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EDITOR'S PREFACE .

.J.'

The explosive growth of dynamical systems theory in the past two decades
stems in large part from the realization that it is applicable to many
natural phenomena. Indeed, much of the theoretical development has been
sparked by numerical and laboratory experiments which exhibit ordered
sequences of behavior that call for a general framework of interpretation.

We have been fortunate this summer to have had in residence both pioneers
and developers of dynamical systems theory and its applications to fluid
mechanics. Several recent texts contain the basic principles that Ed Spiegel
used as a springboard for'five lectures in which he'exposed us to elementary
examples of bifurcation and chaos, to symmetry breaking, normal forms and
temporal and spatial disorder, as well, as to pertinent fluid mechanical and
astrophysical phenomena. Yves Pomeau continued'the development with an
elegant summary of different types of intermittency, Stephan Fauve agreed
to write up his impressive seminars on phase instability and turbulence as
an extension of the lecture series..,.Many of the remaining seminars intro-
duced new concepts in the theory, some with specific examples, others via
mathematical development, and still othr~s through ways of interpreting the .'..
data that emerge from calculations and experiments. As an outstanding
example of this, Albert Libchaber has demonstrat-edothe fascinating correspon-
dence between the frequencies observed in one of his recent fluid mechanics k L Iexperiments and results from number theory relating the Fibonacci series tothe golden mean. ..

This volume contains Spiegel's lectures as interpreted and reported by
the fellows, extended abstracts of most of the seminars, and the fellows' .
reports of their own research activity of the summer. Research projects
initiated by the staff during the program will be reported later in
scientific journals.

All of us are indebted to Tom Spence of the Oceanography branch of the . -' ..:

Office of Naval Research and to Al Thaler of the Applied Mathematics program
of the National Science Foundation for arranging financial support of the
program. We acknowledge the capable administrative assistance of
A. Lawrence Peirson, III, and Dixie Berthel of the Woods Hole Oceanographic '

Institution. Special thanks go to Linda Hudon, who served as secretary,
troubleshooter, coffeemaker, and problem-solver, always with a smiling
countenance and exemplary eagerness.

George Veronis

Of2 rN
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GEOPHYSICAL FLUID DYNAMICS

Edward A. Spiegel

LECTURE I

Pandemonium in Walsh Cottage

The mathematical definition of a dynamical system is a vector field

on a manifold

x = dx/dt f(x,t)

where f(x,t) is a vector field (in fluid dynamics, f(x,t) is the Eulerian

velocity and x is the Lagrangian coordinate). This equation may produce

rich, complicated orbits. Chaos is a fundamental aspect of dynamical

systems; the erratic behavior of chaos is reminiscent of turbulence.
Though turbulence may be considered to exhibit chaotic behavior, chaos is

not the turbulence of vortex dynamics. However, turbulence is probably
chaotic.

For an introduction to chaos, here are some recent books

1) Universality in Chaos - Cvitanovic"

2) Chaos - Hao
3) Deterministic Chaos - Schuster

4j Ordre et chaos, vers une description deterministe de la
turbulence - Berge, Pomeau, Vidal

This summer we will attempt to connect chaos and fluid dynamics.

Bifurcation theory has its roots in astronomy, specifically in the
*I studies of equilibrium figures of rotating, self gravitating bodies. We .

begin our study of dynamical systems with a qualitative description due
to Landau of what happens when a fluid goes unstable. Schematically, his
analysis proceeds as follows:

Ut = LU + UU + .

- where L is a linear operator that depends upon the parameters of the ,
problem and UU represents nonlinear terms.

Let U Aleikx + A2e
2ikx + + complex conjugate

. The amplitude equations for these modes are, schematically

Al AlAI + AIA2 + -

A2  x2A2 + AIA I + .- ,

A3 o 3 A3 + AlA 2 +

where Ai Aj are the nonlinear terms that resonantly force Ak (k=i*j)

-. o-... . . . -. . . .-.. .-.- - -. -. - - -. " --.... . . . . -. ' .-..-*- . .. -. .- "..... - , . . ,. . ,- - .

......... .... * *_..';.



and .Ak.are the eigenvalues of the linear operator L ordered in the
following sense

Rex 1  < Re A2  < < Re xk.

These equations may be likened to the reaction equations of chemical
kinetics (Ak represents the chemical concentration of the kth species).
The rapidly reacting components go to equilibrium and the slower reacting
components move this equilibrium around. This is the idea behind the
following.

Now consider the case where mode I has just gone unstable; Rex,, has
just crossed from negative to positive with all other Rex's remaining
negative. In this situation, the dynamics are driven by A1 . A2, A3 .. .
decay quickly to zero if they are not driven. Thus one may approximate
(adiabatically)

2A2  -A /x 2

and so (1.1)
2

and so ~~~AI = (x - IAI2/x2)'  A1. - -'-',

We see that the modes that A1 excites modify (or renormalize) its linear
growth rate: thus, Landau's equation. ,i

Next, it is instructive to study a physical example from Andronov and
Chaikin (1930) of a bead sliding on a rotating loop, which is basically
the same as the particle sliding in a hemispherical bowl (see Lamb 1907).
This is an analogue to the problem of the equilibrium figures of rotating,
self-gravitating bodies (see Lebovitz lecture, this volume).

The nondissipative equation of motion for the

system is

e = -g/a sine +s12/2 sin2e (1.2) ,.

Define
O2 :g/a ;a02 :Q2/ 2 V ' t """"

to obtain

S-sine +a/2 sin2e -Wag (1.3)

F.. ,e.

?:. .:

.'.. *

Figure 1 . -',
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v -[Cos e q 2/4 cos 29] (1.4)

Adding dissipation one obtains

e W- aga (1.5)

Now examine V(9) .-

'44

-iF iv-i

Case I2 < 1 Case IIa 2 > 1

There always exist stationary solutions to equation (1.2) at e 0, .

e 0is stable for case I while it is unstable for case II

B i is always unstable

as fl2+ two ney stable stationary solutions become possible with

The corresponding bifurcation diagram is

-- linearly stable

---- linearly usal

-IT

Figure 2

One does not know at which side of the loop the mass will end up once a2

crosses one. This is exemplified in numerical experiments (Figures 3 and
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*Figure 3: Trajectories in the phase Figure 4: Another pair of trajec-
obtained by solving EQ (1.5) with tories of EQ (1.5) for a=-.an
a=1. 8 and v=0. 5 for two initial v=0.2 for
conditions:

Mi X0=2., Y-=,; (i) X0=2.13 Y0 =Q;

(ii) XI=2.1, YO=O Hii) X0 2.20, Y0 =O.
* The orbits Olverge near the saddle

point at the origin.

Two closely spaced initial conditions end up at different fixed
points. This is a classical analog of the two slit experiment. Though
this is a deterministic system, there is still unpredictibility about the
end state - this can be called pandemonium. Sustained pandemonium is
chaos; therefore, one is interested in examining forced systems.
(Figures 3 - 7 from Spiegel, 1985.)

The above-described system may be approximated to leading order by

.... I ,. ----=--* ---

=-aV/ax -Vk (1.6) . '

V 1/4 x ax2  (1.7)-

This approximation yields the same type of pandemonium as the exact
expression for V. If one breaks the symmnetry of the potential with a
forcing term, the behavior of the system may be studied via numerical
simulations as presented in Figures 5 and 6 (notice that transients have
decayed). The governing equations are (Marzec and Spiegel, 1980; Moore
and Spiegel, 1966)

i) X Y

ii) Yo= -av/ax - vY

-*ii 
i) Z E[Z + bX + cX3] (1.8)

iv) V 1/4"X4  1/2 aX2  ZX

points .2./ i is a c as ia analog of th tw.i e pe im n . -Though . - .
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Figure 5: A solution of EQ (1.8) i>iv Figure 6: X(t) from (1.8) i>iv
for: a=.7, v=1, b=i, c=1 2, c=.02. A for a=.6, b=.9, c=1.1, C=.1, v=O.
projection of the orbit into the X-Y For long runs in time, the
plane is shown. The transients are behavior continues as shown.sup re ssed.

Figure 5 shows the projection of the orbit onto the X,Y plane for the
indicated parameter values. Though the conditions here are such that one
expects to see chaos, this numerical experiment does not detect it.

* Increasing the damping gives the time series of Figure 6 exemplifying
. aperiodicity. These parameter values also show sensitive dependence to

initial conditions. Often systems like this are also sensitive to
numerical error. One may argue that really the system in Figure 6 is

*-" periodic and this would be evident if the numerics were better or if the ..

record length of the time series was extended. Computers play an
important role in detecting chaos; as with any experimental technique,
the results must be interpreted carefully. For this system there is
analytic evidence (Arneodo et al. 1985) that chaos does exist.

Various types of solutions of dynamical systems have been discovered.
, Historically, the discovery of equilibria has been attributed to

Cleopatra, periodic solutions to Galileo and perhaps chaos to Poincar.
Today we often think about dynamical systems in terms o- oincae surfaces

of section. Taking a planar cut through phase space, onc examines the

series of points where trajectories pierce this plane. For a periodic
orbit, these trajectories will return to their starting points in the
plane. For a chaotic orbit, the motion lies on a strange object, like
that in Figure 7.

-!

•~5 .b"""" '..-'C '; ' ' - ." ." , " "€ - - ' ",.' -. " , ."' '", - . ' , , . ' - ,',-' ,
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Figure 7: Like Figure 5, a projection of an orbit. This is a strange
attractor of EQ (1.8) i > iv for: a=.5, b=1.3, c=1.3, c=.O1, v=.O1. The
orbits do not completely cover the surface; they "never" do the same
thing twice.

Let us examine how this complicated behavior arises in fluid motions
in the warhorse problem of the GFD program, doubly diffusive convection.
The physical system is described in Figure 8 and in the following
qualitative remarks (M~oore and Spiegel, 1966).

ambient The fluid blob obeys
* fluid

properties Pyi =-g(p-po)V - Pi(1.9)

with the equation of state given by .

P= Po[1-aT(T-To)+a.( 10) 1 (1.10) -

and the temperature and salinity
fudfields obeying

C of mass T = .qT(T-T 0) + atT0(z,t) (.1
and

- "., ' volme fq~(--40 ) + at iv(z,t) (1.12)

Figure 8

One may approximate, for an almost incompressible fluid:

P-P0 0 = -c(-TP 0i. -
P PO0 (  T To -J 0) (1.13)

PI I

J b%



Then one may combine the above equations to obtain

'. .p, -_"z'=~-,'z* + g(-aTToz + a,-z ) + g(-aTqT (T -TO)+ a,._q,_£ o ) (.4 ::S. .

Z ~~o T TW 01 To lc~~ (1.14)
= -.i + A! + B

where A and B are prescribed functions of z. __,-_

For A = a + e z2 
4

B z - 6z + X

one may write (1.14) in the form

z az + iz3/3 - + x:: ~~~(1.15s) :>!::

(X + Bz3 - 6z)

and, for a=O, we obtain the same system as (1.8). Thus one may obtain
chaos from this simple model of convection.

For a small stable salinity gradient and the following mean tempera-
ture profile (Figure 9), one obtains the behavior of Figure 3. Physically
the small damped oscillations of the fluid blobs result from the salinity
spring balancing the buoyancy force

path of fluid blob ---------

mean temp gradient e W.

m I- .3

Figure 9

Again examine the system (1.8); for a system that conserves mass the
divergence of the flow field (X,Y,Z) gives the rate of change of
volume/unit volume of an initial swarm of particles. Here

3.k/axk - v

and we see that the initial swarm of particles will decay to zero volume.
The object of zero volume onto which the representative points contract
is called an attractor. The simplest attractor is a fixed point, while a

periodic orbit or limit cycle is the next simplest attractor. For a
strange (or fractal) attractor, two particles placed close together move

rN apart on the average (see Figure 7).

.. NOTES SUBMITTED BY
Janet Becker

... . . . -. . .. .- - - -,-- - . a il
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LECTURE 2
Chaos Comes to Walsh Cottage

A Generic Chaotic System 
0
4

Any discussion of dynamical systems these days is bound to be riddled
with references to "chaotic" behavior. In the search for a workable and
concise mathematical definition of the term chaotic, we turn to the Oxford
English Dictionary (unabridged) which gives us:

Chaos - A state of utter confusion and disorder; a confused mass.*

Armed with this definition, we continue where we left off last lecture and
consider a prototype third order dynamical system that exhibits possible
chaotic behavior. If a particle of unit mass is subjected to a slowly
varying potential in a system that includes dissipation, the equations of
motion become

x"= -aV/ax.

V = V(x,X(X,t)) C, v > 0 (2.1)

= EL(x,t)

'nder the restriction that remains bounded for all time we choose a
s, nle form of L to be L = -(x + g(x)). This system is reduced to three
coupled, first order equations:

x =y

y = -aV/ax - vy ED V > 0 (2.2) -

A = -c(x + q(x))

. An important feature of these equations is that the divergence of the ,.
velocity field associated with the flow is always negative. A simple

" calculation reveals that

ax + (y + V - + v) (2.3)

ax By a- 

This property guarantees that volumes of initial conditions in phase space
will eventually shrink to zero volume. These regions are defined as
"attractors" and if these attractors have a cantor set structure in at
least one of their dimensions, they are called strange - a term first
coined by Ruelle and Takens in 1971.

*The note taker insists that any correspondence of the definition to

these lecture notes is purely coincidental. m

-N
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. The potential has yet to be specified so we define it as a polynomial
in x with coefficients that depend on x,

,.. + i-2 kIV (x, X ) x + E W ... ,.
k=1 k

As a specific example (see the previous lecture) the system
* V 1/4x4 - 1/26x 2 + xx with g(x) = ax(x 2 - 1) contains the salient

features of the thermohaline convection problem which was derived from a
normal form calculation. With small modifications these equations result

* in a general third order differential equation of the form

X'+ : + (B + Jx2 ) + + vx2 )x 0 (2.5)

which incorporates both Van der Pol and cubically nonlinear spring terms.

The figures below represent numerically computed solutions to the
system (2.2) with V(x,x) = 1/4x4 _ 1/26x 2 _ x and g(x) = x(l-x ). The

*! first figure is a projection of the orbit onto the scaled (x,x) plane for " "
6 = 0.6202. The solution is a limit cycle with period two. Figure 2 on
the other hand shows a seemingly chaotic solution to the same system with
6= 0.625 (Marzec and Spiegel, 1980). ,

Fi" 1 D p s t s (2).

-. I.-, .-. . . .

|* 4

+ % . .



.... . . .I . .'..

• .
01

P Figure 2: A bicycle seat -the beginnings of a strange attractor.

The question as to whether or not the solution to the system (2.2)
with 6 = 0.625 is chaotic brings up an important point. The primary
evidence suggesting chaotic behavior is purely numerical and the
integrations cannot be separated from the inherent numerical errors. We
are unsure whether or not the computed orbit is a true reflection of the
solution. The argument can be made allowing the possibility that the
true solution is periodic of high order periodicity and that the

-nerical errors are causing the random behavior. We argue that the
system is truly chaotic in a direct analogy to the Feigenbaum sequence of
period doublings and by examining the structure of the return map.

This generic dynamical system (2.2) is capable of creating any number

"..-- •

of systems which exhibit complicated behaviors including the existence of
strange attractors. As the order of the polynomial is increased, the
behavior of the resulting -.D.E. will become even more complicated as the
number of stationary points increase. We also make the observation that _the Lorenz equations, t th most studied solution can be cast into

this form by choosing V s1/44  + 1/2xp, g pna(x 1) and scaling
appropri ately.

- PoinCdreStroboscopy

A general dynamical system can be written as

F(x, t) (2.6)

Systems with periodic forcing are of current interest and the period of
the forcing gives a natural measure of time. We will however restrict

.. . .. °'.

ouru cosidetions perodi auooous systorems wereoiiyadta h

eicleros recusn te r a (2.7)or :%lop ha h '""""-
systm istrul chatic n a irec aaoyt h egnamsqec f ''-
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Here a is the position of the system at zero time and r is some set of
bifurcation parameters. We use xI (for instance) as a clock for the
system, and construct a return map or Poincare section as being the set
of all points which cross some plane xI = constant in the same sense
i.e. from positive values of x, to negative values of x1. We can
always translate coordinates so that x, = 7 is replaced by the x= 0
plane. Several qualitative features of the orbit can be described in
terms of its return map. -.

Return map for a Return map for a
periodic cycle, periodic orbit.

Figure 3

For example, a periodic orbit will cross the xI  0 plane only a finite
number of times before it passes through points previously traversed.
The return map can be visualized by imagining that there is a "Poincare
Stroboscope" which flashes every time the orbit crosses the xI = 0
plane positively. By studying the return map we have reduced the dimen-
sionality of the original problem by one and the description of three
dimensional orbits has been reduced to a much more tractable study of the
two dimensional section.

Db
2 limit

cycle X k+I X f(X

3D  limit ..-- ,

Figure 4: Examples of return maps.
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Turning back to the salt oscillator model we can introduce a coordin-
ate transformation and deal wit (x, E, A) space instead of (x, x, x) "

space with the energy, E = 1/2x + V. The equations of motion become

T-E V(xXT V(x,x) 1/4 x4  1/2 6x2 4

= -2v(E - V(x,x)) -x (2.8)

= -E + g(x)) g(x) = x(1 - x2 )

and the return map for the orbits in Figures 2 and 3 (Marzec and Spiegel,
1980) are shown in Figure 5 (B is a scaled x coordinate).

~~- -. -

I .T
.12 20 - " 32 -4

Poinca Section showing evolution to a two cycle.
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We can see in the first of these two graphs the "ghost" of an unstable
attractor sometimes called a strange invariant set. After spending a
considerable time wandering around this set, the system settles down to a
two cycle and the return map becomes just two points which are marked by
pluses. This metastable chaos can persist for long periods of time and
can make it difficult to determine whether or not the system is actually
chaotic. The time that the orbit spends on this strange invariant set
increases as the bifurcation parameter increases until finally the invari-
ant set becomes stable and the orbit becomes a strange attractor as seen
in the second of the two return maps. The attractor has nine leaves which
the orbit hits successively, counterclockwise, on each return to x = 0.
To examine the finer structure of one leaf, we isolate it by defining the
distance from the bottom of the leaf on the nth pass through the leaf as
a new variable c" This procedure gives a basically one dimensional
map C n+= f( nywhich is plotted in Figure 6.

i.
K 1 1 ... F - , -; " .

I " '.- .--

Cn+1

U' - o- • -"J

3 C I t. a -_T.a a e-'

Figure 6

Much simpler algegraic systems also exist that exhibit chaotic
behavior. One of the more famous of these is the Hnon map (I{rnon 1976),
given by:

Xn+1 = n  n). (2.9)

= bxn

The mapping's characteristic folding and stretching properties can be
exposed by considering the first few iterates of an initial ellipse
(Figure 7). . .. 2

r
. - . ' ., . , " ', . . - . ., - , " . " - ' . " . - . -" -' . ' . - .' . . -' " " -. . . . . , . . . . " , .., ; " ., ,," " " ', , , , , ,- , ,,,
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Figure 7 (Henon, 1976)

After very many iterations the system tends toward its strange attractor
which is pictured below. The self similar cantor set structure is
revealed by examining the attractor on smaller and smaller length scales.
Presumably, if we continue to reduce the size of our microscope we shall
see the same structures repeated. This statement has not been proven L
mathematically but the numerical evidence supports the claim. There are,
however, proofs of the existence of strange attractors in other algebraic
systems such as the Lozi map.

00. S

'1 .• .2°. • *

.*.2 . .I

Figure 8: Self similar structure revealed (Henon, 1976) each successive
frame is the magnification of the box in the previous frame.

One Dimensional Maps

Many times even the higher dimensional Poincare sections can be

reduced to a one dimensional study. Lorenz was able to reduce the dimen- -
sionality of the Lorenz system by plotting successive relative maxima of
the Z component of the orbits. A similar procedure allowed us to do the
same thing for the salt oscillator. In both cases, we reduce the problem
to the study of the one dimensional iterated mapping xn+1 2 fr(xn). The
mapping x+ = f(xn) gives the time evolution of the variable x which'
can be followed by cobwebbing between the curve x = f (xn) and the
bisectrix xn+1 xn. This is made clear graphically in [he following
diagrams.

- - - . .- __.-._*~.*~*~~~~*_.~~A..s.; Q~S *"*.:".".'.--...
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N = " -- ,--,,-- <-:: . - -:::

/ k)

Figure 9

The fixed points of the mapping correspond to interesting points of the
return map. If an orbit returns to the same point on the section then it
is a periodic orbit of period one. These fixed points are given by

fr(xo) and are the intersections of the function fr and the bisectrix.
Thequestion of the stability of the fixed points is resolved by pertur-
bing the fixed points and asking whether or not the perturbations decay.
Let xn = x + 1n I I I < for n <N. Then

x x + fr(x + ) f(x + n +".-
;' " Xn + 1 0 o n + l r ( X r , ) r (  0o n - -I' - ' -" - "

therefore n + I n f and iff 1o nf

ax) ax)
I.- . . - .

So the fixed point is stable if laf'/aX)x I I < and unstable if

la*/ax) x II > 1 . The consequences of a fixed point going unstable

as the parameter r is increased depends on the nature of the map fri
but Feigenbaum's investigations have shown that there is a universality
property for all maps with quadratic maxima and that in some sense all
quadratic maps behave the same as r is increased. So we consider a
special quadratic mapping - the logistic map Xn+1 4 rxn(l - xn).

', .

."I".,
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Figure 10
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Figure 11 f)Irni..

Tne fixed point goes unstable with increasing r when0
By looking at the second iterate of f we see that the single fixed point
becomes unstable by splitting into two fixed points of f* f. The fixed
points of fe f correspond to a two cycle; the iterates repeat themselves
every other iteration. In terms of behavior on the return map this means
that the periodic orbit of unit period has now become an orbit of period
two hence implying the term period doubling for this bifurcation route.
Now as the bifurcation parameter increases further, these two stable ~
fixed points of f(f(x)) will go unstable and form a 4 cycle which corres-
ponds to fixed points of f 4 )(x), etc., etc. The process continues
forming 2n cycles at each nth splitting but there is a finite limit *

point to the series rl, r2, r3, ***representing the splitting

r-7



17-

p. 4 104 P-7 i-8 P-4

3.0 ,. P-6 P:5 P-, 4.0

Figure 12: Period Doubling Cascade

Such scenarios would be very limited if they applied only to one

dimensional iterated maps, but as we have seen these concepts can some-

times be extended to dynamical systems by way of their return maps. A

sysi. similar to the salt oscillator undergoes a sequence of period

doublIngs leading to chaotic orbits (Figure 13) only to pass through the

region of chaos into another periodic regime (Arneodo et al., 1985).

Figure 13

'all



Since the Poincare sections are not always reducible to one
dimension, we need to generalize the ideas of fixed points to higher
dimensional maps. This proceeds rather straightforwardly in principle
and a pictorial representation is given below for a series of fixed point
bifurcations in two dimensions. Darkened points have gone unstable.
Universality has yet to be aet on firm ground in higher dimensional maps
but the intuitive picture is clear.

We have seen that there are very complicated behaviors in dynamical
systems which can be understood by way of analogy to low dimensional
iterated maps. The Feigenbaum route to chaos in one dimensional maps
with quadratic maxima is, at least qualitatively, similar to the sequence
of period doublings leading to chaos in some dynamical systems. The
quantitative connectlon comes about by observation of the Poincare section
which can o ften be viewed as a one dimensional map. In the figure below we
see the skein of s tah h and uns tabl ma l~ni folds of the periodic orbits that-
is intimateiv coiinectbd to the occurrence of* chaos. A point bouncing around

* in the last case can (it so for lui te some time.

Figure 14

NOTES SUBMITT.ED BY
Kirk Bra ttkus
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LECTURE 3

Chaos and the Sobriety of

Seventeenth Century Astronomers

Experiments in Chaos

The onset of temporal chaos has been observed in a thin convection

cell by Gollub and Benson (1980). When the Reynolds number R is adjusted
to roughly R/Re = 17, stable Rayleigh-Benard convection rolls form in

the cell. These rolls develop oscillatory waves (frequency f 2 ) trans-

verse to the rolls through a secondary instability described by Busse.
Gollub and Benson observe three different routes to aperiodic behavior as

they increase R. In one of the transitions, a second oscillation develops .

with frequency f, incommensurate with fz so the velocity time-series
is quasi-periodic (figure 1). At larger values of R, phase locking occurs
when fz/f 1 approaches 9/4. The velocity spectrum peaks at harmonics
of fi, fz, and the locking frequency is

fL = fz/9 = fi/4.

Phase locking persists over a narrow range of R. At the upper end of the

range, the spectrum is noisy although most of the power is still concen-

trated at fl, f2 , and corresponding harmonics. As R/Rc + 70, the flow

becomes chaotic. Four spatial eigenmodes are sufficient to describe the

observed initial roll pattern, and the authors suggest that a limited |
number of modes would prescribe the flow at higher R as well.

Astrophysical Chaos

Low-order systems of amplitude equations can also model variations

in solar magnetic activity. During the last 300 years the number of " -

sunspots has varied with an eleven-year period, but the maximum number
observed fluctuates in an apparently random way from cycle to cycle
(Eddy, 1976; see figure 2).

In the last 8000 years there have also been periods when almost no
sunspots appeared, such as the Maunder minimum during the seventeenth "

century. The combination of nearly regular oscillations with periods of
inactivity is qualitatively similar to the chaos observed in simple
systems of ODE's. According to a suggestion of Spiegel and Weiss (1980),
the spots observed on the surface are due to an instability in the

magnetic field below the convective zone. The field is trapped in the 1.
boundary between the core, where energy is transported by radiative

diffusion, and the outer regions, where convection dominates.

The similarity with thermohaline convection is due to the very slow

diffusion of magnetic fields in highly conducting plasmas (Spiegel and

Weiss, 1982). However, changes in salt concentration and magnetic field

strength have opposite effects on the buoyancy of the surrounding medium.

In hydrostatic equilibrium, the magnetic and gas pressures inside a flux

tube must balance the gas pressure outside:

pikTt + B2 /2v pekT.

. . p.., __ ____ ____ _._.___
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Figure 1: Velocity time-series and power spectra for Gollub and Benson's
type I transition to aperiodicity. The sequence is: (a. steady rolls at
R/Re = 31.0; (b. quasi-periodicity when R/Rc = 35.0; (c. phase-locking

at R/Rc = 45.2; (d. onset of noise at R/R0 = b6.8; and (e. broadband
noise at R, = 65.4 (Gollub and Benson, 1980).
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Figure 2: Annual sunspot number from 1830-1960 (adapted from Eddy, 1976).
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Because heat diffuses rapidly, T. T, and therefore p, < pc. As
JBI increases the density contrast grows and the tube becomes more P, 4
buoyant. In the boundary layer the temperature gradient is stable and
the magnetic pressure gradient unstable. Whenever the field grows to
roughly 104 G., an interchange instability pushes flux tubes up into
the convection zone. These tubes then rise to the surface driven by
magnetic buoyancy and coallesce to form sunspots.

A model for this mechanism couples the two amplitude equations for
the instability (e.g. Childress and Spiegel, 1980) with the Lorenz
equations for the convective dynamo process that generates the flux
pumped into the layer. An example of such a fifth order system is
(Spiegel 1980, 1985):

x = -x' - 2xy + Xx -vx-

y xZ+Xy-6v3, (3.1)-Y X, +.-(',oV.

X = - + a(x2 + y2 -1

With x= 0 these equations reduce to the Lorenz system and resemble the
pair of ODE's describing the bead on the rotating wire hoop (Lecture #1).
In a large region of parameter space equation (3.1) produces the aperiodic
and intermittent behavior like that of solar activity (figure 3); there -
are, however, significant differences in detail.

X 6
=.... I II .. &a.

-2

T

Figure 3: Amplitude vs. time for a numerical solution of equation (3.1)
•(Spiegel, 1980).
Spiegel and Wolf have analyzed a century of sunspot counts using delay %

*: coordinates. The analysis suggests that the solar cycle falls on an
attractor; Wolf's algorithms imply that this attractor has a dimension
less than five. This suggests that a simple fifth order system like
(3.1) may be a useful model for certain features of the solar atmospheie.

°.- .. * "%
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Fractal Dimensions in Fluids "

In fully developed turbulence regions of laminar and turbulent flow '',.
are intermixed, displaying a kind of spatial intermittency. Kolmogorov's
theory models this intermittency by predicting the number of eddies NQ of

size ' present at equilibrium. After a characteristic eddy rotation time
t: = i/va an eddy in this model splits into n vortices of size 4/2.
Therefore N e' ,ives bv (Kida, 1-82)

+ n=-N2/T2 + n Nza/Tza "

-prevent kinetic energy -rcm arcumulating at some %avenumber, the energy

lux/uit mass must he equal at each scale in the inertial-range cascade. -

Ehis implies T, Once the tlow Las equilibrated, the number of

eddies stops changing. Setting dN,/dt = 0 and n =2' gives

2 ~e 2 N. (2,e)z

The solution is N • This remark of Procaccia and Spiegel implies

that eddies ar not space-filling.

The resulting eddy configuration becomes more sparse at smaller scales

since the volume occupied by the eddies of size 4 varies as

V , = N, = 2 
3

Although this scaling behavior does not agree with numerical experiments,
it does illustrate the notion of a fractal set. Magnifying ordinary
objects of integer dimension D and characteristic length eo by a
factor /io yields a new set containing (e/ 0o)D of the original objects.

For example, a cube magnified by 2 contains 2' cubes with sides fo. The
dimension can therefore be defined by

D = [ln(Va/Va )]/[ln(e/lo)] (3.2)

where V is the volume at the different scales.

Cantur dust is an example of a set for which D is not an integer. The .

dust is constructed on the unit interval by an iterative procedure. At .. -. .

each step, all the segments of the interval which have not been deleted
are dividee into thirds and the middle third is removed:

4- 0 -1

1 2 1

3 3

01 21 27 81

9 9 3 3 9 9

- . .m ....- 55 5 5 5 . .... • -... . 5.. . .... -.... 1.... .. .
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The resulting set is self-similar. Magnifying a section of the set by 3
gives 2 copies of The section and therefore D = In 2/in 3. For the

Kolmogorov model, the volume resulting from rescaling an eddy with

V0 = o by e/io is

N,
0

14 2

which implies D = 7/3.

Numerical experiments on a wide class of self-similar sets including

Cantor dust have periodic ripples superimposed on the scaling law implied

by equation (3.2) (Smith, Fournier and Spiegel, in preparation):

in N = -D lne + T(lne)

r The function ' has a period In a where a is the magnification factor.

The oscillations arise from the lacunarity of the set; two sets with the

same dimension can have different distributions of empty volume. -model
turbulence may also display these oscillations since the passive fluid
regions in the model do not cascade.

Transient Chaos

The salt oscillator described by

x= x 6x + X - 8 KV

S = - [X + ax(x - )]

exhibits transient phase space trajectory for values of 6 for which
there is no strange attractor. The transient Poincare section looks

like the strange attractor for 6 in the chaotic range (Marzec and %

Spiegel, 1980; Spiegel, 1978; see figures 4 and 5). The numerical
experiments were run with E, = 10 and a = I. For 6 < .619, the system
has a simple limit cycle. At S = 0.61919 there is a period doubling
bifurcation followed by a succession of further doubling bifurcations as
- is increased. For S 0.622 the system is aperiodic. Between
0.62 <6 ( 0.622 the trajectory spends a long time tracing out what

appears to be a strange attractor before settling onto the limit cycle.

This behavior may be understood by examing two catastrophe sets in

the problem. It is convenient for studying the motion to define new
variables

E = 3(1/2 z + V)/Sz

.B = -(3/~) 1/2 '.. B --./6

s = (3/6) 'z x

1;,



-24

where E is proportional to the total energy and B represents the buoyancy.
A Poincare section in the E-B plane eliminates the rapid oscillations

along the s dimension. The potential V has one or two minima for B -

greater or less than 2/3, respectively. The point B = 2/3 therefore
corresponds to the catastrophe set of V:

2 V= 0

a'" V 0°.2i

In the range 0.62 1 6 < 0.622 the value of B repeatedly passes through
2/3. Qualitatively, this results in a trajectory composed of two kinds of

motion: a) the system is loosely bound by the quartic character of the
potential, and b) the system is tightly bound momentarily in one of the
two minima. The transition from b) + a) results in large oscillations
in s, while the transition from a) + b) occurs as oscillations are
damped out and the system is trapped in one of the minima.

The transition to one of the minima can depend very sensitively on the

values of s and s when it occurs. In particular, infinitesimal perturba-
tions about the state x = 0 or equivalently

E = 3V/6 2 .

(3.3)

will result in selection of one of the two minima. This divergence of

nearly adjacent points in phase space is characteristic of strange

attractors. The conditions (3.3) specify the catastrophe set of the
"super-po tent ial

V = 1/5 x - 4(6/6 x' + X/2 x2) - 4/3 E62x (3.4)

This set is plotted on the Poincare section for 6 = 0.625 (figure 6).
The trajectory crosses the set repeatedly. For 0.62 < 6 < 0.622 the
points corresponding to a limit cycle fall close to the catastrophe set, . .'

but for 6 < 0.61 the cycle does not lie near the set. The appearance of 6;1
the leafy transient trajectory is therefore connected with the approach of
the cycle to the set. As 6 approaches 0.622, the amplitude of the"-
attracting limit cycle decreases but the system is still in state a) At .'

0.622, the limit cycle loses stability to the strange attractor just ,
when the amplitude is small enough to permit transition to b). p

.%-.. ..... ..
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Figure 4: The Poincare section s =0 in (E, B, s) space for a value of 6
between 0.62 and 0.622. The crosses are the limit cycle and the dots are
the transients (Marzec and Spiegel, 1980).
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Figure 5: The section s =0 for 8 0.625. The dots lie on the strange
attractor.
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Figure 6: The intersection of the catastroph se equation3.)wt
the E-B plane (solid line) and the Poincare se tion of the strange
attractor for 6 =0.625 (dots).

NOTES SUBMITTED BY
William Collins
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LECTURE 4
Norrial Forms for Amplitude Equations

I
Introduction

The derivation of amplitude equations describing the onset of insta-
bilities in a physical system is a common method of reducing the problem
to one in which there are relatively few degrees of freedom. In this way
one can capture the essential dynamics near criticallity and understand
the nonlinear instability mechanism. It is therefore useful to develop a
method of deriving amplitude equations and to classify them according to
their basic types. This is the nature of normal form theory, which we
outline below.

In particular, the resulting amplitude equations may describe a
chaotic system in time. It is thus possible to find chaos arbitrarily
close to criticality in certain fluid problems, because the normal form
equations that are derived are at least of third order. We are therefore
interested in developing normal form theory in the case of multiple
instabilities where several competing modes lose stability simultaneously.

Equations of Motion

The example we refer to sporadically comes from rotating thermohaline
convection. Rotating parallel plates contain a layer of Boussinesq fluid
heated from below. The fluid's properties are defined by its velocity,
temperature and salinity. See Figure 1.

A

d vertical (11,W)dtemperature 0).".' _

salinity E

7. -horizontal length scale

Figure 1: Triple convection

Let the velocity of the fluid be j = (y,w) where y.is the horizontal velo-
city vector and w the vertical component of velocity. Incompressibility
implies

v .%= -az where v = (ax,ay)T. (4.1)

The vorticity component in the z-direction is given by

S V.( vA,) (4.2)

%-*-~.° -% --: J z!
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We have two equations and four unknowns specifying the velocity field -

we will choose w and as the velocity variables.

The equations of motion are derived from the continuity equation and

Ndvier-Stokes equations. These are coupled by buoyancy effects with the
heat equation for the temperature e and the equation for the salinity .
We only note here that these equations are in the general form

k t fU = U + 'N(U) (4.3) - 4

where in our example the field variable U z U(k,t) is given by
U = (K, , o,1) T. andX are linear differential operators,N is
strictly nonlinear differential operator and these operators depend on
the vector whose components are the control parameters in the problem.
In the convection problem x includes the rotation rate and thermal and
saline Rayleigh numbers, for instance.

Implicit in enuation (4.3) are the boundarv conditions, which are

often chosen to be mathematicallv convenient ones. We now approach the

problem of deriving amplitude equations valid near a point of a linear
instabilitv. We do this not bv the more established methods of
multiple timescales, but bv describing the methods of deriving normal
form equations.

The Associated Linear Problem

We consider the linear part of equation (4.3)

at ,?, U U (4.

As the only time appears only in the operator it, solutions U(x,t)
are separable, so we write

U = e ID(x ,y , z) (4 .5) " .

which, when substituted into (4.4) gives ..

(f1- st) D =0 (4.6)

This is an eigenvalue problem for s, yielding the characteristic value

equation

x, ) = 0 (4.7)

where the vector k, is related to the spatial structure of the solution. L "

In the triple convection example the vertical scale separates out so

P (x,y,z) = f(x,y) W(z) (4.8)

and one finds that the horizontal spatial variation is governed by the

Helmholtz equation

72f + k2 f 0. (4.9)

-"~ r -,



where k is the inverse horizontal scale of the convection calls. In this

fcase th solutions to (4.9) may be nontrivial if we do not assume simple

geometry with periodic rolls (as is usually done, of course). The ques-

tion that the solutions of (4.9) may be related to nonperiodic tilings 
of

the plane is an interesting one and may be worthy of further investiga-

tion. In any case given k, another eigenvalue problem appears 
for W

yielding an equation of type (4.7).

! ~ We now discuss the type of instability mechanisms to which we restrict

our attention. In the usual convection problem as we change a single

parameter, there is a primary instability to convective rolls followed by

a secondary instability to a Busse oscillation. See Figures 2 and 3.

Busse-Chandrasekhar instability
(Hopf bifurcation)

steady convection
(pitchfork bifurcation)

Figure 2: Usual instability scenario for convection

Figure 3: Busse oscillations in convective rolls

We are interested however in tuning a set of parameters to a value
where several bifurcation points coalesce. In this way we can bring to-
gether a number n of linear and nonlinear instabilities to a single point
on what is called the "critical surface" in A-space; the philosophy being
that we can learn more about the problem if we expand in a neighborhood
of the most singular place in parameter space. We thus get n eigenvalues
which pass through the imaginary axis in the s-plane at A Ao, as in
Figure 4.

X X.',-°s"
x ;

Figure 4: Eigenvalue scenario Figure 5
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The assumptions are that the remainder of the spectrum remains
bounded (and discrete for ease of presentation) away from the imaginary
axis for some range of "near" . The amplitude equations will of
course be valid only within some neighborhood of . The underlying
small parameter defining "near" in parameter spaceis

= S / I SO I (4.10)

where s and so are defined as in Figure 5. The modes governed by
eigenvalues with ResJ< s1 lare called the "slow" modes (0). Those
with Res <sare called the fast modes Mf because their dynamics are
primarily controlled by the slow modes as we shall see (Haken, 1977 calls

them "slave" modes). The assumptions made on the spectrum will in general
occur in dissipative systems where the spectrum crossing the imaginary ._

axis is not continuous. This will not occur say in an "open" system such
as convection in a box of infinite extent. Our description can be .
modified to take this into account, though the formalism for this is not
rigorous. These problems have been handled by singular perturbation
techniques in the past; see for instance the work of Segel (1969) or
Newell and Whitehead (1969) for the convection problem. In Hamiltonian
systems where all the eigenvalues are pure imaginary a different 4 4
formulation can be used which we do not discuss here.

Nonlinedr Theory

We now expand the solution to the original problem (4.3) in the eigen-
functions from linear theory corresponding to the eigenvalues s

fU(x,t) = i(t) Oi(x) + i (4.11).-T-

If, when x = x, there is a multiple eigenvalue g on the imaginary
axis, it is possible that the number of eigenfunctions of equation (4.4)
for s = s is less than the multiplicity of s . In this case we must
use generalized eigenfunctions for the Oi, defined

.Ji.A 1  (tijuj) (4.12) .'"

where kA is a matrix that can be put into Jordan canonical form if
desired.

We now substitute the expansion (4.11) into the full equation (4.3).

Using onthogonality properties of the eigenfunctions, we will get a set
of ordinary differential equations

Mafrc + F(cs,S)
(4.13) - ""

+-.";..,~

where a and s are vectors with components ai and si respectively, and
Fand G are strictly nonlinear.
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To a first approximation, we would say B decays exponentially to
zero. Setting B - 0 in (4.13) gives the usual Galerkin approximation.
Alternatively, the eigenvalues of W. are strictly negative so that II'Zis
invertible - hence we can write

B = -1( _ 6(aB)). (4.14)

This lends itself to a solution by successive approximations, namely

Bj+I = t%(-1(Bj - .(a,Bj)) (4.15)

with B0  0. We thus get an approximate solution for B which we
write as

B IB(a) (4.16)

For instance, after one iteration (4.13) becomes

a o, + F(a, - 1Cja,0)) (4.17)

whicn is the adiabatic approximation and would give the usual Landau
amplitude equations as discussed in Lecture 1.

We therefore have a formulation that reduces the dynamics to an
n-dimensional system of aniplitude equations

a 4a + F(a, B (a))8)

a + ril ("a'"'.

Normal Forms

Performing the above formal steps to derive equation (4.18) for a

P given physical system may be difficult or tedious. However, one can
decide from the linear stability mechanism what the structure of the
above equations will be. The reduction of (4.18) to a standard equation
is called normal form theory (Arnold, 1983).

Consider the schematic diagram in a-B amplitude space in Figure 6.

.--.

Figure 6: The Center Manifold

After a transient period - i/is L the motion lies for x x . on .
what is called to center manifold, Befined by a = (a). But a is not
the "natural" coordinate of this manifold. We thus seek a transformation
on that will ultimately simplify (4.18) into a normal form. We write

.... .. .. .
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A + V (A) (4.19)

where' V is a strictly nonlinear function of the n-vector A. The normal
form equations will be of the form

= A + g(A) (4.20)

where g is a "nicer" function than V'in equation (4.18). Substituting
(4.19) and (4.20) into (4.18) gives an equation for W_

1, %r (A + (A)) - g(A) (I + 6A'Y) (4.21)

where is operated upon linearly by ". (2)

which can be interpreted as a convective derivative of dimension n in
A-space.

A perturbative method for the solution of (4.21) is based on
expanding the nonlinear functions f, g and Yin a Taylor series in the -

components of A. On collecting terms of degree D in (4.21), we are left
with a sequence of linear problems to solve. Since there is a
solvability condition to be imposed, a restriction on the choice of g
results. Given the relevant scalar product on the space of polynomials
in the components of A, we must find the adjoint null vectors z such
that +

M C) (4.23)

The solvability condition is then

(z(i), ('(A +9'(A)) - g(A)(I + 6AW)) 0 0. (4.24)

We would consequently choose as simple a g as possible for equation
(4.20) under this solvability constraint.

In theory then, we have found the normal form of the amplitude equa-
tions. Our analysis however has only given the amplitude equations on
the critical surface at x = x. To know what is happening near xo,
it is a matter of writing all the quantities depending on x perturbatively
in A - Ao to obtain the more general normal form equations. Often this
may be done approximately "by inspection" by just perturbing the linear
terms of (4.20) only and leaving the nonlinear terms the same. Alterna-
tively we can do the whole analysis above without assuming x = xo,
though often the calculation would become impractical.

In this way the dynamics near criticallity has been reduced to a .
study of ordinary differential equations. In the triple convection
problem, we are left with a set of three first order o.d.e.'s. By
studying Poincare maps and using other techniques outlined in the first
three lectures, it has been demonstrated that chaos is exhibited arbitrar--r
ily close to the critical point when a particular triple instability
occurs. For this case the result of Shil'nikov is applicable and gives a
sufficient condition for chaos (see Lecture 5).

NOTES SUBMITTED BY
Michael Landman

.N-%
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LECTURE 5
Spatial Disorder in Large Systems .'

. To motivate the study of competing instabilities, consider thermo-
haline convection in the "diffusive" regime, where heat is destabilizing
and salt is stabilizing. We can choose the stability parameters to be M
and F (the Melvin and George numbers, respectively). These numbers are
both linear combinations of AT and A5, defined so that the steady state
(Landau) bifurcation is at 4 = 27ir'4/4 and the oscillatory (Hopf)
bifurcation is at Mo = 27,, > r At 14 = Mo, P = r there

* is a double bifurcation. The underlying linear problem gives a
characteristic equation for the eigenvalues s:

A. = s ,# F(s,x; k)

where x stands for the parameters of the problem and k is the horizontal
wavenumber.

At the multiple bifurcation in thermohaline convection, the character-
istic equation is

F(s, xo, k) = s2R(s, xo, k) .

" ".where R is the remainder. At a more general multiple bifurcation one
finds

F(s, x0. k) "9 5 (52 + W,2) (s2 + 2. . R(s, .' k).

The critical polynomial (Coullet and Spiegel, 1983) is defined for x in
the neighborhood of xo, by

P(s, x, k) : F(s,x,k)R(OU, xo , k) •IY

In the thermohaline problem the critical polynomial is

P(s,x,k) = s2 + + v, . -.

where v and v are the two components of x,

F =F- r0

Note that when v = 0, the eigenvalues are s = ' T7 (Hopf) anA when v 0
one of the eigenvalues is zero (Landau).

The matrix IMx which acts on the slow modes, defined in equation 0i%

(4.12) in Lecture 4, is

- - "..
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In the , v parameter plane below the sign of the eigenvalues are
indicated, and three sample paths are shown.

Landau

-.. .. -"

77%

DoublePf _ ( : ',:i._

The three paths indicate how the parameters v and v might change as
the experimentalist turns a single knob on the apparatus, keeping all
other knobs fixed. If a second knob is set just right, the path goes
through the double bifurcation at p = v = 0. This is called double
because the experimentalist must fiddle with two knobs to find it, and N.,.

fiddling with a third knob (such as the Prandtl number) won't make a big
difference.

The nonlinear evolution of the system is described by the amplitude
equation, which can be put into normal form. Recall the setup. The
nonlinear problem is

atV J? A~1 (5.1)
The critical or slow modes I satisfy

where
.7

det (K, - sl) = P(s,x,k) ,.

Now we will rederive the normal form a la Bogoliubov (Coullet and Spiegel, 2
1983; note equivalence to the Stuart-Watson method when operators are -. .-.*
diagonalizable).

We make the anzatz Sx t VxA
A'(x, t) = Vx, A)

, A : M.A + g(A)...

a4.:
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This anzatz turns (5.1) into

V ,A) (V) - AV (5.2)

where

* .>. , = (IM A 0 aA (5.3)":: ( )ij Aj aA  -J4 X--
* -(oA~A~a -.- °

In what follows, it is helpful to keep in mind the special case where 4

Xo = 0 (Landau bifurcation), and 7-x,=
Now expand g and V by Taylor expansion in the variables A = (A1,....Ak) ,

and let Vn arid gn be the (as yet unknown) terms of degree n. We know
that 91 is zero definition. We demand that V1 satisfies

:: (I'A) 0 aA V1 =M V1

In other words, V1 spans the generalized eigenspace of$ which has
the same eigenvalues as those of 1. Now we can proceed order by order I.
in the Taylor expansion of (5.2):

Vn = In(Nn-1, Vn-2, "", VI, g ... g2)- gn OA V1  (5.4)

where In are known terms, and Vn and gn are to be found. This '-
equation (5.4) for Vn cannot always be solved: We will choose gn to .
be as simple as possible, consistent with the solvability conditions:

V1In) <Vl' gn G'AVI).-. ,1..1 ...
where V1 is any vector in the null space of the adjoint operator of Jk:

1. = 0. -5..

- .. An inner product in the space of Vn's is needed. Define

f(X)Alk1A 22... lg(x)A ... = (x) (x) 6 ZIM 1  62 2 ...- -

where the first term is some inner product on normal function space. r

The solvability condition can be interpreted as follows: gn is the
projection of the nonlinear terms In onto the critical modes V1 .
Note the similarily of this method to the Lindstedt method used by Malkus
and Veronis (1958) in Benard convection, where Ot4 0.

The Bogdanov Normal Form

[ The normal form for the bifurcation when the linear matrix is (-0
and there is no symmetry, is

i~~i ~..v.:

A + (v - A)A + ( - BA)A: 0. (5.5)

Z 7 Z.

