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The theory of isostasy has a well-documented history of more than a hundred

years. Its fundamentals are even considerably older and can be traced back RO

[P A YR

to Archimedes. From geodetic evidences some kind of isostatic equilibrium had

.I to be postulated. Although in some limited areas the Pratt/Hayford system
seemed to prevail, the Airy/Heiskanen system is now generally believed to
model the complex reality better.

l The geodetic interest in isostasy was considerably fueled both by the access
: to high speed computers and the release of a worldwide digital terrain model.
: Harmonic coefficients of the topographic-isostatic potential have been =
. calculated by several colleagues up to degree and order 36, based on 5° x 5° :
mean topographic information, both in linear approximation (Khan, 1973) and in c
the non-linear mode (Lachapelle, 1975). At that time much higher resolutions ]
could not be obtained because of missing data, but in particular because of
excessive computer time requirements. With the design of the fast Fourier
algorithm on the sphere by Colombo (1981) and the public release of his
programs, high resolution models became suddenly feasible and have been
computed complete up to degree 180 by Rapp (1982a) based on the worldwide
digital topographic model of 64800 1* x 1°* mean elevations provided by DMAAC
in 1979 and using the Airy/Heiskanen model in linear approximation. Rapp
claimed that correlation studies betweea his geopotential solution of 1981 and
the topographic~isostatic potential suggest a considerably deeper level of
compensation of about 50 km rather than the usually used value of 30 km.
Rapp’s linear approximation has been extended recently, taking into account
also second and third order terms, by Rummel (private communication). For a -
compensation depth of 50 km the agreement between the topography-isostasy ::\ W
and the geopotential spectrum was very good in the frequency range between \
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degree 50 and 150; however, rather poor results have been obtained for the
range between degree 20 and 50 and, what is more aatonishing, also in the

high frequency range above 150.

In 1983 an "exact" solution has been produced by former colleagues at the
Technical University in Graz using the esame DMAAC data set, but
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unfortunately a less exact computer program which yielded, softly speaking,
not utterly reliable results. Since this data set is often identified with my
name for unidentified reasons, I feel obliged to clarify: it is not my
product.

Tscherning (1984) compared existing solutions, found that the above
referenced data set must be in doubt, criticized Rapp’s 1982 solution because
of the too large and therefore, hard to sell depth of compensation, and
suggested the use of much smaller compensation depths in the range between
15 and 35 km which he found "optimal” in terms of maximally reducing the
power of the observed geopotential.

The question of the meat between the sandwich triggered my intereat and was
a challenge to investigate that problem from acratch. The goal of this study
was to estimate the parameter(s) of the most likely compensation model which
is in best possible agreement with the observed geopotential and also
geophysically acceptable, and the calculation of the harmonic coefficienta of
the topographic~isostatic potential complete up to degree and order 180, based
on that model.

Now you may continue with Chapter 6, the other part of the sandwich, and if
you are turned on, you may even find some meat between.

..'- ‘_‘-' .'_‘.'_ \'.'. '_ ‘2 % '.‘. -_‘."'.'. ., .
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2. HARMONIC ANALYSIS OF THE TOPOGRAPHIC-ISOSTATIC POTENTIAL

The topographic-isostatic potential of Airy/Heiskanen type T;; is defined as
the potential of all mass disturbances relative to an ideal crustal layer of
uniform density p, and thickness D, superimposed upon underlying material of
equally uniform density, p,. Denoting the mass disturbance by 6p, the
potential Tyy; is well-known to be given by

1@ = 6 [[[ 1 (P.a) 6p(@) dv(@) (2-1)
v
with G . Newton’s gravitational constant,
£(P,Q) ... space distance between P and Q,
dv ... volume element.

Typ; is certainly harmonic outside the earth’s surface and Ty;'s spherical
harmonic series is certainly convergent outside a asphere completely enclosing

the earth. Outside that sphere we may use the convergent series
representation of 27!,

r
7 (P,Q) = 2 Fn'i? P, (cos ¥pq) (2-2)
n=o P
with | P modulus of the radius vector,
Ypq oo spherical distance between P and Q,
Py o Legendre polynomial of degree n

({Heiskanen & Moritz, 1967 (HM), p. 33). Decomposing P, in terms of

Pa(cos ¥pa) = 77 2; Rna(P) Roa(Q) (2-3)

with the fully normalized spherical harmonics ﬁ,.,.

n cos mAp form«<O
Roa(P) = /2" Omo(one1) BB b (con 6p) [ (2-4)
R / (nim)! "% ’ sinmiAp form>0

(8, T Kronecker symbol, P,, ... Legendre function, 8, A ... polar distance,
longitude.), the topographic-isostatic potential is represented by the harmonic

-----
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series

Tyy(P) = G"Z_;orp‘("‘“) 2n-]0:1 §.=-..§""(P) j”cp(o)rn(o)'ﬁ,,_(o)dv(o)

with dv(Q) = r?(Q) dr(Q) de(Q)
and the spherical surface element de.

Let us now investigate the volume integral, confining ourselves to the usual
spherical approximation. Then its contribution due to the topographical

masses outside the geoid and ocean water inside the geoid is

R+H
[[ [eo@r*2(0)dar(@)Rom(@rdeca), (2-6a)
g r=R

and its contribution due to ‘he isostatically compensating masses is

R—D
[[ [ se@r*1(Q)dr(@)R,a(@)de (o), (2-6b)
g r=R-D+kH

with R . . . mean earth radius,
D ... depth of compensation level,
H ... topographical height (+),
ocean bottom height (-),
k . . . compensation "factor”,

(The compensation "factor" k, which is in the non-planar case actually a
function slightly dependent on H, will be discussed later.) In (2-6a) the

function

ép = po = constant for topographic masses,

6p = pg — po = constant for ocean masses,

in (2-6b)

6p = po — p1 = constant for compensating masses

is used (p, = density of ocean water). The integration of (2-6a,b) with
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respect to r is straightforward and yields B
Rnt3 H(Q n+3 — . :___‘_..t
B ”mo) [[ O ]R,,.,(o)dum) (2-6a) r
g ]
and :
Rnts pynts KH(Q n+s - . )
B h-2 sp(@|[ 1+ —uR Q@™ |Rym(@da(@), (2-6b)
o
respectively.

