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1. Introduction

There is no exact test for testing the significance of oﬁ , the nesting
effect's variance component in an unbalanced random two-fold nested classifi-
cation model. There are, however, approximate tests which utilize ratios of
mean squares (see Cummings and Caylor 1974, Tietjen 1974, and Tietjen and
Moore 1968). 1In general, the exact distributions associated with these tests
are complicated which makes it difficult to adequately dctermine the tests'
true levels of significance and power values. A comparison of four

2

approximate tests concerning o, was recently made by Tan and Cheng (1984).

In this paper we present an exact F-test for testing the null hypothesis

.2
Ho.oa

= 0 versus Ha:°§ # 0. (1.1)
Aside from the usual assumptions concerning the random etfects in the model,
the only other condition for the validity of the test 1s that N > 2b - 1,
where N is the total number of observations and b is the total number of
levels of the nested factor. The proposed test is compared against the
approximate tests described in Tan and Cheng (1984) with vespect to power.

The results of this comparison indicate that the former test is quite

efficient.

2. The development of the exact test

Consider the unbalanced two-fold nested model

(2.1)

i=1,2,...,a; 3 = 1,2,...,b.; k = 1’2""'nii' where p Is an unknown constant

parameter, a, and Bii are random effects associated with the nesting factor

i

and the nested factor, respectively, and cijk is a random error. We assume

that a;, Bij' and fijk are independently distributed as N(O,ug), N(O,og), and

N(O,og), respectively. We also assume that

- . ’ "a T e o W N = L
) R N R ‘:‘a: \,q;:*s{$ ”“i*ﬁf"'
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SN N>2 -1, (2.2)
5 a
N, = = E . -
> where N i?j nij’ b 15 b1 The need for inequality (2.2) will be seen
et later. We note that the latter assumption is quite reasonable and can, for
;‘:’_‘
s example, be satisfied 1f ;. > 2 for all 1,j.
" -
- ni-
- v = J i = e § =
e Let y;; kgl yijk/nij (i =1,2,...,a; j = 1,2,...,b;). From (2.1) we .
\
- have 1
\" - - -
::a' Y14 Mt oa + Bij + eij’ (2.3)
e 2 2 b € 7l b
() = " . = cee . = . .
i 1,2....,a; i 1,2, by, where eij WZ1 cijk/niJ Model (2.3) can be
1-§ rewritten in the matrix form
. Ty — -—
:? y=uwl +pAa+1B+e, (2.4)
. where i and E are vectors consisting of the §ij's and the Eij’s, respectively,
o
N = - = cee -
0 a (al,az,...,aa) , B (811,812, ,Baba) , lb is a vector of ones of
S
3 dimension b, I is the identity matrix of order bxb, and A =
Py Diag[lb ’lb ""’lb ) is a block-diagonal matrix of vectors of ones. From
(- 172
3 a -
Q:f (2.4) the variance-covariance matrix of y is
.:. - Y a2 2 2 : ;
Var y = éloa + Ibﬂﬁ 4 506, 7.5)
o where
g a
o A, = AAT = @D J (2-6)
‘L'.: ~1 ~1~1 1=} ;~hj’ o
€ - Diaala”} o7l -1 .
5 K Dlag\nll, Migseeest o s (2.7)
e a
_;i where I, is a matrix of ones of order byxb, (4 = 1,2,...,a), and @ denotes
2 i
’;; - the direct sum. The residual sum of squares for the model in (2.1) is
g = -y )2, , 2 has - ‘
o T i?j,k(yijk yij It is known that T/oe has the chi-squared distribation
oo -
[~ with N - b degrecs of freedom independently of y. We can write T as
‘; T-y RY, (2.8)
L
o
.
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2
e At A A A A At et e

------------

S I I St S ) . .

e LN - ] - § - N
A ) et Rt

»

2



where y is the vector of N observations and R is the matrix

= - )

