \ Ci f(p1)
1 p- '——dl

i

E 2 &
L A, v At

g ‘
B2 S

i pi C

(- 984807753 0-007642844

<

-
E Yt

l.' 5 (

-R66025404 0-469841270

t

0-003167376

P el
P

e
Mo
c e

3 : O-042787610

4 i 0342020143 ; 5-610810220

>
2
el

A -

5 00 140139682541

ENEND
e
el ko

'll ﬂ
IR SRR A |
w

0 ? 0-342020143 5-610810220

642787610 0-003167376

)

. ":l

2

866025404 0-469841270

[ S N @
o1
]

O,

|
|

9 | 0-984%07753 0-007642844
l
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TABLE 13

ACAL I M )0 B A i A A aind 2alh “ah i all & voans> nla o

Listing of data file used for the analysis of Stark’s T-tail configuration

o
oo
<

0-341
0-000
0-813
0-938
U-801
0-820
0-489

cCoccoos
TeTeeee
S0

SO0 —O —

STABILISER

0-0
0-0

123 4
I 0 0
10 0 0 0
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TABLE 14

Listing of FORTRAN source code for the subroutine used to generate the modal data for
Stark’s T-tail configuration

C
CCCCCCCCeecceeecececeecececececccceceecececceececcececccecececccececcce
C

SUBROUTINE MODES

THIS SUBROUTINE CALCULATES THE MODES FOR THE UNSTEADY
AERODYNAMICS PROGRAM.

THE MODES ARE FOR STARK'S T-TAIL.

MODE 1: YAW
MODE 2: SIDESLIP
MODE 3: ROLL

CCCCCCCCeCeecceeeeecceeeecceecceeceecccceeccceececccccecccccccce
C
PARAMETER (NP -260,NE=-50,NM =:20)

C
COMMON/AERPAR/GNU,AMRL
COMMON/XYZLFT ,XL(NP,4),YL(NP.4),ZL(NP.4)
COMMON, XYZDSH/XD(NP.4),YD(NP 4),ZD(NP,4)
COMMON. ELDATA 'NOELEM,NC(NE),NS(NE),IREF(NE.4)
COMMON . INDEX /INDEXS(NE).INDEXA(NE)

C
COMMON MODATA/NOMODE,DZL(NP,NM),DZD(NP,NM).DAD(NP,NM)

C

C NUMBER OF MODES DEFINED

¢
NOMODE =3

C

C MODES FOR STABILISER: GROUP |

C
DO 10 N INDEXS(1)+ ILINDEXS(1)+ NC(I)*NS(1)

¢
DZD(N.1) =0-0
DAD(N.l) 0-0
DZL(N.l) 0-0

¢
DZD(N.2) 0-0
DAD(N.2) 0-0
DZLIN.2Y 0-0

¢
DZD(N.3)  + YD(N.I)

DADIN.Y)y 0-0
DZLIN.3Y - YL(N.D)
¢
10 CONTINUE

¢

¢ MODES FOR FIN: GROUP 2

¢
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51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68

C

C

TABLE 14 (Continued)
DO 20 N=INDEXS(2)+ I,INDEXS(2) + NC(2)*NS(2)

DZD(N, 1) = +3-0%(XD(N,1)+0-15577)
DAD(N,1)= +3-0
DZL(N,1) = +3-0%(XL(N,1)+0-15577)

DZD(N,2)=+1:0
DAD(N,2)=0-0
DZL(N,2) = +1-0

DZD(N,3) = —ZD(N.1)

DAD(N,3)=0-0

DZL(N,3) = —ZL(N.I)
20 CONTINUE

RETURN
END
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FIG.2: DIAGRAM SHOWING A GENERAL COMBINATION OF A SENDING AND
RECEIVING PANEL.
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FIG.5: VARIATION OF K,r2 FOR A SENDING AND RECEIVING PANEL COMBINATION
WHERE THE PANELS ARE PERPENDICULAR TO EACH OTHER.
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FIG. 8: DIAGRAM SHOWING NODE NUMBERING SCHEME AND OTHER FEATURES

PERTAINING TO THE DEFINITION OF A GROUP. THE NUMBERS 1, 2, 3 AND
4 REFER TO THE NODES.
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Node 2 : (to, tg) = (0, 1)
Node 3 : (tc, tg) = (1,0)
Node 4 : (tc, tg) = (1,1)
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:;f'_., FIG.9: DIAGRAM DEFINING NONDIMENSIONAL COORDINATE SYSTEM FOR A GROUP.
[N ALSO SHOWN IS THE PANEL NUMBERING CONVENTION FOR PANELS WITHIN
W A GROUP.
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FiG. 10: DIAGRAM ILLUSTRATING SOME POSSIBLE PANEL DISTRIBUTIONS WITHIN
A GROUP.
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FIG. 11: DIAGRAM SHOWING POSITIVE SENSE OF PRESSURE p AND NORMALWASH
w IN RELATION TO THE TOPOLOGY OF THE PANEL.
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FIG. 12: DIAGRAM SHOWING POSSIBLE PANEL TOPOLOGIES IN EACH QUADRANT
AND THE ASSOCIATED DIRECTION OF POSITIVE PRESSURE.
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SENSES OF PRESSURE ASSUMED BY THE TOPOLOGY OF THE SOURCE
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FIG. 16: STARK’'S SWEPT AND TAPERED T-TAIL CONFIGURATION.
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FIG.17: PANEL DISTRIBUTION USED IN CALCULATING GENERALISED AIRFORCES
FOR STARK'S T-TAIL. FOR CLARITY ONLY THE STARBOARD HALF OF THE

TAILPLANE IS SHOWN.
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FIG.18: PLOT OF THE NONDIMENSIONAL PRESSURE DISTRIBUTION Xy NEAR THE
FIN-STABILISER JUNCTION FOR STARK'S T-TAIL FOR THE FIN YAW MODE
{(MODE F,). PRESSURES ARE SHOWN FOR BOTH THE FIN AND STABILISER
AND WERE OBTAINEDFORK = 0 &M = 0.
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