The compensation "factor" k

This concept of isostasy is based on the principle of mass balance: surplus +
deficit = 0. In the simple Airy/Heiskanen isostatic model this enables us to
derive the geometiry of the compensation surface (roots/antiroots) such that an
exact 1 : 1 relation is postulated between a topographic height H and the
corresponding compensation height kH. This mass balance rrinciple, applied to
rock topography and its compensation, yields

pons[h . 1] + (po - P1) (R - n)’[l -+ s ] = 0, (2-7)

and after elementary manipulations

n—‘d—l'i ) [1 - %]-, " [[1 *%]’ - 1]] -1 ... rock;  (2-Ta)

W] -

for the ocean and ita compensation we obtain a similar expression,

_k_ﬂ__z{1-[1~%]_’k,[1—%[[1+g]’—]r~1 ... ocean  (2-Tb)
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It is instructive to invesatigate the planar cage. For this purpose we evaluate

kH in a power series with reapect to H,

-3 e ke ofd)

and if we let the radius R become infinite, we obtain

k = -kocy (2-8)

with cy = 1 for H> 0 and ¢y = 1 - 5 for H < 0.

‘ It is obvioua that the compensation factor k is constant in the planar model
and independent of both H and D. For standard densities p, = 2.67, p, = 3.27,

Pw = 1.03 gcm™?, we obtain the familiar values of -4.45 and -2.73 for rock and

ocean compensation, respectively (HM p.136). In the spherical model the

compensation "factor" k is no longer a constant; it is a function which d

depends to a small extent on both the height H and the depth of the “

compensation level D according to (2-7a,b) with (2-8) as the leading term. In :,' ]

order to simplify, we introduce "normalized" heights H and H' according to »::
Ro=g S

(2-9) R

ur. _ kH ARIRAL
H: =§~p

and the earth’s masas M by

Me iR (2-10)

with the mean earth density py = 5.517 gcem™3. With this notation, the
topographic-isostatic potential in its harmonic series representation is given
by

T(P) = S Z___ &) : Tom Fnm (P) (2-11) 7

with the harmonic (Fourier) coefficients of the topographic-isostatic potential

.........................................
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(2-128)

[[ eulln + @ 17** - 1]R0m(@) do(@), (2-12b)
g

= Pn (2p+1) (n+3) an

[1_ %Jn+3k;l i_; II[[l + H (Q)]r+? - l]ﬁ,...(O) de(Q)
ag

(2-12¢)

(Here "t" stands for topography and "c¢" for its compensation.)
summation in (2-11) starts with n

Note that the

1 due to the mass equality condition;
the reader is invited to check that T§) + T{S) is indeed equal to zero (hint:

use (2-7a,b)).
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3. APPROXIMATIONS FOR THE HARMONIC COEFFICIENTS OF THE
TOPOGRAPHIC-ISOSTATIC POTENTIAL

3.1 Linear Approximation

Given a worldwide digital terrain model (DTM) representing the geometry of
the solid earth surface, H(Q), standard numerical integration techniques have
been used in the past (Khan, 1973; Lachapelle, 1975). Due to the excessive
computation requirements, only low degree coefficients (up to degree and
order 36) using a 5° x 5° DTM, could be determined. A couple of years ago,
Colombo developed a fast Fourier algorithm for the sphere which can be
efficiently applied if the integrand is independent of any degree n.
Unfortunately, this is not the case with (2-12b,c).  However, due to the
smallness of H and H' compared to 1, a linear approximation seemed to be
justified, yielding integrands

1 = . =
(1 + @)+ - 1] =8,
n +3 [ (3-1)

;_1__5 [(1 + H')n*s - 1] =g,

which are obviously independent of the degree n. Therefore, in the linear
approximation, the FFT algorithm applied to H and H', respectively, can be and
has been used (Rapp, 1982), providing the Fourier coefficients

i ] cui@Rpa(@as(),
‘ (3-2)

=[] B @Raa(@do(@),
g
in a very efficient way.

In this linear approximation case, the product cyH is usually called "equivalent
rock topography” which, loosely speaking, trades in rock for water. The
products poscyl and pok3'H' can consequently be interpretated as surface
layer densities at zero level and at the level of compensation. Therefore, in
the linear approximation, the topographic-isostatic potential is represented in
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terms of a double layer potential.

The linear approximation of (2-12b) yields

_ 3 i}
(e) . i—:- Ty 3 ] oMa(@Rna(@de(a); (3-3a)
ag

the linear term of (2-7b) is

B : -(1 - Y Tkocyll
leading to
7(e) o _ 3P0 _1_(;_D)"L i -
Ty -3+ l’f CyE(Q)Rpa(Q)da(Q). (3-3b)

Adding i'.ﬁ:.) and 'I'Sﬁ) according to (2~12a) the harmonic series of the
topographic~isostatic potential’s linear approximation is given by

e s 28 ) () e - (- 3]

' Z.——_ Rom(P) }‘—w H CyH(Q)Rnn(Q)do(Q) (3-4)
n=-n ¢

Exactly the same expression can be obtained if rock/ocean and compensation
masses are considered as single layers at zero level and at the level of
compensation, respectively.

Bquation (3-4) is well suited to diecuss the two extreme cases of D = 0 and
D=R. It is obvious that for D = 0 the topographic-isostatic potential in its
linear approximation vanishes identically. For the second case, D = R, the
topographic-isostatic potential reduces to the topographic potential with
vanishing zero degree harmonic (due {0 the mass balance). Neither of these
two cases is realistic, as we know from geodetic and geophysical evidence. If
we consider "remsonable” values of 0 < D <( R, we may (at least for low
degrees) approximate

(-3 s1-02; (3-5)

. A A A S S 2l i g 4 4
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we observe that the main terms in (3-4) cancel each other and obtain the
approximation

Trp(P) 2 %; R)" =2 L_n Rna(P) 3= ﬂ cyH(Q)Rpn(Q)da(Q)

(3-6)
which can be further simplified with
n =1 —
2n +1 2 (3-7)
and the harmonic representation of the equivalent rock topography,
) =) ) Fn(P) = ” cu(Q)Roa(Q)da (@), (3-8)
n ]
g
we find at zero level
Tri(P) = 2nGDpocyH(P) (3-9)

(cf. also HM, p. 149). This approximative formula is a very useful rule of
thumb which provides a fairly good estimate for a standard Airy/Heiskanen
isostatic model. From this simple expression we conclude that the
topographic-isostatic  potential is approximately linearly dependent on the
depth of compensation and also linearly on the height of the equivalent rock
topography.

