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Measures of Imbalance For
Unbalanced Models

A.I. Khuri

The University of Florida

Abstract

In 'this paper we presentta procedure to measure the degree of imbalance

of an unbalanced data set. The procedure is based on choosing an appropriate

loglinear model for the subclass frequencies of the data. A measure of im-

balance is then introduced as some function of the chi-squared statistic used

in the goodness-of-fit test for the loglinear model. The proposed procedure

can also be used to measure departures from certain types of balance, such as

proportionality of subclass frequencies, partial balance, and last-stage uni-

formity.

(ey words: Unbalanced data, nested models, cross-classification models,

% loglinear models, chi-squared statistic.

1. Introduction

It is known that in a balanced data situation, parameter estimators and

test statistics pertaining to the effects in the associated model have certain

optimal properties. These properties, however, cannot be maintained once the

data set becomes unbalanced. In this case, the statistical properties of the

aforementioned estimators and test statistics will, to a large extent, depend

on the pattern of the data subclass frequencies. Severe imbalance in the data

can have adverse effects on the analysis, especially if that analysis is an

adaptation of procedures pertaining to balanced data (see, for example,

-1-"



-2-

C,'- ings and Gaylor 1974).

Ahrens and Pincus (1981) presented two measures of imbalance for the one-

way classification model. These measures were utilized to assess the efficien-

cy of an associated unbalanced design as compared to a balanced design with

the same number of observations. Other authors have alluded to the need to

measure data imbalance; they include Hess (1979, p. 646) and Tietjen (1974,

p. 57 6).

The purpose of this paper is to present a general procedure to measure

imbalance of a data set for a given unbalanced model. It is shown that one of

the two measures introduced by Ahrens and Pincus (1981) can be derived as a

P special case using this procedure. The proposed procedure can also be utiliz-

ed to measure departures from certain types of balance other than complete

balance where frequencies are equal within all the subclasses. These include

partial balance, last-stage uniformity, and the case of proportional subclass

*-. frequencies in cross-classification models.

2. A General Procedure to Measure Imbalance

A measure of imbalance, denoted by c(D), is a function of the subclass

frequencies which are determined by the design D used in the experiment. This

function takes values inside the closed interval [0,i'. Small values of ¢(D)

indicate severe imbalance, whereas "near balance" cases are characterized by

large values of (D). The data set is balanced if and only if (D)=L. Fur-

thermore, this function must remain invariant under any partial or complete

replication of the design (see Ahrens and Pincus 1981).

The development of the function €(D) is based on the use of loglinear

Smodels. Several unbalanced models will be considered to illustrate the appli-

cation of this procedure. These models include the one-way classifaction

model, the two-way classi'ication model, the three-gay classiftication model,

.. . . . . . . .. -
-"4. .
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the two-fold nested model, the three-fold nested model, and a model with a

mixture of cross-classified and nested effects,

2.1 The One-Way Classification Model

Consider the one-way model

yi- + ai + e j (2.1)

(i 1,2,... ,a; j = 1,2,... ,n i ), where u is a fixed unknown parameter, a'x is

either a fixed parameter or L. random variable, and r- is a random error. Here

D is the design D = {n,n na}.

2' ... ' a

We shall consider that the ni's have a multinomial distribution such that

* a an ii h
n. has the binomial distribution B(n,,.), where n i = n and I is the

1

probability of belonging to level i (i = 1,2,... ,a). Hence, mi = E(ni) n.ni

*'. . (i 1,2,...,a). The m.'s will be referred to as expected frequencies. On a

logarithmic scale, the expected frequencies can be represented by the loglinear

model

log.n . i - 12, .. ,a, (2.2)'-2; o i 1 .

where

,i log . aZ log i.
a. 1

a. log II -- a log EV i 1,2,...,a.

a -

We note that Zia  0 and that model (2.2) is of the same form as model (2.1),

except for the error term.
r .

