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Acquiring Procedural Skills From Lesson Sequences4

',' ~Kurt VanLehn

Abstract

This document is the final report for ONR contract N00014-82C-0067.
It provides an informal overview of a theory that describes how people

, 2 learn certain procedural skills, such as arithmetic and algebra, from
multi-lesson curricula. The central hypothesis is that students and

• . teachers obey conventions that cause the goal hierarchy of the acquired
procedure to be a particular structural function of the sequential
ordering of lessons. This learning theory is an extension of Repair
Theory, which describes how people mix interpretation and a certain

- type of meta-level problem solving as they try to solve practice problems.
The learning theory has been embedded in a program that generates
detailed predictions about the products of published curricula. The
predictions have been tested against data from several thousand
mathematics students.
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Acquiring Procedural Skills From Lesson Sequences

Kurt VanLehn

The research presented here began with the "buggy" studies of Brown and
Burton (1978). Those studies found that students of certain procedural skills, such as
ordinary multicolumn subtraction, had a surprisingly large variety of bugs (small, local
misconceptions that cause systematic errors). Early investigations into the origins of
bugs yielded a theory of procedural problem solving, Repair Theory (Brown &
VanLehn, 1980). A subsequent empirical study (VanLehn, 1982) confirmed many of
Repair Theory's predictions, including the surprising prediction that certain bugs
would be replaced by others during a short periods of time, a phenomenon called bug
migration. Recent research has investigated the relationship between the curriculum,

the students' learning processes and the acquisition of bugs. A learning theory has
been added to Repair Theory, yielding an integrated explanation for the acquisition of
correct and buggy procedures (Van Lehn, 1983).

This article provides an introduction to the learning theory. It omits as much

detail as possible in order to concentrate on the theoretical and methodological
intuitions that underlie the theory. In particular, it omits the empirical arguments that
support the theory's hypotheses. Facts about student behavior are sprinkled
throughout, but are used merely to illustrate the theory's claims. Proper arguments for
a theory of this complexity require a book (e.g., VanLehn, forthcoming-a) to present
them.

The article begins with a discussion of methodological goals of the research.
The middle sections introduces the main hypotheses of the theory. The final section

outlines the validation methods.

1. Eliminating of the program parameter

Artificial Intelligence has always had difficultN %alidating the models of
cognition that it proposes (VanLehn, BroN.n & Greeno, 198-). This is due, in part, to
the complexity of those models. Recently, increasing computer power has made it
feasible for programs to learn how to do complex tasks, and it is much easier to validate

a learning program than a program that does not learn. This may seem
counterintulitive, since learning programs are generall.\ more complicated than

I
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non-learning programs. Yet alidating a learning model is easier because it avoids an
important methodological problem, which I call the program parameter problem. This

problem is complex and subtle. The following treatment of it is at best a mere gloss of

the issues involved. A thorough discussion can be found in Pylyshyn's excellent book
(Pylyshyn, 1984).

The program parameter problem occurs when a model must be given a
complicated expression, written in a lbrmal representation language, in order to
simulate a given task. It is appropriate to call the expression a program because the
actions of the model are determined by interpreting the expression. This is true
regardless of whether the expression is a procedural encoding of knowledge or a
declarative encoding. From a methodological point of view, the program is a
parameter of the model, although a powerful and multi-faceted one. So the defining
characteristic of the models under discussion is that they take a program parameter.
The following examples illustrate this concept. Newell (1978) proposes a certain
production system architecture as a model of the mind. To parameterize it for a given
task, the theorist provides a list of productions. The production system's speed is
intended to correlate with the subject's speed when they are given the same problems
to solve. For a second example, Collins and Loftus (1975) propose a spreading

activation architecture for semantic memory. It is parameterized by writing a semantic
net in a representation language. The time required for activation to spread through
the given net is intended to be proportional to the speed with which subjects answer

questions. In both these examples, the model of cognition has a program parameter:
productions in the first example; a semantic net in the second example.

When a model has a program parameter, it almost always has two undesirable
characteristics. First, small changes in the value of the program parameter (i.e., a
slightly different program) can cause significant changes in the predictions made by the
model. That is, the model is extremely sensitive to the value of its parameter. If one
assumes that all possible programs are, a priori, equally probable, then the theory must
explain why one particular program is the only one that works. Thus, the model has
converted a hard problem, such as explaining why people solve problems or answer
questions at certain speeds, into an even harder problem: explaining why they have a
certain program for that task.

The second undesirable characteristic of program parameter models is that it is
almost always the case that one can devise a new model, convert the old program into
the appropriate format for the new model, and get equally accurate preditions. For
instance, Newell (1973) and Newell (1978) proposed different production system

:""p
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architectures, but get roughly the same accuracy for a certain task (the Sternberg task).
To take a new example, Newell and Simon (1972) propose a certain cognitive
architecture and demonstrate that it can be programmed to accurately simulate long,
complicated protocols of subjects solving difficult puzzles. Howe'er, it is clear that one
could re-write their programs to run on an implausible cognitive architecture, e.g.,
Pascal, and still produce an accurate simulation of the subjects' performance. This
indicates that the predictive accuracy of the model as a whole depends entirely on the
program parameter's value (i.e., a certain program). One gets equivalent predictions
by substituting various architectures while keeping the same program (i.e., the same
value for the parameter).

A cognitive model that learns how to solve a task does not need a program
parameter. It constructs (learns) the program that a theorist would otherwise have to
provide. Although such a model has no program parameter, it does have one input, a
formal expression that stands for the training and/or instructions that the subjects'
received. However, this input is not a parameter, because its value can be observed. It
is an independent variable, not a parameter.

Because models of learning lack program parameters, they are much easier to
validate. If the model is making successful predictions, then one must credit the model
because there are no program parameters to steal the credit from the model. The
problem of explaining why program parameters have certain values and not others
does not exist for independent variables. They have the 'values they do because those
values are proper encodings of certain observable facts.

On the other hand, computer models of learning are much harder to build.
Worse, they have a tendency to run quite slowly and use large amounts of memory.
Only in recent years has it become feasible to construct and debug models of
non-trivial learnii.,. Even so, such models are difficult to %ork with. For instance, the
learning model described herein is implemented as a lisp program named Sierra.

Sierra takes a week of computer time (i.e., 150 cpu-hours on a Dorado, which is one of
the fastest personal Lisp machine currently available) to do one run, where a run
consist of learning a skill from a lesson sequence while generating predictions about
the subjects* problem-solving behavior at various points tlong the way. Many runs
have been made, both to debug Sierra and to try out variOus versions of the model in

order to see which ones produced the most accurate predictions. The amount of
computer time required for such testing was simply unavailable a decade ago.

4.
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Trying out various versions of the model contributes significantly to the cpu

usage, but it is essential for moving beyond a mere demonstration that Sierra is
sufficient to predict the data. In ordr to converge on a demonstration that Sierra (or
rather, a class of Sierra-equivalents) is necessary for accurate prediction, many versions

of the program must be tried with alternative, competing h, potheses substituted for
the hypotheses that the model/theory subscribes to. The importance of mo'ing from

sufficiency to necessity is discussed in section 5, and more fully in VanLehn, Brown &
Greeno (1984) and Pylyshyn (1984)

Increasing computer power sets the stage for a new era in cognitive science
where complex cognition, the kind that Al has speculated about, can be studied

empirically and rigorously. The key is to eliminate program parameters from cognitive
models by studying not only how a complex skill is performed, but how the skill is
acquired as well.