3.2 Higher order approximations

Rapp’s (1982) argument that the efficient FPT algorithm is only applicable in
the linear approximation, which we have shown ia the double layer formulation,

is no longer valid if we use the binomial expansion of the left-hand side of
(3-1),

nt+3

(1 + Bym+s - 1 =; "33 = (3-10)

(analogous for ﬁ'). yielding exact expressions (within spherical approximation)
of the harmonic coefficients of the rock/ocean topography and its isostatic

10
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compensation: Qﬁ.,
23 n o+ 3 ;*.::‘l

7l - 2o m;[ 5 L I e @Fpm(@doc) (3-11a) ,’%ﬁ
o2 + 3 o

T2 = 2o s (- Y i Ej__:[ i L JI cub @Rom(@rdo(0) RS
(3-11b) o,

There is no reason why FFT could not be applied to any power of H and fl',
respectively. (Note that (3-11la,b) are exact.) But do we gain anything by ”
employing FFT, considering the fact that 2(n + 3) FPFPT’s have to be performed ‘_‘
(one FFT for each power of H and ﬁ'). compared to twice a standard numerical "~.' -
integration? In the case of our earth we know that H, H'<< 1; therefore, :_'Ei:jif
(3-10) converges very quickly and we can safely terminate the binomial
expansion at a very low degree without committing a significant error (an E-’—'
upper limit of power j = § ias perfectly sufficient). Consequently, only a small "f
number of FFT’s must be calculated; we typically save a tremendous amount of :Zf:'.?-
computer time without sacrificing accuracy, and can arbitrarily improve the
result by adding another power of H and H' if we so desire. :r*—‘-l
i

3.3 The second order_ effect f:::'::::
By the second order effect we understand the contribution of the second r:;;
power of H and H' to the topographic-isostatic potential. Because of the .».\.::
rapid convergence of (3-10), this second order effect represents with very :::"-‘:_;
good approximation the difference between the actual topographic-isostatic %
potential and its double layer approximation. Is this difference sufficiently o
small to be safely neglected?
N

Actually, there are two kinds of second order effecta: one is due to the I\"‘\"‘;

second power of H and H' in the binomial expansion (3-10), the other is due
to the second power of H in the compensation function k = k(H) of (2-7a,b).

The second order effect due to rock/ocean topography is straightforward:
using the binomial expansion (3-10) in (2-12b) and observing the binomial

i 11

r,

r.
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coefficient L
1 [n + 3] _(nt2
(m+ 3l 2 2
we obtain
=(t) _ 30 n+21 22 (o\E ~
STim’ = Zow (2041) 4m ﬂc""’(°)“m(°)d‘(°)- (3-12a)

For the compensation part we develop (2-7a,b) in a series up to the second

power of H,

(1 - Y8 = ko + B) - kacgB21 - ] + 0@,

and using again the binomial expansion (3-10), we get

221~ B < (B« 1)acam(1- 7 + 0@ L.

and obtain as second order contribution of the isostatic compensation jj'-;'.f-'_:

i - 22 ol (- 3L ] ceff et - B - tffmc@ac.

(3-12b)
: R
Synthesizing TS}.) and a'I',(,g) according to (2-11), we obtain the second order »
effect of the topographic-isostatic potential, Eﬁ
- n N
n - = .
6T51(P) = ?‘;; %) Z . TouRn(P) (3-13) -
.
' with the harmonic coefficients
: :
[- -
- 6T,m 1= 8TSE) + &7(8)
b
’ _ 3po 1 1 =] (B DI"[n D)~ B A ¢
- =22 o 7 o (B (- BB et - B - ] e wE
- A
. (3-14) N
Using the approximations (3-5) and (3-7), this odd-looking expression can be o
et
I*l -
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o
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considerably simplified if we admit an error on the order of 20%, which can be
accepted since the second order effect is small compared to the first order

effect, yielding

_ .3 s
6Tom = 72 ko 7y :I; [[ewfi(@)] Ram(@)do(@) . (3-14)"

With (3-13) we then obtain at zero level

3 — & _ -
sTy(P) ¢ s -:—: ko Z_‘ Z_ Ron(P) g [[[cnB(@)] Fra(@)da(@)
n= w=—n v

and1 replacing M by (2-10), the approximated second order effect on the
topographic-isostatic potential is simply

6Ty1(P) & nGpoko [cyB(P)] (3-15)

We observe that under these approximations the second order effect is
independent of the depth of compensation, is proportional to the square of the
ey.ivalent rock topography’s height, and is therefore alwaya positive.

If we use the standard values for p,, p:, and p,, we obtain a rule of thu_.b
formula for the second order effect on the topographic-isostatic geoidai

height, using the Bruns formula,
6"11[-] £ 0.2 Hf:-] (3-16)

with H*: = c,H, the equivalent rock topography. Note the formal similarity to
the Molodensky effect (HM, p. 328)!

Combining firat and second order effects we obtain

N ¥
Tr1(P) & 2vaDpoBs(1 + ko o) (3-17)
from (3-17) we conclude that the second order effect, relative to the total
"..‘. 13
N
4

VA . ; A . -t SR, £ I T RGN ‘.}P-'E !{‘!P‘.._,




increagses with decreasging depth of compensation and vice veraa.

For areas with extreme topography (both positive and negative), the second
order effect may amount to about 50X of the first order effect and certainly

potential,
cannot be neglected.
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4., POWER SPECTRUM CONSIDERATIONS

The power spectrum (degree variances) of the topographic-isostatic potential
in linear approximation is implied by the harmonic coefficients ig;) and ig;)
of (3-3a,b),

T RN C IOV [ (4-1)

n=-n

R AP

Denoting the harmonic coefficients of the normalized equivalent rock
topography by Hi, ,
i B, = = ” o KU 7 _(@)de(@), (4-2)
g
R the degree variances of the topographic-isostatic potential 'i‘,’, are related to
i the degree variances of the equivalent rock topography E.!,f’.

n
% .-) R (4-3)

by
. 3p 1 n]?
, T::{;:nh+1[1—[1—%]]]ﬁ:= (4-4)

(cf. Lambeck, 1979, p. 592).

