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1. INTRODUCTION

The aeroelastic stability of an aircraft is an important consideration in the overall process
of determining its airworthiness. When external bodies or stores are added to the wing of an
aircraft, the dynamic characteristics of the aircraft will be changed. Due to the inertial, elastic
and aerodynamic coupling between the wing and its stores the flutter speed of the aircraft may
be adversely affected. The aerodynamic coupling may be particularly important if the stores
have aerodynamic surfaces, such as fins, that can generate large oscillatory aerodynamic forces.

At ARL there are a number of computer programs which predict unsteady aerodynamic
forces acting on oscillating lifting surfaces. These programs, which are based on the doublet
lattice method of Albano and Rodden [Ref. 1], are described in Reference 2 and have been
optimised for simple interfering wing-tail-fin and control surface cases. They are not applicable
to general combinations of interfering lifting surfaces.

Thus a requirement exists for a computer program that can calculate unsteady aerodynamic
N: forces for general configurations of interfering lifting surfaces, including a capability for dealing

with store aerodynamics. Since the doublet lattice method is readily applicable to interfering
and nonplanar lifting surfaces, it is used as the basis of a program capable of dealing with general
configurations. The doublet lattice method is versatile and there are essentially no restrictions
on the configurations that can be handled as long as an appropriate idealisation can be developed.

2. THE DOUBLET LATTICE METHOD

This report is primarily concerned with the unsteady aerodynamic forces generated by the
oscillatory motion of a lifting surface. The surface is idealised as a thin flat plate oscillating
in a potential flow. The steady forces associated with the thickness and camber of the lifting
surface are not considered.

The pressure difference which exists between the upper and lower surfaces of the plate is
integrated to give the aerodynamic forces of interest. This oscillatory pressure is calculated by
replacing the lifting surface by a planar array of unsteady pressure doublets which have strengths
that are chosen such that the boundary condition of tangential flow is satisfied. The doublet
strengths are related to the induced normalwash by an integral equation which for general
combinations of lifting surfaces must be solved by approximate numerical methods. %

In Reference I Albano and Rodden give the linearised integral equation relating the induced
oscillatory normalwash w(x, y, z)elwt to the pressure distribution p(xo, yo, zo)eiwt over all lifting
surfaces L.S. as:

M, w".xo w~x, .Vd z).1.wx, -, 4) oU MK(x - xo, y yo, z.- zo)dS

L.S.

where K is the subsonic nonplanar Kernel function, which is a function only of geometry,
Mach number M, and frequency w. The symbol* indicates integration in the sense of Mangler
[Ref. 31. The coordinates of the sending and receiving points are given by (x0, yo, ze) and
(x, Y. z) respectively. A

In the doublet lattice method it is assumed that the lifting surface can be approximated by
segments of planes. The surface is divided into small trapezial panels with parallel sides which lie

cc strcamwise and leading and trailing edges which are some linearly varying proportion of the

d.



local chord behind the leading edge of the surface (Fig. 1). The panels are selected such that any
surface discontinuities such as control surface edges or surface intersections lie on panel edges,
Also, the panels in any coplanar streamwise column are of the same width.

By assuming that the unknown pressure p is uniform over a panel, the integral of Equation
2.1 may be approximated as follows:

)j K(c -xo, vY -Yo, z - zo. , w)dS 2.2

J Panel /

wherej is an index indicating the sending panel. The integration of K in the streamwise direction
is done simply by lumping the effect into a loaded line of pressure doublets at the I 4-chord
line of each panel. Hence Equation 2.2 becomes:

w(Y.,, z) j p_ ccosJ.K(.\.xo, V -Vo. o . 4 -)d/ 2.3U p L)'2 47T"

-" here

c1 is the mean chord of the j'th panel,

fi is the sx eep angle of the 1,4-chord line of the j'th panel.

and the subscript I1 denotes that the line integral is to be carried out over the I /4-chord line of the
j'th panel. Note that for any panel IS c cos fi dl.

. In Equation 2.3 the normalwash boundary condition w(x, y, z) is known (see Section 6)
- .and the pressure pi over each panel is unknown. A set of linear algebraic equations may be

formed from Equation 2.3 if the normakwash is satisfied at as many points as there are panels.
There is one control or receiving point per panel and the surface normalwash boundary condition
is satisfied at each of these points. The control point is located at the mid-span 3/4-chord point
of each panel.

3. MATRIX FORM OF DOUBLET LATTICE METHOD

As shown by Albano and Rodden [Ref. I), the doublet lattice method reduces the integral
equation of Equation 2.1 to a set of simultaneous equations. These may be written in matrix
form as:

^ -"'=,: [D];,,A ' 3.1

A4
. here I, is a complex column matrix. The i'th element is,

",-' '[ i, ,(. i. v , -i)3.2

Xand , is the nondimensional normalwash at the mid-span 3 4-chord point. .\,y,. 2,),
%:" of the i'th panel:

S[D] is a complex square matrix of aerodynamic influence cocfficients. The clement in
the i'th ro \ and I'th column Is.

K, dl 3.3

4,

'O
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and Dij is the line integral of the Kernel function along the 1/4-chord line, ij, of the
j'th panel ;

{A} is a complex column matrix. Thej'th element is,

Aj = P- 3.4-pU2

and Aj is the nondimensional pressure acting uniformly over the j'th panel;

cj is the mean chord of the j'th panel

gj is the sweep angle of the 1/4-chord line of the./'th panel;

Kij is the subsonic nonplanar Kernel function relating the normalwash at the control point
on the i'th panel to the pressure occurring over the j'th panel.

4. EVALUATION OF THE KERNEL FUNCTION
0

4.1 Expression for the Oscillatory Kernel Function

In Reference 4, Landahl has shown that the oscillatory subsonic nonplanar Kernel function
K, which relates the complex normalwash w(x, y, z)ewt to the complex pressure p(xo, yo, zo)e &,t,
can be written in the following form :

K - e--ixtv(KiTi + K2 T 2)/r
2  4.1

where

T, cos (Yr-ys)

T2 {zi cos Yr-Y1 sin Yr}{Z1 Cos Y.-)Yl sin y,/r2

Mr
K, - /I R -(I +uI 2 )- 1' 2e - i""'

R2i' M~r2

K2  -31, -- R (I +ui)-' Ze--iu

Mr[ flr 2  M ru
(1 -- + 1,

2 ) + 2 t - I + U.2) 3 2e" i,

(I -A 2)1 2 r (.1'12 + Z12)1 2 R X.i 3j2r2 )1 2

IVr AR xt

U /f
2
r

and Yr and y, are the dihedral angles of the recei~ing and sending points located at (x, v, z)
and (xo, yo, zo) (see Appendix A and Figure 2). The terms /I and 12 represent the two infinite
integrals:

3



-- 00 e ivu

..(ul, ) =du 4.2
Jul (I +U2)32----

1.0U1, 1') (l+ U2 5/2 U 4.3

4.2 Evaluation of I1 and 12

In order to evaluate the Kernel function the two infinite integrals I and 1:, must be deter-
mined. Since they cannot be expressed in terms of known functions they must be evaluated
numerically. Computational efficiency is a prime consideration when developing a procedure
for calculating 1 and 12 since they will be calculated numerous times. A number of alternative
procedures for evaluating 1, and 12 will now be described.

In Reference I, Albano and Rodden integrate Equation 4.2 by parts to yield

- FI, kf x

2)= I - b Ie 2"-iJ I - +4ei du.4

The integrand in the last term of the above equation is approximated by a three-term exponential
function and the integration is performed analytically. The integral 12 is evaluated in a similar
fashion, requiring integration of Equation 4.3 by parts twice.

In Reference 2, Farrell makes use of the expansions given by Davies [Ref. 5] to express
11 and 12 as:

iw77F - 2i fU eit,
-- - I + KIMy) -I10 + 232du, 4.52 L ho (I +u2)'

2 JljUo
12 -(v 9 20 '+ i (v)l-9 --du 4.661 7T 0j (lU) 5 2

where H4I and R 2 are Struve functions, 1, and 1.2 are modified Bessel functions of the first
kind. and Ki and K2 are modified Bessel functions of the second kind. These are evaluated by
direct series summation [Ref. 6], with the asymptotic expansions being used for larger values
of v. The finite integrals of Equations 4.5 and 4.6 are evaluated by a numerical technique which
divides the range of integration into a number of regions, the lengths of which are functions
of v. The integration is performed over each of these smaller regions using six-point Gaussian
quadrature. For values of il that are large in magnitude the expressions for 11 and 12 simplify

% considerablk since many of the terms may be neglected. Although this method is more accurate
than that of Reference I. the computation time is considerably greater.

In Reference 7. Geising .t al. improve on the method used in Reference I by replacing
,. ",.. the three-term exponential approximation to the integrand of Equation 4.4 with an eleven-term

exponential approximation due to Laschka [Ref. 8]. The maximum error of this approximation
is O. 135", [Ref. 71, and. as before, it, use allow s /I and 12 to be evaluated analytically. A com-
parison between this method ind that of Reference 2 was carried out by calculating trial values
of the Kernel function. (ood agreement between the two approaches was noted, and the method
of Reference 7 was adopted since it reduced the computation time involved in the calculation
of the Kernel function, as well as yielding results of a high accuracy.

J.A detailed description of the method used for calculating I and /2 is to be found in Appen-
dix B.

#4 4
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4.3 Expression for the Steady Kernel Function

The expression for the steady Kernel function given in Reference 9 may be written in the
following form:

Ko = (KI(S)T, + K2(S)T 2)/r 2  4.7

where
T1 = cos (yr-Ys)

T2 = {Z1 cos Yr-YL sin yr}{Zl cos ys-yi sin y,)/r 2

I Kil = I+ +-
l+R

X1

_R R

and the other symbols are as defined in Equation 4.1. The expression for the steady Kernel is
considerably simpler than that for the oscillatory Kernel function. Hence when the frequency
of oscillation can be assumed to be zero it is advantageous to use Equation 4.7 in preference to

, Equation 4. 1.

5. INTEGRATION OF THE KERNEL FUNCTION

At this point it is desirable to discuss the nonplanar Kernel function as contrasted with
the planar one, since the nature of the Kernel function will have a direct bearing on the integration
scheme that is adopted (see Appendices C and D).

t'1

5.1 Behaviour of the Steady Kernel Function

It is convenient to confine our investigation to the behaviour of the steady Kernel function
since this function is amenable to an analytical approach. The underlying assumption of this
analysis is that the salient features of the steady Kernel function are representative of the behaviour
displayed by the oscillatory Kernel function.

Following the approach of Berman et al. [Ref. 10], Figure 3 provides a comparison of the
*-.- steady nonplanar Kernel function (Equation 4.7 with Zl A 0) and the steady planar Kernel

function (Equation 4.7 with z1 = 0). In Figure 3 the values of the Kernel function are plotted
against the spanwise variable yj in the vicinity of y -- 0 for several values of vertical distance ,*i
and for chordwise distance x, i I. The chordwise variation is not shown since the nonplanar
Kernel function is very similar to the planar Kernel function for the Xl coordinate [Ref. 101.

The figure clearly shows that the spanwise variation of the nonplanar Kernel function in
the vicinity of the control-point station is very different from that of the planar Kernel function.
The singularity at )'i = 0 is no longer present. Instead, a sharp reversal in the trend of the
Kernel function is experienced, resulting in a large negative, but fini'e, value at yi = 0. Thus
the Mangler concept [Ref. 3] of the "finite part of infinite integrals" (cf. Section 2) is no longer
required for the integration of the nonplanar Kernel function.

-4..,.



In Reference 10, Berman et al. found that the twin positive peaks of the nonplanar Kernel
function are located at yi = ± zx1/3 where zi is the vertical separation between the nonplanar
(but parallel) lifting surfaces. Since the large gradients of this Kernel function occur between
these peaks, it is essential that the relatively small region - zi V<3 <y l< + i V! be provided
with a high density of integration stations.

Although the function shown in Figure 3 is symmetric about yj = 0, this is not the case
when dealing with general combinations of nonplanar nonparallel lifting surfaces. The amount
of asymmetry which arises is, however, small in comparison with the symmetric part of the
Kernel.

The above mentioned behaviour must be adequately accounted for in the line integral of
Equation 3.2. If suitable integration schemes are not implemented then the aerodynamic in-
fluence coefficients will lose accuracy as the vertical separation between any two surfaces is re-
duced. Finally, at very small values of vertical separation, as z-O, the results will be completely
inaccurate.

The previous discussion applies to nonplanar horizontal lifting surfaces. For the general
case of combinations of nonplanar nonparallel lifting surfaces it is necessary to consider the
variable r2 

= yi2 +z,2 rather than the variable zi in isolation. For this general case numerical
difficulties in the integration will arise when r2

_0.

5.2 Behaviour of Kor2 for Nonplanar Panel Combinations

It is clear that the ill-conditioning of the integrand in Equation 3.2 presents computational
* difficulties. By analytically incorporating the I /r2 behaviour of the Kernel function into the line

integral we may write Equation 3.3 in the following form:

cjcos/3j K ITI+K 2 T2Dij = J4 2 er-i ud1 5.1

This has the effect of minimising the variations that must be dealt with by the integration scheme.
In order to maximise the accuracy of integration it is worthwhile examining the behaviour F

of the numerator of Equation 5.1 for commonly occurring situations. Once again we confine
our attention to the steady Kernel function by utilising the assumptions presented in Section 5. 1.