" L
*5.5:

..- ,..-. - .-. - --.. -. - --. - .,-,,- .- -,-.v ., -. .. ,- .- ' ,.,-*. - - . * *.- ' , .' _ _' ___.'_.,_,_ ,._ .'_--___. ,- ''-.; ; . . ':'!
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(It is assumed that a and 6 are order 1, and p and v are small. In the %

thermohaline example, a = 0 and a = 0, due to the A-+ -A symmetry and one
must include the cubic terms.) A complete analysis of the normal form "-4
(5.5) will not be given here (see Arneodo et al., 1985). 4 4

In the control parameter space there is a Hopf bifurcation (H) at

= , v > 0) and a saddle loop bifurcation (SL) at v > 0, P = (6a/7 )v.

%, .. *

J SL ' .:..

In region I, there is a stable limit cycle. The phase portrait and
time series are drawn below:

AL A l
-. ~.% .%.

VA J+k7*ff.-)

At the SL boundary between regions I and II, the period of the limit N
cycle has increased to infinity, and the phase portrait is

(Inutregion 1 almost all trajectories escape to infinity.)

Just before the saddle loop (in region I), the time series shows ..
"periodic intermittency," or relaxation oscillations.

-4.

A.".1i r it::

, -% % 1

7C"
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By tuning the parameters and v , can be made to the relaxation
oscillation occur as close as you want to the onset of instability
(Arneodo et al., 1985). This is unusual because relaxation oscillators
are usually seen at large amplitude.

When there are three competing instabilities (which can occur in
triple convection), it is possible to tune the three parameters so that
chaos occurs as close as desired to the initial instability.

-Asymptotic Analysis

Asymptotic analysis yields amplitude equations which are simpler than
the full normal form. In the case of three instabilities, the asymptotic
equations are chaotic

Asymptotic analysis on the normal form for two competing instabilities
(5.5) gives the scaling

A EA', d/dt = 4 d/dt', =4 , v = V

This is chosen to preserve the linear dynamics at leading order. When we
r" drop the primes, the equation becomes

A = A +A - BA2 = j cAA"

' When the right hand side is neglected, A > 0 if the friction v is
positive, and A blows up if the friction is negative. When the scaling
is p = EP the leading order asymptotics is

A + vA - BA2 = 0.

The above equation is conservative, and the dynamics are qualitatively '..
different from those of the full system. The normal form method doesn't
have this difficulty.

Three Competing Instabilities

In the case of three competing instabilities, the asymptotic analysis
which preserves the linear terms,

L 0 0 1 "2)
-Po -PI -P2"" '

is

S"A" + 2A + v1 A + voA = * An . (5.6)

where n = 2 if no A ---A symmetry is imposed, and n = 3 with the symmetry
(as for fluids). This asymptotic equation (5.6) contains interesting
behavior - includinq chaos. The full normal form treatment would presum-
ably yield qualitatively similar behavior, but is much more difficult.

. '.. 6..N.

.. .'. L..-I.



Consider the case n = 2 in the asymptotic equation. There are two
stationary solutions (A = 0), at A = 0, and A = Po. (The * sign in
(5.6) can be made a plus sign.) Numerical experiments (Arneodo et al.
19b) reveal the sequence of events pictured below.

In figure (a), the fixed point at the origin is an unstable saddle
focus, and the other fixed point is stable. As some parameter is changed
the staple fixed point undergoes a Hopf bifurcation, leading to the stable
limit cycle shown in figure (b). As the parameter is increased further,
there is a homoclinic connection (figure (c)). At this homoclinic
connection a single trajectory approaches the origin as t approaches both
positive and negative infinity.

ia, (b) (C)

A cascade of period doubling bifurcations, leading to chaos is obser-
ved between figures (b) and (c). This chaos is related to the homoclinic

orbit of saddle-focus type, using the ideas of Shil'nikov (1968) and
others (see, for instance Arneodo et al., 1985).

The analysis of the behavior near a homoclinic orbit is separated into
two regimes: 1) the flow near the fixed point, where adjacent trajectories
are sheared and wrapped up, and 2) the flow away from the fixed point
which brings the unstable manifold back to the origin, but which is
otherwise well behaved.

Near the saddle focus at the origin, we can choose coordinates so that
the ODE system is "" .,..

x = -ax + v +

y = -ay - x * ...+

z = z • ..

>e Poincare map for the flow near the homoclinic orbit is the com- -

position of two maps - describing the local and global flow mentioned

earlier. Thire are two surfaces of section: pO is a patch of the plane :.

y =0, and P1 is a patch of z = h. Both of these surfaces are pierced
by the homoclinic orbit as shown in the figure below. .. '
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For ease of analysis, we will assume that the linearization is exact
near the origin. This can be arranged by a (nonanalytic) change of coor-

dinates using Hartman's theorem. Then the mapping from (xo , zo ) PO

to the polar coordinates (p, e) E. p1 is

p xo (zo/h)a/B , e w/I ln(zo/h)

A line of constant xo, with zo > 0 wraps around the z axis in a

logarithmic spiral:

______ ___-___.(iI..

The map from P1 back to PO is constrained by jhe fact that there
is a homoclinic orbit. In other words p = 0 on P must return to
somewhere on the line z = 0 in PO when there is a homoclinic orbit. As
some parameter is changed, we assume that the unstable manifold of the
origin returns at z > 0 (figure (a)), z = 0 (figure (b)) and then z < 0
(figure (c)).

(a) (b) (c) ;',.:

It is of course difficult to calculate when this homoclinic orbit
occurs without the aid of a computer; this makes the analysis of the
original asymptotic form (5.6) difficult.

We will assume that the map from P1 to (x1 , zI) E po takes

the form

xi = pcose + ) + x

z1 = psln(e + ) +z

where x, z and are constants ( <1 1). More general mappings,
including shear and contraction or expansion, do not affect the results

when z is small enough (i.e. close enough to the homoclinic orbit).-." !. . ..

~ ~W--..9.\- - ,
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The composition of the two maps gives the return map from P0 back to
itself:

x= xo (z0/h)
6 cos[5 ln(z0/h) + (~]+ '

z= X0 (zo/h)6 sin[ ' ln(z0/h) + +'z

where the two parameters

6 u a/6 Li/B

characterize the linear dynamics near the origin. The return map for a
strip with x constant is drawn below.

LThe mapping 7 can be rescaled to yieldA

X= 1I bXZ6 Cos[ ln(Z) + ~

Z= c + XZ6 sin[ ln(Z) + I
where b =(h/-x)6I(6l1) and the other scalings, are found in Arneodo et
al. 1985. Under the assumption b = 0, we always have X =1, and this map I

reduces to a one dimensional map:

Z= C + Z6 sin[ ~'ln(Z) + ](5.8)

IAt the homoclinic orbit, c =0. Thus c: may be thought of as the
control parameter. The figures below, from Arneodo et al. 1985, show the
behavior of the 1-D map (5.8) for various parameter values.

Z->

'W.

Graph of the unidimensional map (9)for parame-
ter sadues satisfving condition (6 13): 8 - 0.5. 5. 0 Graph of the unidimensional map fo )r~ parame.

2 717. ) c 52 h) = .12: c) -0.In a an hI t e r values that do not satisfy condition (6.11): 85 1.2. t 5,
7177re' iat cgn5 i th e arbl 7 thInat and b th 0 - - 2.7177: a) ( - 0. 1 h)I (- 0. The square in a) defines an I

udc i' oat reg9 ~ ins in),, th 0.ial Z7, that, ar 10 nv.ariant invariant region %%here (6.19) produces. as in fig. 10a. a single-
5 1I25. 17 ,,, 10 25 humped mapping Scales: Z7,) ,, 0. (7,) , -0.75,

:j.&:~~~~.:s.:::':7, 75. '(7_~~ 0.75&X ,Z j & *- ,{ -'-,
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In the 6 < 1 case there is an infinite n-mber of unstable fixed
points (periodic orbits of the ODE) at c = 0. As c decreases to zero
from above there is a cascade of period doubling bifurcations leading to
chaos as each one of the valleys on the graph of Z' vs Z pushes through
the diagonal. Figure b above shows the graph as one of the valleys
completes its "universal sequence. The dynamics in the box are
equivalent to x > 4x(1-x). Therefore there is a cascade of cascades of
period doublings, each leading to chaos as c decreases to zero.

Unfortunately this chaos is difficult to observe, because if any Zn
is negative, the mapping stops. This is because the trajectory of the
ODE has returned below x-y plane and shoots down the negative z axis to
infinity.

For 6 > I there is only one fixed point near the origin for c > 0 and
this is always stable. For larger c, there is chaos which is outside of
the realm of validity of the analysis, yet which is easier to detect than S
the subtle chaos of the 6 > 1 case.

Spatial -temporal Chaos

The radial motion of gasses at the surface of the sun can be measured
by Doppler shift, and a time series of the "five minute" oscillations
looks chaotic.

A. UNFILTERED TIME SERIES |.

+0.5"

0.5-

U'B. FILTERED TIME SERIES
+- -0.5 "

-J

0-

+0.5-

TIME (Hours)

Typical Velocity Curve for Individual Oscillation (from White

and Cha 197 3)

' I .

,. - * '. S.- ^ - ,' -^ , , . ' , '~ h%. " '".% .



One cart cook up a system of ODEs which exhibit chaotic oscillations,
but this model must be wrong because it assumes that the spatial structure
is regular. A superposition of time series taken at adjacent positions
shows that there are packets of waves propagating erratically.

0) -- )
-11'

o .C)

Time-

Velocity vs time at different positions along a line. Adjacent points
are i.8 Mm apart (Stein and Leibacher, 1974).

In order to describe these spatial structures, we want to allow a
continuum of wavenumbers. In the previous examples the patterns were
assumed to be periodic and vie obtain an ODE for the discrete amplitudes
in k-space. In the following, an integro-differential equation is derived
for the continuum of amplitudes (Coullet and Spiegel, in preparation).

The vertical velocity W and temperature difference e can be written

W(x,z,t) = fWk(z,t)l-ik'Adk

e(x,z,t) = fek(z,t)A-iJ'xdk

where , and N are vectors in the horizontal plane. The convection 4 "
equations can be written in k-space as

2atrk =MkI+ NOYU)
where

k(lTq) = f dpdq (k-p-q)( () , q, p,qj + . .-

At the onset of stationary convection, the linear equation for the
critical amplitude is

Ak : (R-Rc)Ak - (jN2 kc2) 2Ak OkAk

............................................................-.. .... ..-
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Tne Boyolioubov anzatz in this case is

-lyk(z,t) =V/k(Z, {Aq})-A.:.

where
Ak = okAk + rkl{Aq})

Here the curly brackets represent functionals. Plugging the anzatz into
the equation yields

k1/ NO ( Aqi)- f dq r q -U Ap) 6V/6A
Aw k q

where

~- II= dq q Aq_ -/ A kL:.

(Note the similarity of these equations to equations (5.2) and (5.3).)

This formalism, is not supported by the center manifold theorem, and
there are problems if the amplitude does not decay sufficiently fast as k
leaves the circle of critical k vectors. Nevertheless, this can beThought of as "the physicists center manifold" technique..-

Modulation Theory

An alternative approach to the k-space treatment is modulation theory.
Here a slowly varying function of space and time modulate the critical
di sturbance.

The modulation function is written as a function of the slow space
variable X = Lx. Here the fields are written as (supressing z dependence)

l (x,t) = *(X,t) L k o x + c.c.

This leads to the Newell-Whitehead-Segel equation (in one horizontal
spatial dimension)

• - %.. . .

-- ?~t = xx-

When there is an oscillatory instability, we have

S. 'I(x,t) = (X,T)*. k ox- ° t + ,(X,T)L!kOx+w t + c.C. ' : ?-

where T = et is a slow time. Here p is the amplitude of the right-going
wave and * is the amplitude of the left-going wave. Modulation theory
gives (after suitable scaling - see Bretherton and Spiegel, 1983)

T = C& + (1+ ++ (5.9)
-- = E+ + + 1I ,2 + M" 121J

-............ ,

i ::.;,M :: .. .... ... ....... " ................... "..... ".............. '"

".,-."-' t .-T. ,_x ' . _t . : t . _s ._x_." . , ' _ ,t - '=. . " " - " ',. ." - " • t . .-x +. - " . ' , . ,. ,,..,.' _, •" , "• " • . - • •• -
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where 1 is real and a, s are complex. From the left hand side of the
above equations, we see that wave packets move to the left or right with
group velocity 1 in this scaling.

It turns out that Re(a) = 0 for thermohaline convection with free
boundaries and fixed salt and temperature on top and bottom. This term, "-. ..- "
if it is present, renormalizes the growth rate of a pure traveling wave;
if 7 = 0 and ix = 0, then equation (5.9) implies

112T = E((01 2  + Re()(.14

As a consequence of Re(a) = 0, the pure travelling waves grow
exponentially until fifth order terms in the amplitude equation become -. -"

important, or until there are modulational instabilities of the spatially
uniform state. We will consider these modulational instabilities,
assuming r= 0 [which is okay provided Re(o) < 0]. By changing
coordinates to and T , where

X-T, T =- 3 =5ET x a

We get, on scaling 44(a) to 1,

a = T + ( + i)P + 1,1 (5.10)

This is a special case of the complex Landau-Ginzberg equation: the real
part of the cubic term is "accidentally" zero.

In the case where v is large, t can be rescaled to yield the
nonlinear Schroedinger equation in the limit of small c.

+ Ie: * +

(Here 4/c is assumed to be order 1). When c = 0 these equations have a ..
soliton solution

= A - Vt)

For c small, the amplitude and velocity are functions of a slow time ET . -

A = 2A(1 - V2) - 2/3 A3

- = -4/3 A2 V

This is a dull dynamical system the solitons either die away (A. 0) or
come to rest (A-+ 3 , V- 0). As shown below, a soliton moves a finite 4
distance and stops.

NM d
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In numerical experiments with e 0, however, a single soliton seems to
split into two, and the interaction of many solitons leads to intermit-
tency in both space and time. The following figure, from Bretherton and
Spiegel (1983), shows the evolution of equation (5.10) started with a

Lsmall amount of white noise. Remember that this is just the modulation

4

of the wave packet, seen in a reference frame moving with the group
velocity. These results bear a resemblance to the observations of the
solar five minute observations.

Finally, we mention another application of the asymptotic equationU (6). One can do a WKB analysis on the Landau.-Ginzberg equation by
assuming

'p(x,t) - R(x,t) e"'","t

and eliminating R variations adiabatically. The result is the Burger's
equation, but the diffusion constant can be positive or negative. For a
negative diffusion constant, we must add a stabilizing term with 4 spatial
derivatives. This leads to the Kuramoto-Sivashinski equation for U'. cp.:

-+ UU. + + 0.

l_. ,sI we t assum an teontrution of m ayoltnledt neri-...."

and integrate the equations once, we get.*-

f"' + fV cf + 1/2 f' 0.

,,.. -,%
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This is a special case of the asymptotic equation (5.6) for 3
competing Instabilities. In the present case, there Is no f" term, so -

the equation is Liouvillian (I.e. volumes are preserved.) This equation .,
has been studied by Spiegel and Fournier (in preparation), where It was
found numerically that the trajectories were on a torus In the initial
value problem: I Ile

0

-2 , ,

.4

S I I I I I I "'4 " I

_. I . - . .*---.

- -
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Intermittency

Yves Pomeau .

I. Intermittency in maps and ODE

Transitions to turbulence in ordinary differential equations (ODE) and
maps is known to occur (with codimenslon 1 in the parameter space) in four -

different ways.

l) Through a "first order" or subcritical transition. This happens
for instance in the Lorenz system where fixed points lose their stability
to give place to a chaotic attractor to which they do not belong. Within
the framework of codimension 1 approach, one cannot control this behavior,
although something can be done in codimension 2 (see lectures of E. Spiegel
at this GFD conference).

2) For the time being, they are three registered "second order" or
supercritical (in a loose sense) routes from a regular behavior to a chaotic
one. They are listed below with some comments. O.

2i) The Ruelle-Takens-Newhouse route: It describes what happens
when a new periodic motion appears on the top of a time dependent dynamics
with a finite number (3 or 4) of independent frequencies. Under rather
special hypothesis (depending on the number of base frequencies), one may
prove that adding a new frequency to a quasiperiodic regime with 3 or 4
frequencies leads a chaotic behavior on a strange attractor. However, the..
detailed analysis of this kind of transition meets awkward difficulties
related to small denominators in every expansion that can be made, and so
the final word is not yet said.

2ii) The period doubling: This is covered in E. Spiegel's lecture i1
(same volume) and is also well explained in the book by Collet and Eckmann
(1980).

2iii) The intermittent transition: This transition may occur when a ,.. .
limit cycle loses its stability, through a subcritical bifurcation. The ___

gross phenomenology is always the same: for a value of the control parameter
R (that can be, for instance, the Rayleigh number in convection experiments) .

less than a critical R., one observes regular (and thus stable) oscilla-
tions, lasting forever. For R a slightly higher than R., the same regular
oscillations persist most of the time, but are sometimes interrupted by

* large bursts. These bursts are followed by a relaminarization, i.e. by a
return to seemingly regular oscillations, then interrupted by a new large
burst, and so on. As R gets close to R,, the mean time interval between
consecutive bursts increases indefinitely, although their amplitude does
not change significantly. Inside this picture, some variations take place,
and they can be explained by considering the various possible subcritical
instabilities of a limit cycle.

Let M be the (real) Floquet matrix describing the first return map
linearized around a closed trajectory. This one goes from linearly stable *.

to linearly unstable whenever this Floquet matrix gets one (or more) eigen-
value - with a modulus larger than 1. This may happen In three different

• o e- . . - ... . . ... ......- . - #-€ °. .-. • .'_" ." , _ , " r- ]d' zr.- ' 'p
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fashions, because the root of the secular equation M - XII = 0 (X = eigen-
value of the Floquet matrix, ' determinant of -, I unit matrix) may go 4

out of the unit circle either through (+1) (type I intermittency), through '.. .
(-1) (type III intermittency) or through two complex conjugates eigenvalues
(type II intermittency).

Paul Manneville and I (1980) discussed theoretically type I intermit-
tency that has a rather simple picture. This splits in two parts: first
one has to describe the vicinity of the fixed point, where the seemingly
periodic (or "laminar") phase of the motion takes place, then one has to
explain how the bursts can end into a new laminar phase (this is the
relaminarization process" in a terminology freely adapted from fully

developed turbulence theory).

It is worth noticing at this point that, in type I intermittency, the
bursting regime can be chaotic, quasiperiodic or even periodic, depending
on the specific situation one is considering. This constrasts with types
II and III, where the bursting regime is generically chaotic. This
bursting regime is periodic or quasiperiodic when it occurs at ends of a.-

periodicity windows (in the parameter space) for circle diffeomorphisms,
2i.e. first return maps for flow on a T torus. In Id maps with a single

maximum, as the quadratic map X -* 1 -Ax2, 0 < A < 2, -1 < x < +1, the
periodicity window of stable generic periods (= not obtained by period
doubling), ends on one side (as A increases) by period doubling and on the
other side by type I intermittency. Again, this intermittency may corres-
pond either to a chaotic or to a periodic behavior, as the fine structure , -
of the quadratic map has (Collet and Eckmann 1980) an overwhelming
complexity nearby the first occurrence of a new generic stable period in
the parameter space.

In any case, the mean interval between two bursts increases as

(R-Rc) - '1 2 when the control parameter R tends to R,, not staying In
the intermittent regime. Many predictions of this theory have been checked
experimentally in Rayleigh Benard (R.8.) convection (Berge et al. 1980) and
in chemical oscillations (Pomeau et al. 1980). In this last case, it was
even possible to exhibit a detailed first return map, In complete agreement
with theory.

The phenomenology of type III Intermittency Is very similar to the
previous one. Here, the basic mechanism Is a subcritical period doubling.
Nonlinear effects, instead of keeping the weakly unstable subharmonlc
fluctuations at a low level near the bifurcation, tend instead to increase > '-'.

their amplitude in a "catastrophic" manner. Accordingly, during laminar
periods, one can observe slowly growing subharmonlc fluctuations. They
manifest themselves as an amplitude difference between consecutive
oscillation maxima. The relaminarizatlon process Is less obvious than In
type I Intermittency. It relies upon the fact that a slightly beyond the
Instability threshold, attraction toward the periodic trajectory along Its
stable manifold Is still efficient and that a point wandering in phase
space has still a good chance to land nearby this stable manifold. When
this happens, this point will come next to the closed trajectory before to
feel the weak instability along the unstable manifold. All this has been
checked (Dubois et al. 1983) experimentally In great details in a high-
quality R.B. experiment by the Berg group in Saclay, although at my
knowledge no ODE has yet been found with this sort of behavior. One of the NL
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outcomes of the theory is that, near the threshold, the mean duration
between two bursts diverges as (R-R,)-' near R,. Exactly at
threshold (R=R,), there is still an intermittent regime (although for

type I intermittency, the limit cycle still exists at threshold). This
regime is really intermittent in the sense of mathematicians. The
probability distribution for the duration t of a long laminar period is as
t - 3 as t - '. Although this probability law has a finite total weight,
the mean duration between two bursts diverges. So, as long as is the
observation time T, there will be during this time a laminar period of
approximately the same length. If one plots the turbulent bursts on the
real line, the set of points drawn in this way will have the fractal
dimension 1/2. Another way of telling the same thing is to notice that,
during a long observation period T, the number of turbulent bursts will be --

of order T"/2 C, and the coefficient C keeps fluctuating with a relative
amplitude of order 1 as T . '

Type II intermittency has never been observed as far as I know, either
in numerical simulations of ODE or in real life experiments. N. Weiss
(private communication), however, pointed out to me that there is some hoFe
to observe this particular transition in PDE-simulation of convection
with internal heating.

II. Extended intermittency

Looking at the recent work of Kaneko on string of maps and at previousstudies of Paul Manneville on the PDE Y,+YY, = [- (a 2 + l)2]Y, for

e= 0.4, I've been laid to consider the possibility that intermittency might
be also relevant for the transition to turbulence in extended systems.

Let us consider, as Kaneko did, a string of ld maps, each one being some
local oscillator near an intermittent transition. Let us turn on further-
more some coupling parameter between neighboring "oscillators." One may .

believe that. once an oscillator has jumped into a bursting regime, It will
change the w4,.,king point of its neighbors, and make them jumping to a ..-.- ".
bursting regime too (this is the "contamination" process), because these -'

oscillators are nearby a subcritical instability and are thus unstable .-'5'
against finite amplitude fluctuations. &. %

Consider now a 2d parameter space where the coordinates are the nearest-
neighbors coupling strength and (R - R,), as measured for each individual
oscillator. There is, In this parameter space a special point, R R"
and zero coupling, where one certainly has extended Intermittency. By
continuity one may guess that a continuous line can be drawn from this -j

special point (the "origin") such that there is a transition across It from
globally stable oscillations to sustained chaos, this chaos being intermit-
tent for control parameters just on the transition line. Moreover, it is
likely that the transition remains of 2d order (in the terminology of
equilibrium statistical physics) at least nearby the origin. If this is
true, a natural question appears: what is the universality class (if there mid

is any) of this transition ? I conjecture that this could be the one of
directed animals. This problem has been analytically solved In 2d for a .... ,
square lattice by J. P. Nadal et al (1982), thanks to a clever "Bethe -
Ansatz," although some questions remain unsolved. Following earlier sugges-
tions (1982), the time direction should be the dimension along which the . ,

animal grows, so that a linear (ld) string at the intermittent transition 74

.. . . - - .- -- - -- - -,- ---- - ".-
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would correspond to the 2d directed animal of Nadal et al. (1982). This

conjecture may be justified as follows. -

Once an oscillator of the string begins to burst, it will either
trigger the bursting of neighbors or settle back to the regular oscilla-
tories before it contaminates its neighbors. This is reminiscent of the
rules needed for growing a directed animal: from a point on the animal
that would correspond to a bursting oscillator, one may either grow links
in the forward direction (and so have bursting neighbors), or stop building
the animal from this point. The "critical animal" is reached for a well
definite ratio of the probability of dying or of contaminating the
neighbors. Indeed, as usual for critical phenomena, the universality class
should be relevant as far as the scaling properties (= the critical
exponents) of each individual realization within the class are concerned,
although the short range structure depends on the details of each
realization.

A possible (?) realization of this extended intermittency could be
sought in R.B. thermal correction, where the gross structure would be held
by differential heating to avoid slow phase turbulence. In that case, the
short time scale would be of the order of a rotation period in a roll.
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Large Scale Instabilities of Cellular Flows

Stephan Fauve

INTRODUCTION O,

In past years the unpredictability of turbulent flows has been under-
stood in the framework of dynamical system theory, and the words "chaos"
or "weak turbulence" are commonly used to describe flows with temporal
erratic behaviors, but "simple" spatial structures. Such situations
exist in laboratory experiments, where the spatial degrees of freedom can P .
be quenched by the boundary conditions. An important question to
investigate is whether and how dynamical system theory can be extended to
the study of situations that involve many degrees of freedom, associated
with the different spatial scales that interact in a turbulent flow.

As a first step in that direction, we will consider how the elementary
bifurcations that lead to cellular flows are modified when spatial
degrees of freedom are taken into account; we will show that marginal
modes result from the broken symmetries at the bifurcation and can lead
to large scale instabilities of the cellular flow.

The first part of the talk concerns well-known large scale
instabilities in fluid dynamics, presented with the formalism of
phasedynamics. The second part consists of recent results obtained in
collaboration with P. Coullet and E. Tlrapegui.

1. EXAMPLES OF LARGE SCALE INSTABILITIES -

1.1 Collective modes of stationary cellular flows

In many nonlinear dissipative systems driven far from equilibrium by
an external homogeneous forcing, there is a transition from a uniform
state to one varying periodically In space. The widely studied example
is the Rayleigh-Benard instability, which occurs in a horizontal layer of
fluid heated from below; when the temperature difference across the layer
exceeds a critical value ATr, the buoyancy force overcomes the dissipa-
tive effects of viscous shear and thermal conduction, and the motionless
state spontaneously breaks up into convective cells. When the temperature
is fixed at the boundaries, the buoyancy effects cannot drive the motion
on large scales compared to the height of the layer, and small scale

motions are inhibited by the dissipative effects; thus the instability
occurs at a finite wavenumber' 0 , and the growth rate of the unstable
modes of wavenumber , reads

k) = uj - o(k2 - - )2 + o_(2 _V )3] (1)"

where i measures the distance from criticality (paAT - AT,).

A simple one-dimensional model that mimics this instability is (Swift
and Hohenberg 1979)

u, - (V u - u (2)

,,.*'>'-
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The instability first occurs for 0 = , with a finite critical wavenumber
For > 0 there exists a band of unstable modes around f., (seeFigure 1)..F'

.p.-.1'

Figure 1: Neutral stability curve

The concept of wave packet can be used to take into account the inter-
action between these modes in the post bifurcation stage (see for instance,
Newell 1974); we write

u(x,t) = A(X,T) exp'i =x + cc + p. (3)

where A(X,T) is the slowly varying envelope (in X and T) of the roll
pattern of wave number < c, and we look for an evolution equation for
A in the form

AT = f(A, Ax, A .) (4)

The main assumption is that, in the vicinity of the bifurcation, the
critical modes vary on a time scale much slower than the one of the other , .
modes, and thus contain all the information about the asymptotic time
dependence of u near the instability onset. We next assume that V. and f ".
can be expanded in Taylor series In A, Ax, Axx, ..., and get from (2), "
(3), and (4) a set of linear Inhomogeneous equations by identifying the ._
terms at each order A, Ax, A2 , AAx ..... Solvability conditions
then give the evolution equation (4). The form of this equation can be
found by symmetry arguments:

-Translational invariance In space implies that if u(x) is a solution
of (2), u(x + V) Is also a solution; from (3), this implies the
invariance of the evolution equation under the transformation

A + A exp i -. c..

Therefore the only possible nonlinear term, up to the third order in A is,
IAI2 A.

-Space reflection invariance implies the invariance of the evolution
equation under the transformation

X +-X, A.A A.

Therefore the coefficient of AlA A should be real. The 'linear part of
the amplitude equation can be obtained by the Fourier transformation of
equation (1). The amplitude equation thus reads at leading order

AT -A* + Axx +EAI A E.- ±1 (5)

. -

"P 
-. 4" 

°
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where we have simplified the coefficients by appropriate scalings of
amplitude and space. A similar equation has been obtained for the
convection problem by Newell and Whitehead (1969) and Segel (1969).

a) The Eckhaus instability (1965) S....

We consider the evolution equation (5) for a supercritical bifurcation
(6 -1). The solutions of the form

Ao(X) = Q exp iqX, Q' = - q', q < p (6)

represent perfectly periodic patterns of wavenumber K + q. To study
their stability, we write

A(X,T) : Ao(X) + a(X,T) exp iqX, (7)

and find from (5)

aT = -2Q2Re(a) + 2iq a + ax - Q[a 2 + 21a12] -Jaja (8).

Writing

a = R + iy (9) .

we get from (8) ... ,

RT = -2Q2R - 2qxR + + (lO.a)

E o = 2q Rx + yxx + (10.b).J(lb

Equations (10) read in Fourier space

The elgenvalues are given by ..-

-A±( ) = -(Q2 + ,) ± (Q4 + Ifq22) ' -.

In the long wavelength limit (k. 0), we have

._A ) -2Q2 + o(,2)

The corresponding mode is damped; it is an amplitude mode,

Q

r This second elgenvalue vanishes in the long wavelength limit. This Is
due to the translational invariance of the problem. Indeed, adding a
perturbation a = iy In (7) corresponds for small tp to the transformation

qX * qX + ((p/Q) (12)

- , ---- .. . ........... ...- _. -
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in the solution (6), and therefore to a global phase shift of the pattern.

In the complex plane, this corresponds to a displacement along the
circle of radius 1Ao1 = Q (see Figure 2)

Figure 2

Thus the translational symmetry implies that the phase of the periodic
structure is a mode with a vanishing growth rate in the long wavelength
limit. We thus expect that this mode can be easily destabilized. We see

r from (11) that this indeed occurs for Q' = 2q' or V = 3q'.

This is the Eckhaus instability that limits the range of stable
wavenumbers around1S (see Figure 3).

14,

Figure 3: The Eckhaus instability

The mechanism of this instability can be understood as follows: let us I
* consider an initial condition shown in Figure 2; the dotted line

represents a perturbation of a homogeneous solution A,, with R and cp
varying periodically in space. The first term of the righthandslde of
0l0.a) tends to contract the dotted circle along the circle of radius Q
(R + 0), but an antagonistic effect is generated by the term 2qR. in
(10.b0, that consists of a stretching which tends to spread the phase
along the circle of radius Q (arrows in Figure 2). When q is large
enough, this effect becomes important, and the phase instability occurs.
In the long wavelength limit, R is damped on a fast timescale compared to
the one of (9, which is nearly marginal. Therefore R follows adiabati-
cally the gradients of the phase, and can be eliminated from equations
(10) to get an evolution equation for the phase. Its linear part is the
Fourier transform of (11)

2l -IQ2J)p 2 q4 QO)-XXX
.T 1 - (

The form of the nonlinear terms can be determined by symmetv, considera- ~4
tions. The translational invariance in space implies the invariance of
the phase equation under the transformation e

T+ sC (C constant)

waveumbes arund'2d(se Fiure ). " %i :*4
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Therefore p cannot appear explicitly in the phase equation, and the
leading order term is cp However, this term is also forbidden
because of the reflection symmetry which implies the invariance of the

* Ii phase equation under the transformation

X + -X, p"-

We thus get at leading order an equation of the form *

TT-D(p~, q) cp..- + g <P'- (13) t. 4

We next notice that cp = hX is a particular solution of (13); from (12)
and (6) we see that it represents an homogeneous solution of wavenumber
q + h/Q. Its linear stability is governed by the dispersion relation

A= -D(q + h/Q)j. + 0(44) (14)

.. We can also compute s by linearization of (13) near cp = hX; we have

A..= -[D(q) + hgJt~. + (I,4) (15) .

-* He get from (14) and (15)

g = l/Q ID/aq

This implies, as noted by Kuramoto (1983), that the nonlinearity in the
phase equation is associated with local changes in the phase diffusion

coefficient,.hs ifso

can The nonlinear term in (13) does not saturate the instability as we
can see by computing the amplitude equation for an unstable mode of

... wavenumber o; we write

yp(X,T) - &JT)e'4o + cc

This mode is marginally stable if

(f Doyx -kaxxx -0

or ,--

Do. -.-..

We consider the weakly unstable regime D < D., and expand

D - D. - eD, - e'D2 . .

,.'rf +C zF2 +-.

* We choose the time scale 8 T = c i8, tn order to have nonlinear -P
2' and time dependent terms at the same order in the equation fortj. At t---

order c, we find the linear problem, and

( &(9j)e'-"x + c.c.

,,,9 . . . . " . . . . . ., / . . . .. . ,w , , . . . - " " . . - ~ . " . . . % ., . . ; . . .. * .do r J .-
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At order C , we get

i - -4

and the solvability condition implies D, 0. The amplitude equation
is obtained at order c 3

2" . ..

+ nonresonant terms

The solvability condition gives

and the Eckhaus instability is thus subcritical in this long wavelength
limit. Moreover we can write the evolution equation (13) under the form
of a conservation equation

and see that the spatial average of cp is a conserved quantity for
periodic boundary conditions along the X axis. Therefore an unstable
periodic pattern cannot evolve to a stable one, by continuously changing
its wavelength. Thus, in the unstable regime, changes in wavelength
occur by nucleation or annihilation of a'pair of rolls; so the instability " -
does not saturate at large wavelength, and therefore the description of - .
the unstable regime should Incorporate the fast modes that we have
eliminated.

b) The zig-zag Instability

We consider now the dynamics of the torsion modes of the roll pattern
described by (6), and look for long wavelength perturbations of the phase - ".-'.*
along the Y axis (see Figure 4).

Figure 4: Zig-zag instability

We have thus to consider solutions of (2) under the form

u(x,yt) - A(X,Y,T) e'ICX + cc (16)

We have, as in section l.a. a family of stationary solutions for A

Ao(X) = Q e 'Ix , Q - - q2 , q2 < p (17)

'.,..
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We consider perturbations of the form

A(X,Y,T) = A0(X) + a(Y,T) e'qx (18)

III with

a(Y,T) = R + iTo (19)

-'. The form of the nonlinear evolution equation for y can be determined
by the following symmetry arguments:

.A"..-
-invariance under the transformation

." . (P + C (translational invariance)

-invariance under the two transformations

[ ~X -X, ' -
(space reflection symmetry)

Y + -Y

i We have thus at leading order

(PT DA D(P Y Y pry. T + g1, (( Y Y (20)

D± and K.1 are given by the linear stability analysis; gJ. can be
computed as follows: we first notice that

- (P = hY

is a particular solution of (20). We see from (16), (18) and (19) that
for h small, It corresponds to a slight rotation of the roll pattern, of
angle

" Q(* + q) QJ . ,L

The rotated pattern has a modified wavenumber

and

The zig-zag instability occurs for decreasing DL, when Di. vanishes.
The nonlinear term renormalizes the diffusivity which becomes D4 + 3gj.y2y,
and saturates the instability if gL 0. This can be checked by computing
the amplitude equaton for an unstable mode

rf(Y,T) - 3.() e''0 Y + CC

We get

V - 3gj1)5

~ .r.. - * -~ *---~r-%
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Consequently the zig-zag instability can be supercrltlcal. In that
case, the evolution equation (20) for the phase also describes the
unstable regime. The subcriticality of the Eckhaus instability thus -

appears as a singular behavior of one-dimensional cellular structures.

c) Phasedynamics of two-dimensional patterns

Hydrodynamic instabities also generate two-dimensional patterns that
consist of squares (convection between top and bottom boundaries of low
thermal conductivity), or hexagons (Marangoni instability). The phase-
dynamics of these patterns involve two coupled phases, y and tp, associated
with the broken translational invariances along the X and the Y axis.
Symmetry arguments are less easy to use than for one-dimensional patterns,
but, still, they constrain the form of the evolution equations for the -

phases. -_

1.2 Spatial desynchronization of a limit cycle

We consider in this section a dissipative dynamical system, driven far
from equilibrium by a constant external constraint. We model the transi-
tion from a static state to a time periodic regime, with the normal form
for the Hopf bifurcation. This has been done by Ortovela and Ross (1973) '4

to describe the behavior of oscillatory chemical reactions.

In the vicinity of the bifurcation, the growth rate of the marginal
modes of wavenumber I is

() - ot 2 + i(w + w1 + W 2 
2 ) + O(&3) (21)

The instability occurs first for 0 = , for Increasing !, and
consists of a temporal oscillation at frequency w. In the vicinity of
the bifurcation we look for U under the form

U(x,t) = [A(X,T) exp it + c.c.] +1P' (22) -

where U stands for the set of concentrations that describe the chemical
reaction. The linear part of the evolution equation for A is the Fourier n-iv
transform of (21), and the form of the nonlinear terms is determined by .:
symmetry arguments, i.e. translational invariance in time, that Implies
the Invariance of the amplitude equation under the transformation

A - A exp ie

We have thus at leading order

AT - (p + iw)A + wAx + (t. - iW2)Axx ±'IAI'A

We can eliminate the terms i.A and &),Ax with the transformations %
A * A exp(-wT) and X + X + wIT, T + T. With appropriate scalings of
amplitude and space, we get in the supercritical case

AT = jA + (1 + Ia) Axx - (1 + iB)IAI'A (23)

AA

* .... .*.,.,t." ). .:-*g.



-63-

Equation (23) has a family of solutions

A0(T) = P e' T  P2 = t, = -13p (24)

that represent temporal oscillations at frequency w- 13Bp, homogeneous
in space. We study the stability of these solutions with respect to
inhomogeneous perturbations; we write

A(X,T) = A(T) a(X,T) exp iOT (25) *., %:.

and we get from (23) and (24)

aT -2Q2 (l+iB3)Re(a) + (l+im)a,, - (1+ iB)[Q(a 2+2IaI 2)+ 2] (26)

We write
a = R + iO (27)

and consider the linear part of (26). The eigenvalues are given by

a." | - . °

= -(Q2+k ) " [(Q2+K2)2  - 2Q ' (l+cB) - (1+OL) ]J'

There is one amplitude mode that corresponds to A- < 0, and Is damped.
The other eigenvalue is

A,+() 1 (+aB) - '(1+B2) /I2Q2 + O(*6) (28)

The persistent zero eigenvalue s+(O) = 0 reflects translational
invariance in time. The phase modes that correspond to the dispersion
relation (28), lead to an instability when I + c13 vanishes. This corres-
ponds to a spatial desynchronizatlon of the homogeneous state described by
(24). The linear part of the evolution equation for the phase in the long
wavelength limit Is given by the Fourier transform of (28). Symmetry
considerations (translational invariance in time) constrain the form of the -,-'.-.:
nonlinear terms. We have thus at leading order an evolution equation ofthe form O
theormeT = De,, - kexxxx + t (29)

We can compute g on noting that (23) has a family of travelling wave
solutions

A = P exp i(MlfT -12X) (30)
rk I

with

We next look for a phase equation under the form *.."

eT M cox + DO,,+ gO + ... (31)

which has the particular solution e = aT - rX if
a = -cr + gr2 . .2 . (32)

a r
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We notice from (22), (27) and (30) that this solution corresponds to a
* travelling wave of frequency w-(a...1)ra Opf + a/P and of wavenumber

.p + rP. Therefore we have

-~~~a 64- -j2.''

Q ( rIrP) (12 + a/Pp.L (33) - -

We get from (32) and (33)

c aw-aO'/r ; g =(l/2p) *anja2

For p =0, we find 1

C =0; g =(B-a)IP

In order to determine the effect of the nonlinear term in (29) we
consider a weakly unstable mode L.

((X, T) =A(t) e't + cc = aP2

and we look for the evolution equation for3)" We thus expand e and 0

,-

e = O, + C 2E)- 2

0 = O gD + /D2 +

*and solve (29) at each order in c. At order c we have to take into
account a mode, constant in space, that Is marginal and force'd byJ
through nonlinear interactions. Thus, we take

9(1 X ,T)exp if~0x + cc + B(-t)

The solvability condition at order determines the evolution
equation for b

Bi-24kICAl (34)

At order 0, we find the evolution equation for

A12  -D224_ (g2I3K) 1,112Ab (35)

*,. S, :

In the unstable regime (D2  +0) we get

A2
=3K 2 0g (36.a)

2 0

Equation (36.b) shows that a change in the oscillation frequency occurs ' -
because of the phase instability. Equation (29) has been derived by
Kuramoto and Tsuzuki (1976). The phase instability is saturated by the
nonlinear term in (29), and therefore this equation governs the long
wavelength dynamics of the temporal phase, even in the weakly unstable
regime.

equaion or ..r
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2. PHASEDYNAMICS IN THE VICINITY OF CODIMENSION-TWO SINGULARITIES

In this section, we consider cellular flows generated by instabilities
that simultaneously break several symmetries. Since different phase modes
are associated with each broken symmetry, we expect the possibility of
different large scale instabilities, and richer phasedynamics due to their
interaction.

2.1 Large scale instability of nonlinear standing waves

Hydrodynamic instabilities often lead to time dependent cellular
patterns. The Couette-Taylor flow between counter-rotating cylinders
(Di Prima and Grannlck, 1971) or thermal convection in the presence of a
salinity gradient (Bretherton and Spiegel, 1983), can undergo a Hopf
bifurcation, with critical modes of finite spatial wavenumber thus the flow
consists of a periodic pattern in space, with oscillatory behavior in
time. Depending on the coefficients of the nonlinear terms in the .
amplitude equations, one may get at the onset of instability, either
propagating waves, or standing waves (Demay and Iooss, 1984).

Let us consider a standing wave solution of the form

u(x,t) v(x + ct, x - ct) (37)

Due to the translational invariance of the problem In space and time,
there exists a family of solutions of the form

p u(x +, t + 0)= v(x + ct + Y+, x ct +,_) I-t

obtained by constant phase shifts in space and time. We have

u(x + , t + e) = u(x,t) + * axu + eau +

Thus * and e are the phases associated with the neutral modes au/ax
. and au/at, due to translational invarlances in space and time. For

spatially homogeneous phase perturbations, we have

a 0): t (38).. 0 ( .. . %,',

Equation (38) represents a singularity with two zero elgenvalues associated
with the two translational modes. For * and 0 slowly varying in space,

- we assume that a gradient expansion of the lefthandside of (38) exists, and

write the higher order terms (i.e. more differentiated in x), using
symmetry arguments:

-translational Invarlances in space and time, which Imply that * and e
appear in the phase equations only through their x-derivatives.

-space reflection invariance, which implies the invariance of the

* ~phase equations under the transformation . ,

Thus we get

*: € = a0 + a2,44 + ... + g*+ox + ... (39.a) ,

0 , .9. be .+ +.e. g1#
2 + g201 + .. (39.b)

' r.x •. L a;-
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The linear part of (39) reads in Fourier space

The dispersion relation is at leading order

4]+ A(a2 + b 2 * + albift = (k 4 )

A stationary instability occurs for alb, = 0, and the standing wave
pattern undergoes a Hopf bifurcation for a2+b2 = 0, with alb, > 0.
If a2+bz > 0 and aib, > 0, the pattern is stable in the limit k * 0,
but can be unstable with respect to small but finite wavenumber perturba-
tions, if one of the coefficients in the dispersion relation vanishes
when higher order terms in k are taken into account (Coullet, Fauve and
Tirapegui, 1985). In this case the phase Instability occurs at a finite
wavelength, and if nonlinearly saturated, leads to a periodic pattern on
a larger scale than the initial standing wave pattern. The new pattern
can itself undergo a phase instability; one could thus describe a cascade
mechanism toward large scales.

2.2 Propagative phasedynamics for systems with Galilean invariance

In fluid dynamics, the equations of transport of mass, momentum and
heat, are Galilean invariant. Therefore it is interesting to consider
the corresponding phase modes, and thus to investgate the phasedynamics
for a cellular pattern generated by an instability, in a system with ..

translational and Galilean invarlances.

Let us consider as a simple model, a one-dimensional velocity field

u(x,t), governed by an equation of the form

8,U = L.U + N(U) (40)

where L is a liear operator, and N(u) represents nonlinear terms. We
consider a cellular pattern, described by a velocity field uo(x),
periodic in x. Its stability with respect to a perturbation v(x,t), is
studied by linearizing (40) In v about u,. We get

a8v - L.v + DN . v =X.V (41)

We next consider that, due to translational and Galilean Invariances

Uo(X+$) l Uo(X) + * BxU 0 i ... (42.a)

uo(x+4t) - u(x) + %t axu - %P + ... (42.b) ,
are also solutions of (40). From (42.a) and (41) we get

.u, -0 (43)

which shows that au. Is the neutral mode associated with the
translational invariance in space. Equation (41) with * *

gives v(x,t) .+1tauo - 'p

-gives
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. and %p are thus the two phases associated with translational and .
' "Galilean invariances; the corresponding generalized eigenvectors are .

a.uo and -I.
We consider long wavelength phase perturbations, and we write

' ~~~~~v(x,t) = (xjt) 8", - y(xj) + -:-'4L
where t'stands for corrections perpendicular to the generalized eigenspace.

For € and W homogeneous in space, we get from equations (41), (43) and 4

(4)

S (°  £)() (45)

The linear coupling between the phase modes * and %p can be understood
as follows: the advection of the pattern at a constant speed %P, leads

I- to a spatial phase * that increases linearly in time. Equation (45)
represents a codimension-two singularity. Two control parameters are ,- )

- usually necessary to reach such a situation, which arises "naturally" here
because of the structure of the Galilee group. This makes the phasedyna-
mics second order in time, and one could expect oscillatory behavior.

We next assume that *, and W, can be expanded in gradients of ,
0 and y, and determine higher order terms with symmetry arguments:

-translational and Galilean invariances imply the invariance of the
* . phase equations under the transformations

+- c

and .-..c
-'-*0+ ct ;V 41+ c

-the space reflection symmetry implies the Invariance of the phase

equations under the transformation .f,.

x * -x ; +* -V; * -'.

Consequently the form of the phase equations Is

0..*~ + bP~ + +.1.. + g1*.*.. + g2, 'V ."" '.4. ,*' w

(the highest order terms In (46.a) can always be eliminated by change of
variable).

; The linear part of (46) gives the dispersion relation

s" + bk2 s + ak' - O(k). %

In the limit k + 0 we get a pair of damped propagative modes, with a ,-.
propagation speed 3a, If a and b are positive. A stationary instability '

F- occurs when a vanishes, and a Hopf bifurcation occurs when b 0 0, with
,.. .-.. p", ',,
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a > 0; this corresponds to an oscillatory instability of the stationary
pattern associated with the velocity field u0 (x). The oscillatory
instability of convection rolls, predicted by Busse (1972), is a similar -

type of instability; in his analysis, the top and bottom boundaries are
assumed stress-free, and the system is thus Galilean invariant In the
horizontal plane. An important difference with our model is that the
longitudinal mode governed by (49) does not exist for the convection
problem because of the incompressiblity condition. The coupling between
the two phases requires a two-dimensional pattern, and the oscillatory
instability of convection rolls consists of standing or propagating waves
along the axis of the rolls, i.e. a torsion mode of the roll pattern.
When the top and bottom boundaries are rigid instead of stress-free, the
Galilean invariance is broken. However, the interaction between the
damped Galilean mode and the translational neutral mode, still leads to
the oscillatory instability, which occurs with a finite wavelength,
instead of an infinite one, and for a higher Rayleigh number than in the . -

stress-free case (Clever and Busse, 1974; Bolton, Busse and Clever, 1985).

CONCLUSION

Long wavelength modes are very general features of cellular flow
patterns, which occur in nonlinear dissipative systems, driven externally
with a homogeneous and constant forcing. These modes are analogous to
Goldstone modes of condensed-matter physics, and can be traced back to
continuous broken symmetries. They describe the long wavelength perturba-
tions of a periodic structure through its slowly varying phase. The phase
dynamics are governed by prototypical evolution equations; their form
depends on the broken symmetries, and the short range structure of the
flow only affects the value of the coefficients in the phase equations.