R=1y- O, (3 g (2.9)
ij

We note that R is symmetric and idempotent of rank N - b, and by assumption,

N>2b -1, that is, N - b > b - 1. We can thus express R as
R=CAC, (2.10)

where { is an orthogonal matrix and A is a diagonal matrix whose first N - b
diagonal elements are equal to unity and the remaining b elements are equal to

zero. Furthermore, we can partition ¢ and A as

A = piag(y, ,1,,0), (2.11)
1 2
¢ = [g,:¢,C,1, (2.12)
where
vl =b -1,
(2.13)
v2 =N-2b+1,
and QI’Q7'§3 are of orders Nxvy, Nxvz, and Nxb, respectively. Note that
Q;gi =1, 1-=1,2,3,
(2.14)
f‘« . f
iy = Q- T 7
Formula (2.10) can then be rewritten as
R = 9191 + 9292' (2.15)

which results in a partitioning of the residual sum of squares T into Tl and

T? , where

T, = y* C,C7 ¥ (2.16)

?<

-~

T, =y 9295 Y- (2.17)

Cunsider now the matrix él in (2.6). There exists an orthogonal

matrix P of order bxb such that P 51 g' = ﬁl’ where

A - Ding(hl,h

gseessb 0), (2.18)
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where Q is a zero matrix of order (b-a)x(b-a). This is because El has the

and 0 of multiplicity b-a. The first a rows of P

eigenvalues bl’b2""’ba’

are orthonormal eigenvectors of E that correspond to bl’bZ"‘°’ba' Let Bl be

1

the axb matrix consisting of these rows, that is,

P, = Diag(l’ //’ ’by,eninl //‘1 (2.19)

2

Let P, be the (b-a)xb matrix consisting of the remaining b-a rows of P. Then

[EI:EE]’. If z =P y, then from (2.5) we have

= A o? + 24 pK ¥ol. 2.2
Var z Ao, lboB PK ko (2.20)

Theorem 2.1. There exists an orthogonal matrix Q of order bxb such that the
first row of Q P is lg//g.

= (/b,,’d /b )//‘

Proof. Define the unit vector e; = [21: 07] where ¢ LTTEER

1

and Q‘ is a zero vector of dimension b-a. Then (lb - SISI)EI = 0. The matrix

rd
- e.e
~l~

1 is idempotent of rank b-l. Let Ql denote a matrix of order bx(b--1)

Ih ~ &

and rank b-) whose columns are obtained via a Gram—-Schmidt orthonormalization

of the columns of I - £,

b Let Q = [glzgl]’, then Q is an orthogonal matrix

and the first row of G P, namely E;E’ is lg//ﬁ.

From Theorem 2.1 we conclude that if u = QIE, where z = P E.and Ql s the

matrix described in the proof of the theorem, then

E(g) = uQ; p Lb = 0, (2.21)
since @ P is orthogonal, and
= Q7A Q 0% + 1 24+ Qv K P7Q, o2
Varw = % ¢ A% T R R (2.22)

since QIQI = Ib—l' We note that Q7 AlQl is of rank a-1. To show this we

partition QI as [O (12] where QII is (b-1)xa and Q;? is (b-1)x(b-a). Then

QM2 = 2 Prarlbyb

) o _ .
2,...,ba Qll (sec 2.18). Hence, rank (Qlﬂ‘gl)
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,ﬁx rank (Qll) = rank (911911) rank (Ia SIEI) a-1, where g 1s the unit

“
$} vector described in the proof of Theorem 2.1. The one before last equality
' follows because the columns of the matrix [21:911]‘ are orthonormal. It
*:t. follows that there exists an orthogonal matrix S of order (b-1)x(b-1) such
-('2'_; that
B - = 1 1 - . )
) Q;4,Q, = s piaglD,0) 57, (2.23)
-.'J.‘
-:,'
j::-:: where D is an (a-1)x(a-1) diagonal matrix of nonzero eigenvalues of QIAIQI and
;Ff Q is a zero matrix of order (b-a)x(b-a).
Ay Consider the vector w = $°u. From (2.21), (2.22), and (2.23) it can be
O ,

-:;x' seen that  has a zero mean and a variance-covariance matrix given by
o Vo2 4 2, 142 .
.-ut Var w Dlag(p,Q o lb—los Loe, (2.24)
:ft"‘: where L = §'QI§ K f'gl§. Define the vector { as
= :

