RD-A164 599 RENARKS ON NONGAUSSIAN LINEHR PROCESSES WITH RDDITIVE /1
GRUS IAN NOISECU) CRLIF A UNIV SAN DIEGO LA JOLLA
EPT OF HRTHEHHTICS KS L 1 ET AL. 1984
UNCLASSIFIED NOOOi‘-si F/G 12/1




AL W EHEHE WECS/ALEL L SR AVER SAEN EVL AR C e e A A R
? - T @ T, s e e WA W NS

o
B

Il

F--
m.w
N

L

rTEEER

EEEE

= =
. LN
- —
= i
MICROCOPY RESOLUTION TEST CHART
. canoNAl BURTAL F CTANDARDS-1963-A
.
“~
.
-~
LN
:“..“r ')‘ \‘l)‘-’(’*\ -‘} '-"' SN RS P S LY S
T R R A L
'~ 4 N . s B AU R




0y
l A — @

REMARKS ON NONGAUSSIAN LINEAR PROCESSES c
WITH ADDITIVE GAUSSIAN NOISE* D I l

ELECTE
FEB 1 9 1986

K. S. Lii

University of California, Piverside
Riverside, California 92502

and

M. Rosenblatt

D

University of California San Diego
La Jolla, California 92093

AD-A164 599

The basic model. 1In a number of papers [1,2,4,5,6) nonCGaussian

linear processes are considered as the basic model. Questions
relating to the estimation of coefficients and deconvolution

were dealt with. We give the assumptions here. Let (vt} be
- a sequence of independent, identically distributed random var-

; iables with E vy =0, E vi £ 1 and some higher order cumu-
5 lant y. # o (s > 2). The real coefficients {uj} are in
‘:' 12
o (1) ¥ 0l <=,
.-: J
- It's assumed that one observes the linear process
- (2) X, = % AV
- without knowledge of the uj's or thev,'s. The object was to
o) determine procedures for the estimation of the coefficients

a, wnether or not the system is minimum phase and effect de-

convolution to estimate the v, 's.

> t ;"
5%5 We shall still look at aspects of the problem just described. {R
QO But our main concern will be with the modified problem in L}
. o
which we observe onl .
Y ¢ ial
- - {3 Yo = X 1y
- lde
() *Researcn .
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where X  has the structure given in (2) and {nt) is a
Gaussian noise process independent of the process {xt}.

In many cases the spectral range of the X and n processes
will be disjoint. In such a case direct linear filtering will
let us get the process {xt}' This happens, for example, when
the spectrum of the n's is in the high frequency range and
that of the X process in the low frequency range. Suppose
the interval [-a,a] contains the X spectral mass and that
of the n process is outside. Further, let us assume that

ta are continuity points of the spectral distribution func- L ,
tion F of Y. The indicator function of [-a,a] has the T
Fourier representation S
sinvja e~ijk

p)

.t~
24

and this implies that

_ ¢t 1 sin ja
X¢ = % n 3 Yt-j

Dwyer [3] has been concerned with techniques aimed at gaug-

ing the Gaussian or nonGaussian character of additive compo-

nents of the process Y corresponding to different spectral

: AT

ranges. He tries to assess the third and fourth order moment P U
_ N
properties of such components. &: LA
R

We shall be interested in seeing what happens when the spec- ;:*?u{

tral ranges of the X and n processes overlap. 1If the n
process is small compared to the X process, one can still
try to deconvolve approximately even by proceeding naively as
if n weren't there. An example of such a naive convolution
is given below. All this is independent of whether the system

is minimum phase.

In Figures 1 and 2 the process Y is generated by a Monte

Carlo simulation where ¢

X, = v, - 3.5 v,y ¥ 1.5V,
and v, is a sequence of exponential independent random var- ‘
iables of variance one. Here the roots of the polynomial I YA
1-3.52 +1.522 are 2 and 1/3. The additive noise ne Ei ﬁﬂ
consists of independent Gaussian variables of mean zero and :$;§:f
variance 02 = 1 in the case of Figure 1 and 02 = 2 for X '%

Figure 2. The first line of the figure graphs the seguence
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Yt. The second line graphs the generating v, sequence. The
third line gives the result of our naive deconvolution ne-
glecting n. The fourth line gives the error in our decon-
volution. The last line has the result of a minimum phase
deconvolution which is naturally off because one of the roots
is inside the unit disc in the complex plane. Clearly our
naive deconvolution gets worse as 02 increases. But even
for 02 = 2, a moderate amount of noise, one can still rec~
ognize certain broad features of the v sequence. If n is
large one won't be able to deconvolve but one can still hope
to estimate a good deal about the uj's under appropriate con-

ditions.