We have shown here, with the help of this phase formalism, how to
take into account long wavelength spatial modes, In the description of
the dynamics which occurs in the vicinity of elementary bifurcations.
The next step is to use the same formalism, in order to determine how the
transition scenarios to chaos, via one or several bifurcations, are
modified when spatial degrees of freedom are taken into account.

Acknowledgements: I wish to thank E. Spiegel and E. Bolton for their
comments on this manuscript.
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Commensurate-Incommensurate Transition in Hydrodynamical Flows
4

Pierre Coullet

Many dynamical systems exhibit a transition from a periodic solution to
a quasiperiodic one. Particularly interesting are the cases corresponding
to the so-called strong resonances (Arnold, 1977). A controllable situation
in which these resonances can be studied occurs when one periodically
modulates a system near the threshold of an oscillatory instability
(Gambaudo, 1985). These resonances lead to a rich variety of phenomena
including periodic or locked states, quasiperiodic and chaotic states.
One-dimensional pattern-forming transitions bear obvious analogy with Hopf
bifurcations. In this paper we consider the effect of a spatial forcing,
near the threshold of such a transition. As in the temporal case the
notion of weak and strong resonances naturally appears.

The appearance of a one-dimensional periodic pattern is described by
the equation (Newell and Whitehead, 1969; Segel, 1969)

At =,ePA - IAI2A + Axx (1)

where A represents the slowly varying amplitude of the almost marginalmode. A typical scalar quantity, for example the temperature in a ,. .-,.

convection experiment reads at the leading order

ikx -ikx

T=Ae + Ae 0 (2)

where ko is the optimal wave-number of the instability. The invariance
of (1) under the transformation . -"

A > AeiE (3)

reflects the translational invariance of the physical system

X > X ( (4)

where D E Xk0 x

Under the presence of an external periodic modulation the system is no
longer invariant under this group of transformations.

We first consider a periodic forcing in resonance with the optimal
wave-length of structure. More precisely let ke be the wave-vector of
the external modulation, then r k = nkn. Using equation (2) the invariance
of the system under the restricteS grouo of transformation

x > x + 2w/ke N (5)

implies that the amplitude equation has to be unchanged under the
transformation

A Aei 2w/n. (6) ~

.* 
.
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fl At the leading order it leads to the amplitude equation

At = A + J - I AP A + A (7)
oA "xx

- where a is proportional to and 66 is the strength of the external
forcing. We first consider homogeneous solutions A = Re10 of equation (7).

-m The equation for the phase reads

Rot = -aRn - 1 sin no. (8)

Stationary solutions are then given by

e = r w/n. (9)

-' They represent states which are locked by respect to the external forcing.
As far one is only interested by the properties of the amplitude near
threshold, for small forcing, strong effects do occur for n .L 4 only.
These cases correspond to strong resonances. Let Q be the real amplitude
of the steady homogeneous solution of (7). The bifurcation diagrams (Kelly
and Pal, 1978) can be easily deduced from the following equation for Q.

YQ + (-1) Qn-2 Q3= 0 (10)

In the case n=1 one gets an imperfect bifurcation.
In the case n=2 one has a shift in the parameter value at which

the transition takes place.
In the case n=3 one has a subcritical bifurcation.
In the case n=4 only the Landau prefactor is affected by the

presence of the periodic modulation.

10 Such effects are likely to be observed in experiments.

* - One purpose of this paper is to show that the Amplitude Theory allows
to take account of recent experimental results by M. Lowe and J.E. Gollub

:. (1985). Namely they observed soliton-like behavior in quantitative agree-
ment with the solutions of the time-independent sine-gordon equation. We
next show that, when one takes into account the detuning or misfit between
the two periodicities, the problem can be reduced to a "first order in time
sine-gordon equation."

In the almost resonant case, we let Mke= n(ko+q) with q << ko . Then
the correct amplitude equation becomes

At = PA + ;n-leiqnx - I Al 2A + Axx (11)

" "".. It is useful to note for the following that equation (11) has a gradiant
... structure, that is

' " where At = -V/ (12)

2 (Ani4nx n-'.'; 4
v dx[-f Al2 -a/n (ne i qnx + Ane-lqnx) + 1/21AI + A2) (13)x
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and L/I6 denotes the functional derivative by respect to K. Equation (11) l
also reads

Rt :?JR + A n-lcos n(e qx) R3 + R - e2R (15)xx

Ret = -Rn-lsin n(e - qx) + Rexx + 2Rex (16).

where A=Reie. The stationary solutions of these equations, with a
constant amplitude Q, are given by

e = qx + 7 ./n (15a)
and

(f - q2)Q + (_l)aQn-1 - Q3 = 0 (15b)

The odd'1 's correspond to states which are unstable with respect to phase
perturbations. The stability of the solution with 7Zeven leads to two
types of modes: the amplitude modes and the phase modes. In the range of
parameter 9 and q implicitly defined by

2P 2 >> naQn - 2  (16)
where

-2p2 = - q2 + a(n-l)Qn-2 _ 3Q2  (17)

is the growth rate of homogeneous perturbation of the amplitude, while
-naQn- 2 is associated with the phase, the amplitude modes adiabatically
follow the phase fluctuations in such a way that our problem reduces
itself to a phase equation

ate = -V sin n(e - qx) + Dexx, (18)

where V = aQn 2 and D = I - 2q/P 2 generalize the Eckaus phase diffusion
constant. Using the phase variable D = e - qx, equation (18) also reads

at = -V sin(nD) + DDxx = -H/64 (19)
where

H fdx(- V 1D 2
fd cos(n) + 2 - qx) (20)

The functional H turns out to be the potential energy of the continuous
version of the Frankel-Kontorova model (Kontorova and Frankel, 1938) for
Commensurate-Incommensurate transition In equilibrium systems. This model
has been extensively studied in the literature (Pokrovsky and Talapo-,,
1983). Let us review here its simplest aspects. For q small enough (or V
large enough) the second term in (20) dominates and the locked states are
favored. For q large enough (or V small enough) the second term dominates
the free enprgy favoring the optimal wave-vector of the periodic pattern.
A transition occurs when j

qi > qc = 4/, JVD/n (21)

The minima of (20) are solution of the pendulum equation

Doxx - V sin(n) = 0. (22) ml1

- .- - - - - • + • . . . . . ' •,• - + ' ' + = • -
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When IqI < qc the absolute minima of (20) are given by the unstable
equilibrium solutions of the pendulumII

= 2 /Y/n. (23)

When I q > qc the absolute minima are given be the rotating
solutions of the pendulum equation.

When I q = q both the unstable equilibrium stationary solutions of
the pendulum and the separatrix also called one-soliton solution

(x) tan-l(exp x (24)

are the absolute minima of the Liapunov functional.

. Thus the locked state becomes metastable with respect to wall forma-
"* tion. When q increases one gets a periodic array of such walls also

called in the jargon of Commensurate-Incommensurate transition discommen-
surations.

We now discuss some pathology associated with our model. The incommen- kv
surate domain is described in terms of a periodic array of solitons with

" spacing k When I q Iincreases (19) and (20) predict a continuous
variation of this spacing which, for Jqj close to qc, is given by

k -log( q1 - qc ) . (25)

- One then finds that there exist no locking between the soliton array and
the underlaying periodic structure. In a generic situation such lockings
are expected to occur when 9 ke/ 21r is a rational number. The same

"- pathology exists for the continuous version of the Frankel-Kontorova
model. In that case the origin of the problem is readily found in the

*m limit process since one replaces a problem which possesses a discrete
* .translational symmetry by a problem which is invariant by respect to any

translation. When one comes back to the discrete version of this model
higher locking states are recover. In the same way equation (19) is
invariant under arbitrary space translations while the initial problem is

* not. The problem is nevertheless of a quite different nature since there
is no discrete theory associated in this case. It actually lies in the

-- derivation of the amplitude equation itself. As first pointed by Pomeau
(1984) the amplitude theory misses important effects due to the coupling
between the large scale behavior and the periodic pattern. Although, at

. any arbitrary order in the amplitude expansion, such a coupling cannot be
catched it is a generic feature of the initial problem. Technically it is
associated with the lack of convergence of the amplitude expansion. In
the spirit of normal form theory (Guckenheimer and Holmes, 1984) one can
model this effect in writing the amplitude equation only up to a finite
order and keep a residual term which explicitly depends on the rapid space
scale.

I At = yA + in-le inqx - JAI 2A + R(A,A,x) (26)

Tracing back the approximations needed to get the phase equation, (19)
becomes

at = -V sin(nD) + 00 xx + S(O,x). (27)
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The stationary solutions of this equation correspond to the solutions of
the pendulum problem in the presence of a small periodic modulation. This
dynamical system presents a rich variety of different types of solutions:
periodic solutions, quasiperiodic solutions, cantor set and chaotic
solutions. All these solutions are potential candidates to be absolute

- minima of the associated Liapunov functional. The Poincare map technique
is the natural way to study such a problem. We thus recover a discrete
model which is the analogous of the initial Frankel-Kontorova model. Aubry
(1983) studied the discrete version of the Frankel-Kontorova model and was
able to show that its ground states hae the form

'n : np + a+ f(np + a) (28)

where p is the so-called rotation number and is associated, in our case,
with the ratio between the soliton spacing and the external wavelength,
and a is a phase. The function f is periodic with the period of the
underlaying lattice. This result rules out the possibility for a chaotic
trajectory of the Frankel-Kontorova map to be a ground state of the
Frankel-Kontorova free energy. Actually Aubry proved it for a more
general class of problems including some continous problems similar to the
one considered here. The function f does not need to be analytical. If
it is not the ground state it is a well ordered cantor set. There exits a
transition when one follows a path in parameter space on which the
rotation number is kept fixed at an irrational value. This transition,
known after Aubry as the transition by breaking of analyticity, is likely
to be observed in a macroscopic experiment as the one performed by M. Lowe
and J.E. Gollub (1985). Actually there is already some evidence in their
experiment for the existence of quasiperiodic nonanalytic states (Lowe,
Gollub and Lubensky, priv. comm.).

In a previous paper by Lowe, Gollub and Lubensky (1983) experimental
results on the existence of two-dimensional incommensurate phases have
been reported. The work described there mainly differs from the one
corresponding to the theoretical model discussed below by the fact they
considered a less anisotropic fluid. In a recent work in collaboration
with P. Huerre we studied the effects of two dimensional perturbation on
the Commensurate-Incommensurate transition. Basically one has to do the .
following replacement in equation (19)

a2 /ax 2 -) [(a/ax) - i(a 2 /ay 2 )] 2 + V32/ay2 (29)

where is a measure of the anisotropy of the system. A similar analysis .
to the one presented above leads to the Liapunov functional

H = f dx (-V/n cosn4/n+ 112 Do2 + 11 2 - qP (30)

where ,'. ,;

D = q + (31)

represents the phase diffusion coefficient (Pomeau and Manneville, 1979)
transverse to the structure. One then has for negative detuning parameter
q a competition between Commensurate-Incommensurate transition and the

P7

V-
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zig-zag instability. Hence for isotropic systems as a Rayleigh-Benard
experiment the Commensurate-Incommensurate transition will only occur for
positive detuning. Computation of the ground state when the diffusion
constant is slightly negative is in progress. Similar results have been
independently obtained by Lubensky (unpublished).

,., ,-...-
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The Topology of Chaos

by H.K. Moffatt

1. Let D be a domain in R3 with smooth boundary aD, and let F(x)
be a smooth (CI) solenoidal vector field in D satisfying

n*F 0 on aD (1)

- 4
We consider the dynamical system

dx/dt = F(x) (2)

where trajectories are the flow lines (or 'F-lines') of the field (x).

Let fr be a Poincare section of D (Figure 1) and consider the F-line
passing through a point Po of r.

P. I

Figure 1

Let the successive intersections of this F-line with n be the set
S {Po, Q0, ---Pi, Qi, ---I. If the F-line is closed, then S is

finite; if the- ine covers a surface'E , then S consists of all points
of the closed curves in which E intersects w; and if F is ergodic in a f
subdomain D1 of D, then S consists of all points of tle intersection of
DI with r; this may be an area A of w bounded internally and externally,
as illustrated in Figure 1.

2. Suppose now that we wish to consider fields F (x), dependent on
some parameter t, which are "topologically accessibf'e Trom F(,x) in the
sense that the field lines of Ft may be be obtained by some 'fluid'
distortion of theF-lines; by a fluid distortion, we mean one which can
be achieved by a smooth velocity field v(x,t) (0 < t <-) for which the
'dissipation integral'

f'dt f (av /ax 2 :L(.

0 D - .-
-.. , -. -

is finite. Under this flow field, a particle initially at4. moves to

X(x,t) where

aX/at = v(X,t), X(x,O) =x, (4)

..-_-_-. _. .... .- .. .. .- . .. :-; ..:, -.: - .,. ..-... :-,...- L.. _ _ :i d i,. ', - %,, A,
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for t > 0. We shall restrict attention to incompressible distortions
(V"= 0, IlaX/ail = 1) satisfying .n= 0 on MD. For any finite t,
X(x, t) is continuous, and the mapping x * X(x,t) is a homeomorphism;
aliscontinuities may however develop as t * ._

Topological accessibility is guaranteed by the following procedure:
Let B(4,t) (which we shall refer to as 'magnetic field') satisfy the .,.'

frozen field equation

Wa88t = curl (V),,B), (5)
M Oft,..

and let §(x,O) = F(x). Equation (5) guarantees that V8 = 0 and nB = 0
on 8D for all t >O It also guarantees that all linkages and knots of
B-lines are conserved. A particular consequence of (5) is that the
'magnetic helicity' which is one (very incomplete) measure of B-line
linkages, is invariant; but the equation in fact captures the invariance
of the complete topological structure of B, whatever that may be. We
identii, F() with B(xt).

We want to consider particular velocity fields , which lead to as
much 'untangling' of the initial field F(x) as possible (without violating
the topology). To this end, suppose that -, satisfies the dynamical
equation

a8r/at + ir.V% = -V, + (VAB)B + v i , (6)

with .(x,O) = 0. Then (5) and (6) may be combined to provide an energyequation -
d/dt (M(t) + K(t))= -(t), (7)

where
M(t) = 1/2 SJB dV, M(t) = 1125iJ dV, (8)

and'.-.and ( = f (ajflaxj)2dV. (9) V

The energy then decreases monotonically for so long as v o, and a

steady state is reached if and when v E 0 in D. At this stage, (6)
becomes

(VB) A B = vt , (10)

i.e. B is a 'magnetostatic equilibrium'. In this equilibrium B may in-

cludetangential discontinulties (consequencles of possible noncontinuity
of the asymptotic mapping x * X as t )

If the topology of the initial field k(Z,,O) = F(X) is nontrivial, then
the magnetic energy has a positive lower bound, associated with this
topology. This Is essentially because the volume of each flux tube Is
conserved under incompressible flow, and two linked flux tubes cannot -,- "
therefore shrink indefinitely without mutual interference. Equally, If
F() is ergodic in a subdomain D1, then this ergodicity which is -.. %,
essentially a topological property, is conserved, so that If D, * D1 under
the limit mapping x * X(x), then the volume of D, is equal tz the volume
of Di, and'the limt magietostatic field B() is ergodic in D. (Figure 2).(Figue 2).-. ,-.

. , '.- , ,-
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This has a very interesting consequence, since a magnetostatic field
that is ergodic inD, must satisfy the equation

N, 4 4
VA B= c,B in D, (11)

for some constant a, (Arnold 1965). The boundary of the domain D,
(both external and internal) may be quite complex, but the simple ,
character of the equation (11) contains important information about the
structure ofB and hence about the structure of the initial field F.
Evidently the relaxed field B is one of maximal helicity

SIV B1 according as L, 0 (12) i

If F.(VAF) is positive in some parts of D, and negative in others, this 4
indicates that right-handed twist can always be compensated and cancelled
by left-handed twist in the 'untangling' or relaxation process, very much
in accord with intuitive experience gained in the untangling of a tangled
skein of wool whose two ends are permanently knotted together. --

Figure 2

3. The above argument, which Is developed in detail in Moffatt
(1985), implies the existence of at least one magnetostatic equilibrium
for any arbitrarily prescribed topology - e.g. if a fleld §o(x) is given
in which flux tubes are linked and knotted in a complex manner, we may
assert the existence of a field BE(A) (which may have tangential
discontinuities imbedded within Tt) whose field lines may be obtained by .

distortion of the field lines of Bo(x).

The well-known analogy between magnetostatic equilibria and Euler
flows (I.e. steady solutions of the Euler equations for an inviscid
incompressible fluid) then implies the existence of an equally rich
variety of such flows which may be regarded as the fixed points in the -
function space in which unsteady solutions of the Euler equations evolve. .1
These flows are characterized by 'ergodic blobs' within which C = CL- ,
with a constant, the streamlines being space-filling throughout each
blob, and surfaces separating the blobs on which vortex sheets may be
located. The fixed points are likely to be unstable, in view of the '0
Kelvin-Helmholz instability to which such vortex sheets are known to be
subject. - q-
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This description provides an attractive scenario for the possible
structure of turbulent flow. The ergodic blobs then fulfill the role of
'coherent structures,' which persist simply because uAcO in such
blobs so that energy cascade to small scales does not occur. This .
cascade occurs through the Kelvin-Helmholz instability of the vortex
sheets, which leads to double-spiral structures of well-documented type.
It is tempting to speculate (Moffatt 1984) that it is the structure of
these spiral singularities, distributed randomly throughout the fluid,
which determines the k-" 3 energy spectrum in the inertial range.
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Homoclinic Orbits and Chaos "

Colin Sparrow.

Introduction *w

This abstract is to introduce, briefly, some results about homoclinic
orbits in finite-dimensional differential equations, and to explain why
they may be interesting. For detailed results and analysis readers will
be referred to published papers.

Homoclinic Orbits

A homoclinic orbit in a flow is a trajectory which tends, in both

forwards and backwards time, towards the same stationary (or equilibrium)
point. The stationary point is necessarily a saddle. Figure 1 shows two
examples. More qenerally we may think about heteroclinic loops wiiich are
a series of trajectories (forming a loop) tending in forwards time to one
stationary Point and in backwards time to another. Fiqure 2 shows two
examples. Homoclinic orbits in flows are not to be confused with
homoclinic points in diffeomorphisms (return maps). In the absence of . r
very special restrictions on the systems under consideration, homoclinic
orbits and heteroclinic loops will be sensitive to parameter changes;
they exist for certain parameter values but will disappear for slight
changes of the parameters. Thus, they are not easily observed in physical
problems, but I shall argue that their existence has implications for the
behavior over wide ranges of parameter values and hence that they are -
physically important.

Two Generalizations and Some Justification ,-.

Mathematicians have realized that the behaviors commonly described as
"chaotic" are extremely complicated and that rigorous descriptions of the
dynamics of so-called "chaotic attractors" are, in general, not available
at present. As an example, the kind of chaos seen after period-doubling .'
in systems of more than one dimension is believed, by most mathematicians - ft

and for some parameter values, to actually contain infinitely many stable Q:.
periodic orbits (most if not all of which will have ridiculously large .

periods and be practically unobservable), and, by all mathematicians and '

for many parameter values (possibly almost all?), to have a finite
(nonzero) number of stable periodic orbits. On the other hand, physicists
and fluid dynamicists have become interested in various measurable, quan- "
titative properties of chaotic flows (dimension, Lyapounov exponents etc.)
which may be used to compare models with experiments, regardless of the
fact that the limits used to define these quantities will frequently not
even exist in a rigorous mathematical sense. There is room between these
two extreme approaches for another approach which is both theoretical and -,
experimer.tal (in the sense of numerical experiements on a computer), . ,

which concentrates on objects which are simple intuitively and mathemati- ' ,.
cally, but which goes some way towards increasing understandilng of the way -

in which chaotic behavior arises in useful model equations, e objects
referred to here are periodic orbits, and the connection with homoclinic
orbits is that occurrence of a homoclinic orbit can be shown, in various
different cases, to produce or destroy one or more periodic orbits as a .
parameter changes. Figure 3 illustrates the production of a periodic i'-
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orbit in a two-dimensional flow with a homoclinic orbit as a parameter ":. .
changes. Two cases are shown, depending on the ratio of the eigenvalues
at the stationary point; it is typical that in one case a stable orbit is
produced and that in the other case an unstable orbit is produced. . ,
Justification for concentration on periodic orbits can be found in the
following remarks:

1) Whatever the detailed structure of so-called chaotic attractors,
most of them are densely packed with periodic orbits, albeit unstable
ones. In some cases a knowledge of the periodic orbits involved will
completely determine the structure of the attractor (e.g. the geometric
Lorenz strange attractors of Guckenheimer & Williams), and in other cases
they may almost do so.

2) Periodic orbits are easy objects to do numerical experiments
with; reasonably low period orbits can be located numerically using ..

- standard techniques independent of whether they are stable or not, and
* can be followed as parameters change.

3) The types of bifurcations which create or destroy individual
periodic orbits are well understood and small in number. In dissipative
systems without symmetries these are Hopf bifurcation, saddle-node (or
tangent) bifurcation, period-doubling bifurcation and homoclinic (or
heteroclinic) bifurcation. See the bibliography for references.

4) Sensible physical models often have the property that the behavior
is analytically accessible for small and large values of a parameter.
Thus, for example, one may know that there are no periodic orbits for
small parameter values and (for instance in the Lorenz equations) one
periodic orbit at large parameter values. In some systems it may be -.
possible to learn much about the behavior merely by doing some bookkeeping
on the orbits and bifurcations known to occur. In the Lorenz case it is
almost certain that a rigorous argument could be constructed which proved

IN the occurrence of a homoclinic orbit as the only possible method of
producing the large parameter orbit and then (because of the symmetry of ' *

these equations) this has further implications for the occurrence of
complicated (and possibly chaotic) behaviors at intermediate parameter
values.

5) Because homoclinic orbits depend on the behavior of the unstable
manifold of the stationary point, and because this must vary continuously
(for finite times) as a parameter is changed continuously, it is frequent-
ly possible to deduce the existence of other homoclinic orbits once one
knows the existence of one. This argument adds force to point 4) above.

" Caveats

It is sensible to point out that the approaches described above (like
most others) do not, separately or together, yield a coherent (or
universal) theory or classification of chaotic systems. Certainly it is
true that certain groups of ODE's (e.g. Rossler's equations, certainipiecewise linear systems and Spiegel's asymptotic chaos equations) all
can be understood in terms of a single mechanism; a periodic orbit is . --
produced in a Hopf bifurcation at one stationary point, grows until it
disappears in a homoclinic bifurcation at the other stationary point, and

F ' -' - ,' , 'o " - , ,-. - '- -' -" ." .''."' '.° - % - ," ' ' " ° *- -P
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the chaotic behavior observed depends on intermediate developments which
can, more or less, be understood by only looking at the homoclinc bifur-
cation. This suggests a tentative classification scheme which depends on 4
the number of stationary points, the eigenvalues there, and the possible
topological restrictions (if any) on homoclinic and heteroclinic loops
which can occur in the system. However, this scheme has the distinct
(and for some purposes overwhelming) disadvantages that it is difficult
if not impossible to predict qualitative or quantitative properties of
the observed flows a+ particular parameter values; the type of arguments
used are likely to suqqest, for example, that each of the two orbits will .
be stable in some parameter range, but not to say which will be stable
first.

Details

There are no details. The bibliography is arranged so as to guide
newcomers through the literature in a sensible way, and little attempt
has been made to either be complete or give proper precedence to workers
who wrote the first (but possibly the most incomprehensible) paper on any
given subject.
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16. A preprint by L. Howard and R. Krishnamurti.

Forthcoming papers

" 17. Fowler, A. and C. Sparrow, "Bifocal homoclinic orbits," a study of the

4-d case with two complex pairs of eigenvalues at the stationary
point.

18. Glendinning, P. and C. Sparrow, 1985. 'T-points: A codimension two
heteroclinic bifurcation,' an analysis of the situation shown in Fig.
2(b), inspired by numerical work (and some misleading statements) in
Alfsen, K. and J. Froyland, 1985, "Systematics of the Lorenz model at
a =10, Physica Scripta 31, 15-20.

r .'. v.~



-84-.

4

:>.

Figure 1 *t

Homoclinic orbits.'L .
(a) Two real eigenvalues (possible in 2 dimensions)..

(b) One real eigenvalue and a complex pair (needs 3 dimensions).

0
Figure 2

Heteroclinic loops (which occur in the Lorenz equations)
(a) Between two stationary points.
()Between three stationary points.
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(a) P < 0 P 0 > 0
unotbl orbit homoclinic orbit stbl orbit

Figure 3
Phase diagrams for a two-dimensional flow with three parameter values, i-

p< 0, p=0 (when we have a homoclinic orbit), and p > 0. In (a) we
have A2/A1 >1I and a stable orbit exists in > >0. In (b) )X2/xl < 1

* and an unstable orbit exists in P < 0.
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Chaos in Double-Diffusive Convection

Nigel Weiss

The aim of this talk is to illustrate the general principles enunci-
ated in Spiegel's lectures by detailed discussion of a specific problem;
thermohaline convection can be regarded as the 'problem of the house' and
is an obvious choice. In studying any self-excited oscillator we should
first locate the bifurcation that leads to (overstable) oscillatory motion
and then explore the nonlinear regime. If chaos is found we need to 4

discover how the transition from periodic to aperiodic behavior takes
place and also to identify the mechanism responsible for the appearance
of chaos.

Consider a layer of fluid heated uniformly from below with an imposed _

gradient in concentration of some solute such that the mean density
decreases upwards. If the layer is perturbed the fluid will oscillate
and may be overstable if the ratio, T, of solutal to thermal diffusivity
is small (Stern 1960). Two-dimensional convection in a Boussinesq fluid
is governed by the equations

r- .. .-.a

"r V, (9. Z -. ,'

Here T,®, E are the stream function and perturbations in temperature and
solute concentration, RT, RS are the thermal and solutal Rayleigh -
numbers and a is the Prandtl number. For a cell of normalized width x,
with free boundary conditions, we definq modifel R*yleigh numbers
rT = RT/Ro and rs = Rs/R, where R ( = I + x )/ . Then the growth
rate, s, of linear perturbations satisfies the dispersion relation

S3 + (1 + 0 + T)S
2 + [0 +T + aT 

+ o(rs - rT)]s + o(rs - TrT) = 0 ;t -d

(Stern 1960; Veronis 1965; Baines and Gill 1969). There is a stationary
bifurcation at rTre) =1+ rS/T and an oscillatory (Hopf) bifurcation at
r = 1 +T (I + a +T )/o +(a + T )rs/(o + 1), provided that T < 1 and

rs > r C= T
2 (1 + o)/U(1 -T ): a pair of complex conjugate eigenvalues

cross the imaginary axis at rO) and subsequently merge on the real axis;
thereafter, one real elgenvalue icreases while the other decreases and
passes through the origin at rT e) > rT (0) . It can be confirmed that the
(unstable) branches of steady solutions bifurcate from rT(e) in the
direction of decreasing rT (Veonis 1965).

The behavior of nonlinear oscillations can be investigated by un-

folding the degenerate bifurcation of codimension two that occurs when

rs = r5  . (This is an example of the Bodanov-Arnold normal form that .-
was discussed by Spiegel.) Knobloch and Proctor (1981) showed that for rs

. .,.-.
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slightly greater than rsc the oscillatory branch terminated on the unstable
steady branch, with a heteroclinic orbit linking the symmetrical pair of
saddle-points corresponding to the unstable steady solutions. To proceed
further requires numerical experiments, which have been carried out over
the years by Veronis (1968), Huppert and Moore (1976) and Moore et al.
(1983; Knobloch et al. 1985).

For moderate values of Rs, the period of the oscillations increases
along the oscillatory branch, rising rapidly towards the end. This is
consistent with the presence of a heteroclinic orbit at R c (say). The
steady branch apparently bends backwards and regains stability, so that
all trajectories are attracted to one or other of a symmetrical pair of
foci for RT > RTc . Thus phase portraits for RT just less than, equal to
and just greater than RTc are as sketched in Figure 1.

For larger values of Rs there is a transition from periodic to
chaotic behavior before the end of the oscillatory branch (Huppert and

*-' Moore 176). With care the route to chaos can be identified. For
Rs = 1 0 , T = 0.316, x = '32 and a = 1 the first bifurcation is from
symmetrical to asymmetrical oscillations, as shown in Figure 2. Here
limit cycles are projected on to the U - N plane, where U is the mean

rhorizontal velocity at the base of the cell and the solutal Nusselt
number Ns is a dimensionless measure of the sodte lualx In Figure.

2(a), for RT = 8600, the oscillation is exactly symmetrical and Ns
takes the same values for clockwise and counterclockwise motion; when
RT = 10,000, as in Figure 2(b), the limit cycle is asymmetrical. By
RT = 10,150 motion is chaotic. Order is, however, restored: at RT =
10,325 there is an orbit of period 4, followed by period 2, an asymmetri-

* cal orbit and a symmetrical orbit of period I when RT = 10,500. As we
shall see, this bubble structure is a characteristic feature of the
transition to chaos.

The route to chaos follows a period-doubling cascade (which has to be
preceded by a bifurcation to asymmetry). Beyond the accumulation point
the oscillations are typically aperiodic, though periodic windows can be

"" found. Then there is a reversed cascade, with bifurcations at which the
period is halved, after which periodic behavior is restored. Beyond this
point behavior becomes more complicated, as shown schematically in Figure
3. For RT > 10,500 there is an abrupt transition to a second oscillatory -*

branch, presumably connected to the first by saddle-node bifurcations at
RT = 10,500 and 10,300. This branch has more elaborate orbits, with their

*- own period-doubling cascade leading to chaos as before. Within the chaotic
• " region windows based on a symmetrical cycle of period 3 can be located.

Once again there is a reversed cascade and at least two complete bubbles
can be identified. Probably there are many successive (and co-existing)
branches before oscillatory solutions disappear at RT - 11,060. Figure 5
4 illustrates some of the behavior in this region by showing trajectories

*. in the E - k phase plane, where E is the mean square velocity over a cell.
In Figure 4(a), for RT = 10,450, there is an asymmetrical cycle of period
1; Figure 4(b), for Rf, shows a semiperiodic solution, with a trajectory
that wanders within a tube enclosing an unstable periodic orbit (note that
trajectories are represented by dots plotted after every timestep). In
Figure 4(c), for RT = 10,500, the trajectory explores more of phase space
and is no longer asymmetrical but Figure 4(d), for RT = 10,510, shows a

*:: symmetrical cycle of period 3. Finally, Figures 4(e) and (f), for RT =
10,625 and 10,900, show the increasing complexity of chaotic motion near
the end ff the oscillatory branch.

I-
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How can this behavior be explained? The simplest approach is to
consider a truncated fifth-order system of ordinary differential
equations, introduced by Veronis (1965). This system can be obtained by
modified perturbation theory, and has the same linear and second-order
properties as the partial differential equations. Although there is no
formal justification for relying on the truncated model away from bifurca-
tion points, it can be used to explain the behavior of the two-dimensional
system from which it was derived (DaCosta et al. 1981). For parameters
similar to those used above, the fifth-order model also yields a period-
doubling cascade, and bubbles can also be observed (Knobloch and Weiss
1981). More important, the unstable steady branch cas be found analyti-
cally and its stability can be investigated. It turns out that as the
heteroclinic orbit moves away from the bifurcation point, two negative
real eigenvalues merge to form a complex conjugate pair. Thus the
saddle-points become saddle-foci, with eigenvalues that satisfy
Shilnikov's criterion (see Sparrow's lecture below). Chaos is therefore
to be expected. Moreover, the approach to heteroclinicity has now been
studied in some detail (Glendinning and Sparrow 1984, Arneodo et al.
1985). It is known that there are many coexisting oscillatory branches,
with increasing period as the orbit winds more and more times around the
nonstable singular points, and that there are period-doubling cascades
producing bubbles on alternate branches. This behavior has been found
for the analogous fifth-order system in magnetoconvection (Bernoff 1985).
The qualitative similarity between these predictions and the results of
the numerical experiments suggests that the same mechanism operates for
partial differential equations too. ,. .

Of course the bifurcation problems described here are only found for
low order systems. If constraints of symmetry were relaxed and three- .

dimensional perturbations were admitted, much more intricate behavior
would occur. Nevertheless, this problem provides a nice demonstration of
the use of truncated models to explain complicated dynamics. The appear- .

ance of chaos was first predicted on the basis of a third-order model
concocted by Moore and Spiegel (1966; Baker et al. 1971; Marzec and ,
Spiegel 1980) and similar behavior is exhibited by the fifth-order system
described above. For T<< 1, Proctor and I have shown that this system
reduces to a third-order variant of the Lorenz equations, which can be
written in the form

061~ix - vy),

y = -Y + x(1 - z), '.

z = b(-z + xy), C-0.. ' . P..- \

where b = 4x2/(1 + x2 ) and v, v are parameters related to rT and rs
respectively. This system can be recast to resemble an oscillator with a
time-dependent potential, so that

wherex -3V/ax - .,

where V = 1/2x x2 + 1/4 x4 and i = -b[x + a(x2 - x2 )]. Unfortunately, I
know only one way of checking whether such low order models faithfully
describe the appearance of chaos in the original problem, and that is to 4 ".
solve the partial differential equations themselves. ,: -

, =- >
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The Breakdown of Steady Convection

Nigel Weiss 4

This talk will be concerned with systems where an initial pitchfork
bifurcation leads to steady convection and a secondary Hopf bifurcation
introduces time-dependent behavior, followed by chaos. I shall try to "
emphasize spatial rather than temporal structures and, in particular, I %

shall focus on bifurcations that lead to changes in the pattern of
convection. Here we can distinguish between soft transitions (eg. loss
of symmetry) and discontinuous changes. The latter include changes of
cell size in constrained systems, which are typically associated with
complicated time-dependent behavior.

The simplest examples occur in two-dimensional Bdnard convection, the
I problem from which the Lorenz equations were originally derived. In the

Lorenz system there is a supercritical pitchfork bifurcation at r = 1,
giving states of steady convection which eventually undergo a subcritical
Hopf bifurcation (eg. Sparrow 1982). However, the strange attractor
disappears when higher order approximations are used (Veronis 1966; Curry
1978). Reliable numerical solutions of the partial differential equations .'-

k& show a supercritical Hopf bifurcation at r 90, followed by quasi-periodic
behavior for 290 < r ;. 800, but there is no evidence of chaos (Moore and
Weiss 1973; Curry et al. 1984). The oscillations are related to the
appearance of hot and cold blobs circulating with the flow and similar
behavior has been found in laboratory experiments. In what follows I
shall try to isolate this particular effect and to understand how such
obvious physical behavior relates to the mathematical constraints in a
dissipative dynamical system.

Let us consider the geophysically motivated problem of convection
driven by internal heating. Dan McKenzie, Dan Moore, Tom Lennie and I
have studied the simplest case, of two-dimensional motion in a Boussinesq
fluid with infinite Prandtl number, assuming rigid upper and lower
boundaries, with no heat flux at the bottom and a fixed temperature at
the top. The governing equations are

V4 q,= -ga/v aT/ax,

aT/at = -u • VT + C + KV 2 T,

where T is the temperature and the velocity jg = (-aY/az, 0, a'/ax); C. is
the rate of thermometric heating per unit volume and other symbols have
their usual meanings. We consider convection in a box of depth d and
width Ad, characterized by a Rayleigh number,

R = g'ed/K2V L

and a Nusselt number N = o2/2 K AT, where AT is the mean temperature
difference across the layer. Then linear theory predicts a pitchfork
bifurcation at R = 2772, with a critical cell width x = 1.195 (Roberts -

* 1967). Thirlby (1970) carried out two- and three-dimensional numerical
exponents for a fluid with a finite Prandtl number a = 6.8 [for comparison

.d. ..-. " *.-"....
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with laboratory experiments using water which was electrolytically heated
(Tritton and Zarraga 1967)]. Further computations (with a infinite but
assuming free boundaries) were done by McKenzie et al. (1974). The
two-dimensional results show the effect of asymmetrical boundary.. .... ..

conditions: motion is dominated by a thermal boundary layer at the top
which forms a cold sinking plume at one side of the ,ell. The boundary
layer thickness scales as R-/ 5 and &T scales as R4/5 so the local
Rayleigh number in the boundary layer varies as RI/5 . Hence the boundary
layer should become unstable for sufficiently large R. If the flow is
forced to be two-dimensional, cold blobs form at the top and are swept
into the sinking sheet; if three-dimensional motion is allowed, cold
plumes sink at the centers of hexagonal cells. The two-dimensional
computations show a transition from steady convection to time-dependent
behavior, followed by splitting into several cells, as the Rayleigh
number is increased.

We have investigated these transitions in some detail For x I "
there is a supercritical Hopf bifurcation at R 12.3 x 10S, leading to
vacillation about the unstable states corresponding to steady convection.
Figure I shows isotherms aj equally spaced intervals during a periodic
oscillation for R = 3 x 10 . Two blobs are formed and circulate around
the cell, so the period of the oscillation is half the turnover time.
One might expect that the first bifurcation would destroy his symmetry.
In fact, a second Hopf bifurcation occurs at R w 3.05 x 1O producing
quasi-periodic motion. The period of modulation increases until there is
a homoclinic bifurcation at R Z 3-093 x 10, followed by an immediate
transition to chaos. This is consistent with the behavior expected for a
strong resonance with eigenvalues close to -1 (Arnold 1983); apparently
the branch of period-doubling orbits undergoes a cascade of bifurcations
leading to chaos before it regains stability.

When x = 1,5 the first Hopf bifurcation is follo ed by a period-"
doubling cascade that leads to chaos by R = 1"2 x 109. Within the
chaotic regime there are periodic windows, where behavior can be under-
stood as a resonance involving the circulatigg blobs. Fig. 2 shows part
of such a periodic solution for R = 1,6 x 10 . As R is increased,
some blobs break off the upper boundary efore they are swept into the
corner and eventually, when R = 1.4 x 10u, the cell splits in two,
though motion remains time-dependent. Calculations with X = 0,5 confirm
that narrower cells remain stable at least up to R =100 but if two or
three such cells are placed together in a box the solutions become time-
dependent at a lower Rayleigh number.

The mechanism responsible for this chaotic behavior can only be

r conjectured. As R is increased the favored cell-width decreases but the
number of cells in a box has to change discontinuously. Larger cells
undergo Hopf bifurcations and the periodic oscillations increase in
amplitude until they lose stability. The unstable orbit probably becomes
homoclinic, so generating chaos. As the Rayleigh number is increased,
more and more horizontal scales of motion are excited. We conjecture ,..
that their basins of attraction are separated by saddle points and that
they become unstable, shedding limit cycles which collide with these
saddles producing a rich variety of chaotic behavior.

N V N
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Bifurcation to Chaos and Dimensionality of Attractors
in an Extended Rayleigh-Bgnard Convection System

Y. Sawada

The spatial and temporal bifurcation to chaos and dimensionality of
strange attractors in Rayleigh-Bgnard convection are studied in an
extended rectangular container with aspect ratios 15.0 and 1.0. With
increasing Rayleigh number, spatial localized oscillatory states, quasi-
periodic states, and then chaotic states were observed. The chaotic
state was characterized by the localized attractors whose dimension is
small just above the onset of chaos and by the coexistence of different
dimensional attractors.
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The Fission Theory of Binary Stars

Norman R. Lebovitz 6

A physical context simulating an early stage of stellar evolution is
assumed, wherein the star is in a steady state hydrodynamically but not
thermodynamically, so that the figure is losing energy on a slow timescale
(T,) and compensating by contracting slowly. It is assumed that the
star is endowed with angular momentum, and the object of the mathematical

-m problem is to follow the evolution of such a self-gravitating, rotating
fluid mass as it slowly loses energy.

The history of the subject is reviewed (cf. Lyttleton 1953), including
a description of the Maclaurin and Jacobi ellipsoids, of secular and -.

dynamical instability, and of certain notions - and problems - in the
theory of instability, bifurcation, and passage through bifurcation in
rotating dynamical systems. The focus on bifurcation from the Jacobi
family via a certain third-harmonics deformation of the free surface is
discussed, along with the apparent impasse in which the theory was left
in virtue of the discoveries of Lyapunov (who found that the bifurcating
family was unstable) and Cartan (who found that the Jacobi family was
dynamically rather than secularly unstable beyond the third-harmonics

* point of bifurcation).

Recently Eriguchi, Hachisu and Sugimoto (1982) have shown that the
fourth-harmonics point of bifurcation is intriguing from the standpoint
of fission. However, it is not accessible via an evolutionary trajectory |
under classical assumptions, because such a trajectory would first
encounter a dynamical instability to third harmonics disturbances.

I have reformulated the problems of the evolution, stability, and
bifurcation of ellipsoidal masses in the context of inviscid, compres-

1 sible fluid dynamics (Lebovitz 1981). In this context, evolutionary
trajectories are very different from those of the classical (viscous,
incompressible) theory. In this revised context, the fluid mass first
encounters the fourth-harmonics instability. The shape of the deformed
figure and the behavior of the bifurcating branch reveal the favorable
features found by Eriguchi et al. (1982), i.e., the deformed figure is
pinched in the middle, and the bifurcation is transcritical, so that there
is necessarily a stable branch (Lebovitz 1984, 1985).

These results would seem to restore to the subject the picture ,-"--

proposed a century ago for the formation of a binary figure via fission.
The differences from the older theory are (1) the newer version is
inviscid and (2) the relevant instability belongs to the fourth |
ellipsoidal harmonics rather than the third. P
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Approximations Based on the Hamiltonian Structure

of Fluid Dynamics

Rick Salmon

Approximation methods which exploit the underlying Hamiltonian
structure of the general fluid equations enjoy two important advantages
over more conventional methods. First, when approximations based upon a
scaling analysis are applied directly to the fluid Lagrangian, then the
resulting equations of motion automatically preserve analogues of all the
exact conservation laws, provided only that some care is taken not to
disturb the corresponding symmetry properties of the Hamiltonian. Second,
because the approximations also have Hamiltonian structure, there exist
canonical coordinates in which the approximate equations take their
simplest mathematical form.

Two examples illustrate these ideas. In the first example, the
Lagrangian for a shallow homogeneous layer of rotating fluid is iterated
once about the zero-Rossby-number limit of purely geostrophic motion. The
resulting dynamics exactly conserve a 'geostrophic' approximation to the
total energy and the potential vorticity on particles. In canonical form,
these dynamics generalize the 'semi-geostrophic' equations of meteorology
to the important case of a spatially-varying rotation rate.

In the second example, the general Lagrangian for a homogeneous fluid
with a free surface is iterated once about the dispersionless limit of a
very shallow layer to obtain dynamical equations which are equivalent to
those derived by Green and Naghdi (1976) by other methods. The Green-
Naghdi equations conserve a form of potential vorticity, which when set
initially to zero, permits a reduction to a form of the Boussinesq
equations obtained previously by Whitham. A further reduction yields the
Lagrangian for the KdV equation.
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Vortex Dynamics and Cascade Theory

Stephen Childress

The elements of the kinematical connections between a velocity field
u(x t) and a vorticity field (x t) were reviewed. The dynamical state-
ment appropriate to Euler's equations, that the flow lines of W are
material lines of the field u implies the well-known differential equation
for w. The essential nonlocal properties of the vorticity field are
summarized in Kelvin's theorem, and the geometry of vorticity derives
from the application of this theorem to matarial lines.

Efforts to understand the geometry of small-scale features in fully-
developed turbulence have recently focused on the possible role of coher-
ent structures in the energy cascade. Early attempts to give a physical
description of a turbulent field utilized ensembles of vortex filaments,
sheets, Hill's vortices, and, more recently, vortons (Aksman et al. 1985).
Relatively little attention has been paid, however, to the study of
nonsingular structures, even in the steady case. Fraenkel (1970) has
treated steady vortex rings, and his methods reveal the essential matching
that can be exploited to treat slender rings of arbitrary core structure. A
Since two-dimensional rotational flow and axisymmetric rings are two
limiting cases of a one-parameter family of helical rotational flows, it
would be of interest to develop matched expansions for slender helical
vortex structures, analogous to related calculations in plasma physics.

In this connection, two kinds of "nearly two-dimensional" Euler flows p
were introduced. The flows of type I include a "stretched" version of
the Taylor-Green problem. Those of type II are of the form, in the large,
of a vortex filament. In the small, the core of the vortex is a quasi-
steady two-dimensional rotational flow. The simplest example of a type
II flow is a slender vortex tube whose core is a nested family of simple
closed streamlines. These two flows differ in the manner in which the
three-dimensionality affects local two-dimensional dynamics.

If the initial-value problem for the Navier-Stokes equations Is con-
sidered at an enormous Reynolds number (~1) the vortical structures
associated with the energy cascade would be revealed In a near Inviscid
setting, even if a geometrical cascade in the local Reynolds number was
involved. The possible role of finite-time singularities in the creation
of such a cascade Is not obvious. Two extreme views are that (1)
singularity structure determines the Inertial-range spectrum, and (2)
singularities occur (in the inviscid limit) on all scales and (e.g.)
initiate steps of the cascade. The finite rate of dissipation of energy
in the inviscid limit is believed to be associated with dissipation on a
fractal set, although there are no fully dynamical models for this
process.

Recent attempts to construct deterministic cascade models were
reviewed. Details were given concerning the vortex-tube model of --

Tennekes (1968), the beta-model (Frlsch et al. 1978), the gamma-model
(Childress 1984). An example of a model which does not invoke a formal
hierarchy of distinct steps is the strained spiral vortex model of
Lundgren (1982). These examples suggest that a sensible attack on
Inertial-range modeling will Involve kinematics of vorticity, but also

6.°* .. .- -. ... -.-... . ..-.... ... . . ..- -, ... - ...-... ...... ,... -. .". ,...- '''% %,.
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maintaining a certain number of the invariants of the inviscid flow, -
including volume, energy, circulation, and topological knottedness. It
is important to realize, however, that it is not clear how the topology
responds to finite but arbitrarily small viscosity. -1

An extreme dynamical viewpoint, Invoked in the gamma model, is that
the cascade can be divided into two-dimensional rotational flow and axial
straining of slender vortices ("2 + I" dynamics). In this picture, each -

cascade step involves a two-dimensional event, producing structures which
are then stretched. If all the two-dimensional are assembled, the
assumption is that the resulting dynamics is indistinguishable from two- .*. ..

dimensional turbulence. The model then establishes a connection between
the three-dimensional inertial range spectrum and the spectrum of the
two-dimensional enstrophy cascade. In particular, intermittency occurs
simultaneously in both. The two spectral exponents are related by

3e - 1
e : , E(k) .'k - en (1)

3 - e 3

A simple setting in which to investigate the onset of cascading to
small scales is the nearly two-dimensional Taylor-Green problem, wherein
the axial wavelength of the initial cells is large compared to cell
diameter. An averaging method can be used to study the evolution of the
quasi-two-dimensional Bernoulli function H and circulation r as functions -

of streamfunction ty and slow variables , t. For the Taylor-Green
initial condition the streamline pattern is a simple nested family, and .. ,

the following equations result:

(A = area within a streamline)

DA, + (v4, + w<)A = 0, D =a + va, + w8a, (2a)

A Dw = rc - Ajc, (2b)

r, - A* H, = 0, (2c)

Dr - 0. (2d)

Here an "equation or state" relating r and A must be supplied by analy-
sis of the elliptic problem 72q = H*(p). We have thus replaced
an incompressible 3-D problem by an effective (and "shallow") compressible
2-D problem. The system (2) can be analyzed near a plane of symmetry and , ".
preliminary numerical calculations indicate that there is finite-time
breakdown of the near two-dimensionality.
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A Thermal Relaxation Oscillator

Peter Lundberg

A problem not uncommonly encountered within chemical engineering
practice is that of the behavior of a fluid confined to a system of
well-mixed and connected reservoirs. This is known as a C*-problem (from
Continuously Stirred Tank Reactor) and is well adapted for an analysis in"" ~~terms of dynamical systems-theory. The use of this type of approach for_ ' "

the study of oceanographical problems was pioneered by Stommel (1961). S

Here we shall consider two well-mixed closed vessels of equal height
H and of volumes V1 and V2 , connected by tubes at their upper and
lower ends. The vessels contain a fluid of kinematic viscosity v and
with a quadratic density maximum as evidenced by the equation of state,

P Po(l - aT* 2) .

where p is the density, T* the temperature and a the coefficient of
thermal expansion. The thermal forcing of the system is accomplished by
immersing the vessels containing fluid of temperatures T * and T2*
respectively in baths of constant temperatures TleX and T'2ex Hereby
Newtonian heat fluxes governed by the external thermal exchange coeffi-
cient K e can take place. The vessels also interact directly with one
another by a diffusive heat flux through a common wall controlled by the
internal thermal exchange coefficient 1,. A density difference between
the fluid in the two vessels will give rise to a flow, assumed to obey the
law of Hagen-Poiseulle, through the connecting tubes of lengths V12 and
radii r.