2. Learning elementary mathematical skills

The goal of this research is to develop an rigorously supported theory of
learning by taking advantage of Al's new modelling power. The long term research
strategy is to begin by studying a particular kind of cognition, then if all goes well, to
test the theory's generality on other kinds of cognition. The initial studies focused on
how elementary school students learn ordinary, written mathematical calculations.

The main advantage of mathematical procedures, from a methodological point
of view, is that they are virtually meaningless to most students. They seem as isolated
from common sense intuitions as the nonsense syllables of early learning research. In
the case of the subtraction procedure, for example, most elementary school students
have only a dim conception of its underlying semantics, which is rooted in the base-ten
representation of numbers (VanLehn & Brown, 1980; Vanl.ehn, 1983; VanLehn,
1985b). When compared to the procedures students use to operate vending machines
or play games, arithmetic procedures are as dry, formal and isolated from everyday
interests as nonsense syllables are different from real words. This isolation is the bane

of teachers, but a boon to psychologists. It allows psychologists to study a skill that is
much more complex than recalling nonsense syllables, and yet it avoids bringing in a
whole world's worth of associations. Given the methodological goal of a
zero-parameter model, this is essential. If a skill were chosen that did require

significant prior knowledge, then that knowledge might have to be represented as a
program parameter.

,.........- ................................... ..... .......------- 2
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The remainder of this section introduces the domain. First it describes the
instruction that students receive, and then it describes the behavior they produce. The
theory's main job is to explain what kinds of mental structures are engendered by that
instruction and how those structures guide the production of the observed behavior.

L earning from lesson sequences of examples and exercises

In a typical American school, mathematical procedures are taught incrementally
via a lesson sequence that extends over several years. In the case of subtraction, there
are about ten lessons in the sequence that introduce new material. The lesson

sequence introduces the procedure incrementally, one step per lesson, so to speak. For
instance, the first lesson might show how to do subtraction of two-column problems.
The second lesson demonstrates three-column problem solving. The third introduces

borrowing, and so on. The ten lessons are spread o~er about three years, starting in the
late second grade (i.e., at about age seven). These lessons are interleaved with lessons
on other topics, as well as many lessons for reviewing and practicing the material
introduced by the ten lessons. In the classroom, a typical lesson lasts an hour. The
teacher solves some problems on the board with the class, then the students solve

%, problems on their own. If they need help, they ask the teacher, or they refer to worked
examples in the textbook. A textbook example consists of a sequence of captioned
"shapshots" of a problem being solved (see figure 1). Textbooks have very little text
explaining the procedure (young children do not read well). Textbooks contain mostly
examples and exercises.

Take a ten to Subtract Subtract

make 10 ones. the ones. the tens.

2 15 2 15 2 15

1 9 1 9 1 9

6 1 6

Figure I
A t pical textbook example

% .



This brief over~iew of subtraction instruction illustrates (but does not validate)
two important hypotheses that seem to hold for all the skills in this domain. First, skill

acquisition in this domain is some kind of induction (i.e., the discovery of a general
idea from examples of it). That is, procedures are learned from examples of their
application. Second, inductive learning occurs in the context of an extended lesson
sequence that introduces the skill incrementally. Students in the middle of the lesson
sequence can be expected to have incomplete procedures that can successfully solve
only some of the class of possible problems in the domain.

Describing sysnematic errors with "bugs"

The observable output of the students' learning process is their performance
while solving exercise problems. A traditional measure of such performance is a

protocol that records the student's actions in detail, including the time between actions.

In this domain, the timing data is rather uninteresting. Often, students cannot
remember an arithmetic fact. (In this paper, "arithmetic facts" will refer to

propositions like 5+7=12 or 7<11.) When students forget an arithmetic fact, they
count, which shows Ip as long pauses in the protocols. The timing data reveals more

about their knowledge of arithmetic facts than their knowledge of the procedure.
Since it is their procedural knowledge that is the target of this theory's explanations,
error data have been used in preference to timing data.

There have been many empirical studies of the errors that students make in

arithmetic (Buswell, 1926, Brueckner, 1930; Brownell, 1941; Roberts, 1968; Lankford,
1972; Cox, 1975; Ashlock, 1976). A common analytic notion is to separate systematic

errors from slips (Norman, 1981). Systematic errors appear to stem from consistent
application of a faulty method, algorithm or rule. Slips are unsystematic "careless"

errors (e.g., facts errors, such as 7 - 3 = 5). Since slips occur in expert performance as
well as student behavior, the common opinion is that they are due to inherent "noise"
in the human information processor. Systematic errors on the other hand are taken as

stemming from mistaken or missing knowledge, the product of incomplete or

misguided learning. Only systematic errors are used in testing the present theory. See
Siegler & Shrager (in press) for a theory of addition slips.

Brown and Burton (1978) used the metaphor of bugs in computer programs in

developing a precise, detailed formalism for describing systematic errors. The basic
idea is that a student's errors can be accurately reproduced by taking some formal
representation of a correct procedure and making one or more small perturbations to

it, e.g., deleting a rule. The perturbations are called bugs. A systematic error is

1 I
. ..
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represented as a correct algorithm for the skill plus a list of one or more bugs. Bugs
describe systematic errors with unprecedented precision. If a student makes no slips,
then his or her answers on a test exactly match the buggy algorithm's answers, digit for

digit. Bug data are the main data for testing this theory.

Burton (1981) developed an automated data analysis program, called Debuggy.

Using it, data from thousands of students learning subtraction were analyzed, and 76
different kinds of bugs were observed (VanLehn, 1982). Similar studies discovered 68
bugs in addition of fractions (Shaw et. al., 1982), several dozen bugs in simple linear
equation solving (Sleeman, 1984), and 57 bugs in addition and subtraction of signed
numbers (Tatsuoka & Baillie, 1982).

It is important to stress that bugs are only a notation for systematic errors and
not an explanation. The connotations of "bugs" in the computer programming sense
do not necessarily apply. In particular, bugs in human procedures are not always
stable. They may appear and disappear over short periods of time, often with no
intervening instruction, and sometimes even in the middle of a testing session
(VanLehn, 1982). Often, one bug is replaced by another, a phenomenon called bug

migration.

Mysteries abound in the bug data. Why are there so many different bugs?
What causes them? What causes them to migrate or disappear? Why do certain bugs

migrate only into certain other bugs? Often a student has more than one bug at a time.
- why do certain bugs almost always occur together? Do co-occurring bugs have the

same cause? Most importantly, how is the educational process involved in the
development of bugs? One objective of the theory is to explain some of these bug
mysteries.

Another objective is to explain how procedural skills are acquired from
multi-year curricula. This objective seems to require longitudinal data, where each
student in the study is tested several times during the multi-year period. Such data is
notoriously difficult to acquire. Bug data are readily available and nearly as good. Our

bug data are obtained by testing students at all stages in the curriclum. Thus, the bug
data are like between-subjects longitudinal data. Instead of testing the same student at
several times at different stages of his or her learning, difTerent students at different

stages are tested just once. As will be seen in the next section, such data can perform
nearly as well as longitudinal data in testing a learning theory, and yet they are much
easier to collect.