For the steady case the numerator of Equation 5. I (neglecting cj cos flj/47T) may be written
as:

Kor 2 ,- Kt1S)Ti+K2(S)T2  5.2

The typical behaviour of Kor 2 is illustrated in Figure 4. Values of Kor 2 are plotted against the

spanwise variable ' in the vicinity of Yj = 0 for three values of vertical distance zi. and a
chordwise distance xl = I, with both the sending and receiving panels lying in planes parallel to
the horizontal plane. Note that the variation in the vicinity ofy'1 0 is now considerably less than
that of the corresponding curves in Figure 3. Furthermore, the curves are asymptotic to the
value of + 1.0 for values of yi-* + o, rather than zero as in Figure 3.

The occurrence of aerodynamic surfaces that are perpendicular to each other is quite com-
mon (e.g. a T-tail and the cruciform fins at the rear of a missile). For such cases the variation
of Kor 2 differs considerably from that illustrated in Figure 4. The behaviour of Kor 2 .for perpen-
dicular surfaces is illustrated in Figure 5. It is seen that there is only one zero crossing in contrast
to the two zero crossings evident in Figure 4. Also, there are only two turning points instead
of three.

5.3 Prediction of Zero Crossings and Turning Points

Although the numerator of the integrand in Equation 5.1 is much better behaved than the
integrand of Equation 3.2, the highly localised nature of Kor 2 is still evident in Figures 4 and 5.
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In order to maximise the accuracy of integration it is essential that the relatively small region of
rapid variation be provided with a high density of integration stations. Hence it is necessary
to develop procedures for determining the location of this small region and deciding whether
it lies on the interval of integration Ij (defined in Equation 3.3).

Following the approach of Berman [Ref. 10] an attempt was made to derive an analytical
technique for determining the turning points of Kor2 , since these define the region of interest.
This particular approach was abandoned because of its complexity. Also, the long compu-
tation times would have made any calculations relatively expensive.

A considerably simpler and more efficient method resulted when attention was focussed
on the zero crossings of Kor 2, rather than its turning points. It is possible to write X, yj and ziin terms of a parameter 1, where the range 0 < t < I represents the interval of integration lj.

Hence, for any such interval, the Kernel function may be defined as a function of I. Turning
our attention to Figure 6, the left and right zero crossings, tL and I, are estimated using the
method described in Appendix E. The turning point, IT, is then located by numerical sub-,.-.

division of the interval between the zero crossings. Hence the two intervals, AlL and AIR, may
be calculated from:

AIL = IT-tL 5.3

AIR = IR-IT 5.4

Note that Figure 4 illustrates the special case where AIL = AIR and IT = 0"5, since in general
AIL : AIR and IT does not occur in the centre of the interval Ij. From a further inspection of
Figure 4 it would appear that the region of greatest variation of Kor2 lies approximately within

* the interval:

tT-6AIL < I < tT+6AtR 5.5

Hence this region should be provided with a high density of integration stations.
The above method is not valid for aerodynamic surfaces that are perpendicular to each

other since only one zero crossing exists for such cases. Due to a number of simplifications that
occur, it is possible to estimate the positions of the turning points for cases where the surfaces
are perpendicular. Referring to Figure 7, the left and right turning points, tTL and ITR, are
estimated using the method described in Appendix F, whereas the zero crossing, to, may be
estimated using the method of Appendix E. Hence we may define the two left and right intervals,
AtTL and AtTR, using:

AITL = 
1
0-tTL 5.6

A/TR = ITR-tO 5.7

Clearly, the region of rapid variation falls within the interval

tTL < to < tTR 5.8

Once again, this region should be provided with a high density of integration stations.

6. NORMALWASH AND PRESSURE DISTRIBUTIONS

In setting up a system of panels to model an actual case it is assumed that the system is
capable of vibration in a number of modes of displacement. In mode p, the displacement normal to
the mean position of a point (x, y. z) on the surface is taken to be Ifp(.V, 1% z). When the system is
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oscillating harmonically about its mean position, with circular frequency w, in the mode p,
the displacement normal to the surface is taken to be

Zp(x, y, z, t) = Ifp(x, y, z)e | t 6.1

where I is the reference length.
Applying the boundary condition that the flow must be tangential to the surface requires

' the relationship between the normalwash and the modal displacement to be

DZ
irp(x, Y, z)e't Dt 6.2

This yields the following expression for the nondimensional normaiwash

Wp(X, y. z)

U(xi)f (x , , I + ikf (.A , r, ) 6.3

= '+iko" 6.4

where k is the frequency parameter oi/U. Thus the real part a' of the normalwash matrix {}
of Equation 4.1 contains the chordwise slopes of the displacement mode at the control point

N) ', in each panel and the scaled imaginary part ot" contains the modal displacements at these points.
When the normalwash influence coefficient matrix [D] has been calculated and the non-

- dimensional normalwash I'{ has been prescribed, the system of linear equations,

{a} = [D]{Al,

defined previously in Equation 3.1, may be solved to find the nondimensional pressure {A} acting
over all surfaces. Note that there are as many lifting pressure distributions as there are modes.

7. GENERALISED FORCES

For dynamical analyses of the vibration of aerodynamic surface combinations we generally
apply Lagrange's equations of motion. This requires expressions for the generalised airforces
that occur. These airforces act on the actual aerodynamic surfaces but within the linearised
approximation we can take the pressures described above and evaluate the generalised airforces.
The generalised force P,, in the mode p due to oscillation in the mode q is given by

PpI J//( ., z)pU 2 A,((. , z)dS ei't

L.S.

- o~U"1 /i,(._. , (, Y, z)dS (JIMt

L.S.

U iI 3Q1,e 7.1

where 1.S. represents the integral over all the lifting surfaces, /, is the p'th nondimensional dis-
placement mode, A,. is the nondimensional pressure due to the q'th mode and k is the frequency

parameter
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From Equation 7.1 the nondimensional generalised force Qpq is

QPq j f - x y, z)Aq(x, y, z)dS 7.2

L.S.

In the doublet lattice method, where the aerodynamic surfaces are approximated by panels
and the pressure is assumed to be constant over each panel, Equation 7.2 simplifies to

n

Qpq tfiAIiAi 7.3

where fpi is the nondimensional displacement at the mid-span quarter-chord point of the i'th
panel in the p'th mode, A,,i is the pressure on the i'th panel due to the q'th mode, 12A1 is the area of
thei'th panel and n is the total number of panels used to model the aerodynamic surfaces. The mid-
span quarter-chord point is called the lift point and is illustrated in Figure I. Finally, we note
that it is customary, for dynamical analyses, to write Qpq in the form

Qpq = Q'pq+ikQ"pq 7.4

where Q'pq and Q"pq are real quantities.

8. IDEALISATION OF GENERAL CONFIGURATIONS

In order to minimise the amount of time spent in developing a panel distribution to idealise
a particular configuration, it is essential to use a procedure that defines the panel distribution by
interpreting a concise and compact data set. Clearly, it is not desirable to h",e to define each
panel individually as this would be very time consuming and the likelihook )f errors would
be high.

8.1 Definition of Lifting Surface Groups

A lifting surface group is composed of one or more panels and it is a subset or element of
the idealised configuration. For our purposes it is looked upon as being the basic unit or building
block which allows us to generate sequences of panels compatible with the requirements of the
doublet lattice method.

A group is defined by reference to four nodes. Figure 8 illustrates the node numbering
system associated with the topology of a typical group. Nodes I and 2 define the leading edge
of the group. and nodes 3 and 4 specify the trailing edge. This node numbering convention
defines the topology of the group and must be strictly adhered to. Furthermore, nodes I and 3
must lie on the same streamwise line. This requirement must also be satisfied by nodes 2 and 4.

It is useful to transform the trapezial group onto a square defined in a nondimensional
coordinate system, wherein the coordinates of nodes I, 2, 3 and 4 are as illustrated in Figure 9.
Node I is taken as the origin of the nondimensional coordinate system associated with each
group. The chordwise and spanwise ordinates. t,. and t_ are positive in the directions shown.
They have been nondimensionalised with respect to the local chord and total span of the group.
Note that NC and NS refer to the number of chordwise rows and spanwise columns of panels

'.I. pertaining to the group. To facilitate panel generation, it is necessary to provide only the non-
dimensional chordwise and spanwise ordinates of the edges of panels in a particular group.

9



The panels within a given group are numbered I, 2, 3. NC*NS in a columnwise pro-
gression. As shown in Figure 9, the number of the panel in the /'th chordwise row and J'th
spanwise column is given by the following equation:

panel number = (J-)*NC+I I <I< NC 8.1
1 <J <NS

Note that the chordwise rows of panels do not have to be a constant proportion of the local
chord across the span of the group, a linear variation is acceptable. Hence it is possible to have
one or more rows of panels of constant (dimensional) chord defined within a group that is tapered.
Some of the possible combinations are illustrated in Figure 10. It is also possible to define
evenly spaced panels in either the chordwise or spanwise directions, or both, without having to
specify the ordinates along the sides of the group.

8.2 Pressure and Normalwash

The definition of the direction of positive pressure and positive normalwash acting on a set of
panels in a group is implicit in the topology of the group. Since all panels in a group share the
topology of that group, the sense of positive pressure and normalwash is likewise defined. Note

* •that the normalwash is positive in the same sense as the topology-defined positive pressure.
Furthermore, the sense of positive pressure can be reversed from that defincd by the topology of
the group.

Figure I I illustrates the pressure p and normalwash w acting on a panel. The pressure and
normalwash are shown acting in their positive sense. As mentioned above, the topology of the
panel. represented by the node numbers I, 2, 3 and 4, echoes the topology of the group to which
it belongs.

Figure 12 shows a view, looking forward, of some possible orientations of panels. The
numbers I and 2 refer to the topology of the group from which the panels derive. The arrows
normal to the surface of each panel indicate the sense of positive pressure as defined by the
topology of the panel. Although no vertical or horizontal panels are shown, their characteristics
are readily deduced by simply projecting the existing panels onto the desired axis.

8.3 Symmetry and Reflection Planes

The majority of applications of the doublet lattice method involve configurations with one
or more planes of symmetry. The X-Z plane is a plane of symmetry for most cases : the right
side of a lifting surface is the mirror image of the left side. In other cases an additional plane of
symmetry (the X- Y plane) exists. For instance a lifting surface in the proximity of the ground
(aircraft in ground effect) represents a configuration with two planes of symmetry.

In general, all flow conditions can be split up into symmetrical and/or antisymmetrical
parts in relation to either plane of symmetry. If the configuration is symmetrical and the flow

is either symmetrical or antisymmetrical then considerable savings in computational effort can
be realised. These are apparent as a reduction in the number of normalwash influence coefficients
that need to be calculated and stored in computer memory. This minimises the si/e of the system
of equations that needs to be solved.

In order to make use of an\ possible simplifications due to symmetry or antisymmetry it is
neccssarx to he able to create a s~stem of image lifting surfaces by reflecting groups in the X' Z
and .A Y planes. Consider the general case where a lifting surface configuration is made up of a
source group and three additional images. This is illustrated in Figure 13. Once again the
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numbers I and 2 refer to the topology of the group and the arrows indicate the sense of positive
pressure. The superscripts (1), (2), (3) and (4) identify how the group was obtained as follows:

(1)-source group from which all images are developed;

%-" (2)-image obtained by reflecting the source group in the X-Z plane;

(3)-image obtained by reflecting the source group in the X-Z plane followed by a reflection
in the X- Y plane;

(4)-image obtained by reflecting the source group in the A'- Y plane.

Note that the topology of the image groups in relation to the source group follows the con-
vention established in Figure 12. Care must be exercised in using the image capability as anomo-
lous configurations can arise under some conditions.

Considering the most general case of a source and three image groups, as depicted in Figure
13, the matrix equation given by Equation 3.1 can be written as:

- w'2) d2l d22 d23 d24  p()8
jw"

3 ( j)  d31  d 32  d33  d34  p(3) 8.2

w,44 d4i d42 d43 d44  p141

where the dij are submatrices of matrix D.
* For symmetric and antisymmetric cases the magnitudes of p 1

) p, PM,p(
3

) and p14 1 are equal

and only their phases can differ by 1800 relative top" ), say. Hence we may write:P: { 2 :1
p 1 1  8 ( 12

p (3 8(3 p) 8.3
: p(4) SW3

where the terms 8" may take the following values

5(2) = + I, -1,0

h32 = +1, -1,0

"14, = + 1, -1, 0

Since it refers to the source group, 8( j4 0, whereas since some image groups may not be
included in a given configuration the appropriate 8 terms will be zero. If P' I then the
pressure is positive in the same sense as that defined by the topology of the source or image group.
If 8"' 1 then the pressure is positive in the opposite sense to that defined by the topology.

By substituting Equation 8.3 into Equation 8.2 we obtain

-1 _ [ 8 (1 '11 + 1 2 dl 2 + 81'')dl3 + 8 4 djIup''' 8.4

Hence the pressure distributions for all of the groups have been reduced to one distribution for
the source group. Thus only that part of the interaction that involves the source group needs
to be considered, since the others may be readily deduced from the symmetry or antisymmetry
conditions.

Whether it be symmetric, antisymmetric or asymmetric, each type of case is defined explicitly

by the chosen orientation of the positive senses of pressures for the source and image groups.

