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fquert 12t Y0 ABSTRACT

AR
) A computationalxa1§3rjthm is developed for finding the stationary values
of the function x“CxASx‘Ax{%(x'Bx) where A and B are positive definite and C
is a symmetric matrix. The square of the function under consideration is the
product of two Raleigh coefficients x'Cx/x'Ax and x'Cx/x*Bx. The general prob-
Tem occurs in multivariate analysis in the computation of homologous canonical
variates in studying re1ationships between two sets of hqmo1ogous measurements .

The specié] case with C = I occurs in designing control systems with minimum

norm feedback matrices. Cf‘ T
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1. INTRODUCTION
If A is a positive definite matrix and C is a symmetric matrix of order
P, then it is well known that the stationary values of the Raleigh coefficient
x'Cx/x'Ax are the eigen values of C with respect to A (Rao, 1973, p. 74). 1In
particular, if i, 3,..3_Ap are the ordered eigen values, then
Ay = max 5;25 , Ap = min 5;25.7 (1.1)
x X'Ax X x'Ax

In this paper, we consider the problem of obtaining the stationary values of

x'Cx : (1.2)
(x'Ax)%(x'Bx)li

where A and B are positive definite matrices and C is a symmetric matrix of order
p. The square of (1.2) is the product of the two Raleigh coefficients (x'Cx/
x'Ax) and (x'Cx/x'Bx).

The special case of (1.2) with C = [ originally arose in attempts to design
control systems with minimum norm feedback matrices (Kouvaritakis and Cameron,
1980; Cameron and Kouvaritakis, 1980) and also in the study of the stability
of multivariable non-linear feedbaék systems (Cameron, 1983). The general case
of (1.2) occurs in the analysis of familial data when multiple homologous meas-
urements are available on say father and son and the object is to determine a
linear combination of the measurements which has the maximum parent-offspring
correlation. In this case, the dispersion matrix of (Y,Z), the vectors of p

homologous measurements on father andson, can be written as

1. (1.3)
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LT X_Cx C = (C,+C})/2 (1.4)

N : (x'Ax)%(x'Bx)% 1

)

5713 and the problem is one of maximizing or minimizing (1.4) over x¢RP. We call
Q

; ;. such optimizing 1inear functions homologous canonical variates (HCV's).

T4

.-)' To obtain the stationary values of (1.2), we equate the derivative of (1.2)

;ﬂ@} with respect to x to the zero vector (Rao, 1973, p. 72). This yields the equa-
N .

::i‘ tion

A

e x'Cx x'Cx -

’faj X Ax Ax + SmEs Bx = 20x ’ (1.5)

-

Y which can be written in the equivalent form

)

§¢Q¢ AAXx + uBx = 2Cx

;:: (1.6)
> Ax'Ax = x'Cx

e

f»éu introducing two additional variables A and u, or in the form

o

E) x'Ax = vx'Bx

NN introducing two additional variables A and v.

13; Since A and B are positive definite matrices there exists a nonsingular

transformation S such that A = SAS" and B = SS' where A is a diagonal matrix

(Rao, 1973, p. 41). Then writing x for S'x and C for S'IC(S'IY , the equation

(1.7) assumes the simpler form

)\(A'H)I)X = 2Cx (1.8)

’&fh X'AXx = vx'x.

5* { If 61,...,5p are the diagonal elements of A and xl,...,xp are the components

of x, then eliminating » and v from (1.8), we have the equations for xl,...,xp
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4 1
2x"x Ke;Cx)xl-(eiCx)xi] = xlxi(qi-sl)x'Cx, (1.9)
is= la-o-sp9

where ei is the elementary vector with unity as the i-th component and zeroes
elsewhere. In (1.9) we have (p-1) quartic equations in {p-1) ratios (x2/x1),
..,(xp_llxl). The solution of these equations is in general not easy except
in the case of p = 2 when there is only one quartic equation as observed by
Kouvaritakis and Cameron (1980).
In this paper, we provide a computational algorithm for solving the equations
(1.7) in the general case. The computer output gives all the solutions of (1.7)

and the corresponding stationary values of (1.2).