4
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3. An introduction to the model: Explaining Always-Borrow-Left

Most of the mental structures and processes proposed by the theory can be
introduced and illustrated by going through an explanation for a certain subtraction
bug, called Always- Borrow-Left. Students with this bug always borrow from the
leftmost column in the problem no matter which column originates the borrowing.
Problem A below shows the correct placement of borrow's decrement. Problem B
shows the bug's placement.

5 2 5

A. 3 615 B. 3 6'5 C. 615
-109 - 109 -19

256 166 46

(The small numbers represent the student's scratch marks.) Always-Borrow-Left is
moderately common. In a sample of 375 students with bugs, six students had this bug
(VanLehn, 1982). It has been observed for years (c.f. Buswell, 1926, pg. 173, bad habit
number s27). However, this theory is the first to offer an explanation for it.

The explanation begins with the hypothesis that students use induction

(generalization of examples) in learning where to place the borrow's decrement. All
the textbooks used by students in our sample introduce borrowing using only

* two-column problems, such as problem C above. Multi-colmn problems, such as A,
are not used. Consequently, the student has insufficient information to induce an
unambiguous description of where to place the borrow's decrement. The correct

'- placement is in the left-adjacent column, as in A. However, tMo-column examples are
* also consistent with decrementing the leftmost column, as in B.

The next hypothesis of the theory is that when a student is faced with such an
ambiguity in how to describe a place, the student takes a conservative strategy and

. saves all the relevant descriptions. When inducing from two-column problems (e.g.,
- * C), the student describes the borrow-from column as "a column that is both
4left-adjacent to the current column and the leftmost column in the problem."

Suppose that our student is given a diagnostic test at this point in the lesson
sequence and that the test contains borrowing problems of all kinds. The student is

A, faced with solving problem D, below.

D. 3 6 5 E. 3 65
-109 -109

4-
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The student starts to borrow, gets as far as E, and is suddenly stuck. The students
description of where to borrow is ambiguous because there is no column that is both
left-adjacent and the leftmost column. In the terminology of the theory, getting stuck
while problem solving is called reaching an impasse.

It is hypothesized that whenever students reach an impasse on a test, they
engage in local problem solving. Local problem solving is just like classical puzzle
solving (e.g., Newell & Simon, 1972), in that there is an initial state, a desired final
state, and state-change operators. Here, the initial state is being stuck, and the desired
final state is being unstuck. Unlike traditional problem solving, however, the
state-change operators of local problem solving don't change the state of the exercise
problem. Instead, they change the state of the interpreter that is executing the
procedure. The operators do things like pop the stack of goals or relax the criterion for
matching a description to the exercise problem. They do not do things like writing
digits on the test paper. Because the local problem solver modifies the state of the
procedure's interpretation, it is a kind of meta-level problem solving. The sequences of
meta-level operators that succeed in getting students unstuck are called repairs. Note
that what is being repaired is, roughly speaking, the impasse. Repairs do not change
the procedure. To put it in terms of Newell's problem space hypothesis (Newell,
1980), the procedure works in one problem space, and local problem solving vkorks in a
second problem space that is "meta" to the base problem space. Returning to our stuck
student, three common repairs to the impasse are illustrated below.

2 5

F. -3 615 G. 3 615 H. 3 615
1 -109 - 109 109

6

In F, the student has relaxed the description of which column to borrow from by
ignoring the restriction that the column be left-adjacent to the current column. The
remaining restriction, that the column be the left-most column in the problem, has the
student decrement the hundreds column, as shown in F. This is one repair. It
generates the bug Always-Borrow-Left. Another -epair is shown in G. Here, the
student has relaxed the borrow-from description h\ ignoring the left-most
requirement. The decrement is placed in the left-adjacent column, yielding G. This
repair generates a correct solution to the problem. In H, the student has chosen to skip
the borrow-from entirely, and go on to the next step in the procedure. This repair
generates a bug that is named Borrow-No-Decrement-Except-Last, because it only
executes a borrows-from when it is unambiguoLs Mhere to place the decrement, and

...........................-......-......... ..................
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that occurs only when the borrow originates in the last possible column for borrow. To
sum Lip, three different repairs to the same impasse generate two different bugs and a
correct version of subtraction.

It was mentioned earlier that students' bugs are not like bugs in computer
programs because students' bugs are unstable. Students shift back and forth among
bugs, a phenomenon called bug migration. The theory's explanation for bug migration
is that the student has a stable underlying procedure, but that the procedure is
incomplete in such a way that the student reaches impasses on some problems. The
student can apply any repair she can think of. Sometimes she chooses one repair, and
sometimes she chooses others. The different repairs manifest themselves as different
bugs. So bug migration comes from varying the choice of repairs to a stable,
underlying impasse. In particular, the theory predicts that the three repairs just
discussed ought to show tip as a bug migration. In fact, they do. Figure 2 is a verbatim
presentation of a diagnostic test showing the predicted bug migration.

t 2 4 2 I 17

A B C D E F G
07 19 /5 64 107 ,2"/ 90 0

43 -23 70 887 39 8 688

39 27 39 187 73 1 9 222

H~~ I L0 11
716 31 1 885 1 9,8 0835

-598 2 1 4 205 2697 3 43

1 18 97 680 2904 8352 6068

N ,/o0 15 0 P 4 0 lo ' R '2 S 6 '2

6 3 3 7 // / x /00 XX 4X

6 0 7 3 5 4 1 0 3 214 136
2 4 1 8 6 0 2 4006 6 0 9 2 0 8 6 1 6

Figure 2

Verbatim presentation of a test by subject 8 of class 17 showing three repairs to the
same impasse. On problems D, E and G, one repir generates the bug
Borrow-No-Decrement- Except-Last. On problems H and I, another repair generates
the correct borrow-from placement. On problems K, M, N, P, Q, R and S, a third
repair generates the bug Always-Borrow- Left. There are slips on problems D, P, Q
and S.

d'' d ,' , ' .
.
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This discussion of the bug Always-Borrow-Left has illustrated many of the
important claims of the theory. First, procedures are the result of generalization of
examples, rather than, say memorization of verbal or written recipes. There are
accidental, visual characteristics of the examples, viz. the placement of the decrement,
that a non-example source of instruction, such as a verbal recipe, would not mention.
The appearance of these visual characteristics in the acquired procedure is evidence
that they were learned principally by induction (see VanLehn, 1985b, for a full defense
of this idealization).

A second claim is that learning occurs in the context of a lesson sequence, and
that many bugs are caused by testing students who are in the middle of the lesson
sequence on exercise types that they have not yet been taught how to solve. Perhaps
such bugs should be welcomed as signs of a healthy learning process that may
eventuate in a correct understanding of the procedure. Such a view of bugs is radically

% different from the traditional view, which considers bugs to be "bad habits" that need
to be remediated. On the other hand, the bad-habit view may be appropriate for older
students, some of whom have bugs long after the lesson sequence has been completed
(VanLehn, 1982).