Vr!:
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The topology-defined senses are altered by the appropriate choice of values for the 8 factors in
Equation 8.4. An alternative interpretation is to view 8 1) as an overall multiplier determining
the senses of the reference source pressures pl". The remaining factors 8(2), 8M and 8(4

) then
determine whether the effects of the image surfaces are to be added to or subtracted from the
source normalwash factor di, in order to obtain the correct realisation of symmetry or anti-
symmetry.

8.4 Example of Symmetry and Reflection Planes

As an example of the concepts described in Section 8.3, let us idealise a model of a T-tail
in a wind tunnel. It is assumed that the fin and the floor of the wind tunnel provide two axes of
symmetry. The effects of the remaining wind tunnel boundaries are neglected. For symmetric
and antisymmetric modes only two source groups need be defined, the effects of the other surfaces
being obtained by the use of imagc,. Figure 14 shows the idealisation of the T-tail where it is
assumed that the senses of pressures pil' and p2(1) define the topology of the source groups.

In order to model symmetric motion of the T-tail we have that 8,12- - I, 813 _' + I,
-- I (assuming that 81 11' = + 1). Since the fin does not sustain a pressure difference

8.,1 and 82"' are both equal to zero, which means that the fin and its image do not need to be
included in the analysis. Keeping in mind the fact that P2' 0, Equation 8.4 may be written as:

I~ Od'1  
_ ( + M2+ ((+l)d 1 3 +( -l)d14  pi'1•8.5

_. , w [ ' '  (0)d21 + (O)d22+ (O)d, 3 + (O)d2 4
-,-

where the fact that 821 )  0 indicates that the problem may be simplified by omitting the fin
from the symmetric analysis.

For the antisymmetric case Equation 8.4 becomes:

v.v. { , . } (+ l)dll+(+lI)dr2+(-I)dl3+(- l)dl4 ] piPl' )  8.6
2 = (+ I)d2 + (0)d22 + (O)d 3 +( I)d24  p2() 8.6

Hence it is seen that symmetric and antisymmetric cases can be dealt with by appropriately
specifying the applicable 8 factors.

9. COMPARISON WITH OTHER METHODS

In order to illustrate the method discussed above, which has been implemented at ARL
into the FORTRAN computer program AIRFORTP. three particular interfering lifting surface
configurations have been investigated over a range of frequency parameters, Mach numbers
and variations in geometry. These configurations are described in Sections 9.1 to 9.3 and the
results compared with those obtained using alternative approaches are shown in Tables I to 9.
The primary interest is the comparison of the results from the various computational formula-
tions of the doublet lattice method and the lifting surface results are included only as a secondary
comparison.

Note that in all the Tables the generalised forces of the form Q,,,t are presented in terms of
modulus 1 Qpq and phase Q,,,. The phase angle is given in degrees and lies in the range
0 < Qp, < 360.

;2.*12



9.1 AGARD Horizontal Wing and Tailplane

The AGARD horizontal wing and tail combination is shown in Figure 15. This is the
configuration which AGARD specified for calculation of generalised airforces and the wing and
tailplane are swept-back tapered wings in close proximity. The semi-spans of the wing and tail-
plane are both of unit length and the reference length is taken equal to the semi-span. The origin
of coordinates is at the apex of the wing.

The configuration is in a subsonic flow of free-stream Mach number M = 0.8 and is
oscillating with a frequency parameter k in the range 0 to I -5 in one of two antisymmetric modes
of oscillation, defined analytically by

fi(x, y, z) = y(x-2'25 1 --085) on the wing 9.1

on the ta]l 9.2

f2(x, y, z) = y y on the wing 9.3

= (x-3.35)sgn(y) on the tail 9.4

The first mode is torsion of the wing about an axis 38'/ of the local chord, coupled with roll of
the tail. The second is parabolic bending of the wing coupled with pitch of the tail.

4. The configuration with Ih - 0 is obtained from the configuration when the wing and tail-
plane are coplanar simply by translating the tailplane a distance h parallel to the z-axis.

The comparison of results obtained for the AGARD configuration is largely based on data
* collected and presented by Davies (Ref. 5]. Tables I to 4 compare the results published in

Reference 5 with the results of Farrell [Ref. 2] and the present theory. The results attributed
to Davies and Albano, Perkinson and Rodden [Ref. II] are based on lifting surface methods,
the remainder being based on variations of the doublet lattice method.

In the application of the present method an array of 8 panels along the semi-span and 8
panels along the chord was used for both the wing and the tailplane. These panel distributions
were evenly spaced in the spanwise and chordwise directions As a result the panels on the wing
and the tail were aligned in streamwise strips.

Table I presents generalised airforces for two values of frequency parameter, k = 0 and
k = 1.5, for the case where the wing and tailplane are coplanar (h = 0). Inspection of Table I
shows that the present method compares favourably with the results of the other doublet lattice
and lifting surface methods. Particularly good agreement is obtained with the refined doublet
lattice method of Kalman, Geising and Rodden [Ref. 12]. However, for k = 1.5 the present
method consistently over-estimates the magnitudes of the generalised forces by an average
of 10.6',$, when compared with the results obtained by Farrell, although the calculated phase
angles are in good agreement. This is in contrast to the generally good agreement obtained
for k =0.

Table 2 presents resul's for generalised airforces for the nonplanar case with h= 0.6 for
frequency parameters k = 0 and k s I .5. Once again the results for the present method agree
favourably with those of other workers. Previously made comments regarding the comparison
of the present method and that due to Farrell for the case where k -- I • 5 are equally applicable
to the results in Table 2.

Table 3 compares Davies lifting surface results for I 0.6 and a range of frequency para-
meters from k - 0 to k - I 5 with results obtained by the present method. The main purpose

4 of the comparison is to check the variation of the generalised forces with frequency parameter.
The agreement between the trends predicted by the two methods is satisfactory. The variation
between the results in this comparison is within the variation exhibited by the results shown in
the previous Tables.

Table 4 compares Davies lifting surface results for k I -5 and a range of vertical separa-
tionsfromh toh - 0. 6 with results obtained by the present method. The results for h -: 0.01
and ht 0.04 are of particular interest since they represent a nonplanar case with a very small
vertical separation between the wing and tailplane. Small vertical separations between surfaces
can lead to problems with the doublet lattice method such as those discussed in Section 5.1.
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Comparison of the present method with that of Davies indicates that there is good agreement
in the trends predicted for the generalised airforces as the vertical separation is varied, together
with an acceptable match between individual pairs of generalised forces. In the critical region
of interest when h is less than 0.1 there is acceptable agreement between the two methods.

9.2 Stark's Swept and Tapered T-Tail

A swept and tapered T-tail, first analysed by Stark in Reference 13, is shown in Figure 16.
A feature of this particular T-tail configuration is that at the stabiliser-fin junction the trailing
edge of the stabiliser extends beyond the trailing edge of the fin. The reference length for this
configuration was taken to be the stabiliser semi-span.

The T-tail is oscillating in three rigid body modes. These consist of yawing about a vertical
axis through the centre of the root chord of the tin (positive nose right). sidesway (positive left)
and rolling about the fin-stabiliser intersection (positive right stabiliser down). These modes

may be expressed analytically as

ft., y, z) 3(.v+0. 15577) on the fin 9.5

ii'0 on the stabiliser 9.6

, '_, .1% 1 0 on the fin 9.7

0 on the stabiliser 9.8

13(x v, z) - z on the fin 9.9

V on the stabilizer 9.10

Figure 17 sho s the panel distribution used in calculating generalised airforces for StaiK's
T-tail. In order to highlight the panel arrangement in the vicinity of the fin-stabiliser junction
only the starboard half of the stabiliser has been included. The present aerodynamic ideali-
sation of Stark's T-tail is quite similar to that used by Kalman, Rodden and Geising [Ref. 12].
In particular, both meshes are retined in the vicinity of the fin-stabiliser junction and the tips of
the stabiliser in order to improve the estimates of pressures in these regions.

In developing a suitable panel arrangement for Stark's T-tail care was taken to ensure that
at the fin-stabiliser junction none of the aerodynamic panels overlapped, This feature of the
panel distribution is clearly evident in Figure 17 as the spanwise lines on the fin and stabiliser
meet at the fin-stabiliser junction.

If the panels at the fin-stabiliser junction overlap each other (i.e. the spanwise lines on the
tin and stabiliser do not line up at the fin-stabiliser junction) it has been found that the pressure
distributions in the %icinity of the junction differ from those obtained for the lined up case.
Figure 18 sho ss plots of the chordwise %ariation of nondimensional pressure A on the tin and
stabiliser at the fin-stabiliser junction for mode /L at a frequency parameter k - 0 and Mach
number If 0. For the case Mhere the panels were lined up at the junction the panel distri-
bution of Fig. 17 was used. Another configuration was then investigated where the panel distri-
bution on the stabiliser was varied from that of Fig. 17 in that the section of the chord from the
trailing edge of the fifth chordw ise panel to the trailing edge of the stabiliser "as divided into
six exenlh spaced panels. Onl the rear half of the pressure distribution on each surface is sho\n
since the effect of the panel o~erlap \was localised to this region.

Fiturc IX(a) sho%.s that the pressures on the tin are on, slighth moditied by the o, erlap
of' panels at the fin-stabiliser jLnction. In contrast, Figure 18(h) show s that tile o\,erlap of panels

£ha' significantly modified tile prcssure distribution acting on the rear half of the stabiliser,
although only t o pressure points haxc been significantl. changed.

F-ron the abo\c example it is c ident that the panelk should be made to line up at any
juictions if' accuratc and consistent predictions of' tlic pressure distribution are desired. For
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-. this particular case the effect of panel oxerlap did not modify the generalised forces to any signi-
cant degree : the variation was of the order of that which could be obtained by choosing a slightly
different (but still lined up) panel distribution. How ever, for an alternative set of modes that are
more sensitive to the pressures in the region of overlap, the effect could have been significant.

Table 5 presents generalised airforces calculated for zero frequency (k 0) and two Mach
numbers M - 0 and A/ 08. The generalised forces Q Q21 and Q:31 represent the yawing
moment due to yaw. the sideforce due to \aw and the rolling moment due to yawN. The agreement
between the results of the present method and those obtained by different workers is generally
good. If "e focus attention on the doublet lattice calculations of Kalman, Rodden and Geising
[Ref. 12]. it is seen that the generaliscJ airforces agree "ell with the largest difference being in
QiI. This generalised force is the fin ,aw inc moment due to Naw. and since the side force acting
on the fin, Q21, agrees %Nell, this implies that \while the present method and that of Reference 12
calculate the same force acting on the fin the\ differ in the chordkkise location of the centre of
pressure.

Table 6 presents generalised airforces calculated for NIach number Al 0.8 and two
frequency parameters. A 0+6 and k 0.9. The results obtained by Da,ies, Z\Aaan and
Kalman, Rodden and Gei sine were obtained from Reference 12. If we look at the results for
k 0.6 and 11 0 8. \\e see that the results for the present method lie well within the range of
\alues predicted b\ the other methods. Ho scxcr. the agreement between the magnitude of the
generalised forces 01,i and 0- calculated b\ Farrell and the present method is comparatixelv
poor. These generaliscd forces represent the ya\\ing moment due to yaw\ and sideswAav, and are
obtained bx a chord\\ ise \elghting of the pressure distributions due to modes fi and f . Since
Farrell used onl\ four panels do\\ i the chord of the fin and stabiliser [Ref. 21, compared to nine
and ele\cn for the present method. while the spar\rise panel distributions w ere similar, the poorer

.9 definition of the chord, ise pressure distribution thus obtained leads to quite different estimates
of Qi I and Q1_- calculated b\ the t\o iiethods. A second coarser chord% ise panel distribution
was used \\ith the present method \ith the result that tile generalised forces Q11 and Q12 were
in hetter agreeient \ith those obtained b. Farrell. A comparison of the results is presented in
Table 7 \\here it is seen that the agreenient \ith the results of Farrell is improved by the use of
the coarser chordw isc panci distribution.

Note that the Case 2 panel distribution consisted of four panels dow n the chord of the fin
and fi\e panels do\ n tile chord of the stabiliser. [his combination \sas chosen to allow the panels

--. along the fin-stabil, cr junction to liCne up. \ liereas \ith the panel distribution used by Farrell
this asould not hase been possible. lhis feature is likels to ha\e contributed to the difference
between the Case 2 results of tile present method and those of Farrell.

9.3 ONERA Htorizontal \Wing and lailplane

The ON I.R.. hori/oiital inc11 and tail eoiiinatjoii iS shoss i in Figure 19. Ini this particular
e\anipe the 51ing and tailplane are considered to be identical rectangles of chord c 0.098
metres and Scm-span S 0.1515 metres. Ihe leading edge of the tailplane is a distance
(A met ,,tsdow uSireaiM of the irailing cILc of the wing and the plane of the tailplane is a distance

ni metres abose the plane of the w in-. I lie position of tile tailplane relatise to that of the
wine is then chalactcrised b% the nohilciieusonal sepalrtilion paraneter A id height parameter
II.

In Refcrencc 5. 1)a ics has prccnited rcsults obtaiU eI ui,1 his lifting surface method for a
set of 'olr" ofni Ols, ofl -1equClC parameter and \lach number. These are gisen below ,
0i,.