Q= + - 2 CT .
g=w+ (A1 - L% Cry, (2.25)

where )‘max is the largest eigenvalue of the symmetric matrix L and 91 is the
::_\‘j- Nx(b-1) matrix in (2.12). Note that the matrix Aqulb—l ~ L is positive
b semidefinite, hence (Amaxlh—l_ L)]A‘ is well defined with eigenvalues equal to
- the square roots of the eigenvalues of )‘maxlb—l - L. Let { be partitioned
- as @ = [g;: QES]‘, where }3.0 and ’88 are of dimensions a-l and b-a, respectively.
‘AV -
<l Theoren 2.2.
>
::_j (l) f'.}\za = };‘\B = Q-
:;‘ (ii) Qa and QB are statistically independent and normally distributed with

L]
.
SRy the following variance-covariance matrices:
e
S - D2 2 2
N / =D .
._-:::- Var ch 'I\ou + (08 * Am.—axct) la-l’ (2.26)
">
1 rar £, = (o2 + 2 . .
~."" Var ~B (08 )‘mnxof) 'Ihﬁ;a (2.27)
) {:.
e
M
f:.’- -9
. -
Qs N
o,

PR



Y T Ty ‘x—-v!mﬂﬂm“'!"ﬂ|ﬂ!'!lu!!l‘|U|U|! Ltalcan tais i cal sol el i o it Sl Sl el e Sl A S

i

o

‘

u
L8

> Proof.

- (1) This is true because E(w) = §7E(w) = 0 by (2.21), and E(¢[y) = 0.

: (ii) Since w = §~ QI P i, then Q is a linear function of the vector of

3 observations, hence it is normally distributed. We now claim that g and

{ QIX in (2.25) are statistically independent. To show this we write i in the (
t . = = - - - . -

, form y = G y where G Diagfln /nh,ln /nlz,...,ln /nah 1. Since y is

11 12 ab a

¥ a

Ry statistically independent of the residual sum of squares, T, in (2.8), then

b G IR-=0, where £ = Var y (see Searle 1971, p. 59). Using the representation
N (2.15) for R we obtain

- G1I (9191 + 9292) = 0. (2.28)
i If we multiply (2.28) on the right by Ql and note (2.14) we get

3 GLg -0 (2.29)
g From (2.79) it follows that Cov(w , X’Ql) = Cov(g’gf Py, X’Q‘) -

y $70; 2 Covl(yoy'¢)) = §7Q;P Cov(G y , ¥°C) = §°QR £ X & = 0. Mence, the

{_ variance—-covariance matrix of £ in (2.25) is of the form

.

- ) 1. - 1

'™ = + —_ 2 ).. ) . 9 3 » -
' Var 2 Var g & axlb—l L) gl ~ gl(xmax£b~l 1)2 (2.30)
- We claim that C7 X ¢, = oz I,_;- This follows from the fact that T/og has the
E chi-squared distribution, hence R L R L = Ug R Y (see 2.8 and ‘Theorem 2 in

r Searle 1971, p. 57), which can also be written as R L R u? R. By unoting

? (2.19) we get

r-. - - e . .. 72 . —_—
L. (2191 + 9292) E (gl&l + 9242) ”p (&191 k &)&2)' (2.31)
q

" If we now multiply (2.31) on the left hy QI and on the vight by 91 and note

: (2.14) we obtain the desired result.

From (2.24) and (2.30) we conclude that

iR

Var © = Diag(p,0) o + 1 2 41, 062 4 - 1) d?.
o ar x Diag D’~ oa "b-loB ~ ¢ (Amnxlh~l 1) Ue
<
.
-()_
q

g ‘l. .l" .\.l .‘0. A 3 }. .‘ . - Mo s BN ' ¥ e ey .- '1'- e vy ATV RN a At 'L."::n:-'):;‘i.‘):



Calhl® st aar A ate = i aragiat aas 1@ meaiad dhat it glero Saladad ek el diait Jnak bl Sed it fedk—tiad el ol odh Sl gl 2 ol B ettt |
o PR ot o o s i ™ - - . i e A

-

. = Diz 1 o2 2 4 2
s Dx1g(9,9, oa + (oB Xmax Ue) 1

. 2.32
~b-1 (2.32)

Since Var @ is a diagonal matrix, @ and QB must be statistically independent.