- -

Considering 'f‘: as a function of the compensation depth D, it is obvious that
the power spectrum of the topographic-isostatic potential is gaining power
with increasing compensation depth and attains a maximum for D = R such that
in this extreme case '1-',’, reduces to the degree variance of the potential of the
topography for n > 0 ('f‘,‘, = 0 in any case). For moderately large depths and
low degrees n we may use the approximation (3-5) and obtain as ratio between

- v ¥ e
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topographic-igsostatic degree variances, corresponding to the compensation
depths D, and D,,

Ta0y) . Dy (4-5) 2
Ta(D;) D, o
.o
N
. LY
i From geodetic satellite and surface data we know that the actual anomalous g ~

gravitational potential of the earth has much lesa power than {’f‘,’,(D = R)}, b sl
implying that the rock/ocean topography is isostatically compensated to a
) large extent with a relatively emall D. A global standard value of 30 km is S
' generally accepted and frequently used for the purpose of topographic- "-'.-‘-',:':'

isostatic reduction of surface data.

If the global figure for the compensation depth is D, we should expect a good
agreement between the power spectrum of the earth’s anomalous gravitational
potential \-I,’, and the power spectrum 'i",‘,(D), provided that the standard
Airy/Heiskanen model describes reality sufficiently well.

‘ This idea was pursued by Rapp (1982a), using the simple double layer model '
(linear approximation) and the DTM data set consisting of 64800 1* x 1° mean ﬁw
elevation and ocean depth data, provided by DMAAC. His results clearly -
demonstrate that the standard Airy/Heiskanen compensation model with a

l compensation depth of D = 30 km produces much too little power over the e 0
entire frequency range from n = 2 to 180 and is totally inadequate to explain .
the observad power spectirum of the anomalous gravitational potential. Later -
investigations by Rapp and Rummel (private communication), using in addition :'»:'.jf::‘_:'
the terms of second and third order in H, confirmed the earlier studies. .’“‘
Guided by the relation (4-4) or (4-5), considerably larger values for D were *-;
suggested by Rapp (1982a)., Obviously the best agreement between the two -

power specira was achieved for a compensation depth of D = 50 km, yielding a
good match between degree 50 and 150; poor results have been obtained for . 7
“ .Y

the range between 20 and 50 km, but what is particularly astonishing, also in ::::\:

the high frequency part between degree 150 and 180. Moreover, a ' ;E.._:i
compensation depth of 50 km is generally considered to be too large by a e

factor of almost 2 and is geophysically hard to justify. ,
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The South Pacific area has not only a strong appeal to financially sound
vacationers but also to hard working geodesists (don't be misled by this
coincidence!) because of extreme gravity field structures. Forsberg (1984)
studied the topographic-isostatic gecid in the Tonga Trench and Tahiti area
using the recently released 5’ x 5’ "SYNBAPS" ocean depth data set. (1
strongly recommend to study Forsberg’s report - it is a beautiful document!)
Hia resuits, which are also based on the standard Airy/Heiskanen compensation
model, also suggest much deeper compensation levels than 30 km. Forsberg
argues that at amaller depths of 30 km or so, conventional isostasy is led ad
absurdum by deep ocean trenches which would imply antiroots ending
considerably above the actual ocean bottom(!) - an argument in favor of larger
compensation depths. On the other hand, the observed average thickness of
the crust below the ocean bottom is only about 6-8 km - a fact which would
favor a compensation depth smaller than 30 km.

Isn’t there a simple way out of that isostatic dilemma?

4.1 Compensation Depth versus Smoothing

The recent studies of Rapp (1982a) and Forsberg (1984), but also an earlier
work by Moritz (1968) and Schwarz (1976) have triggered my interest in this
problem; but in particular it was the simple idea of Vening Meinesz (1939) that
the actual compensation takes place regionally rather than strictly locally,
which made me to numerically investigate the problem of isostasy. But before
we shall hit the target in Chapter 5, let’'s make a small sidestep to
collocation.

During the collocation "high noon” period in the mid-seventies, one of the
main issues was how to deal with block mean gravity anomalies within a
homogeneous and isotropic statistical model environment. Numerical integration
of the covariance function was prohibitive; therefore, an approximation had to
be employed: through formally repilacing the block averaging operator by a
homogeneous and isotropic moving average operator of constant weight, the
comfort of homogeneity and isotropy can be achieved. According to the
convolution theorem, the moving average convolution process in the space

17
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domain corresponds to a simple product between the eigenvalues of the moving
average operator and the Fourier coefficients of the function to be averaged
in the frequency domain. As far as collocation is concerned, this particular
function ia the kernel function (in least-squares collocation the covariance
function) which, smoothed and unsmoothed, has to be represented by a finite
and as simple as possible expression in order to render possible a fast
calculation of linear functionals. Unfortunately, the eigenvalues of the moving
average operator prevent such a closed expression and therefore, they have
to be approximated by another spectrum which behaves properly. Schwarz
(1976, p. 37 ff.) suggested replacing the moving average eigenvalues with the
eigenvalues of an upward continuation operator. Applying this trick means
that the statistical properties of mean values at zero level are replaced by the
statiatical properties of point values at a certain altitude which dependa on
the block size of the moving average operator. Numerical tests confirmed that
this approximation was admissible.

Have we lost our track? No, we haven’t! The same idea can be carried over to
got, at least partially, out of the isostatic dilemma: assuming that the Vening
Meinesz concept of regional isostatic compensation is correct, we may expect a
reasonably good solution in terms of a power spectrum agreement (between the
observed anomalous gravitational and the isostasy implied potential) by
formally replacing the regional isostatic concept of Vening Meinesz at
compensation depth D, by the strictly local isostatic concept of Airy/Heiskanen
at a larger depth D,, where (D, - D,) depends on the characteristics of the
Vening Meinesz amoothing.

After that verbal avalanche, it is time to be a little more specific: confining

ourselves to the linear approximation, the Airy/Heiskanen power spectrum is
given by (4-4) which we repeat here

oo 9]

T = 3_"3 1

" P 2n + 1
The regional Vening Meinesz concept is based on a smoothing of the
compensation ( = root/antiroot) surface. Since we don’t know any better, we
propose democratic smoothing represented by a homogeneous and isotropic

18
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operator B with eigenvalues 8,

B(P,0) = 10 (20 + DaPo(contre), (4-68)
1

i Ba = 2n[B(t)P,(t)dt (t := cos ), (4-6b)
: -1

with o = 1 to make the integral of the operator B over the unit sphere equal
to 1 which is required for mass balance.