Let mi denote the maximum likelihood estimate of mi (i = l,2,.a) Un-

der complete balance, T = i/a for all i, hence m. = n /a = n Using

Pearson's approximate chi-squared statistic for testing the hypothesis

H :n. = 1/a for all i we obtainK0 1



-4-

2 a 2
X = (n.-n ./n.,

which under H has an asymptotic chi-squared distribution with e degrees ofo

freedom, where, in general, e is the difference between the number of indepen-

dent n 's under H and under H , respectively. In this case 0 = a-i. We
i a o

define our measure of imbalance as

(D (2.3)

l+c
2 X2/ 2

where' c = .X n. We note that 0 <_ (D) < 1 and the division of X by n.

causes the measure to be invariant to any replication of the design as requir-

ed. Furthermore, (D) - 1 if and only if the ni's are equal. We also note

that O(D) is Identical to the measure v(D) given by Ahrens and Pincus (1981).

2.2 The Two-Way Classification Model

Consider the model

Yijk + a + + + + WB) i + E ijk' (2.4)

(i = 1,2,...,a; j - 1,2,...,b; k = 1,2,...,nij), where p is a fixed unknown

parameter; ai and 8j can be either fixed or randcon. In this case the design D

is D = (n lln 1 2, ...,nab } The n 's are considered to have the multinomial

distribution and each n has the binomial distribution B(n , i), where
ij

n.= ,jnij and f1 is the probability of belonging to the (i,j) th cell.

"" Hence, E(ni) = ij n The corresponding loglinear model is

log mij = W + CE. + . + (cL) . (2.5)
* ij J 1

where in this case

b 13
i'j

-i Z log m -

b :j (2.6)

B=-=lgm -;
] a 0 ij

:>*"-:<-§: T2; . *jsz-..:.i:::; 2 ~.:~ .*

Z % - ' r - ' " .. 4, .' ' ..
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(c)." = log a o ; +

We note that models (2.4) and (2.5) are of the same form, except for the error

term. The a 's, B.'s and (3a) 's satisfy
".. 3 ij

i = 
g " -- Z(J-). = ((T-hi = 0.

i .3 i

Let mij denote the maximum likelihood estimate of mi (i = 1,2,...,a; j =

1,2,...,b). Under the hypothesis Ho :1% = Ti i. for all i and j (this is called

the hypothesis of independence), where 11. = .. and T i = Ti the maximum2.." 31 i iij'

likelihood estimates of ni and Ti are ni /n and n../n.., respectively, where

n. -E.n.. and n = E.n... Hence, mi n n /n . This is the case
S 313 "3 13 i j

of proportional subclass frequencies. The corresponding test statistic is

22
X = m (n ) /m..,

ij ij

which under H has an asymptotic chi-squared distribution with e = (a-i)(b-i)
0

2 2
degrees of freedom. If c = X /n.., then

O(D) " 2 (2.7)e] 1+c2

is a measure of departure from proportionality of the subclass frequencies

with (D) attaining the value one when these frequencies are proportional. In

- the latter case, model (2.5) takes the additive form

log m. = U + a. + 3. (2.8)

Under the hypothesis of complete balance, namely, H :7.. = /(ab) for all
0 ij

i and j, mij = n /(ab), and the corresponding statistic,

2 n. 2 L n.. /(ab)]2

X = /b(2.9),'. ". i~j n. / (ab)

is asymptotically distributed as a chi-squared variate with e - 1 degrees

of freedom. A measure of departure from complete balance is then given by

@0..

%'.........................................
.............................-.. . .

. . . . .. . . . . . . . . . . . . . . . . . . ..- '
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(D) =+ 2 (2.10)

2 2
where c = /n. In this case model (2.8) is reduced to just

log mi =

2.3 The Three-Way Classification Model

Suppose we consider the model

yijk 1 + ,+ + Y k + (aB) i. + ()Y)jk + (SY) ijk + EijkU (2°11)