Another set of claims involves the notions of interpretation, impasses and
repairs. A particularly important hypothesis is that repairs occur at the meta-level and
change only the state of the interpretation. This hypothesis predicts the existence of
bug migration. In fact, this prediction was made before any evidence of bug migration
had been found (Brown & VanLehn, 1980). The surprising success of this forecast and
the fact that it is an almost unavoidable consequence of the hypothesis provide strong
support for the theory.

4. Felicity conditions: Further specification of the learning process

Not much as been said yet about the learning process, except that it is inductive
and that it occurs in the context of a lesson sequence. Saying that learning is inductive
is saying only that the input to the learning process is exaiples as opposed to, say,
written recipes for performing the procedure. This section describes the particular
kind of inductive learning that occurs in this domain.

Before beginning, it is important to establish the lexcl of aggregation that will be
employed. As Pylyshyn (1984), Newell and Simon (1972) and others have pointed out,

2 . it is important to characterize the behavior under study at a level of detail that is
neither too fine, so that the important regularities are lost in a whelter of gratuitous
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details, nor too gloss, so that all the interesting behavior occurs "inside" the primitive
components of the description. A practical difficulty has determined tile level of
aggregation employed in the present investigation, but the choice has proved a
profitable one nonetheless. The difficulty is that learning is a long, complicated
process in this domain. Consequently, the learning process must be described at a high
level of detail. One way to indicate the level of aggregation of a process is to specify its
"grain size," which corresponds to the smallest observable actions admitted tinder that
level of analysis. For instance, in the earlier sections' description of test taking, the
smallest observable action is writing a single digit. A finer-grained process would
predict how the student writes a digit, i.e., the shape, sequence and timing of writing
strokes. A larger grained process would predict, say, only the answers and not the
sequence of writing actions used to produce them. Although the test-taking process
can use digit-writing as its grain size, the learning process must be modelled at a much
larger grain size. Students engage in so many different kinds of activities while
learning procedures that a fine-grained model for all those activities would be
inscrutably complicated or hopelessly incomplete. For instance, a process model that is
detailed enough to account for the second-by-second learning behavior of a student
being tutored would probably be inadequate to account for learning from textbook

examples or from watching other students working problems at the blackboard. The
variety of learning activities in this domain makes it mandator\ that the theory employ

a large-grained process to model skill acquisition.

The grain used in this theory corresponds, roughly speaking, to a single lesson*.
One cycle of the learning model consist of taking in a lesson and a procedure, and
producing a procedure. The procedures correspond to the students' procedural

knowledge before and after the lesson. Actually, the model usually produces several
post-lesson procedures. This amounts to the prediction that students may learn
different things from the lesson, and so different students will acquire different
procedures from the lesson even if they all started with the same pre-lesson procedure.

*Actually, by "lesson," I mean the introductory lesson for a topic and he drill lessons that accompany it.

Often, these are grouped together as chapters or unitS in a textbook. Ihe\ are quite clearly marked in

the textbooks and the teachers' guides. I'll continuc using tie term "lesson" to refer to such collections

of related activities. Also. I'm ignoring the spiralling structure of elem niary mathematics curricula.

where the previous year's lessons are rcviewed before introducing this year's lessons.

.%
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Although the grain-size of the theory was set large for practical reasons, it was a
providential choice. As will be shown in a moment, there are important regularities at
this level of aggregation that have escaped the notice of educators and cognitive
scientists, perhaps because they have viewed learning in too microscopic a way.

With the level of aggregation set, the central question can be addressed: what
, kind of inductive learning is taking place in this domain?

In principle, an inductive learning machine can be incredibly powerful (ifit is
given the right predilections for simplicity, representation, and so on). For instance, it
Would not be difficult to build an inductive learner that could learn all of subtraction
from a single example, provided the example were long enough to display all the
various subskills of subtraction, e.g.:

4 9 411 5 4

06107 6 213 5 611 ,10 4 7 3 2 7
-1 0 8 1 7 8 1 5 8 18 1 6 1 1 5
4* 4993454033231212

Donald Smith's learner (Smith, 1982) could probably handle this task with only a few
modifications. However, children are not such powerful inductive learners. Their
learning is some restricted form of induction. The job is to find out what those
restrictions are.

One way to uncover the limitations on children's inductive power is to examine
the difference between curricula that are learnable and those that are not. Before
embarking on this comparison, it is important to clarify the learnability criterion. In
this context, learnability is not meant to be a precise criterion. In particular, it is not
meant to imply that all students finish the curriculum with a correct version of the skill.
For instance, current mathematical curricula are learnable. Although not all students
finish with a perfect understanding of the target skill, almost all students seem to learn
something even if it is an incomplete or misconceived version of the skill. In contrast,
the single-example curricultm mentioned above is unlearnable, because few students
would learn anything from it, unless a teacher broke the example into parts and taught

each part separately. But that would just convert the unlearnable single-example
ScurrictIlum into a traditional, learnable, multi-example curriculum. Roughly put, a
learnable curriculim is one friom which almost all students can learn a general
approximation of the target skill.

1'
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Li L2 L3 L4 8 11 L5
2 9 3 7 11 2 5 7

•15 4 9 Y .44 123

14 33 47 134

L6 L7 15 L8 L9

5 15 5 X 17 5 ) 17 5 A A 17

0 ,6,'7 0 J5 7 0076 07

1 73 1 79 1 79 1 729

484 488 428 4278

L1. Solving two columns L6. One borrow in three columns

L2. Handling partial columns L7. Two adjacent borrows

L3. Regrouping L8. Borrowing from one zero

L4. Simple borrowing L9. Borrowing from multiple ,eros

L5. Solving 3 columns; no borrows

Figure 3

A nine-lesson sequence. The topics of each lesson are listed in the lower part of the

figure. Typical examples for each lesson are shown in the upper part.

Learnability is an objectively testible criterion, even though the learnability
"facts" employed below are not the result of experimentation. Such experiments
would be difficult and perhaps even immoral. The following discussion is intended to

motivate and clarify certain hypotheses. It is not intended to be a convincing
demonstration of their validity.

Figure 3 shows a subtraction curriculum from a popular American textbook
series, published by Heath, and used by some of the schools we studied (VanLehn,
1983) It certainly qualifies as a learnable lesson sequence. Suppose one took all the
examples used in this lesson sequence (there are probably thousands, if one counts the
examples the teacher puts on the blackboard), randomized their order, and divided
them into lessons of the same size as the original Heath lessons. This new curriculum
would have exactly the same content and pacing as the Heath curriculum, but the
examples would be in a different order, a random one. This curriculum would
certainly be unlearnable. So, under one ordering, Heath's, the examples are learnable,
but Linder another ordering, they are not learnable. Therefore. whatever the students'
learning process is. it relics crucially on the ordering of the examples. This is an

,,-..
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important conclusion, for it eliminates a large class of potential h potheses about the
learning process, including most proposed models of natural language acquisition and

of concept formation (see VanLehn, 1983, for a brief review, and Cohen &
Feigenbaum, 1982, for a longer one), and most induction algorithms from recursive

function theory (e.g., Gold, 1967; Angluin, 1980).

