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COMPUTATION OF THE STATIONARY VALUES OF THE
PRODUCT OF TWO RALEIGH QUOTIENTS

C. Radhakrishna Rao

University of Pittsburgh
Pittsburgh, PA 15260

and

C. Veerendra Rao

Carnegie-Mellon University
Pittsburgh, PA 15213

- -' ABSTRACT

A computational !algorithm is developed for finding the stationary values

of the function xCx )(xAx) (xBx where A and B are positive definite and C

is a symmetric matrix. The square of the function under consideration is the

product of two Raleigh coefficients x'Cx/x'Ax and x'Cx/x'Bx. The general prob-

lem occurs in multivariate analysis in the computation of homologous canonical

variates in studying relationships between two sets of homologous measurements.

The special case with C = I occurs in designing control systems with minimum

norm feedback matrices.
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1. INTRODUCTION

If A is a positive definite matrix and C is a symmetric matrix of order

p, then it is well known that the stationary values of the Raleigh coefficient

x'Cx/x'Ax are the eigen values of C with respect to A (Rao, 1973, p. 74). In

particular, if >. p are the ordered eigen values, then

X = max x'Cx P p = min x'Cx (1.1)
X x'A x x -x-'

In this paper, we consider the problem of obtaining the stationary values of

x'Cx (1.2)
(x'Ax) (xIBx)

0where A and B are positive definite matrices and C is a symmetric matrix of order

p. The square of (1.2) is the product of the two Raleigh coefficients (x'Cx/

x'Ax) and (x'Cx/x'Bx).

The special case of (1.2) with C = I originally arose in attempts to design

control systems with minimum norm feedback matrices (Kouvaritakis and Cameron,

1980; Cameron and Kouvaritakis, 1980) and also in the study of the stability

of multivariable non-linear feedback systems (Cameron, 1983). The general case

of (1.2) occurs in the analysis of familial data when multiple homologous meas-
RI

urements are available on say father and son and the object is to determine a

linear combination of the measurements which has the maximum parent-offspring

correlation. In this case, the dispersion matrix of (Y,Z), the vectors of p

homologous measurements on father andson, can be written as

A, Cll" (1.3)

CI  B

The correlation between two homologous linear functions x'Y and x'Z is then

(................................*'-
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x Cx ,C =(C + 1 2. (1.4)
(x' Ax) (x Bx)

and the problem is one of maximizing or minimizing (1.4) over x(Rp. We call

such optimizing linear functions homologous canonical variates (HCV's).

To obtain the stationary values of (1.2), we equate the derivative of (1.2)

with respect to x to the zero vector (Rao, 1973, p. 72). This yields the equa-

t ion

x'Cx Ax + X Bx 2Cx (1.5)

which can be written in the equivalent form

XAx + uBx = 2Cx
(1.6)

Xx'Ax = x'Cx

introducing two additional variables x and u or in the form

x(A+vB)x = 2Cx (1.7)

x'Ax = vx'Bxl

introducing two additional variables X and v.

Since A and B are positive definite matrices there exists a nonsingular

transformation S such that A = SAS' and B = SS! where A is a diagonal matrix

(Rao, 1973, p. 41). Then writing x for S'x and C for SlC(s1)' , the equation

(1.7) assumes the simpler form

X(A4VI)x = 2Cx

X'AX = Vx'X.

If 6 are the diagonal elements of A and x1  x  are the components

of x, then eliminating x and v from (1.8), we have the equations for xI ..,X
./.w; ,

" .'T.
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2xx [(e'Cx)xI-(elCx)x i ] = Xi (6i "sI )x'Cx, (1.9)

i=

where ei is the elementary vector with unity as the i-th component and zeroes

elsewhere. In (1.9) we have (p-i) quartic equations in (p-1) ratios (x21Xl) ,

...,(Xp-l/Xi). The solution of these equations is in general not easy except

in the case of p = 2 when there is only one quartic equation as observed by

-. Kouvaritakis and Cameron (1980).

In this paper, we provide a computational algorithm for solving the equations

(1.7) in the general case. The computer output gives all the solutions of (1.7)

and the corresponding stationary values of (1.2).