2

Furthermore, from (2.32) it can be concluded that these random vectors have

ol

the variance structure described in (2.26) and (2.27), respectively.

.

’

4 *r‘v.‘v 4,8, A

4

BN
il A al

From Theorem 2.2 we can then state that -

\ - 2 “lo L2
. Qa (Pca + 6 la—l) ga Xa-1

- ~ 2
B Bg/8 ~ Xy

= o2 2 vl = - -~ 2
where § = o5 + A o6Z. Under Hy:ol = 0, QGQQ/6 X3

< 8 max’e hence F = MS /MSg has

l’

R the central F-distribution with a—-1 and b-a degrees of freedom, where MS

- = Qaga/(a-l) and MS, = QBQB/(b—a). It is easy to verify that

?_ a-1

(MS.) = & + [.E, d./(a- 2
bl E(MS,) [, 4;/(a-1)]c?
» E(MSg) = §, (2.33)
3 where di is the ith diagonal element of D(i=1,2,...,a~1). Hence, large valuer
‘{;- of the test statistic F are significant.
i
¥
o 3. A comparison of the exact test against the approximate tests in Tan and
1Dy Cheng (1984)
._‘g'
"s-_‘-
.;ﬁ Tan and Cheng (1984) compared the powers of four approximate tests of the
i
Sj hypothesis Hy described in (1.1). The corresponding test statistics were
L}} dennted by Fl, F2' Fg, aund FA' respectively, and their power values were
"tf derived approximately by using Laguerre polynomial expansions of the true null
" i and non-null distributions of Fi(i=1,2,3,4). The power values were obtained
i‘.n
:{j for different values of o4 (=-5,1,3), several conbinations of the nuisance
s parameters og and og(=l,2,3), and for two unbalanced nested designs which we
8.
jI: reproduce in Table 1.
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In Tables 2 and 3 we give a listing of the power values associated with
F,,F,,Fy,and F, as reported in Tan and Cheng (1984, Table 4, pp. 197-198) for
a level of significance a = .10.

At the a-level of significance, the power function for the exact test

proposed in Section 2 is given by

P(MS /NS g > Fa,a_l,b_alﬂa), (3.1)

vhere "y is the alternative hypothesis in (1.1), and F denotes the

a,a-1,b-a
upper a% point of the F-distribution with a-1 and b-a degrces of freedom.
Under H_, MS, and NSB are independently distributed and (b~a)MSB/6 is

distributed as xg_a, but (a—I)MSalﬁ no longer has the chi-squared distribu-

tion. In this case, since Qa is normally distributed with a zero mean and a

variance—-covariance matrix Var € = Do + &I , 7@ = (a-1)MS is
a-1 ~a ~ a ~a-1’> ~a ~a a
distributed as i§1 xiwi, where the Wi's are independent chi-squared variates

with one degree of freedom, and Ai is the ith eigenvalue of Var Qa’ that 1s,
A, = diog + & with d; being the ith diagonal element of D(i=1,2,...,a-1) (see

Johnson and Kotz 1970, p. 151). Thus, under Hq the exact rtest sgtatistic F can

be writtea as

a—1
- 2 v
o= __ga 5a o 1§1 Xi wi (3.2)
G(a*l)MSB/G B G(a-l)MSB/G ) -

Approxipate values ot the power function in (3.1) can be conveniently obtained
by using Hirotsu's (1979, pp. 578-579) approximation of the upper probability

values of a statistic of the form

H o= ", (3.3)

whe.e x is normally distributed with a zerc mean and a variance-covariance
matrix ¥, A is a nonnegative matrix, 62/a? s distributed as (l/fz)xg

independently of x"A x, and ¢ and f are given by

-8--
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(3.4)

where Ki(f‘é x) denotes the ith

~

cumulant of Z’ﬁ x. For convenience we

reproduce the formula fer P(H » h) as given in Hirotsu (1979, formula 2.4):