Imagine the Heath curriculum laid out as a long sequence of examples with

marks that partition the sequences into lessons. Suppose one holds the sequential

order of the examples the same, but moves the lesson boundaries around. For

instance, a "lesson" in such a curriculum might have examples from Heath's L7 in its
first half (i.e., two adjacent borrows: 542-168) and examples from L8 in its second half

(i.e, borrowing across zero: 304-126). The only way for a teacher to make such a lesson

sequence learnable would be to tell the students at the half-way point that a new

subskill, borrowing across zero, is going to be introduced. This would, of course,
convert the curriculum back into the Heath curriculum. If such shifted-lesson

curriculum were taught straight, without the elaborations that would convert it back

- into the Heath curriculum, then it would be unlearnable. From this illustration, we can
infer that learning depends crucially not only on the ordering of example, but on how

the examples are partitioned into lessons.

Intuitively, the problem with the lesson that mixes [7 and L8 is that students
will try to unify the ideas taught in the first half of the lesson with the ideas taught in

the second half and end up with a confused mish-mash, because those two subskills
have little in common, If this intuition is correct, then students can learn at most one

subskill per lesson. Of course, the folklore of teaching endorses this by advising the
teacher to teach slowly, one "topic" or "step" per lesson. If more than one topic must
be taught during the alotted class time, then the teacher should divide the class time

into mini-lessons, teach one concept per mini-lesson, and make it clear to the students
where one mini-lesson ends and the next begins. Such advice about teaching is

designed, I suggest, to accomodate a certain characteristic of students' learning
processes, viz., that they learn at most one topic per lesson.

Because the material being learned in this domain is procedural, this key

hypothesis will be rephrased as students learn at most one subprocedure per lesson. The

question of what kind of learning occurs in this domain has been sharpened. Next we
S-.need a precise characterization of a subprocedure.

.N4
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Li L2 L3 L4 L5 9
8 11 5 A5 17

2 5 7 3 7 8 11 fi 1 7

1 2 3 4 2r Y -4 4 1 7 9

1 3 4 3 3 4 7 4 2 8

L1. Solving multiple columns L4. Simple borrowing

L2. Handling partial columns L5. Borrowing from zeros

L3. Regrouping

Figure 4

A very short lesson sequence.

One approach to finding a definition of subprocedure is to find a learnable
curriculum that contains so much material per lesson that one can assume that the
lesson "fills" the subprocedure to capacity. Such a lesson sequence would help one see
the limits on what a subprocedure can be. Judging from a survey of textbook series,
probably the shortest subtraction lesson sequence that is learnable is the one shown in
figure 4.

Consider students who traverse this curriculum, and ha% e the luck to make the
right choices at every point where the lesson sequence is ambiguot . They will have
correct, albeit incomplete procedures after each lesson. The new n aterial added to
their procedures will correspond to subprocedures. Figure 5 displays the appropriate
procedures as augmented transition nets (A INS). P0 is the assumed initial state of
knowledge. The other Pi correspond to the procedure after Li. The labels on the arcs
stand for actions. Although arcs also bear conditions that say vkhether or not an arch
should be traversed, those conditions are not shown in the figure.

! .
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P0 is a procedure for solving single-column problems. It has a single

non-trivial arc, labelled "Ans,-Top-Bot," which stands for an action that subtracts the
two digits in the column and writes their difference in the answer. (Top, Bot and Ans
stand for the top. bottom and answer places in a column.) P1 is the procedure that
results from taking lesson LI. The subprocedure added by LI consists of an arc
bearing the action NextColumn. This addition makes P1 able to iterate across
columns, subtracting them. The subprocedure added by L2 is an arc to answer partial

,-, columns. The subprocedure added by L3 is an arc that calls Regroup and a new level
to define the regrouping network. Fhe subprocedure added by L4 is an arc that calls a
new level, Borrow, that does borrowing from non-zero digits. L5 completes the
procedure by adding a new level, labelled B.f[zero, that does borrowing from zero. In
the ATN notation, it becomes quite clear that all the subprocedures share the

characteristic that they add just one new "branch" or path to the procedure. In that
notation, a subprocedure is an arc, plus an optional new level to define the action

4 called by the arc, where the new level may not have branches.

This definition of "subprocedure" depends on notating procedures in a certain
'" representation, ATNs. There doesn't seem to be any way around notating procedures

in some way. However, the definition can be made more general and perspicous if
procedures are notated in first order logic. This is similar in spirit to analyzing them at
the knowledge level (Newell, 1982). Branches in the flow of control in a procedure
become disjunctions (ORs) when the procedure is notated in first order logic. The
one-.ATN-arc-per-lesson constraint becomes one-disjunct-per-lesson when procedures
are analyzed at the knowledge level.

The most direct way to test the one-disjunct-per-lesson hypothesis is to
construct a curriculum whose lessons sometimes introduce more than one disjunct per

-. lesson, then see if students can from it in their ordinary way. In some cases, such as
merging lessons L4 and L5 in the above curriculum, I believe that the students will
have a difficult time but they will manage to learn something. Would such a result
refute the hypothesis? The answer depends on the ontological status one attributes to
the hypothesis. I doubt that students are "hardware limited" in such a way that they

*simply cannot learn a lesson that introduces more than one disjunct. On the other
hand, I doubt that they employ a uniform induction process that can gracefully learn
subprocedures of any number of disjuncts, given enough time and willpower.

.',

.
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These beliefs follow in part from the fact that distinctly different induction
algorithms are required for multi-disjunct-per-lesson learning than for
one-disjunct-per-lesson learning, and that the multi-disjunct algorithms have much
worse combinatorial properties. To use Brachman and Leveque's (1984) apt phrase,
there is a computational cliff between one-disjunct-per-lesson learning and
multi-disjunct-per-lesson learning. The existence of such a cliff is well known. There
are a variety of formal results that show that induction with disjunctions is hard or even
impossible, while induction of disjunction-free concepts can be achieved quite
economically (Berwick, 1983: Angluin, 1980). One such result is particularly
interesting, because it refers to concepts expressed in first-order logic, which is the
notation used for knowledge level analysis. It can be shown (VanLehn, forthcoming-b)
that there are exactly three constructions in first order logic that cause computational
cliffs (put more technically, they cause the number of expressions consistent with any
finite set of examples to become infinite):

1. Disjunction
2. Function nesting (e.g., ftg(x)) where f and g are functions)
3. Quantifier scoping (e.g., For all x, there exists a y ...)

Suppose that computational cliffs cause the teacher-student cultural system to

evolve conventions that help the student climb the cliff, so to speak. The conventions

dictate that the teacher gives the student certain kinds of hints whenever the students is
faced with a computationally intractible induction task. The convention not only leads
the student to expect such hints, but more importantly, it tells the student how to
interpret them. Because the hints, under the interpretation of the convention, provide
extra information beyond the mere examples, the student can employ modified,
quasi-inductive !earning processes that can acquire the troublesome constructions.
These learning process remain tractible because they utilize extra information that pure
induction does not. For reasons that will be discussed shortly, this conjecture will be

*l called the felicity conditions conjecture, and the conventions that have evolved to

facilitate learning will be called felicity conditions.

If the felicity conditions conjecture is right, then there should be felicity

conditions for disjunctions, function nesting and quantifier scoping, as these are the
constructions that cause computational cliffs. One-disjunct-per-lesson is the felicity
condition for disjunction. What about the other two?

