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The basic model. In a number of papers [1,2,4,5,6] nonGaussian
linear processes are considered as the basic model. Questions

relating to the estimation of coefficients and deconvolution

were dealt with. We give the assumptions here. Let (vt) be
t

a sequence of independent, identically distributed random var-
2iables with E vt 0, E vt 1 and some higher order cumu-

lant -y # o (s > 2). The real coefficients (aj} are in

(0 2 <

It's assumed that one observes the linear process

(2) X a v

without knowledge of the ails or the vt's. The object was to

determine procedures for the estimation of the coefficients

a. whether or not the system is minimum phase and effect de-

convoZution to estimate the vt 'S.

We shall still look at aspects of the problem just described.

But our main concern will be with the modified problem in

which we observe only

L* (3)... Yt x +n

* *Research supported in part by ONR Contract N00014-81-K-0003 and NSF
Grant DMS83-12106.
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where Xt has the structure given in (2) and {n is a

Gaussian noise process independent of the process {X "
t.

In many cases the spectral range of the X and n processes .

will be disjoint. In such a case direct linear filtering will

let us get the process IXt). This happens, for example, when

* the spectrum of the n's is in the high frequency range and
that of the X process in the low frequency range. Suppose

the interval [-a,a] contains the X spectral mass and that

of the n process is outside. Further, let us assume that

±a are continuity points of the spectral distribution func- L

tion F of Y. The indicator function of I-a,a] has the

Fourier representation

1 sin ja -ij"'

and this implies that
X t si n j a Y t - j "

Dwyer [3] has been concerned with techniques aimed at gaug-

ing the Gaussian or nonGaussian character of additive compo-

nents of the process Y corresponding to different spectral L .4
ranges. He tries to assess the third and fourth order moment

properties of such components.

We shall be interested in seeing what happens when the spec-

tral ranges of the X and n processes overlap. If the n

process is small compared to the X process, one can still

try to deconvolve approximately even by proceeding naively as

if n weren't there. An example of such a naive convolution

is given below. All this is independent of whether the system *

is minimum phase.

In Figures 1 and 2 the process Yt is generated by a Monte

Carlo simulation where
X = vt - 3.5 vtl + 1.5 Vt 2

and vt is a sequence of exponential independent random var-

iables of variance one. Here the roots of the polynomial

1 - 3.5z + 1.5z2 are 2 and 1/3. The additive noise nt

consists of independent Gaussian variables of mean zero and

variance a 2 1 in the case of Figure 1 and c2 2 for

Figure 2. The first line of the figure graphs the sequence
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Yt" The second line graphs the generating vt sequence. The

third line gives the result of our naive deconvolution ne-

glecting n. The fourth line gives the error in our decon-

volution. The last line has the result of a minimum phase

deconvolution which is naturally off because one of the roots

is inside the unit disc in the complex plane. Clearly our
2naive deconvolution gets worse as a increases. But even

for a2 = 2, a moderate amount of noise, one can still rec-

ognize certain broad features of the v sequence. If n is

large one won't be able to deconvolve but one can still hope &

to estimate a good deal about the a.'s under appropriate con-

ditions.

A simple model. To give some idea of the difficulties that .

can arise, let us consider the case in which

(4) Yt =a vt + b ut

with the {vt) sequence nonGaussian independent, identically

distributed with
Evto, 2 3

E v t -, E vt , Ev .y 0

and fu ) an independent, identically distributed sequencet
of N(0,1) random variables. The fv ) and {u sequences .-.. .

t t
are assumed to be independent. It is assumed that lal, IbI

and y are unknown. The counterpart of the problem mentioned

above is that of estimating Jai and bi. lal and "bi

are not identifiable in terms of the problem as specified here

since vt might be decomposable

(5) vt = v (1) + v(2)

t t

in terms of two nontrivial independent summands, one of which,

say v )
, is Gaussian. The problem can be normalized by

insisting that v be indecomposable in the sense that a repre-

sentation of the form (5) be impossible. We shall call a

random variable vt with a nontrivial decomposition of the

form (5), in that a Gaussian summand with positive variance

exists, reducible. This could be expressed in terms of dis-

tribution functions. A distribution will be called reducible

if it has a nontrivial Gaussian component.

~N-
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PROPOSITION. A reducible distribution has a maximal decompo-

sition relative to its Gaussian component.

Let V be the characteristic function of the reducible dis-

tribution. Then there are constants cn > 0 and correspond-

ing characteristic functions * n such that

P(t) n(t) exp (- cn  )

Then

Re Q(t) < Re n(t) < 1

Let the Fn be the distributions corresponding to the charac-

teristic functions n" We have

dF (x) < fu fl - Re nV)}d.;] l>i u n 0 n'-.'-'

1x1'l/u 0

7 fu {1 - Re Q(v)fdv

0

We have then uniform bounds on the tails of the distributions

Fn . One can therefore choose a subsequence Fnk with Cnk t

c sup c that converges weakly. Let the limiting distribu-
n

tion be F with corresponding characteristic function p.