A simple model. To give some idea of the difficulties that

can arise, let us consider the case in which

(4) Y, =sav + b u,

with the {vt} sequence nonGaussian independent, identically -

distributed with -
Ev, o, E vi =1, E vz Sy ¥ 0 ?zj\

and {ut} an independent, identically distributed sequence ;:E::

of N(0,1) random variables. The {v.} and {u.} sequences e

e

are assumed to be independent. It is assumed that |a|, |b]|

and y are unknown. The counterpart of the problem mentioned

above is that of estimating |a| and |b|. |a| and |b]

are not identifiable in terms of the problem as specified here

since Ve might be decomposable

_ (1) (2)

t T Ve *t Vi

in terms of two nontrivial independent summands, one of which,
(2)

say v,

(5) v

, is Gaussian. The problem can be normalized by
insisting that Ve be indecomposable in the sense that a repre-
sentation of the form (5) be impossible. We shall call a

random variable vy with a nontrivial decomposition of the

form (5), in that a Gaussian summand with positive variance :
exists, reducible. This could be expressed in terms of dis-
tribution functions. A distribution will be called reducible

if it has a nontrivial Gaussian component.
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PROPOSITION. A reducible distribution has a mazimal decompo-

sition relative to ite Gausaian component.

A DUDTSENIL B SR

'l

Let ¢ be the characteristic function of the reducible dis-
tribution. Then there are constants ¢ > 0 and correspond-

. ing characteristic functions wn such that
t2
e(t) = b, (t) exp (- ¢, =) -
Then
: Re ¢(t) < Re wn(t) <1.
Il Let the Fn be the distributions corresponding to the charac-

teristic functions wn' We have

d rF (x) <
|x|>1/u n

el

u
% {1 - Re y_(v)}av

[ R

<

/Y {1 - Re o(v)ldv .
0

We have then uniform bounds on the tails of the distributions

F . One can therefore choose a subsequence Fny with Cn;, 4

¢ = sup ¢ that converges weakly. Let the limiting distribu-
n

tion be F with corresponding characteristic function V.
It then follows that
t2
(6) ¢(t) = ¥(t) exp (- ¢ )
which corresponds to the unique maximal decomposition.

The problem of estimating |a|, |b| now in (4) where v, is

irreducible is one in which |a|, |[b| are identifiable. How-
ever, the problem of deconvolution which is that of estimating

vy is clearly not meaningful.

The representation (6) implies that any distribution with a g}f:t,
characteristic function ¢(t) that doesn't decrease to zero -;}:ﬂ?
as fast as the Gaussian as |t]| -+ = must be irreducible. Q;flf
AR
This means that all discrete distributions and all gamma dis- M
o
tribut:ons must be irreducible. t
R
Let's consider the question of predicting a Ve given Yt' :. .
We shall put this in the form NN
NN
Lo
Y= § +n N

where { and n are independent with means zero and variances ci
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and cg respectively. n is normal and § 1is nonnormal with

density g{+*). We are typically interested in the case in

which c§ is small compared to 0] The best linear predictor
of £ in mean square is aY where (assuming oi and c% known)
%)
a =
9 * %2

and the variance of the prediction error is

2 2
91 92
~3 -
g, + 0
1 2
in mean square is Now

The best predictor of ¢§ E(E]Y).

