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1. Introduction

There is no exact test for testing the significance of a, 2 the nesting

effect's variance component in an unbalanced random two-fold nested classifi-

cation model. There are, however, approximate tests which utilize ratios of

mean squares (see Cummings and Caylor 1974, Tietjen 1974, and Tietjen and

Moore 1968). In general, the exact distributions associated with these tests

are complicated which makes it difficult to adequately cletermine the tests'

true levels of significance and power values. A comparison of four

approximate tests concerning a2 was recently made by Tan and Cheng (1984).
•a

In this paper we present an exact F-test for testing the null hypothesis

H0 :o2= 0 versus Pa :O
2 t 0. (1.1)

a0" aa

Aside from the usual assumptions concerning the random erfects in the model,

the only other condition for the validity of the test is that N > 2b - 1,

where N is the total number of observations and b is the total number of

levels of the nested factor. The proposed test is compared against the

approximate tests described in Tan and Cheng (1984) with respect to power.

The results of this comparison indicate that the former test is quite

efficient.

2. The development of the exact test

Consider the unbalanced two-fold nested model

"Itjk =  + a. 4 . ijk' (2.1)

. j ... k = 1,2 ,n where Ip Is an unknown constant

parameter, a I and aij are random effects associated with the nesting factor

and the nested factor, respectively, and cijk is a random error. We assume

that ati, S,, and rijk are independently distributed as N(0,o2), N(0,u2), and

N02(O,o) respectively. We also assume thatI °° .
°
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N > 2b - 1, (2.2)

a
where N = " j nij, b = J, b,. The need for inequality (2.2) will be seen

later. We note that the latter assumption is quite reasonable and can, for

example, be satisfied if nlj > 2 for all ij.

Let y k=i Y jk/ni. (i = 1,2,...,a; j 1,2,...,bi). From (2.1) weLet Yij i

have

Yij = t' + ai + ij + Ctj9 (2.3)

n I.

i = 1,2....,a; j = 1,2,...,b., where c E J C /n Model (2.3) can he
1ij k=I ujk ij

rewritten in the matrix form

= I + A + 1 + (2.4)

where and e are vectors consisting of the yij's and the Eij's, respectively,

a = (al,a 2,.. a a ' 81 2" "'o ab )" lb Is a vector of ones of
a

dimension b, I is the identity matrix of order bxb, and A =
^b -1

Diagf 1b 1 b ) is a block-diagonal matrix of vectors of ones. Front
1," 2 a

(2.4) the variance-covariance matrix of is

Var = 02 + 1 02 -1 Ko2 (2)
-V la -b a r

where
a

A =AA G TA, (?-6)
-1 "I i=j 111),

K Diag (  -n -1 (2,7)..' . nll, 12, " . .nab ,
a

where is a matrix of ones of order bixb j ( 1 1,2,... ,a), and® denot ,!-
ii

the direct sum. The residual sum of squares for the model it (2.1) is

T = (y - )2. It is known that T/a 2 has the chi-squared distribition
-%%i,1,k ijk ij

with N - b degrees of freedom independently of X. We can write T as

* T R ,(2,8)

1.%
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where y is the vector of N observations and k is the matrix

R (J /n.). (2.9)
1N - 03 -ij iil

We note that k is symmetric and idempotent of rank N - b, and by assumption,

N > 2b - 1, that is, N - b > b - 1. We can thus express k as
"'-

R = C A C', (2.10)

where is an orthogonal matrix and A is a diagonal matrix whose first N - b

- diagonal elements are equal to unity and the remaining b elements are equal to

zero. Furthermore, we can partition and A as

A Diag'i 1 0)
vI Vv 2 0 (2.11)

= [1:C2:C 31, (2.12)

where

VI  b - 1,b(2.13)

V2 = N- 2b + 1,

and C 1'C2,3 are of orders Nxvl, Nxv 2, and Nxb, respectively. Note that

C.'c = i, i 1,2,3,
I-' (2.14)

0. i 7 j

Formula (2.10) can then be rewritten as

R = C C{ + CC (2.15)

which results in a partitioning of the residual sum of squares T into T and

T2 , where

T C c v. (2.16)

T2 = 22 X* (2.17)

Cunsider now the matrix A in (2.6). Theic exists an orthogonal

matrix P of order hxb such that P A P A, where

,.--....1)it

--3-.
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where Q is a zero matrix of order (b-a)x(b-a). This is because A has the

eigenvalues bp'b2 ,...,bas and 0 of multiplicity b-a. The first a rows of

are orthonormal eigenvectors of A that correspond to bl,b 2 ,... , ba . Let EIbe

the axb matrix consisting of these rows, that is,

P = Diag(l //biII a i (2.19)
/ -b "b 2/ 2,.'b /b(.