It then follows that

(6) *(t) = (t) exp (- c

which corresponds to the unique maximal decomposition.

The problem of estimating lal, Ibi now in (4) where vt is

irreducible is one in which jal, [bi are identifiable. How-

ever, the problem of deconvolution which is that of estimating

vt  is clearly not meaningful.

The representation (6) implies that any distribution with a

characteristic function T(t) that doesn't decrease to zero

as fast as the Gaussian as I tl - - must be irreducible.

This means that all discrete distributions and all gamma dis-

tributions must be irreducible.
Let's consider the question of predicting a vt given Yt"

We shall put this in the form

w +a

where and n are independent with means zero and variances a2 r-

0-~q*I
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and 02 respectively. n is normal and is nonnormal with
2

density g(.). We are typically interested in the case in
which a 2 is small compared to o2. The best linear predictor

of in mean square is aY where (assuming a1 and 02 known) %

2~ ~ 2 -'.

2

+ a
and the variance of the prediction error is

2 2
01 02

01 2
The best predictor of in mean square is E(EIY). Now

k 22
E( kjy)-- /° Y )] .- "" ......

Jg( ) 1--!- 1x 2-l-
/27c 202

1 Y21

Sg (Y-U 2  g(Y-uo2 ) exp (-u2)du
1 12

if g(Y-uo2) exp (-lu2)du t. .

Let ¢"?i,.

2 22-a"--
2 1

f 'g(Y-uo 2) exp [- )u du
fnkY) = f g(Y-ua2) exp [ u2]du

Then

f o J ik kj (k1 1 mu(Y)k.'-

Assuming sufficient smoothness and using a Taylor expansion t,"
we have

glY-uL2 ) = g(Y) uo2glY) +- (u u 2

mT g(Y)+ .

and consequently the best predictor is t,"-
2

f whi. le

"I..
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2
o2 (3)

2 2 2 g'(Y) + - - g (Y) +
E(2 Y) Y + 2Y 2 2

... g(Y) + 2- g(Y) +

3 2g(Y) + 02 g"(Y) +"'

-02 2
2

g(Y) + -Y g"(Y) +.

We should like to compare,
E((C-aY) 2IY)= E(& 2 1Y) - 2aYE (Y) + a2 2 2

with

E( (-E( Iy))2IY) = E(21y) - E(IY)

It is clear that
E(-E (C!Y)Y) <_E( -y) 2 Y) :_

and the difference is given by
(aY-E( IY)) 2

= ((l-a)Y + 2 'M + 0(O2
2 g(Y) 002

Such a comparison can give us some idea of the effectiveness

of the best predictor versus the linear predictor in the tail '.

region of the g distribution. This tail region may be of

greatest interest in certain deconvolution problems (see

Wiggins [6]).

Up to this point we have considered prediction in mean square. *'..*

Suppose we consider instead trying to minimize

EIC-f(Y) i4
for some appropriate f when Y = C+n with n N(o,o 2 ) and

Sirreducible nonnormal with mean zero and variance 2 An

analysis can be carried out by considering 01. An

E(E-f(Y)) = E(E1(E-f(Y)) i]) *=-

We can obviously minimize this if we can minimize the condi-

tional fourth moment on the right side for each Y. This sug-
gests that we consider minimizing

E (Z-c)
4

in c where Z is a random variable with E 24 < - and c

is a constant. Let m be the mean of Z with a = m - c.

Then

(7) E(Z-c)4  E(Z-m+a) = a 4 + bo2 a 2 + 4V 3 a + 4

%:-
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with a2 the variance of Z and pj the jth central moment.

Differentiating this with respect to a we get
(8) 4a 3 + M2 a + 4

If V3 = 0 the unique real zero is a = 0 and the minimum

is attained by c = m. If V3 0 we have a unique real zero

since the derivative

12a 2 + 12o 2

of (8) is positive. The zero will be negative if > 0

and positive if p3 < 0. Set (8) equal to zero and solve for

a. By Cardano's formula one obtains

-1/3 6 12 1/3
(9) a 2-1/3 [ 3 + fp3 + 4a6 1/

- 21/3 [13 + f{ 3 + 4c6)1/2]1/3

This means that the function f(Y) minimizing (7) is V...
f(Y) = M(Y) - a(Y)

where

m(Y) = E( jY)

and a(Y) is given by expression (9) with
113 = E(( -E(IY)) 3IY) """"

and

a 2 E((E-E(IY))2 IY)

Estimation of coefficients. Let fY t be a process of type

indicated in formula (3), that is, the sum of a linear non-

Gaussian process and an independent Gaussian noise process.