The nondimensionalized ordinary differential equations governing the
evolution in time of the temperatures Ti and T2 assume the following
f orm:

SdTT /dt=1 + (C/(1-6)-T 1 )/(6Pe) + K(T 2 -TI)/(6Pe) ,.IT 2 - T (T 

dT,/dt =-PaIT22_T 1 21(T2-T1) + (1/(1-e)-T2/Pe- K(T2-T )/Pe

Here Ra = acr 4r gH(AT) 2/8V 2, Pe = T ex/T ex,
Pe2 V2/ICee 9 = xTe,6 =VI/V 2 and

• . / All temperatures have been scaled with AT = T ex - T1 ex
andT is he relaxation time-scale of the system. Note that t e irection
of the flow through the connecting tubes has no significance, hence the
nonanalytical right-hand sides of the governing equations.

From a thermodynamical standpoint it is not surprising that it can be
shown that the solutions to these equations are globally stable. If it
furthermore can be demonstrated that the critical points (Tlc , T2 c ) of
the system are unstable, the theorem of Bendixson implies that a periodic
solution in the form of a limit cycle in the TiT 2-phaseplane must
ensue. When calculating the critical points it can be shown a posteriori
that the condition T2 C - Tjc > 0 is equivalent to e2 < 1. By allowing
the volume ratio S to range over the entire real positive axis the variables
can always be defined so as to make o2 < I why we limit our attention to
this case.

I .- '*
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For a small enough neighborhood of (Tic T 2 the governing equations
become analytical in which case a linear stabil ty analysis of the station-
ary solution is quite straightforward. From the resulting second-degree
algebraic equation criteria for the neutral stability of (TIc , T2

c ) in
terms of a critical Rayleigh number Rac(Pe, 6, 0, K ) can be established.
The critical point proves to be stable for small as well as large values
of Ra, whereas it is unstable for an intermediate range of the Rayleigh
number. An analysis furthermore demonstrates that for increasing values
of Ra, the transitions from a stable to an unstable and back to a stable
critical point take the form of sub- and supercritically unstable regular
and inverse Hopf bifurcations.

An oscillatory solution to the problem in the form of a limit cycle
in the phase-plane is shown below. . .

b0.4
Ra 107.8

Pe 1

o = -13/14 "
,6 = 1/2 .. ._

K 0

04 0.2

Since this representation does not do justice to the time evolution of
the solutions, a more conventional graph of the same oscillation is also
shown.
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The relaxation character of the oscillation is particularly evident in
the latter figure. Loosely speaking, the system alternates in a
characteristic jerky manner between two almost hydrostatically balanced
states, Tj -T 2 and T1 zo-T 2. (This behavior is even more 4
pronounced for stronger thermal forcing, i.e. larger values of Ra.)

It is important to underline that this is an essentially nonlinear
oscillation in that a linear dependence of the density upon temperature
only can be associated with a state of steady convection, corresponding
in the case presently under consideration to a stable critical point.
The unstable orbits associated with the Hopf bifurcations only serve as
to extend the range of Ra over which oscillatory behavior of the system
is encountered, provided that the initial values of (T1 , T?) are
chosen such that they do not lie within these unstable orbits.

It is finally of interest to point out that in the asymptotic limit
. of 6 * 0 we have a typical example of a discontinuous oscillation in a

second-order system (Andronov, Vitt and Khaiken 1966). In this case the
limit cycle can be regarded as primarily constituted by motion of the
phase-point along the stable parts of the slow manifold. When instability

' sets in, the system responds by a rapid jump to a stable branch of the
r" manifold. For the problem presently under consideration the slow

manifold looks as follows:

',,.

* ... Ra " 25 '7]
Pe a I

T, T22 X - 0.5

M -49/50

. .. 3 ,

Here the cusp-like shape of the manifold is due to the nonanalyticity of
the governing equations. Once the point A has been reached a fast jump
to B (parallel with the T1-axis since we are dealing with the limiting
case of 6 approaching zero) takes place. Hereafter follows a slow motion -
towards the point C, where stability once again is lost and D is reached
by a jump, and so on. The analysis can, however, be improved in that the
effects of a finite value of 6 can be incorporated (albeit in a rudimen-

j_ tary manner) without taking recourse to the somewhat extreme measure of
constructing matched asymptotic solutions to the problem. The above
discussed jumps can be regarded as almost adiabatic, thus permitting a
determination of the initial positions of the phase-point on the stable
parts of the manifold making use of heat conservation. An invariance
property of this type (which sadly enough most relaxation oscillators.
lack) is known as a Mandelstam condition (Minorsky 1962).
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The results outlined here represent an extension of previous work by

Lundberg and Rahm (1984).
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Turbulence, Chaos et G~en~ration de Champ Magnetique

Uriel Frisch

L evolution d'un champ magn'etique B(r,t) dans un milieu conducteur
:nirn' d'un mouvement u(r) est r6gi par l"equation d'induction(1

ou Restle nombre de Reynolds magnftique (le champ de vitesse u 'etant
suppose convenablement adimensionne). Pour Rm = (milieu infin-ment
conducteur) 1'volution du champ magrtetique est la m~ne que celle d'une
paire de particules fluides infiniment voisines. Le mouvement des parti-

culs fuids st onto~le'par le syst~me dynamique

dr/dt =u(r) r t-_0) a (2)

qui est conservatif si v- u =0 (ce que V'on suppose). Si ce syst~tme est
nonjint~grable et presente du chaos, la matrice Jacobienne ar./aa-
cr-' ngna exponentiellement en temps et le champ magneliqui aussi.
Cet argument (du ZrArnold, Zeldovich, Ruzniaikin et Sokolov, 1981) montre
qu'il peut y avoir une relation entre le chaos Lagrangien (cest-' -dire
le comporteraent chaotique des particules TluidesJ-et Ueffet dynamo

*(c est -'-dire larplification d'une semence de champ -m-agnFgtique par un
'coulement conducteur). Bien entendu, la presence d'un terme de diffusion
Joule ne permet pas de conclure lorsque Rm est grand mais fini: le chaosp Lagrangien favorise aussi l'entortillement du champ magnetique en des
configurations ou une tres, faible diffusion Joule peut suffire supprimer
le champ magnetique par reconnexion des lignes de force. *

~Pour savoir a quoi s'en tenir nous avons proc'ede' a-des experiences
numeriques en inte'grant I'6quation de diffusion. Les de'tails de ce travail

* sont decrits dans Galloway et Frisch (1984, 1985).

L' coulement choisi a une structure eulerienne tr-es simple stationnaire

u =(A sin z + cos y, B sin x + A cos z, C sin y + B cos x). (3)

Cet coulement, appel ABC (A pour Arnold, B pour Beltrami et C pour
Childress) a aussi fait l'objet d'uneletude detaill'Ee (Donibre, Frisch,
Greene, Henon, Melir et Soward, 1985). Lorsqu'aucun des trois paranietres
A, B et C nWest nul, les lignes de courant (identiques aux trajectoires
des particules fluides) presentent la structure habituelle dans les
systkmes conservatifs r deux degr~es de libert'e, c'est-'adire un m'lange
de surfaces de KAM et de zones chaotiques.

*Des resultats numeriques sur l'effet dynamo du aux ecoulements ABC
ont 'et6 obtenus pour des R,, jusqu' Z 450 et divers choix des paraml~tres
A, B et C. Pour A=B C=1 1 effet dynamo se manifeste dans au moins deux
fendetres en Rm. La premi'gre s"6tend de =8 a =18 et la seconde au-del'X

de 27.Certaines sym~tries presentes dans 1'cuemn ebaesn
preserv6es dans la fenetre inf6rieure mais bris~ees dans la fen'etre
superieure. Le mode magn~tique croissant le plus vite priesente des
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structures tres intermittentes en forme de cigares coincidant avec les
zones chaotiques de 1' coulement. Lorsqu'un des coefficients A, B ou C
s'annule, l'ecoulement de base cesse d'etre chaotique mais l'effet dynamo
persiste (au moins jusqu' Rm = 1500); dans ce c:s le taux de croissanKe
du champ magrretique atteint un maximum vers Rm = 3UU puis semble decroitre
vers zro ce qui est le comportement approprie pour une dynamo lente.
Dans le cas gbn~ral ou V"ecoulement de base est chaotique, il n a pas
encore t@ possible de trancher en faveur de l'existence ou non d'une
dynamo rapide (c'est-l-dire dont le taux de croissance reste superieur a
un nombre positif quand Rm )
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Application of Pole Decomposition to an Equation

Governing the Dynamics of Wrinkled Flame Fronts -.

Uriel Frisch

The Sivashinsky integral equation governing certain hydrodynamical .
instabilities of one-dimensional flame fronts reads:

atu + uaxu = Au + ax u. 1)

Ais a linear singular integral operator defined conveniently in terms of
the spatial Fourier transform: + "

u(t, x) f=eikx u(t, k) dk (2)

by

A:u(t, k) I 1k lult, k). (3)

This equation is a special case of Lee and Chen's nonlinear plasma models
(1982); as such it has a polar decomposition: equation (1) admits
solution of the form. .

2N 1
u(t,x) - -2v 2.!I x - z((t (4)

El x ZU

-_. ~ ~ ~ ~ ~ ~ ~ = a.. . . .-- ''---""".... .. "" . ."- - - ..- " ' ""
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The z's are 2N poles in the complex plane (coming in c.c pairs) moving

accor ing to the laws of polar motion (a = 1, 2, ... , 2N):

-2v E 1 - i sign [(z)] (5)z B~a z z 1

-' 8ia Z -
where ' denotes the imaginary part. When 2ii spatial periodicity is assumed
equations (4) and (5) are modified by summation over the periodic images
into expressions involving cot [(x - z )/2] (4') and cot [(z.- z,)/2](5')
instead of 1/(x - z.) and 1/(za - z,).a

Study of the effects of binary interactions indicates that there is a
tendency for alignments of poles parallel to the imaginary axis. The
dynamics of 2N poles on such a "vertical" line has been investigated, both
in the nonperiodic and periodic cases. It is shown analytically that a
unique stable steady state is reached. The equilibrium positions of the
poles can be calculated numerically. When N is large the equilibrium
positions of poles condense into a continuous distribution which may be
determined analytically by asymptotic methods. The corresponding solution
in physical space has a wrinkle with a log-structure.

The pole decomposition of the Sivashinsky equation is at the root of
its simple behavior reported by various numerical integrations (Michelson
and Sivashinsky, 1977; Pumir, 1985). The pole decompositon also predicts
that the wrinkles do not have a true cusp structure but are slightly
rounded over a distance 6 which scales like the inverse of the logarithm-
of the number of linearly unstable modes. 6 is actually the distance
from the real axis of the innermost pole; it is also the resolution that
must be used in direct numerical simulations of (1).

Details of this work may be found in Thual et al., 1985.
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The Saffman-Taylor Problem: Viscous Fingering

Boris Shralman I

This talk reviews some of the recent work on the Saffman-Taylor .

problem: the problem of the flow of two viscous fluids in a Hele Shaw
cell. Apart from its direct experimental relevance this problem is
representative of the broader class of problems dealing with the evolution -..

of interfaces in two dimensions. It is also of interest for the study of
cascade into large length scales. We restrict attention to the steady
finger flows and review the "pattern selection" protlem: the determination
of the finger velocity (or width) as a function of the control parameter.
This problem was resolved by McLean and Saffman (1981) and Vanden-Broeck -

(1983) who showed that in the presence of the surface tension only a
discrete number of steady state solutions exist. Another issue concerns
the stability of the finger solutions. Contrary to the earlier calcula-
tions, the fingers appear to be linearly stable for all values of the
control parameter (Kessler and Levin, 1985; Bensimon, 1985). At the same
time the fingers are unstable w.r.t. finite amplitude perturbations
(DeGregoria, 1985; Bensimon, 1985). Both the "selection" and the stabil-
ity results are in agreement with "Monte-Carlo" numerical simulations of
S. Liang (1985) and experiments of Tabeling and Libchaber (to appear).

The second part of the talk addresses the "pole dynamics" method of
studying the dynamics of the interface in the absence of surface tension.
In that case it is possible (for a large class of initial conditions) to
reduce the evolution equation for the interface to a set of ordinary
differential equations governing the motion of the critical points of the
conformal mapping that maps the Interface onto some standard contour
(Shraiman and Bensimon, 1984). This method allows to follow the initial
instability of the interface (the Mullins-Sekerka instability) into the
nonlinear regime and show that many initial conditions lead to singulari-
ties in finite time (see last reference). The singularity in this case
is the 2/3 power cusp in the interface.
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Tabeling, P. and A. Libchaber, Univ. of Chicago, to appear.
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Such finite time singularities were also investigated by a number of
authors: G. Meyer, "Numerical Treatment of Free Boundary Value
Problem," ed. J. Albrecht (Birkhauser, Basel, 1982); S.D. Howison,
SIAM, J. Appl. Math., to appear and references therein.

Report on the Arcata Conference:*

Bifurcations with 0(2) Symmetry

James W. Swift

"Multiparameter Bifurcation Theory" was the subject of the conference,
but actually half the talks were about bifurcations with 0(2) symmetry.
This symmetry of the circle results when periodic boundary conditions are
imposed. The simplest nontrivial example is Hopf bifurcation, where
traveling and standing wave solutions bifurcate from the origin simulta-
neously. The nonlinear selection between traveling and standing waves is
entirely analogous to the selection between roll and square planforms in
stationary convection: If both solutions are supercritical the one with
larger amplitude is stable.

Some of the talks at the conference were discussed, including three -
talks about Taylor-Couette flow in counter-rotating cylinders.

*AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical --

Sciences (July 14-21, 1985). Martin Golubitsky and John Guckenheimer,
co-chairmen.
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3-0 Vortex Dynamics and Singularities of the Fluid Equations

Alain Pumir

The question of singularities in the evolution of the fluid equations
is addressed. Although the Navier-Stokes equations are used in many
practical applications, it has not been proven so far that singularities
do not appear at a finite time, even without any external forces. Only - *. -.-

some upper bounds on the dimension of the set on which the singularities
exist are known.

Physically, the evolution of the fluid is investigated by following
the motion of a vortex tube. In the Euler equations, the circulation is
a conserved quantity, according to the Kelvin and Helmholtz theorems.
The velocity created by several tubes of vorticity can be shown to be
given by a Biot-Savart like formula, at least as a low order result of an
asymptotic expansion. The effect of finite-size of the core-size of each
tube is accounted for by an appropriate cut-off in the integrals.
Moreover the volume of space where the vorticity is concentrated is - "
conserved.

Previous numerical simulations of this model (Siggia 1985) have
revealed that two anti-parallel filaments spontaneously tend to get
tightly paired, and that the resulting 'curve' then stretches very fast.
Due to both volume and circulation conservation, a very strong increase
of the vorticity follows. . -

We have shown numerically (Siggia and Pumir, preprint) that the
vorticity in this model blows-up as l/(t 0 - t). Several other numerical .

and analytical studies allowed us to understand better this ultimate ,.- ,

stretching process. However, the relevance of our model, even for the
Euler equations is not completely straightforward, since the assumptions
leading to the 'Biot-Savart' formula are barely valid during the late
stages of the stretching process. One has to worry about the structure
of the core-size since in the ultimate stage of the blow-up, the two
filaments get closer and closer. It is possible to model more carefully
the core structure by representing each filament by a bundle of filaments. L
With this new way of modeling the vortex tubes we have shown that the
blow-up process is not too dramatically modified. Though the cores may
be severely distorted (the tubes are no longer cylindrical, but rather
elliptical), the law of increase of the vorticity is still valid.

On the phenomenological grounds, the viscosity in the Navier-Stokes "- " "
equation induces a diffusion of the vorticity, which tends to increase
the cross section a of the tube:

da/dt = u

On the other hand, the stretching tends to decrease this cross "
sectional area of the tube, proportionally to the circulation :

da/dt -

up to some logarithms.

I-
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This suggests that the viscosity is barely able to overcome the
stretching as soon as the dimensionless ratio (rlv) is large enough.
The existence of a finite time singularity in the Navier-Stokes equations "
thus depends on some logarithmic behavior, that is probably hard to
understand. If the solutions we are interested in are stable enough,
with respect to both viscous and core deformation effects they provide a
physical mechanism to explain the strong intermittency observed experimen-
tally in the boundary layers, in turbulent shear flows.
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A Session on Singularities
Interfaces in the Complex: Condensation of Poles

in Burger's Equation

Jean-Daniel Fournier

Localized waves which are solutions of integrable one dimensional
partial differential equations of fluid dynamics have in many cases been '"""""
interpreted as the trace in real space of singular phenomena occurring in
the complex (spatial) domain. This is the case for solutions of Korteweg
de Vries and quasi-shocks of Burger's equation at small finite viscosity
(Choodnowsky and Choodnowsky 1979; Meiss 1980), the analytic continuation
of which has poles. The dynamics of those waves is governed by the motion
of the set of singular points. The integrability of this motion has
received much attention specifically in the case of a finite number of
poles (Calogero 1978; Choodnowqky and Choodnowsky 1979; Meiss 1980). For
'generic' initial conditions one may expect an infinite number of poles
sitting on lines 'above' the wave, in the complex plane. When the
distance between two successive poles tends to zero, these Stokes' lines
become sort of interfaces in the complex plane; they support a density
of poles and form boundaries which may result in distinct analytic
continuations of the solution.

Hereafter we concentrate on this condensation process in the time
dependent Burger's equation in the zero viscosity limit with a paradigma-
tic initial condition; we report some of the results obtained in collabor-
ation with Bessis (1984). Similiar results obtained in an asymptotic and
numerical study of the stationary case of Sivashinsky's equation have been
reported by Thual et al. (1985).

With the exception of t., where the curvature undergoes a sudden
change, the Stokes' lines present a cusp-like form, with a power law shape
(see for similar results Shraiman and Bensimon 1984; Pomeau 1985). At
t, one of these cusps meets its complex conjugate, forming a cubic
pre-shock in the real and creating a boundary between the left and right
hand side half complex planes. The subsequent scenario in the complex
provides a simple interpretation of the inviscid behavior in the real.
In particular,

(I) the amplitude of the shock: the shock appears at t. with a
zero amplitude, grows while it absorbs its neighborhood and eventually
decays to zero with the dissipation, which does not vanish as the visco-
sity goes to zero, becoming the dominant effect. This is summarized in
the evolution in time of the density of poles on the cusp (parallel to
the imaginary axis)

pOly ,t) -1 -(21r) -1 (t t.)1/2 t-3/2 t - ,1/2 '">

y 0

(ii) the Burger's fluid and the gas of free particles: one can go
smoothly from the left to the right hand side of the shock if one uses a
multivalued velocity distribution which is locally a solution of Burger's

equation and describes a gas of free particles retaining their initial
velocity; of course this system differs from Burger's fluid after t.. *.

But a similar smooth transition can be obtained as a path in the complex; .I ,
the left and right solutions are analytic continuations of each other ifr Y"
one uses the complete three-sheeted Riemann surface of the problem and
not only the complex plane.

", .. . .
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Turbulent Viscosity:
Short lecture on some efforts in recent years
to make a justified use of a century old ideai

Jean-Daniel Fournier

We first give a short phenomenological and experimental description
of developed turbulence. A useful and old picture is to consider it as a
state of matter with modified transport coefficients. These are no longer

O produced by molecular processes but are the result of small scale turbu- al- i
lence acting on large scale motion. In numerical schemes and statistical
theories, however, such ideas have often been used in situatons with a
continuum of locally (in Fourier space) interacting scales. Then they
can hardly be justlfied and their success is likely to rely more on dimen-
slonal analysis than on the physics involked. As an example, we recall
Heisenberg's 'derivation' of the Kolmogorov scaling law for the Inertial
range. So far such models have been somewhat rigorously justified in
mainly two types of situations:

(I) a clear scale separation between 'large' and 'small' scale. This
* provides a small parameter which can be used in two-time type analysis;

(Ii) a continuum of scales but with the nonlinear dynamics dominate-
"- by the nonlocal (in Fourier space) effects. The Iterative procedure of

the Renormalization Group (RG) then allows one to deal with the resulting
scaling laws. N

We illustrate M1) in reporting the phenomenological discussion of the
dynamics of atmospheric turbulence with a spectral gap proposed by Pouquet
et al. (1983). Point (ii) gives an opportunity to explain the RG in the -.-

context of statistical fluid dynamics (Forster et al. 1977; Fournier
1982). The scaling of the turbulent transport coefficients (see e.g.

I.V
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Fournier, Sulem and Pouquet 1982 for M.H.D.) and in some cases the ampli-
tude of the prefactor (Fournier and Frisch 1983) are obtained within an
a-expansion; this enables one to discuss the physics of flows studied with
this technique. The nonlocality of the nonlinear interactions (Kraichnan
1982) and the absence of large distance correlations (Fournier and Frisch
1983) in the small scale dynamics are probably the main assumption. As
well as for other 'statistical theories' of turbulence, this is likely to ''
exclude any treatement of coherent structures, at least within the current
state of the technique.
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A less technical lecture but similar in spirit was given by the same
author at the Astrophysics Spring School in Goutelas, France, April
1983 and appeared (in French) in the Proceedings, ed. by M. Auvergne
and A. Baglin, published by S.F.S.A. Observatoire de Paris-Meudon.

Large Scale Instabilities of Cellular Flows

Melvin Stern

The temporal evolution of large amplitude quasi-geostrophic distur-
bances In a piecewise uniform potential vorticity flow is elucidated by
numerical solutions of the "contour dynamical" equations. Lateral wave-
breaking occurs when the Intial disturbance amplitude exceeds a certain
value, and at later times tongues of the lower vorticity fluid are
engulfed or entrained Into the higher vorticity shear flow. The effect
appears to be important for the evolution of "shingles" observed between
the coastal water and the cyclonic side of the Gulf Stream. The effect
may also be an Important phase In initiating the mixing process at the
perimeter of an eddy embedded in another water mass.
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Supercritical and Subcritical Flows

in Coastal Hydraulics

Roger Hughes

Consider a coastal current flowing in the opposite direction to that
in which a long first mode shelf wave usually propagates. Clearly, the
current can either sweep such a shelf wave along with it (i.e., the ,f.-,
current is of supercritical type) or the wave can propagate against the
current (i.e., the current is of subcritical type). Modelling of an
unstratified coastal system shows that one current of each type may exist
for a given distribution between potential vorticity (or alternatively
Bernoulli head) and flux streamfunction. Thus as in the classical theory
of open channel flow, a current with a specified structural form may be
considered to have an unrealized alternative conjugate structural form.
As both the potential vorticity and streamfunction are conserved following
an element of the flow under steady frictionless conditions, irregulari-
ties in the coastline or bottom topography may cause a transormation of
the current structure to its conjugate as the flow proceeds downstream.

J Further modelling shows that stratification does not destroy the AL
conjugate behavior described above. At large flows, stratification

- enables a similar conjugate behavior based on internal Kelvin waves to
develop from the shelf wave supercritical structural form of the current.
Such conjugate behavior was noted by Gill and Schumann (1979). Conjugate
behavior based on higher mode shelf waves may also be found. Such
behavior develops from within the first mode shelf wave subcritical
structural form of the current.

Let us consider in detail the conjugate behavior associated with the
first mode shelf wave. Under exceptional circumstances, the two conjugate '.'

structural forms become indistinguishable. We refer to such conditions
as critical. It may be shown that eastern boundary flows are apt to
develop critical conditions as they move towards the equator. Thus
although exceptional, such conditions could conceivably be found in the
California Current, for instancae. Interestingly, a current of a high
mode shelf wave conjugate type develops first mode shelf wave ciritical

* " conditions with flow reversals in the far field as is observed at times ;
in the outer reaches of the California Current. Of course, wind and
friction may be expected to modify the inevitability of this conclusion.

It may be shown that a topographically induced disturbance within a ---
subcritical flow contains lee waves. However, no such lee waves are
found in the response within a supercritlcal flow. Despite this major
difference in the form of the disturbance, the disturbance is weak for
both types of current unless conditions are near critical. Under such
near critical conditions, topographic irregularities have a strong

influence on the flow as observed to occur within the California Current.

Consideration of a finite amplitude theory designed to represent the %

strong response at conditions of near criticality shows the possibility
of large off-shelf excursions of the flow possibly indicative of the
squirts found by Mooers and Robinson (1984). The theory has been used to
study flow along a sinusoidally varying coastline. For realistic
parameters a wavelength doubling of the response Is possible. Thus by
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Feigenbaum's (1980) scenario a spatial chaos might be expected. A
spatial chaos would manifest itself as a temporal chaos indicative of the
turbulent nature of the California Current. Interestingly, the Reynolds'
stresses associated with such behavior are of the correct form to move
the flow away from critical conditions. Thus a balance is predicted
between the influences of both equatorward movement and eddies on the
dynamics of an eastern boundary current.

The California Current has many characteristics of a near critical
flow. However, observations of shelf waves in the region indicate that
the current has little effect on such waves. Fortunately for the present
theory Davis (1985) has noted that there appears to be a much slower pro-
pagation within the California Current. Consideration of the structure
of the California Current suggests that the level of no motion (i.e.,
critical level to topographically induced waves) isolates the California
Current from the surrounding poleward flow. Some evidence for this Idea
may be found in observations of a weak stratification at the base of the " "
California Current as required by the isolation mechanism recently
suggested by Smith (1985) for atmospheric meso-scale flows.
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Chaos in Surface Waves: Theory in Spiegel's Wake

Itamar Procaccia

We considered an experiment conducted by Ciliberto and Gollub on the
transition to chaos in the dynamics of surface waves on the free surface

i of a fluid contained in a cylinder that is oscillated vertically. This
experiment has been picked as a case model for understanding the appear-
ance of low dimensional chaos in systems with infinite degrees of freedom.
The hydrodynamic description of the system was used as a starting point
for the derivation of low dimensional ODE's that pertain to the onset of
chaos. The Center Manifold Theorem and Normal Form Theory were used vety
much in the foot steps of Coullet and Spiegel to obtain the minimal non-
linear model. The results of the theoretical treatment rationalize the
observed phenomena in considerable detail.

Theory of Strange Sets with Applications to Almost Everything

Itamar Procaccia

b - ^_2. -j

In this lecture we reviewed theory for the characterization of Chaotic
Dynamics via invariants like dimension and entropy. The discussion was
focussed on properties of fractal measures. Such measures call for a
spectrum of generalized dimensions for their complete characterization.
These dimensions were introduced and applied to strange attractors. The

L definition of generalized dimensions was used as a springboard for an
analysis of fractal measures via their singularities. It was argued that
quite generally one can consider fractal measures as interwoven sets of
singularities of varying strengths, such that each type of singularity
lives on a fractal set. A formalism to unfathom this complexity was
presented and applied to diffusion limited aggregation, and to important
sets from dynamical system theory.

. -- '
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Double-diffusive Interleaving

Judith Y. Holyer

At ocean fronts there are commonly density compensating horizontal
gradients of heat and salt. The presence of these horizontal gradients
can lead to the formation of layers that propagate almost horizontally.
It is believed that the layers are driven by a double-diffusive instabil-
ity that acquires energy from the horizontal heat and salt gradients.
The intrusions can exist in regions where both heat and salt are stably
stratified in the vertical and they have been observed in the ocean by
Joyce, Zenk and Toole (1978) and Gregg and McKenzie (1979) amongst others.

Holyer (1983) has investigated this instability theoretically and has -

shown that even when both vertical gradients are stable the system is
unstable, and interleaving regions grow. Kerr and Holyer (1985) have
extended this model to include the effects of rotation. These two papers
describe the initial instability that occurs by molecular processes. The
theory predicts that hot, salty intrusions sink. As the interleaving
develops Holyer (1983) shows how alternating salt-finger and diffusive
interfaces appear. When this occurs heat and salt will no longer be
transported by molecular processes. It is possible to control whether a
finger interface or a diffusive interface appears first by altering the
vertical gradients. This affects the slope of the intrusion.

This seminar gave a review of interleaving and also reported on some ,--'--"

experiments that were performed at Bristol University with the intention q
of finding out how the layering depended on the vertical gradients of the
two components. Previous laboratory experiments by Ruddick and Turner
(1979) did not investigate this and assumed that the layering depended
only on the vertical density gradient and not which component the gradient
was made from. It has been stated that intrusions must slope so that hot, -

salty water rises. We show laboratory experiments where the opposite
occurs and hot, salty intrusions sink. Schmitt and Georgi (1982) appear
to have oceanic evidence of an intrusion that slopes In this sense.
Oceanographers should be aware that double-diffusively driven intrusions
can slope in either sense.
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Instability of Vortices .-....

Glenn Flierl

The equations for linearized perturbations on an f plane circular .
vortex with piecewise constant potential vorticity can be derived very
simply using the contour dynamics approach. If we consider a two layer
quasi-geostrophic model with each layer having constant potential
vorticity in the regions 0 < r < I, 1 < r < b (Figure 1) in the basic \.,-,.
state, the perturbation streamfunction can be expressed in terms of the
interface perturbations by

....

- (0

Here 6 : H,/H 2 is the ratio of the layer depths and '= L/Rd is the ratio .L->..,...

" of the inner core radius to the deformation radius. The q's are the -'.-
.. ~constant potential vorticity values in the various regions. The.....-,

equations for the evolution of the interfaces determine the growth rates: '-:- Z
~if we let rj = nl exp [im(e - £2t)] we find '"''

'" (~~(2)".- -,"7) -

,-. The linear form of equation set (1) allows us to write..-.---

1 (i)C j -'-'--','}

101

and (2) becomes a standard eogenvalue equation for (L with the eigenvector

definng the perturbed interface structures. Analyzing various cases, we

fi nd 1"-.

c() For barotropic vortices: v e t"ug-

f" (a) Barotropic perturbations:

When q , > q1  0 , the high azimuthral modes enter first. ,. '->e t The elliptical (m = 2) and squeezing mode (m 1) are stable. te
if When q 0 < q,, the elliptical mode becomes unstable first

as the parameter b decreases. When the eddy is isolated (V 0

#'. for r > b), the critical size is b - 2, q,, - -114 q,.

6)'-.. /6.

AO:/">
•~ ~ ~( (0/6;.,-.-'2z "2'....".- -, ". 'o>.,".,'" ,"r,) '' O,22,. .',',': _',' '2 2 :2

and ...... .. be o e a standard eie-a u equatio for... 0 wit.......ve
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(b) Baroclinic perturbations:

When the eddy has a size on the order of the deformation radius
(e- 1), baroclinic squeezing mode perturbations (m = 1) can
grow more rapidly than the barotropic perturbations and may be
unstable even when all the barotropic modes are stable.

(2) For isolated baroclinic vortices, with V = 0 when r > b:

(a) When e < 1, the instability occurs only for small enough outer *1..--'

radius V. It resembles the barotropic instability above.

(b) When ' >> I (large eddies compared to the deformation radius),
only one mode is unstable but its growth rate is insensitive to
b. This is basically a baroclinic instability of the inner
vortex.

In addition, the steady state weakly nonlinear structures have been
studied for the barotropic vortices. The equations for a steadily rotat- .-

ing shape were solved by expansion in the amplitude of the deviation from
the circular form. We attempted to determine the rate of rotation of thestructure 0 as a function of the amplitude

Q(A I m, b, qb/ql) =Q + A2-

For isolated eddies with qb/q, < 0, we find that finite amplitude
solutions exist only in the linearly stable regime. Thus the R's look
like the sketch (Figure 2). This suggests that nonlinear interactions
will not lead to equilibration of the unstable vortex.(For solutions
qb/q, > I our results are less complete but suggest that finite
amplitude solutions may exist in the unstable range, so that it is
reasonable to think of a small perturbation growing and equilibrating [in
the presence of dissipation] or vacillating around this finite amplitude "
state.) Numerical experiments confirm that the elliptical mode perturba-
tion indeed does not equilibrate but instead the vortex breaks Into two
dipoles (Figure 3). We suspect that in many cases, the unstable perturba-
tions will not equilibrate until some vorticity contours have overturned
and broken. In this sense, the amplitude is not likely to be everywhere
"smal l .

I6 0" '

I I -

0

r o r=I
Y-V.

Figure 1: Potential vorticity distribution in the basic state vortex.
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Si nearly linearly
unstable stable (neutral)

Figure 2: Sketch of dependence of 0 upon the outer radius b and the
* perturbation amplitude A.
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Nonlinear Pattern Formation From Instabilities

J. P. Gollub

When a periodic spatial structure arises from an instability, there
are generally many possible structures (a continuum of wavevectors, for
example). However, various processes constrict the set of patterns that
can actually be realized experimentally as stationary states. These I
include secondary instabilities such as the Eckhaus instability, external
periodic forcing, and pattern selection by boundaries and defects. These
phenomena are illustrated by various recent experiments performed in our
group at Haverford College and The University of Pennsylvania.

1. The Eckhaus Instability

The Eckhaus instability is a general mechanism of pattern selection
for any translationally invariant system where a normal bifurcation pro-
duces a spatially periodic structure in one space direction. The linear
stability curve and the boundary of the Eckhaus secondary instability are
tangent at the minimum. The instability leads to slow spatial modulations
of the phase and amplitude of the roll pattern, the nucleation or elimina-
tion of roll pairs, and eventually a new pattern with a wavenumber closer -_j
to the critical value. This phenomenon is difficult to observe, both
because it is often masked by other secondary instabilities, and because
of boundary effects. We have performed the first direct observations
(Lowe and Gollub, 1985a) of the space and time evolution of the Eckhaus
instability, using electrohydrodynamic convection to obtain a sample con- "
taining at least 150 rolls. By controlling the Initial wavenumber of the
roll pattern and the layer depth, we are able to make precise measurements
of the stability boundaries and the time evolution of various spatial
Fourier components of the pattern. The stability curve and the wavenumber
of the secondary flow are consistent with predictions based on an ampli-
tude equation, an expansion in powers and derivatives of a slowly varying
field. The late stages of the evolution suggest the need for further
theoretical studies. The experiments document the complexity of the
convective instability, which arises from the fact that (at least) two
stability curves are joined together at the onset. Thus, there are two
competing instabilities, one for the amplitude of the rolls, and another ....-
primarily for the phase.

2. Pattern Selection By Spatial Forcing

If the translational invariance of the system is broken by an external
spatially periodic perturbation, the nature of the stable patterns can be
dramatically changed. In fact, a great variety of novel states can be
produces (Lowe and Gollub, 1985b; Lowe, Gollub and Lubensky, 1983), includ-
ing: commensurate phases in which the hydrodynamic flow is "phase-locked"
to the perturbation; incommensurate states containing soliton-like discom-
mensurations that are the spatial analog of quasiperiodicity; and complex
structures that contain an apparently random array of defects. These are
all stable configurations of the flow in the presence of external forcing.
They demonstrate the intricacy of the process of pattern selection.
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3. Pattern Selection by Boundaries and Defects: Minimization

The patterns produced by Rayleigh-Benard convection in a laterally
large layer do not approximate the straight parallel rolls envisioned by
linear stability theory. Rather, the patterns are textured and contain
defects. The actual patterns that are produced are a compromise between
boundary effects that favor perpendicular alignment of the rolls, and bulk
effects that favor redu:tions in both curvature and wavenumber variations
by eliminating defects. We have studied the competition between these
various processes quantitatively by using digital processing of shadow-
grapa images (Heutmaker, Fraenkel and Gollub, 1985). It is possible to
characterize the patterns by a wavevector field q(r) that contains the
local information about spacings and orientations. Using this field, we
have been able to test a two dimensional model of pattern formation known
as the Swift-Hohenberg model. This model has the interesting property
that the evolution minimizes a Lyapunov functional that can be expressed
in terms of the wavevector field. We find that the model provides a
pretty good description of the process of pattern evolution for a range
of Rayleigh numbers beyond the immediate vicinity of the threshold, but
below R = 3R,. This implies that convective patterns behave much like
elastic media that minimize a combination of certain elastic energies.

4. Chaos near the Juncture of Two Stability Curves

We close by briefly pointing out that studies of pattern formation
may eventually provide some insight into the problem of chaotic motion In
fluids. An example where this may be possible occurs in a study of para-
metrically forced surface waves in a cylindrical container (Ciliberto and
Gollub, 1984 and 1985). Different modes of surface oscillation (with
different spatial symmetries) occur as the driving amplitude and driving
frequency are varied. We find that in some cases two stability curves
(for two different modes) can cross. Near the intersection, which is a

co-dimension two bifurcation, chaotic flows are found. The behavior of
the system near the intersection is in good agreement with a simple non-
linear model based on two coupled forced (and damped) Mathieu oscillators.

Acknowledgement: The work summarized here was supported by NSF grants
SM-8310933 and DMR-3216718. I am indebted to the collaborators listed in
the references.
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Salt Fingers in a Hele Shaw Cell:
Experiment and Theory

George Veronis -

The Hele Shaw cell was made up of two glass plates of dimensions
50 x 30 cm and separated by a I mm gap. A salt solution of density
1.02 g/cm occupied the lower half of the cell initially. The upper
half had a sugar solution of density 1.01 g/cm 3. A barrier between the
two fluids was withdrawn at time, t = 0, to start the experiment. The
Hele Shaw cell makes it possible to follow individual salt fingers as
they grow from thin, short features to relatively wide (compared to the
gap width) fingers. A series of photographs recorded the evolution.

As the salt finger zone occupying the region between the two reser-
voirs becomes longer, the stabilizing salt gradient becomes weaker and
the width of the fingers must grow. Wider fingers appear to be generated .
near, and penetrate in from, the outer edges of the finger zone where the
mean gradients are weaker. There is smaller scale structure where these
penetrating descending and ascending fingers "collide" and adjust so that
they form a pattern of up- and down-going fingers.

When the Hele Shaw cell is inclined at the angle, e, with the hori-
zontal, the effect of gravity is reduced to g sine. Since the width of
the fingers is proportional to g-,, the preferred width of the fingers
is increased. Thus, it was possible to generate a pattern of salt fingers
of one size at one value of a and then to alter e abruptly so that a
new finger size is preferred. When e is increased from some small
value, a wide cell becomes unstable to a disturbance inclined at about
450 to the horizontal and a thin interface region between ascending and
descending cells takes the shape of a fern leaf pattern. The ends of the
fern leaves turn toward the vertical to create intermediate cells. When
e is decreased, wider cells penetrate in from the outer regions of the
salt finger zone in a manner reminiscent of evolving fingers.

The linear stability analysis of a pattern of fingers periodic in the
horizontal and independent of the vertical coordinate was based on Floquet
theory. The fern-leaf pattern of unstable modes for wide cells emerges
from the analysis. The stability analysis for cells of arbitrary
horizontal scale is still underway.

Howard (1984) gave a preliminary report on a model of steady fingers
of finite height driven by a vertical difference (rather than a vertical
gradient) of the destabilizing component. The analysis assumes that the .-

diffusivity of the destabilizing component is much smaller than that of
the stabilizing component. The lowes! order solution assumes vertically

infinite fingers. When the correction due to the small diffusivity is
incorporated, fingers of finite length can be analyzed. The same analysis
for flow in a Hele Shaw cell is somewhat simpler and has been carried out.
Fingers that maximize the buoyancy flux have a horizontal scale that is
approximately twice the width of a buoyancy boundary layer at lowest
order. The analysis for the diffusive correction is valid provided that
the ratio of the diffusivities is not greater than about 0.07. Therefore, . , .
the model is valid for the heat-salt systems but is not appropriate for
the salt-sugar experiment.

Z- -:
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High Reynolds Number Taylor-Couette Turbulence

Willem V.R. Malkus

This extended abstract contains an outline of summer progress on a quan-
titative theory for the averaged properties of fully turbulent shear flow.
The zeroth-order step in the "decoupled-mean" theory (Malkus, 1983) is
applied to Taylor-Couette turbulence and compared to the Townsend-Smith 1983
data. The mean boundary layer found in that data at Reynolds numbers of
100,000 is not logarithmic, but varies as the one-third power of distance -
from the boundary. This observation is in keeping with the Monin-Obukhov
similarity theory for buoyancy layers (M. Claussen, 1984). Claussen and I
have planned to apply the quantitative and more mechanistic absolute marginal
stability theory to the entire mean circulation profile for swirling flow.
The zeroth step described here is to find a circulation profile which is -

absolutely stable to all possible disturbances, but just barely so. The
absolute stability condition for Taylor-Couette flow (D.D. Josephs, 1976)
parametrically abuts the linear instability condition for narrow-gap flows.
The inviscid limit of these stability requirements is the Rayleigh
discriminant

= - (llr') (ar2/ar) = -20[0 + (OV/ar)]

where r is the radius and r = Vr = Qrz is the circulation, and where
" must be less than zero to assure stability. For swirling flow with an
axial velocity W(r), one can apply the Rayleigh discriminant for local
helical disturbances inclined at an angle (, where

tana = (aW/ar)/(aV/ar) -.

to the plane containing the vectors V. and rediscover the Liebovich-
Stewartson instability condition

-(ar/ar - ar/r) [(ar/ar - 2r/r) ar/ar + r (aw/ar) 0 > 0

This, then, should be the inviscid measure of absolute stability for all
flows In which aw/ar < var. For awr > 10 aV/8r one expects that
Poiseullle-llke shear instabities may dominate the flow. A passing
observation is that the critical Richardson number is

Irt ar

for these three dimensional flows, when ar/ar << r/r.

For buoyancy driven flows instability can be marginally assured If

E l*I, I I. ,'-

where k, measures the just unstable viscously controlled scale of the

i
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boundary layer, and where 0 ( f < 27r across the gap.. The rigid
boundary conditions on the mean field require that

0 = Ek2 1r I + EkZl 1k* - 2EkIkEkIk*

A first estimate for the Ik leading to optimum stability are those that
lead to maximum angular momentum flux. For narrow-gap flows these are
found to be

I Ik = (15/13k.)'1 2 [1 - 6(k/ko) + 4(k/ko)2 ].

Numerical solution of the cubic equation for ar/ar -r F',--

-(F' - 2r/r)[(r' - 2r/r)r' + r2W'2] = I*I

and integration to determine r(r, k,) provides a qualitative field,
containing a one-third law and an interior region of reverse r' as does
the Townsend data.

More exciting is the quantitative step to determine k,(R) from the
absolute stability intergral. First estimates indicate a value well
within a factor of two of the data. Certainly another iteration towards
the correct theoretical value will be made this fall. To date then, the
results support the proposal that fully turbulent flow is 'adjacent' to a

polycritical surface in phase space whose dimensions increase as the
square root of the Reynold's number.
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Transition and Turbulence in
Fluid Flows and Low-Dimensional Chaos

K.R. Sreenivasan

Recent studies of the dynamics of low-dimensional nonlinear systems '.
with chaotic solutions have produced very interesting and profound results
with several implications In many disciplines dealing wth nonlinear equa-
tions. However, the interest of fluid dynamicists in these studies stems --

primarily from the expectation that they will help us understand better
the onset as well as dynamics of turbulence in fluid flows. At this time,
much of this expectation remains untested, and many unanswered a priori
questions exist, especially in 'open' or unconfined fluid flows. The work -

described in the talk was aimed at filling some of this gap.

Measurements made in the wake of a circular cylinder, chiefly In the
Reynolds number range of about 30-1, were analyzed to show aspects of

* . similarity with low-dimensional chaotic dynamical systems. In particular, -

it is shown that the initial stages of transition to turbulence were
characterized by narrow windows of chaos interspersed between regions of
order. The route to the first appearance of chaos was shown to be much
like the envisaged by Ruelle and Takens (Reulle and Takens, 1971); with
further increase in Reynolds number, chaos disappears and a return to
three-frequency quasiperiodicity occurs. This is followed In turn by the
reappearance of chaos, a return to multifrequency quasiperiodicity, .

reappearance of chaos, and so on; we have observed several alternations
between order and chaos below a Reynolds number of about 200, and suspect
that even more exist In the higher Reynolds region. Each window of chaos
Is associated with a near-discontinuity In the vortex shedding frequency
and the rotation number, as well as a dip in the amplitude of the vortex
shedding mode. It was further shown that the dimension of the attractor
constructed using time delays from the measured velocity signals was
truly representative of the number of degrees of freedom in the ordered '
states Interspersed between windows of chaos; within the windows of chaos,
the attractor was shown to be characterized by a positive Lyapunov
exponent and frational dimension varying between 2.6 and 6. Our measure- . ,i.' -

ments and dimension calculations (whose reliability or dimension values
exceeding about 8 - 10 is questionable) suggest that the dimension is no
more than about 20, even at a moderately high Reynolds number of 104.

In the talk, most of these measurements were interpreted In terms of
the physical events occuring in the flow. ."
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An Experiment on the Transition
from Quasiperiodicity to Chaos

A. Libchaber

The experiment is a Rayleigh Benard one, the fluid mercury, in a small
I.- aspect ratio cell with two rolls (Libchaber, Laroche and Fauve, 1983).

Existence of quasiperiodic states results from two different oscil-
lating states in the fluid. One is the natural oscillatory instability
present for low Prandtl fluids above the onset of convection (Busse,
1978). The second one is imposed externally on the flow velocity field
by an electromagnetic excitation which creates an oscillating vertical . .
vorticity (Siggia and Zippelius, 1981). With such a state, by sweeping
the frequency and amplitude of the forced oscillation, one can plot the L

. •Arnold tongues describing the various phase locked states in an amplitude
*- versus winding number Q ( 2 f,/f,) plot (Stavans, Heslot and

Libchaber, 1985).

V_ Figure 1 shows some of the large tongues which follow the Farey
construction (Jensen, Bak and Bohr, 1984). The inserts of figure I show

- locking states associated with Fibonocci approximants of the Golden and
Silver mean (Shenker, 1982), 0 = 45-1/2 and 2 = r- 1. From the
experiment the following measurements have been performed:

-For the Arnold tongues we have measured the fractal dimension of the
* devil staircase at t~e critical line 0 = 0.85.

-For the irrational route to chaos at the golden mean we have measured
- the dimension of the attractor at the chaotic point D = 1.

-For Q = F5-1/2 and o = JI'-I we have measured the two critical
exponents 8 and a.

The agreement between this experiment and a circle map model is good.
There is by now no theory relating the fluid equations, in the small
aspect ratio case, to a circle map iteration scheme.
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Directional Solidification of a Dilute Binary Alloy

John Bechhoefer

Physical problems concerning the motion of interfaces have recently
attracted wide attention. Together with Albert Libchaber and Francois
Heslot, I have studied interface dynamics in the context of the
directional solidificaion of an organic molecule called succinonitrile,
doped with an impurity.

Our experimental apparatus (figure 1) is adapted from that of Jackson
(Jackson and Hunt, 1966).

micro-
scope

-1.i-

solid-liquid interface

Figure 1

A cell containing a thin (10 pm) layer of succinonitrile (NC(CH2 )2 CN)
is placed atop two copper blocks, one of which is at 800C, the other at
200C. There is a gap of 2 pim between the blocks. Since the melting
temperature of succinonitrile is 600C, there appears a solid-liquid L-
interface between the blocks. The sample is then pushed at a constant
velocity V - I pm/second from the hot to the cold side of the apparatus.
The interface acts as a "seed" for new crystallization, and the interface
advances. After a transient, which last for several hours, the interface
will advance with a velocity -V that just compensates for the pushing of.- "
the cell. For slow velocities (z .1 pm/sec), the interface remains a
straight line (figure 2).

a b c

flat cellular dendritic

Figure 2
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For higher velocities (1I pm/sec) the interface Is cellular - it
advances with liquid grooves separating solid "fingers" (figure 2b). For
still higher velocities (z 5 pm/sec) the interface is dendritic - the
fingers have developed sidebranches, which themselves can branch, and so Zj
on (figure 2c).