* Let 2 be the (b-a)xb matrix consisting of the remaining b-a rows of . Then

P = [P,:P2]'. Ifz P y, then from (2.5) we have

Var z = A 02 + 1 02 + P K p,02 (2.20)a " Ea b °  ^ - -C

Theorem 2.1. There exists an orthogonal matrix Q of ordcr bxb such that the

first row of Q P is 1VI/b.

Proof. Define the unit vector e - [c: 0"] where cj (ai b,-2 ,...,r /-

and 0' is a zero vector of dimension b-a. Then (I - e e)e = 0. The matrix

I - el is idempotent of rank b-I. Let Q, denote a matrix of order bx(b--d)

and rank b-I whose columns are obtained via a Gram-Schmidt: orthonormaL[tzat 1oi

of the columns of Ib -e. Let Q = [el:Q1 1 " , then Q is an orthogonal matrix

and the first row of Q P, namely e.P, is b'/A.

From Theorem 2.1 we conclude that if u Q9z , where z P vnd [ is the

matrix described in the proof of the theorem, then

E(u) k bQ b , (2.21)

since0 P is orthogonal, and

Var u AQa + 2+ (222)

'.'7[ ~~ ~ ~ 'b-c 159 + b-1 aent.th l.
since 00 We note that OjA 1 Q, is of rank a-i. To show this we

- -b-1*

partition Q1 as [OlI:QI2l where is (b-1)xa and is (b-1)x(b-a). Then
[b I  i2]' O I-Q2 i

(< Al 0 ODiagh h (see 2.18). Hence, rank
,4 A1 41 ' 2'• .,b' 1  -4-

-* .. . . .-4 -

., A- -



.J

rank (Q ) = rank = rank (I l-cc) = a-1, where c is the unit

vector described in the proof of Theorem 2.1. The one before last equality

follows because the columns of the matrix [c1:Q1 1 ' are orthonormal. It

r4. follows that there exists an orthogonal matrix of order (b-l)x(b-l) such

that

QSA,_Q s DiagrD,O) S', (2.23)

where is an (a-I)x(a-1) diagonal matrix of nonzero eigenvalues of OiAIQI and

Q is a zero matrix of order (b-a)x(b-a).

Consider the vector w = S'u. From (2.21), (2.22), and (2.23) it can be

seen that k has a zero mean and a variance-covariance matrix given by

Var w Diag(D,Oo 2 + Ib a + Lo2  (2.24)
* a -b-1 -

where L = S'QP K P'QS. Define the vector S1 as

-= + ( aI _ -L) ~2 Cy, (2.25)

max'~-1- -

where Xmax is the largest eigenvalue of the symmetric matrix and C is the

*27'' '-.  Nx(b-1) matrix in (2.12). Note that the matrix Xmaxhl - J is positive

semidefinite, hence (XmaxbhI- -0)2 is well defined with eigenvalues equal to

the square roots of the eigenvalues of Amaxlb - k. Let 12 be partitioned

as Q = : l]', where !c, and Q, are of dimensions a-I and b-a, respectively.
!.,

Theor 2

(ii) OLO and Q are statistically inldepenlent and normally distributed with

the following variance-covariance matrices:

Var 2 1)02 + (o2 + A 02) (2.26)
'.'-" a a max F !a- I

Var = (a2 + A cP) OE (2.27)
"a .'.X



Proof.

i) This is true because E(w) S'E(u) = 0 by (2.21), and E(C ) = O.