2. THE CASE WHERE ALL THE MATRICES ARE DIAGONABLE

When all the matrices A, B and C are diagonable by a common transformation,

the equation (1.8) reduces to

2Fx = X~x + Px~(2.1)

x' Fx = xxX AX

where F is a diagonal matrix with say f1,. ..,f as its diagonal elements. In
p

terms of the components of x, the first equation in (2.1) can be written as

2fixi (X6. + Oxi , i = 1, .. ,p. (2.2)

1 1

There can be several types of solutions to (2.2).

(1) x e i satisfies (2.1) with x = /6 and . = fi giving the station-

ary value f

(2) There can be solutions of the form x = aei + bej. In such a case

2fi i + p 2f X6 + 6f and fi € f. (2.3)

-. "
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giving

, : 2(fi-f.)/(Si-6.), a = 2(fi j-fi6)/(0j- 6). (2.4)

A solution of the form aei + be. exists only if v =[(fi.j-fj6i)/(fj-fi)] e

(si,6). If this happens, then x = aei+bei are solutions to (2.1), where (a/b)

- [(v-3.)/(v-.i)] 2 , yielding the same stationary value X,v.

(3) There can be solutions of the form ae. + be. + cek but they lead to
1 3

the same stationary values as in (2). = x2

An interesting case is that of Kantarovich (1948), where 6. i' fi = Xi

giving the stationary values 1 corresponding to solutions of type (1), and 2YT3T/

(x. + j) corresponding to solutions of type (2). In this case the largest value

is 1 and the smallest is 2v x (xI + Xp) where x= max{X,...,X p} and X m

{X ,p which gives the celebrated inequality of Kantarovich.
I p
Thus, when all the matrices A, B and C are simultaneously diagonable, we

have a closed form solution to the optimization problem. Otherwise the solutions

to (1.7) have to be obtained through a suitable algorithm which we develop in

the next section.

3. COMPUTATIONAL ALGORITHM IN THE GENERAL CASE

Let us consider the basic equation (1.5) in the form (1.7)

2Cx = X(A + vB)x J (3.1)
x'Ax = vx'Bx

lw

- ~ where we recall that A and B are positive definite and C is a symmetric matrix

' all of order p. From the second equation in (3.1), we find that v [v IV Itl

where v and v are the largest and smallest eigen values of A with respect to

B. For any given ( [pvj ], the first equation in (3.1) provides p eigen values

".....-. ...... ...... , ."" . .. -, .- . . .. -
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>( .. > Xp(V) (3.2)

of 2C with respect to A + vB, and p associated eigen vectors

x1 ) , ( (3.3)

The pair (v,xi(v)) will be a solution of (3.1) if and only if

x!(v)Ax (N)V - I . (3.4)

x!(v)Bx.(v)

Our computational algorithm is basically a search for v and a suitable eigen

vector x.(v) such that (3.4) holds. The complexity of the algorithm depends

*on the nature of the p eigen value functions

Xi(), V E [Vpvlb i = l...,p (3.5)

each of which is a continuous function of v (see Kato, 1980, Chapter 2 for vari-

ous results used in this section).

If the rank of C is s < p, then (p-s) functions in (3.5) identically van-

ish. All the solutions of Cx = 0 with x = 0 (i.e., eigen vectors of C corresponding

to its zero eigen value) satisfy (3.1), and the stationary value of (1.2) cor-

responding to each such solution is zero. Then there is a fixed number sI of

the functions (3.5) such that

>_s(v) 0 (3.6)

and a fixed number s2 such that

X p(V) <_..<_ P-s2+l( ) < 0. (3.7)

Let us start with X1(v). If X1(V) # X2(v) for all v , then there is a unique

continuous eigen vector function X1 (y) associated with xl(v). We can then con-



7

struct the continuous function

fl(I) = [xi(v) A (v)/xi(v) B xl( -v (3.8)

which is > 0 when v = vmi and < 0 when v = vmax' so that there is at least one

value of v, say v1, which makes (3.8) vanish and provides the solution [v 1 ,x 1 (v 1 )]

to (3.1). There may be more than one solution to the equation fl() = 0, each

of which leads to a solution of (3.1). Since the value of fl(v) for any given

v is uniquely computable, the solutions of fl(v) = 0 can be easily found through

a suitable computer program. We then consider X2 (v) and if X2 (V) A3 ( ) for

anyv, then the above procedure can be implemented leading to additional solu-

tions. Now we go to X3(v ) to find additional solutions and so on. Thus in the

case when the eigen value functions X.(v) are distinct (no two meet anywhere)

all the solutions can be obtained by considering the individual ordered eigen

value functions. This is probably the case which often arises in practice lead-

ing to at least p solutions of (3.1). Otherwise we proceed as follows.