The physics of the pattern formation turn out to be governed by the
distribution of impurities in the succinonitrile. To visualize this
distribution, we have added a dye, rhodamine 6G. The dye is highly
soluble in succinonitrile, has a high quantum efficiency (and hence is
bright), and is excited by visible light rather than ultraviolet
radiation (and hence is easy to work with). Other methods for studying
the distribution of impurities exist, but they generally involve freezing
the crystal and then performing chemical tests on thin sections of the
crystal (Jim and Purdy, 1974). Our method is "noninvasive." " .-

The effect of impurities is illustrated in figure 3.

Temperature

Liquidus

Sol idus -

C0  ,- .

Concentration of Impurities

Figure 3

At a finite average level of impurities c , the melting temperature no r
longer equals the freezing temperature; rather, liquid and solid coexist
over a range of temperature. Also, the concentration of Impurities on ,..

the solid side of the liquid-solid interface is much less than that on
the liquid side. Their ratio, k, is about .1 for succinonitrile and
rhodamine. The interface shape Is also influenced by the solid-liquid
surface tension. A curved interface will be at a temperature that differs U
from the temperature of a flat interface by T = TdoK . Here Tm
is the temperature of a flat interface, K is the local curvature of the
interface, and d, is the capillary length (proportional to the surface .

tension).

-L
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Figure 3 also illustrates the flat interface solution for directional
solidification. The concentration is c. on the solid side of the inter-
face, c./k on the liquid side, and decreases exponentially to c at
infinity with a decay length of D/V. Here D is the chemical diffusion
constant of rhodamine in succinonitrile (_l0-Scm 2 /sec.) and V is the
front velocity. As can be deduced from figure 3, when V is increased '.3J
so that VAc IdT/dclI/GD > 1, then the decay length will decrease so that
the concentration curve passes into the region of coexistence on the
phase diagram. Physically, this is the origin of the front instability,
as deduced by Mulins and Seke.ka (1964).

A key question concerning the shape of the interface is the selection
of the length scale of the cells and dendrites. Trivedi and Somboonsk
(1984) have investigated the spacing of cells and dendrites. The
dependence of these quantities on the velocity and temperature gradient
are recorded in figure 4.

1000 __ _ _4

0

0o, , ...-

100*.
" d lOO ~. -."

100~1 10 100">"

velocity (pm/sec.) .

! Figure 4

Marginal stability theory accounts for the V- '/2 fall off of X for high
velocities but does not account for the growth at smaller velocities.

Another equally basic problem is the shape of the cell. Even In the
L limit of zero surface tension, no one has found an exact solution for a

cell. This Is In contrast to other problems of pattern selection, such
as the Saffman-Taylor problem, where such a solution exists and is the
starting point for further analysis.

We have observed that the patterns selected by the fingers depends
upon the orientation of the (100> cubic crystal axis with respect to the
thermal gradient (G) (Heslot and Libchaber, 1985). Roughly, there Is a
tendency for a finger to grow along the (100) direction which must
compete against a tendency to grow along the thermal gradient. For the
special case where e - 450, there is a second (100> at 9 - -450. Growth
Is favored along both (100) directions, leading to tip splitting In the
cells and a chaotic spatial pattern among the grooves. The nature of the
crystalline anisotropy remains in doubt. The anisotropy of the surface
tension for succinonitrile has been measured by Glicksman to be less than - .'.
5 percent. It is unclear whether such a small anisotropy can account for
the variations we see.

. .- -.- ." " " . . ' , - " , . - . . " ,
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We are now carrying out experiments to quantify some of the observations
described above. In particular, we are attempting to record the concentra- -j
tion field locally by measuring the intensity of light transmitted through
the cell. In addition, we will soon begin observation for velocities just .It
greater than the destabilization velocity of a flat interface. There have
been several theoretical studies of the case V/V, = 1 + c that attempt to .-
push the Mullins-Sekerka analysis into the nonlinear regime (Wollkind and -"
Segel, '970; Ungar and Brown, 1985). Finally, we hope to gain more informa- .

tion about the nature of the crystalline anisotropy by measuring the angle
that cells of a fixed orientation grow at for varying velocities.

.4
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Fully Developed Phase Turbulence

Stephane Zaleski

Many systems at the onset of a large scale instability can be
described by the Kuramoto-Sivashinsky equation (KSE) (Kuramoto and
Tsuzuki, 1976; Sivashinsky, 1977)

Yt + 1P. + y._ + 112 (ox)2 = 0, 0 < x < L (1)

- where the subscripts t and x stand for time and space derivatives.
Another interesting form of the KSE is

vt + v,, + v,.... + vvx = 0 (2)

where v = p,. For L over 20, the KSE displays a spontaneously chaotic k
" behavior (Pomeau, Pumir and Pelce, 1984). It is thus reminiscent of many

models of complex motion, like the Fermi Pasta Ulam chain of oscillators.
However, the KSE is a dissipative equation and no soliton solution can be
constructed in the proper sense.

Another very interesting analogy can be done with the Navier Stokes .
equations in 3d (NSE). The same behavior in the infrared region has been
predicted for NSE and the KSE (Yakhot, 1981). Renormalization group
predictions for long wavelength, long time statistical properties of the
NSE and the KSE can thus be tested by a numerical integration of the KSE.
Moreover, the detailed statistical analysis required can be performed
only in one dimension, due to the restricted computing power of present ii
computers.

We call fully developed phase turbulence the regime where the infrared
scaling of the KSE appears, for L over 120 approximately. This should not
be confused with fully developed hydrodynamic turbulence, which is the r
regime in which an inertial range appears at high wavenumber in the NSE.
Such an inertial range does not exist for the KSE.

We performed numerical simulations of (M) with periodic boundary
• -conditions (Zaleski and Lallemand, 1985). This allows us to use an

efficient spectral code. The time dependency of the Fourier amplitudes
was treated at third order In the time step by the approximate solution
method. Averages are estimated by starting from 64 randomly chosen
Initial conditions. We estimated the quantity

x(,E) = <(Cp(t + T) - t))2 - t + T 4) -

As KSE is Invariant in the change p + cp + c, f is a "freely" drifting
quantity, and one expects at long times a behavior similar to Brownian
motion:

X(T) - DT

where D is some constant. The renormalizatlon group predicts instead N. -

(Yakhot, private communication)

X(T) = DT' with = 2/3

7 . ,
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For L large enough, such a scaling law is indeed observed but with
0.48 < p < 0.52. This corresponds to power spectrum for p of the form

- .

and is in some way "less chaotic" than expected (Manneville, 1981).

In conclusion, a deterministic chaotic model like the KSE appears to
have a weaker low frequency noise than predicted by the renormalization
group analysis.
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On the Interaction of Small-Scale Oceanic Internal Waves
with Near Inertial Waves

William R. Young

Ray theory is used to investigate the interaction of a short high-
frequency progressive internal wave of infinitesimal amplitude with a
long progressive near inertial wave of arbitrary amplitude. Weak inter-
action theory would, if applicable, predict that the largest changes in S

short wave properties occur when the resonance condition c = cg is
satisfied, where c is the phase velocity of the long wave and cg is the
group velocity of the short wave. The present calculaton confirms this
prediction only when the long wave has exceedingly small amplitude (peak
velocities of order .1 cm/s).

However, when the background velocity has a realistic amplitude (e.g.
oceanic values are of order 20 cm/s) the resonance condition fails to be
relevant. For example, waves which initially have c = cg become trapped
in low shear regions and consequently experience very small changes in
wavenumber. Other short waves, which initially have cg < c and hence
violate the resonance condition, exhibit large and permanent changes in Pi
vertical wavenumber.

Remarkably, it is found that these permanent changes are much more
likely to be decreases, rather than increases, in wavenumber. This can
be explained as follows. Short waves which enter an inertial wave packet
experience both increases and decreases in wavenumber. However, at times .-

when the wavenumber is relatively large, the group velocity is relatively
small and the short wave is unlikely to escape from the inertial packet,
whereas small wavenumber and large group velocity assist the escape of the
short wave group. Consequently the short waves which leave the inertial
packet tend to have a smaller average wavenumber than those which enter.
Thus the net effect of a near inertial packet on a collection of short
waves appears to be an increase in vertical wavelength and frequency. .•

"..' " W..
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Probing Turbulence With Large Scale Numerical Simulations

Parviz Moin

Three recent applications of large eddy and direct simulation 4

databases to the study of organized structures in turbulent flows were
presented.

An investigation into the existence and frequency of occurrence of
hairpin vortices in turbulent channel flow was carried out by Moin and
Kim (1985). Using statistical analysis and visualization of the instan- i
taneous vorticity fields in three-dimensional space it was shown that
turbulent channel flow consists of a large number of horseshoe (or hair-
pin) vortices often inclined at 450 to the wall. The hairpins are formed
from the roll-up of sheets of spanwise vorticity by random velocity
fluctuations and stretching by mean rate of strain. The hairpins do not
have legs elongated in the streamwise or spanwise direction as has been
proposed by some investigators.

Our observations of the vortical structures in the channel flow led
us to conjecture that hairpin vortices are the characteristic structures
not only in wall-bounded flows but in all turbulent shear flows. Moin,
Rogers and Moser (1985) examined the structure of vorticity field in
homogeneous turbulent shear flow using the same techniques as in the
channel. Rogallo's (1981) computer program with up to 128x128x128 points
was used. The results conclusively showed that homogeneous turbulent
shear flow consists of coherent hairpin vortices, verifying the above
assertion. The presence of mean shear causes a remarkable organization
of the vorticity field in turbulent flows.

Finally, the characteristic eddy decomosition theorem was applied to
turbulent channel flow database. This decomposition also known as
Lumley's orthogonal decomposition (Lumley 1967) provides a quantitative

definition of coherent structures in turbulent flows as well as
unambiguous determination of their contribution to turbulence stresses.
It is a mathematically elegant procedure for identification of coherent
structures and representation of the entire flow field in terms of these
eddies. This is an ideal application of the simulation databases because
of the large magnitude of the required input data. In this decomposition
the instantaneous velocity field is decomposed into a series of
deterministic functions (eddies) with random coefficients

(x)

n "-

Given an ensemple of realizations of the velocity field ui(x,t) the deter- .
ministic vector functions or eddies, 0i (n)(x,t), are chosen such that they .*-.

have the highest possible root-mean square correlations with the members ..'
of the ensemble. It can be shown the Oi's are the eigenfunctions of a ,'
Fredholm eigenvalue problem with the correlation tensor Rij as the
kernel (Lumley 1967).

,J .:.
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In a recent study a two-dimensional variant of this technique was
applied to the channel flow database (Moin 1984). It was shown that the
dominant eigenfunction contributed about 30 percent to total turbulent
kinetic energy and its contribution to Reynolds shear stress was about 70
percent. When the problem was formulated for the wall region alone, it
was pssible to recover virtually all the turbulent kinetic energy and

.1 Reynolds shear stress with only five terms in the expansion of equation
(1). In the directions of flow homogeneity this expansion is combined
with the shot-noise expansion (Rice 1944) to yield the characteristic

1 eddy that is sprinkled in the flow. From second order statistics the
characteristic eddy can be obtained to within a phase factor. This phase
factor which is essential for determination of the shape of the eddy is
recovered from third order statistics. The bi-spectra of the coefficients
an were calculated from the database, from which the unknown phase angle
was determined and the characteristic eddy was constructed. In the wall
region the dominant eddy depicts the sweep event (i.e., high speed fluid
moving towards the wall); and in the core region it displays the ejection

. event. These findings are consistent with the measurements of Wallace
Eckelmann and Brodkey (1972) using quadrant analysis.
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Mixing Layer, Coherence and Two-Dimensional Turbulence

Marcel Lesieur and Chantal Staquet

ABSTRACT: A two-dimensional direct numerical simulation of the
temporal mixing layer is performed. It is shown that the successive
pairings allow to build up a quasi-stationary longitudinal energy spectrum
of slope close to k- 4 . After two successive pairings the inertial range 7
extends on more than one decade. One shows that the large scales, though
coherent, are extremely sensitive to initial conditions, and then unpredic-
table. This, together with the statistical predictability theory of two-
dimensional turbulence, permits to propose a mechanism of exponential
growth of spanwise decorrelation which leads in a few turnover times of a
given coherent structure to three-dimensionalization. We finally propose
a mechanism of recreation of a new coherent structure, based on an eddy-
viscosity assumption and the linear instability of the mean inflectional
shear.

I. Introduction

The mixing layer between two flows of different velocities U1 and U2
has been extensively investigated experimentally these last 15 years: one
can quote for instance the work of Brown and Roshko (1974) showing the
persistence far downstream of large structures (usually called "coherent")
upon which small scale three-dimensional turbulence superpose, or the
observations on the pairing of these structures done by Winand and Browand
(1974). An extensive review of the subject has been recently given by Ho
and Huerre (1984). Mixing layer type structures can also be found in a
lot of atmospheric or oceanic situations, as well as in the atmospheres of
Jupiter and Saturn. Such a flow is important to study as a prototype of
transitional flow to turbulence. A somewhat controversial issue lies in
the concept of coherence applied to the large structures (see e.g. Wood
and Bradshaw, 1982). Another important problem is to know to which extent
the large quasi-two-dimensional scales have a two-dimesnional dynamics .:
(i.e. obbey two-dimensional Navier-Stokes or Euler equations) and what is
their interaction with small scale three-dimensional turbulence.

II. Two-Dimensional Direct Numerical Simulations

In order to decide to which extent the large scales of the mixing
layer can be accurately described by two-dimensional processes, we have
developed direct numerical large eddy simulations of the two-dimensional
Navier-Stokes equations applied to the temporal mixing layer. This type
of calculations is of course not new, since the works of Zabusky and Deem '
(1971), Couet and Leonard (1980), Riley and Metcalfe (1980), Aref and
Siggia (1980) or Corcos and Sherman (1984) for instance. Here we have
focused on the spectral statistics of the flow, as compared to the .*'
homogeneous isotropic two-dimensional turbulence (see e.g. Kraichnan and
Montgomery 1980 and Lesieur 1983). We have also looked at the sensitivity ,
of the large scales upon initial random perturbations superposed upon the i
mean inflectional shear.

.-.

In an orthonormal frame Oxyz = Oijk, let us consider a two-dimensional . '
incompressible flow of stream function D (x,y,t) satisfying two-dimensional
Navier-Stokes equation

[d/dt + J(.,D )V 2 = 4 (2-1) . "

. - . .... ., . . . .. . . .. . --. ."._ . . . . . , , ,
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This corresponds to the advection of the vorticityV 2 D by the flow.
J(A,B) is the Jacobian operator. Since one is mainly interested by a
simulation of the large scales, one will replace the molecular viscous *
dissipative operator in the r.h.s. of (2-1) by a subgridscale dissipative
term -v v 

6  

- .

[d/dt + J( , v )]v2 D _vlV6 (2-2)

This type of biharmonic dissipation is often used by oceanographers (see 4

e.g. Holland 1978). Its relevance is of course questionable, but it seems -

to allow a good description of the large scales of the flow, with dissipa-
tive effects shifted to the cutoff scale. It permits then to artificially
increase the Reynolds number. We consiler a temporal mixing layer, that
is with perioaic boundary conditions in the x direction. The boundary
conditions in the y direction are no slip boundary conditions with velo-
cities +U and -U respectively. To this temporal mixing layer we will later
on associate a spacial problem with two velocities U1 and U2 such that
(Ul - U2) = 2U and x = t'(U I + UZ)/2. This is justified only if one neglects
in the spacial layer the streamwise growth on distances of order of the x
period of the temporal layer. It is possible that the main results of the
pifollowing calculations (temporal case) should prove to be valid in the
spacial case.

We have carried out a finite differences resolution of (2-2) with the
already mentioned boundary conditions. The calculation involves 1832
grid points. The initial velocity field is tanh(2y/6i), where 6i is the
initial vorticity thickness, upon which one superposes a white noise
random perturbation of small amplitude. It is then well known from linear
stability analysis (Drazin and Reid 1981) that a structure corresponding
to the most amplified wavenumber is going to appear, since perturbations
at all unstable wavenumbers are initially present. The associated most
unstable wave length, given by the theory, is equal to xa = 76i. In the
following calculations, the unit of time will be taken as 6i/U.

We have plotted at the same time the isovorticity lines of the
velocity field and the longitudinal spatial energy spectrum obtained by

'* taking the Fourier transform of the velocity and averaging across the
S.layer (in the y direction). Figure 1 shows a calculation involving four

eddies, at times 0 (figure la), 20 (figure 1b), 37.5 (figure 1c) and 80
(figure id). In figure la one can see a small peak at the fundamental
wavenumber k = 2w/xa, which corresponds to a small sine perturbation
superposed upon the white noise (flat spectrum) in order to accelerate the
formation of the four coherent large eddies. At time t = 20 these eddies
have been completely formed, and give rise to a peak in the energy spectrum

? (figure Ib). But nonlinear interactions between modes have already distri-
buted the energy across a broad spectrum. At time t = 37.5 a first pairing .

has occurred: one clearly sees that the first iubharmonic mode k2 = l/xa
and all the larger wavenumbers collapse on a k- range (figure Ic). At
time t = 80 the second pairing occurs, and the second subharmonic k1 =
w/2xa collapses on a range of slope close to k- on 1.5 decade (figure -
Id). One will see later on that 6(t) increases proportionally to t. A
schematic scenario of the evolution of the mixing layer could be:

i) an injection of energy and enstrophy at wavenumber 6(t) -I due
to the instability of the inflectional mean shear;

I,.

* * j* * r "* .
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ii) an enstrophy cascade towards smaller scales along a k-4 spectrum -

of constant intensity. The value -4 found for the "enstrophy inertial .
exponent" differs from the value -3 given by the usual statistical
closures of turbulence (Kraichnan 1967) but is in good agreement with

•direct numerical simulations of two-dimensional homogeneou turbulence
"-" (Basdevant and Sadourny 1983). This departure from the k-3 enstrophy

cascade could be explained by the existence of vorticity shocks (Saffman
1971) or intermittency (Basdevant et al. 1981). Further discussions on 71
this point have been given by Kida and Yamada (1984) and Brachet and Sulem
(1984).

One can wonder whether this longitudinal energy spectrum has any
relevance to the isotropic energy spectrum of an isotropic ideal two-
dimensional turbulence which could for instance be obtained by a random
superposition of the mixing layer eddies. Actually, we have checked that
the transverse energy spectrum (in the y direction) resembles the
x-spectrum, so that finally the turbulence at scales smaller than 6 is not
far from two-dimensional isotrophy.

This original type of two-dimensional turbulence found in the mixing
layer is different from the two classes of homogeneous isotropic turbulent . -

flows which are usually considered: the case with a stationary injection
of energy and enstrophy at a fixed wavenumber ki yields a stationary
enstrophy spectrum (for k > ki) and a quasi-stationary inverse k- /.
inverse energy cascade (for k < ki) (Kraichnan 1967, eith 1968, Pouquet *-

et al. 1975). The freely decaying case leads to a t - decay of the
wavenumber ki(t) characteristic of the energy containing eddies, and an
enstrophy cascade

E(k,t) = (cte) t-2 k- 3  (2-3)

extending for k > ki(t) with an intensity decreasing like t-2 (Batchelor
1969). In the case of the mixing layer we have injection of energy and
enstrophy from a moving wavenumber 6(t) -1 , with a resulting quasi-
stationary k-4 inertial range extending progressively to smaller and
smaller wave numbers.

Figure 2a shows the time evolution of the vorticity thickness 6(t) in
the calculation of figure 1. In this calculation, corresponding to one
particular realization of the initial white noise perturbation, there is
clearly a growing of a(t) associated to the apparition of the first
coherent structure and to the first pairing. Figure 2b corresponds to an
average done on five independent realizations of the white noise, compared ""
with the linear growth found experimentally by Bernal (1981), and recently

or confirmed by Lasheras (1984). The agreement of the 2D calculations with
the experiments is quite satisfactory up to the time t = 50, after which
there is essentially one eddy left in the computational domain: this
eddy, which is stationary, cannot grow anymore by pairing. After that
time (t 50) it is likely that the calculation will differ from the

*: actual mixing layer whose two-dimensional large scales will presumably
grow in the same way as given by our calculation before t = 50. It seems
then that the dynamics of the large structures of a real three-dimensional
mixing-layer is correctly described by two-dimensional Navier-Stokes * "
equations with a biharmonic subgridscale dissipation. -. "
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III. The Return to Three-Dimensionality

Here one will try to study some aspects of the three-dimensionalization
of the mixing layer by looking at spanwise decorrelation developing in a
quasi-two-dimensional coherent structure: Indeed, such decorrelations can
develop, due for instance to the growth of the translative instability
pointed out by Pierrehumbert and Widnall (1981), or non two-dimensional
pairings leading to "dislocations". A statistical version of these V__._

p spanwise decorrelation processes is given by the two-dimensional predict-
ability theory (Alemany et al. 1979, Lesieur 1983, Staquet et al. 1984).
Let us consider a quasi-two-dimensional coherent structure, and let ul and
u2 be two cross sections of the flow in the (x,y) plane.' If the flow were
perfectly two-dimensional, the two random velocity fields ul and u2 would
be perfectly correlated. Then three-dimensionality results in a
decorrelation between ul and u2. One will assume that ul and u2 evolve
according to two-dimensional Navier-Stokes equations. Let E(kt) be the .
energy spectrum of ul and u2 (assumed to be the same) and EA(k,t) be the
error" spectrum such that

(1/4) < (ul - u2) 2 > f EA(k,t) dk (3-1)
0

One defines then the error rate ..

r(t) = 7 E,(k,t) dk / oE(k,t) dk (3-2)

The Eddy-Damped Quasi-Normal Markovian theory (EDQNM) (or nearly equivalent
Test-Field-Model) was applied to this statistical predictability problem by
Leith and Kraichnan (1972) in the case of a stationary enstrophy cascade:
they found that for an error initially confined in the large wavenumbers
(but not in the dissipation range), the error rate r(t) increases exponen-
tially. The characteristic time of this exponential growth to reach the
wavenumber ki is 2T (ki), where t(ki) is the large eddy turnover time at
ki. For a decaying 2D turbulence, the same EDQNM theory shows that the
characteristic time for the error to contaminate exponentially ki(t) is
4 T (ki(to)), where (to) is the time at which the error has been injected
(Metais et al. 1983, Metais and Lesieur 1984). Returning to the mixing
layer, and considering at time to a quasi-two-dimensional coherent
structure of turnover time T o, one can infer from the preceeding results
that there will be complete decorrelation between ul and u2 (i.e. returnL to three-dimensionality of the structure) in a time of order 2 - 4T o. -Since we have already seen that the wavelength xa of the large coherent

structure is of order 360, one finds:

-r o = xa/U = 3 o/U (3-3)

so that the characteristic time of the exponential return to three-
- dimensionality is of order 6 a 12 ao/U.

This result of exponential return to three-dimensionality is based on
• .statistical closures of turbulence whose validity has often been doubted.
r, It may then be useful to recover the same kind of result -- i.e. growth of

decorrelation between two initially close realizations ul and u2 of the
flow -- even in the strictly two-dimensional case. Figure 3 compares the
evolution of the initial inflectional shear with four different realiza-
tions of the small initial white noise perturbation, for times t - 20
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(figure 3a) and t = 30 (figure 3b). The case I corresponds to the calcu- e_:9
lation shown in figure 1. One sees extremely clearly that .i decorrelation
develops rapidly between any pair of the flows 1,2,3,4. If one considers
these flows as various vertical (x,y) cross sections of the mixing layer,
one sees strong spanwise decorrelations develop. If there is no mechanism
acting to restaure the two-dimensionality (this of course cannot be proved
and will be only a working hypothesis), the mixing layer will explosively
return to three-dimensionality in a time of order 6 - 12 6o/U.

In order to assess to EDQNM predictability calculations from the point
of view of our present direct numerical mixing layer simulations, we have
calculated the time evolution of the spanwise error spectrum corresponding
to two different realizations of the mixing layer, the initial random error
being superposed to the "developed" layer (i.e. with coherent structures
and inertial range formed). Figure 4 presents such a calculation, and
shows an inverse cascade of error through the energy spectrum, analogous
to the closure prediction of Leith and Kraichnan (1972) or Metais and
Lesieur (1985). The error ratio is found to increase exponentially up to
t = 80 (corresponding to the second pairing) with a characteristic time of .
14 6o/U.

It must also be noticed that the error spectrum exhib ts an intermedi-
ate k-2 range, which happens then to be proportional to k E(k,t).
Then the error spectrum is proportional to the enstrophy spectrum. This

*.. had already been noticed in the case of EDQNM two-dimensional turbulence h. *-.j

by Metais and Lesieur (1985), who pointed out an analogy with the inertial-
-• convective range of a two-dimensional turbulent passive scalar (Lesieur et
- al. 1981, Lesieur and Herring 1985). It is remarkable that such an analogy

seems to be also valid for the mixing layer.

IV. Transition Coherence/Incoherence

Experiments on the spatial mixing layer behind a splitter plate show
generally two different states in the downstream evolution of the layer:
close to the plate the coherent structures are well organized and there is
no three-dimensional turbulence (transitional region). Then, quite
abruptly, three-dimensional turbulence appears and the layer evolves self-
similarly (Browand and Ho 1983) (developed region). Similar arguments to
those developed in section III have been used in a preceding paper (Lesieur
1983) to propose that the transitional distance Dtr should be proportional

* to the Logarithm of the Reynolds number based on the initial vorticity
thickness o, namely: . ,..?

[(U1 - U2)/(U1 + U2)] (Dtr/o) = cte In (Ue] t/v) + cte (4-1)

Here we will consider the developed region: several experiments (see e.g.
Browand and Troutt 1980) have confirmed that the large coherent structures .
are still present there, hidden behind the agitation of small scale three-
dimensional turbulence. We then consider one of these large structures
and assume from the results of the last section that it will return to
three-dimenslonality: the situation is now a three-dimensional turbulent
layer superposed upon a mean inflectional shear of vorticity thickness 6.

*.. Let E3D be the three-dimensional turbulent kinetic energy: if E3D were
small in front of (1/2)U2 and if the three-dimensional turbulence had a
broad band spectrum, Squire theorem would would show that a coherent -
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structure of wavelength 76 would appear. Actually, the amplitude of the
3D perturbation is not small, so that that conditions to establish the
preceding result are certainly not fulfilled. This result can nevertheless "

be justified if one assumes that the two-dimensional large scales are
renormalized by the three-dimensional turbulence with the aid of an eddy
viscosity vt. The value of v can be evaluated either by measuring
experimentally the Reynolds stresses (Wignanski and Fiedler 1970) or by
recourse to the concept of eddy-viscosity in spectral space introduced by

. Kraichnan (1976). This yields

= 30 40 U6 (4-2)

Then a perturbation superposed on the mean shear and initially small, will
satisfy an Orr-Sommerfeld equation and the most amplified coherent * -

structure xa = 76 will appear in a characteristic time 106/U. This time L
-. is of the same order as the spanwise decorrelation time (characteristic

time of return to three-dimensionality.)

Then the evolution of the mixing layer in the coherent region could be
characterized by a cyclic exchange of energy between two and three-dimen-
sional turbulence:" starting from a two-dimensional structure ("coherent
structure"), spanwise decorrelation would develop exponentially to such a
point that the coherence would be lost and it would break into three-dimen-
sional turbulence. Then the ambient mean inflectional shear would act --

by linear stability mechanism -- to build a new coherent structure.

V. Conclusion

This paper has studied the large coherent structures of the temporal .

, mixing layer from a two-dimensional point of view: direct numerical
-* simulations have shown that these structures were turbulent in the sense

that they are extremely sensitive to initial conditions ("unpredictable")
and that they develop an enstrophy cascading like energy spectrum of slope
close to k0. This inertial range is close to be stationary. The
spectrum peaks at the inverse of the vorticity thickness 6(t) which
increases like t and evolves in good agreement with the spacial mixing
layer experiments. It could be expected that this evolution would keep on
for ever for a mixing layer developing in an infinite domain.

- {.- The ideas of exponential loss of predictability in a two-dimensional
turbulent flow, based both on EDQNM closure and direct numerical simula-
tions, have also been used to propose in the mixing layer an exponential
spanwise decorrelation which will eventually result into a three-dimension-
alization of the structure. A new coherent structure will then be reformed
due to the action of the mean inflectional shear. Since the times for the
destruction (and possibly the reformation) of the coherent structure depend
logarithmically upon the amplitude of initial perturbations, the exchange
between "coherence" (two-dimensional turbulence) and "chaos" (three-dimen-
sional turbulence) will be intermittent as soon as the perturbations are
randomly distributed in space.

..
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Experiments and Theory in Double-diffusive Convection

L. N. Howard

. I. Experiments of R. Krishnamurti and the author on double diffusive
,- convection, stabilized by a solute and thermally destabilized, were

described. The first series utilized salt or boric acid, and made use of
saturated solutions to fix the solute concentration at the lower boundary,

P a permeable membrane separating the working layer from a stirred reser-
" voir. The concentration at the similar upper boundary was maintained at

a slightly lower value by constant flushing of the upper reservoir (also
stirred), and the temperature of this reservoir was controlled by a
cooling coil connected to a constant temperature circulator. Measurement
of input and output concentrations in the upper reservoir, together with

- the flushing rate, gave the net solute flux. Heat was added to the lower
reservoir by an electric heater, and forced to leave only through the
membrane by surrounding this reservoir by a guard bath maintained at the
same temperature. Thus the controlled external variables were concentra-
tion difference (or solute Rayleigh number RS ) and heat flux, while the

* .. measured variables were solute flux and temperature difference. A prelim-
inary description of these measurements was given at WHOI last summer by
Krishnamurti. More recent experiments have been made using sugar as the
solute, and maintaining both concentrations by flushing so that saturated
solutions are not required. The flushing of the two reservoirs is done
alternately so that at all times at least one reservoir is completely..

- closed -- this avoids the danger of accidental flow across the membranes
(such flow due to pressure fluctuations associated with the convection or
stirrers was found to be negligible, but it is difficult to avoid if both
reservoirs are simultaneously flushed). In addition to providing 
different valefof the diffusivity ration = dSIKT (about 3 x 1i0 for
sugar and 10- for salt or boric acid), the non-ionic sugar permits use
of the thymol blue dye technique to obtain some flow visualization.

. The small values of T used in these experiments indicate that the
lowest lnear nstability is oscillatory, and for the fairly large values
of R (1O- 10) used, the bifurcation is probably subcritical. Indeed
if tI esolute gradient is established first, with no heating, and then the
heating rate is slowly increased, the Nusselt numbers are found to remain

*_ at unity until the thermal Rayleigh number RT reaches a value near, though
somewhat below, that of the lowest linear instability. Convection then

" starts abruptly and the temperature difference (heat flux being fixed)
drops quickly so that the thermal Nusselt number rises to about 3 or 4.

" Further increase of the power input gives a slow increase in Nusselt
numbers. Once convection has started, however, the power input can be
decreased greatly without the convection ceasing. As the heat flux is

slowly reduced, the thermal Nusselt number decreases, but not very much
so until the heat flux is reduced by a factor of the order of ten, when
it rather quickly falls back to unity. The solute Nusselt number appears
to be rather larger than the thermal one when convection first begins, and
to decrease more rapidly as the power is reduced. We are attempting to
determine how these minimal conditions for the maintenance of convection
depend on the other parameters. Only one of the earlier experiments dealt

" :with this; it suggested that convection could be maintained until the
density ratio sAS/uaT = RS/RT reached a value of about 18. The

o iI:~\,*. -.
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sugar experiments give somewhat lower values and indicate a definite
dependence on the solute Rayleigh number qualitatively similar to that 4

suggested by the theory o; Proctor (1981). However, Proctor's theory
assumes that T 1M2RS (orT I3 RS for rigid boundary conditions) is small,
which is not true of these experiments; it is also for steady two-dimen- -,

sional flow. Some instances of apparently steady subcritical convection
were observed, as well as some apparently periodic ones, but near the
lowest values of heating rate at which subcritical convection could be 7
sustained we generally found irregular oscillations, and the motion seemed
to be three dimensional.

II. The numerical calculations of Huppert and Moore (1976) also do not
directly apply to these experiments, because they are for two-dimensional
convection with free boundary conditions, and do not cover the range of .
Prandtl number, T and RS needed. In a qualitative way there is some
resemblance, but the experiments are not yet complete enough to permit,
say, the delineation of parameter ranges for steady, periodic or irregular
motion. With regard to the least value of RT at which convection can
be sustained we might look to absolute stability bounds obtained by the , '-
energy method. Unfortunately the best result obtained by Shir and Joseph
(1968) in this regard, for the case of thermal destabilization and solute
stabilization, is that convection is only excluded for RT < R (=1708 )
-- no effect of RS is found at all by these methods. In the lecture an
extension of the energy method, which also utilizes another integral
relation obtained from the temperature and solute equations jointly (and .
not used by Shir and Joseph), was described. Some simple but rather weak
estimates applied to this show that convection cannot occur if RT<TRS +
so this method does enlarge the excluded region obtained by Shir and Joseph.
Stronger results that this can be obtained by this approach, but the details
are not yet complete; the above estimate at any rate suggests that RS has

* some effect.
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Model Equations for Pattern Selection in Finite Systems

James W. Swift

In spite of many years of experimental and theoretical study, the
problem of pattern selection in convection remains unsolved. There is
not even concensus as to which patterns are observed experimentally in a
container with given dimensions. One reason for the confusion is the .4
large number of dimensionless parameters needed to characterize a real
experiment. In addition to the Rayleigh and Prandtl numbers, two aspect
ratios of a rectangular box (or one for a cylinder, etc.) and the relative
conductivity of the fluid and plates, all have an effect on pattern

K formation. The boundary conditions vary from experiment to experiment
and between experiment and theory. Some experimentalists fix heat flux,
others fix the temperature difference; some raise the temperature
-ifference slowly through threshold, others drop down to slightly
subcritical values from a turbulent state; some force an initial pattern,
others allow spontaneous pattern selection.

Furthermore, all experiments have imperfections -- the plates are
neither parallel nor flat, there may be horizontal heat flux at the
lateral boundaries, and non-Boussinesq effects are always present to some .-

degree.

The Boussinesq equations for convection are complicated; they are
* difficult to study analytically and difficult to simulate numerically.

For this reason many researchers study model equations for convection in
which the vertical dependence of the fields is suppressed. It is hoped
that these models contain the essential features of pattern selection
which are independent of the details of a given experiment. Since the
vertical elgenfunctions are "quantized," the vertical structure of the
fields is dominated by the first mode to go unstable. These model
equations are simplifications of the normal form equations one finds when
the vertical structure is removed using the "physicist's center manifold"
technique (see Spiegel's lecture #5, this volume).

The Swift*-Hohenberg (1977) equation is the first and simplest of the

V model equations. A single real field %p -- often thought of as the
vertical velocity -- is a function of the horizontal domain D and time,

w(,,t) ( IC -(1 + V2 )2 ] - (la)..'--')

with boundary conditions that %p and its normal derivative vanish

P/9 o = a8n4'a = 0. C Da Q 2D (lb)

The linear terms in equation (1) model an instability with a preferred %

wavelength normalized to k2 = 1. The equations have the symmetry of
r rotations and translations in the plane (although this symmetry is broken

by the boundaries). The neutral stability curves for plane waves (in an .

Infinite domain) for the model and Boussinesq equations are compared in
figure 1.,nouh
•no relation to author "
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Figure 1

The neutral stability curves for (a) L, a - (I + 72)2 and (b) Benard
convection. Near threshold the correspondence is cc (R - Rc)/Rr. The
critical wavenumber is normalized to 1 by scaling x, and the curvature
of the parabola at the minimum is set to 1 by scaling e.

When lateral boundaries are included the eigenvalue problem

(I + V ) 2  = (2)

for the critical Rayleigh number (c) is no longer trivial. The corres- .
ponding linear problem for convection with realistic boundary conditions
Is only solvable numerically. This is why model equations are often used
to study the onset of convection in finite geometries.

In this paper, we solve the elgenvalue equation (2) in one dimension t
and, less completely, In a circular disk. It appears that closed form
solutions are impossible In rectangular geometry since the biharmonic
operator (V2)2 Is nonseparable In rectangular coordinates. There
Is a large qualitative difference between linear stability theory for
rigid (no-slip) and free (stress-free) boundary conditions at the
sidewalls.

For certain interval lengths L In the one-dimensional problem there ., ,'
are two patterns (corresponding m and (m-l) rolls), which go unstable
simultaneously. We study the nonlinear competition between these two , K-.;>
solutions. There Is a quantitative (but not qualitative) difference
between rigid and free boundaries which does not go away In the limit

LL +

The implications of these results for convection in finite containers,
and for wavenumber selection in equation (1) are discussed. '

Physical Interpretation of the Model Equations ,. .

When presented with the model equations, an obvious cuestlon is "What .
is * physically?". One answer is that + is the "order parameter," some
characterization of the state of the system. This Is not much help.

A 0 . . ... -- . -" " . - " - "',* '.
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In the one-dimensional model equations, corresponding to two-dimen-
sional convection, 4# is best interpreted as the horizontal velocity,
evaluated on some horizontal plane: '(x) = u(x, z=z). Clearly, we want K..,IN

= 0 at the boundaries. The continuity equation Vup= a.u + a,w = 0
implies that a,% = 0 at the boundaries (w=O). If we assume that the vertical
dependence of the fields separates out (not true for rigid top and bottom
plates), then we can identify 8,y with the vertical velocity.

u = %p(x) cosirz, w = -1/ir a, sinirz.

For stress-free boundaries at the sidewalls, the correct boundaries
conditions are = (a) 24, = 0.

In the two-dimensional models for three dimensional convection, there .
are two possible interpretations of '; (1) the vertical velocity, and (2)
the velocity potential.

For the following discussion, letu = (v, w), where v is the

horizontal velocity and m is the vertical velocity.6Ml

In interpretation (1),

41(x, y) w(x, y, Z=Zo). " . "

When c is very small we have the approximate identity
Bv -V,,

which leads naturally to the "rigid" boundary conditions

U =0 Z %P = 8 --1 =0.

This interpretation Is not very satisfactory in small boxes. The
deviation from y, = -Vp can be quite large, and the elgenfunctions can
have the undesirable property that the average of 'p over the layer is
nonzero.

The second interpretation (2) Is

-VP(x, y) v(x, y, Z-Zo).

This has the consequence that N -Vf. The rigid boundary condition
_y - 0 Implies that Vy = 0. In a simply connected domain, # must be
constant on the boundary. This constant can be chosen to be zero, giving
the boundary conditions (ib).

In real convection there is a third boundary condition -- Involving
the temperature -- which has no analogue here. The model equation are
biharuonic ((V2)2), thus two boundary conditions are needed, whereas the
full convection equations are triharmonic ((V2)3 ) and need three boundary
conditions. Drazln (1975) has studied a more realistic linear model for
two-dimensional convection; he assumes idealized boundary conditions at
the top and bottom plates so that the equations separate. A sixth-order
OOE in the horizontal direction results, and all the boundary conditions
can be satisfied, but the results are quite complicated.

'-4-.-
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Nonlinear Terms

In one spatial dimension, where 'j' represents the horizontal velocity,
an alternative to the model equation (1) includes the advection nonlinear-
ity, q'=Lc' + p~ a.% where L,, = Qc - (1 + Vz)') (see Pomeau and Zaleski,
1980, 1981).

-, " -.. .

In two dimensions, an advection term like V p is not rotationally
invariant. Greenside and Cross (1985) discuss many possible nonlinear
terms

= Lcp- ay 3

~- bqIVq12

(3)

d .cV245

d(Vj y)IVq j

One of the important distinctions between various models is whether or
not they are derivable from a potential. For equation (1) there is a
potential

V[4] = _1d {-/2 cii, + 1/2 (l + V),#]2 + 1/4 y4}
such that D r. .--'-'

This potential is a Lyapunov functional; it is bounded from below and Its

time derivative is negative unless 4,=0
Vkl] A d2 XV/64 p.. () <0

D D

Such models are called variational, or relaxatlonal, and the system
always evolves towards a local minimum of the potential. Limit cycles or
chaotic behavior are Impossible in these models.

Time dependence which appears to continue indefinitely Is experimen-
tally observed very near threshold (Ahlers et al., 1985). Nonvarlatlonal
models are needed to describe this time dependence, although the lowest
order amplitude equations (Segel, 1969; Newell and Whitehead, 1969) are
nonvariational.

For a general functional ,.

"V[,] = fd2x (p, Vip, Vy', ... ),
D '-

the functional derivative Is

.- ~6V16'p [ ] - a</ar, - v[a -/a(V'p)] +v 2 [EQI8(v 2 )] - ..-.-"--. ~ .. .
V -', a,,f a

.' .-. .. ... .. .-...- . . .-.- . .-.. - . . . . . -. . . . . , . .. . . . ,. . -. ,. .-. , - .- - ,. . ."7, .-!. _ -7-"
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(assuming that there are no contributions from the boundary terms in the
integration, by parts). Note that there are two rotationally symmetric
terms for which have two powers of V and four powers of ':

Av" IVp p, '  , _ -"-"- --'

Both of these terms give (up to a constant) the same variational dynamics:
4 (.O 4

Thus the model (3) can be variational only if b=c. Similarly, if e = 2d
in (3), then the last two terms are derivable from a potential with -

g'= (IV',- 2)2
-

A realistic treatment of the cross-roll instability requires the
presence of the term proportional to e in equation (3). The analysis of
three-dimensional instabilities (including the cross-roll instability)
involves the interaction of two rolls oriented at some relative angle p.
For the first four nonlinear terms in (3), this interaction is independent
of y. In real convection, the "lattice function" which measures this
Interaction of two rolls, is a complicated function of cos2 . A local
model equation, with a finite number of derivatives, cannot have the same ..-.

lattice function as real convection. The equation (3) with a nonzero A .--

term can, however, model the relative stability of rolls and squares.

Linear Theory in One Dimension

As the Rayleigh number (c) is increased, a stationary mode bifurcates
from the origin when Lcip = 0. In order to find the critical c, we must
solve the elgenvalue problem

(1 + V2)2 #(x) = C4(x), x R.

We will solve this equation in one dimension subject to two sets of ,\ .

boundary conditions:

FREE: 4(±L/2) = xp"(_L/2) = 0

RIGID: q(±L/2) = i'(±L/2) = 0. -

For free boundaries, the elgenvalue problem Is trivial since a pure %
sine wave satisfies both of the boundary conditions. The elgenfunction
with p bumps Is

qsp(x) -sin pii(x +L2

The elgenvalue for this elgenfunction is

=, l - (prlL)2 ]2  '.

,. I.L,-.,
s.c.



-162-

The eigenvalues as a function of L, the length of the box, are drawn in - ,
a- figure 2. 4

1 377

2 -- 3-.

g.q

Figure 2: The eigenvalues c of (1 + V2)2 for free boundaries, as a
function of the box length L. Only elgenvalues smaller than 1 are shown.
The integer p indicates the number of half wavelengths, each corresponding
to a roll which fits in the box. The solid lines are even solutions, and
the dotted lines are odd solutions.

The elgenvalue problem with rigid boundaries is more difficult,
although it is straightforward. It is a one-dimensional ODE with
constant coefficients, so the elgenfunctions are sums of exponentials,

E A . ikL x

where k, are the roots of the quardic in k, (1 - k2)2 = c. The
two positive roots (for 0 < 1 < ) are

k= ,+Fi k= 1-4i. . .

Due to the reflectional symmetry about x = 0, the elgenfunctions are
either even or odd,

=('(x) a cos(k+x) + b cos(k-x) "

%(0)(X) = c sin(k.x) + d sln(k-x),

where the constants are determined by the boundary conditions. (Only the
boundary conditions at x - L/2 need be satisfied, the others follow from 11P

. . "the symmetry.)

-1
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The rigid boundary conditions for even solutions can be written as

cos(k L/2) cos(kL/2) a.

=0
ksin(k+L/2) k-sin(kL/2) b

(A similar expression holds for the odd solutions.) The determinant of
the matrix must vanish when there are nontrivial solutions. This yields
the eigenvalue relations for the even (and odd) solutions:

EVEN (-)
sin (aL) = (cl-/c)sin(a+L), (4)

ODD G+)

where

o_= (k+-k_)12, a+ = (k++k)/2.

These two eigenvalue relations are transcendental equations relating
e and L. We can solve them graphically by letting L vary with c (and
therefore at) fixed.

"°.L

Figure 3: The elgenvalue relations (4) solved graphically. Intersec-
tions at L = 0 correspond to even (solid curve) or odd (dotted curve)
solutions. For small c there are two solutions near .L -n:. For any
c between 0 and 1 there is one even solution and one odd solution in the
interval (n - l/2)ir < xL < (n + 112)ir, n >1 .

It is easy to find the approximate solutions for small e

0 < -1 4M+ - 1 + 0(c), M - -1/2 -F-e O'')

The intersection of the two sine waves occurs for

m- L# .nn 4c :(21rn"L)

,-. Finsnstre t The phenase ofearier wasoved soathieeand oddse-i'.-.'

Ths result corresponds to modulation theory, where the carrier waves

isltenstv tor th sma o the are w ave sout o nertLhn.Fr n "bten0 n hr soe evenoluon and oddinnth --- .

inthra k - 1 1 mouae byL si n 11 2)/L]. Modlaton heoy.i

dIerent are degenerate. The even and odd eligenfunctions have slightly
.............. .... °
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EVEN (-)
c = (21rn/L) 2  [1 (-I)o (2/L) sin(L) + O(l/L 2) (5) 4

ODD (+)

This expression holds for small c, which implies that L is large.

When L no the even and odd solutions are degenerate. These
degeneracies can be found exactly by inspection of the eigenvalue 4

relations. Even and odd solutions occur at the same (c, L) when

= (nir/L), + = (mir/L), 1 < n < m (6)

The wavenumbers k_ are

= p /L , k+ qir/L , (7)

where

p =m -n, q = m + n.

Note that p and q are either both even or both odd. The two degenerate
"special eigenfunctions" are

%P C)x) =cos Vpi(x + L/2) -cs gnx.LI)

L os q L jL/) (8)
• s)(x) 2 q sin prp(x + L/2)1- p sin [qi(x + L/2-

L (9)

These elgenfunctions are normalized so that their square has an average
of 1. The cosine-type elgenfunction i(") are even if p and q are
even, and odd if and q are odd. Some of the eigenfunctions are plotted
in figure 4. The elgenvalues of these special elgenfunctions satisfy

e = [1 - (pi/L) 2] = [l - (qir/L)z].

These equations can be solved simultaneously to give

S ' 4 n (10) , " -

where the elgenfunctions fit in a box of length -
L = "i" n + m2  =(y/ J(11) (W r-2

The eigenvalue relations (4) implicitly determine a set of curves in
the c-L plane, corresponding to critical Rayleigh numbers as a function
of L. The following observations aid the drawing of these curves.

The special solutions to the eigenvalue relations give discrete points
in the c-L plane where curves of even and odd eigenfunctlons intersect.

.- . . . . . .. .7
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It can be seen from (7) that these points in the rigid case correspond to
points in figure 2 (for stress-free boundaries) where two even solutions
(p and q odd) or two odd solutions (p and q even) intersect.

REMARK: At these points where two solution curves meet, one of the
curves has zero slope. Furthermore, these are inflection points rather
than minima; each branch of solution curves is monotonically decreasing.