The operator B will now be applied to the equivalent rock topography

represented by its harmonic coefficients ﬁﬁ,. at the compensation level only.

Note: the rock/ocean topography remains unchanged, only the compensating

' masses and therefore, the compensation root/antiroot surface is smoothed.

. This smoothing process ( which is a simple convolution in the space domain) is
represented by a multiplication of ﬁ,‘,. by the eigenvalue 8,,

i B*xH —— Bn - H:- (4-7)

Therefore, the Vening Meinesz power spectrum in its linear approximation is
given by

= 3 D, " 2
R L

' At this point we should briefly discuss two extreme cases of swmoothing:

a) fo=1 Y¥n=0,1, ..
In this case the smoothing operator B of equation (4-6a) degenerates into
:l the Dirac distribution and will reproduce the input; consequently there is
no smoothing involved. Therefore, this operator represents the standard
Airy/Heiskanen model.

| b) fo=1,8,=20 VYn=1,2 ..
In this case the smoothing operator B degenerates into the gilobal average

______
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operator with equal weight; the compensation masses form a homogeneous
layer which is equivalent to a point mass at the origin. Therefore, this
operator represents the extreme case of the Airy/Heiskanen model with
D; = R.

It is evident that the two power spectra T2 and ;,’. coincide if the condition

D,]" _ D,]"
[1—-R— B = |1 - (4-9)
is fulfilled for all n. Thia implies an Airy/Heiskanen compensation depth D,.
1

D, =R - (R-D,)s", , (4-10)

or, in terms of radius of compensation, Ry: = R - Dy,
1
Ry = RyST . (4-10)"'

It is obvious that R, is constant (independent of the degree n) if and only if
p" = b = const.,

which impliea
Bn = b" (4-11)

with b ¢ 1 because of the compressing properties of a smoothing operatior.
The smoothing operator B corresponding to (4-11) is obtained by an inverse
Fourier transform according to (4-6a)

B(P,Q) = %; (20 + 1)b"P, (cosvpq) (4-12a)

which is evidently the interior Poisson operator (EM, p. 35). With b = R,/R,
(equation (4~10)' and (4-11)) we finally obtain

R, (R} - R7)

B(P,Q) = —pis5 gy (4-13)

B L B S t ER N R
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with the spatial distance % defined by
- (n? 2 %
2(P,Q) = (R, + R; - 2R,R,cos¥pq) ",

We conclude: if the Vening Meinesz regional smoothing of the compensation
surface is of Poisson type at level R, with parameter R,, we can exactly
replace it by the standard Airy/Heiskanen model with compensation level R,.
Or vice versa, using a standard Airy/Heiskanen model at depth D, corresponds
exactly to the use of a Vening Meinesz model at depth D, with the Poisson
smoothing (4-13) and parameter D,.

Now we are already on much safer ground because we are able to justify
the formal use of an unusually large compensation depth. However, the
crucial question is still open: does the Poisson smoothing reflect physical
reality?
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5. AN OPTIMAL VENING MEINESZ [SOSTATIC MODEL

If we are talking about "optimal”, we have to choose a norm which defines
what "good" is. The choice of the norm is not so difficult if we are primarily
interested in the power spectrum of the topographic-isostatic potential. In
this case we consider a solution good if its deviation from the observed power
spectrum of the anomalous gravitational potential is small. Therefore, it is
quite natural to look after an operator, acting on the compensation, which
makes both spectra match as closely as posaible.

From our considerations in Chapter 4, we conclude that the minimum number
of parameters must be 2 if we are after a compensation smoothing operator:
one parameter that controls the level of compensation, the second one
controlling the smoothing. (Note that also the Poisson smoothing operator
{(4-13) has two parameters, R, and R,.)

5.1 Estimation of the parameters of the smoothing operator

In linear approximation, the Vening Meinesz topographic-isostatic power
spectrum i8 given by equation (4-8); the operator’s two parameters are D and
b, where D stands for depth of compensation and b is a smoothing parameter
(note that g, depends on b). As a matter of fact, the individual harmonic
coefficients of the topographic-isostatic potential are also controlled in the
same way,

o [}

Tom = Tam(D,b). (6-1)
Extending a suggestion of Tscherning (1984), we perform a least-squares
estimation of the model parameters such that the energy of the residual field

is minimized.

| 7-7] - uin. (5-2)

Since the low order harmonics of the anomalous gravitational potential are to a
large degree due to density disturbances in the upper mantle, and probably
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due to even deeper sources, it makes no sense (and would only disturb the
isostatic concept) to include the very long wavelength part in the energy

budget.

With a homogeneous and isotropic smoothing operator B having eigenvalues 8,,
the harmonic coefficients of the topngraphic-isostatic potential are given by

™ 3 Dy° -
Tom(D,b) = ﬁn = 1 t [1 - [1 -= p,.(b)]ng. . (5-3)

The decision of the model spectrum {8,(b)} can be based on correlation

considerationa between "l"f,(D.b) and V2, requiring that
Ta * Va . (5-4)

and ylelding empirical estimates

' - DY™" n v
r=f1-2 M- en+ytn 5-5
p [ R.] [ 3p°( l—l:] ( )

which depend on the choice of D. The figures 6.3a-d on page 31 show grapha
of this empirical frequency tranafer function g, for several compensation
depths D. As data the Rapp 81 geopotential model and the worldwide 1° x 1°
DTM model, supplied by DMAAC, have been used. All empirical frequency
transfer functions B,, at least for geophysically reasonable compensation

depths, strongly suggest a Gaussian model of type
Ba(b) = e d?n?, (5-6)

The solid curves represent the best fit of such a Gaussian model to the

empirical frequency transfer function.