Ap ./ t0 3\,,t6 t 24 €, U Si 3 ii-1112

A 4, ,
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The frequency parameter k is based on a reference length equal to the chord of the wing. The
variation in Mach number and frequency parameter corresponds to an oscillation of almost

, constant angular frequency in a compressible flow of varying \elocity.
The modes of oscillation that %\ere studied consisted of four rigid body modes, namely

vertical heave of the xin, \ertical heaxe of tile tailplane. nose-up pitch of the wing about its
mid-chord and nose-up pitch of tile tailplane about its mid-chord. These four modes can be
described analytically as

--I x , , ) .0 on tile \w ing 9.11

o on the tailplane 9.12

/12Ax. y, -i 0 on the \\ing 9.13

I0 on tile tailplane 9.14

Iii x. r. - 2 on the x, ing 9.15

oonl the hi ilplanie 9.16 r

1,0 . . 0i on tile xx ing 9.173)
. , on the tailplane 9.18

xx here the oricin oft the coordinates is at the centre of the leading edge of the xx ing.
III calculations xih tihe present method a panel distribution of ten evenly spaced chord-

xIse pa nrei and txxclxc Cxcili spaced spMxise panels %\ias used for both tile wing and tailplane.
From the c\tensi\e range of results obtained b\ Daxics. xhlich cover a range of values of

A from 0\ [ to A _f for II 0 and 1 I 8. the ronplanar case (1H I 8) xith A 2
and , I 2 \\crc chosen to he used in calculations xx ith the present method. For this choice the
xxing tailplanc pro\i iiit\ effects \xould be different from those encountered for the ser\ closely
spaced A(iA RD xxirig and tatilplane con liruration, thins prox idirig a somex hat different situation
compared to the AG\AR) colfiguration.

Table cixc results for the xarrous 11 A cohiatioiis as obtained b fla\ies and the present
method for I I 8 and A 2. ri Comparison offtlie txxo methods iidicates that there is generally
ood acreenient in the niacniiludes of' the ceneralised forces, the largest relative differences

occu~rring in the terms ( and 03. These represent inldticed for-cs and pitching moments
on the xx ing d iC to oscillation of tie railpla c. an1d as such tile\ are more likely to xarv since for
this prticular case th e\ rpresent a ,ccond order effect.

Furning our attcrintoll to the clcul:tcd phase angc it is seen that there is good agreemcnt
at the hichest \lach numiiber. I/ iS. ien. a" thie Malih number decreases the agreement gets
progressixclx xxorsc until at the Ioxxcl \l th ncitlimIbcr ie diftCrencc ill phase angles falls betxeen

1 and 5 degrees. louxx cr. this is o lx titar iriall. xxorse than the imaxirit im difference of 1 5
decrees encouIrcC 'or tIe highest MlachLI nuriibcr.

Table 9 ixes rcults a, obtinCd h\ hisC I, arid hC prescnlit iethod for It I 8 aid li I 2.
* ; It is seen that the reii t hiie ralisd forces I I arid 03r has bcen iliproxed co npared

Sxxitlh the rcsuhlts nI i il I ablC S. It 1- clC r that !\ reducing A\ thC induced forces and pitching
" lo lnents on the xx inc iLe It' osCilCltion of the tl piariC h1asC iclcase . ,

10. INTN R A( I I! C R F Ri \IIIIw S I)ISPI. \ I II.ITN

\\ hen dCxclo1rII 1 (1,1rr file I"a tirC rlc , l , nIrr of a 0 I1l 1o iiitir ltr i1n it is desirable to
liw ic ix ,ihe t ,I b to Liccr i c i plot 1 lh i: prinl drst lbr tirroi corresponding to tile
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input data. This facilitates the checking of tile panel distribution for any errors. .1, well a- per-
mitting the visual comparison of various alternatives. -

The present program incorporates the abilit to generate a data file from a given panel
distribution which is compatible with the PAFEC finite element package that is in common
use at ARL. This file is then processed by PAFEC so that the PAIt( InteractiJk: 'Ir:.phic,
System (PIGS) can be used to inspect the panel distribution. PIGS prosides, man. po%erful
commands that allow the user to study the panel distribution in great detail from irw chosen
angle. A window facility permits close inspection ol'junctions at the intersections of surfaces,.
thus these critical areas can be easily checked to ensure that panels iC up co~rrctlth .

Very complex panel distributions, such as those inol ing multiple undcr \lng stores \kith

aerodynamic surfaces, can be checked with ease. This, together \\ith the abhlirt to obtain hard
copies of any plots generated at the VDU terminal, makes PIGS an indispensable tool for the
validation of panel distributions.

The inherent compatibility of a doublet lattice panel distribution \ith most finite element
graphics packages means that the job of preparing a data file for such a package is a rclatrel-
simple task. In program AIRFORTP only one additional subroutine \was required and only
this subroutine would need to be modified if a finite element graphics package other than PIGS
were to be used. The advantage of such an approach is that existing computer graphics systems
can be utilised, thus obsiating the need to develop additional programs to impro\e and speed up
the data development and checking phases involved in defining a panel distribution.

The possibility of creating the entire panel distribution using PIGS was considered, only
to be rejected for a number of reasons. Firstly, the common requirement that panels on differ.ent
surlaces line up streamw\ise imposes significant constraints on the panel generation scheme which
could lead to difficulties. Secondly. certain types of panel distributions cannot -,e developed

* easily using PIGS, since there may be many geometrical considerations that must be taken into
account. The present method which utilises a data input technique tailored to the requirements
of program AIRFORTP. as well as employing the graphics capabilities of PIGS. provides
capable and easy to use data preparation techniques.

I.

'0.

11. DISCUSSION

The doublet lattice method is a simple. \ersatile and accurate lifting surface theory which
is capable of analysing aerodynamic surfaces of" arbitrar planform and dihedral. Although
they wcrc not considered in this report, control surfaces, either full- or partial-span may be
included. Problems of' intersecting and interfering nonplanar configurations, such as a wing-
pylon-store combination, a I-tail or V-tail. a w ing-tail combination, etc.. ma\ be analysed.

iThe computer program AI RFORI-I can handle most cnfigurations pros ided that the\ are
idealised \within the restrictions imposed b, the doublet lattice method. Hcnce the previous
capability at ARL ror analssinu \ing-tail-lin combirnations has been significantl. extended.
Appendix i contains general considerations in regard to tile deselopment of panel distributions
used to model an gi\en acrody namiC conligurations. Appendix H gics a description of the
format of the input data file and mode generation subroutrile uscd b\ program AIRIORTIP.
An examplc of an in put data file and iiodc generation subroutine is gi\cn in Appcndix I for the
analysis inol\ ing Stark's T-tail configuration.

Tie results obtained b\ the present method for planar. ionplanar and intersecting lifting
surface combinations hae been com pared \ ith the results of diflerent \\orkers. The latter \%ere
obtained by both doublet lttice ald if't iti surfta'e mCethods,. Ic results of tile present method
are seen to lie vs thin the ralngc of results obtained b\ the other iethods. P'roblells \\th a small

s ertical Inon-/ero separation bet\ecn strcanl\i,'c coliMins of' par, can he handled \ith ease
up to the point \\ here the noii-/cro siparation is so slall i' to he negligible.

17
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12. CONCLUSIONS

The doublet lattice method is readily applicable to a large class of interfering lifting surfaces.

As currently programmed at ARL the method can be used for general nonplanar and nonparallel
lifting surfaces, both intersecting and nonintersecting in nature. Results have been obtained for a
number of configurations and comparisons of the results have been made with results obtained

* by other workers. The comparisons show generally good agreement.
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APPENDIX A

Definitions relating to a general combination of a sending and receiving panel

Let us consider the interaction of a receiving panel r and a sending panel s which are defined
in a global axes system (X, Y, Z) as shown in Figure 2. These panels are inclined with dihedral
angles defined as yr and y,. The coordinates of points A and B at either end of the doublet
line on the sending panel are A : (XA, YA, ZA) and B : (Xn, yn, zj). The coordinates of the control
point C on the receiving panel are C: (x, y, z).

The position vector corresponding to points along the doublet line may be written in terms
of the variable t as follows:

rAB(I) = XA(t)i+ YAB(t)j+ZAn(t)k 0 < t < I A.I

where

XAB() = XA+(XB-XA) t A.2

YAB(t) = .A + ('B -'A) t A.3

. ZAB(t) = ZA+(ZB- ZA) I A.4

From the definitions of .\, )1 and zi in Equation 4.1 it is clear that when we calculate the
line integral of Equation 3.2 the variables x., , and z1 may be written in the following form:

xi = ax+bxt

.i = ay+byt A.5

z, = az+bzt

where

ax = X-XA ay Y )-'A az = Z-ZA A.6

bx = XA-XB b,- YA -.'r bz = ZA-zn A.7

In the equations for the Kernel function the variable r 2 is present. The equation for r2 may

be written as:
-' 

",.+Zi

2

" -" r2 1 ,12 + Z 1'2

ar24bl+* A.8
J1* Irt 2 + hrl + C'r

23 where

• r b, 2 hi- b,2A.9

br 2[ah .t ab,] A.10

r (1, '4 A . I1

."

.,4"
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If the minimum value of r 2 for a given panel combination is denoted by r2 min, and the location
of this minimum by min, then we have that:

tmin = -br/2ar A.12

b, 2

r 2 min C Cr -... A. 13
4ar

A decision which determines the integration procedure to be used is made on the basis of the
values of r2 min and tmin obtained for a given panel combination. Due to the organisation of
panels into streamwise columns, trin and r

2 min need only be calculated for combinations of
columns rather than individual combinations of panels.

V%
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APPENDIX B

Calculation of the infinite integrals Ii and 1z

In calculating the Kernel function two infinite integrals, I, and 12, occur. For completeness
the expressions are repeated below:

i(ul, V) = (I + ",) ,du B. I
ItI + 2)

12(111, V) e- du B.2

Ui +(2 ) 5 ,2u

where the symbols ul and v were defined in Section 4.1.

From Reference 7, integration of 1 by parts once and integration of 312 by parts twice
leads to:

1' ) ul -4i1i) B.3

3 1,(ul, v) = -i u (2+ivul) + U2)32

,.'"[" --vjo(U .V) + v2Jo)(Ul1, ) B.4

where

l.i.u r) eij I e- U')I iudt B.5

.B.6

The integrals /A and .Jo can hc e\aluated Using approximations to u(I + 112) 1 2 developed

b\ [aschka [Ref'. 8] in an exponentiA form for it~ 0:

., -* . ,,
SU \ B.7

,+( U.n)l 2

nei I

where c 0.372 and the a,, are gixen in Table 10.

*1..



The integrals 1o and Jo for ul > 0 then become:

11

'Cane-nu,
IO(U, ') 2_ nc-i ) B.8

n~l

" ~' aT e
-
ncul? J0(uI, V) z, . n -c2+ne) {n2c2--v2+ncuj(n2c2+, 2)  .

n=I

-2 -iv[2nc + ui(n2c 2 + v2)]}

Symmetry properties of the integrands of I, and 12 have permitted the consideration of
only non-negative arguments ul since, for Ul < 0, we have that:

li(ul, v) = 2Re{1i(0, v)} -ReJI(-ui, v)} + il{I(-uI, v)} B. 10

12(ul, v) = 2Re{I2(O, v)} -Re{I 2 ( -u, v)) + ilm{I2( -u, v)) B. I I

Hence the desired integrals 11 and 12 have been explicitly defined for the range of cases
u> 0 and u, < 0.