The above procedure can be implemented starting with XI(v) so long as two

,- successive eigen functions do not meet. Let us suppose that at the i-th stage

we first encounter the case

xiv) = = i+hl(V) (3.9)

for some value of v. Associated with this repeated root, there are h eigen vec-

tors which may be written as columns of a matrix

*" Xi = (i(v) :...: Xi+h-l(v)). (3.10)

Note that the choice of the individual vectors in (3.10) is not unique, but any

i ; choice would generate the same eigen space. We then form the matrices

E =Xi' AX i  Fi =X i B X i  (3.11)L .(-.

.. .. . .. . .. .. . .. .
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and find the largest and smallest eigen values a, and ah of Ei with respect to

d'! Fi and the associated eigen vectors y1 and yh. Then v will be a solution iff

)< 0. If this happens,

v, x = Xi (c l y l ±c 2y 2) (3.12)

are solutions to (3.1), where c2(1 l-V) = C2(v-h.), leading to the same station-
ary value v- xi(). If (aI-v)(a 2 -v) > 0, then v is not a solution.

Having noted the computational procedures involved in testing whether a

given v is a solution or not depending on the multiplicity of the roots of

12C-X(A+Bv)I 0 (3.13)

we make a few remarks on the complexity of the problem one may run into. From

the results in perturbation theory of symmetric operators it is known that:

(1) The number of distinct roots of (3.12) are the same for every v except

for a finite number of "exceptional values" in [vmin) Vmax] where it can be less.

(2) The eigen value functhinns x1 (V) >. .> X p(v) are well behaved (holomor-

*phic) in the intervals between the "exceptional points." In each such interval

some consecutive eigen functions may coincide, and the set of identical eigen

functions may be different in different intervals.

We consider some examples and make some general remarks in the next section.

*g 4. ILLUSTRATIVE EXAMPLES

To illustrate the computations, we first consider the Kantarovich problem

where all the matrices can be chosen to be diagonal:

A B = .25 2 C = (4.1)

5',2Q ,
I IJ

. -,4. -; - - . _, ' - . r, , ,". " ; , - , . .. L . '" D ' 'Z ', '.: ' *, ' ' ' ' 
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In this case, v ( [4,25], where 4 is the smallest and 25 is the largest eigen

value of A with respect to B. The graphs of Xl(v), X2(v) and X3(v), the eigen

value functions of 2C with respect to A + vB, are shown in Figure 1.

[Here Figure 1]

We note that there are three possible exceptional points at which repeated roots

occur where the type of computations described in (3.9) - (3.12) have to be done.

Further, between the exceptional points the eigen value functions are distinct

and well behaved.

The next step is to locate the exact values of the exceptional points, i.e.,

where X( ) = X2 (v), and also the values of v at which fM(v) vanishes between

the exceptional points. (Note that fl(v) is uniquely defined between the excep-

tional points as in (3.8).] This can be done by tabulating X2 /X 1 and f1 (v) at

short intervals of v, locating the intervals in which fl(v) = 0 or X2(v)/X 1 (v) = 1,

and find the values of v where equalities are attained through a suitable pro-

gram for finding the roots.

m .if v is found such that fl(w) 0 , then (,xl() is a solution giving

the stationary value v" x (v).

If v is found such that Xl(v) = X2(v), then we have two eigen vectors say

x associated with this repeated root. We compute the matrices E=

(x: x2)' A (x : x2) and F1 = (x: x2)' B (x: x2) which provide two eigen

values al > a2 and the associated eigen vectors ylY 2 of El with respect to F1 .

SIf (G1 -v)(i 2 -v) < 0, then v is a solution giving the stationary value XlM.