,(i 12,...,a; j = 1,2,...,b; k- 1,2,...,c; - 1,2 ,...,nk) and

.. ... i k ... ... . ail ai

Yk can be either fixed or random. The design D consists of the cell frequencies,

nl11' '112' nabc. Following the approach used in the earlier two models,

if mijk E(niik), then log mijk can be expressed in terms of the loglinear model

log mlk + a +  + + (1'k 3- a) + (Y)k+ F) (a y)iJk (2.12)ij ii ik 'k+i

where

-- = = Y . = .= Z (( )__ )ijk = 0
i j k i j k

From (2.12) several reduced models may be considered. These models are given

in Table 1. The ioodness-of-fit of these models can be checked by using

Pearson's approximate chi-squared statistic
2 2/i

"-z n2 _ (M (2.13)

i,,k n ij k ijk ijk

where m ik is the maximum likelihood estimate of mijk' or by the likelihood

ratio statistic

2

S2 Z nG klog(n M ) (2.14)
i j k kij k ijk,% . i,j, k

2 2
(see Agresti 1984, p. 48). Both X and G are asyptotically distributed as

chi-squared variates with the same degrees of freedom. The m estimates forij k

the models in Table I are giv en in the same table along with the corresponding
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G2h

X and G statistics and associated degrees of freedom. The G stt tic has

the desirable feature of being monotone increasing as terms are deleted from

2 2 2 2 <2 (e ~et
the full model in (2.12), that is, 0 - G I <_ G 2 < G <G <G (see Agresti

1 - 2 - 3 - 4 - 5

1984, p. 57). The G 2 statistic can, therefore, be used to compare two nested

models (that is, one model is obtained from the other by deleting one or more

*- terms) that give adequate fits to the cell frequencies. Thus, with the help of

2
the 0 statistic it is possible to identify one or mote models in Table I that

provide adequate fits. For such models departures of cell frequenci.es from

their expected values can be measured by means of the function c (D) in (2,10)
22

where c is given by the corresponding value of X2 in Table I divided by n....

Model V in Table 1 corresponds to the case of complete balance, whereas

Model IV is associated with the case of proportional subclass frequencies.

Model III corresponds to a case of conditional proportional subclass frequencies

involving values of i, k for a fixed j, and values of j and k for a fixed i. In

Model II we have a case of conditional proportional subclass frequencies involv-

ing only values of i and k for a fixed j. Model I is the full loglinear model.

2.4 The Two-Fold Nested Classification Model

Let us now consider the model

Yijk =  + .E + " + E jk (2.15)

(i = 1,2,...,a; j = i,2,...,bi; k = 1,2,...,nij), Li denotes the nesting effect

and Bi. denotes the nested effect. The design D consists of the values of b

b ... , b in addition to the n.. values. In the complete balance case b.=b
2a 12 1

* for all i and n..=n for all i and j. A condition weaker than complete balance
12

is last-stage uniformity which requires that n..=n for all i and j. If. how-

*. ever, ni =ni., for j j' and i = 1,2,...,a, then the design is partially

balanced. It is known that when all the effects in (2.15) are random, last-stage

I7

. - .
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uniformity is a sufficient condition for the sums of squares, in the conventional

analysis of variance table, to be independently distributed as scaled chi-

squared variates (see Tietjen 1974, p. 575). Under partial balance, however,

the sums of squares for the a. and B.. effects are independent, but do not

have the scaled chi-squared distribution (see Cummings 1972), It is, therefore,

of interest to measure departures from complete balance, last-stage uniformity,

and partial balance.

The loglinear model corresponding to model (2.15) can be obtained as fol-

lows: let m.. denote the expected frequency E(n..). Then, m n..i = nf.. 1 .

1 Jij ij *. 1 3it

thwhere 11. denotes the probability of belonging to the i level of the nesting

th
* factor, njji denotes the conditional probability of belonging to a j level of

th
the nested factor given the i level of the nesting factor. Hence, log m.. can

1J

be represented by the loglinear model

log i.. + a. + B.. (2.16)

where

b.a a I
log n + Z bilog fi + Z E log

l in i=l j=l ji

b b.
1 bI a a i

.'- a = og ogi + i j~lb log i -~ b--i1~- i log 1 + E lo-n I b log I . E E log njl
i bj j ~• i=l -- b i=1 j=l i

1 1.