(ii) Since w = SQ P then Q is a linear function of the vector of

observations, hence it is normally distributed. We now claim that k and

in (2.25) are statistically independent. To show this we write in the

form i = G y where G = Diag(VIn 1 In ab Sn /n . s
12 ab a

a
statistically independent of the residual sum of squares, T, in (2.8), then

C Z R = 0, where E = Var xy (see Searle 1971, p. 59). Using the representation

(2.15) for k we obtain

G E (C C + £ ) = O.(2.28)

If we multiply (2.28) on the right by QI and note (2.14) we get

G E C 0. (2.29)

From (2.-9) it follows that Cov(w , oC) =Cv(

Cov(X,') = SQP Cov(G X C l ) SQI' 1  .0. lence, the

variance-covariance matrix of in (2.25) is of the form

% Var 2 = Var w + (0aIb- L)'-  C (a.b 0 . (2.30)

We claim that C' E C = o2 I . This follows trom the fact that T/a2 has the

chi-squared distribution, hence R E R E = c2 I F (see 2.8 and Theorem 2 in

Searle 1971, p. 57), which can also be written as R F R (j2 R. By noting

(2.15) we get

(c C + C C) E (C , + C .  -V C (2.31)

. If we now multiply (2.31) on the left by V :1d on the 1gh1: by C and note

(2.14) we obtain the desired result.

From (2.24) and (2.30) we conclude that

Var Q Diag(DO) a + i a2 + I. 02 t (A I .) a 2 .

a1 -b-I 1 nxh

--- 7I
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rw- i r W ~rr- ...... r, - - ? --- r-* . - - _ - - , .= 
=  

= - -: ,tt-.' W . .. ' - . -d .-- -, -

- Diag(D,0 02 + (o2 + X 02) 1b."(2.32)
a 8 max E -'b-1

Since Var is a diagonal matrix, QC' and 0 must be statistically independent.

Furthermore, from (2.32) it can be concluded that these random vectors have

the variance structure described in (2.26) and (2.27), respectively.

From Theorem 2.2 we can then state that

:- .. " (Do2  + 1 )-1~ 2-

-'a " a -a-I -a "a-I

"lafl 9136 " X-a'

where 6 = a2 + X 02. Under H0:o 2 = 0, 0-0 /6 - X2  hence F = /MS has

8-max c a O c a-' a

the central F-distribution with a-i and b-a degrees of freedom, where MS.

2!R= S-/(a-1) and MS8 = P 2 (b-a). It is easy to verify that

• a-I

E(Ms a) 6 + ai1(a-1)]o2

. E(MS 8) 6, (2.33)

where d is the ith diagonal element of D(i=1,2 ... ,a-l). Hence, large value5

of the test statistic F are significant.

* 3. A comparison of the exact test against the approximate tests in Tan and

Cheng (1984)

Tan and Cheng (1984) compared the powers of four approximate tests of the

hypothesis 110 described in (1.1). The corresponding test statistics were

denlottd by F , F I Fa, and F4 , respectivelv, and their power values were

v'.. derived approximately by using Iagoerre polynomial expansions of the true null

and non-null distributions of Fi(i=1,2,3,4). The power values were obtained

*2 for different values of 02 (=.5,1,3), several co:bi nations of the nuisance

parameters a~ and 32(=1 2,3), and for two unbalanced nested designs which we

reproduce in Table 1.

.'d.-.d
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In Tables 2 and 3 we give a listing of the power values associated with

Fi,F 2,F 3 ,and F4 as reported in Tan and Cheng (1984, Table 4, pp. 197-198) for

a level of significance a = .10.

At the a-level of significance, the power function for the exact test

proposed in Section 2 is given by

P(MSa/MS > F a,a l ,b ja l i a ) , (3.1)

where q is the alternative hypothesis in (1.1), and F denotes the
a , b-a

upper ax% point of the F-distribution with a-I and b-a degrees of freedom.

Under IT., MSa and MS are independently distributed and (b-a)MSa/6 is

distributed as Xa ,  but (a-1)MS a/6 no longer has the chi-squared distribu-

tion. Tn this case, since S2 is normally distributed with a zero mean and a

variance-covariance matrix Var 0. = Do2 + Si fQ, Q (a-I)MS is
a-i"a a a-I' -a -ax a-'(- a- I

distributed as E X W where the Wi 's are independent chi-squared variates
i=1 i i

with one degree of freedom, and Xi is the i th eigenvalue of Var Qa, that is,th (i'1,2,. hat1 (se

- d o2 + 6 with d i being the i diagonal element of 1)(see"'- " i i cL ''