2. THE CASE WHERE ALL THE MATRICES ARE DIAGONABLE
When all the matrices A, B and C are diagonable by a common transformation,

the equation (1.8) reduces to

2Fx

AAX + ux
(2.1)

X' Fx = Axt AX

where F is a diagonal matrix with say fl,...,fp as its diagonal elements. In

terms of the components of x, the first equation in (2.1) can be written as
Zfixi = (ksi + u)xi y 1= 1,...,p. (2.2)

There can be several types of solutions to (2.2).
(1) x = e, satisfies (2.1) with A = f./6, and y = f; giving the station-
ary value fi//Ei.

(2) There can be solutions of the form x = aei + bej. In such a case

2fi=)‘6i+u,2fj=>\6j+1{,6i#6jandf1.#fj (2.3)
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5
giving
A= 2(fi-fj)/(61-6j), u= 2(fi6j—fj61)/(aj-6i). (2.4)

A solution of the form ae; + bej exists only if =[(f16j'fj6i)/(fj'fi)] ¢
(si,sj). If this happens, then x = aeiipej are solutions to (2.1), where (a/b)
= [(\»sj)/(»-ai)]%, yielding the same stationary value A5,

(3) There can be solutions of the form ae, + bej + ce, but they lead to
the same stationary values as in (2).

An interesting case is that of Kantarovich (1948), where §; = A?, f. =2

i i i
giving the stationary values 1 corresponding to solutions of type (1), and ZVAiAj/

(xi + Aj) corresponding to solutions of type (2). In this case the largest value
is 1 and the smallest is 2/11Ap/(x1 + xp) where A, = maX{A,...,Ap} and xp = min
{Al,...,xp}, which gives the celebrated inequality of Kantarovich.

Thus, when all the matrices A, B and C are simultaneously diagonable, we

have a closed form solution to the optimization problem. OQtherwise the solutions
to (1.7) have to be obtained through a suitable algorithm which we develop in

the next section.

.
* l. r’ l‘

3. COMPUTATIONAL ALGORITHM IN THE GENERAL CASE

.‘ Y'. L3

Let us consider the basic equation (1.5) in the form (1.7)

la ¢

~——y ”
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"D

2Cx = A{A + vB)x
(3.1)

‘e
R

x*Ax = vx'Bx

x

%l

where we recall that A and B are positive definite and C is a symmetric matrix

all of order p. From the second equation in (3.1), we find that v ¢ B’p’“ll’

5=
y
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where Vi and v_ are the largest and smallest eigen values of A with respect to

p
B. For any giveny ¢ B’p“’ll’ the first equation in (3.1) provides p eigen values
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of 2C with respect to A + vB, and p associated eigen vectors

The pair 6),xi(v)) will be a solution of (3.1) if and only if

_ X (A () (3.4)

v =
x%(v)Bxi(v)

Our computational algorithm is basically a search for v and a suitable eigen

vector xi(v) such that (3.4) holds. The complexity of the algorithm depends

on the nature of the p eigen value functions

)\.i(\’)’ Vv e [\’ps\)lls i= 1:---sp (3-5)

each of which is a continuous function of v (see Kato, 1980, Chapter 2 for vari-
ous results used in this section).

If the rank of C is s < p, then (p-s) functions in (3.5) identically van-
ish. A1l the solutions of Cx = 0 with A = 0 (i.e., eigen vectors of C corresponding
to its zero eigen value) satisfy (3.1), and the stationary value of (1.2) cor-
responding to each such solution is zero. Then there is a fixed number $q of
the functions (3.5) such that

)\l(v')‘l...i A_Sl(v) >0 (3.6)

and a fixed number s2 such that
Xp(\)) i"oi Ap-sz...l(\)) < 0. (3.7)

Let us start with xlb)). If xlb)) # Azb)) for all v, then there is a unique

continuous eigen vector function xIG;) associated with Alﬁ)). We can then con-
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struct the continuous function

fl(v_) = [xi(v) A Xl(\))/xi(v) B xl(v)] -V (3.8)

which is > 0 when v = and < 0 when y = Vpax® SO that there is at least one

Ymin
value of v, say Vis which makes (3.8) vanish and provides the solution [vl,xl(vl)]
to (3.1). There may be more than one solution to the equation fl(v) = 0, each
of which leads to a solution of (3.1). Since the value of fl(v) for any given
v is uniquely computable, the solutions of fl(v) = 0 can be easily found through
a suitable computer program. We then consider Azb)) and if Azﬁ)) # A3G;) for
any v, then the above procedure can be implemented leading to additional solu-
tions. Now we go to A36)) to find additional solutions and so on. Thus in the
case when the eigen value functions Aic)) are distinct (no two meet anywhere)
all the solutions can be obtained by considering the individual ordered eigen
value functions. This is probably the case which often arises in practice lead-
ing to at least p solutions of (3.1). Otherwise we proceed as follows.