I.
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APPENDIX C

Integration procedure when r2 > 0 over the integration interval

The normalwash influence coefficient relating the normalwash on the i'th panel to the pressure
over the j'th panel is:

j cos gi
"' Dij = -c Kijdl C.I

Ij

where r2 < 0 over the interval /j. By analytically incorporating the I/,r2 behaviour into the in-

tegral, Equation C.I becomes:

D - ~o gj[]d C.2

Ij

where

-. G(xj. VI. z) (KIT, + K2T2 )e-iwxi u C.3

rS

By subdividing the interval I into n smaller intervals we may write:

Dj- (' _G ICAm =//: dl C.44- AmJ~ i
M

.- here the line integral is evaluated over m straight line segments between points Am: (-Am,

", ,YATm. ;z.rti) and Bm " (x VI . z m). For convenience the in, i and.j subscripts will be dispensed
with, and so the integral of interest in Equation C.4 may be written as:

I 1 dl C.5
r2

A ,

Let the line beteen points A : (NA. VA, Z.) and B : (xNB.j, : be represented by the para-

metric relationship:

* -,.. r.\p~HP) ,X\1p(PY'- )'. (/)jI-Z.xIdp)k I p + + I C.6

w% here

Af(p) +i- p (A At xii) 2 i (XII XA), 2  C.7

4
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A YAB(p) =. +Yp = '+yB)2Y (YB-YA)/ 2  C.8

ZAB(P) = ,z+p z (ZA+ ZB)/ 2  I (ZB-ZA)/2 C.9

Equation C.5 may now be written in the form:

I+f G(xi(p), yi(p), zi(p)) di
1- - & dp C. 10

where

xl(p) XO-XAB(P) C. I

YI(p) = Yo- YAB(P) C. 12

z(p) = zo-ZAB(p) C. 13

* and (xo, yo, zo) is the location of the control point for the panel combination being considered.
Now we have that:

*' dl
dp = (tAB. )

tAB 1 2

'4p

= (XAB(p) 2 + YAB(p) 2 +ZAB(p)2)
1/2

'ft which yields the result:

di = (.2+j2+12)1/2 C. 14

By substituting Equations C.l 1, C.12 and C.13 into Equation C.10 we obtain:

Iz+' dl If G(p) d  C.15

where

D(p) ap2+bp+c C.16

a= P2+12 C. 17

b = --2['(yo-)+i(zo-ff)J C.18

c (yo -P) 2 + (zo --2) 2  C. 19

;ft Now, in order to evaluate the integral in Equation C.15, let us represent G(p) by a second-order f

,. Lagrangian interpolation polynomial

.1.v 3

f"." G(p) (ajp2 +bip+ ci)G(pi) C.20



where the abscissas pi arc the zeros of the Legendre polynomial. Substituting Equation C.20
., into Equation C.15 yields:

3

d Wi. G(pi) C.21
dp ..

where

Wi i Jdp + bi dP- ci dp C.22

From the tables of integrals presented b Dksight in Reference 14 we find the following indelinite
integrals corresponding to the definite integrals in Equation (.22

P ¢/, In D I I tp C.23D.2 a 2a' 2a 12

O idp In D pD 2  2a D C.24

I '/P 2 a2 b + 2ap b2 -4ac < 0 C.25J D (4ac b")' (4 b2 )1

"" b -- 2ap (h2 4ac)' 2
In b" a 4 > 0

(b2 4ac) ' b 4 2ap (b2 4ac)' 2

-- 4a 0
b + 2ap

The coetficients a,. hi and ci of Equation (.20 rnavbe calculated from

N, . 'i-p 2 4 hip CI (P P 2)(P P3) (pI P2)(PI p) C.26
O.l

-21-+h p + (2_ (1) p1)(p P ) (p2 Pl)(p2 p2 ) (.27

aap2h + bap (p-1a ((p )P ) (p3 P I( p: p) C.23

b% equating like po\kers of'p. lhuS kc obtain

"p2) I pPI /'(I p:) h1  (p, p ()ai ' pp3a ( 29

- 'a.: ( / )1 1)i I' i ) ( (-2 p PI P3(1 (.30

I (pi / 11)( 2 p) h (pn pi2)(13 (3 / 'i:'(1 (.31

Nk ' here t lie a sciv.as p), and coeflicients a,. h, and are presented in lable II.



By choosing that the abscissas pi correspond to the abscissas in the common Gaussian
quadrature formula:

" -I

f()dp f

it is anticipated that the integration accuracy will be maximised compared to any other choice
- of pi.

Note that since r2 is greater than or equal to zero then the determinant b2-4ac is less than
or equal to zero. Hence in Equation C.25 the integral when b2 ---4 ac > 0 is not applicable to
the problem at hand and should be neglected.

5,,
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APPENDIX 1)

Integration procedure when Yr2  0 in the centre of the integration inter%aI

In the doublet lattice method, when thle r2 0 singularits ,%.curl, it must do so in the centre
of' the interval /j over w.hich the line integral of Equation 3-3 1, definied. I ollo% ing the method of
Appendix C. the interval /j may be subdi% ided into n smaller intcr\ als. Furthermore, lfw\e assume
that the singularity falls symmetrically k~ithin thle kth interxal. then thle normiakash influence
coefficient D1 j may be written as

co BJr D. I

B1

k± I

I The integrals in the first and third terms may be calculated Using thle method detailed in Appendix
4% C. It now remains to derive a method for solking the finite part integral in Equation D. I. If we

dispense with thle subscripts then the integral of interest is

Ai t D .2

Now~ Since 1.2 0 in the centre of the interval from point A =(-VA. VA.. :A) to point B X.vt

I i. -it), the line between these two points can be represented by the parametric relationship

:0r(p) .v(/))i -t-t'(p)j 4- (p)k I <- P -< D .3

xhere

.Vj p) i-(Xi, .\) 2 A V\~ + ~ DAi l

:o 4- ZI) -- B :A) 2 )

and the control point is located at (-v(,. Ii. ). Note that Mi en r2 01 the onmtro11 p11111 and1 lift
4 point tshoxxn in Fig. 2) lie onl the same streanl\x sc line.

-1



Using the above definitions of x(p), y'(p) and z(p) we obtain

x (p) = xo- (ox+ Rp) D.7

YJ(P) = -5P D.8

z I(p) = --. p D.9

Hence we see that r2 - yV2 + z12 is simply:

r2 
-= ( '2 + z

2 )p2  D. 10

and, as in Appendix C, we have that

tp (j2 +. 2 +2)1 2 D.I I

Thus, using Equations D.7 to D. II, Equation D.2 becomes:

I d/ + G(p) l
i + 2 -,' D .1 2

FolloAing the method of Farrell [Ref. 2], the numerator G(p) may be approximated by a
... polynomial of order (n I):

"" "fl ,n

G(p) h' \"  iP I G(pi) D.13

•-here the h,1 represent the coefficients of the polynomial. The abscissas pi are the roots of the
n'th order Tchebycheff polynomial of the first kind. The abscissas may be determined from the
following equation [Ref. 15, p. 889]:

• ,, '- (2i 1)7T
pi Cos D. 14

-2n

B substituting Equation D. 13 into Equation D.12 we obtain

2 + "C D .15

.' he re

* C' /1 'pJ :dp. D. 16

'.
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By equating like powers of p, the hji may be calculated from:

X hjpFl uI iu= 1, 2, n D.17
j = ! --(pi -p ) -

1V

where is the restricted product for u 1, 2. n; u 0 i,

11

and is the restricted product for V = I. 2, n ; t' i.
'V V

As in Reference 2, an eighth order polynomial has been chosen. This corresponds to n = 9,
and the abscissas pi and weights C, have been calculated and are listed in Table 12.

-'.4,
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APPENDIX E

Estimating the position of the zero crossings of Kor 2

Let us consider the interaction of a receiving panel r and a sending panel s. We wish to
determine estimates of the positions of the zero crossings of the numerator of Equation 5.1 for
the steady case. These zero crossings will occur somewhere along the line which is colinear

* with the doublet line in the sending panel, and we are specifically interested in the case where
* they occur on the doublet line itself.

The numerator discussed above is defined as:

Kor2 = K=",) cos (yr-,)+K- -)(zj cos Yr-)'l Sin Vr)(Zl Coss y-Yi sin y)/r 2  E. I

Multiplying through by

r
2 = )12+ -1

2

we obtain:

Kor 4 = K'- ) cos (Yr -y,(.1-1
2 

+ :12) + K2 'S)(Zl COS Yr Yi sin Yr)(Zi COS ys - 'i sin 7S)

V E.2

By substituting for z1 and v using Equations A.5 to A.I I (see Appendix A) it is possible to write
. Equation E.2 in the following form:

Kor 4 -- A + Bt + C E.3

where
A, = K1(s)[cos (Yr -y,)ar]+K(S)[a2a4] E.4

-"- B = K11'[cos (yr - y,)b,] + K2(8)[aia4 + a2a3] E.5

C = Kils)[cos(yr--y,)(cr]- K.S)[aia3] E.6

ar = b3 2+b, 2  E.7

br = 2[a.,b, + a.,b,I E.8

Cr E.9

al - at C-azCosyr aysin ,r E. IO

a. bcos Yr b. sin yr E.1 I

3 a az cos Y, a, sin y, E. 12

' a.1 -- b, cos y, b, sin y, E. 13

In the above equations it is assumed that K 11,1 and KP1 are constant for the panel com-
bination under consideration.

dh.
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With reference to Figure 2, the sine and cosine of the dihedral angle of the sending panel s
may be expressed as:

ZB-ZA
sin ys = Y E. 14

(YB -vA)
2 B- A /

COS YS = YB-YA E.i15
[(YB -YA) + (ZB - ZAN]' V2

By substituting

-by (YB -YA)

and

-bz = (ZB-ZA)

into the above expressions we obtain:

sin Vs (by, - bz), E.16

(bY2 + bz2)1/2

If we rewrite a4 (see Equation E.13) in the following form:

<-, [ -~~bz (bZ+z)/  -bya4 2 + 1/ 2 os (by +bZ) 1 -/2 sin E. 18
"X a4+ (b 2+bz )cos . . . ..... IZ

and then substitute Equations E.16 and E.17 into Equation E.18 we see that a4 is identically
equal to zero. Hence the coefficients A, B and C of Equation E.3 become:

A = Ki'8)[cos (r -ys)ar] E.19

B = KiSl[cos (Yr -y)br] + K2(S)[a 2aa] E.20

C = KIsk[cos (Yr -ys)cr] + K2(1[ala31 E.2I

C', Also, ai, a2 and a3 can be written as:

a -(a -+az2 )',2 sin (Yr---E) E.22

a, = +(by 2 +bzZ)I / 2 sin (Yr - ys) E.23

a3 - (ay2 + a,2)1 2 sin (y., - E) E.24

where

sin c ±- a 2 E.25;- H ,2 +a,'-) 1 2 .

and , represents the dihedral angle of the line from point A on the sending panel to the control I
point on the receiving panel. From this definition of it is clear that sin (yr E) 0 when the
lift point on the sending panel lies on the plane defined by the receiving panel. Similarly
sin (y, c) 0 when the control point on the receiking panel lies on the plane defined by tile
lifting panel. If the latter condition coincides with the sending and receiving panels lying perpen-dicular to each other, then, as expected, no mutual interference occurs.

I
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Inspection of Equation E.19 leads to the observation that there is only one zero crossing
when the sending and receiving panels are perpendicular to each other. An example of such
behaviour is presented in Figure 5.

The positions of the zero crossings (in terms of the parameter t) of the numerator of Equa-
tion 5.1 can be estimated by solving the following equation:

At 2 +Bt+C = 0 E.26

for the values of t.
In the above analysis it has been assumed that K11s) and K2

18) may be taken to be constants

over the length of the doublet line in the sending panel. This approximation is valid since
both K1(s) and K21s' are slowly varying functions and the interval over which they are assumed
to be constant is itself quite small. More often than not, the zero crossings will occur outside
the interval defined by the doublet line. In this case the assumed values of K11S and K21s) may
not be accurate, but this is unimportant since we are only interested when the zero crossings
occur along the doublet line. When the zero crossings occur along the doublet line the estimate
of their location may be improved by repeating the calculation using revised average values of
Kils) and K,s calculated over a smaller interval defined by the initial estimates of the zero
crossings.

For critical cases where the zero crossings are close together the approximation that K11s)
and K2(sI are constant over the small interval is particularly good. Geising et al. [Ref. 7] have
shown that when r 2-_0 the terms K1 -. 2 and K2 - -4, where K, and K.2 are elements of the un-
steady Kernel function given in Equation 4.1. Hence, as r2-,0 then K1 s1-2 and Kz(S -4.

,
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APPENDIX F

Estimating the position of the turning points of Kor2 for a perpendicular combination of sending and
receiving panels

Let us consider the interaction of a perpendicular combination of receiving panel r and
sending panel s. Utilising the expressions developed in Appendix E, the numerator of Equation
5. I can be written, for the steady case, as:

,or- = At 2 + Bt + CSKor 2 - 9 F.l1
] ar t2 + brt + Cr

where the coefficients A, B and C are defined in Equations E.19 to E.21 and the coefficients ar,
br and cr are defined in Equations E.7 to E.9. Since the panels are perpendicular cos (yr- y,) - 0,
and Equation F.I becomes:

Kor 2 = a3K2(S)(a 2t +a,) F.2
art2 + brt + Cr

where the coefficients a,, a2 and a3 have been defined in Equations E.22 to E.24.
"A' If we assume that K2

s is constant for the panel combination under consideration, then

* d(Kor2) a3K.,S)(ara.t 2 +2 aralt ±bra - ra) F.3
dt1 (art2 + brt + Cr) 2

After setting the above expression to zero, the positions of the turning points may be estimated
by solving the following equation

araq 2 + 2arait + brai -Cra2 0 F.4

for the values of t.

. ..,a
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APPENDIX G

;, Considerations in the selection of panel distributions

In the doublet lattice method the surface is divided into a number of panels. A number of
rules and considerations apply to the choice of panel distribution for a given configuration;
these are as follows

I . The panels are trapezial in shape and the sides of panels must be aligned streamwise.
Panels are arranged in strips parallel to the free-stream. The aspect ratio of the panels
should not be large. For the unsteady case, an aspect ratio of order unity or less is
preferred [Ref. 7].

2. Surface intersections, surface edges, control surface boundaries, fold lines and other
discontinuities should lie on panel boundaries.

3. For wing-tail type configurations the strip boundaries on the tail must be aligned with
those on the wing.

4. The analysis assumes that the pressure is constant over each panel. Thus the results
will be more accurate if the panels are smaller where the pressure distribution varies
more rapidly. Consequently the panels should be concentrated near the wing tips, the
leading and trailing edges of the surface and near control surface edges. This also
applies to all regions where the normalwash boundary conditions are discontinuous.