[ g% exp (- —7 (¥-£)%1a¢
210 o2
E(EX|y) = 2
[gte) exp (- = (¥-€) *1d¢
2vc§ 205
7%:[ (Y—uaz)kg(v-ucz)exp b-%uz)du
_ Y2
—-—fg(Y uo,) exp (--u )du
VT
Let
/ vkg(Y-uoz)exp h-%uzldu
m_(Y) = .
k [ g(¥-uc,) exp ﬂj%uzldu
Then '

k - .
EERy) = ] (") 363 13 mon

. Jj ]

j=0
Assuming sufficient smoothness and using a Taylor expansion
we have

(uo, )
g(¥Y-uo,) = g(¥) =~ uo,g (YY) + —2——9 1) + ...

and consequently the best predictor is

[ef
2 g (Y) *-iz-g(” (Y) +...

2 02

g(¥)+ £ g™ 1¥) + ...

E(E]Y) =Y + ¢

while




E(E2]Y) = ¥? + 2y o2

(o]
g(Yy) + 5 g’ ly) + ...
2 g(y) + % og gy) + ...
* o5 . .

ﬂw+;gwﬂ.“

We should like to compare

E((E-a¥)2|Y) = E(E2|Y) - 2aYE(E]Y) + ay?

with
E((C‘E(ClY))zlY) = E(:zlY) - E(ElY)z
It is clear that

E((E-E(E]Y))2]Y) < E((E-a¥) ?|Y)
and the difference is given by

2 g7 (y)
2 gly)

Such a comparison can give us some idea of the effectiveness

(aY-E(£]¥))2% = ((1-~a)Y + o + olo,))?

of the best predictor versus the linear predictor in the tail
region of the g distribution. This tail region may be of
greatest interest in certain deconvolution problems (see
Wiggins [6]).

Up to this point we have considered prediction in mean sguare.
Suppose we consider instead trying to minimize

Ele-£(n) 14
for some appropriate £ when Y = £+n with n N(o,og) and

. . . . 2
£ irreducible nonnormal with mean zero and variance 03~ An
analysis can be carried out by considering

E(e-£(yN? = E(RLE-£0) Yy .
We can obviously minimize this if we can minimize the condi-
tional fourth moment on the right side for each Y. This sug-
gests that we consider minimizing

E(z-c)4
in ¢ where 2 is a random variable with E Z4 < w and c
is a constant. Let m be the mean of 2 with a =m - c.
Then

(7 E(Z-c)4 = E(z-m+a)4 = u4 + bozu2 + 4p3u + Yy
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My the jth central moment.

Differentiating this with respect to o we get

with 02 the variance of 2 and

(8) 40> + 120% + fu,

If Uy = 0 the unigue real zero is a« = 0 and the minimum
is attained by ¢ = m. 1If Mg # 0 we have a unicque real zero
since the derivative

2 2

120 + 120
of (8) is positive. The zero will be negative if By 2 0
and positive if B3 < 0. set (8) egual to zero and solve for

a. By Cardano's formula one obtains

(9) « = 2713 [~ wy + {p§ + 406}1/2]1/3

S VE 2 6y1/2,1/3

hy + u3 + 4o

This means that the function £(Y) minimizing (7) is
£(Y) = m(Y) - a(Y)
where
m(Y) = E(£]Y)
and a(Y) 1is given by expression (9) with

vy = E((E-E(E[Y))3|Y)

and

6% = E((E-E(E]¥)) % ]Y) .

Estimation of coefficients. Let {Yt} be a process of type
indicated in formula (3), that is, the sum of a linear non-
Gaussian process and an independent Gaussian noise process.
We shall indicate in a simple way that the coefficients «a;

of the linear nonGaussian process can be estimated up to an
undetermined multiplier and an undetermined time shift. This
is an asymptotic argument.

PROPOSITION. Let {Yt} be a linear nonGaussian process per-
turbed by independent Gaussian noise. Suppose that | lk|!uk\
< «, a(i-lx) Z 0 for all X and Y3 # 0. Then the coeffi-

cients a

multiplier < and an unspecified time shift of the index set.

k can be consistently estimated up to an undetermined

e A~
LR RS
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The bispectral density of the process ({Y, £} is

t
Y -iX ~ix i(x,+2,)
_ 3 1 2 172
o bs(Al,Az) = ?;;77 afe Ja(e yal(e ) .