The cliffcaused by function nesting is due to the fact that when Functions are
nested, the intermediate results are not constituents of the examples. Without being

Il
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able to see the input-output relations of each function in the nest, it is difficult to
induce them. To put it intuitively, if you are given few number triples, such as [1,2,2]
and [5,1,51, and asked to induce what the numerical relationship among the numbers is,
then the task is trivial when you are guaranteed that expressing the relationship does
not require nesting arithmetic functions. For the triples just given, the only answer is
S-.*= z (and its logical equivalents, of course). However, if nesting is allowed, then the
answer could be x+y-=z-+ 1. 1f you could see all the intermediate results, namely x',

, x 2y , x-y2, and z in the latter case, and you were informed that all the intermediate
results were listed in the example tuples, then the problem would once again be trivial.

Is there any evidence of a felicity condition for function nesting in mathematical
curricula? As it turns out, subtraction does not employ any hidden, intermediate
results. Scratch marks are used instead. However, adding three or more numbers does
require hidden intermediate results. If it were learned by induction, then the learner
would have to climb a computation cliff in order to discover the appropriate nesting of
functions. Multi-addend addition is an appropriate place to look for a felicity
condition concerning function nesting.

Textbooks usually teach three-number addition in two adjacent lessons. The
" first lesson uses an ad hoc notational format that provides a place for the intermediate

result to be written down. Figure 6 shows some of the formats used. Because the
intermediate results are made visible in the examples, the students can induce a
three-number procedure without climbing the computational cliff. The next lesson is
specially marked. In fact, most textbooks title the lesson "A shorter way to add." Such
labels, plus the teacher's explanations of course, inform the learner that this lesson will
not be an induction lesson. Rather, the same old stuff is going to be accomplished in a

,.. new way by suppressing some of the writing. That is, they are going to hide a
-. -preiously visible intermediate result by creating a nest of two functions that are

already present in the procedure. The combinatorial problems involved in doing this
. j are trivial. An impossibily difficult induction problem has been converted into two

simple problems by adopting a convention. Normal lessons always "show all the
Aork." Only specially marked "hide work" lessons introduce function nests. This
felicity condition is called the show-work convention. If it is an accurate

characterization of the teacher-student system, then special formats and special
hide-work lessons should be found whenever a procedure employs a hidden
intermediate result. Of 14 cases over 6 textbooks, there were only 4 violations of the
show-work condition. Figure 7 shows some illustratory formats.

• - °. . . .
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+ +4= + +4=

5 9

3 3 5

2 1 2-

+ + 4 + 4

9

Figure 6

Show-work formats for multi-row addition.

Problems are shown unsolved on the left and solved on the right.

Is there a felicity condition for quantifier scoping? Quantifier scoping is rarely
P. used in mathematical procedures. I've only found one case, namely the definition of

the concept of "like terms," which is employed in high school algebra. Textbooks use a

special lesson for this concept that includes negative examples. (Negative examples are
cases that the target concept should not match, whereas normal examples-also called

positive examples-are cases that the target concept shou/LI match.) Such lessons are

the only ones I know of that employ negative examples. There is probably a felicity

* condition involved, but it is best to collect more cases before attempting to state it

precisely.

.4.4a
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2 3 2 3
x 6 x 6
1 38 1 8

+ 12 0
1 38

6 3 6 6 2 3
16 8 16 16--2 8

tens ones tens ones

*2 9 2 9
+ -1 8 +i-1 8

4 7 3 17

47

Figure 7
RegUlar formats on the left; show-work formats on the right.

In hotitseems that the felicity-condition conjecture hod1o1ateaia

skill I cqIin -oeach computational cliff, there is a t'ecit condition. his
remarkable three-wa\ corn.ergence of evidence is a major piece Of suIpport for the
felilcit -condition conjecture.

Sonic informal evidence of the existence oft' elicit\ CMndItiOns has been
presented. Bu~t wA11 h0L shud the\ exist? What %kotild ecplain thcit emxtetnce' -lee are

07 ~ sc eral background aSSuII J)1 plins that. taken together. irnpl\ tt i it 1" no aIccident that
feiiyconditions foi- skill acquisition eC iSt. _1110 also 1-11\e Id CII\CW LoIiiions, tlicii Odd
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It is quite common, especially in Al, to assume that skill acquisition consists of a
combination of communication and compilation. The teacher somehow

communciates a skill to the students, and the students sonieho compile their received
understanding into a smoothly operatie form as they practice. To put it differently,

learning = communication + compilation. There ha~e been many studiesof

practice-driven compilation (e.g., AndLrson. 1983: Rosenbloom & Newell, 1981).
Complementary to those, this study concentrates on the communication half of the

equation.

Assuming skill acquisition involkes a form of teacher-student communication,
-. then it ought to be like other forms of human communication in that the participants

followed certain conventions that make the communication smoother and more
reliable. Such conventions have been extensively studied in natural language

conversations, where they are often called felicity conditions (Austin, 1962), or
conversational postulates (Gordon & Lakoff, 1971), or con ersational maximes (Grice,

1975). A typical linguistic felicity conditions is: In normal conversation, the speaker
uses a definite noun phrase only if the speaker believes that the listener can
unambiguously determine the noun phrase's referent (Clark & Marshall, 1981).
Typically, neither the speaker nor the hearer is aware of such constraints. Yet ifa

conversation violates a felicity condition, it is somehow marked, e.g., by the speaker
appearing sarcastic or the hearer misunderstanding the speaker. Although felicity
conditions for conversations probably are not identical to felicity conditions for skill
acquisition, it is apparent that they share the secondary characteristic that the
participants in the communication are not aware of the rules they are following.

Teachers and textbook authors probably do not consciously realize that the lessoIs
they write obey, e.g., the one-disjunct-per-lesson constraint. They strive only to make
the lessons effective. The students do not realize that the "obvious" interpretation of
the lesson is the one-disjunct-per-lesson interpretation.

.*] Part of the reason for believing that natural language is governed by
- . conventions is that humans have been talking to each other for so long that cultural

evolution, or perhaps even biological evolution has hid ample time to develop
constraints that make tend to make communication more efficient. The same (weak)
reasoning applies to teacher-student communication, lor humans %ere probably

- teaching other humans how to do things long before the% began talking to each other.
- Our culttre/species has had stflcient opportunity to evolke conventions on how to

teach and how to learn. Perhaps efficient customs lr teaching/learning impart a
survival advantage to a species.

6-.
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5. Methodology

Most of the important claims of the theory have been presented. To summarize
them briefly, they are:

" * When students reach an impasse while solving a test exercise, they repair.
Repairs change the state of the interpretation, but not the test exercise or the

' procedul'e.

* Students induce at most one subprocedure per lesson, where the definition of
"subprocedure" embodies the one-disju nct-per-lesson hypothesis, the
show-work h> pothesis, and several other hypotheses.

" One-disjunct-per-lesson and the other constraints on induction are probably
deeply ingrained cultural conventions, and are thus called felicity conditions.

The first two are bona fide hypotheses of the theory, while the third is a conjecture that
would take a completely different sort of theory to test. The hypotheses have been
illustrated with bugs and other empirical material. However, these facts were offered
only as a way to explain the hypotheses, and not as validation for them. This section
describes the validation method.