5. Where surfaces intersect, the panels should be arranged such that the sides of panels
situated along the line of intersection do not overlap. This means that the spanwise
lines must coincide as shown in Figure 17.
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APPENDIX H

Input data for program AIRFORTP

V ~Program AIRFORTP calculates the pressure distribution and generalised airforces for

general lifting surface configurations oscillating in subsonic flow. The data file, AIRFOR. DAT,
for this program has the following form:

GNU, AM, RLI
NONODE
1, XN(I), YN(1), ZN(l)

NGRPS
G ROU PTITLE
J, JINODE(J) J12NODE(J),J3NODE(J), J4NODE(J)
IREF(J, 1), IREF (J, 2), IREF (J, 3), IREF (J, 4)
NC(J), NS(J), NCEVEN, NSEVEN, ITCORD
(TCORDI (J, K), K 1, NC(J)+ 1)
(TCORD2 (J, K), K 1. NC(J)+ 1)
(TSORDS (J. K). K 1, NS(J)± 1)

NGRPSA
(IGRPSA (K), K 1 , NGRPSA)
NMODEA
(JMODEA (K), K 1 , NMODEA)

where

GNU frequency parameter.
U

AM Mach number. AM Al < 10.

RL reference length, I

I PLOT Flag for initiating preparation of data file for use in PIGS graphics
package.
IPLOT 0: no data preparation;
I PLOT I :PA FEC data file, BOX . DAT, is created and

program AIRFORTP stops execution.

IPRNT Flag for choosing format of print out of the calculated pressure
distributions.
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IPRNT = 0: no pressures printed;
IPRNT = 1 : pressures for each mode printed in column fashion;
IPRNT 2: pressures for each mode printed in matrix array

form for each group of panels.

NONODE number of nodes to be defined. Nodes need not be numbered
sequentially. I < NONODE < 100.

I ,node identification number. I <I < 100.

XN(I) X coordinate of node 1.
YN(l) Y coordinate of node 1.
ZN(I) Z coordinate of node I.

NGRPS number of groups (of panels) to be defined. Groups need not be
numbered sequentially. I < NGRPS < 50.

GROUPTITLE title to describe the group \hose input data follows. Up to 70
*.' characters are allotted. e.g. PORT WINGLET.

>1 J group identification number. I < J < NGRPS. Groups need not
be numbered sequentially.

J I NODE(J) Node numbers defining the leading and trailing edges of group J.
J2NODE(J) The sequence I, 2, 3, 4 follo%s the group node numbering con-
J3NODE(J) vention (defined in Section 8.1 and Fig. 8).
J4NODE(J)

IREF (J, I) numbers defining the senses of positive pressures on the source
IREF (J, 2) group and any images that have been created. They may take the
IREF (J, 3) values 0, i. + I except for the source group IREF (J, 1), which
IREF (J. 4) must be non-zero. See Section 8.3 for a detailed description.

" NC(J) number of chord\\ ise panels on group J.
NS(J) number of span~kise panels on group J.

NCEVEN flag for choosing A hether or not panels do%% n the chord of group J
are to be eenly spaced.
NCEFVEN 0 panels not evenly spaced.
NCEVFN I panels arc e\cnly spaced.

NSFVEN flag for choosing \%hcther or not span\\ise columns of panels on
V.5 group J are to be exenlv spaced.

NSEVFN 0: columns not c\enlh spaced.
NSEVFN I columns are e\enly spaced.

ITCORD Ilag for choosing M hether or not the ordinates of chordwise edges
of panels for the side containing nodes J2NODE(J) and J4-
NODIIL.). i(ORI)2(J.K). are to be proxided as input data.
This feature allows panels of constant chord to be located on a

, tapercd lifting surface. If ITCORI) 0 then the line of data
containing the ordinates T(ORI)2(J.K) is omitted and the pro-
gram defaults to 1('()RI)2(J,K) T(ORDI(J,K). If IT(ORD
I then the line of data containing TCORD2U,K) must be in-celuded.
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TCORDI(J,K) ordinates of the chordwise edges of panels on group J, non-
dimensionalised with respect to the local chord, for the sidecontaining
nodes JINODE(J) and J3NODE(J). TCORDI(J,I) = 0"0 at the
leading edge of the group and TCORDI(J,NC(J)+ I) = i 0 at

the trailing edge. This line of input data is omitted if NCEVEN = 1.

TCORD2(J,K) ordinates of the chordwise edges of panels on group J, non-
dimensionalised with respect to the local chord, for the side con-
taining nodes J2NODE(J) and J4NODE(J). TCORD2(J,I) = 0.0
at the leading edge of the group and TCORD2(J,NC(J) + I) 1 1 .0
at the trailing edge. This line of input data is omitted if
NCEVEN = I or ITCORD = 0.

TSORDS(J,K) ordinates of the spanwise edges of columns of panels on group J,
nondimensionalised with respect to the span of group J.
TSORDS(JI) 0.0 at the streamwise side containing node
JINODE(J), and TSORDS(J,NS(J)+ I)=- 1-0 at the streamwise
side containing node J2NODE(J). This line of input data is
omitted if NSEVEN = I.

NGRPSA number of source groups, together with any defined images, to be
included in the analysis. The groups for analysis are chosen from
the set of groups that have been defined earlier in the data file.

4 I < NGRPSA < 50.

IGRPSA(K) list of NGRPSA group numbers identifying the subset of groups
to be included in the analysis from the set of groups defined
previously. The numbers may be in any sequence.

NMODEA number of modes which are to be used in the analysis.
I < NMODEA < 20.

IMOI)A(K) list of NMODEA mode numbers that identifies the subset of
modes for which the analysis is to be carried out. The numbers
in the list refer to the mode numbers defined in SUBROUTINE
MOi)ES. The numbers may be in any order.

I hc dmiti tile i,, prirnaril. concerned with information related to the geometry of the con-
thiriton hcin! .mak sed. In order to obtain pressures and generalised forces it is necessary to

,uppl\ t BRO) I IN! M(I)I S Mhich defines the modal data to be used by program
\' OIRI IR liet' modal data consiss, of nondimensional displacements and slopes at the

, h -l h, ,it o points and. in order to calculate thz generalised forces, the non-
l .. c[liut s at the lift points must also be defined. This information must be
-.t, , i\% ( ( i\1M(\ \ )IA as follows:

\R \\11 II INP 260. NM 20)
44 , \1 )\ \1()1)\ T \ NOMOI)I. )ZL(NP,NM), DZI)(NPNM). DAD(NPNM)

I.. ., ,t. d i h 1 ho~ ( () \1 MON block are defined as follows:

lX' n.l~i mui number of panels w hich can be used. This is currently
Net to NiP 260.

N\a a\jtim nu her of toodes for w hicl pressures can be calculated.

I 111N I currciitl\ set to NAI 20.

l NI )\1( )1 ) totl iiiiumher of notfes thait are delined wNhere NOMOI)- < NM.
IlhC 1put list Of Modes to be uiscd In the analksis delines which

m"odes Ire to b used.
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DZL(N,M) nondimensional displacement at the lift point on panel N in
mode M.

DZD(N,M) nondimensional displacement at the normalwash collocation
point on panel N in mode M.

DAD(N,M) slope at the normalwash collocation point on panel N in mode M.

The nondimensional displacements are normalised with respect to the reference length. Panel N
corresponds to the panel in the I'th row and J'th column of the K'th group. N is given by :

N - INDEXS(K)+(J-- I)*NC(K)+I I J <, NS(K) H.I
I J -< NC(K)

and the vectors INDEXS, NC and NS are described in the following section.
In order to facilitate the preparation of the modal data, the specifications of a number of

labelled COMMON blocks are given below. These COMMON blocks contain data related to
the geometry of the configuration, as "ell as information associated with the organisation of
this data, and are given below (note that NP was defined previously):

PARAMETER (NE 50)

COMMON, AERPAR GNU. AM, RL, AM2, BETA2, BETA, RL2
O COMMON XYZLFT XL(NP.4), YL(NP,4), ZL(NP,4)

COMMON, XYZDSH XD(NP,4), YD(NP,4), ZD(NP,4)
COMMON,, INDEX INDEXS(NE), INDEXA(NE)
COMMONiELDATA, NOELEM, NC(NE), NS(NE), IREF(NE,4), IELUSE(NE)
COMMON,'DIHEDL ,'DIHEDL(NE,4)

The definitions of the variables are:

16 NE maximum number of groups which can be defined.
This is currently set to NE 50.

GNU frequency parameter

AM Mach number

RL reference length

AM2 AM*AM

BETA2 1'0 AM*AM

BETA SQRT (BETA)

RL2 RL * RL

XL(N.IR), dimensional (X, Y. Z) coordinates of the lift point on the N'th
. YL(NIR). panel in the IR'th reflection state. IR - I refers to the source

ZL(NIR) group (see Section 8.3).

XD(N,IR). dimensional (X, Y, Z) coordinates of the normak\ash collocation
YD(N,IR), point on the N'th panel in the IR'thi reflection state.
ZD(N.IR)

INDEXS(K) pointer indexing the position of the first panel associated %kith

the K'th group. This pointer refers to all source groups.
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INDEXA(K) pointer indexing the position of the first panel associated with the
K'th group used in the analysis.

NOELEM number of groups (elements) defined in the data file.

np r

NC(K) number of chordwise panels for the K'th group.
, NS(K) number of spanwise panels for the K'th group.

IREF(K,IR) number defining the sense of positive pressure on the K'th source
group (IR = I) and any image groups (IR = 2; 3 or 4). See the
definition of IREF used in relation to the input data file.

IELUSE(K) this variable indicates whether a particular group (element)
number has been used. If IELUSE(K) 0 then the K'th group
(element) has not been defined. If IELUSE(K) I then the
K'th group has been defined.

DIHEDL(K,IR) this is the dihedral angle (in radians) of the K'th group. IR - I
refers to the source group and IR - 2, 3 and 4 refer to any image
groups that were created.

Let us consider the N'th panel oscillating in mode M. The coordinates of the normalwash
collocation point may be given as (.vN, yN, ZN), and by applying Equation 6.1 the displacement
normal to the surface at the collocation point may be expressed in the following form:

Z.,(N.\ ' N, ZN, 1) .fi(xV.V N., ZN)eiwt H.2

4" The coordinates of the normalhash collocation point on the N'th source panel are given by the
following equation:

(XNyN, ZN) (XD(N.I), }IJ(NI),ZD(N,I)) H.3

Using Equation 6.3 the nondimensionn, normalwash may be expressed as

W U(N = .ZN) + / . . , ) +ik[lf(•x. , ZN) H.4
U O(x I)( *\ -N.-,Z

DAD(N.M) +ik . )ZD(N,M) H.5

- . In order to obtain the generalised forces it is necessary to calculate the nondimensional
displacement at the mid-span quarter-chord point of the N'th source panel, (.N.x, . 5), in the
Af'th mode. The nondimensional displacement may be determined from the followring equation

5- ...
7" .'(.x,, e,, 5x,) !(.\'10 , I). Yl.( N I. IZL(N,. M H .6

I)ZL( N, At) H.7

Although it is customar\ to dcline DLZL in the manner depicted abo,.c. this consention nced
not be folloed if forces other than generalised forces are required.

A sign consention exists for tle specification of the modal displacements and slopes used
in the calculation of pressures and gcencralised forces. The displacements perpendicular to the
surface. I)/I) and DZI.. arc taken to he positise Mhen tlles are in the same direction on a group
as the direction of' positie prcssre for that group. The slope at the norklhash collocation
point. D\i). ik posilisc if' the displaccncnit athut point. I)/I). is increasing in the stream\\ise
(.l direction. \i exanple diustratin the application of the abosc consCnlion is gisen in Appen-
dix I.



APPENDIX I

Example of input preparation for the analysis of Stark's T-tail

As an illustrative example, the preparation of the input data file and SUBROUTINE
MODES for Stark's T-tail will be described. The configuration is assumed to be oscillating with
a frequency parameter of 0.6, based on a reference length of one unit, in an airstream of Mach
number 0'8.

The data file for the panel distribution shown in Figure 17 is given in Table 13. A total of
7 nodes were used to define the configuration. The positions of the nodes can be deduced by
using the node coordinates in conjunction with Figure 16. Two groups were defined, with
group I corresponding to the starboard half of the stabiliser and group 2 corresponding to the fin.

Due to symmetry, only the starboard half of the stabiliser is modelled. Nodes I and 2 define
the leading edge and nodes 3 and 4 define the trailing edge of the stabiliser. IREF(l,l) = I

\'."-. indicates that the direction of positive pressure on the source group is in the negative z-direction.
This agrees with the topology of the group (see Section 8.2). The effect of the port half of the
stabiliser is included by setting IREF(l.2) -- 1. This creates an image of the source group by
reflection in the x-- plane.

The positive sense of pressure on the image is in the positive --direction, which once again
corresponds with the topology of the group. The combination of positive pressures on the port
and starboard halves of the stabiliser corresponds to antisymmetric motion of the stabiliser.

The stabiliser is divided into I I panels chordwise and 10 panels spanwise, with the chord-
0wise panel distribution being the same on both sides of the half stabiliser. The chordwise and

r, spanw ise ordinates of the panel sides are listed in lines 16 and 17 of tile data file.
The leading edge of the fin is defined by nodes 2 and 5 and the trailing edge by nodes 6 and 7.

Since IREF(2,1) I the sense of positive pressure on the fin is in the negative y-direction
which is opposite to that defined by the topology of this source group. Note that no image
surfaces are created. The fin is divided into 9 panels chordwise and 10 panels spanwise, and the
nondimensional ordinates of the panel sides are listed in lines 22 and 23 of the data file.