We shall indicate in a simple way that the coefficients a.

of the linear nonGaussian process can be estimated up to an

undetermined multiplier and an undetermined time shift. This

is an asymptotic argument.

PROPOSITION. Let {Y t be a linear nonCaussian process per-

turbed by independent Gaussian nos.Suppose that ak

< M, a(i - ) 0 for all X and #. Then the coeffi-

cients ak can be consistently estimated up to an undetermined

multivZier c and an unspecified time shift of the index set.

%...- --.. ..... ..............,.,.....%.- ..._ -... . ..
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The bispectral density of the process {Yt is
-il) -iX i(Xl+X

b3(AlA 2 ) = - ale )a )e ) .-- '
(2nr)

As before one can estimate the phase of a(e - ) consistently

up to an undetermined additive term ikr with k integral.

This can be accomplished by using bispectral estimates as in

Lii and Rosenblatt 14]. Notice that
Y3 -i

(10) b3 (X,0) = (270 a(l) l(eX )2

Bispectral estimates (using (10)) then allow us to estimate

the spectral density of the process {X t  up to an undeter-

mined constant. The proposition follows immediately from

these remarks.

Corollary. Let the aesumptions of the proposition be satis-

fied. Suppose that the Gaussian noise is white and that %

l(e-iX) constant for all X. One can then estimate the

multiplier c. There is then only an unspecified tire shift

of the index set. The varianc, of r can a7so be estimated.

Since the assumptions of the proposition are satisfied the

conclusions hold. We have only to estimate the multiplier c.

Both the spectral density

2fl n )  )-2 .l (e- ix 2 + n .-r)-

of the Y process and .'.'.','-2
T 3 " ix 2-:

b(X,0) = 2 a(l) IaleiX)I 2

(2ri)

can be estimated consistently. Clearly

2
fl(A )  b(X,0) +

= A b(X,0) + B .

The coefficients A, B can be consistently estimated given

consistent estimates of fI), b(X,0). The conclusion then

follows.

.N
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. ~. . .*..

* * *o" °° *



195

The argument of a polynomial transfer function. In many cases

it seems reasonable to assume that c(Z) is a polynomial

p
a(Z) = I a.Z3

j=0 3

Because the coefficients are assumed real, the roots Z. are

real or occur in complex conjugate pairs. The argument of

a(e- ) is the sum of the contributions from the factors cor-

responding to the roots. We shall consider the contribution-i8
from a root Z. with 1Z 1 1. Suppose Z. = re with

0 < r < 1 and -7r < < r. Then

log (e-i'-z.) = - iX + log (l-e ix Z-)

ix kix (e Z.)k/k

k=l

and this implies that

(11) Im log (e--j)= - - r sin k(X-e)

(11)~~~ Inlg11~. k3k=l

for 1IZj < 1

Similarly for Z. = re with r > 1 one has

log (e -Z.) = log (-Z.) + log (l-Z le- i )

= ir + log Zj - ( e ) /k
k-l

and this implies that we have a representation

(12) Im log (e-Z.) = - e - r sin k(O-)
k=l

for ZI I > 1. Let us formally consider the difference between

(11) and (12) for r = 1, that is

(13) 9 - - T + 2 0 sin k(8-X)
k=l k

Notice that the Fourier series of x - n sgn x is

-2k l 2 sin kx

This implies that the expression (13) equals zero for 0 < .
-X< r and - 2T for - < 8 - X < 0. This is consistent

with the indeterminacy of the argument up to a multiple of 2iT.

For a real root Zj < I expression (11) becomes

• ..." • . v . .............................................-......--.--. v..'....-...--..--. ..--... ."-'.-i-. -.---- -"."- . ".'
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k=l k

according as to whether 6 0 or rT. In the case of comn-

plex conjugate roots of absolute value less than one the sum

of the contributions is

k
_ -2 r sin kA cos k-

k=l k

The corresponding remarks for roots greater than one read as

follows. if 1ZI 1 is real expression (12) is
JL

-k
(r sin k s ,

k=lk"

with craccording as to whether e ot o or . If there are

complex conjugate roots one obtains

-k
(I - , r sin cos k,

k=l l.

In our case we try to estimate the sum of the contributions

to the argument from all zeros and then as a convention re-

adjust the value at zero of the sum so that it is zero there.

This discussion of the relationship between the argument of

the transfer function and zeros of a(Z) is natural when

a(Z) is a polynomial. A corresponding discussion could be

carried out if a(Z) is a rational function in terms of the

zeros and poles of a(Z). However, one can easily give ex-

amples of analytic functions a(Z) with no zeros such as,

for example,

a(Z) = exp (sin Z)

Here, there would be no meaning to such an analysis. '
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