Johnson and Kotz 1970, p. 151). Thus, under II, the exact Vest statistic F can

be written as
a-I

X X 1_C" _C --1X
c 6i -i (3.2)

6(a-I)MS/6 6(a-I)MS

Apnroximte vates of the power function in (3. I) can be conveniently obtained

by usi i 'irotsu's (1979, pp. 578-579) approximation of the upper probability

values of a statistic of the form

II- x A x/(cf)

" - -F ... ... . ( 3 . 3 )i~Cy. o10 2

whe.e x is normally distributed with a zero mean and a variance-covariance

n atrix V, A is a nolneg.tive matrix, (2/1 2 is distributed as (/f2)x 2

2 /f 2

indeptrdeiitly of x'A x , and c and f are given hy

--A °8._

Ik'- .". . ..... .. ,. ... ..... -°I



(3.4)
2 = 2 K (x'A X)/K (x'A x)

I = 2 -~ -x-

where K(x'A x) denotes the ith cumulant of x'A x. For convenience we

reproduce the formula fcr P(H > h) as given in Hirotsu (1979, formula 2.4):

P(H > h) P(Ff,f 2  h) +

_I

[A/{3(f+2)(f+4)B(I f, I f )}](l+fh/f 2
2 2 22

1 2(f+f 2 )(f+4) (-+ff +2)(ff 2

(fh/f [(f+2)/(f+4) + 1+f12(h + ,-1) (3.5)

where F denotes the F-distributiton with f and f deprees of freedom,

B(ml ,m 2 ) denotes the beta fu nction, and

2 1[(x'A x) '(A X)/K 2(x'A )] - 1. (3.6)

The approximation described in (3.5) was developed via a Laguerre polynomial

expans ion of the true distribution of the statistic x'A x/(2c) and was

reported in Hirotsu (1979) to be quite satisfactory.

From (3.1) and (3.?), the power function for the exact test statistic F

can be written as

... 5 a--) I-''_uH (3.7)
M.- Ss/ cE f a, a- Ib-a a

wht rt c ind f are given as in (3.4), but with S2-2 substituted fret x'A x) that

is,
a-I a-I

tr{(Var )21 2 (d j2 + 6)2 6 y (dl j + 1)2c i=l c i= 1 i

tr(Vir~2 Qi~ a--a - (38- (d G2 + 6) (d.0 + 1).-". .c i- l~d ja i- I

t"r"ar 12 a-I a-I
.:.:.1~~~~ { t (=', ! )} {i l d  '°  0 1 4  2  1i l d 0 + ) ,

.1f --r ( rI- ), - (3.9)

(o 2 +6) .2( +)
l i i

--9--

. . . . . . . . .. ..
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where

02 02

0------ z (3.10)
S max C

(see Hlirotsu 1979, p. 579). We note that the statistic which appears in (3.7)

is of the same form as the statistic H in (3.3). This can be seen by taking

x = ac' A = Ia, and o2/o2 = MS /6, which is distributed as (1/f) with

= b-a degrees of freedom. It follows that the power value in (3.7) can be

approximately computed by applying forrmla (3.5) and remembering that

Slt'3 /(cf)
H a~ a

MS 1

h', 6( a-1 ) (a-1)F

h F a-1,b-a (using formulas 3.8 and 3.9),
cf a,a-1,b-a a-I

i (di0+1)

Sf2 b-a,

c and f are as given in (3.8) and (3.9), and A is as described in (3.6),

*which can also be written as

[tr(Var a)IL[tr{(Var Q,)3}]

[tr (vat Q ) "2

a-I a-i

+ + . " '[ J I l ( d , e + [ 2 1 2

*" where 0 is given in (3.10) (see f1irotsu 1979, p. 579). It is interesting to

note that in (3.5) the power of the exact test depends on a2 an o2

througI 0. A complete determination of this power requires finding the values

,-, of Xmax, d l'd2 ... 'd which depend on the design used, and a specification

of the level of significance and the ratios o2/o2 ' /2 of the variance

components.

.