Logically, all one needs to validate a theory is a formal statement of the theory's
hypotheses, a way of deriving the empirical entailments of the hypotheses, and a way
of testing those predictions. The validation is made a bit more elaborate in this case
because the theory has a large number of hypotheses. There are 31 major hypotheses,
and several more minor ones. Even if the best theorem provers were used, it would
probably not be possible to generate predictions directly from the hypotheses. An
intermediate stage is used. A computer program, Sierra, has been built to instantiate
the hypotheses in a form that can efficiently generate predictions (see Van Lehn, 1985a,
for a description of Sierra). Sierra simulates the learning and problem solving
processes hypothesized by the theory. When given (1) a formalized version of the
lesson sequence taken by some students and (2) a formalized %cision of the diagnostic
test taken by the students, Sierra predicts what the students' bugs ill be.

Logically, it is necessary to prove that Sierra computes the same input-output
function as the hypotheses. This is a familiar, but difficult task in computer science:
giken a set of formal specifications and a program, 'erify that the program meets the
specifications. Although the technology of program verification is inproving steadily,
it is not sufliciently developed that a formal verification of Sierra can be written.

.-V-
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Informal techiques have been used. For instance, vhenever possible, the program
simple generate-and-test algorithms where the tests correspond to hypotheses of the
theory. This slows the program down, but makes it easier to see that it is generating
what the hypotheses say it should be generating.

The major empirical test of the theory is its ability to predict the occurrence and
non-occurrence of bugs. More specificall>. Sierra generates a set of predicted bugs,
and the students produce a set of observed bugs. Ideally, ever% observed bug is a
predicted bug, but not vice-versa. Even with an ideal theory, one would not want
every predicted bug to be an observed bug. Because only a finite sample of the world's
students have been tested, one would not expect every possible observed bug to show
up in the sample. So the theory should predict some bugs that haven't yet been
observed. To put it more formally, if P is the set of predicted bugs and 0 is the set of
observed bugs, then

.*" 1. OflP should be large,

2. O-P should be small, and
* 3. P-0 should be non-empty. It is the prediction of future

observations.

These criteria have a loophole. Consider a trivial theory that generates a huge
set of predictions, e.g., all logically possible procedures. Thus, OCP and the trivial
theory meets all three criteria. However, the theory is clearly empirically inadequate
because it predicts bugs that probably would never be observed. It should be
penalized for such overgeneration. However, this requires somehow deciding which of
its predictions would never occur, and that is necessarily a non-objective judgment. All

0_ generative theories have this same problem. In generative theories of grammar, the
custom is to call ungrammatical sentences "star" sentences, and label them with an
asterick. In the judgment of native speakers, such sentences would never occur in
written or spoken language. That custom has becn adopted here. Star bugs are bugs
that are so implausible that, in the opinion of experienced teachers and diagnosticians,
the bug will never occur. Often, it is quite clear when a bug is a star bug. For instance,
Sierra has occasionally generated a procedure that performs all t% pes of borrowing with

"-.. perfect competence, yet it leaves the answer to the problem blank. This unlikely
juxtaposition of competence and incompetence makes this beha ior a star bug.

As an illustration of this kind of empirical testing, fig'ure 8 shows the bug counts
for a 147-student sample of subtraction students. The students (and Sierra) used the
•-eath subtraction curricultm (Dilley, Racker & Jackson 1975) and a similar

V
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curriculum from Scott-Foresman (Bolster et al., 1975). There were 79 observed bugs,
of which 22 (28%) were predicted by the theory. The remaining 57 bugs should have
been predicted by the theory. However, they are not a serious problem for several
reasons. First, some of the 57 bugs could be generated by the theory if the model were
given lesson sequences other than ones from Heath and Scott-Foresman. It is indeed
plausible that some students transferred into our sample schools from schools that use
different textbook series. However, we did not have access to the students' educational
history and therefore could not ascertain all the lesson sequences that the students may
have learned from. We have conservatively chosen to evaluate the model using only
lesson sequences that we are certain were administered to the subjects.

There is a second reason why the predicting only 28% of the observed bugs is
not a serious problem. It is simple to relax the theorys hypotheses in such a way that
significantly more observed bugs are predicted. Under one relaxation (Brown &
VanLehn, 1980), 48% of the observed bugs are predicted. Under another (VanLehn,
1985b), 85% are predicted. However, such relaxations also cause the theory to
generate more star bugs. Currently the theory predicts just three star bugs. The
hypotheses have been adjusted to reduce the number of star bugs to a minimum. The
reason for taking this stand is that more than one learning process may be going on in
this domain, and some of the 57 bugs could come from those other processes.
However, augmenting the theory with another learning process will not block the
generation of the three star bugs.

Observed Predicted Star

Figure 8
Observational adequacy circa March, 1983
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It should be obious that merely counting the observed bugs and star bugs
generated by the theory is not a revealing measure of its empirical adequacy,
particularly when one can "trade" observed bugs for star bugs and vice-%ersa. It is
impossible to tell from the bug counts whether the theor is terribly wrong or only
slightly askew. Worse, one can not tell whether individual hvpotheses are right or

wrong. One can't tell, for instance, whether one-disjunct-per-lesson is an accurate
characteriLation of students' learning. The overall observational adequacy of the
theor, just doesn't suffice to answer the really interesting questions.

Ideally, we would perform a perturbation analysis of the theory. As there are 31
major hypotheses, and we want to assign empirical credit or blame to each hypothesis
individually. suppose we form 31 new sets, each with a single hypothesis deleted (i.e.,
31 sets of 30 hypotheses each), then revise Sierra appropriately and generate 31 new
sets of predictions and their corresponding bug counts. Better still, alternatives to the
various hypotheses would be substituted into the set of 31, and the resulting
observational adequacy "ould be measured. Such an analysis would allow us to assess
the empirical responsibility of each hypothesis and contrast its performance to
competing, alternative hypotheses.

Unfortunately, the hypotheses of the theory are not independent. In general,

one can't just remove a hypothesis or substitute an alternaive hypothesis without also
modifying several other hyptheses in order to accomodatc the change. This .es not
make a perturbation analysis impossible, but it does make it more complicated.

A technique has evolved for doing such analyses. VanLehn, Brown and Greeno
(1984) call it competitive argumentation, and show how it can solve many of the
methodological problems that plague current cognitive science. Most competitive
arguments have a certain "king of the mountain" form. The argument shows that a
hypothesesis accounts for certain facts, and that certain alternative hypotheses, while
perhaps not without empirical merit, are flawed in some wkay. That is, the argument
shows that its hypothesis stands at the top of a mountain of evidence, then proceeds to
knock the competitors down. Perhaps the best way to describe competitive arguments

is to present an example of one.

Earlier, an explanation for the bug Always- Borrow- I eft was presented. Part of
the explanation involved how students acquired a description of which column to
borrow from. '[he claim was that, given two-column problems as examples, students
would induce that the column to borrow-from is botil the leftmost column in the

problem and the column that is left-adjacent to the column causing the borrow.
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Because both descriptors are included, the student reaches an impasse on three-column
borrowing problems. For the problem

~624
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the hundreds column is the leftmost column and the tens column is the left-adjacent
column. On this problem, the induced description is unsatisfiable. This causes an
impasse. One repair, ignoring the left-adjacency descriptor, generates
Always-Borrow-Left. Another repair, skipping the decrement entirely, generates
Borrow-No-Decrement-Except-Last. A third repair, ignoring the .-ft-most descriptor,
generates a correct subtraction procedure.