The vectors at which this value-is attained are

'..
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x (x: x2)(clYl±c 2Y2 )

2 2 y Y
where c2 ((-v) c - 2). If (>1-v1(: 2-v) 0 0, then v is not a solution.

We then proceed to the next eigen value function x2(v) and locate the val-

ues of v at which X3 (v)/, 2 (v) = 1, and the non-exceptional values of v at which

f 2 (v) = 0 and repeat the above analysis. Finally, we consider X3 (v) and locate

the non-exceptional values of v at which f3 (v) = 0. The final tabulation lead-

ing to the stationary values of the function

(x'Cx)/(x'Ax) (x'Bx) (4.2)

is as follows.

Table 1. Stationary values of (4.2)

x - vector stationary
_value

4 1 0 0 1

16 0 1 0 1

25 0 0 1 1

8* 1//2 1 /2 0 .9428

10* 1I/V 0 1/ v2 .9036

20* 0 1/vr2 1/2 .9938

*Exceptional points

The x - vectors are standardized to have unit norm. The graphs of fl(v), f2()

and f3(v) are shown in Figures 2, 3 and 4. Note the discontinuities of each

function at the exceptional points.
[Here Figures 2, 3, and 4]

The next example is concerned with the evaluation of what we call homolo-

re. gous canonical variates (HCV). The following table gives the correlation matrix

of the measurements on head length (HL), head width (HW), face width (FW) and
I@4I

........................-................................................
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stature (St) taken on father and son. The problem is to find a linear function

of the four measurements which shows the highest correlation between father and

son.

Table 2. Correlation Matrix

Son Father
HL HW FW St HL HW FW St

HL 1.000
HW 0.288 1.000

FW 0.410 0.604 1.000V*)

St 0.325 0.311 0.219 1.000

A

HL 0.341 0.145 0.243 0.055 1.000

HW 0.194 0.045 0.066 0.248 0.137 1.000

S.-
FW 0.057 -0.033 0.111 0.028 0.027 0.657 1.000

St 0.174 0.181 0.187 0.581 0.130 0.325 0.190 1.000

The function to be maximized is

p(x) : (x'Cx)/(x'Ax) (x'Bx) , C : (Cl+C.). (4.3)

In this case, the four eigen value functions are distinct and corresponding to

each function there is only one root. The stationary values of the correlation

function (4.3) and the standardized vectors at which they are attained are given

..-. in Table 3.

.. I

°°
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Table 3. Homalogous Canonical Variates

Stationary x

Value of p(x) HL HW FW St

.5874 -.0076 .1236 -.1209 .9826

.3564 .9549 .1060 .1679 -.2207

.1675 -.1237 -.5772 .8001 .1062

- .0949 -.3531 .8841 .1361 -.2742

5. CONCLUDING REMARKS

b-4

In practical problems, the following situations may arise.

(1) The matrices A, B and C are simultaneously diagonable in which case closed

form expressions are available as discussed in Section 2.

(2) The eigen value functions Xl(W),...,vp(v) are distinct (no two have a com-

mon point) in v E [vmi n %max ] in which case the method described in the paragraph

containing the equation (3.8) is applicable leading to at least p solutions.

This is probably the simplest and the most frequent case.

(3) The eigen value functions are distinct except at a finite set of "exceptional

points." In such a case, the exceptional points are dealt with as in (3.9) -

(3.12) and the non-i:;ntrsciAjtTg eigen functions between the exceptional points

'- are treated as in (2) above, except that each eigen value function in a sub-in-

terval may not yield a root.

(4) A complicated situation is when some of the eigen value functions coincide

in intervals between exceptional points. Note that the number of distinct eigen

functions in each interval will be the same, although the eigen functions Xi(v)
1

,. that coincide may be different in different intervals. When a number, say h,

of eigen value functions coincide in an interval, we tabulate ci1() and ch(v)

defined in (3.11) at a number of points within the interval and locate the roots

if any by considering the product (al(v)-v)(.4h(v)-v). For distinct eigen value

functions within an interval the procedure indicated in (2) is followed.

4N
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The computational algorithm developed in this paper has been implemented

through FORTRAN program using the standard routines for eigen value computations

and iterative methods for determining the roots of an equation with one variable.
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