PROOF: The flat places on the solution curves are found by
differentiating (4) with respect to L:

EVEN (-)

cos(a_ L) = $-cos(a+ L).
ODD (+)

This must be solved simultaneously with (4). The only solutions are the
special solutions (10) and (11), where

EVEN (-)

.l) = (_j) 4(il) -m = (-I) 1)p .1

ODD (+)

Thus the even or odd solution curve (depending on p) has zero slope
whenever the curves intersect. By differentiating (4) again, we find
that the curvature is zero when the slope is zero. (End of proof)

As the eigenvalue c approaches 1, the eigenvalue relations (4)
reduce to 1

sin(L/2) 0 EVEN

tan(L/F2) = LI(22) ODD.

Thus the even solution curves reach c = I at L = nirJ2, and for large L
the odd solution curves approach c = 1 at L =2 (n + 1/2)r.

The solution curves are drawn in figure 5.

Note the differences in figures 2 and 5. With stress-free boundaries
the eigenfunctions with p rolls fall on continuous curves. With rigid " -

boundaries, the number of rolls on a solution branch changes when two new
rolls are pushed in from the boundaries. The number of rolls for the
lowest lying (n=l) set of solutions curves is Indicated in figure 6. The
new rolls are formed at the boundaries when %"(±L/2) = 0. This occurs
for 40) (see figure 4 or equation (9))..p,q

Davis (1967) found the elgenfunctions for convection In a three-dimen- ,.. .
slonal rigid boundary box. He numerically solved for c versus L assuming '

a fixed number of rolls, therefore he did not find results like figure 6
where the number of rolls changes along a solution branch.

" . .
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1.0

0 0 2 3 '1 577

at 3

i0s

.01

i/ p

Figure 5: As for figure 2, except with rigid boundaries. The integers n
and m are defined in equation (6). The bottom figure shows the solution
curves in the large L limit, given by equation (5).

2.

5'4

0 ~2~ -4 1 3

Figure 6: The two n I solution curves are shown, and the number of
rolls is indicated. The number of rolls jumps by 2 at the dots; one roll
is created at each boundary.
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The Competition Between m and m-I Rolls

In this section, we analyze the effects of rigid versus free sidewalls
on the competition between m and m - 1 rolls in the one-dimensional model
equation (la). When the length L of the box is set at special values, two
eigenfunctions bifurcate at the same Rayleigh number c. As c and L are .'
varied in the neighborhood of the intersection there is a codimension-two
bifurcation. We are concerned primarily with the n = 1 intersections
shown in figure 6, where m and m - 1 rolls bifurcate simultaneously at

Lm = i(1 + m2 )1 2 , Cm = 4m2 /(l + M2)2

Near the codimension-two bifurcation, the two critical eigenfunctions
have the largest amplitude, and the field can be written as (see equations
(8) and (9) and figure 4)

s(x,t) = 3 (Am(t) c ) (x) + Ami (t).(s) (x)) +

where

p = m- 1, q = m + 1

The linear theory of the last section gives the linear ODE

Am = PAm

Ami = VJ..i .--

where
P = C - C. + Cm(L - Lm) + O(L - Lm) 3

(12)
v = C - co, + O(L - L,)3,

and the constants Cm are the slopes of the m-roll branch. For large m
equation (5) implies c, 16/(m 3 ).

• .4.

The true field is a superposition of elgenfunctions of (1 + V2 )2  . -

at the fixed L. These elgenfunctions are orthogonal, so we can project '-
out the amplitude dependence by taking the inner products

<,)c = ) (L.%p - %p3)> (13)
p,q

and() (s) v
<%P, (C - 3 )>, (14)

-7 p' , q q..

where the brackets are an average over the layer:

L/2
<f(x)> = IlL f f(x)dx

-L/2

Using the even and odd symmetry properties of the elgenfunctions, and - "
the fact that M,<4F. ¢.,p,q = Pq). 1

"." " - *, • - " " '. • " ' '." -' .... . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .*.. . . . . . . . . . . . W" W

... . . . . . .. . . , .*% %,%,.' l.
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we see that equations (13) and (14) reduce to

Am pAm- 4/3 A,((pc >Am2 + <,()6 Y>A,-,] +~

Am-, VAin-, - 4/3 Am-,(<((s))4
> Am.,- + <((()

2
(y(sY)

2  A.] +

A calculation of the nonlinear terms gives for (q / 3p)

a.
Am j-Am - Am(3Am + A.,,1) + 0(As)

I (qz + pz) I

This ODE is actually calculated for any nonresonant (q 4 3p) p and q. In
the present case, the complicated coefficient can be simplified:

2q+rq2 + p') = 2 +(m< 3.r (;qi + p 1)z _

The competition between l and 2 rolls (p = 1, q =3) must be treated
separately. The ODE is

A2 = pA2 - Az(7 A,7 + 21 A12) + --

A1=VA, - A,(3 .99 A% 2 + 21 A 3 )+ ....

100 20

With stress-free boundaries, the calculations are much simpler. The
* field is

+i(X) =J7 {Amsin 1r( L2 + A.-,sin +j~)rx+ 1)

The ODE near the codimension-two bifurcation is

Am = PA. - Am(3/2 A! + Am-' , + 0(A)

Am, VA.-, - Iim.1( 3 /2 M + Am) + 0(A5)

where pand v are obtained from linear theory.

Note that the normal form for rigid boundaries does not approach the
normal form for free boundaries as m .~

The analysis of this normal form can be found in Guckenhelmer and
Holmes (1983) so we will give a brief treatment here. In all cases the
normal form can be written

Am pA. - Am(ctA. + A.--(15

%_ VA..- A,_..(BAm,~t + A!,)
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where 'a

at 3 ,

S RIGID (m g'2).
=2+[M 2 _1)/(M 2+1)]2

dc 3/2 FREE

Note that the ODE has the symmetry of a rectangle in the plane:-

>CAm, -A.-,) (16)

~(-Am, -Am-,)

There are four solution types:

TRIVIAL Am Am-i 0 W

m ROLLS Ain =P/ct Am.-, 0

rn-i ROLLS Am =0, A,,,-,~ V/83

ASYMMETRIC A 2 = 1pv/c3lAM'_ = cv-P)/Ccd3-l)

Of course, these solutions only exist when A." > 0 and Am2_i > 0. Figure 7
shows the phase plane behavior as a function of the parameters pand v. ~

AA. 
-V

1/=o 724

Figure 7: Equation (15) with I and B )1. The parameter space is
divided into six regions by the lines p*0, v - 0, v 81 >p 0, and
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p = v > 0. One quarter of the A. - A.-, phase plane is drawn for six
choices of p and v fixed. The rest of the phase planes are obtained
by the symmetries (16). The asymmetric solutions are stable in the wedge
at the upper right corner in p-v space.

As c is increased in the original problem, tf system to traverses
the p-v plane toward the upper right at 450 (seE quation (12)). Since
>I and 6 > 1, we always end up in the region with stable asymmetric

solutions.

1>= E_ >

AAA 0~~

•~~~ C_ L - ->0""'

Figure 8: The codimension-two bifurcation in the original parameter space
(the e-L plane). The asymmetric solutions are stable in the shaded
region. For large m the shaded region occupies almost the whole region
where nontrivial solutions exist.

The bifurcation diagrams, which plot (*2> versus c, can now be
drawn for the orlg'nal system at fixed L.

L Discussion

The codimension-two analysis presented here is only valid for small
amplitudes, certainly only for c small enough that the n = 2 branches
of solutions are not reached (see figure 5). The results strongly
suggest, however, that the stable solutions at larger c will be neither
even nor odd. If so, this contradicts the results of Pomeau and Zaleski
(1981).

Knobloch and Guckenheimer (1983) analyzed the competition between m
and (m-l) rolls in two-dimensional convection with stress-free boundaries.As they appreciated, the results might change significantly If rigid

boundary conditions are used. Such a calculation -- even the linear
theory -- could only be done numerically for the convection equations.
Therefore, we have studied the simple model equation (1).
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Figure 9: Bifurcation diagrams for the competition between m and (rn-i)

rolls in the Swift-Hohenberg equation (1). Solid lines indicate stable .

solutions, dotted lines indicate unstable solutions. The asymmetric
solution is a superposition of m and WD-l rolls.

The linear theory reveals a striking difference in the "strong
resonsances" possible with rigid versus free boundaries. If the
Bousslnesq symmetry does not hold, there is the possiblity of quadratic
terms in the amplitude equations when the ratio of wavelengths is 2:1.
These quadratic terms would cause subcritical instabilities.

The strong resonances for a "non-Bousslnesq" model

+

.p L.p 6'2  " .". .

would occur for the competition between one and two rolls in the stress-
free case, as expected. Suprisingly, with rigid boundaries the 2:1.
resonance in k-space occurs when two and three rolls coexist. This can
be seen from linear theory alone: two and three rolls coexist when p - 2
and q - 4 (see equation (7) and figure 4).

Admittedly, this result is due to the detailed form of the assumed
41. linear operator, but the effect will be present in more realistic

calculations whenever the eigenfunctions are not pure exponentials. The .

results imay have relevance to Libchaber and Maurer's (1981) experiments .
on the competition between two and three rolls.

-r . .r.- ' :-: -:w ' :-K:a---
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Appendix: The Linear Problem in a Circular Disk

The elgenvalue problem (2) does not separate in rectangular
coordinates, and solutions must be found numerically (Normand, 1983).
In polar coordinates, the general solution to (2) can be written as

qi(r,e) = ZA+(n)Jn(k~r) + A_(n)Jn(kr)]kne. -.."'--
4'

The boundary conditions for a circle of diameter D are

t(D/2, 0) = 8/8r 4r(D/2, e) = 0.

The eigenfunctions are pure n modes in the general solution, where the
constants satisfy

0 A+(n) Jn(k+D/2) + A_(n) J,(kD/2)

0 = A+(n)k+Jn'(k+D/2) + A_(n)kJn'(k_D/2).

There is a nontrivial solution provided the eigenvalue relation holds:

k- J,'(kD/2)-J,(k, D/2) - k+ Jn'(k+D/2).J'(kD/2) = 0

This relation has "special solutions," analogous to the one-dimensional

case
kD/2 = in,p , k+D/2 = inj' %

or

5 kD/2 jo,,p' , k+D/2 = jn@

where j.n is the pt" zero of Jn(x), and J,' is the •-.zero of J'(x)

In the limit of kD >> 1 (for n fixed) we can use an asymptotic

£ expression for the Bessel function

Jn(x) cos(x - 1 nir - ir/4) + O(n2/x).

If this first term is substituted into the elgenvalue relation, It
yields the asymptotic eigenvalue relation e- '

>
'

s in(D) . -(-l)n(iI/t) COS(C+D)

Note that in this approximation the eigenvalues are the same for all even
and all odd n. The next term in the asymptotic expansion should split

r" this degeneracy, but it leads to a mess.

At the onset of convection in a cylinder, many modes come in at
almost the same Rayleigh number; the nonlinear terms are responsible for
pattern selection. In a large cylinder, we expect that many modes will
combine to give an approximate roll solution (recall the expansion of a
plane wave in terms of Bessel functions). There is a cut-off when kjL
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iD~ n, because then the wavelength of the "rim mode" is approximately .
1. In this rim mode there is a single amplitude maxima, concentrated at
the rim, and the nodes are radial.

n 8

"Rim node"
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Dynamics of Vortices in Background Rotating Flows

William Collins

Abstract "

A method for computing the motion of a concentrated vortex embedded in " e
a rotating fluid is developed. The radius of curvature of the filament . -

is taken to be much larger than its diameter. A variational technique is
used to show that the vortex is marginally stable to infinitesimal dis-
placements off its rotation axis. A nonlinear treatment which reduces the
Euler equations to two ordinary differential equations for the position of
the vortex axis follows from approximating the flow field as nearly two-
dimensional.

I. Introduction

Solitary nonaxisymmetric waves have been observed on concentrated vor- -

tex cores in several recent experiments (Hopfinger et al.. 1982; Maxwor-
thy et al., 1985). The most frequent wave geometries observed are in the
form of kinks and twists (figure 1). These waves propagate stably over
the length of the experimental apparatus. Similar waves have been pho-

. tographed on tornadoes and waterspouts (figure 2). The solitons observed
under laboratory conditions are often formed by pumping fluid out of a
tank filled with rotating fluid. The resulting isolated vortex cores have
rotational frequencies w ; 250 s- 1, an order of magnitude larger than
that of the surrounding fluid, but the circulation in the cores is much
less than the circulation of the fluid in the tank. Rossby numbers for -

*. these vortices are typically order ten or greater. It is claimed that the
background rotation has a negligible effect on the form and propagation of
these solitary waves.

In the absence of ambient rotation, the velocity of a point on a con-
centrated vortex is (Hama, 1962):

..=- bin .......(1)

4ir \O

where r is the vortex circulation. o is the curvature, b is the binormal---
to the filament, and a is the core radius (figure 3).

This expression is obtained from the Biot-Savart law for the velocity
in the limit -1 > a assuming that the internal structure of the vortex

" is unaffected by its motion. In the limit a -- 0. the logarithAc factor
forces the self-induced velocity to diverge as expected for a line vortex.

"_* The maximum istance for interaction between two points on the vortex is .
set to a constant L/2 of the order of ic. Using the Frenet-Seret formulae
to describe the filament, Betchov has derived time-evolution equations for
the curvature and torsion r of the filament from equation (1). Hasimoto
has combined Betchov's equations into a single nonlinear Schr8dinger equa-

-S n
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t lb':

L

Figure 1: Twist(left) and kink(right) solitary waves. The filament vor-
ticity is in the -i direction and the wave velocity is in the +i direc- .
tion (Hopfinger et al.. 1982).

tion

at 8s2+ 2 I')P
for the quantity

.= cexp ( r Tds)

where sis the arclength along the filament. All possible steady wave-
forms have been classified using Hama's local-induction approximation for-
mula (1). The family of solitary waves calculated by Hasimoto and Kida is
qualitatively similzr to the "twist" waves observed by Hopfinger et al.

However, there is no a priori reason to neglect the effects of the
background circulation on the filament. Aref and Flinchem (1984) have

( fperformed numerical studies of vortices embedded in a transverse shear
flow. In their experiments the velocity of the filament is modified by
an additional shear velocity; the back reaction of the filament is ne-
glected on the basis of a scaling argument. They find that a vortex ini-
tially supporting a twist wave rapidly develops large transverse waves
which continue to grow in amplitude (figure 4). The authors attribute
this stretching to the advection of the waves by the shear flow. Lo-
cally a finite amplitude perturbation of a vortex filament from the ro-
tation axis is also in a large-scale shear flow and therefore advection
should disrupt the soliton. Aref and Flinchem mention that the shear ye-

* - locity must be much larger than the self-induced velocity in order for b\ k

' the waves to develop before the soliton has travelled many times its own
length. In this note two calculations pertaining to the stability and mo-

. ttion of concentrated vortices in rotating flows are described. In sec-
tion II the frequency of oscillation of the filament is calculated using ""'-

V...
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Figure 2: Two photographs of a tornado near Brameur, Oklahoma(1978) show- -

ing a finite-amplitude twist (Aref and Flinchem, 1984).

- ner-i.|

k ,--

-

,- b-w,.r .-

Figure 3: Vectors defined the intrinsic geometry of the filament.

* a linear variational method and compared with measurements reported by
* ~Hopfinger et al ( 1982). The vortex is shown to be marginally stable to :

infinitesimal displ<acements from the rotation axis. In section III the
velocity of a vortex supporting long wavelength finite amplitude pertur-
bations is determined to 0(kP) using an expansion of the full Euler equa-

* tions for a quasi-2D field. V

-. .. . . .
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II. Marginal linear stability of vortices in rotating flows

In the limit of displacements from the rotation axis small compared to
the core radius r the local induction approximation reduces to the lin-
ear stability problem for a nearly straight vortex. The relevant eigen-

, ' ...-- . .
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mode has an m = 1 azimuthal angular dependence. For longitudinal wavenum-
ber k = 0 this mode is a rigid lateral displacement of the vortex from the
rotation axis, and for k 4 0 this mode is a helical wave. Higher mmodes
add foliations to the vortex, and the m = 0 mode is a varicose wave. The
induction equation requires neglecting all perturbations to the struc-
ture of the core which oscillate on timescales comparable to the vortex
rotation time. When the surrounding fluid is irrotational the following
eigenvalue calculation should recover the dispersion relation implied by -.
the induction approximation.

The longitudinal wavelength is taken to be large compared to r, so the
growth rate u may be expanded as a series in k:

U= O +2k 2 +

A variational calculation is used to determine the lowest order correc-
tion. Terms odd in k vanish because the system is invariant under z--+-z.
The fluid is in a cylindrical tank with rigid-wall slip boundary condi-
tions on the sides. The steady< piecewise-continuous velocity profile is

wi1r r < rI

vo(r) = 1r (w w)rfr' r, < r. (2)

For axisymmetric disturbances the Rayleigh criterion for the circula-
tion

s(r2) =0 (3)

where D = d/dr is a necessary and sufficient condition for stability. When
the disturbance is two-dimensional a necessary condition for instability
is the existence of a point of inflection in the vorticity where Dw(r)
changes sign. Leibovich and Stewartson (1983) show that sufficient con-
dition for instability to fully three-dimensional perturbations is

vo(Dn)2Dr < 0

where 0 is the angular velocity vo/r. However, this inequality follows
from an asymptotic analysis for large m modes and does not apply to m = 1.
A sufficient condition for stability obtained by Howard and Gupta (1962)
is

k - (mDw) 2 > 0

For m 0 this is the axisymmetric condition (3). If m # 0. this con-
dition is always violated for sufficiently small k. The stability of the
m I mode is not predicted by the general theory.

If the perturbing velocity and pressure depend on t, z, and 0 only
through ezp[i(wt+kz+mO)J, the continuity equation and the Euler equations
may be combined into an equation for the radial velocity alone (Howard and
Gupta):

-2 DSD.vr - [_Y2 + -ya(r) + b(r)lv,. - 0 (4)

"' r'

. . . ..'_. .- ,. .", . . .._ -__'. ,m._'. 1" m "'.2- '.'." '_ :-' -''-_ - -,- ' -. -'- ' "-'. " '-- ---'. . -- . " ''.,." 'h- '. ' '- '-.t .- .
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with D. =D+r -  _
' -. I

7 ". ... _ ,

."a = rD [S (D, + 2 V""'-

b = -2 -vS(D. vg),
r2

7S(1 + k2 r2 )

The boundary conditions on the solution are

Vr 0 r = r2 (rigid-walls)

Vri + = 0 r = (continuity at vortex boundary)

For computing 02 only terms through O(k) in equation (4) need to be re- b..T
tained. It is convenient to define - =-irvr. Expanding S in series form
and grouping k-dependent terms gives

-r k/0ry2 D[rDt-r-2 -D(D.vo)4  -
2 ['D(r3Dt)-- D(r.D~ve) 0+ 2v-Dv] +0 -(

where 0 = o + vo/r.

Consider the k = 0 problem first. Because of the jump discontinuity in %
the vorticity at r----r,, the equation for 00 must be solved separately in- : _
side and outside the vortex. The solutions are joined at r by requiring

4'o to be continuous and imposing a jump condition on DOo:

D'1i 2(W2 - W
,o. V~~~~Dol+  00 ,)€ = 0 r = rx.,..::':

-or

The solution to
r-'D(rDobo) - r -200 = 0 r 0 r, .

consistent with the boundary conditions is ':.

'r 2 - r r- I r >r,

where p =(r,/r2)2 . The jump condition requires
o =(1- )( - )_-1

F W1

.- with w = w 1/w 2 . When w, = w2 . the filament should oscillate with fre-
. quency wl, and when rj/r--. so the filament occupies a negligible volume

. . . . . . . . . . . . . . . . . . . .
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fraction of the cylinder, the frequency should be W2 . The expression for..
0o has these limiting values for w -* and is - 0. ,-

The second-order correction follows from varying an integral of the
equation for v, with respect to k2 . Multiplying equation (5) by rtb and
integrating by parts from 0 to r2 yields

-] fo[r(D~,)2 + r-' + -'7-D(D.ve)4i 2 ] dr
02 (6) , -:

= -k] [, 3(Di)2 + y-'D(r D.o)t, 2 - 2Fv- D.ve)t/] dr + o(k4)

Substituting the second-order solution P = 0o + k2P 2 with the correspond-
ing eigenvalue o, = a0 + ka 2 into this equation leaves the right-hand side
unchanged through O(k 2 ). The left-hand side has two additional term pro-
portional to b2 and a2. However, the 02 term

6! -21 [r(Dtvo)(D9P2) + r-10o02 + 2,y 7D(Dt.ieW020io] drIl

after integration by parts becomes

6 1 = [72 r - -2 D (D *ve) d r.
I z 2,P 0r r-1D(rDI 2 ) - r- 02 r-1 2

Since t2 satisfies the equation of motion, 61 = 0. The resulting equa-
tion for a2 is .....

%[f r2  {f r 2
- -

0'2 _7 2 D(DV)012 dr][--Dr2Dv)+2Y eDe]0d
r22) 'yj~ vDv],,

f r3(DPbo)d..

f r2 I jrJ + 2 4_2_ +2 Ct) , (l A )+ 2v f,2(l _ -n' ".

4i2(l + v2&l)(1 -) + 2P2(1 + v2;S) 2 In I+ J2;-

+ (I(l I) 2 + V 2 (l p2 ) + 2v2iI(l -jp) - 42(1 + v 2 )(1 -)

(1i-I) r.

[-+ i(7)

....~~ ~~~~ ~~~~~~~ ,. , ... ... .,. -.. . -. ... . . .. .. .. , ,



where
fh = o +w , f2 = O + W2

-V 2
V2 = --2 =.-'

f f2

(w-w 2 ) and -w 2)-.

Through second order the filament is marginally stable to the m = 1
perturbation regardless of the relative magnitude and 'sign of W, and W2.
This follows from the correspondence of this perturbation to an infinite-
wavelength Kelvin-Helmholtz mode. The boundary of the vortex is embedded
in a shear flow layer of width dr (figure 5).

dr" v< Cjr X J:_

Figure 5: The shear flow at the vortex periphery (dr < rj)

The curvature of the filament manifests itself at II --+ o. This layer
is unstable to long wavelength perturbations and is marginally stable to
infinite wavelength disturbances. The m = 1 mode also shifts the entire
layer out to jzI --+ o along the y axis and therefore no shear instabilities
are excited.

In the limit w2 = 0 the dispersion given by o2k-
2 should equal the dis-

psi n foe th locaele-induction approximation. A helical perturbation

with wavenumber k and amplitude a < k- 1 o has curvature

Ps k
( 1 + a2k2 )

and a phase velocity given by equation (1). The dispersion relation Is

o = kcp = 2kLJn (L)~(8

When w2  0 the eigenvalue a2 simplifies considerably since a2 = h0. Also.
in -.
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mm. in a tank 40 cm. wide so p s 5 x 10- . The leading term in o2k
2 when

p<I is

2 l In p k. P 2, , :.4v,

o Ik in2
Ps 1  'I

4
If w2 $0. the leading term becomes

'k ( \2 / 2

41r~'7

where - is the vortex circulation and yt the circulation in the entire

tank. The oscillation frequency depends on the volume of fluid surround-
ing the vortex and increases as that volume is increased with fixed W2.
Waves with this frequency were not observed. Hopfinger et al. fit equa-
tion (8) to their results and found "

In (A) 1.4

gave good agreement. However, the circulation ratio is 'e

()- s 2.5 x 10 . .

There are several possible explanations for this discrepancy. The .
small expansion parameter is kr2 < I so the perturbation couples to the
radius of the tank. Also, these measurements are not for isolated vor-
tices. The experimental values quoted are for one vortex selected from
twenty-five. Each vortex is screened from the walls of the cylinder by
its neighbors. The effective tank circulation in one of these cells is .

only 4% of the total circulation so

o400.

Since the % 5 cm. wavelength of the solitons is comparable to the width r
of the cell. krT 0(1). A determination of w2 for kr2 _ I might help "
eliminate the discrepancy.

III. Vortex Motion in a Quasi-2D flow field.

In the limit w2 f 0. kr < 1. aids ) < 1. a vortex oscillates very
slowly compared to circulation timescales. Its motion may be calculated
using the full Euler equations if the flow is nearly two-dimensional.
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The velocity and pressure in the flow depend on the coordinates and time
through

S= qx, y, , r) + w(z, y, ), .r)-

.-. -- ~~7. -.? .
": ~~~~p = p(z, y, , ) .:.5;--,

where i Ez and r = et. The slow-time scaling follows from the character-

istic time-scale implied by the local-induction approximation. A vortex
moves through its radius of curvature in a time

Iv = In
prL

Therefore the ratio between t-1 and the circulation frequency is of or-
der (Krc) 2 ln(L/r) < 1. It is possible to tune the dimensions r, and r2
and vorticities w, and W 2 so that the m =1 frequency ko 2 is also much
less than wl. The linear analysis presented in section II provides the
"slow" time-scale needed for a non-linear calculation of the vortex m-
tion. Both u and p are expanded as series in e:

= 0o + q, + o(. 2 )

W = Wo + fw, + o(e)

P =po +ep, +o(C 2 )

In the quasi-two-dimensional approximation, the zeroth order flow is '

that of an axisymmetric columnar vortex in a surrounding incompressible
inviscid flow with streamlines uniformly displaced for each by

d = ( + q(s,r)o (figure 6). The displacement may be of finite ampli-
tude. The flow in each plane is

-o -Q(r) (10)

where r and 0 are coordinates relative to the center of the streamlines
and therefore depend on and n. In the experiments of Maxworthy et al..
the axial velocity is much less than the circulation velocity. If there
is no uniform axial flow, the zeroth-order velocity field is

-(Z. Y) = 4o([(- )2 + (Y- ,j)2]1/2) (1)

Wo = 0

The solution for the motion of the vortex consists of evolution equa-
tions for and q obtained from solvability conditions. These conditions

* - " follow from requiring that the higher-order corrections to the velocity '. .

' 1"*
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ANN
C S. r ° , r)

Figure 6: The zeroth-order velocity field in the quasi-2D approximation,
equation (11).

and pressure be single-valued under -4 + 2r. For example, the vertical
momentum equation is

Ow 8w W p " "- + (-v) , + W,_ + 0/ .- _

After expansion in c it has the form

40o -V)W. = f (o,...- , -,1; WO,...,s .- ,;P-,) •

Using equation (10), this may be integrated along the zeroth-order stream-
lines to give Wn so long as

o d =0

There are similar conditions that arise in solving for qn and p,. The
pressure corrections are obtained by integrating the horizontal momentum
equations

S_+_V)'+w + V 2 p = 0wher (V. =) 61, +, 0

where V2 = 8 + ~0 . The 4 terms follow from the equations for continuity .

and vertical vorticity: ,.

+ ,,, +( .,, - ,,, W- 0.
a YOw+Wy5

-a
k" .°
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For this preliminary calculation the fluid domain is infinite. The

consistency of the solutions with rigid-wall boundary conditions at the

outer cylindrical surface is ignored. The ensatz for the zeroth-order

velocity field (equation 11) implies a radial outflow at infinity unless

= 0. Also, the assumption that the perturbation of the surround-

ing rotational flow by the vortex has constant amplitude over distances r

large compared to r, is justifiable only if r < r2 . The calculation of the

motion of the vortex and the surrounding fluid is considered as an "in-

ner" problem to be matched with an "outer" flow field.

At lowest order the Euler and continuity equations are

(40.V 2) + V2Po = o

goV, -o 0 o

The second two equations are identically satisfied. The solution for Po

balances the centrifugal term:

for Q
2 (-r')dr' 

"

PO = r' ."" " "-

At first order the vertical velocity follows from

( V)wi +- -I, 0

The pressure gradient is nonzero because at each the streamline inter-

secting the line (x, y) = constant and the pressure Po are determined by

the displacement d. The va-iation of r and 0 with q is .

S= -( 'cos 0 + ri'sin 0)

( 'sin a - 1' cose)

where '=d/d . Equations (21) and (22) imply

= fQ(r)( 'cos0+ q'sin0)d"

rQ()- + W,(r; ,r)

This represents a flow from regions of higher to lower pressure (figure

The equations for oil are• i V2 .q 0 ?'-.

.....--. . . ... . ,•. .,. ..... .,: .-.- .-v-,i ' ' '. " .. '--. .- '. .'' - ._" ,%, , _, -Zs' , '- -'', .'- -. -._" '- ), -.'
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r3* 4

r "- >. -

9 °Cr') - - - "- - , - -- poC.,) rL< r3< r, ~ 4

w,~ ~ ~ ~ ~~. po (.,r,,)%)-",.''.:.-P. (r

- r2')  Q• *oPo ') -. - - - ,, , pr(r 3 ) > o1.2 P

p. ---p-o--

Figure 7: Vertical pressure gradients induce axial flow.

ar + (o. V2)WI + (T, V 2)Wo =0.

The simplest solution is . .

The fluid in each plane moves uniformly with the streamline center. The
equations for q, are difficult to solve by inspection for n > 2 but they ,

can be separated into equations for qnr and qne. For any n the continuity - _

and vertical vorticity equations have the form

V2 + - = 0

(o V)Wn + (fn. V)Wo = Fn

where F, depends on the velocity and pressure fields at lower order. Con-
tinuity implies

_ 8woO n I 8(ni ) (12)

Substituting this into the vorticity equation gives
- . O 3 0 I I - r D o - ,

-217(rh -. ,. -
L(qn,-) = Q'F r (3

with 8 8 11 8 2 w
a2-+--a Ii-- a2 I .

L 582 O~r 2 802 Q ,

This is separable in and .

At this order the vortex may be stretched. Since circulation is con- "
served, the angular velocity increases as the vortex radius decreases.

S.-. .. .

* ~ ~ ~. ~ -- a-,.
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Let A be a lagrangian coordinate along the vortex. Then the arclength be-
tween *JA) and i(A + dA) is

d82 
= (At)dA2

At a time bt later. the arclength separation has changed to

2
ds2 -(A, t + 6t) dA

=d2+~ a ~~ tA 2 +O(bt 2)

In the local-induction approximation, the filament is not stretched. At
some time t let A equal the arclength s so the stretching term is propor-
tional to ((CV)iV where 6j is given by equation (1). Using the Frenet-Seret
formulae one can show this is identically zero. For the quasi-2D approxi-
mation choose A= . At first order,

8vr= j~r=0 W1O , 0 + (' + tq'P)

and therefore

ds'- d +1 ,2  2 + 12) + 1  A26t + O(6t 2 ).

PThe first term in brackets is just the change in the arclength of the cen-
terline of the vortex. If the vortex is being concentrated, radial inflow
at the periphery of the vortex will have to appear at second order.

The vertical velocity W2 satisfies

In terms of the coordinates and ,,

(6 V2)WI - -Q ! 'sin 20+ -i7'( + cos 20)- I '(-cos 20)+ I-i7'~sin 2
22 2 2J

si i-~~20 + -t#( (- cos 20) - j '(l o 0 fq'il
r 2 2 -2 ' 2~

and

IW -(TIj V 2)w 1 + Q[ ' sin 0 - j'cos 01 +



"d--I-

Imposing a solvability condition W1 + P1 = 0 and integrating around the
streamlines yields

W2 = -rQ[ 'cos 0 + 'sin 0]. .

In principle one could now calculate the velocity c 2 using equations
(12) and (13). The most important feature of the solution, however, is
not 2 but the solvability conditions required to obtain it. These con-
ditions are presumably equations of motion for and q. One such equa-
tion can be found without first solving for q2r and q20 if 7wo j 0 in the
vortex domain. In regions of constant vorticity a similar conditions ap-
plies. Equation (28) may be rewritten in the form

Q ow,,-
+ qnrDwo=F.r -a"

Dividing by Dwo, applying L to both sides, and using equation (13) gives

[ n]o 1 a 2 Wn, 1  _
[F 89 L Fr~woQ r2 r ar 1 w

Since a, commutes with L, the first term on the left-hand side averages to
0 after integration around a streamline:

-+f -a(aw ' dO= L FnI d..

0 Q r2ar i8r Dw

This must hold for all r. The resulting solvability condition is ex-
pressed in terms of the flow fields only through order n-i. At second or-
der the terms involving and g all have angular dependence and therefore
integrate to 0 so the condition is trivially satisfied. -,

Presumably a nontrivial condition is required at third order and will
depend on the matching of this "inner' calculation to the 'outer"
fluid domain. It can only depend on the first and second time derivatives

of d. If the first derivatives appear, the condition is an expression for - -
the velocity of the filament and should reproduce the Biot-Savart result
when the surrounding fluid is irrotational. This may require a renormal-
ization of time by a factor corresponding to ln(L/ri). Since stretching of
the vortex can occur, the equation should indicate that solitary waves may
be disrupted in finite time by large-amplitude transverse waves.
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A Hamiltonian Form of the Anelastic Equations

Leslie Smith

Abstract: A new set of equations capable of describing convection and
internal gravity waves in the atmosphere is derived using Hamilton's
principle. These equations filter acoustic waves, as they must to avoid
the use of very small time steps in numerical integration. Further,
they are less restrictive than those previously obtained because they do
not require prescription of a horizontally averaged basic state. An
additional advantage is that they conserve exact mass, energy, momentum
and potential vorticity.

I. Introduction

When modelling convection one must remove acoustic waves to avoid the
use of very small time steps in numerical integration. The goal is to
eliminate acoustic waves without altering the other essential physics.
The Boussinesq equations are successful in shallow layer systems but the
anelastic equations derived for deep stratified layers are much less
adequate.

The Boussinesq equations were first written down by Boussinesq based
on ohysical assumptions and later derived formally using scaling
techniques and an asymptotic expansion (Malkus, 1964). The formal
derivation requires both that the depth of the layer be small compared to
the depth of the associated adiabat and that temperature fluctuations be - "
small compared to the mean. In addition the ratio of depth and length
scales must be of order unity. If these conditions hold, the density can
be considered a constant everywhere except in the buoyancy term of the
momentum equation. The continuity equation is therefore

V . ( U)= 0 "

where Po is the constant density. One sees immediately that sound
waves have been eliminated.

Similar formal scalings and asymptotic derivations of the anelastic
equations, valid in the atmosphere, have been given by Ogura and Phillips
(1962) and Gough (1969). Now the shallow layer assumption is relaxed
while the small temperature fluctuation condition remains. Both result
in the following continuity equation:

v (- (z)u) 0

where 7(z) is a prescribed mean density field from which one perturbs.
Sound waves are thus eliminated but at the expense of fixing the mean

field for all variables.

The requirement of a prescribed mean field seems much too artificial
and one asks if it might be avoided with a completely different approach
to the derivation of the equations. Here is presented a Hamiltonian
formulation of anelastic equations where no such restriction is needed.
A constraint is attached to the exact Lagrangian for a perfect fluid that

a .-i ..
..77-
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removes the cause of sound waves: small scale pressure fluctuations on
the density. The constraint is a condition on the thermodynamic equation
only.

The difference between the new approach and the old is how one •
chooses to eliminate high frequency waves from the equation relating
density and pressure for a perfect fluid:

'2p/at2 = V 2P + g ap/az + V (pu V A) - V. (u ap/at)

q where p is the density, P the pressure, jthe velocity and g the gravita- -
tional constant. The traditional method is to drop the a p/at 2 term while
here is proposed removing part of the V2P term. Mass then becomes an
important invariant. As will be shown, not only do the new equations
conserve exact-mass, they also conserve exact momentum, energy and
potential vorticity. The new equations are simple and eliminate sound_-
waves. In addition they obey all of the relevant conservation laws. .
Thus they are superior to the old.

A review of Hamilton's principle and a derivation of the exact
.. equations for a perfect fluid are given in section II. Section III ...

contains examples of constraints on the equation of state that all remove
sound waves, including a critique of their usefulness. A proposal for
the best constraint and the equations that result from using it are
presented in section IV. Sections V and VI discuss, respectively,
conservation laws and the linear perturbation analysis. Finally, in
section VII, the constraint is assessed further.

II. Hamiltonian Formulation of the Exact Equations

Hamilton's principle states that variations of the action must vanish.
That is,

f f Ldt 0,

where

L : fff dadbdc[1/2 (a4/ )2 V(

is the Lagrangian. The position of fluid particles x = x(a,b,c, T) is a
function of curvilinear labelling coordinates a = (a,b,c) and time T"

The labelling coordinates remain constant following particles and are
chosen so that mass is conserved following particles: dadbdc = d(mass) =

pdxdydz. Notice that a/aT means fixed (a,b,c) and thus a/aT : D/Dt. V(x)
is the potential energy.

The exact Lagrangian for an infinite perfect fluid is

L = fff da [1/2 (3a/a)2 gz - E(a,S)]

where a is the specific volume and

I/p = a(x,y,z)/a(a,b,c). %- %J

EI.



Finally,

Dp/Dt + p7  u = 0. (2.2)

Conservation of potential temperature follows also from definition:

D/Dt 0. (2.3)

Together with the thermodynamic equation

DP/Dt = c2 Dp/Dt (2.4)

where c2 = aP/ap, equations (2.1) = (2.3) form a closed set.

III. Examples of Thermodynamic Constraints That Eliminate Sound Waves

There are many constraints on the thermodynamic equation of state that
will remove the cause of sound waves: small scale pressure fluctuations
on the density. One would like to find the least restrictive such
constraint. The constraint may be written as acting on the function that
gives pressure in terms of density and potential temperature,
P = -aE/aa = F(p, e), or equivalently as acting on the function that
gives density in terms of pressure and potential temperature, p= G(P, 9).

The most obvious choice is to require that the pressure be constant:

P = G(Po, e) .""
I

where P0 is a reference temperature. It follows that density is a
function of the labelling coordinates only:

p = p(a,b,c). (3.1)

A worse choice is to require that the pressure and the potential
temperature be constant

p = G(P0, e0 )

where P0 and 90 are reference values. Then

p = pO = constant. (3.2)

It is here proposed that the best choice is to constrain the pressure to -.

- be its hydrostatic value in the equation of statez

F(p, e) = Po - f '4gdz' (3.3)
0 -

where P0 is a constant by conservation of mass.
1  .-

usi IThe usual definition of hydrostatic pressure P =cpgdz' becomes uponI using the horizontally averaged density p: z -..

"P P= 7gdz' = f[ ffpdx'dy'l f T dx'dy'] gdz' - f gdz' = P0 - f "gdz'

where the last equality follows by conservation of mass. .

.- .....
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* The entropy S is a function only of the labelling coordinates. The
internal energy E(ci,S) is a given function, determined by choice of
fluid. The thermodynamic equation of state is

dE = aE/Ba dci + aE/aS dS = -Pdcx + TdS.

Henceforth potential temperature 9 = 0 (a,b,c) will be used instead of
IV entropy: the two are equivalent.

Ide~endent variations 6x of the action f Leac d, give the exact _____'

mometumequations for a perfect fluid 0

DWDt =-gk -i/p VP. (2.1)

For example, 6z:

[ Dz a(6z) -g6z - E(cz,0) 3(X,y,r6z)1.
() ffffdadT L~ Taabc

After integration by parts one finds

o ffdadT ~IZ -g~ ~6z.

with Sx *0 as I al, ITj I one can rewrite this as

0=fff- g a 3X (x,y,aE/3a)
0 ffdadr 6z.

A
For arbitrary 6z this yields the k component of the momentum equation

Dw/Dt =-g - U/P aP/az

where U ui + vi +A

One obtains conservation of mass by definition: o

-1/p2  P/ T = 3(u,y,z)/;(a,b,c) + 3(x,v,z)/3(a,b,c) + ;(x,y,w)I/3(a,b,c)

-1/P2 3P/3T = 3(x,y,z)/ (a,b,c) au/ax + VIay + 3/

-1/p2  P/3T 1 /p V U , *

% .
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The approximate Lagrangian using the constraint (3.1) is

-L = f. da[i/2(ax/ar)z - gz - E(a,o) + 7(a,b,c,T )(a(a,b,c)/a(x,y,z) - p(n,b,c)]

where u = n(a,b,c,T ) is a Lagrange multiplier. Independent variations
.x of the corresponding action yield the following momentum equation:

Di!Dt = -I/p 7F - gk + i/p V (wp2 ). A

Notiiig, however, that F = PO is a constant, reduces the above to

DVDt 1/p V (ip 2 ) - q..: (3.1)

Indepc idr-nt variations 67r give the constraint equation. One time
* derivative following particles of the constraint equation then gives

v *n o (3.5)

By delnition Dp/rit = 0 (3.5)

Do/IDt = 0. (3.7)

If one now redefines the pressure as P - wp2 , equations (3.4) - (3.7)
are similar to the inviscid Boussinesq equations. The difference is that
density is a function of temperature everywhere.

.I

The approximate Lagrangian using the constraint (3.2) is

L =fffda[1/2(ax/a )2 _ gz - E(a, ) + ir(3(a,b,c)/a(x,y,z - O)

Independent variations 6 and 6ir of the action yield, respectively,

Du/Dt -gk - 1/poV P (3.8)

V • u = 0. (3.9)

Again, by definition

Dp/Dt = 0 (3.10)

Dr/Dt = 0. (3.11) ,.-

*- This, of course, is the Euler set.

.

2ii %
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IV. New Equations for Convection in the Atmosphere

New anelastic equations result from constraining the exact Lagrangian
with the constraint (3.3):

z1

F(p,e) = Po - f 'gdz'
0

where PO is a constant and f = fidx'dy'p/ ff dx'dy'. Again, the
pressure is required to be its hydrostatic value only in the thermodynamic
equation of state. The approximate Lagrangian is then

L =fff da[1/2(a5/aT )2 gz - E(a,e) + p air/az (F(p,e) -PO + fZgdz')] .
.:

where the Lagrange multiplier is chosen to be par/az for convenience.
Independent variations 6x of the action give the momentum equation

Dg/Dt -gk - /p V F - g at/az k + V (af /a aF/ap)

- I/p Wf/3z DF/0 VO (4.1)

where'= W(x,y,z,t) - Sx,y,os ,t) with T) 0 as z ..

Noticing that v F = -g k and defining P = pc2 ,fz one can rewrite the
momentum equation as

p Du/Dt = - vP - (p - p)gk + g/c2 (p/p 2 _p/p2)k. (4.2)

The conservation of mass and potential vorticity equations follow from
definition:

"-L... .

Dp/Dt + p V • u = 0 (4.3)

De/Dt = 0 (4.4)

The equation of state DF/Dt = c2 Dp/Dt becomes

g(T - 7p) = c 2 Dp/Dt (4.5)

Equations (4.2) - (4.5) form a closed set that differs from the exact
set only in the k component of the momentum equation and the equation of
state. The new equations are hardly more complicated than the exact and
they filter acoustic waves. Furthermore, they conserve exact mass and,
as will be discussed in section V, exact energy, momentum and potential
vorticity.

To assess the accuracy of the new anelastic equations allow the
"- definition PH = F where the H means hydrostatic. If the vertical scale

of motion is much smaller than the depth of the atmosphere, c/g, then
- the momentum equation (4.2) reduces to

pDM/Ot = - pgk - (P PH)

r.: where the term proportional to g/c2 has been dropped because it is much

.I,:: :
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smaller than the remaining. If, then, the height of the convective cells
is small compared to the depth of the atmosphere, the new equations are
accurate: they are within a small error of the exact equations. The
pressure is now given in terms of its departure from the hydrostatic
pressure.

N. One can argue that the new equations are not very restrictive as the •
convective cells may be quite deep and still be small compared to the. -
depth of the atmosphere. Also notice that in the horizontally averaged
equations the extra terms vanish identically. ,

A final important quality of the new equations is that they are easily
solved numerically and therefore practical for computation. In order to
time step the physical variables one must determine P at each time. The
equation for P is found by taking a partial time derivation of the thermo- -
dynamic equation (4.5). Substituting for Dp/Dt from (4.3) and for au/at
from (4.2) one finds

A A 2-c2p • g A - k- gpA = c V + g7•B + •gpB k

+ g(W V" + V u) - ( + c2) V. pu v. u (4.6)

where A = -I/p vP + g/c2 (p/p 2  p/2

and B = -u • vu - g/p (p - p)k.

Equation (4.6) is a linear, second-order, elliptic equation for P. The -
relevant boundary conditions are A.,-

P * 0 as z~ (4.7) K

and "

(p -)g + g/c2 (;p/p2 _ l/2) + aP/az= 0 at z 0 (4.8) .

Equation (4.8) follows from the k component of momentum and the fact that V.
n= 0 at z = 0. This is a well-posed, numerically tractable problem.

V. Conservation Laws IN

Th. conservation laws for the exact equations (2.1) - (2.4) result
from the symmetry properties of the exact Lagrangian. Translational , 6
invariance in time implies conservation of momentum: .-

a/at _ff dx pu = 0. (5.1)

Translational invariance in space gives conservation of energy: '*

a/at fff dx [1/2pu2 + pgz + pE(c,o)] = 0. (5.2)

.°~ •o'
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Conservation of potential vorticity follows from the fact that the label-
ling coordinates (abc) enter the Lagrangian only through the Jacobian:

DV x0) • V 0. (5.3)
Pt ] *.._.,.

The new anelastic equations (4.1) - (4.5) must also conserve exact
momentum, energy and potential vorticity because the approximate
Lagrangian obeys the same symmetry proDerties stated above. This is
straightforward to prove.

For example, consider the energy. To show that the new equations
conserve exact energy one adds the inner product of j _ and the momen um
equation (4.1) to the continuity equation (4.3) multiplied by 1/2 _iL.
Then one integrates over the entire domain. Since one knows that this
process gives (5.2) for the exact equations, one must show that all the
extra terms introduced by the approximate equations are zero. That is,
one must show that

fff dx • [ 7(gf- 'zFp) + i/p % zFeV] = 0. (5.6)

First one integrates the first term by parts to find

f! dx [-(gV- V .U + IzFg: u V :

where the boundary terms vanish because p 0 as z and u *n =0 at
z = 0. Substitution from (4.3) and (4.4) gives

ff dx gf ap/at - a/az (YaF/at) + fa2F/azat]. (5.7)

But notice that ~ F~~ f xf /tz~

Sfff d xf 2F/3zat =fff d xjD2F/3t3z

S-fff d , a/atff dx'dy'pg

-fff dx'dy'dz ap/at g ffdxdyf -. .- * i

S-fff dx g ap/at.

Then (5.7) becomes

fff d, -a/az( aF/at) = - ff dxdy !aFlat = 0
Z=0

because 0 as z * and aF/at = 0 at z = 0. Conservation of exact
energy is thus established. Conservation of momentum and potential
vorticity can similarly be verified.

I .6

b.. - .-..-



U .- =

-200-

VI. The Linear Perturbation Equations

The check that the linearized form of the new equations does indeed
filter sound waves one perturbs from a basic state as follows. Let

. = 0 + u'(x, y, z, t)

p 6 "(z) + p'(x, y, Z, t) .. :

F = F(z) + F'(x, y, z, t)

o = (z) + o'(x, y, z, t)

P = 0 + P'(x, y, z, t)

Now oe assymes each perturbation to be a plane wave in the horizontal:
,= (z)ei kx - ',t) where T'is any perturbation quantity. The y

dependence has been dropped because it is exactly symmetrical to the x
dependence.

The constraint equation (3.3) becomes

F = - f g ̂ (z)ei(kx - wt) dz' = 0 (6.1)
0

because the horizontal average of a plane wave is zero. Also, by
definition, b,--""""

,I
F = aF(,9/ap + aF(',§)/ao 1?. (6.2)

- .

Together equations (6.1) and (6.2) require that

: F9/c
2 0. (6.3) O-

One sees immediately that sound waves have been eliminated since the
density perturbation amplitude depends only on temperature perturbations
and not on pressure perturbations.

VII. Discussion

One can also filter sound waves with the following constraint:
F(pe) = Po - fgdz'

0
where Po is a constant.2 That is, the pressure is again its hydrostatic
value in the equation of state but now calculated using the exact density. s.-:

21n this case Po is not a constant by conservation of mass. The

restriction Po constant is now necessary to eliminate Lamb waves.

'.,
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There are advantages to calculating the hydrostatic pressure with an
average density and advantages to using the exact density. It makes
sense to use an average because it is an average density that balances
the pressure gradient in the z direction while a perturbation density
balances the convective velocity in the z direction. This follows from
the ̂ k component of the momentum equation

p Dw/Dt = -pg - aP/az.