For this analysis. both the stabiliser and fin are included, which is indicated in lines 24 and 25.
Three modes are to be used in the calculation of pressures and generalised forces. The numbers
I. 2 and 3 in the last line refer to the modes defined in SUBROUTINE MODES.

I' Since IPLOT - 0 (see line 2) a PAFEC data file for use in PIGS will not be created. By
setting IPRNTP - I the print out of pressures associated with the three modes will be presented
in a columnar format.

A SUBROUTINE MODES is required to generate the modal data and a detailed description
of the format of this subroutine is given in Appendix H. A listing of the FORTRAN source
code for the subroutine used to calculate modal displacements for Stark's T-tail is presented in
Table 14.

As described in Section 9.2. the T-tail is assumed to be oscillating in three rigid body modes.
These are yawing about a vertical axis through the centre of the root chord of the fin (positive

n nose right), sidesssay (positive left) and rolling about the fin-stabiliser intersection (positive right
stabiliser dovkn). These modes are expressed analytically in Equations 9.5 to 9.10. and when

r ;they are used in Equations 1-1.4 to H.7 the following equations are obtained for the stabiliser

DZD(N. I) DAD(N.I) I)Zi.(N. I) 0.0 1.

DZD(N.2) I)AID(N,2) I)ZI-(N.2) 0-0 1.2

DZD(N.3) YI)(N,1) 1.3

..
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DAD(N,3) = 0.0 1.4

DZL(N,3) = YL(N,I) 1.5

where

N = INDEXS(K)+(J-i)*NC(K)+I 1.6

I < I < NC(K) 1.7

1 < J < NS(K) 1.8

and K = I for the stabiliser group. The modal data for the fin is as follows:

DZD(N,I) = 3.0 * (XD(N,I)+0' 15577) 1.9

DAD(N,I) = 3-0 1.10

DZL(N,I) = 30 * (XL(N,I)+0- 15577) 1.11

DZD(N,2) = I10 1.12

DAD(N,2) = 0"0 1.13

DZL(N,2) = I'0 1.14

DZD(N,3) = -ZD(N,I) 1.15

DAD(N,3) = 0.0 1.16

DZL(N,3) -..ZL(N,I) 1.17

where N is obtained from Equations 1.6 to 1.8 by substituting K - 2 for the fin group.
Note that the displacements DZL and DZD are positive in the same direction as the sense

of positive pressure that is defined for the panels in a given group. The slope DAD is positive
if the displacement is increasing in the streamwise x-direction.

Figure 20 illustrates the mode shapes for the three modes used for Stark's T-tail. The 4 sign
indicates that the displacement is in the same direction as the sense of positive pressure acting on
the group, and the sign indicates that the displacement is in the direction opposite to that of
the positive pressure. Hence, where the + sign applies the displacements are positive quantities
and where the sign applies the displacements are negative quantities. It is seen that when the
analytic expressions for the mode shapes are combined with the topology of the groups (as de-
fined in the input data file) then the displacements depicted in Figure 20 are obtained.

I.
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TABLE 1

* Values of Generalised Airforces, Qpi. for the AGARD Wing-Taiilane Configuration (for h -0)

as Obtained by Different Workers

Albano Geising
h = 0 Perkinson Albano Kalman Present
M =0-8 Qp, Davies Rodden Rodden Rodden Farrell Method

Q1 0-4403 0-4425 0.4554 0.4401 0.4377 0.4557
Z'Q11 359-9 359.9 359-9 359-9 360-0 360-0

I Q12 0-6202 0-6121 0.6655 0.6557 0,6457 0-6652
Q12 180-0 180.0 180.0 180.0 180.0 180.0

k=0___------__ _-_____ _ _

I Q11 0.1046 0-1054 0.1107 0.1044 0-1049 0-1083
0Q21 180.3 180-3 1803 180-3 180.0 180.0

Q22 0-1759 0-1954 0.2237 0-2126 0-2184 0.2261
L Q22 180-2 180.2 180.2 180.2 180.0 180.0

Q1i 1.5865 1-6022 1-5496 1I5688 1.4212 1.5713
*Q11 314-2 314.4 311.2 310-7 312-3 310-8

Q12 0.9180 0.8910 0.9081 0.9495 0.8752 0.9482
,Q12 265-5 266.3 267.2 265.4 265.0 265-8

Q21 1.0043 1.0099 1.0550 1.0511 0-9507 1-0653
Q21 291-7 291.4 287.2 288.5 289-9 289-0

Q 22 1.2845 1.2386 1-2144 1.2719 1.1448 1.2745
Q22 294-7 294.3 293.7 292 9 294.1 293.2
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TABLE 2

Values of Generalised Airforces, Qp~1, for the AGARD Wing-Tailplane Configurations as Obtained
by Different Workers

Albano
h = 0'6 Perkinson Present

M = 08 Qpn Davies Rodden Farrell Method

I Qi1 i 0"1470 0'1490 0'1374 0'1432

Z Q11 359-8 359"8 360-0 360'0

I Q121 0-6402 0"6312 0-6661 0.6868

ZQ12 180'1 1801 180.0 180.0
: k --0

Q21 1 0.2404 0'2405 0'2527 0"2669
Z Q21 1801 180.1 180"0 180"0

Q22 1 0'1619 0'1817 0-1958 0'2117

,. /Q22 180-3 180.2 180.0 180.0

Q,1 1 1'1009 11200 0.9780 1'0837

Q1 301•3 301.3 299'9 298"3

Q12 I-1342 1"1128 1.0735 11583
%: Z Q12 251.7 251.9 249"5 250"0

k 1'5

Q21 0.9072 0.9122 0-8259 0.9239

Q21 278.0 277.7 276.9 275.8

2-2I -13867 1.3397 1.2082 1.3541
"Q22 289.2 288.6 287.2 286.4

:.'
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TABLE 3

Generalised Airforces for the AGARD Wing-Tailplane Configuration (with h -- 0.6, M -- 08)
for a Range of Frequency Parameters

h=0"6 i Qt1 ' Q12i Q21 Q22
M=0"8 //Ql_ Q12 'Q21 Q2

Present Present Present Present
k Davies Method Davies Method Davies Method Davies Method

0 0.1470 0.1432 0.6402 0.6868 0.2404 0.2669 0.1619 0.2117
359.8 360.0 180.1 180.0 180.1 180.0 180.3 180.0

0.1 0,1588 0.1563 0.6418 0.6885 0.244" 0.2715 0.1763 0.2234
339.8 338.! 185.5 185.4 192.5 192.3 205.4 200-7

0-2 0-1899 0.1907 0.6466 0.6933 0.2571 0.2850 0-2140 0.2555
324.6 322.I 191.1 190.7 204.4 203.9 225.1 218.1

0.4 0-2840 0'2916 0"6665 0.7123 0.3036 0.3346 0"3274 0'3589
308.8 306.0 202.0 201-3 224-8 223.8 248.7 242.0

0"6 0,4001 0'4114 0.7021 0'7462 0.3726 04071 0-4670 0-4924
302-7 300.0 212-8 2118 2404 2390 262 256'5

0-8 0.5301 0'5428 0-7560 0"7984 0.4595 0-4966 0"6265 0"6461
300.6 297.8 223'0 221-9 252.3 250'6 271'1 266'5

1"0 0,6737 0"6844 0"8310 0,8715 0"5632 0"6003 0'8079 0'8195
300-2 297"3 232"5 231"2 261"7 259'7 278"0 274'0

1"2 0-8320 0-8358 0'9308 0"9676 0"6847 0'7179 1"0156 1"0148
300.5 297.5 241•1 239.6 269.2 267.1 283.4 279-9

1.5 11009 1.0837 1.1342 1•1583 0-9072 0.9239 1.3867 1.3541
301"3 298.3 251.7 250.0 278.0 275'8 289'2 286'4

P.
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TABLE 4

Generalised Airforces for the AGARD Wing-Tail Configuration for Various Values of Vertical
Separation, h, Between Wing and Tail

k=15 I Q1lI Q121 I ,Q21 Q22I
M=0"8 ZQ11 Q /Q.I Z Q1Q22

h Present Present Present Present
Davies Method Davies Method Davies Method Davies Method

0 1"5865 1I5713 0'9180 0"9482 1'0043 1'0653 1-2845 1'2745
314'2 310-8 265'5 265'8 291-7 289'0 294'7 293"2

0"01 1"5519 1"5514 0'9332 0"9520 0"9973 1"0574 12890 1"2734
313"3 310-7 264'0 264"9 290"4 288"7 294"0 292'8

0-04 1"4773 1"4777 0'9640 0-9789 0'9843 1'0347 1"2992 1'2782
311'4 309"3 261'2 261'7 287"7 286"6 292"6 291'3

0.1 1-3730 13605 1'0040 1"0303 09662 1'0042 13151 1"2946
308"7 306"1 258"0 257"5 284"3 282"8 291"3 289"2

S0"2 1'2624 1.2461 1"0479 1'0779 0-9428 0.9724 1"3376 1-3138

305"9 303"0 255'2 254'1 281-4 279-5 290-4 287-8

0"3 I-1948 1"1787 1'0790 1.1072 0"9271 0"9520 1-3559 13270

304'0 301-2 253.7 252-3 279-8 277"8 290-0 287'2

0'4 11511 1"1349 1.1024 1"1284 0'9174 0"9383 1"3695 1'3376
302-8 299"9 265'8 251'2 279-0 276"8 289-7 286"9

0'5 1-1216 1I1048 1'1204 1'1450 0'9113 0.9295 1"3795 1.3468

301.9 299.0 252.2 250.5 278.4 276.2 289.5 286.6

0.6 11009 1.0837 1-1342 1-1583 0.9072 0.9239 1.3867 1.3541
301.3 298.3 251.7 250.0 278.0 275.8 289.2 286.4
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TABLE 5

Generalised Airforces for Stark's T-tail for Zero Frequency and Two Mach Numbers as Obtained
by Different Workers

k 0 k=0
M v0 M -0-8

* Kalman Kalman
Rodden Present Rodden Present

Qp, Stark Geising Method Stark Geising Method

Q11 -0.6220 -06095 -05428 -0.8137 --0.7804 -0.7189

Q21 -3.2503 --33647 -34020 -3-7366 --38768 -3.8924

Q.1 --0.7813 0-7965 --0.8229 0-7858 --0.7985 -0.8257

'.-
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TABLE 6

Generalised Airforces for Stark's T-tail as Obtained by Different Workers

k - 06 k= 0.9
M = 0'8 M=0"8

Kalman
Rodden Present Present

Qpq Stark Davies Zwaan Geising Farrell Method Stark Farrell Method

i Q111 3.0826 3-2421 3.2873 3.3527 2.7470 3.0965 4.8800 4-1775 4.8056
Z Q11 258.8 260.6 259.8 261.0 260.6 260.5 264.9 266-2 265.5

I Q12! 0.3202 0.3399 0.3475 0.3431 0.2799 0.3214 0-7020 0.6016 0.7042
zLQ12 323.9 328.5 327-4 329.4 328.1 328-1 330.6 333.7 332.7

Q13 0.1695 0.1859 0.1865 0.1830 0.1680 0.1828 0.3214 0.2971 0-3358
_Q13 62-4 61.5 60.8 61.9 61.6 60.9 52.0 50.4 49.7

Q21 44628 4.5670 4.5650 4.6612 4.4291 4.6085 5-3736 5.1126 5-4472
.Q21 210-7 211.1 210.9 212.3 211.0 211-0 220.8 220!1 221.2

Q22 07758 07930 0.7936 0-8134 0-7815 0-8072 1.2419 1-2185 1.2822
1 Q22 281.2 282.1 281.9 283.3 282.3 282.2 286.5 288.3 287.6

I Q23 0.2103 0.2191 0.2183 0.2269 0.2282 0.2330 0.3692 0.3882 0-4055
Q23 2982 299.0 298.9 298.3 296.6 297.8 310.2 307.6 309.0

Q31 1.0772 1•1154 1•1006 1.1383 1.1483 1.1686 1 .3760 1.4446 1.4903
.Q3 222.7 224.7 224.6 224.9 225.3 224.9 232.1 236.6 235-3

Q32 0.1810 0.1897 0.1874 0.1948 0.2000 0.2022 0.3214 0.3484 0.3557
4, /Q32 297.7 299.8 299.7 299.8 300.1 299.7 305.8 308.5 307.6

Q33 0.3319 0.3349 0.3349 0.3523 0.3590 0.3617 0.5484 0-5794 0.5910
.Q3 289.8 289.6 289.6 289.4 288.8 289.4 298.1 296.8 297.5

Np
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TABLE 7

Comparison of Results for Stark's T-tail Obtained with Different Panel Distributions. The Top
Table Indicates the Panel Distributions Used

No. Panels No. Panels

Surface Chordwise Spanwise

Fin 9 10

Case I r
Stabiliser I1 10

Present Method -
Fin 4 12

Case 2 -.