3, - lg 7 i j 1- 1

In the partial balance case, L = /b. for all i and j, hence, the maxi-

* iii 1b.

mum likelihood estimate of m i is mij n /b where n. = n i (i = 1,2 .,a),

since in this case . = n. /n . A measure of partial balance is then given by

I 1

-(D) = 2 (2.17)
l+c

:'".......................................
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wher e

c 2 X2/
S.-- C = In

and

2  (n -n l/b)2
X = E (n ij /b (2.18)

i,j ni. /b

2
Under partial balance X has asymptotically the chi-squared distribution with

b.-a degrees of freedom, where b. Z a b . This follows from the fact that

in the general case, the number of linearly independent ij Is is b.-l whereas

under partial balance this number is just a-l. We note that this case can be

represented by the loglinear model
log mi . 4 + CE (2.19)

ij i

Under last-stage uniformity, Iij = 1/b. for all i and j. The loglinear

model in this case has the form

log m..=u . (2.20)

The maximum likelihood estimate of m is given by n. n /b.. Hence, a

measure of departure from last-stage uniformity is given by (2.17), where

2 2
C X /n

and

X(2  . n" (2.21)
i,j n

which has the asymptotic chi-squared distribution with b -1 degrees of freedom.

Unlike the former two cases, departure from complete balance can be attrn-

buted to variation in the values of b1 , b 2 , ... , b a or to variation in the n

values. We thus need to measure imbalance with regard to the b.'s and also

with regard to the n£.'s. We shall consider that the b.'s form a multinomial

distribution independently of the multinomial distribution of the n. 's, with b.
l1.



being distributed as a binomial B(b.,) Hence, d i = E(b i) = b. (i = 1,2,

... ,a). A measure of imbalance concerning the bi's .s, therefore, given by

(D)= (2.22)

1+c 
1

* where

c 2= X2 /b.
1 /1

and

2 a (b 2

S1  ,(2.23)

where b b /a. This statistic has the asymptotic chi-squared distribution

with a-i degrees of freedom when T= 1/a (i - 1,2,...,a). On the other hand,

a measure of imbalance concerning the n i 's is

€2(D) - 1 2(.4=-*,(2.24)

i+c 2

where
;4": C2 ; x2/n.

2 2

and
- 2

(n..-n. )
X-2  =. (2.25)

i~j n..

2The statistic X is the same as the one used in last-stage uniformity. Since
2

the multinomial distribution of the b 's is independent of the multinomial dis-
2 2 2

tribution of the n . 's, X is statistically independent of X2 hence X + x
1 '2, 1 2

is asymptotically distributed as a chi-squared variate with b .+a-2 degrees of

freedom. Now, to measure departure from complete balance we use the measure

O(D) = -- (2.26)
1+c 2

'

where

"A'~

h.'
4

.
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2 c + c2 (2.27)

i 2

2.5 The Three-Fold Nested Classification Model

In this section we consider the model

" ijk. = M + " + B + + (2.28)i 'i ij k + ijVk

(i= 1,2, ... a; j - 1,2,...,bi; k 1,2,...,c £ = 1,2,... ,nk). The val-

ues of bi , cii, and n k make up the design D. Here different types of balance

can be considered; each is a stronger type of balance than the one preceding

*i) Last-stage partial balance, that is, partial balance with respect to the

n.jk values. There are two kinds of such partial balance; in the first

kind ni. k depends on i and j only, and In the second kind n ik depends

on i only.

ii) Last-stage uniformity when the niJ s are equal for all values of i,j,

and k.

iii) Last-stage uniformity and next-to-last-stage partial balance, that is,

when c depends on i only.

iv) Last-stage uniformity as well as next-to-last-stage uniformity, that

is, when the c.'s are equal for all values of i and j.

v) Complete balance. This occurs when equality of frequencies occurs with-

in all the subclasses.