The above procedure can be implemented starting with Al(v) so long as two

successive eigen functions do not meet. Let us suppose that at the i-th stage

we first encounter the case

W B) e g 6) (3.9)

for some value of v. Associated with this repeated root, there are h eigen vec-

tors which may be written as columns of a matrix

1)) (3.10)

Note that the choice of the individual vectors in (3.10) is not unique, but any

choice would generate the same eigen space. We then form the matrices

E, =X) AXy, Fyo=xX] BX, (3.11)




;Eé and find the largest and smallest eigen values @y and ap of E, with respect to |
:;é Fi and the associated eigen vectors ¥ and Y- Then v will be a solution iff

2__ (al-v)(az-v)'i 0. If this happens,

=

Vs x = Xi(cqyq2c,y,) (3.12)
,ﬁj are solutions to (3.1), where c%(al-v) = cg(v-aﬁ), leading to the same station-
}éﬁ ary value A xi(v). If (al-v)(az-v) > 0, then v is not a solution.

;~. Having noted the computational procedures involved in testing whether a

if; given v is a solution or not depending on the multiplicity of the roots of

- |2C-1(A+Bv)| = 0 (3.13)

;:

-j we make a few remarks on the complexity of the problem one may run into. From
fzz the results in perturbation theory of symmetric operators it is known that:

;_ (1) The number of distinct roots of (3.12) are the same for every v except
Sﬁ for a finite number of "exceptional values" in M min® Vmax] Where it can be less.
;f (2) The eigen value functions A(v) 33“3-Ap(“) are well behaved (holomor-
1? phic) in the intervals between the "exceptional points." In each such interval
1? some consecutive eigen functions may coincide, and the set of identical eigen

,z functions may be different in different intervals.

Jg We consider some examples and make some general remarks in the next section.
£ 4. ILLUSTRATIVE EXAMPLES

f; To illustrate the computations, we first consider the Kantarovich problem
- where all the matrices can be chosen to be diagonal:

o 2 .50 1

o A= 4 B = .25 ,c=[ 1 |. (4.1)
g 5/, .20 1

.

{g

#fh‘lh thln\-\:; Ll
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TE:; In this case, v € [4,25], where 4 is the smallest and 25 is the largest eigen

£§§ value of A with respect to B. The graphs of xl(v), xz(u) and x3(v), the eigen

i: : value functions of 2C with respect to A + vB, are shown in Figure 1.

&8

;.; [Here Figure 1]

;Lﬂ. We note that there are three possible exceptional points at which repeated roots
j;; occur where the type of computations described in (3.9) - (3.12) have to be done.
g;: Further, between the exceptional points the eigen vaiue functions are distinct
.”i and well behaved.

éiz? The next step is to locate the exact values of the exceptional points, i.e.,
fki where xl(v) = xz(v), and also the values of v at which fl(v) vanishes between

i?i: the exceptional points. [Note that fl(v) is uniquely defined between the excep-
;i; tional points as in (3.8).] This can be done by tabulating i,/A; and fl(v) at
;gfi short intervals of v, locating the intervals in which fl(v) =0 or xz(v)/xl(v) =1,
ok and find the values of v where equalities are attained through a suitable pro-

-+ gram for finding the roots.
If v is found such that fl(v) = 0, then (v, xl(v)) is a solution giving

e the statianary value v 1 (v).
- If v is found such that Al(v) = Az(v), then we have two eigen vectors say

::;% xl,x2 associated with this repeated root. We compute the matrices E1 =

ﬁ; : | (x1 : xz)' A (x1 : x2) and F, = (x1 : xz)' B (xl : xz) which provide two eigen

ﬁxf values a; 2 a, and the associated eigen vectors ¥14¥7 of E1 with respect to Fl‘
]if If (al-v)(az-v) < 0, then v is a solution giving the stationary value /v xl(v).