EI

, q'°-.--1U-
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Power values associated with the exact test statistic F were computed at

the a = .10 level of significance. The upper probability values of the F-

distribution (with f and f2 degrees of freedom) in (3.5) were obtained by

using the IMSL (International Mathematical and Statistical Libraries) MDFDRE

Subroutine which allows fractional degrees of freedom. The same designs and

combinations of variance components as the ones used by 'Can and Cheng (1984)

were considered here. The results are given in Tables 2 and 3 for designs I

and 2, respectively. From these tables it can be seen (:hat the exact test is

more efficient than the approximate tests based on the statistics F1 , F2 , F3 ,

and F4. Furthermore, the exact test has the advantage that its critical value

does not depend on the values of the unknown nuisance parameters a2 and Y2.

This property is not shared by the approximate tests which may require good

estimates of 2 and a2 in order for their results to be reliable (see Tan and

Cheng 1984, p. 194).

4. Concluding remarks

The vector f2 defined in (2.25) is the key to the construction of the

exact test proposed in Section 2. It is a lineair combination of the random
-"" ectrs an C 1  where ( is alinear

vectors i and C, r a transform of the vector x of response

means, and C> makes up a portion of the residulal sum Of squares (see formula

2.16). The power study in Section 3 clearly indicates chat the exact test can

he at least as efficient as the other approximate tests.

A procedure similar to the one described il this paper was effectively

used to obtain exact tests concerning the main effects' variance components in

". -. an unbalanced randon two-way model with interaction. Details of that

procedure are given in Khurl (1985).

I.H.

W Y..M. 
d ! . ..



Table 1

Two unbalanced nested designs for the model in (2.1)
Design I Design 2

a=5 a=4
b1=2 bI=1, b2=2

b2=b3=b4 =b5=1 b3=3, b4=4

n i=n 2=4 n1 1
= 4

n21=n 31=n 41 =n5=
2  n2 1=n2 2=3

n3 1=n 3 2=n3 3=2

n41 =n4 2=n4 3=n4 4=

Table 2

Power values of the exact and approximate tests for Design I
at the a = .10 level of significance.

02 = 5 2 = 1.0 02 = 3.0aaa

02 o2 F1  F2  F4  Exact F1  F2  F4  Exact F1  F2  F4  Exact

1.0 1.0 .099 .097 .098 .118 .099 .097 .094 .134 .102 .113 .101 .184
1.0 2.0 .099 .099 .097 .114 .098 .101 .095 .126 .098 .129 .097 .167
1.0 3.0 .099 .101 .096 .111 .097 .105 .094 .121 .097 .136 .096 .156
2.0 1.0 .097 .153 .099 .111 .097 .154 .099 .121 .098 .164 .10 .156
2.0 2.0 .10 .098 .099 .109 .099 .097 .098 .118 .10 .098 .097 .148

2.0 3.0 .102 .066 .098 .108 .101 .064 .097 .116 .101 .061 .095 .142
3.0 1.0 .10 .099 .099 .108 .10 .099 .099 .116 .101 .098 .10 .142
3.0 2.0 .10 .099 .099 .107 .10 .098 .099 .114 .10 .098 .098 .137
3.0 3.0 .10 .099 .099 .106 .098 .098 .098 .112 .099 .097 .096 .134

Table 3

Power values of the exact and approximate tests for Design 2
at the a = .10 level of significance

02 = .5 o2 = 1.0 02 = 3.0C1 a a

2 o2 1 F F Exact F F2  F3 Exact F1  F2  F3  Exact2 F 2  F3  1xc 2F1 1 2

1.0 1.0 .150 .159 .147 .212 .211 .229 .203 .316 .440 .473 .424 .577
1.0 2.0 .139 .141 .135 .174 .185 .194 .177 .248 .374 .427 .353 .472
1.0 3.0 .130 .131 .127 .155 .166 .173 .159 .212 .323 .347 .302 .402
2.0 1.0 .127 .131 .125 .174 .158 .166 .155 .248 .301 .323 .294 .472
2.0 2.0 .123 .126 .122 .155 .149 .158 .147 .212 .248 .296 .263 .402

2.0 3.0 .120 .119 .118 .143 .143 .145 .139 .189 .251 .267 .238 .353
3.0 1.0 .118 .118 .117 .155 .138 .140 .137 .212 .236 .245 .231 .402
3.0 2.0 .115 .117 .115 .143 .134 .138 .132 .189 .221 .236 .215 .353

3.0 3.0 .115 .117 .114 .136 .131 .136 .130 .174 .210 .227 .203 .316
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