Each type can be characterized by one or more loglinear models and a cor-

responding measure of imbalance can be obtained accordingly. For example, for

Type (iii), if the n ij k  are considered to have a multinomial distribution

with being distributed as a binomial B(n ), where n = n:_ . ij k . " ij k)  ... , i j k

ij ,k

?.,~

% % &1 - - -e- * . ..
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then mijk = E(n n /c under last-stage uniformity. Furthermore, if

the c. 's have a multinomial distribution, independently of the n jk's, with
'~13

c.. distributed as B(c..,Ti.), where c. = c.., then d = E(ci) C .ri/b
2.3 1.3 . 1 ij 13i

(i = 1,2,... ,a), since under partial balance with respect to the cij'S,

rij T "T jii = /bi. Thus, the associated loglinear models for mijk and d j

are

log mijk =

log dij 2 +a i

A measure of imbalance for Type (iii) balance is, therefore, given by

*(D) 1
l+c

where

'2 2 2
c c 1 + c 2

and where

n c 2
2 1 (n i-n . /c )

cl = -.n n. , (2.29)
. ijk "'/c'

2 1 (c..-ci. /bi)
2

2 1 E /b (2.30)

since in this case the maximum likelihood estimate of d is d = c t /bij ii ,".i

i2 2
-c. Cc. Ic.)lb -- c.-/b.. We note that n 1 and c 2 are distribute id

dependently as asymptotic chi-squared variates with c -1 and b -1 degrees of

freedan, respectively.

2.6 A Model With A Mixture Of Cross-Classified And Nested Effects

Consider a model involving three factors, A, B, and C, with A and C cross-

ed and B is nested within A. This model is written as

y = U + ai + B + Y + (c±-) + (BY) + (23)
iji ij k ik ij k ijk. ("3

116 ,--..- , • --... , .. .-; .- .... -.-.. -.- .,.... -.. -:- .. .. : .- .. . ... .. .. .. -
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(i 1,2, a; j = b 2,. k = i,2,... ,c; Z = 1 ) Let jk de-

note the probability of belonging to level i of A, level j of B nested within

i, and level k of C. As before, the n 's are considered to have a multino-

mial distribution with mijk 
f E(nijk) =n..-' iik

For this model we can have four types of balance:

i) Proportional subclass frequencies involving the AB subclasses and the

lrvels of factor C, that is, IIijk - Ti jiirk"

N ii) Partial balan:e with respect to the nijk values, that is, nijk Ti /(b ic).

iii) Last-stage uniformity, that is, IIijk " 1/(b c) for all i, j, and k.

* iv) Complete balance, that is, T I_ = 1/a and ni - 1/(bc), where - is the
ij k

.'- '. .th
1 th binomial probability associated with the multinomial distribution

of the bi's.

Each of the above four types can be represented by a loglinear model.

These models are given in Table 2. Furthermore, for each of these four types

a measure of imbalance is obtained by using formula (2.3). The value of c in

this formula and the degrees of freedom for the corresponding asymptotic chi-

squared statistics are also given in Table 2.

3. Numerical Examples

i) Cummings and Gaylor (1974) used several designs to illustrate the comb-n-

ed effects of dependence and nonchi-squaredness of the analysis of variance

mean squares on the size of Satterthwaite's approximate F-test for variance

component testing in a two-fold nested model. We shall consider three of

these designs which are described in Table 3 and are also represented graphi-

cally in Figure 1.

For each of the three designs we measure departures from partial balance

AV
. -
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and last-stage uniformity by using formula (2.17) with X
2 being given by (2.18)

for partial balance and by (2.25) for last-stage uniformity. We also measure

departure frou complete balance by applying formulas (2.26) and (2.27). The

results are given in Table 4.

7. " Table 3

Designs For a Two-Fold Nested Model

i

1 2 3 4

b. 1 1 4 4

Design 1
fnj 1 4 1,1,1,1 4,4,4,4

b. 2 2 2 2
. o.

Design 2
U 1,5 1,5 1,5 1,5

b 1 1 2 2 4

Design 3
n 1 1,4 1,8 1,2,3,4

Table 4

Values of * (D) For The Three Designs In Table 3

Design Partial Balance Last-Stage Uniformity Complete Balance

1 1 .735 .58

2 .69 .69 .69

3 .73 .61 .54

From Table 4 we note that other than partial balance for Design 1, none of the

designs has strong balance properties. Of all three designs, Design 3 is the

most unbalanced with respect to last-stage uniformity and complete balance.