P(H > h) = P(Ff f2 > h) +

- i)
1 1 2 2
[a7{3¢f+2)(£+4)B(5 £, 5 £.)}](1+Eh/f.) x
2 2 2 2
%f 2(f+f2)(f+4) (fff2+2)(f+f2)
i 2 4 - R S T & .
(Eh/£))7 [(£42)/(£+4) + GO B TNV s (3.5
where Fg £, denotes the F-distribution with f and f2 degrees of freedom,
B(ml’m7) denotes the beta function, and
S S B - 2¢ -
b= 5 [k (278 1) k(A X /EGA ] - (3.6)

The approximation described in (3.5) was developed via a Laguerrce polynomial
expansion of the true distribution of the statistic 5’5 z/(Zc) and was
reported in Hirotsu (1979) to be quite satisfactory.

From (3.1) and (3.2), the power function for the exact test statistic F

can be written as

N CANIIN TEEY ) G
MSB/S cf a,a-1,b-al a ’ .

where ¢ and f are given as in {3.4), but with ugna substituted for x7A x, that
2 PANEARIBC

is,
a-1 ' a-1
tr{(var @ )2} L (d.0?2 4+ 8)? §.E (4.8 + 12
ol ASW S JE Y- I St St (3.8)
¢ tr(Var QG) T a-) Toa-l :
2 -
E(d o2+ 08) IENCHIENY
- a~1 , A
v { far 0 )12 5 2 4 §)12 - 12
.- f - L _‘f_}f‘,)} - {_ijfi_(ii_i,a_q_.4_"‘._),} - .{,1':2,‘1(*({_1',0_%,],)" : (3.9
.‘ tr{'(\'ar i )?} T oa-1 ’ a-1 ’ -9)

L (d.0+1)7
i< 1
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3 where

Cn

o

A

N = = = 3.10

o 4
LS 0 8 o< + A o ( ) i
LSRN B max €

(see Hirotsu 1979, p. 579). We note that the statistic which appears in (3.7)

-
‘l

e
PR A

is of the same form as the statistic H in (3.3). This can be seen by taking

-
3

[
R

-
~

= = AZ 2 . . . . 2 )
X = Qa' A Ia—l' and o¢/o MSB/6, which is distributed as (l/fz)xf2 with f,

b-a degrees of freedom. It follows that the power value in (3.7) can be

approximately computed by applying formula (3.5) and remembering that

- 22 /(cf)
=~y
MSB/
(a-1)F
_ 6(a-1) B a,a-1,b-a .
h = ~F «,a-1,b-a - ol (using formulas 3.8 and 3.9),
LI, (e, 041)
f2 = b-a,

c and f are as given in (3.8) and (3.9), and A is as described in (3.6),

which can also be written as

[tr(var ga)l[tr{(Var ga)3}]
[tc{(var QQ)YT]Y» -

a-1 a-1 ,
_ [1Z,¢e 000 [ I, (aj0+1)°] 1
- a—l T - Y (30‘1)
212
[, (d;8+1) ]

l,!l.'l
)
2

PR R ]
)
¥ .

Ay

s 5

where 0 is given in (3.10) (see Hirotsu 1979, p. 579). It is interesting to

®
A

O note that in (3.5) the power of the exact test depends on og,og, and oé
\lA* - s K3 . »
AN through 0. A complete determination of this power requires finding the values
N
a’ - s 3 Iy 3
D . of A , d.,dy,ee.,d , which depend on the design used, and a specification
o max 1°72 a-1
4
f: of the level of significance and the ratios og/og, oé/oz of the variance
N
%ﬁﬂ components.
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s
NN
'.‘ -
\‘&:? . . . .
*i” Power values associated with the exact test statistic F were computed at
-
> . s s s
5i1 the a = .10 level of significance. The upper probability values of the F-
e
- distribution (with f and f2 degrees of freedom) in (3.5) were obtained by
iﬁ using the IMSL (International Mathematical and Statistical Libraries) MDFDRE
AShN
L Subroutine which allows fractional degrees of freedom. The same designs and
l;? combinations of variance components as the ones used by Tan and Cheng (1984)
e
ﬂi{j were considered here. The results are given in Tables 2 and 3 for designs 1
[ ‘h: &
RN and 2, respectively. From these tables it can be scen rhat the exact test is

more efficient than the approximate tests based on the statistics Fy, Fy, Fq,

and Ffoe Furthermore, the exact test has the advantage that its critical value

2 2
and c<.

g A" %

This property is not shared by the approximate tests which may require good

does not depend on the values of the unknown nuisance parameters ¢

v f.*z.