As before one can estimate the phase of a(e'lx

) consistently

l up to an undetermined additive term ikmr with k integral.
This can be accomplished by using bispectral estimates as in
Lii and Rosenblatt [4]. Notice that

Y3 -ix, 2
(10) by(1,0) = —=— a(l) late™"")|° .
(2m) -
i Bispectral estimates (using (10)) then allow us to estimate ...
the spectral density of the process {Xt} ap to an undeter- s

mined constant. The proposition follows immediately from
these remarks.

.“r

Corollary. Let the assumptions of the proposition le satie-
fied. Suppose that the Gaussian noise is white and that

Iu(e—ix)I 7 constant for all A. One can then estimate the
multiplier c. There is then only an unspecified time shift

I of tke itndex set. The variane. of n can also be estimated.

- Since the assumptions of the proposition are satisfied the
conclusions hold. We have only to estimate the multiplier c.

I Both the spectral density - .
: ) N
£.00 = L Jaemih) 240 -
11 =y ie 2m
of the Y process and
- Y s
b(2,0) = —2= a(1) late™?) |2 .
(2r) N
can be estimated consistently. Clearly
2

_ 27 %
fl(A) = W b(x,0) + H

Ab(),0) + B
The coefficients A, B can be consistently estimated given

consistent estimates of fl(k), b(},0). The conclusion then
follows.
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The argument of a polynomial transfer function. In many cases

it seems reasonable to assume that a(Z) is a polynomial

P .
a(z) = § a.2? .

j=0
Because the coefficients are assumed real, the roots 2. are
real or occur in complex conjugate pairs. The argument of
u(e-ix) is the sum of the contributions from the factors cor-
responding to the roots. We shall consider the con;ribution
from a root Zj with {Zj[ # 1. Suppose Zj = re”® witn
0<r<1l1 and - nm < 8 < 7w, Then

log (e'i*-zj) = - i) + log (1-elxzj)

=-ix - § (ePrzo¥x
k=1 J

and this implies that

- -

. © k .
: (11) Im log (e7-z) = -3 - | L SR KkO-0)
J k=1
for ]Zjl <1
Similarly for zg = re™*® with r > 1 one has
I log (e-lk-zj) = log (-Zj) + log (l—zgle-lk)
=im + log 2z, - J (z7le MK
37Kk

K and this implies that we have a representation
| » . :
‘ (12) Im log (e *"-2,) =n -8 - §
J k=1
for |z.] > 1. Let us formally consider the difference between
(11) and (12) for r = 1, that is

r™® sin k(8-2)
X

o« s
) (13) 6 - -n+2 j SIAKOA
k=1
Notice that the Fourier series of x - 7 sgn x is . )
. ]
-2 2 2 s:.kn kx .
k=1

This implies that the expression (13) equals zeroc for 0 < 6

- XA <m and - 2n for - m < @8 - ) < 0. This is consistent
with the indeterminacy of the argument up to a multiple of 2m.
For a real root [zj[ < 1 expression (l1l) becomes

W T

. .
[ I Y I

) BN
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3 k . .
S r- sin kX Vel

= k o
according as to whether & = 0 or =, In the case of com- co
plex conjugate roots of absolute value less than one the sum .
of the contributions is

-2 -2 § X sin ki cos k8 ?;f;:?
k=1 L
The corresponding remarks for roots greater than one read as -j;'A
follows. 1If lzjl > 1 is real expression (12) is R
© -k . KO ‘-.,T.
(1 - ée,n)" * kzl E—Q_%%IL__- ) f}tﬁii
with * according as to whether € = o or =. If there are :;‘. ]

complex conjugate roots one obtains

o

) £ ¥ sin k) cos X5
k=1 k

In our case we try to estimate the sum of the contributions

27 o+ 2

to the argument from all zeros and then as a convention re-
adjust the value at zero of the sum so that it is zero there.

This discussion of the relationship between the argument of
the transfer function and zeros of «(2) is natural when
a(2) 1is a polynomial. A corresponding discussion could be
carried out if a(2Z) 1is a rational function in terms of the
zeros and poles of a(Z2). However, one can easily give ex-
amples of analytic functions a(2Z) with no zeros such as,
for example,

a(2) = exp {sin 2} .

Here, there would be no meaning to such an analysis.
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