%[

¢I' .' .., ,< ,'@. v.7T,, , , , % .-' , ',- . ..,"- -v ,-'.-.-." v"." v: " ,-:- -'-;,%
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Fig. 1.. Three Designs Far a Two-Fold Nested Model
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L' ii) Bliss (1967, p. 355) described a nested experiment involving three factors

r with an associated model of the form given by (2.28). In this experiment, a-l

and the design D consists of the following elements: bi=3 (i = 1,2,...,11);

C il2, ci2=2 , c D=l, I = 1,2.....1); nill= 2 , ni 1 2 = 2 , n 2 1 l-1, ni 2 2 =i, ni:31 =

(i = 1,2,... ,11). Graphically, for each value of i, the design D can be depict-

ed as in Figure 2.

The design D is partially balanced of the first kind (see Section 2.5). A

measure of departure from Type (ii) balance is given by

*(D) - 1 1

l+c2

*, 2
where c I is described in (2.29), hence (D) .89. The measure for Type (iii)

balance is given by

2 2 '
l+c +C2

1 2

2
where c2 is described in (2.30), hence (D) .83. As for Type (iv) balance,

the corresponding measure is

*(D) 22'
l 2+c +c3

1 3

where (.-~ )2

2 1"N'C 1 (C ij C..)

3 C.. i~j -

rC..

% where c. c./b., hence, p(D) = .83. We note that this is equal to the previous

measure value for Type (iii) since both c. and b. in formula (2.30) do not de-

pend on i, thus, c i. /b = c .. /b = c.. We also note that since the b 's are

equal, the value ¢(D) = .83 is also a measure of departure from complete balance,

which is Type (v) balance.
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Fig. 2. A Design For a Three-Fold Nested Model
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4. Concluding Remarks

We have introduced a procedure for measuring the degree of imbalance that

is associated with an unbalanced model. The procedure applies to cross classi-

fication models, nested classification models, and to models with a mixture of

cross-classified and nested effects. It can also be used to measure departures

from different types of balance, especially in nested models where imbalance

can affect various stages of the nested design. Several examples of unbalanced

models were studied. From these examples it is easy to see that this procedure

is general enough to apply to any unbalanced model.

With the help of this procedure it is now possible to describe in a quan-

* titative manner different kinds of imbalance, such as extreme imbalance,

moderate. imbalance, and near balance. This can serve as an indicator of the

-suitability of the approx'ate methods that are adapted from balanced-data-based

procedures and used to analyze an unbalanced model, particularly, when the

appropriate measure value is near unity. It is to be cautioned, however, that

low values of that measure do not necessarily mean that such approximate

methods are inadequate. Cummings and Gaylor (1974), for example, noted that

for some extremely unbalanced design, namely, Design 3 in Table 3, their approx-

,imate F-test performed very well. They attributed this behavior to counter-

balancing effects which appear to reduce, rather than compound, the effect of

imbalance on the standard analysis of variance.

Ref erences

Agresti, A., 1984: Analysis of Ordinal Categorical Data. Wiley, New York.

Ahrens, H. and R. Pincus, 1981: On two measures of unbalancedness in a one-way
model and their relation to efficiency. Biom. J. 23, 227-235.

Bliss, C.I., 1967: Statistics in Biology, Volume 1 McGraw-Hill New York.Vl 1. M - Ne York.



-21-

Cum;mings, W.B., 1972: Variance component testing in unbalanced netted designs.
North Carolina State University Institute of Statistics Mimeo Series No.
843.

Cummings, W.B. and D.W. Gaylor, 1974: Variance component testing in unbalanced
nested designs. J. Amer. Statist. Assoc. 69, 765-771.

Hess, J.L., 1979: Sensitivity of MINQUE with respect to a priori weights.
Biometrics 35, 645-649.

Tietjen, G.L., 1974: Exact and approximate tests for unbalanced random effects
designs. Biometrics 30, 573-581.

Author's address:

Prof. Andre' I. Khuri
Department of Statistics
Nuclear Sciences Center

* The University of Florida

Gainesville, Florida 12611
U.S.A.

'A

'-4

6,

-4



I.

I:;

-A

4

4

I

4

' 'a :.-. -.