&fﬁ . The vectors at which this value-is attained are
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X = ('x1 : xz)(clyliczyz)

where cz(u -v) = cz(v-u ). If (ay-v)(a,-v) > 0, then v is not a solution.
171 2 2 1 2 7/

We then proceed to the next eigen value function xz(v) and locate the val-
ues of v at which x3(v)/12(v) = 1, and the non-exceptional values of v at which
fz(v) = 0 and repeat the above analysis. Finally, we consider A3(v) and locate
the non-exceptional values of v at which f3(v) = 0. The final tabulation lead-

ing to the stationary values of the function

‘ 5

(x'Cx)/(x'Ax)z(x'Bx)Li (4.2)
is as follows.

Table 1. Stationary values of (4.2)

v X - vector stationary
value
4 1 0 0 1
16 0 1 0 1
25 0 0 1 1
g* 1772 1/2 0 .9428
10% vz 0 1/v2  .9036
20* 0 1/v2  1/V2] .9938

*Exceptional points

The x - vectors are standardized to have unit norm. The yraphs of fl(v), fz(v)
and f3(v) are shown in Figures 2, 3 and 4. Note the discontinuities of each
function at the exceptional points.

[Here Figures 2, 3, and 4]

The next example is concerned with the evaluaticn of what we call homolo-
gous canonical variates (HCV). The following table gives the correlation matrix

of the measurements on head length (HL), head width (HW), face width (FW) and

....................................................
............................................
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stature (St) taken on father and son, The problem is to find a linear function

of the four measurements which shows the highest correlation between father and

son,
Table 2. Correlation Matrix
Son Father
HL HW W St HL HW FW St
HL 1.000
HW 0.288 1.000
S PN | 0.410 0.604 1.000
St 0.325 0.311 0.219 1.000
A
HL 0.341 0.145 0.243 0.055 1.000
HW 0.194 0.045 0.066 0.248 0.137 1.000
_§ Fu 0.057 -0.033 0.111 0.028 0.027 0.657 1.000
ey
2 st 0.174 0.181 0.187 0.581 0.130 0.325 0.190 1.000
C1 B
The function to be maximized is
' 1 1
p(x) = (x'Cx)/(x'Ax)2(x'Bx)2, C = %(C,+C!). (4.3)

171

In this case, the four eigen value functions are distinct and corresponding to
each function there is only one root. The stationary values of the correlation
function (4.3) and the standardized vectors at which they are attained are given

in Table 3.
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Table 3. Homalagous Canonical Variates

Stationary X
Value of p(x) HL HW FW St
.5874 -.0076 .1236 -.1209 .9826
.3564 .9549 .1060 .1679 -.2207
.1675 -.1237 -.5772 .8001 .1062
-.0949 -.3531 .8841 .1361 -.2742

5. CONCLUDING REMARKS
In practical problems, the following situations may arise.
(1) The matrices A, B and C are simultaneously diagonable in which case closed
form expressions are available as discussed in Section 2.
(2) The eigen value functions xl(v),...aapha) are distinct (no two have ; com-

mon point) inv € [V vmax] in which case the method described in the paragraph

min’®
contajning the equation (3.8) is applicable leading to at least p solutions.

This is probably the simplest and the most frequent case.

(3) The eigen value functions are distinct except at a finite set of "exceptional
points." 1In such a case, the exceptional points are dealt with as in (3.9) -
(3.12) and the non-intenrsectimgeigen functions between the exceptional points

are treated as in (2) above, except that each eigen value function in a sub-in-
terval may not yield a root.

(4) A complicated situation is when some of the eigen value functions coincide

in intervals between exceptional points. Note that the number of distinct eigen
functions in each interval will be the same, although the eigen functions Ai(v)

that coincide may be different in different intervals. When a number, say h,

of eigen value functions coincide in an interval, we tabulate al(v) and ah(v)

R4 Ef. . .'

defined in (3.11) at a number of points within the interval and locate the roots

if any by considering the product (a)(v)-v)(g (v)-v). For distinct eigen value

k)
.‘;-;:1 4, £
LTSI ’i

functions within an interval the procedure indicated in (2) is followed.

Pt
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The computational algorithm developed in this paper has been implemented
through FORTRAN program using the standard routines for eigen value computations

and iterative methods for determining the roots of an equation with one variable.
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product of two Raleigh coefficients x'Cx/x'Ax and x'Cx/x'8x. The general
problem occurs in multivariate analysis in the computation of homologous
canonical variates in studying relationships between two sets of homologous
measurements. The special case with C = I occurs in designing control systems
with minimum norm feedback matrices.
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