Having chosen a model for g,(b), it is a simple matter of least-squares
adjustment with 2 parameters to solve for the "best" D and b. If we use
non-equal weights p, which depend on the degree like

- () B2 @
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with the model degree variances k, ,and error variances of the harmonic '}'
ccefficients of the anomalous potential modelled by :_?j'-:'.

i - : -

Op = [n = 1] » K ... constant, (5-8) o

i e
E: according to Jekeli (1979, pp. 13, 14), we can even interpret the least-squares ‘:.
| solution as a kind of least-squares collocation solution for the model R

'_’,-Z parameters D and b (cf. Moritz, 1980, pp. 160, 161). (Here the data consists of :: fj:,
. the vector 1 := (Vpal.)
Because of (5-7) and (5-8) the smignal and error covariance matrices C, and C, N

are diagonal, which implies that the energy

T &) 2 (2] L (e - 0 o i

b o

must be minimized with respect to D and b. With the Taylor linearization of

Tom
o o - °) ;‘r g
- (0) 1(0)7 + *Tnm(D,b) | (D - D()) no
: Tn.(D;b) Tn.(n ,b ) + ————-D (n_o(o) b—b(°)) \"1::::‘
[ :.::‘_.:
+ Toa(D,b) | - ble)) t'::

T (p=p(0),p=n(2)) (5-10) AN
- A
-»_ :" \'
- at an appropriate Taylor point (for example D = 30 km and b according to the "
~ solid line in Fig. 6.3b), we obtain the coefficients of the design matrix A. The F‘“
- elements of the two column vectors a, and a, consist of the partials of (6-10) h._..

i ‘ai'-...(n.b)

(n:o(°),u=b(°))] ﬁ

a, 3D

R

(6-11) 2

- e

. = [a'l‘,,.(l).b) S
2~ FTY

(o=n(°),b=u(°))] @
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the residual parameter vector X of e
X7 := [&D,6b]. (5-12) f;.:-'

L

The least-squares solution is provided by :'_.:-_
X = (ATC1A)"*ATEr (1 - 1€9)) (5-13) o

A

with =3
C:=Cy +Cp (5-14) =

N e

100) := {T,.0(°) (o)) - (5-15)

Finally we obtain the wanted parametera D and b of our best-fitting Vening
Meinesz isostatic model, r_'__
3 (-

p = p(°) + ¢p, R

b = b(°) + gb. o

For error considerations we have

Byux = (ATCtp) ~? (5-16)
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as parameter error covariance matrix (for reference see Moritz (1980, Part B).

5.2 Fine-tuning of parameter estimation “‘
When we derived the least-squares estimation of the isostatic parameters D -
and b, we made two simplifications: firstly, if our Taylor point is far away :::_‘_::
from reality, we must iterate the estimation process; secondly, in our ::

e

discussion of the estimation problem and in all our derivations we have P
generously and tacitly assumed that ‘?,.. of equation (5-3) is correct.

’
Y,

-.. -.’
o The first problem will not be dealt with here because it is simple and e
;'i, standard, provided the Taylor point is not too much off the truth. The '*,';
~ second problem is probably s. +htly more delicate, although a relatively simple

solution is poesible:

'
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Bquation (5-3) presupposes a linear relation between the topographic- isostatic
potential and the equivalent rock topography. But according to (2-11) and
(2-12a,b,c) we know that the relation is highly non-linear. Therefore, the
concept of parameter estimation has to be modified accordingly.

This modification is basically due to second and higher order effects which,
we know from our discussion in Chapter 3, are small because the topographic
height is so much smaller than the radius of the earth. Therefore, an
iteration process offers itself again.

Let B be, as before, the smoothing operator applied to the compensation
surface, represented by " , yielding the smoothed cowpensation surface
H =B xf'. Then H' should be used for the harmonic coefficients of the
compensation ;S:) of equation (3-11b). Note, however, that H (and not i) is
used for the harmonic coefficients of the topography T{t), because smoothing
is only applied to the compensating masses. The problem is that also higher
order powers of i’ enter into ﬂ:),

n+s

« 3 n p+3 s R
i -2 - 37 L5 ) 5 f e oone
- ¢ (5-17)

while ﬂ:) remains unchanged (equation (3-1la)). Since 2 is a convolution of
B and H', higher order powers of ﬁ correspond to convolutions in the frequency
domain. Therefore, the smoothing parsmeter b enters in a rather complicated
manner into the higher order terma of 'T‘S,‘,’,). But fortunately, these terms are
only small correction terms to the leading linear term (5-3); therefore, if we
solve for b, it will be sufficient to calculate the higher order terms based on
the Ilatest knowledge of b and to consider them formally as constants in the
subsequent leagt-squares estimation process. It is sufficient to iterate this
process a few times because of the extraordinarily rapid convergence. The

entire procedure can be summarized as follows:
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0) i=o0
harmonic analysis of low order powers of topography according to (3-1la);
correlation study (5-5) yields initial estimates D(°) and 5(°);

1) it =i+
smoothing of compensation surface (ﬁ'(') = BU')x fi') using p(i-1) and
g('_‘) ; o'
rt." 2) BHarmonic analysis of low order powers of smoothed compensation surface ‘
- H' (1) according to (5-17) yields a first order term T{)) which will be
considered as a function of D and b, and higher order (correction) terms
6"1",,. which will be considered as constants in the subsequent step; P
1
3) Adjustment (collocation) solution for D and b with Taylor point (D(171), |
b{+~1)) and linearization restricted to the linear term ‘.I"S,:) of step (2);

stop if | D(¥) - p(1—1) | ¢ €p and | b(*) - p(i-1) | < €y, else go to (1).

The result of this iteration process is both a best estimate for the depth
of compensation and for the parameter of the most likely compensation
smoothing, and a set of harmonic coefficients of the topographic-isostatic
potential corresponding to that Vening Meinesz regional isostatic compensation

model.
'
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6. NUMERICAL STUDIES, RESULTS, CONCLUSIONS

For the numerical investigations the worldwide digital terrain model of 64800
1° x 1° mean elevations and ocean bottom depths (but no information on ice
coverage), supplied by DMAAC in 1979, and, representing the earth’s gravity

field, the Rapp 1981 solution which is complete to degree and order 180, have . :
been used. Due to the time limitations of this study it was unfortunately not REVE
possible to merge the recently released SYNBAPS dataset, which consists of
5’ by 5’ mean ocean depths, with the available DTM. Since the output of a
system can hardly be better than its input, our results have to be considered
with these reservations in mind. S
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As we mentioned already at the beginning, the goal of this study was both the
parameter estimation of the most likely isostatic compensation model and the

determination of a set of topographic-isostatic coefficients complete up to L
degree and order 180, based on that compensation model. This task would be el
formidable without support of the powerful tool of fast Fourier transform on
the sphere. Therefore, the unlimited access to Colombo’s (1981) outstanding
FFT algorithms "HARMIN" for analysis and "SSYNTH" for synthesis was
particularly appreciated. The following is a comprehensive documentstion of

our numerical studies.