Stabiliser 5 12

Fin 4 12

Farrell
Stabiliser 4 12

k -06 A= 0.8

Present Method
QW Farrell

Case I Case 2

Qa! 3.0965 2.8362 2.7470

Z Q1 260.5 260.3 260'6

Q12 1 0"3214 0.2908 0.2799

Q12 328.1 327"5 328.1

Q13 i 01828 0.1670 0.1680

Z I- Q13 60.9 62.6 61•6

Q220 4.6085 4.5025 4.4291

Q22 211.0 211"3 211.0

Q22 1 0"8072 0.7937 0.7815

"Q22 282.2 282.5 282.3

Q23 02330 0.2283 0.2282
.Q23 297 8 296.9 296.6

1Q3 I-1686 I-1467 I 1483

Q31 224.9 225.4 225 3

Q32 02022 0.2000 0. 2000Q 32 299-7 3002 300.1

Q33 03617 0.3607 0.3590

Q33 289.4 289,0 288 8

,FX
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TABLE 8

Generalised Airforces for the ONERA Horizontal Wing and Tail Configuration for H 1/8
and A 2

H=1/8 M=0"30 M=0.45 =065 M=080

A=2 k=0'3856 k=0'2436 k=0" 1513 k-=0.1112

Present Present Present ?resent
Qp, Davies Method Davies Method Davies Method Dave:,s Method

I Q33 14'209 14'068 14'786 14'850 16"248 16"396 18346 18620

Z Q33 349-9 3548 3532 3556 3540 3557 3534 354.9

Q34 0.214 0.244 0.234 0.260 0.220 0.241 0181 0.196

/Q4 311.7 307.6 311.3 309.6 301.2 300.9 273-9 273.9

Q43 8057 8252 8-518 8-675 9897 10039 12066 12293

Q Q 3 116.4 112.5 138.4 136.0 152.3 150.8 157.4 156.3

" Q-14 14"130 14-041 14'743 14.804 16'198 16'342 18'301 18'572

Q i 351.5 355.1 353.4 355.8 354-2 355.9 353.6 355.1

* Q 1 1066 1.221 1.150 1290 1.081 1.194 0.872 0957

Q11 1477 143,5 144.9 143.0 135.8 135.3 114.7 114.5

Q23 29102 30196 30456 31464 34703 35716 41054 42315

Q23 296-3 292.0 318.7 316.1 333.3 331.6 339,2 337.9

7,

ii
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TABLE 9

Generalised Airforces for the ONERA Horizontal Wing and Tailplane Configuration for H 1/8
and A 1/2

H= 1,18 M=0"30 M=0'45 A- 065 M-0"80
A=I1,2 k=0"3856 k=-0'2436 k-0I 1513 k OI"l12

Present Present Present Present
Qpq, Davies Method Davies Method Davies Method Davies Method

Q33 13.847 13.797 14.417 14.503 15.889 16.058 18.075 18.381

-Q33 3527 356-39 354-3 356-8 3549 356.7 354.4 3558

Q31 0.900 0'893 0'928 0"929 0857 0'852 0"702 0"693

/Qa. 324-2 32189 326-4 375-2 3183 3206 305.1 3027

Q a 7.934 8.118 8.415 8.561 9.732 9-865 11.813 12"025

Q13 156.1 152.1 164.1 161.7 168.9 167.3 170.1 169'0

Q-. 1 13.279 13"163 13.794 13-812 15.200 15.298 17-345 17.562

Q 353.8 357.7 355.1 357-8 355"6 357.4 355-1 356.7

QI1 6"381 6-791 6-641 7"106 6"446 6"886 5'666 6"067
Qti 165'5 164-0 164-5 163'8 161'2 161'1 153"4 153"7

Q23 28082 29073 29469 30370 33518 34-429 39.664 40805

Q23 334.9 330-7 343.7 341.1 349.3 347.6 351.4 350.1

4.,
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TABLE 10

Coefficients in Laschka's Approximation to
u(Iru2)-l (from Ref. 7)

n al
. _________

I + 0"24186198

2 - 2'7918027

3 + 24,991079

4 111.59196
5'

5 +271.43549

6 305.75288

7 41•183630

8 +545.98537

9 --644'78155

10 +328-72755

11 64279511
S.%

TABLE II

Abscissas pi and Coefficients aj, b and c (for i I to 3) Used in Integration Scheme when r2 > 0

SiPi ai bi Ci

I 0774596669 0.833333333 --0645497224 0.0

2 0.0 1.666666667 0.0 1•0

3 0774596669 0.833333333 0.645497224 00

.4.
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TABLE 12

Abscissas and Weights, pi and Cj, for "Finite Part" Integration

-. %

p C )

0-984807753 0007642844 1
2 1 0866025404 0469841270

" 3 0 0427876I0 0.003167376

4 ( 342o20143 5.610810220

5 0 0 14139682541

0 1342020143 5610810220

* 7 0 o427-,76I0 0003167376

8 0M66025404 0.469841270

9 0.984807753 0.007642844

K
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TABLE 13

Listing of data file used for the analysis of Stark's T-tail configuration

0.6 0.8 1.0

01

7 -

1 0.341 1'0 0.0

2 0.000 0.0 0.0
3 0.813 1.0 0.0

4 0.938 0-0 0.0

5 U801 0-0 1.0
6 0'820 0-0 0.0
7 0'489 0.0 I 10

STABILISER
1 1 2 3 4

,,1 I 0 0I 1 10 0 0 0

0.0 -05245 13113 '21855 .36716 .50704 .65565 .74307 -82175 .87420 -941 1.0

0.0 .04 .10 .18 .30 50 .70 "82 '90 -96 1'0

FIN
2 2 5 6 7

" " 1 0 0 0 "

9100 00. 910000".

0-0 -06 .15 25 .42 .58 75 .85 .94 1.0

0-0 '04 "10 '18 "30 "50 .70 *82 "90 *96 1'0".
2
1 2
3
I 2 3

:: I



TABLE 14

Listing of FORTRAN source code for the subroutine used to generate the modal data for
Stark's T-tail configuration

I C
2 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

3 C
4 SUBROUTINE MODES
5 C
6 C THIS SUBROUTINE CALCULATES THE MODES FOR THE UNSTEADY
7 C AERODYNAMICS PROGRAM.
8 C
9 C THE MODES ARE FOR STARK'S T-1AIL.
10 C

11 C MODE I: YAW
12 C MODE 2: SIDESLIP
13 C MODE 3: ROLL
14 C
15 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
16 C
17 PARAMETER (NP -260,NE--50,NM-20)
18 C

* 19 COMMON, AERPAR/GNU,AM,RL
20 COM MON,, XYZLFT/ XL(NP,4),YL(NP.4),ZL(N P4)
1 COM MON, XYZDSH/XD(NP,4),YD(NP,4),ZD(NP,4)

22 COMMON, ELDATA ,'NOELEM,NC(NE),NS(NE),IREF(NE,4)
23 COMMON INDEX ,INDEXS(NE),INDEXA(NE)
24 C
25 COMMON MODATAiNOMODE,DZL(NP,NM),DZD(NP,NM),DAD(NP,NM)
26 C
27 C NUMBER OF MODES DEFINED

"' -28 C"

19 NOMODE-3

30 C
31 ( MODES FOR STABILISER: GROUP I
32 C
33 DO 10 N INDEXS(I)+I,INDEXS(I)+NC(I)*NS(I)

34 C
35 DZD(N.I )-0"0
36 DAD(NI) 0.0
37 I)ZL(N.I) 0.0
38 ( '

39 DZ[)(N.2) 0-0
40 DADN.2) 0-0
41 I)ZL(N.2) 0-0
42 (
43 DZD(N,3) YI)(N.I)
44 DAD(N,3) 0.0
45 I)ZL(N,3 YL(N,I)
46C
47 10 CONTINUEt

48 C
49 C MOCDFS FOR FIN: GROUP 2
50 C*

, .-7



TABLE 14 (Continued)

51 DO 20 N=INDEXS(2) + ,INDEXS(2) +NC(2)*NS(2)
52 C
53 DZD(N,I)= +3.O*(XD(N,I)+O 15577)
54 DAD(N,1)=+3*O
55 DZL(N,1) = +3O0*(XL(N,l)±0-15577)
56 C
57 DZD(N,2)=+ 1O.
58 DAD(N,2)=0-0
59 DZL(N,2) =+ 1.0
60 C
61 DZD(N,3) = -ZD(N, 1)
62 DAD(N3)=00O
63 DZL(N,3) = -ZL(N.1)
64 C
65 20 CONTINUE
66 C
67 RETURN
68 END
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Lift point Sending panel s

Doublet line /

x /Y

A Receiving panel r

z

Y C Yr

X

Control point

Point A: (X, Y, Z) (XA, YA, ZA)

Point B: (X, Y, Z) = (xB, YB, ZB)

Point C: (X, Y, Z) = (x, y, z)

Panel dihedral angles : Ys and Yr

I-'.. -

FIG. 2: DIAGRAM SHOWING A GENERAL COMBINATION OF A SENDING AND
-: RECEIVING PANEL.
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FIG. 3: COMPARISON OF NONPLANAR AND PLANAR KERNEL FUNCTIONS FOR
k = 0ANDM = 0.6.
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Kor2

2.0

1.6

S 1.2
-;.i

0.8

0.4

0 o, t
-0.02 0 0.02 0.04 0.06

-0.4 -

-0.8 -

-1.2

-1.6

-2.0

Parameters used in expression for Kor2:

-i = 600 -= -300

M = 0.6

x, = 1.0

Yl = Cos Yi t

zi = sin 'Yt + 0.04

N
r '

FIG. 5: VARIATION OF Kor2 FOR A SENDING AND RECEIVING PANEL COMBINATION
-. WHERE THE PANELS ARE PERPENDICULAR TO EACH OTHER.
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tL t R t

%' XAtL AtR

-S"

%".

FIG. 6: DIAGRAM ILLUSTRATING THE DEFINITIONS OF AtL, AtR, tL, tT AND tR IN
RELATION TO THE CURVE OF Kor2.
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tTL ItTR

AtTL AtTR
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FIG. 7: DIAGRAM ILLUSTRATING THE DEFINITIONS OF AtTL, AtTR, tTL, tTR AND
to IN RELATION TO THE CURVE OF Kor2FOR PANELS THAT ARE

PERPENDICULAR TO EACH OTHER.
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Projection of panel sides

y onto the X-Y plane.

x

FIG. 8: DIAGRAM SHOWING NODE NUMBERING SCHEME AND OTHER FEATURES
PERTAINING TO THE DEFINITION OF A GROUP. THE NUMBERS 1, 2,3 AND
4 REFER TO THE NODES.
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J'th column

"  - 'NS2

N C

3

I'th row 1.1)*NC+I

NC*NS 0

fc

.. -:A@

Node 1: (tc , ts ) =  (0, 0)

Node 2 (to, ts) = (0, 1)

Node3: (tc, t s ) = (1,0)

Node4 (tc , t s ) = (1,1)

V ,  FIG. 9: DIAGRAM DEFINING NONDIMENSIONAL COORDINATE SYSTEM FOR A GROUP.
ALSO SHOWN IS THE PANEL NUMBERING CONVENTION FOR PANELS WITHIN
A GROUP.
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z p jw
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x

FIG. 11: DIAGRAM SHOWING POSITIVE SENSE OF PRESSURE pAND NORMALWASH
w IN RELATION TO THE TOPOLOGY OF THE PANEL.
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2 1

2 1 21

1 2

2

*FIG. 12: DIAGRAM SHOWING POSSIBLE PANEL TOPOLOGIES IN EACH QUADRANT
AND THE ASSOCIATED DIRECTION OF POSITIVE PRESSURE.
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FIG. 14: IDEALISATION OF T-TAIL WITH TWO AXES OF SYMMETRY. ONLY TWO

SOURCE GROUPS NEED TO BE DEFINED, THE OTHER SURFACES BEING

. OBTAINED BY REFLECTION. THE ARROWS INDICATE THE POSITIVE
SENSES OF PRESSURE ASSUMED BY THE TOPOLOGY OF THE SOURCE

S-GROUPS.
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FIG. 17: PANEL DISTRIBUTION USED IN CALCULATING GENERALISED AIRFORCES
FOR STARK'S T-TAIL. FOR CLARITY ONLY THE STARBOARD HALF OF THE
TAILPLANE IS SHOWN.



1Xi Fin

Panels lined up at
Sfin-tailplane junction

-30o Panels not lined up at
f in-tailplane junction

-2.0

.4-..-1.0

0.5 0.6 0.7 0.8 0.9 1.0

(X/C) Fin

(a)

Stabilisere

SPanels lined up at
fin-tailplane junction

'-.4-.1.5

0
0 Panels not lined up at

fin-tailplane junction

of fin
0.5 I.

00

0.5 0.6 0.7 0.8 0.9 1.0
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* FIG. 18: PLOT OF THE NONDIMENSIONAL PRESSURE DISTRIBUTION X1 NEAR THE
FIN-STABILISER JUNCTION FOR STARK'S T-TAIL FOR THE FIN YAW MODE
(MODE Fl). PRESSURES ARE SHOWN FOR BOTH THE FIN AND STABILISER
AND WERE OBTAINED FOR K =0 & M =0.
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S = 0.1515 metre

Reference length = C

FIG. 19: ONERA HORIZONTAL WING-TAILPLANE CONFIGURATION.
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FIG. 20: SKETCH OF MODE SHAPES USED IN THE ANALYSIS OF STARK'S T-TAIL.
- '- THE + AND - SIGNS INDICATE THAT THE DISPLACEMENTS ARE IN THE SAME

OR OPPOSITE DIRECTION TO THE SENSE OF POSITIVE PRESSURE FOR THE
GROUP.
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