On the other hand, consider the atmosphere stretching over a continent -(

and an ocean. If the weather differs dramatically over land and water,
which it often does, then the average density will be a poor represen-
tative of either. The best choice of density is probably a running
average where one averages over a distance large compared to the width
of a convective cell but small compared to the length of the domain.

Finally, it is important to recognize that this method of deriving ..
anelastic equations is completely different from those used previously.
It is therefore dangerous to attempt to apply scaling techniques to the
Lagrangian. A scaling of terms in the Lagrangian does not imply the same
scaling of corresponding terms in the variational equations. For
example, in the exact Lagrangian the internal energy E(a,S) is larger
than the kinetic and potential energies by many orders of magnitude. In
the momentum equation derived using the exact Lagrangian, however, the
term corresponding to internal energy, - l/p V P, is of the same order of
magnitude as those corresponding to kinetic and gravitational potential -
engeries, Du/Dt and gk, respectively. It follows that evaluation of
error in equations derived using Hamilton's principle is necessarily
c arri ed out *a posteriori.

Acknowledgements: I would like to thank Rick Salmon for his invaluable
guidance throughout our collaboration. I also thank Nigel Weiss for
suggesting this problem and Ed Spiegel for his advice and encouragement
for the future. ...:
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Crossing Chaotic Boundaries in the Disc Dynamo

Kirk Brattkus I

Abstract: We study the third order system which describes the motion of
the disc dynamo and find new chaotic solutions to these modified Lorenz
equations. Also, motivated by the record of geomagnetic reversals, we
introduce a slow modulation of the Rayleigh number across the boundaries
of chaos and observe a form of intermittent chaos.

I ntroducti on

The disc dynamo has long been studied as a simple low order system
which possibly models much more complex behaviors arising in fluid
dynamos consisting of electrically conducting fluid spheres. It is a
very simple machine composed of a rotating disc connected by a ring of
brushes to a coaxia, current loop which, after winding around the axle,
ends there with a set of brushes. If a torque is applied to the wheel in
the presence of an external magnetic field, there is an induced E.M.F.
across the disc and a current is established in the coil. This current
produces a magnetic field that reinforces the pre-existing field as long
as the loop is wrapped counter-clockwise as viewed from above (up is
taken in the direction of the initial magnetic field). In fact, the
initial field was only required to start up the dynamo and after the
current begins to flow it is no longer necessary. After start up, this
machine has become a self exciting dynamo; a so-called homopolar dynamo
(figure 1).

Figure 1: The Disc Dynamo ..

Disc dynamos similar to the one described behave in ways not only
analogous to fluid dynamos but these systems have also been shown to
exhibit reversals in an apparently stochastic sequence. The first of

* these discovered was the Rikitake dynamo where two homopolar dynamos are
coupled by wrapping the current loop of one around the axle of the other
and vice versa. The random reversals caused considerable interest among .

investigators looking for analogues in fluid dynamos to the pattern of
reversals in the geomagnctfc record. The record shows that the earth's

dioemagnetic fedreverses drcinon tiescales of 104 years .

and that these reversals are highly erratic (figure 2).

.- ,. *
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Figure 2: Reversals of the earth's magnetic field over the last 160 m.y.

*The Rikitake dynamo exhibits similar properties of the geodynamo but
it lacks the simplicity of the homopolar dynamo. Malkus (1972) noted

* that if the induction and resistance of the brushes were incorporated
into the homopolar dynamo, the currents in the disc and the coil could
dephase, thus causing reversals.

* The Dynamo Equations

The Malkus dynamo is an extension of the homopolar dynamo where a
resistive shunt is placed across the current loop and the impedance
between the coils and the brushes are included (figure 3). Robbins
(1976) has shown that this system also describes the fields associated
with the averaged fluid dynamo equations.

Figure 3: Dynamo with brush impedence

. . . .. . .. . . . .
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There are three dynamic variables in the model: J, the current in
the disc; I, the current in tile coil; and w, the angular velocity, which
are governed by the following set of ODE's:

C= G - MIJ - V

(Lb + Ls)I + (Rb + Rs)I -w (Rc + Rs)J(1
(Lc + Ls)J + (Rc + Rs) = LsI + Rsl

where v is the viscous damping term, C is the moment of inertia of the
disc, and the L's and R's are the inductance and resistance of the coil,
brushes, and shunt. The introduction of an inductance for the brushes
allows the currents in the coil and the disc to get out of phase with one
another and eventually cause reversals through the Lorenz torque on the
disc.

Linear Stability Analysis

The nondimensional form of the dynamo equations are:

a bc-a - a

b r - b - ac (2)

c a(a - c) + aa-1 a

which have two stationary solutions a=c=O, b=r or a=c=r-1, b=1. Here a,
b, c are the nondimesional current in the coil, the angular velocity, and ""
the current in the disc respectively. Linear stability analysis about ".-
the first of these gives a characteristic polynomial for the eigenvalues ,-
of the linearized problem as:

(x + 1)(X 2 + (o - ar/a I + 1)x + a(l-r)) 0

The zero solution is stable when r < 1 and a - ar/o I + 1 > 0. There are
pure imaginary roots when r, = ai(l + i/) < 1 which corresponds to a Hopf
bifurcation with an initial frequency, L)2 = a(1-4). If we linearize about
the second stationary solution, we find

A3 + (a - a/al + 2)X2 + (r(1 + a/al) + a 2a/ol) + 2a(r - 1) = 0.

At r 1, x = 0 is an eigenvalue and the steady state is locally stable if
1 + a/ai + a > 0, i.e. if there is no Hopf bifurcation in r <. .

There is a Hopf bifurcation off of the cellular solution in the Lorenz
equations so 4e look for one in the dynamo equations by setting x=iw, wER:

2a(r - 1) .. , -. '
2 2 (r( + + a - 2'/lI) (3)

(a - a/al + 2) -....a )-.-.

% % %'

,.* ." 
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where r 2 > 1 is the position of the bifurcation. This gives real -

only if

a - a/a i + 2 > 0 (4.a) .- '

r2 (1 + a/01 ) + a -
2o/aI > 0 (4.b)

and if these hold then (3) gives

2a + (a - 2 a/ai) (a - a/ai + 2)r2  (5)-

2a - (1 + /alI ) (a - a/aI + 2)
S

If we wish to consider regions in parameter space where both r1 and
r2 correspond to Hopf bifurcations, then we are required to satisfy
o - a/ /a 2 > 0 and a- 1 < 0. Consistency between these andboth (51 and (4.b) implies that- -" -

2a - (1 + o/ol) (a - a/ai + 2) < 0 (6)

This gives a very limited region in (a, a,) space where one Hopf branch
connects the two steady solutions (figure 4).

'- _ --- -- " f .-.-.-----.-

/

52

_"_,",_____.___"_"/

-~ t----.------'.--"

Figure 4: Bifurcation structure for a region of (a, aI) space.

As the graph indicates, the oscillatory branch hits the second
stationary branch at r2 which tends to infinity as (a, a ) approaches the
curve 2o - (I + a/a, )(2 - c/o, + 2) = 0 but which tends toward r2 = 1 as
(a, a,) approaches I- a/a 1 + a = 0. However 1 -a/ + a = 0 also
implies that r, = 1 and along this curve we have a codimension two
bifurcation.



LI

---.0h -

Elsewhere in parameter space: If a + I - o/o< 0 outside of the
slice shown in figure 4, the Hopf bifurcation rerzi:,s above the second -
branch which never gains stability. If we remove the restriction that
there exists a Hopf bifurcation in front of the second branch, there is
another section of parameter space described by (4) and (5) which
corresponds to a Hopf bifurcation off of the second branch analogous to
that seen in the Lorenz system (figure 5).

. / /

I /1 / 7 .. /?

I rz  y-- .

Figure 5: Other Regions :) '::::

Chaos in the Disc Dynamo ";"-

-1m

When o =0 the dynamo equations reduce to the Lorenz system (Lorenz, - :y
1963) wher the chaos has been extremely well studied (Sparrow, 1982). "..
Following Robbins (1977), (r, a) space can be separated into regions.,..-,.
wh~re a subcritical Hopf bifurcation either does or does not exist-.
(figure 6). -"

I°.."°°

/

I I

Figure 6 (Robbins, 1977)
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Associated with this curve are two dashed curves. The first curve
corresponds to the onset of a homoclinic orbit that Sparrow labels as a
homoclinic explosion which generates an unstable strange invariant set
(Sparrow, 1982). The second curve determines when the strange invariant
set becomes stable and appears as a strange attractor. These curves are

modified when j- / 0 by introducing cutoff values for o other than o- 2,
au = as in the'Lorenz case (figure 7). __.____

Figure 7: Cutoff values for the appearance of a Hopf bifurcation.

We can assume that there are similar dashed curves associated with the

new boundary when a 0 although these must be determined numerically.

Loren type aop 9+ u ( - a (0;1) > 0 and there is no longer a Y
Lorez tpe opfbifurcation.

This region in parameter space exhibits merely an order 6- change in
the behavior of chaotic solutions from the Lorenz system, so we look to
other regions with Hopf bifurctions for chaos; but, before going further,
a necessary condition for chaos is that there be some global bound on the
orbits in the form of a Lyapunov functional. If we define

E = a2/2 + (r-b) 2 /2 + (.o1c + a- a)2

then. .
E = -( 1 c) - a-lc2 -rb) (r+(- 1 + cr1))ac

and E < 0 outside of some ellipse which implies that the orbits are
contracting outside this region.

ofChaos also exists in other parts of parameter space. The unfolding
ofthe codimension two bifurcation that occurs near 1 + a - a/ar 0 .

has been examined by Knobloch (1981) and the supercriticality of the
steady bifurcation necessitates the existence of a homoclinic orbit.

h Chaotic solutions are observed when the unstable limit cycles shed from

__.*

the homoclinic explosion begin to interfere with the oscillatory solutions
in the manner of S'ilnikov. Figure 8 shows the oscillatory one cycle
bifurcate into a two cycle at a=1.0, 01=.4176450, r = 2.0625. As r
is increased further t~e two cycle loses symmetry and proceeds to go
chaotic. There is a similar route to chaos for much of the region

depicted in figure 4.
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Figure 8: Evolution to Chaos with increasing r.
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Statistical Averages of the Dynamo Equations "

The limit of zero inductance on the brushes, = 0, leads to the
* well studied Lorenz equations (Lorenz, 1963):

a = bc - a

b= r - b - ac (7)

c = o(a - c)

*> Due to the statistical nature of the solutions to these equations when r
is sufficiently large, it seems natural to introduce the moments of each

7component and determine the dynamics of the averages in much the same way
that most theories of turbulence do. Numerical studies along these lines
were first done by Lucke (1976) and substantiated theoretically by

. Knobloch (1978) who developed various stochastic differential equations
governing the second order moments of the solutions.

I t

If we introduce the average value as () = lim ' f( )dt' then it - -
t*, 0

immediately follows from (7) that 1 = a, r F + ac, a c. An infinite
number of such relations can be formed by noting that

d A(a,b,c)= a + + c c 0

Malkus (1972), who derived the Lorenz equations from a closure to the

equations describing convection of a heated fluid in a ring, discovered a &
useful relation giving the average heat flux in terms of its value while
in steady rolls plus other negative definite terms.

The result is: ________

aic= r -1 c (b -b

L 2 r- -7 CC__
a C c

In the full dynamo equations an equivalent relation is given by:

(I+G-1 2 c- 1 0+G- 1 )a2(1+oo c 2oo-1(1 + o ) a

c=r- (+ 2 1 (c2 + a- a2) (1 + 2aa-) c2 + 0o- 1 a2)  (9)
2 1 2  1 a ".-, '-

(h _ o + oo-I) R( + o°-)

2 -1 2
C + oo a o2(1 + 2aa-1 )(c2 + oo-  a2) a2(1 + 2oo- 1 )(c2 + oo- 1 a2)

which reduces to (8) in the limit a- 0 and also gives ac r 1 on the

steady branch where a = c = (b- b) and a c
V .. , -- -.. < ..- ''
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These averages correspond to physical observables such as the average .

heat flux for the convecting fluid or the average back reactance of the 4.

magnetic field on the disc dynamo. Just as in many physical systems, we "
expect these averages to undergo a discontinuous change as the system

-.. passes through a subcritical bifurcation where the stable flow field on ....

the lower branch has radically different properties than its corresponding
stable state on the upper branch. Such discontinuities of physical
observables are commonplace in flows with subcritical bifurcations, for .
example, the torque required to drive the cylinders in Taylor-Couette .. ,>-,
flow drops dramatically as Taylor convection sets in.

The subcritical bifurcation in the Lorenz equations is associated
with the onset of its strange attractor and the depth of subcriticality
of the Hopf bifurcation is usually considered to be the ,value of r where

the strange invariant set first becomes stable. Since c- and (b - b) 2

are nonzero for the chaotic orbits, W must decrease from its value in
steady rolls, ac = r - 1. Figure (9) exhibits numerically calculated

8
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Figure 9: Heat flux vs. Rayleigh number: Subcritical jump. ':<

averages of ac as functions of the Rayleigh number for the Lorenz system
with a = 5.0. The gap at r = 14.0 indicates the stabilization of chaos
and the graph is somewhat incomplete since ac = r - 1 is linearly stable
until the Hopf bifurcation at r = 15.0, i.e., there is a hysteresis effect
as is standard with subcritical bifurcaiions. The size of the gap can be
easily estimated by noting that (b - b)2/cE2 = 0(1/r) and since the frequency * *"'.

of the Ugpf bifurcation is of order 4r, E - 4 on the attractor so that C.. v.
la ( ) 2 2/C7' 0(r/a 2) which gives that []r = 14.0 r/02  .5.

,V. . . . .
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bohA similar study can be carried out with the full dynamo equations, where

bohr and a remain fixed and the induction, 1, is varied. As 0 is decrease(

from its value near the onset of the Hopf bifurcation, the position where thle

Hopf branch hits the steady solution moves toward infinity and eventually pnsses

the chosen value of r. With r = 5.0 and o = 1.0 the cells lose absolute stahilitv

to a subcritical Hopf bifurcation which then proceeds to develop into various

stages of chaos to emerge in states of noisy periodicity (figure 10).
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oldulation of Rdyleigh Number

The statistics of the geomagnetic record underwent a dramatic change
about 40 million years ago when the frequency of reversals became 4
significantly smaller. There is a period between 88 and 110 million
years ago in which no reversals occurred (figure 2). Connections have
been made tu regions of the Lorenz attractor where the system spends
longer than average times orbiting one fixed point before reversing
(Bullard, 1978) but these would hardly seem to account for the extended
periods of nonreversal in the earth's record.

It is quite possible that there is a slow time modulation of the
internal parameters in the geodynamo; there are precessional effects and
coremdntle interactions not to mention a multitude of other possibilities.
If these slow modulations were to occur near the boundaries of the chaotic
behavior in the dynamo, we would expect to see rolls stabilized on a much
longer time scale. These rolls would then lose stability as the para-
meters slowly moved into regions allowing chaotic reversals.

This is basically just a time dependent bifurcation problem where the
Rayleigh number now evolves on a slow time scale near the discontinuity
in the heat flux. It seems natural that the processes controlling the
modulation of r are linked to the physical state of the system which might
be characterized by the average heat flux. If this is the case, lacking
krowledge of any physics behind the modulation, we seek to model the slow .

time evolution of r so that it is increasing below the onset of chaos and
decreasing above it. In light of the discontinuity of V, where it drops
by about 4 , we can introduce a model equation for the modulation as:

: .[ac - e(r - 1)] (10)

where 6 << I and .96 < 1. If C is small enough, we should expect to
be able to replace the average of ac by its local value assuming that ac
has equilibrated on a time scale of 1/6 . This allows us to replace the
integro differential equation by a much simpler differential equation: -.

: E[ac - 1(- )]

.<< 1, .96 < r< 1

It is easy to see that equation (10) exhibits the proper behavior with-,
< 0 below chaos and ' > 0 above. If 6 is not too large, equation (11)

should behave similarly.

The addition of this equation modifies the system and the solutions
now show bursts of intermittent chaos separated by periods of relaminariz- r
ation which lasts on the time scale of -k - 11[6 (1- )](figure 11).
The length of the bursts are proportional to T B 1/( J-.96) which
leads to r/R = [6(1-6)]I( -.96).

Conclusion 4
We have found that there are regions in parameter space where the disc

dynamo can undergo chaotic reversals in a manner quite unlike that associ- ':-,
ated with the approximation of zero brush inductance. Chaos develops as a .. :

result of the development of a homoclinic orbit which arises on the Hopf
branch that merges into the supercritical steady bifurcation.

...... ......................
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t., igur 11:Periodic bursting in the modulated Lorenz Equatiops.
2(b) is a continuation of the integration begun in (2a).
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0.

The second part of this paper has been a motivational treatment of
parameter modulation in the disc dynamo model of geodynamo. This is based
on the observation that many self equilibrating flows fluctuate near 2
metastable boundaries. The model for modulation was strictly contrived
and produced bursting which was much too regular to have any direct
correlation to the geodynamo, however, it gives a possible mechanism for
the long periods of nonreversal observed.

This system is now a fourth order set of ODE's where we have signifi-
cait control over the length and periods of the chaotic bursts through " -.

the parameters E andS . Intermittency is a fairly common phenomena in
higher order systems, but its appearance and disappearance are difficult
to determine and even more difficult to "tune". In this modulated Lorenz
system, as t! increases toward = 1, the length of nonreversing roll
solutions increases to infinity. Likewise, asI decreases to approximately
" - .96, the length of chaotic reversals increases to infinity. Any

combination of these two extremes can be obtained and the added parameter
E determines the relative time scales on which the solution is either
chaotic or laminar.
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Convection with Mixed Up Boundary Conditions

William Morrell

Abstract: We explore the dynamics of thermohaline convection subject to
nonstandard boundary conditions as a problem archetypal of the excitation
of large scale modes by small scale motions. In particular we choose
fixed salt flux and fixed temperature boundary conditions. A finite
amplitude perturbation expansion is done for the special case of no verti- a
cal salinity forcing. We find that horizontal gradients generate fronts
in the salt concentration which directly reflect the phase of the slow
modulation of the forced thermal convection. The zero flux calculation
can be posed as a problem in estuary dynamics, and we also argue for its
application to certain astrophysical problems.

I. Introduction

The excitation of large scale structures by small scale motions is a
common problem in geophysical and astrophysical fluid dynamics. The
dynamo problem relies on such mechanisms as do many meteorological
problems. This type of process can often be characterized by a renormal- R."
ized diffusion of the property in question - momentum, vorticity, etc.
In the case of vertical vorticity in Rayleigh-Benard convection, a phase
instability occurs resulting in the concentration and oscillation of
vertical vorticity (Busse, 1978). Such so-called "phase instabilities"
are common in secondary bifurcations of dynamical systems which involve
the interaction of two instabilities. The problem of vertical vorticity
in a convecting layer near onset has been extensively studied (Siggia and
Lippelius, 1981), but the three dimensional nature of the vertical
vorticity field renders the analysis quite difficult, masking the
dynamics of the generic instability. Such generic problems have been
analyzed using normal form theory and symmetry arguments (Coullet and
Fauve, 1984), but no simple physical model is known for many cases.
Below we address the problem of realizing a phase instability at the
onset of thermal convection in a simple two-dimensional model.

The analysis will be organized in the following way. In section II
we introduce a simple physical problem which has the characteristics
necessary to generate phase instabilities at the onset of convection.
Equations for the amplitude of the coupled modes of the system are derived
by standard perturbative methods and discussed. We examine solutions of
these equations and derive conditions for their stability. Section III is
a general discussion of the problem and possibilities for future analysis.
Most of the calcultions will be presented in the appendix, although those
necessary to follow the development will be sketched where appropriate.

II. The Model

Figure 1 depicts the physical set up we have in mind. A layer of
fluid large in horizontal extent is heated from below. At a critical
value of the Rayleigh number, buoyancy forces overcome viscous damping
and motion occurs. However, the boundary conditions on the appropriate
scalar field are crucial in determining the scale at which the motion

FA
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Figure 1
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will occur. In particular, for fixed temperature boundary conditions,
large scale motions cannot be supported and small scale motions are
damped so the system first goes unstable to a mode with a finite wave-
number, Kc. Or the other hand, for fixed flux boundary conditions,
the system first becomes unstable at zero wavenumber (Spiegel, 1981),
i.e., infinite wavelength. This important difference motivates our
choice of boundary conditions on the fluid. The temperature at the
boundaries is fixed; the flux of salt through the boundaries is taken to
be zero. This choice results in a thermal instability at a finite
wavenumber exciting a haline instability at zero wavenumber.

The choice of kinematic boundary conditions is based on mathematical -

simplicity. That is, we choose stress-free boundaries above and below in
order to simplify the eigenfunctions of the linear problem. The dynamics
of the instability we have in mind will not critically depend on this
choice.

The motion is taken to be two dimensional and our results may depend
on this assumption, but we will leave that question to the discussion.
The fluid is taken to satisfy the Boussinesq approimation and we leave
the choice of boundary conditions at the edges of the layer to later in
the development. Under these assumptions the nondimensional equations of
motion are-

(crat - flA)t = -Rox + 3xE c 'J(A t) (2.1)

- J('pG,) (2.2)

(at 'Efl II',.. (2.3)

where

V = (az!, -ax ) J(A,B) = xAazB -aXB3AzA

o = (T -Tc)/AT A = 3. z2

= S/t~S = =KS/ KT

R =gc1ATd3IK Tv G V/KT

numer K.. O th*tethnfrfieklx onaycodtos -. .-..
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where AS is a characteristic horizontal variation of the background
salinity, which varies on long length scales only, and Tc is the
motionless conductive state.

Note that the equation for salinity couples only nonlinearly to the
velocity field due to the assumption of no imposed vertical gradient in
salinity, and the assumption that the horizontal gradient in salinity is
of O(E) relative to the temperature and velocity variation. Accordingly,
the perturbed or inhomogeneous salinity field should be independent of

- the vertical at lowest order.

Linear Theory

The equations of motion may be rewritten for convenience in the
following form:

V ; MV atLV + N(V,V) (2.4)

where M and L are linear operators and N is strictly nonlinear. The

linear problem is then given by

MV atLV.

This equation admits two normal modes. One is a mode which consists only
of velocity and temperature and it is identical to the mode of linearU theory for simple thermal convection. The other is a salt mode which is L
estimated for long wavelengths (see appendix). They are

cosrz sinKx (KFi(z)sinKx + O(K)

0 cosKx

where sI = (R- R)R - o(K -K + O(K K and s2  2
c 0 )+0( )3 5 2 =

and 0 is a constant.

Kcy

Fu 2

Figure 2 ;,
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Figure 2 depicts the growth rates at the value of R = Rc given by
linear theory for the onset of convection at a finite wavelength.

For R slightly above Rc, a finite band of modes in K-space is
unstable but the salt modes are still marginal. To admit the finite band
of modes one allows a slow modulation of the linear eigenfunctions in the
usual way. We let

R= Rc( 1 + E2)

X =x

T = 2t

where the scaling of the growth rates and long length scales are deter-
mined by the structure of the growth rate curve, i.e., parabolic. Then
the operators become

ax a x + CX

at 4 C2aT

and we expand all the operators and state vectors in equation (2.4) in
powers of E.

The situation we choose to exmaine is that of an order one salinity
field varying only in the slow variables at the onset of thermal .... .
convection. This is expressed in the ansatz

V + eA(XT) (I  + "'.""Eol XT) E -;: "

where the salinity mode has no temperature of velocity field in the limit
as K -o. 0.

We equate powers of £ and at each order we must remove secularities -

by applying a solvability condition. The system then becomes a set of ,-
linear inhomogeneous equations the details of which are presented in
appendix B.

If B is the amplitude of the vertically averaged salinity field then
the amplitude equations, written in terms of the fast variables, are:

Bt [( T+ ( IA2 + iB )B] (2.5)

2 2 12)
AAt : [r - (nBx2 + ( 2/4) IA ]A + 4Ax (2.6) ...

.................................... .. .. ... .. ,

t x. ..

_- . . • ' - ..-.. ..-.. _ -..-. .. ,-- .. • " .-:, ....;.. ... ,-.. ..-..- _- -.. . -.; -.- ;-' .: . L -. L..> .> . . , ,.-> IS,,I,---1 ,L-:', -:;,. ; .L,.Z
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where

(a + 1)/a = 2/3 T

r = 3,2/2 (R-Rc/Rc) 1/2000

and n 1/(670 T 2 ) for T small a large.

-- There is a number of important features to note about these equa-
tions. First, the salt equation is a diffusion equation with a renormal-
ized diffusion coefficient. Similarly, A evolves according to diffusion
and a renormalized Rayleigh number. The presence of B2 in the A

x
equation is a result of the shear flow generated by the salinity gradient,
which is known to stabilie the fluid, i.e., it decreases the effective
Rayleigh number. The Al and Bx terms in the B equation are the - -
result of increased transport of salt due to the presence of the convec-
tive rolls and shear flow, respectively. Indeed, the resence of the
reciprocal of the diffusion in the coefficients of JA and B 2 is
reminiscent of Taylor shear dispersion. .

If we multiply B times (2.5) and integrate over the domain we get the

followiny power integral:

L/2 2 L/2 2A2 + + [( + )BB].
1/ A! ~ B)) B' + e(A1 L/2)Bat - 1/ = - x-L/2-L/2 -L/2

That is, if we do not impose a horizontal density contrast across the
layer then the variance of the salinity must decrease monotonically (the
integral can be taken to be a Lyapunov function). With this in mind we
see that there is a steady solution to the equations given by .-

Bo  pX AO  Qeiqx

where r -np 2  7r2/4 Q2 - 4q2 =0 and p and Q are real constants. L
This solution corresponds to changing the wavenumber of the roll pattern

- from Kc to Kc + q, but keeping the amplitude constant in space and
time and imposing a horizontal density contrast through the sidewall
boundary conditions.

The next issue, of course, is the stability of this simple solution.
We linearize the equations and perturb this solution as indicated below

A = (Q + a)eiqx

B =B 0 + b

where a is complex and b is real. If wq write a = p + if, p and Tboth
real, and let p, SO and b all vary as eiKx+st, then we have a third
order eigenvalue problem governing the linear stability of the above
steady solution to perturbations of wavenumber K. The perturbations must

r" satisfy ........
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/(S + 2/2 Q2 + 4K2) i 8 pqK i

-8iqK (XS + 4K2) 0 0

-2p QiK 0 S+ cK2 b" "..)

where

= : + (Q2 + 3 2).

The equation for the growth rate S is then given by the condition
that the determinant of the coefficients vanishes:

A2S3 + AS2[A K2 + 2/2 Q2 + 8K2]

+ S[4K 2E + xc K2(n2/2 Q2 + 8K
2)- XxQ 2K2]

-4K4(r E - xQ2 ) 0

where x = 4p2,§ and E = ,212 Q2 + 4K2 _ 16q 2, the 'Eckhaus discriminant'.
In the case where p 0, then, direct instability occurs for E < 0. That
is, the system is unstable to a perturbation of wavenumber K if

K2 < r - 3,2Q2 /8.

The condition for instability of the uniform gradient solution is given by

E -xQ 2 >0 j

4E -XQ
2 + C '2/2 + 8K2) < 0

Rewriting these inequalities to clarify the restrictions on K we find:

((xc - ) Q > K > r- n + - 1) np2 .
8 16 8

If Q and p are of the same order of magnitude and T 0.01, as for water,
then 4 =  Q2 , and we estimate

2 2n2 2 3 2 Q
2 - 2np - fQ2 K2 > r 2 2

2 Q 16 8

For T 0.01, 5= 200/3 and n - 15, so to first order this amounts to

15x 2 2 2 2 _ 32 Q2- p - Q > K > r
2 16 8

Thus direct instability occurs in a band of K space which borders the
region which is Eckhaus unstable.

There is another range in parameter space where direct instability
always occurs, namely as K -+ 0. If we return to the cubic equation for
the growth rates and neglect terms of order K3 and higher we get

.,• :..-:';

• -.... .. .........."- "'.- " " "" -""- " " " ."" " - " .. ".-."".. ."."".-."".-.. . .. '..'.-.. .-. .-... . .-. .-... . . .-.. .•. .-.-.. . ,' '-,' ,. ' w" -', " " ." , ,. '
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S3+ 2 2212 2
AS3 A Q2S2 -K(64q + X)S 0

In particular, S 0 is always a solution, and there is also always a .

positive root for S found by solving the quadratic equation which results
from removing the S = 0 root:

2j 2
22 + 4 4 "2  2

4 4 " ( Q 16K (64q + x)) *

2(64q2 + x) K2

At marginality the perturbation solutions are given by
'"" / ~-i K "-7:"i

(=) e i Kx -

From this we can see that as K 0, we do indeed have a phase instability,
for p vanishes like K. Even for K finite we see that the velocity
perturbation is out of phase with the steady solution, i.e., a phase .-

rather than amplitude instability:

p + i M = iU- K/2q) loeiKx.

This instability is a bit surprising as the shear generated by the
density gradient would normally be expected to stabilize the system, but
here the fluid system is capable of altering the forcing, and this is
apparently what is happening. A full solution of the linear perturbation

. problem has not yet been done but preliminary results indicated that
there may be a Hopf bifurcation accessible to the system. -'-'.*.':

To see what this instability corresponds to, we examine the steady
equdtions. For a steady solution the following equations hold

+  (I Al 2 + 6 B,2 ))Bx = constant (2.7)

(r - (9B.2 + ,2/4 A12 ))A + 4Axx = 0 (2.8)

If we imagine that a perturbation does not initially change the wavenumber
of A, then we may perturb Bx2 and ask for the following balances: "

then
AI l2 _ I Al 2 - 4n/T26 from (2.8). ,..'- i

Then to maintain the balance in (2.7) we find that,iii'"'
/2~ 2 2~ 2 '.-,*.2."2-2",2

oBx + Al2 - B2 + IAl 2 + 6( 4n/2 ) Bx2 + I AI2 + 6(1/2000 -1/300T2

".. -.

7:%""i
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Now the last term in parentheses is negative for T small, ~oto maintain
the balance in equation (2.7) we must further increase IBx . That means
that the perturbation will grow, whether positive or negative. Note also
that the effect is independent of the sign of Bx .

Since the mean gradient must be preserved to first order, this
suggests that the uniform gradient will be unstable to a perturbation
similar to that shown in figure 3. Where the perturbation in the salt
gradient squared was positive, the gradient will be steep and the

*amplitude of the rolls will be small; the opposite will hold where 6 was
negative.

.. .. .....- .

Figure 3

The form of this perturbation may also be understood to be an adjust-
ment of the system to the shear flow suppressing the rolls. When such an

instaoility is developed, the regions where the shear is strong are
localized in regions where the amplitude is small and vice versa. The
development of these salt fronts allows the rolls to exist in the presence
of the shear generated by the salt gradient.

The full structure of the perturbation problem remains to be seen,
but, as usual, the limited time available in one summer has restricted
the completeness of this aspect of the research. We consequently turn to
the general discussion of the problem. a .. : "

III. Discussion

One may regard this problem as an exploration of estuary dynamics in
the presence of thermal convection. Young (1983) has considered this
problem in the case of no convection. The result here, then, is the
calculation of a renormalized diffusion of a dynamically important solute
in the presence of eddies preferentially oriented in the vertical. The
instability of the simple uniform gradient solution indicates that the
system can develop inhomogeneities on long length scales. Physically
this is counter-intuitive, particularly in the case of a solute, where .

:2 % "i..

" 'Z "2,t _ " 21".;,;€" '" . "-" €.,, C. .:.'_,' -,'-.,. ;. _, '_'_ ,, ,,.'C .'' .'... ,_"._,x, ,,' 
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one would expect convection to homogenize the fluid. A simple, although
nonrigorous argument suggests that fronts in salinity may form in such a
convection zone. 0

This fact suggests another interesting problem for future study. If
a convection layer lies above a quiescent region, so-called penetrative

" -' convection, and there is a perturbation to the horizontal salinity field,
the gradient might develop fronts which would locally be gravitationally
unstable. Physically this would be exciting as it would provide aL
mechanism for mixing and transport of a solute in an initially homogeneous
fluid. Such mixing has been invoked in astrophysical problems without a
definite mechanism to support the theory, so the discovery of a transport
process which is self-sustaining would be a breakthrough. We hope to
begin exploration of this problem in the near future.

Another point worth remarking on is the relationship of the two-dimen-
sional problem to the full three-dimensional problem. Usually the
presence of shear flow in a single direction merely forces the rolls to
align pdrallel to the shear, but here, where the shear is not externally
forced, but internally generated, a mechanism has been suggested for the
reorganization of the shear forcing which may allow rolls aligned perpen-
dicular to the imposed salt gradient to exist in comparable amplitude with
those aligned with the shear. This becomes a pattern selection problem,
and is hence fully three dimensional, but one may attempt to suppress the
full problem by considering model equations which control planform without
the difficulties of a three-dimensional representation (Swift, 1985).
This too is a hope for future study.

The full problem of a vertically forced salinity field remains to be. ~studied. Also, alternate scalings may simplify the analysis, avoiding -...

dreaded reconstitution, or mixing of orders (see appendix). It seems we
have posed more questions than we have answered, but perhaps this is
typical of problems of this nature. While the lack of closure is

. regrettable, it is also exciting in the prospects it brings to scrutiny.

Appendix

A. Computation of Near Infinite Wavelength Salt Mode

If we take an x-derivative of equation (2.1) to eliminate odd deriva-
tives and let fields vary like exp(st + iKx) for K small then we have:

(-a-lsa + A2 )w = RTK20 - K2 Z

(s - A) = w

. (s - TOA)Z = 0

The equation for, is satisfied if/Ais a constant in the vertical
and s = -T K2, and thIs is in fact the most general solution. Then we
expand in powers of K and we have at 0(l)

D2e0 = w

D.' =..
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for which the most general solution satisfying boundary conditions is -..

0O = 0.

At O(K2) we get -D2g, = _w, '

D4wl = ,-

The solution to these equations are polynomials of fourth- and sixth-order
for w and o, respectively, the F1 and F2 of the mode in the linear
analysis. Since p is an x integral of w, we lose one power of K and the
mode is

K Pl(z)stnKx

2
2 TK t
P2(z)cosKx e + h.o.t.

-- cosKx

where P1 is fourth-order, P2 is sixth order and h.o.t. indicates terms
depending on higher powers of K. Note, however, that the •
solution is exact.

B. The Linear Inhomogeneous System

We start with the dimensional equations

(at - VA)A = -gaox + g~sx + J(* ,A P) (B.1)

v -- ( -¢ )  (at -KTA)e = -zw + J( p,e) (B.2) . .

(at - KsA)S = J(p,s) (B.3) %A

We nondimensionalize as follows

KT d2  ' "

"" W' t t, ' -TZ ..do'KT  [ ,,-

dropping primes we have:

G -gaTz d..S - where R G--"' KTv  K v T

(1/o at - A)a = -RTex + Ex + 1/0 J(, .a 1

(at - A) x + J( *,0) ' ,-,

• (at -  TA) Z J ( , %.P. -3

".' - , '. . * .' . < -" - .' '.- - : " - . .' '.' '. .'. .' '.' . " " ; . .' '.' ' - '.- ." '.r .' ' - -" .'. . .. -' .. . .' ." ." " '. . . ., " ,. , ' .' "I
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Rewriting this as MV = tLV + N(U,U) where

/A2 a-R~ xA/C 0 0

V 9 M ax A 0) L= 0 1 0

a-J( PA _

U N(V,V) = -a t e))p

We scale slow space, slow time and the amplitude of the motion on E

-where E2 
=R -Rc. X =ex, T =~

ax ax + CaX at f: =

RT ==Rc(l + C2)

Expanding the operators themselves in powers of E facilitates the
expansion procedure, and this is done as follows:

A2 2a 2 2 2 3

A2 = A 2 + 4EA' x dXC 9 E2 X (4a X + 2 A') + e(4a Xa x) +

* - Then
M = Mo+ EM1 +
L = Lo+ cj+

A R aa 4A'a a~ A Ra ax

M 0  (-a x a 0 Mi= -a X 2a xa X 0

00 TA 0 0 2Ta a

0X 0

2
M ax 0 M3  0 0 0J

0 0 TX a a0 0 0

x X x

L 0 0 1 0 0 0 0L2 0 0
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N(A,B) (LaXA)(E~azB) -(LazA)(E~axB) E+ (1,0,0) --

No = (LoaXA)(E azB) - (LoaZA)(E~axB)

NI = (LlaxA +LoaXA)(E~azB) -(LlazA)(E~axB) -(LoazA)(E~aXB)

N2 =(LIaXA + L23XA)(E azB) -(L2azA)(E~axB) (LiazA)(E~aXB)

N3 =(L 2aXA)(EazB) - (L2azA)(E~aXB)

We imagine bringing the thermal Rayleigh number past its critical value,

as determined by linear theory, in the presence of an 0(1) salt concentra-.-
* tion which varies only on the slow scale X. Accordingly we set

U=0 + Ul . . . cAV~B(0/) +

*where V contains only ~pand e. Then the scaled order one equations read:

M0U0 = N0(V0, V0) = 0

*and our slowly varying B0 is a solution. At 0(c):

M0UI = -M1U0 + N0(U0, Vj) +N0(Uj, V0) + Nj(V0, V0)

All the nonlinear terms vanish for our slowly varying salt concentration
* B0, so this reduces to

-R a -B

Since the most general solution for the salt equation with fixed flux .

boundaries is E 1 = Bj(XT), this equation yields the typical trignometric
solutions modulated on the slow scales X, T as in the linear problem with
an additional shear flow ternm generated by the variation of density in ~

* the horizontal. That is,

(AeiKx + re-iKx) cosirz - B0XPi(z) A =A(XT)( (AeiKX - re-iKx)(-iK/q 2 )cosrz B1 =Bj(XT)

B1  !.%.

*where subscripts denote derivatives. P is given by the conditions 04p, 1

Plzz 1

Pjzz = P1 =0 at z =*1/2

and P1 Z4/4 3/2 z2,/4: + 5/16-C.
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The variation of the density on the slow scales has generated a flow
which does not depend on the fast x-scale, a O-K mode. This mode in turn
generates a response at next order as will be seen below. At o(c2 ): 4 4

MoU2 = -U I - M2U0 + aTLOUO + No(U2 ,Vo), + No(VoV 2) + No(V1 ,V1 )

+ NI (V0. VI) + NI(VI,VO ) + N2(Uo,V O )
*I Solvability requires that BOT = BOXXT and all other terms are -

nonresonant. The O(c2) solution is:

11 ~-BIXPI(z) - BOXiK(AeiKx - eix P

= 1/6rfIA1 2sin2z - BoXXP2(z) -(2/921(Ax e iKx + Axe-iKx)cosz

* BOX ir/(Tq2 ) (AeiKx + e-iKx) - B2 oX P3( Z)/T + 82

where P2 and P3 satisfy

'2P2 P2zz P3z  "0 z"*1 2

P -P .2 1 P3  1
zz zz z

A 4 .
and 2 and o2 are products of polynomials, sines and cosines which
are omitted here.

At e( 3) the solvability condition yields equation (2.6). O the
basis of symmetry and the no net horizontal flow imgosed by the boundary
conditions we need only calculate E 3 to get at O(e ) * .

B2T = TB2XX + (2/3T)(BoxIAI2)x + /t (BoX)3X . _

where B 3 1/6000 from the solvability condition. We then define

B = B0 + 22

where we may scale away 81. Then rewriting the B equation in terms of
- the fast variables x and t yields equation (2.5).

This mixing of orders or reconstitution is a delicate matter, however
it is frequently necessary in codimension two problems. It may also be
possible to avoid it by using different scalings for space and time.
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A Simple Model for Interface Evolution and Tip-splitting

Michael Landman

Abstract: Geometrical models for the motion of an interface are
d scus'ed, in which a local equation for the dynamics Is intended to
capture some of the phenomena of moving boundary problems. In particular
we characterize the essential features of tip-splitting and thereby
conjecture the existence of a nonlinear cascade to small length scales
and a fractal geometry in finite time.

I. Introduction

In the light of current developments in nonlinear dynamics and fractal
geometries, there has been considerable interest in the dynamics of an
interface between two regions of different phase. Such moving boundary
problems can arise in solidificaion and dendritic growth (Langer, 1980),
viscous fingering problems (Robinson, 1985), contour dynamical models of
vorticity (Stern, this volume), viscous gravity currents (Huppert, 1984)
and biological growth models (Kiermayer, 1981). In most of these
physical problems the dynamical ;quations are extremely complex and not

• .even tractable numerically at the present time.

This has motivated workers in the field (Brower et al., 1983; Ben-
i 3 Jacob et al., 1983) to formulate simpler phenomenological models of

moving curves in two dimensions which attempt to capture some of the
essential features of the physical problem. In particular their interests

* have been to model the dendritic growth of a crystal which is solidifying
out of the supercooled liquid phase. Their studies have helped to clarify "..-.--
which features of the model control the growth of a curve, in the hope
that there may be some type of universal ty principle underlying problems L
in interfacial dynamic., as has been found true for other large classes
of dynamica) systems (Cvitanovic, 1984). For example, it is suggested

numerically from these models that anisotropy is a necessary ingredient
for dendritic growth of a needle crystal with side branching, and that
lack of this factor leads to tip-splitting lehavior (Kessler et al.,
1984).r V

Our interest in these types of models is different, however, and is
twofold in nature. First, we are interested in developing a model
exhibiting tip-splitting at an interface In analogy to current experiments
in Hele-Shaw fingering (Robinson, 1985) and unidirectional crystal growth "-.-
(Heslot and Libchaber, 1985). Second, and perhaps more importantly, we
seek to find a model displaying a nonlinear cascade to smaller length

scales in analogy to an inertial-range cascade hypothesized for turbulent
flows. In this way we seek a self-similar or near self-similar cascade
of tip-splitting events on the moving curve as a simple one-dimensional
.dynamical model for the transition to a fractal geometry as time develops.
If such a cascade occurs one would then like to reduce the self-similar
development to a low dimensional map which can be applied to the dynamics
over a large range of length scales independent of initial conditions
(Childress, 1985).

:I
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In section II we consider the purely geometric aspects of tip-split-
ting of an interface, in order to give a feel for the dynamical behavior
for which we should be looking. We then concentrate on the model intro-
duced by Brower and his co-workers (1983, 1984) which assumes a local
equation of motion for the interfacial curve in two dimensions. We
consider a different dynamical law than theirs, however, in order to
preserve the scale invariance which is a desirable property if we want to
have access to self-similar dynamics. The derivation of the model is
outlined in section Ill; in section IV we describe some of its properties. *' -

The next section deals with a local analysis of the dynamical model and
we are able to find tip-splitting behavior as suggested in section II.
In section VI we show some results from a full numerical simulation of
the equations of motion which provide some evidence that tip-splitting
can occur but is generally inconclusive. The last section summarizes and
discusses the results and suggests some possible further investigations.

II. A Geometrical Model

As a first step to understanding the necessary geometrical condition ". -
for an interface to undergo tip-splitting, we consider an elementary . ' .
description of a curve in the plane which has such a transition.

Consider the interface given by y = y(x,t) where x and y are cartesian
coordinates and t is a parameter which should be thought of as time. As
Ix i << 1 we suppose that locally

y = a(t)xm + b(t)xn + o(xn) as x-> 0 (2.1)

where to retain symmetry m and n are even integers with n > m. We assume
that at t = 0 the tip of this curve at x = 0 undergoes a splitting; that
is, a(t) goes from positive to negative as t increases through zero, and Z"
b(t) remains order l as ltl- 0. J_

Let < be the curvature, s the arclength and e the angle the curve

makes with the x-axis. Then by definition

tan =y'

K do/ds = y"/(1 + y,2)3/2  (2.2)

By assumptions on (2.1), at t = 0 as x-) 0, o-* 0 and we may set s-* 0.
In this limit we have the asymptotic behavior .4

y - xn, g xn-'1
as x, 9, s-+ 0 and t = 0.

- xn-2 " sn-2 - *(n-2/n-1)

Note then that in K - e space, a singularity will occur for integers n > 2
as t-o 0. This is an important point that we will return to later.

In the "generic" case for synnmetric tip-splitting we set m . 2, n 4
and a(t) = t for simplicity of parameterization, and thus consider the , .
model equation , .

y= x2(x2 - t) (2.3)

- ,_ .. . ..... %:-.... .. . - ..,_ ,. .."- ... '. .,. .,.*, * *_ ," w_,,'_ _*. _*- ,. "i, , ,a', 
" '' '

-
'
"":-"- -"-'" - ." -" -- ". -"-

''
'- '
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This curve is shown for successive values of t in figure (2.1). The
curvature for the curve (2.3) can be given only implicitly as a function
of angle 0 ; i.e. from the formulae (2.2)

K = 2(6x2 - t) cos 3e (2.4)

-- where x(e) is given by

4x3 - 2tx - tane = 0 (2.5)

When t < 0, (2.5) is single valued for x(e). When t > 0 (2.5) has three
• solutions for e sufficiently small and thus K becomes triple valued. In

fact as e-) 0 we can write

92  1/108 (K + 2t) (K - 4t)3

which has the characteristic cusp singularly of K ~2/3. A picture
of K versus e is shown in figure 2.2 for a series of times, and is
exemplary of a cusp catastrophy. The tip-splitting is far less dramatic,
however, if viewed in arclength coordinates, as shown in figure (2.3).
is analytic in s and in the generic case has local quadratic form where

the minimum of K (s) passes through .zero t t = 0 i.e.

K -2t + 12s2  as itl < s2-) 0 (2.6)

" These features of our description of tip-splitting will appear later when
we develop a dynamical model for the curve.

One aspect of our simple discussion so far that may trouble the
reader is the use of the word "generic" in the choice of exponents in
equation (2.1). In the symmetric cases when m and n are even much the
sae scenario as for n = 4, m = 2 occurs except that the exponents in the
expansions for K may alter. Symmetry breaking is of course not particu-
larly atypical in physical systems. We argue that the inclusion of a
cubic term, say, in the example (2.3) means only the addition of an
imperfection from the symmetric case, i.e., if. .

y= -tx2 + EX 
3 + x4

then when xI <<It/c the parabolic tip behavior is dominant and when
IxI >> Ithe far-field (quartic behavior is dominant. See figure (2.4)
to (2.6) as a comparison to figures (2.1) to (2.3). In this way most of
this study will concentrate on seeking symmetric tip-splitting from our
dynamical models wherever this symmetry is supported, though we will keep
in mind that asvmmetric perturbations may and probably will occur.
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II A Dynamical Model

We now describe the model on which our study will concentrate - that

is, a phenomenological model for interface evolution based upon the motion

of a curve in the plane which is given a simple dynamical law. This model
has been discussed primarily by Brower, Kessler et al. in a series of
papers (see references), and we shall use their kinematic model though we
will choose a different dynamical law as will be explained below.

We suppose that a moving curve C develops according to the rule that
at any point on the curve its velocity V is normal to C and is a
functional of local curvature K. Hence, if = (x,y) is the position
vector of C, we have that

(ar/at)so -V[K] n (3.1) P

where 'n is the unit inward normal. We think of s o as a Lagrangian

coordinate along C which may be set equal to arclength at t = 0 and
uniquely specifies each point on C. In general the actual length of C,
L(t), is a function of time due to induced curve stretching, so that the
"Eulerian" arclength s is constrained such that 0 .4 s < L(t). To obtain
an equation describing the evolution of K (s,t), we use the Frenet
formulae for the unit normal and tangent vectors and* respectively

an /as = - "' a t /as K n . (3 .2 )" - -"

See figure 3.1. /.--2

6=00

Sco 10 A ... .

Figure 3.1: Moving Curve Model

L As differentiation with respect to space and time commute in the
Lagrangian coordinates but not Eulerian, we derive first the Lagrangian
kinematics using the Jacobian for s = s(so, t)

j as/as o. (3.3)

Differentiating (3.1) with respect to so and using ar/as =T gives

-3 s'--Y (3.4),-" "-"...,1.... :

Substituting the first of (3.2) into the above and resolving normal and
tangential components gives the two equations

= 7, V 3"(3.5)

['.-'4



777T -, -M I -W

234 -

Differentiating the second of (3.2) with respect to so yields

~i- (3.6)

whose normal component gives the equation

-- so....