In all our investigations, the following parameters have been used:

density:

po = 2.67 gcm™® ... rock topography

1.027 gcm™® ... ocean water

Pew

pr = 3.27 gem™® ... crust

= 5.517 gem™® ... mean earth

»
x
[

o R = 6371 kn
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potential coefficient degree variance model: A
. 10-6)2 ::-".';:'::

ko = (A=32-]", A=4.1, B=1.8

n : ™5

(cf. Rapp, 1979, p. 10)

potential coefficient error model:

ot = [=F 1]'. K = 0.0581 - 10-¢

(cf. Jekeli, 1979, p. 13 ff.)

harmonic series complete up to degree:

n = 180
binomial expansion up to power:
J=5

In order to get an idea about the contribution of first and higher order terms
to the harmonic coefficients of the topographic-isostatic potential, we provide
in Fig. 6.1 a graph of the degree variances, separate for the linear and
second order term as well as the composite degree variances. Note that the
linear approximation pretends more power over the entire frequency range
than the exact topographic-isostatic model actually has. The contribution of
the third order term is aiready so small that it does not show up in the
plotting window. Therefore, we have confined our discussion of higher order
terms in Chapter 3 to the second order term only.

The dependence of the power spectrum on the choice of the compensation

depth D or, if Poisson compensation smoothing is employed, on the
corresponding smoothing parameter (cf. Section 4.1), is illustrated in Pig. 6.2
for depths D = 30, 50, 70, and 100 km. The gain of power with increasing
compensation depth (or more compensation smoothing) is obvious.

Frequency transfer functions between the Rapp 81 anomalous gravitational
power spectrum and the topographic-isostatic power spectrum in linear
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Space transfer functions (= smoothing operators), as implied by
various compensation depths D, depending on spherical distance.
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approximation are given in Fig. 6.3a-d for compensation depths D = 20, 30, 50,
and 70 km. The graphs strongly suggest a Gaussian model of the type (5-6).
The solid lines represent that best model fit.

By an inverse Fourier transform of the frequency tranafer function g, we o
obtain the corresponding space transfer function which is essentially the
compensation smoothing operator B,

bR = 1) (2 + DaRRLO). (6-1)

Using the best fitting Gaussian frequency transfer model, the smoothing
operator has been determined for the most important part of its support and
is presented in Fig. 6.4a-d normalized to B(0) = 1. The scale of the abscissa
is arc deg. of spherical distance. These operators demonstrate that the N
smoothing of the compensation surface, as implied by our knowledge of the L -
global gravitational field of the earth, is obviously most likely of Gaussian R
type rather than of moving average, box-shaped type or of Poisson type. The
radius of smoothing (theoretically 180 degrees, practically very much smaller)
decreases with increasing compensation depth. This should be expected
because an increase of compensation depth accounts already for a certain
degree of smoothing, although of Poisson type. For geophysically relevant
compensation depths the smoothing radius does practically not exceed 2
degrees.

For the least-squares estimation of the two model parameters, compensation
depth D and smoothing parameter b, the initial (Taylor) values

p(°) = 30 km, :

(6-1) o
b(°) = 0.0082, S
suggested by the correlation pattern, have been used. (The smoothing L 3
parameter b(°) = 0.0082 implies a "correlation lsngth" of the bell-shaped "
Gaussian frequency transfer function of about (degree) n = 100.) Graphs of -.
AN
both the frequency and the corresponding space domain transfer 3}
function(smoothing operator) for these initial values are presented in Figs. "
AL
6.3b md 604b| ::.:-::-'.
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R
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SPACE TRANSFER FUNCTION (= SMODOTHING OPERRTOR)
BRASED ON A | X 1 DEG. DTM (DMA-MODEL, 1879)
AND AIRY/VENING MEINESZ COMPENSATION MODEL WITH
GRUSSIAN SMOOBTHING, PRRAMETER 8 = 0.009!
DEPTH = 24 KM, ROCK DENSITY = 2.87 G/CMx»x3,
CRUST DENSITY = 3.27 G/CM»»3,

WATER DENSITY = 1.027 G/CMx»x3

CALCULATION METHOO: FFT + POWER SERIES
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Fig. 6.5 Optimal amoothing operator
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ROQT/ANTIROOT SMOBTHING OF GAUSS TYPE, b = 0.00SI,
DEPTH = 24 KM, ROCK OENSITY = 2.67 G/CMx«3,
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The compensation smoothing H' = B ¥ H' was paturally performed in the ,-'.:'_:j
frequency domein. The higher powers of H' could have been obtained by spectral i
convolution in the frequency domain. We found it a lot easier to ata
retransform the spectrum i,'.. into the space domain using Colombo’s Fourier ;‘v‘
synthesis progrem SSYNTH and to calculate all powers of H' there. The ’:5
binomial expansgion has been terminated at power j = 5. After two iterations of g'.-_:
the least-squares parameter estimation process no significant change of D and ) v ..
b could be observed. The finally adopted compensation model parameters, ;::.j:.
which yield a best possible agreement between gravity field information and a e
topography-isostasy implied model gravity field on a global scale, were _‘L‘_
e

D =24 ke ' e

b = 0.0091 (6-2) o

S

with a standard deviation of less than 2% (!) each. Note that the very low

frequency part of n < 15 has been excluded from the parameter estimation -.:-\‘..r
process in order to avoid a strong bias of the solution coming from that part :
of the power spectrum which has the least to do with isostasy. The "best” .~—A~
smoothing operator B(y) with b = 0.0091, normalized to B(0) = 1, is presented ":‘!

in Pig. 6.5 as a function of the spherical distance ¥. Finally we present in
Fig. 6.6 both the power spectrum of the Rapp 81 geopotential solution and the
power spectrum implied by the "best" Airy/Heiskanen-Vening Meinesgz
topographic-isostatic model. Because of the above-mentioned exclusion of the
very low frequency part a match in that range can never be expected (and if

L
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B
e
-
-

.
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e

o

observed, is purely artificial)}.) The very long wavelengths, corresponding to L
that very low frequency part, are 0 a great extent due to denaity l—::f;
disturbances in the earth’s mantle and are only superimposed by a relative \{*""‘l
little topographic-isostatic effect. Therefore, we should primarily focus on the ‘x
higher and highest frequencies. And indeed, in this range the agreement of \':\
the two spectira is not only remarkable - it is almost unbelievable. At least W
from degree 36 on the match is very good and, as we belisve, a considerable NN

.