4
z r_‘! _‘:‘

4y a

estimates of oé and oi in order for their results to be veliable (see Tan and

1, 4, Gy iy
PR R e
L} r M

Cheng 1984, p. 194).

4. Concluding remarks

A The vector @ defined in (2.25) is the key to the construction of the

~

exact test proposed in Section 2. It is a liunear combination of the random

O vectors g and Qiz, where @ is a linear transform of the vector i of response
u'.‘- .

fE . i

SR means, and le makes up a portion of the residual sum of squarves (see formula
Y

and

2. - 2.16). The power study in Section 3 clearly indicates that the exact test can
o5

ANEN be at least as efficient as the other approximate tests.

N A procedure similar to the one described in this paper was effectively

9¢
": used to obtain exact tests concerning the main effects' variance components in
. an unbalanced random two-way model with interaction. Details of that

procedure are given in Khuri (1985).
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Table 1

Two unbalanced nested designs for the model in (2.1)
Design 1 Design 2
a=5 a=4
b, =2 b,=1, b,=2
b,=by=b,=bs=1 by=3, b,=4
nyp=R) =4 npp=4
N ™R3y, =05 =2 np1=R9p=3

N3)=N3,=N33=2

0417042743747

Table 2

Power values of the exact and approximate tests for Design 1
at the a = ,10 level of significance.

2 _ 2 2 _

Oy = .5 oy = 1.0 Og = 3.0
og og Fy Fy F, Exact F F, F, Exact Fq F, F, FExact
1.0 1.0].099 .097 .098 .118 .099 .097 .094 .134 .102 113 .101 .184
1.0 2.0 ).099 .099 .097 .l1ll14 .098 .101 .095 .126 098 .129 .097 .167
1.0 3.0 .099 .101 .096 .111 .097 .105 .094 .12} .097 .136 .096 .156
2.0 1.0} .097 153 .099 .111 097 154 .099 .12] .098 .164 .10 .156
2.0 2.0 (.10 .098 .099 .109 .099 .097 .098 .118 .10 .098 .097 .148
2.0 3.0 .102 .066 .098 .108 .101 .064 .097 .116 .101 .06! .095 .142
3.0 1.0 .10 .099 .099 .108 .10 .099 .099 .lle6 .101 .098 .10 .142
3.0 2.0} .10 .099 .099 .107 .10 .098 .099 .1l14 .10 .098 .098 .137
3.0 3.0 }1.10 .099 .099 .106 .098 .098 .098 .112 099 .097 .096 .134
Table 3

Power values of the exact and approximate tests for Design 2
at the a = .10 level of significance
2 _ 2 _ 2 _

Oq = .5 o B oy = 1.0 i B ‘““09_—_ 3.0 o
og _Og,-h__il,rmﬁz_,_F3_,?fﬁft . ¥y F2 Fq ExacE ) _?l F2 F3._F§ifﬁﬂ
1.0 1.0 §.150 159 .147  .212 211 .229 .203 .316 LA440 L4733 L4240 577
1.0 2.0 1.139 .141 .135 .174 185 194 177 .248 .374 427 .,353 .472
1.0 3.0 y.130 .131 .127 .155 166 .173 159 .212 .323 .347 .302 .402
2.0 1.0 {.127 .131 .125 .174 158 .166 155 .248 <301 .323 .294 .472
2.0 2.0 1.123 .126 .122 .155 L1649 (158 147  .2]2 .248 .296 .263 .402
2.0 3.0 ].120 .119 .118 .143 143 .145 .139 .189 .251 .267 .238 .353
3.0 1.0 }.118 .118 117 .155 138 140 137 .212 «236 .245 231 .402
3.0 2,0 }.115 .117 .115 .143 134 138 .132 .189 .221 .236 .215 .353
3.0 3.0 j.115 JH17 114 .136 L1310 .136 .130 .174 .210 .227 .203 .316
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