On eliminating the Jacobian using the first of (3.5) we get the equation
of motion

6= (3.8)

We now need to rewrite this equation in the Eulerian frame making s and t
independent variables using the relation

_

The "stretching" term is derived using the first of (3.5); we find that

on integration and setting an arbitrary origin for s that

. (3.9)11

In this way the equation of motion becomes. ,

- V (3.10)

where s and t are now independent variables. We now perform another
change of variables in order to make the total arclength independent of
time. Let

o: s/L(t).

From (3.9) L

so that

It is also advantageous to define stretched curvature and velocity

U K (s,t) L(t) %r= V[K] L3 (t)

..

-" , -" """--""" -"""" - . "2 """"" .J , -'"""""- "" % "-- - """ """- - "-"."","/ '-""-' " '. ,-.""- " "- [
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* and a stretched time scale -.

a L-4(t)dt..

Finally then the kinematic equation becomes
:"~

p -~0- (3.11

Note that although a and u are dimensionless arclength and curvature,%r
andt are dimensional but will be made dimensionless once we have chosen
the velocity functional ur, which we do below. We should point out that
all the formulae up to equation (3.10) hold for a curve of infinite

- length, and it is only the introduction of a coordinates that requires
.- L(t) to be finite.

In previous work on this model (Kessler et al., 1984) V was chosen to
be the form

V : (K + AK2 - BK3 + y 2K/as 2) (1 + ecosmo) (3.12)

This is an example of the general velocity law

V = F(K) + V 32 K/s 2  (3.13)

with an added isotropy factor which gives a preferred growth direction.
The rationale behind (3.13) is that in general pattern formation at an
interface is due to competition between stabilizing and destabilizing
forces. We think of F(K) as a local forcing of the velocity of the inter-
face and the derivative term as the smoothing term which acts similar to
surface tension in a real interface problem (this analogy is revealed in

. the Mullins-Sekerka type instability analyzed in section IV). The
Kessler law (3.12) is motivated by the physics of the solidification of a

. dendrite and the reader is referred to the literature for their rationali-
zation; c is the anisotropy factor and e the tangent angle defined
earlier. In their numerical studies, Kessler et al. have concluded that

L in order to achieve a stable growth of dendrite like structures, a
L critical value of 9 must be exceeded or the dendritic tip splits (Kessler

et al., 1984, 1985; see figure 3.2). Most of their recent work has
focused on the anisotropic problem and the resulting velocity selection

-* criterion of the dendritic tip, which is still open to speculation for
real dendritic growth (Langer, 1980).

It is our interest however, to search for some scale invariant cascade
within the dynamics of the tip-splitting mechanism. Thus it is desirable

for there to be a scale invariant transformation of the equation taking
(s, t, ,, V) into (cs, clt, c2K , c3V). From (3.12) we see that

c= c- and from the general form (3.13) we therefore select a cubic
for F( K). We thus choose

V = aK3  a2  /as2  (3.14)

Y~%
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Figure 3. 2: Numerical Results from Kessler et al. (1984) for velocity law (3.12).

-.

Note that with this choice, V(-K- -.V( ) so that the evolution of K is

independent of its sign. The invariance of equation (3.10) is therefore

(S't, cV) -)(cs, C 4t, O'K _ c3V) (3.15)

We may set a I without loss of generality. In stretched coordinates L

* the transformation
w -o aw , T a_1T

renders these variables dimensionless and the velocity law is

....

=* u3 + 32u/aci 2  (3.16)

where is dimensionless.

The kinematic equation (3.10) and its equivalent stretched form
(3.11), although far simpler than the real interfacial dynamic problem,
are nonetheless not easily solved numerically, let alone analytically.

There is a change of variables, however, that converts the integro-partlal

differential equation into a local equation. Recall the angle variableeie .

" S- .. '. -

9(s,t) =f K (s,t)ds'
-..
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We desire to find K as a function of e and t alone. Now

and on transforming equation (3.10) we get simply
•2C(v V 0 (3_1,

Using the dynamics proposed for V, we have that 
..

V ,- (3.18)

which gives the equation at motion of C in e - t coordinates as

Q\~ ~&Ar ~ 0 (3.19)

Though we seem to have reduced the complexity of the equation for the
curvature by reparameterizing in o, we are faced with the added compli-

* cation of the possiblity of K being nonanalytic and multivalued in a at a
bk ofixed time. Recall this was the case found for the geometric model of

tip-splitting discussed in section II.

IV. Some Properties of the Model

We will describe in this section some simple analytic solutions that
can be found for the evolution of the moving curve. We will consider -.2
steady profile solutions, though note 'that steady in one of the
coordinates s, a or e does not necessarily imply steady in another. .

There are a number of time independent-solutions carrying zero normal
ii velocity. Using (3.18) we have

K=0or 2 =Acos y7j (9 -*o)• (4.1)

The first is the plane interface solution which, with (3.14), is stable
to infinitessimal disturbances due to the dominant influence of the linear
"surface tension" term. The second of (4.1) gives a periodic curved
interface provided V < 8, and for those with a taste for 19th century .

*. mathematics we can transform the solution to arclength coordinates and
write the steady profile as a Jacobi elliptic function

K = A cn(sA/ )."

Observe that these solutions can cause self intersection of the curve
. depending on the parameters Y and A. It is worth noting here that the

two conditions necessary for the solution to satisfy if it is a closed
curve are shown easily to be

LYt) Lt)
f K t,s')ds' 2v and f e1 B(t,s') ds' = 0 . (4.2)0 0

".* ." - " .'. .. .. . - % • ...- • • ,• " r ' - " % ". . . " .'



238- '

Also more generally the equations of motion for the curvature are in
conservation form so

L(t) 1" .*,

f c(s,t)ds = f u(a,T )do = constant. (4.3)
o 0

A more general set of steady solutions for K(ot) can be found from
equations (3.19) by setting

at fu = ttU (4.4)

If we seek moving finger solutions in the x-direction where K 0 as o • 0
and 1!, then we can show by modifying the arguments of Brower et al. (1984)
that these solutions will only exist for a few values of Y' . Writing
(4.4) as a first order system of equations

de/ds =

dK/ds = a

aB/as = 1/ (Asine - K 3)

then we seek solutions emanating from the critical point (e, K,a) =
(0,0,0) and approaching (w,0,0) as s goes from -- to- (i.e. a hetero-
clinic orbit in phase space). Stability arguments by linearizing about
these points show that at e = 0 the unstable manifold is one dimensional
and at e = , the stable manifold is one dimensional. Thus one can argue
that only at exceptional values of )(do these manifolds connect and yield
a moving finger solution. For = 1/2 such a solution can be found, where

K = c sine = c sech (cs) -'..-

V = (c3/2) sech (cs)

and c is an arbitrary constant. The equations for the curve in the plane
may be found by integration and are

x(s,t) = (-1/c) ln(cosh cs) + (1/2) c3t + (4.5)

y(s,t) = (2/c) tan'l(sinh cs) + Yo

which gives a finger of steady shape moving in the y direction with a
parabolic tip of curvature c/4.

One solution of considerable interest is that for which K= 2w/L(t)
which satisfies constraints (4.2) and corresponds to an expanding
circular interface. We find , .

-

K (s,t) = [4(t + to)] -1/4

L(t) = 2. [4(t + tO)11/ 4

It is easiest to consider the problem in stretched a coordinates for ,- :
which u(o,T ) = 2, is the solution for all time. Performing a linear

dl...
p. . .. ,.. ., .... ,-,.. ,.
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stability analysis of the interface, we perturb it by writing

u : 2 7 + Eu' where f u'do : 0 5
0

which follows from equation (4.3). Substituting this expression into
(3.11) and linearizing in u' yields the equation

L ,u' = (a/a + 4(2,) 4 + (3 + Y)(2.)2 a2/ao2 + y 34 /a 4 )u' = 0 (4.6)

which we can solve by expanding u' in the normal modes

U'm = ePT e2nima 0 < <.

The dispersion relation that results is

P -(2.) 4 [m 4 
-( + 3)m2 + 4]

which indicates there is a band of unstable wavenumbers for sufficiently
small 2f (see figure 4.1). The m 1 mode is always stable and corresponds

U.

stable

K" I .l.

uns table

r. -" "2

'"0 1 . 44.''

Figure 4.1: Linear stability diagram for circular solutions.

to a uniform translation. The elliptic m = 2 mode is the first mode to
go unstable as V is reduced past ?c 2/3. The maximum growth rate
occurs at the wavenumber

which means that the shortest wavenumbers become most unstable as l-* 0.
It is these properties of the circular solution which bear a notable
resemblance to the Mullins-Sekera instability experienced in the full
solidificiation equations. This instability describes the evolution of AW
perturbations on a flat or spherical interface and occurs because an

• .-.-.
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outward bump of frozen material will grow faster than its surroundings
due to the more efficient conduction of latent heat away from the bump.
Tne stabilizing force is the surface tension, and as with Y in our model
this acts to control the growth and leads to a band of unstable
wavenumbers.

In an attempt to determine if there is any nonlinear stabilization of ; .
the unstable modes, a multiple scales analysis of the growth of the .-.
elliptic mode was carried out for V near 9c = 2/3. As a regular
perturbation expansion for u breaks down at third order, the relevant

scales are , = 2 = 2"" 
.. ,

C

u 2 71 + Ul ( T ,' ,o) + ( u2 (T ,1 ,o) + .

Using equation (3.11), one obtains a series of equations

L2/3ui fi

where L2/3 is given by (4.6). Writing

Ul = A(Y) cos (41rs + 4(7))

at 0( 2 ) one finds no secularity in f2 provided we set - 0. This
however does not constrain ul due to the rotational invariance in the
problem. The solution for u2 contains a second harmonic of u2 - hence
at O(E 3 ) we are forced to apply a solvability condition to remove
resonant terms. Suppressing the usual algebraic complexities, we derive
the amplitude equation j

aA/a = 1927r4A + 210/29 .2A3 "

which suggests that there are no supercritical steady solutions near X = 2/3.

V. Local Dynamics of Tip-Splitting

We wish to demonstrate in this section that locally, at least, our
model supports tip-splitting behavior. One approach we took to this
problem was to look for similarity solutions for curvature as a function "
of 9, recalling that in section II tip-splitting corresponded to a cusp . -

singularity in these coordinates. It turns out that this nonlinear
analysis was too complicated compared to our ultimate simple conclusions
- yet it is felt that a brief discussion of this approach has some value
and may be applicable to other systems where singularities occur. - -

We seek a similarity solution for equation (3.19) which as ..

t* t - to-+ 0 has singular derivatives in e. Taking as our ansatz

K2- It, 2 F(n ) = 9 et*K-B as t* * 0 (5.1) -.

the dominant balance of terms in the equation becomes

aK/at + V/2 K2 {a 2 /ae 2 
K (a2/ae

2 K2 )1 0 (5.2)

0.
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Substitution of (5.1) into (5.2) yields

sgn(T) - 21,g [aF - Bn /2 F'] + F3/2[F1/2F'']' 0 (5.3)

- B = -1/4 (5.4)

and we are left with a degree of freedom to choose a. Our aim is to find
solutions to (5.3) on either side of the singularity in e at t* = 0 and to
match them as t*-* 0 by matched asymptotics as n .

To see how a cusp singularity as discussed in section II could occur
for solutions of equation (5.3), we assume that

F n' n and F - ri n 0. (5.5)

Also we hypothesize that the asymptotic shape of the interace at the tip . .

is given by

y axn - bt*P xm  as x-* 0, m < n (5.6)

Matching the asymptotics of equations (5.5) and (5.6) leaves us with four
equations in seven unknowns a, B, m, n, p, x and p. Coupled with . 4
equation (5.4), we obtain one relation between m, n, and p, so

p = 1/4 (n - m) = 2(n-2)/n-1
a = 1/4 (n - 2)
o = 1/4 (n - 1) x = 2 (m-2/m-1)

If we assume a generic tip-splitting in the sense of section II, we set
m = 2, n = 4, p = 1/2 and we get ,-'

K k I t* 1/2 FI/ 2 (0 I t*- 3 / 4 ). (5.8)

We observe however that the time dependence of the curve is not analytic
at t* = 0 which causes a problem with the validity of this solution in a
neighborhood of that point. This is unfortunate as figures 5.1 and 5.2
show a numerical solution of equation (5.3) for similarity form (5.8),
which bear a remarkable resemblance to figure 2.2. In fact the solutions
on either side of the singularity can be shown to have identical A
asymptotic form as n to all algebraic orders for the unique choice of
a = 1/2, 8 = -3/4, due to the fact that F n 4 / 3 is an exact solution
of (5.3). Why then have we found a solution for K (e, t) that for fixed
time gives the local form of a tip for which we are looking that can be
shown to be analytic in s but is not analytic in time?

The answer to why we get this behavior from a highly nonlinear
equation lies in our choice of coordinate e. It is rather amusing to
take the approximate equation (5.2) and transform back to arclength
coordinates. Making the approximation that near tip-splitting K << 1 So 5
V If a2 ic/as 2 obtain the linear equation

3K/at + 
4

K/aS
4 

= 0 (5.11)
w'ilk
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Figure 5.1: Numerically deteminled similarity solution.

(The singulariti'es at F =0 were handled using local analysis.) .5

,c(e,t*) t* fixed

t* < 0

.. 0 -l.U - .6 4 6 40 690 f.60 1'.W0t . .

Figure 5.2: Corresponding curvature (see figure 2.2).

In retrospect then it is fairly obvious that we were just linearizing 
the

full equation for Kc (s~t) and looking for similarity solutions with

* S (5.12)

1k .5



-243 - - .'.

it is clear then that although o variables were attractive due to the ,..,

dramatic nature in which tip-splitting takes place, this transformation ,.
obscured the approximations being made about the critical time t* = 0.

We thus concentrate on the linear equation (5.11) as a local model
equation for tip-splitting. It is worth noting that we have approximated
the normal velocity functional V independent of the choice of F( K ) in ,:_ :

(3.13). We have discussed that the general solution to (5.12) is not -
analytic as t*-> 0. But by the unique choice of C = aV2  v = 1/2 which
corresponds to F(n ) a2 n 4/3 we get the exact solution of (5.11)

K= as* 2 (5.13)

which gives the flattened interface at splitting. Now if we consider a
linear combination of similarity solutions

K= It* vic( )

which gives K analytic in t* and s*, then in effect we are writing K in a
double power series in t* and s* which could then be substituted into the
full equation for K(s,t). In particular we observe that an exact solution
to (5.11) is

= At* + Bs*2 -(A/24 9)s*4  (5.14)

I which is a local expansion for K to be compared with equation (2.6) for
the geometric model. Note we can add asymmetric terms in s* and s*3 to
(5.14) which also satisfy the linear equation exactly.

The above suggests that locally the symmetric tip-splitting event can
be characterized by the two constants A and B. It is this hypothesis plus
the fact that our equation of motion has no natural length scale and is
invariant under the transformation (3.15) that leads us to the following
conjecture concerning an infinite cascade to small length scales, which
is summarized schematically in figure 5.2. Given that the dynamics of a
tip is primarily local due to small structures having time scales far *.

smaller than larger structures, then a cascade can occur where K(s,t)
develops increasingly many zeros. This will lead to a cascade of tip-.
splittings characterized by the sequence

{ A1 , 81, A2 , B2, . . . An , Bn, . .. (5.15)

where (An,, Bn ) are the values of A, B in the local expansion (5.14) at the
r time when K = s* = t* = 0, A being found from the fourth derivative of K

with respect to s*.

The nth stage of the cascade can be locally described by

K= Ant* + Bns*2 -(An/24V) s*4 t* = t - tn 4 0

s* = s - sn  < 1

.................
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s-s space

(An, Bn ) (An+l, Bn+ 1)

it < t t t t < tn" t > tn.tn n j n+1

Figure 5.2: Two steps of a tip-splitting cascade. The dashed box is
inverted and renormalized at each stage.

If we rescale so s-* cs then : ..

If s K = tnt* + Bn s*2 -(An241) s*4  J

where An = c5An, Bn = c3Bn. We thus observe that the shape factor

fn = An 115/Bn 1/3 (5.16)

is a characteristic parameter describing the local geometry of the tip at
splitting which is invariant to a change in length scale. Hence each step
of the cascade can be reduced to a one dimensional map--..

fn+l = F(fn) (5.17)

where we assume that each stage of tip-splitting is dependent only on the
previous one. In the case of a strict self-similar cascade to a fractal
curve, (5.17) will have a fixed point fn+ = fn for all n. Granted
then that this highly idealized scenario can occur, we cannot expect
strict similarity due to the influence of initial conditions and asymmet-
ries. If a term in s* is included in (5.14) then a second parameter
measuring this asymmetry will be involved in the local description in
addition to f By scaling arguments similar to those above, if near
splitting we have cnte

K = Ant* + Ens* + Bn S*2 .(An/24 1) s*4 .

then we can define this asymmetry parameter as

gn = /n2 1Bn.

. .. ~j *
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A two dimensional map will then arise for fn and gn which has
equation (5.17) as an invariant subspace. .J'.-"I'-a'j

In any case, this type of renormalization technique and reduction to
a low-dimensinoal map is an attractive scenario for any model of a non-
linear cascading process. As simple self-similar examples of this in
turbulence theory, the reader is referred to the a-model for the inertial
range cascade of vortices (Frisch et al., 1978) and the 1 -model for the
cascade of helical vortices (Childress, 1985).

VI. Numerical Simulation

In order to verify whether the above local analysis is applicable in
the global problem, a numerical code was written in order to perform a
full simulation of the dynamics of equation (3.11) for u(a, T). A
pseudo-spectral method in space (where derivatives are taken in Fourier
space by fast Fourier transforms) was chosen giving periodic boundary
conditions on [0,1] and readily allows computations for closed curves in
the plane. An implicit method was chosen in time. This reduces the large
restriction put on the time step if the usual explicit time stepping
methods such as leap frog are used due to the differential equation being
fourth order in space. Noting that the equation can be written

o 1 ''''':::-, .

aU/3T + a4u/DC4 + {92U3/a 2 + 3/O (u f uudo - au f uu do'))
0 0

=r u + j2u/9o2 
(6.1)

'.,:.:

we treat the first two linear terms by Crank-Nicholson and the bracketed
nonlinear terms by an Adams-Bashforth 2-step scheme giving a second order
implicit time stepping method.

Due to a lack of known solutions to (6.1) for closed curves, It proved
difficult to test the code. We do have the results from the linear .'.

stability of the circle u = 2w discussed in section IV, and our computa-
tions confirmed the predicted instabilities of modes for various values - -

of 8'. In all numerical experimgnts at least 64 grid points were used and
the time step was less than 10- , being reduced as u became large.

Initial conditions were taken as u = 2, with a perturbation of white
noise in the Fourier spectrum. As an example of the limited computations
performed, figures 6.1 and 6.2 show the instability of the circular
solution at W = 0.2 when the 3-mode is most unstable. The curves in the
plane are reconstructed from u(O, T) by integrating

ax/ac = cos( f udo'), ay/a = sin( f udo')
0 0

so that the time dependence due to the length Lt) and normal velocity
Lf(o, T ) has been supressed. The real curve would be stretched and
translated according to those quantities, but qualitatively the shape of
the curves are as in figure 6.2.

* ..-...--
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VII. Conclusion

We have shown that a moving curve model with scale invariant dynamics
can support tip-splitting behavior by local arguments. We present a S
conjecture concerning the existence of a sequence of tip-splittings that. .
would lead to a cascade to a fractal curve, which can be described by a
low dimensional map.

Limited numerical computation suggests a single tip-splitting can
occur, but we are unable to reliably continue the calculation due to p
numerical error. We hope in the future to demonstrate that at least two
successive tip-splittings can occur by more suitable choice of the
stabilizing parameter ' in our computations, which would help substantiate
the above conjecture. Another possible method to compute the motion of
the curve would be to work with the actual curve and describe it by a set
of points in the plane. High order spline interpolation could be used, .
and then explicit time stepping of the curve would be carried out using
the given velocity law.
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Fronts and Subcriticallty

Janet M. Becker

ABSTRACT ,---%,

The growth or decay of isolated finite amplitude disturbances is
examined for a specific subcritical instability, thermal convection subject -.

to a spatially periodic forcing. The amplitude equation describing this
instability is derived by symmetry considerations and the bifurcation
structure is presented. As this equation can be written in the form
A, = -&V/&A, variational arguments are given in order to infer the
growth or decay of this finite amplitude perturbation as a function of the 4.
control parameter in the problem. Equivalently, these results are obtained
by considering the propagation velocity c of a front, defined to be the
interface between a finite amplitude perturbation and the underlying flow.
Fronts separating this perturbation from the basic flow with c positive
represent growing perturbations while those with c negative represent ...
decaying perturbations. The concept of a front has the advantage of being
independent of the existence of a variational structure to the dynamics.

Properties of this front velocity c as a function of the control
parameter are determined numerically and by topological considerations.
The above analysis is contrasted with that for a temporal oscillatory
instability that does not possess a variational structure. Finally, the
coefficient of the term in the amplitude equation due to the spatial
forcing is examined for a porous medium with inconclusive results.

Introduction

The propagation and growth or decay of finite amplitude, isolated -.
disturbances is a phenomenon widely studied by hydrodynamicists (Cantwell ....
1981). Specifically, for flow in a pipe, Wygnanski and Champagne (1973)
observed the propagation of turbulent puffs (generated by large disturbances , ..
at the pipe inlet) and turbulent slugs (caused by the instability of the '.-

boundary layer to small disturbances at the pipe inlet). Their measure-
ments of the velocity of the leading and trailing edge of these fronts for
three different pipes is presented in figure la. These measurements are
independent of downstream distance, but depend upon the nature of the Inlet
disturbance. Slugs have a well defined leading and trailing interface, the
velocity of these front interfaces being constant across the pipe (figure
lb). Thus, the growth of the slugs can be assessed from these measure-
ments. For this Polseullle flow, the instability observed Is subcritical

Iiji (Maslowe 1981); for a given range of control parameter, there exists more **..

than one linearly stable state. For a system considered to be of infinite "-

extent, the asymptotic behavior in time of the flow In this parameter . ./.-

range Is dependent upon Initial conditions. This Is contrasted with a
supercrltlcal instability, where linear stability arguments determine the
long time behavior of a given flow configuration (Malkus abstract, this ,.-
volume; Joseph 1976).

When the dynamics of a flow Is described by a vailational principle

t -S
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(i.e. one may write the governing dynamical equation as A, = -6V/6A) the
evolution of a given isolated finite amplitude perturbation is determined "
by energy arguments. If the "potential energy' of the perturbation is
lower than that of the surrounding flow, it will grow; conversely if its
"potential energy" is higher than that of its surroundings, it will decay.
The dynamics of many fluid flows of interest however, are not described by -..-.

a variational principle; thus a criterion that determines the asymptotic
behavior in time of the perturbation with respect to the basic flow that
is independent of this variational structure is needed. The experiment of
Wygnanski and Champagne (1973) suggests that the velocity difference
between the leading and trailing edge of a front separating the basic flow
from an isolated, finite amplitude perturbation will determine the
stability of the flow with respect to this perturbation; a growing
perturbation (ULE - UTE > 0) indicates the instability of the basic
flow while a decaying (ULE - UTE < 0) implies that the underlying flow
is stable. (Wygnanski and Champagne reported only growing perturbations
for slugs. For puffs, they found cases where ULE = UTE and the distur-
bance propagated without expanding or contracting. In this report, the
idea of inferring the long time behavior of a finite amplitude perturbation
from a propagating front is applied to a problem from thermal convection i
possessing a subcritical instability as a starting point for this analysis. -

Amplitude Equation From Symmetry Considerations

Recently Lowe and Gollub (1983, 1985) have measured the effects of
* applying a spatially periodic steady electric field to a layer of a nematic

liquid crystal at the onset of an electrohydrodynamic instability (Lowe et
al. 1983; Lowe et al. 1985; Gollob abstract, this volume). They find one
dimensional stable states where the convective rolls are phase locked to
the external forcing (commensurate states). In order to describe these
commensurate states near the onset of the convective instability, one uses

3I an amplitude equation that governs the evolution of the slowly varying (in .
space and tims) amplitude of the marginally stable convective rolls. This
equation may be derived by standard asymptotic methods (Newell and White-
head 1969, Segel 1969), however the form of the equation may be determined
more efficiently by symmetry considerations (Coullet abstract). Here the
system Is assumed one dimensional and unbounded in the horizontal direc-
tion, a good approximation for the large aspect ratio conveection observed
In Lowe and Gollub's experiments. The governing physics of the unforced
problem is described by

atU + Lk,= N(U)

U = A~e Ik Oxmi cc +s.D

where L is a linear operator and N represents nonlinear effects accounted
for In the slowly varying amplitude A. Here k, is the finite wave number
of the marginally stable mode corresponding to the minimum control parameter
of the marginal stability curve snd D represents linear and nonlinear
corrections from the damped modes. This system is invariant under

-h.' a
-.' ", o

.. . .
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i) space translations x * x + d A_* Ae'ko'
II) space reflections x * -x A * A -

lii) time translations t * t +

The equation describing the evolution of the roll envelope can be written
In general as

A,= PA + 60.)'A + N'(U) (1) -

Here p is the linear growth rate of the marginal mode near onset and N'
is a nonlinear operator. 1 is assumed to be 0(0). The smallest I consis-
tent with constraint (ii) and the fact that we are expanding about ko,
the wave number corresponding to the minimum control parameter of the
assumed quadratic marginal stability curve is 1 = 2. The lowest order
nonlinear term consistent with invariance under space translaters is VL.
A12A thus (1) becomes

A= PA + BA.. dIAJ2A + h.o.t. (2)

For the scalings A a .''z, - 1,2, a, _ P, 0(), the terms -

neglected are O(P2 ). Moreover as (2) is Invariant under space reflections.
V.-0 and Y are real. Equation (2) is the asymptotic equation obtained by
Newell and Whitehead (1969) and Segel (1969).

The imposed periodic spatial forcing breaks the invariance in (2) to
arbitrary space translations. For kF = 3k, (kF = wavenumber of
forcing) (2) must be Invariant to A * AezV/3. Thus, the lowest '

order nonlinear term that must be'added to (2) is aM and the amplitude ..

equation that includes the effects of the forcing is

A, pA + 3A.. - /IAI2A + o- + h.o.t. (3)

Here, a consistent scaling for a is a - p,'2 . While symmetry ._

considerations yield the form of the amplitude equation, they do not give
information about the coefficients of the nonlinear terms (except that they
are real). For .= 0, the sign of B determines whether the bifurca-
tion is super- or subcritical. In (3) the sign of a Is irrelevant since
the underlying dynamics ((x = 0) is invariant to space translations. Here,
this symmetry breaking forcing renders the bifurcation subcritical. (More
precisely, this bifurcation is transcritical Benjamin (1978).)

Bifurcation Structure of Amplitude Equation

As the equation describing the physics of a nematic liquid crystal is VI
quite complicated, the following analysis will' consider forced Rayleigh
Benard convection in a fluid. Physically, the imposed horizontal tempera-
ture gradient induces rolls trapped near the top plate (but, see discussion
following for forced rolls that penetrate the bulk of the fluid), the wave , .
length of the rolls being that of the perturbative forcing (see figure 2a).
Distinct physical states consist of

'a t-

" *'*-
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2T
a) trapped forced rolls alone

r ..... :. ..

b) trapped forced rolls plus rolls
generated by the convective insta-
bility rotating in phase

c0 trapped forced rolls plus rolls
generated by the convective insta-
bility rotating out of phase

!~. II

Figure 2 ~

inNotice that all of the rollsw of Wavenumber k, are unstable (in phase)
ifigure 2c. Convective rolls wihisfiinamplitude to overcome the

recirculation of the interior roll, in figure 2b are unstable in amplitude
while those of larger amplitude are stable, establishing the subcritical
nature of the bifurcation.

In order to quantify the physical description of the forced convection
problem

Scale: Define:

A - o//X

in (3) to obtain
S lA AA ... .(4)

With the substitution A Re' equation (4) becomes

R. - O' + PR - R' +i R 2cos30 - Rt(5a)

IiRe.., + 2R,,O, - R 2sin3oOt9R (5b)

generated-,. . . byth covctv _nta ... ,...
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The stationary, homogeneous solutions of (5b) are

0 = 0, ir13, 2w13 . . .

where the odd multiples of i13 are linearly unstable (corresponding to
the convective rolls out of phase with the forcing, figure 2c). By .
choosing 0 = 0 (equivalently 0 = 2,r/3, 41r/3, . . .) in 5a one may
examine the bifurcation structure of the state where the convective rolls
are phase locked to the forcing (figure 2b). Then

Rxx + PR - 3 + R= R, (6)

The homogeneous stationary solutions of (6) are

R =0 7% V.T,.:

R-* 1/2 - JI14+p"

For R = 0 to be stable; P < 0. For R+* to exist )A > -1/4. Then R+* is
linearly stable and R! is unstable. The corresponding bifurcation diagram -.

is presented in figure 3a.

_______linearly stable
-- - - - - - - - -linearly unstable

q ? linearly stable '- '
state with lowest

i \ -F 3-- potential energy i i

(a) (b)

Figure 3 '- .... :

The Evolution of Isolated Finite Amplitude Perturbations

For -1/4 < p < 0, there exist two linearly stable states. Imagine
that in this parameter range, the flow is in state 2a (forced rolls). Now L
introduce a finite amplitude perturbation to this flow that is made up of ',-

state 2b (convective and forced rolls). It is of interest to predict
whether this perturbation will grow or decay. To the order considered, or
equation (6) may be written as a variational principle.

R,- -8U/aR (7a)

U - fdx{-pIR /2- R /3 + R 44 + (R= /2)) (7b)

. . . . ...,. . .,. ...-6, '-" - -. . ..* "*v,..... .' ' " - ,t.",....,.. . .. .,. .'.,v. ... " .6 ., ',. , . "..,: "-. .;,::'i, '
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Then U, = -(aU/aR)2 and If the introduced perturbation has a potential
U higher than that of the initial flow configuration, it will eventually
decay, while if its potential is lower than its surroundings, it will ,. I
amplify. (Note that the Integrand of (7b) is a constant for R = O,R * so
integrate over a periodic domain rather than an interval.) For

a .-2/9 U(R *) = U(O) and 2a and 2b coexist simultaneously
-2/9 > p -1/4 U(O) < U(R:) and the perturbation decays

0 ) p > -2/9 U(O) > U(R *) and the perturbation grows

Figure 3b indicates the bounds determined from these energy considerations.
This idea of a system minimizing its Lyapunov functional has been tested
experimentally for a convective system (Lowe et al. 1983; Gollub abstract,
this volume) with good qualitative agreement for convection a finite ± ---
past onset.

Alternatively, one may examine uniformly propagating solutions to (6)
that asymptote to the steady, linearly stable solutions 0 and R.* at
x = _o. Here we replace at = -ca. where c is identified with the
velocity of the front. Rewriting (6) as

R.. + cR. + aV/aR= 0 V = l/2pR' - R'/4 + R3 /3 (8)

we see that (8) describes the motion of a particle in a force field -BVI8R
with c being the dissipation (notice that V = -U in (7); thus stable
stationary solutions in space (x) correspond to unstable stationary
solutions in time (t)).

Again examine the model problem of a figure 2b perturbation on a figure
2a flow for -1/4 > > -2/9. The "potential energy" as a function of R is
presented in figure 4.

Figure 4 ~ A

Solving (8) subject to the conditions R(--) *0, R(-) *R+* yields a front
that models the trailing edge of the perturbation. This front corresponds

.- * .*. ..' -

-. V .- * '



- 256 -

to the trajectory of a particle starting from rest at R = 0, rolling down
hill and stopping at R+*; thus c > 0 and R = 0 invades R = R.*. (The
convective rolls are unstable with respect to the forced rolls existing )
alone.) It is important to note that since the potential energy V is a
function of the control parameter p, the front velocity c is a function
of this control parameter also. Similarly the leading edge of the front is
represented by solving (8) subject to R(--) R+*, R(-) = 0.

Front modeling trailing edge of perturbation

VIAI

Front modeling leading edge of perturbation

Again R =0 is the stable flow since c < 0 for this case (one needs to add
energy to get the particle up the potential hill). For -2/9 < p < 0 the
perturbation grows while for p- -2/9, c =0, and the two states of ""I.
figures 2a and 2b coexist simultaneously. For this stationary front, an
analytic expression can be obtained readily:

R.. + oVIaR -0 L

A first integral of the motion Is

"I2R7 + V - 0 V -RII-RIR *
Thus

R(x) = 2/3 e (9)

This solution is presented in figure 5. Front solutions for other values of
were obtained numerically using a shooting method. These front profiles L
are qualitatively similar to the stationary front case. differences being -
largely due to the boundary contition R() - R+* changing with p.
Qualitatively, for -1/4 < p < -2/9 the front interface becomes broader as
R+*(P) < R *(P - -2/9). For -2/9) < IA( 0, the front Interface steepens fr .
as R,*(P) > R*(,. 2/9). (See figure 5.)
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C=O~

: c>O

c<O

- --R -.:: -:-.:

Figure 5

It can be shown that a stationary front solution to equation (2) with
A =tanhx/47 (this front separates convective rolls rotating in opposite :C
senses) is unstable to purely imaginary (phase) perturbations. Here the

.forcing (represented by aA in (3)) adds a restoring force to the phase
and the front solution to (8) for arbitrary c in linearly stable (see
appendix).

The Front Velocity c as a Function of the Control Parameter

The velocity of the front c, determined numerically for various valuesK of is presented in figure 6. Referring to equation (5) with the boundary
conditions R,) 0, R(-) - R.*, one may obtain an implicit expression
for c.

c -V(R*)/fR'dx (10)

,]• . 9. -%

For c close to zero (p -2/9 + 61"), c(p)is linear in &p and an analytic
expression for the slope may be obtained from (10) by replacing

It 2/3 o 36P and R by the derivative of equation (9), the stationary
front. Thus t

c ,j6.46p =-Mp as 6P 4

Numer l re .008. 6.7 < M < 7.1 and for 6p - -.01, 5.6 < hs 6.0.

A.. -. -,
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44

Figure 6

Other properties of this curve are deduced from topological considera-
tions. That the front solution to (5) that satisfies R(--) -.0, R(-) =R.
has a unique velocity c associated with it is established by the following.

________C =C.

SF

Figure 7a. Phase space trajectories (R. vs R) of equation (5) for various
values of the front velocity c.

Only the flow trajectory leaving R - 0 with c - c, makes It to R,'.
Similarly that c varies monotonically with p~ can be seen by examing the

* ~variation of R,* -1/2+J FI/4+j with pa. Since :.*

one sees that

C'a.p) .P (P1P)
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c=O(P+i)P-)

-,-c=(P+16p 0

97 
-o- 

4V"-0 ( .-•.-S

Figure 7b. Phase space trajectories (R. vs R) of equation (5) subject
to R(--) = 0, R(-) = R*(P) for various values of p. When p = 0 or p = -1/4,
the "potential energy" V(R) exhibits an inflection point. Here a continium
at front velocities c satisfies equation (6) and the boundary conditions.
Figure 7c presents this behavior for p = -1/4. The inflection point (R,
corresponds to R+* and R-* coalescing; and trajectory with c > cii. (where
c,,, labels the trajectory that enters R, along the stable manifold) will end
up at R, by entering along the center manifold.

c=ci,, . .- .
C=C2 >Cl

S7

i." Figure 7c. Phase space trajectories (R. vs R) of equation (5) and boundary

conditions for p - -1/4. Here a continium of c > cii. satisfies (5) and
the boundary conditions.

The limiting behavior of c(p) as p + 0 and p * -1/4 is deduced by
expanding the potential about the inflection point. In the limit p*-1/4
set R 112+ z v - -1/4+._ (C > 0) in (5) to obtain

z . + cz l 1/2(z' - . ) (11)

I.
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For 6-= 0, equation (11) describes the local behavior of the flow field at
the Inflection point. Fore. + 0, the phase space trajectory that satisfies
the boundary conditions R(--) = 0 and R(-) = R**(p) is modified due to two 4
effects.

(I) For z <61/2, the topology of the fixed point at x = m changes from
that of an inflection point (figure 7c) to that of a saddle point
(figure 7a).

(ii) Ac = c(p = -1/4) - C(p = -1/4 + 0 ) = 0. The front velocity
associated with the flow trajectory that satisfies the boundary
conditions changes since p changes.

Effect (Ii) modifies the trajectory globally; c(-114+ ) labels a dif-
ferent trajectory leaving R(--) = 0 then c(p = -1/4). Effect (i)
modifies the trajectory locally for z <1/2 and therefore will only be

considered to modify the trajectory through the modified boundary condition
R(-) = R*(-lII4) + 0(6 1/2)

For6= 0 and czE > z212, phase space trajectories enter the parabolic
region defined by z /= z2 /2c surrounding the inflection point parallel.

_______c=c, . -

c=c, ,+const h
• ~~~~~c=c,,,-const. h :'- ' ' ' Z'

. = 

.
2/2c

Figure 7d. Local behavior of phase space trajectories (z. vs z) for
=- 1/4. h Is the horizontal projection of the distance between neigh-

boring trajectories. cis labels trajectory entering along stable
manifold.

Thus the distance between neighboring trajectories h Is linearly propor-
tional to Ac. Then the modified boundary condition at R(-) is satisfied -...

for h - 6 2 - Ac and c = c,,I - 61/ = ,- - Jp+1/4 as p 4 -1/4.
Similarly around p= 0 replace R = z; 6 -6(6> 0) in (5) to obtain

ZxX czX - z- Z'

An analgous argument to that given above yields ' --

c = cis + 6 = c,,m - p as p t 0

...............-...........................-......-........
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This limiting behavior of c(p) is explified in figure 6.

The front velocity is a quantity that can be measured in the laboratory.
A possible experiment with which to check these results would involve
mechanically varying p by changing the spacing between the plates confining
the fluid until one obtains a critical value of p = p that sustains the
stationary front. Then one has a controlled state to begin from and by

I changing p and IA (by changing the temperature gradient for example),
the measured velocity of the front may be compared with the velocity
predicted from this theory (figure 6).

A Nonvariational Case; An Oscillatory Instability

For many dynamical systems of nonequilibrium phenomenon, the amplitude

equation does not possess a variational structure (Pomeau et al., 1983). As
the concept of a moving front is independent of the existence of a variation
principle it is applicable to a wide class of problems. For example, at the
onset of an oscillatory instability, the coefficients in the amplitude equa-

. tion are no longer real as there is no reflectional property in time as ..-.

there is in space (Coullet and Fauve, 1984). Thus, the amplitude equation
that describes this Hopf bifurcation with external temporal periodic forcing
at wf = 3w. (o-- natural (resonant) frequency of system) is

A= p(l+ip')A +Az - (1-i 6)A'A + (1+iI3)Ax. (12)

For <' = i' = "- 5'< i, one may treat this problem perturbatively.
Letting A = Re'0 and 8, - ca. in (12) yields

-cR. =PR + R2cos3e - R3 + R. - 2 R.O. - .R + X.xR (13)

-cOR = aR - Rsin3O + eR3 + R + 2R.9. -J'e R + O.R

In order to obtain the solution to (13) expand

R = R. + YR, +

e = i0, , + .32192"+

c = Co + Yc,

At lowest order, one has the front of figure 5.

3 ;-Roxx + coR°, + pR. - Ro + R. 0 (14a)

". -.' 0°= , (14b)

At0(' )R,(--) = 0, R(-) R* (14c)

LR, - -cRo, (15a)

Je - -R, - R,/Ro - p (15b)

,- 1/3(R,* + PI/R*) at x (15c)
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L = 8 +.+ c8., + (p+2Ro-3Rr") .,.

J = 83. + (2Ro./Ro - co)a. - 3R, .

Differentiate (la) with respect to x to verify that L has a nontrivial
kernel (R,,.). Thus, the solvability condition for (15a) demands that
c, = 0 and R, Is set to zero. Then equation (15b) for @I may be
solved numerically, taking care of the boundary condition on e, at
x - -. Here R. = 0 and e, is not fixed. Letting R o =e-.
as x * - one may determine G,(--) in terms of two free parameters.

At 0Wg 2)

LR2 = -cR., 2R.,,. + 0,.R. + +,.Ro 9/2Ro0 , (16a)

J = 0 (16b)

And we see that c2 is determined by solvability at this order. Define
* to be the kernal of the adjoint operator of L

L 0:

Then by defining a suitable scalar product, one obtains

<,LR2>= 0

and c2 is determined by

C, = <, 2Ro.O,. + 0,.R. + 0,xRo + 9R 2e2 /2> I <,Ro.>

Thus the front velocity Is modified at 0( 2) from that of figure 6.

The Effects of Spatial Periodic Forclng'on a Porous Medium '.

An attempt was made to calculate the coefficient of the symmetry
breaking term in the amplitude equation from the fluid equations for
convection in a porous medium. In a porous medium, the flow of Interest
occurs on a scale h. The layer depth, while the viscous term vAM is
dominantly due to friction In small pores of length scale 1 << h (see
figure 8). The dimensional Bousslnesq equations for the perturbation

J temperature T and velocity V about a mean state V = 0, T = T, - 6T(Zlh) + 0
(Palm, 1975) are

", + V Ve = KAe + WST (17) :"

V + V VV = -VP/p0 + ctgoz + vAV (18)

Here

v - kinematic viscosity
K - thermal diffusivity
- =coefficient of expansion
g -gravity

..I ' ? : .............. .. .-. ..-. .. ... -.. .......-.- ..-. ..,-. .-.,.-.-.- .-.. .- ." A..
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(&prt)6T HT-T >0

- 2 
-

V =(U,W)

Figure 8

For 1 << h, the Darcy approximation is valid

vV= -V/T (T constant eI)(19)

Then the effective Reynolds number of the flow is Re =U /h << 1 and the
inertial terms in (13) are neglected.

Using the scalings
V K/h (xz) - h

p

t h2/K P -Kp.In

-K/aTgh

and defining
3R =ag6lThT/K

the nondimenslonal porous medium (Darcy-Bousslnesq) equations are

X=r-VPe 02 (20)

Ot+ V-Ve = AOe RW (21)

(2. ) 2

The boundary conditions area
w 0 at z 0,1 (23a)

0e=0 at z 0 (23b)

e = ge/ ( cc at z- 1 (23c)

One may combine (20), (21), and (22) to obtain (Ah 8..)

t /+ RP KoP + -, -A- (24)

wi th 41 -fPdz. (23) becomes

_ _ : ...L .:
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(a) 0s=0 at z= 0,1

(b) 'p, = 0 at z = 0 (25)

(c) q'. - ge3 'kcx + cc at z = 1 . k:S.-
In order to determine k., the wave number of the marginal mode, set "

= slnirze'ice"t In the linear part of (24) to obtain the marginal
stability curve (a = 0) given by (26) and diagrammed in figure 9.

-,,i-,:~

Figure 9

R Or'~ + k2 )21k' (26)

Rewrite (24) as

R.. '~~-. -. .i

L + 4- +

R =412 +

0

+f ='P + lP1h

where #p (XeIE - + cc)sinirz satisfies homogeneous boundary conditions
and inp, ge h I 3vx + cc)#(z); #(z) = -a slnh 4Tirz +e c sinh I-irz where ~*
a and c are positive comstants. Notice that the z dependence of +. causes the
forced rolls to be trapped near the top plate. At 0(E:), the relevant terms%%
that determine a are SPf,'#h) R (S(#h,+h) gives the incorrect x dependence).

The solution of L+p1 - S('p,+h) at this order is

eL'-- ( ) '-[

L -z+ gX*[Asinh22 - K/'32iv ( ")sinh(Ji+l ) + cc] A constants.6-

s(,. ) - .,,,. - .At-
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Next at a(E-3'2 1 a is determined by solvability and this analysis
yields a = 0. This does not imply that the forcing has no effect at this
order; it modifies the linear growth rate (although this effect has not "
been explicitly calculated at this time). The calculation leading to
a =0 at third order was completed during the last week of the program so
this calculation was not taken to higher order to calculate the symmetry
breaking term. At fifth order this term could consist of a combination of
glgIJ2A and gIAJA. Swift (1984) indicates that a similar result has
been found where if one only breaks the Boussinesq symmetry through the
boundary conditions (i.e. rigid bottom, free top) and the linear problem is
self adjoint (as it is here) the first symmetry breaking term in the ampli-
tude equation occurs at fifth order. The result a = 0 may be related to
this. As this expansion to fifth order will involve a lot of algebra,
before proceeding to this order this calculation will be reformulated by I
representing the spatially periodic forcing as a source term in the tempera-
ture equation, thus affecting the bulk fluid, rather than acting as a skin
effect. That this forcing does render the bifucation transcritical has
been shown for Rayleigh Benard convection (Kelley and Pal, 1979; Benjamin,
1978). The result that a = 0 for this calculation as likely to be related -'_-'_
to violation of property (5) of Benjamin 1978, page 6.

In summary, for a simple model, a uniformly propagating front has been
used to infer the long time behavior of finite amplitude perturbations
imposed on a basic flow. This theory is independent of the existence of a
variational structure of the dynamics and yields a physical quantity c
(that is a function of the parameters of the problem, that can, and has been
measured. The connection of this model with the porous medium equations
needs to be completed in order to'see how the symmetry breaking term arises
from these dynamics.

Future work involves applying these ideas to hexagons as they possess a
II subcritical instability intrinsically (not dependent upon the forcing as in

the present problem).

Also, this theory will be extended in order to attempt to explain the
measureaents of figure la. Returning to figure la, an asymmetry about the
center line between the leading and trailing edge velocities develops for

L Re > 104. This cannot be accounted for in this theory as it stands as
the amplitude equation possesses reflectional symmetry in space. This and
other effects will be taken into account as these ideas are extended to
more complicated physical systems.
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Appendix X'

The linear stability of the front R, (real) that is the solution of

A.. + (aV/aX) - A, V - PIAI' + r( '+A')/3] - (IAI'/2) (Al)

?~ -A'-.
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A(--) 0 A(W R.*(V~) Rot E -cR0,,

is determined by substituting

A Ro + 6A~eo" &At & R +e i~r

into (Al), linearizing and examining the eigenvalues a. This yields *

&Rxx + c&R, + (P+i2R-3R2)&R = a&R =- LI6R (AWa

6r.+c6r, + (p-2R,-Ro)6r =a6r E L2S6r (AWb :z
Changing variables in order to make the linear operators on the l.h.s.

of WA) self adjoint yields

6~i + (-C'/4 + P + 2Ro 3R0)R=aS Aa

2&rxx + (-c'/4 1+ - 2R. R,)Sr = asr- (AWb

&R E e 6c2~R 6rE e c/) x~r

First examine the stability of R. to purely imaginary perturbations (AWb.
As the front has localized structure in space, one is interes.ted in
examining localized perturbations thus Or'(-) = Sr(--) =0. Multiplying
(AWb by 6ir, integrating over x (, )one obtains

-fdx[(6",,)2 + Ip-2Ro-R2.j(6r)2] E a (6 'dx

and a < 0; R. is stable to phase perturbations since the l.h.s. isSnonpostive definite. In order to determine the stability of R, to real
perturbations MAa), one recognizes th-at R.., is an elgenfunction of (AWa %
with eigenvalue zero. Moreover, R0x has no zero crossing as is evident
from figure 5. Asymptotically .

-c/
2 + rc a/4+K )x asx ..

* ~.R 0,x - ec/ - as x + c

thus

* 6R =(c 2
) e R - e(c/)xR0,x + 0 as x ±

and one is again examining localized perturbations to the front R,. -
* ~Rewriting MAa) as ~'

(-8,,+ V)R=-a&R 6R +0 as x co

V =c 2/ A 2 R. + 3R2

*one obtains a Schrodinger equation,,,, The eigenfunction with the lowest
energy (-aa E, so largest a) is SR - ROK (it has no node), thereforej

a(0 and the front R, Is stable to real perturbations.
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