3’
v,
.

s
VLY,

improvement compared with earlisr solutions (compare Rapp, 1982).

.
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The compensation smoothing due to Vening Meinesz yields not only a better
agreement with observed reality, it also makes Forsberg’s argument of
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antiroots with tops partly above the ocean botltom, a phenomenon observed
with the conventional Airy/Heiskanen model, obsolete because the compensation
smoothing largely eliminatea those singularities. An argument in favor of a
smaller compensation depth is the observed thickness of the crust below the
oceans which is of the order of 6-8 km; our model is in good agreement also
with this figure. Another argument which speaks in favor of a Vening
Meinesz model and againat the simple Airy/Heiskanen model is the fact that the
atrength of the earth’s crust is able to support a certain amount of
topographical load without local yielding, while in the 1:1 model of
Airy/Heiskanen free mobility between vertical masas columns is presupposed - a
highly unlikely case. It remains an interesting exercise of applied elasticity
theory to figure out whether the Gaussian compeneation smoothing with the
parameter b = 0.0091, estimated from global geodetic evidence only, is
compatible with the known elastic parameters of the crust. Geophysiciats are
algo invited to comment on our geodetic estimate of the depth of compensation.
In any case, we should carefully keep in mind that our model is a global one
with only two parameters - it can hardly be simpler. Therefore, it must be
considered as a model describing the average behavior of the crust on a
global scale. Local deviations from this global model, even large ones, are
possible and are well-known from geophysical/geological evidence to exist.
Therefore, this model can never be adequate to describe or even explain
density patternes which are due to plate tectonics, like slabs sliding down into
the mantle at plate margina or the like. Needless to say, this was not the
gonl of our investigation.

Geodesists have been and are still using the concept of isostasy for filtering
purposes only, without bothering very much about its geophysical significance.
They are happy with any isostatic model as long as the power of their
measured gravity field signal ia sufficiently diminished; as long as the
topographic-isotatically reduced gravity field signal is sufficiently smooth,
geodegiats can live with that model. The Vening Meinesz model proposed here
is probably not capable of smoothing gravity field signals significantly better
than conventional models which have been auccessfully used in the past,
although numerical studies in geodetically pathological areas along trenches
and continental margins suggest more optimism. The model presented here
should be understood as a bridge between geodesy and geophysics, which is
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more atable and sound than the ones that have been used by geodesists in
the past. It is a model which makes us cheat leas and therefore, enables us
to live scientifically more comfortably.

The harmonic coefficients of the topographic-~isostatic potential (called TIC 85),
which are based on the model parameters (6-2) and derived from the DMAAC
DTM dataset, have been synthesized using Colombo’s Fourier algorithm SSYNTH,
yielding both topographic-isostatic geoidal heights and gravity anomalies on a
global 1* x 1° grid.

The minimum and maximum geoidal height implied by TIC 85 are -10 m and
+30 m with a variance of 17 m?* which, compared to the observed value of
about 900 m?, clearly demonstrates the strong power of non-isostatic effects
due to deep density sources which ia also reflected by the pronounced
disagreement between the TIC 85 and the Rapp 81 solution in the very low
frequency range. It is instructive to compare the minimum and maximum TIC
85 geoidal heights with those derived from the rule of thumb formula (which
does not presuppose compensation smoothing) of equation (3-17): with the
minimum and maximum DTM terrain heights of -7800 m and +5800 m equation
(3-17) ylelds estimates of ~12 m and +25 m which differ by only 204 from what
we have obtained. (It is also interesting to note that the compensation
smoothing reduces the root/antiroot maxima by about 30% .} The histogram of
TIC 85 geocidal heights which is presented in Fig. 6.7 documents basically the
distribution of rock (+) and ocean (-) masses.

As far as TIC 85 implied gravity anomalies are concerned, we have minima and
maxima of -225 mgal and 214 mgal with a variance of 516 mgal®> which comes
aiready much cioser to the observed variance of 1°* x 1° mean gravity
anomalies of about 900 mgal?. This had to be expected because gravity
responds much more to local density disturbances than the potential. The
histogram of TIC 85 gravity anomalies in Fig. 6.8 has a pronounced maximum at
gero and is almost symmetrically bell-shaped.

From these simple but instructive statistical data we can already anticipate the
main features of the topognphic-hbstauc geoid: it mirrora topography to a
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great extent and does hardly resemble the observed geoid on a global scale
because of the missing long wavelength information. However, locally the TIC '

geoid comes very close to the observed trend-reduced geoid. Geoid maps, ..;..
produced by GSPP (Sunkel, 1980) for various geodetically challenging "hot -
spots”" on our earth are provided as illustration material. The reader is :
invited to make a comparison with the SEASAT -~ geoid derived by Rapp
(1982b) and with the topographic-isostatic geoid, based on Airy/Heiskanen ) .f_;l
models of various depths and using the much more detailed and accurate "~

SYNBAPS bathymetric dataset (5’ ¥ 5’ compared with the 1° x 1° DMAAC model),
calculated by Forsberg (1984) for some pleasant resort areas on our globe.

The TIC 85 model got input from a worldwide DTM with a maximum resolution
of about 200 km wavelength and very poor performance in some identified
areas like South Africa, for example. Because our operators are well-known to
be gigo’s (garbage in-garbage out), we strongly suggest to improve the global
DTM both with respect to resolution and accuracy in order to make a
computation of an even better model up to degree and order 360 possible.
Topographic-isostatic models of that high resolution are not only important for ’
geophysical research, they are also extremely useful for the topographic- £adaz
isostatic reduction of geodetic data: using a high resolution model like TIC 85
or better as a global reference, the entire topographic- isostatic reduction
problem can practically be reduced to the processing of small residuals in
planar approximation. And for that purpose we have again the very powerful
FFT algorithm at our disposal which has been so successfully applied by
Sideria (1984) for the evaluation of DTM-related integrals, or alternatively, the
recently published TC-programas written by Forsberg(1984).

We consider this report (which claims neither to be complete nor to be
completely debugged, despite the heavy use of a scientific word processing
system) as a small step towards a better understanding of our earth’s shell,
which A. Wegener once compared to a defendant who declines to answer. The
earth scientist, confronted with that defendant, is the judge who has to find
the truth from the circumstantial evidences.
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