However, why should a student include both descriptors in the description? A
plausible alternative hypothesis is that students only include enough material in the
borrow-from column's description to differentiate that column from the others. This
kind of induction is called discrimination. The other kind of induction, which puts

o both descriptors in the borrow-from column's description, is called generalization
(Langley et al., 1980). So there are two competing hypotheses. As just mentioned, the

',- generalization hypothesis generates three bugs, all of which occur. It also predicts,
correctly, that there will be bug migrations among the three bugs. Let's see what the
discrimination hypothesis predicts.

Under the discrimination hypothesis, some students will induce left-most as the
discriminating feature of the borrow-from column, and other students will induce
left-adjacent as the discriminating feature (of course, there could be other

N1 discriminating features, but just two will be used to keep the illustration simple). A
student %ho thinks the column to borrow-from is the left-most column will have the
bug Always-Borrow-Left. A student who thinks the borrow-from column is
left-adjacent to the borrow-into column will have a correct subtraction procedure.
Neither student will reach an impasse. Their descriptions are always satisfiable and
unambigouous. Consequently, there is no way to generate the third bug,
Borrow-No-Decrement-Except-Last, which skips the borrow-From action in certain

,-' circumstances. Moreover, there is no way to generate a bug migration. So the

discrimination h.pothesis can only generate two of the lbur predictions that the
generalization h pothcsis makes.

Moreocr. the predictions that the discrimination hypothesis misses are not
generated h) other mechanisms in the model. The only known derivation of

4
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Borrow-N o-Decrement- Except- Last and the bug migration is the deriviation that
requires the generalization hypothesis. Thus, some students must be employing
generalization. Other students could be employing either generalization or

discrimination. In order to totally defeat the discrimination hypothesis, it would be
necessary to show that discrimination generates only star bugs. This cannot be done. It

has already been shown that discrimination generates some observed bugs.

However, there is weaker argument against discrimination. It is based on
parsimony. Generalization alone covers all the data. Discrimination alone does not

cover all the data. so that hypothesis is out. However, discrimination is consistent with
some of the data, so it might be that some students generalize and other discriminate.

The generalization-plus-discrimination hypothesis adds no additional coverage when
compared to the generalization hypothesis, but it does add an additional mechanism
(and a parameter of between-subjects variability, Mhich raises the issue of explaining

* why some Students generalize and other discriminate). By Occam's razor, the simpler,

one-mechanism hypothesis is preferred. The generalization hypothesis wins the
* competitive argument.

With this illustratory argument in hand, several methodological points can be

made. First, there is no a priori source of competing hypotheses. In this case, the
* hypotheses concern concept formation, on which there is a large literature containing

many hypotheses (see Anderson, Kline & Beasley, 1979. for a comparative review).
Discrimination and generalization are perhaps the two most important hypotheses. A
full-fledged competitive argument would contrast all the hypotheses mentioned in the
literature. Of course, there are infinitely many hypotheses that haven't yet appeared in

the literature. Logically, the argument is incomplete until they too have been included.

But this is just the normal incompleteness of empirical science. The best one can ever
do is to show that the present hypotheses is the best of the known hypotheses. Later, a

better hy pothesis might be invented. Indeed, the hope is that one will be discovered.

It was announced at the outset that one goal ot' the present research is a
parameter-free learning theory. The preceding argument indicated that the theory has
at least one parameter, namely, the vocabular\ of visual features, such as left-most and
left-adjacent, that are used to build descriptions of locations in exercise problems.

4 These visual featurcs are primitives, in that their definitions are not constructed by the
learning model. Instead, the theorist chooses which primitives to employ, then writes

the code that defines them. Besides primitives for 'istial descriptions, the theory

requires primitives for representing writing actions and arithmetic tacts (e.g., both "("
and " are pro' ided as arithmetic primitives). The set of primitives is the theory's

4..
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only parameter*. So the theory turns out to be a one-parameter theo|y. It is hard to

imagine a cognitive model that doesn't have primitives of some kind. I suspect,

therefore, that all cognitive theories will have at least one parameter, the set of

primitives they employ. So a zero-parameter theory is probably impossible. However,

one can try to arrange the theory so that it is relatikely insensitive to the choice of

primitives. Indeed, several competitive arguments are decided by the desire to curtail

the sensitivity of the theory's predictions to its parameter values.

Arguments generally need to take certain hypotheses as givens. For the

argument given above, it was assumed (1) that learning was inductive, (2) that impasses
occur when descriptions are unsatisfied or ambigouous, and (3) that impasses are
repaired in certain ways. It is important to check for circularities in these assumptions.
It would be incorrect for the argument supporting hypothesis A to assume hypothesis
B, and the argument for B to assume A. Moreover, whenever new evidence is
discovered that changes the conclusion of an argument, all the arguments that depend
on its conclusion have to be reexamined to see if they still go through. Maintenance of
the argumentation structure became such a significant problem that a computer
program, the Xerox Notecards system, was enlisted to help. VanLehn (1985c)
describes the system and how it was used.

If most hypotheses depend on other hypotheses for their support, then there

must be a few hypotheses that don't depend on any other h.potheses. It is almost
impossible to justify such hypotheses in any rigorous way. Such hypotheses are called
assumptions. The induction hypothesis is one. It, and the other assumptions, are
supported by informal observations and, indirectly, by the sucess of the theory as a
whole.

The logical structure of the theory is an acyclic directed graph (i.e., tangled

hierarchy, partial order). The nodes are the competitive arguments. Node A depends
on node B if the A argument takes B's conclusion as a given. The assumptions are
nodes that do not depend on any other nodes. This logical structure is a familiar one to
Al researchers. It is sometimes called a data dependency net or a dependency graph.
A truth maintenance system (de Kleer's ATMS, in press) ma\ be useful in helping
manage the argumentation, with the theorist play ing the role LPualIy performed by a
theorem prover or other problem solver. Such sophisticatcd support fbr theory
development may be extremely valuable in coping with the complexity of validating a
theory of this size.

* ActuIly. there is a second parameter, a grnmar for the svntwx o" the c ercise problems. It is used to

define primitikes like "cotlumnr ." See \ ,anl.hn (1983) fbr details.

I
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Cognitive theories of skill acquisition, and cognitive science in general, are
entering a new phase in %%hich such technology for supporting theorists will become
increasingly important. In the early years of Al, it was considered ar impressive
accomplishment to get a machine to learn a simple skill, such as recognizing towers and
arches made of toy blocks. The mere fact that the machine could perform the skill
acquisition was taken as an argument that the processes it employed were plausibly the
ones that humans used. Standards escalated in later years. As protocol analysis
became common, psychological claims about cognitive processes had to be
accompanied by a detailed match between the machine's performance and the

r. subject's performance. Learning theories temporarily disappeared during this era,
because protocols of subjects learning complex skills are intractibly long. However,
these two earlier eras were of fundamental importance, even though they did not yield
scientifically adequate theories of skill acquisition, because they developed the
computational and methodological tools that the present era uses.

Nowadays, theories of skill acquisition are reappearing. There are at least three
theories presently tinder developement: ACT (Anderson, 1983), SOAR (Laird,1983;
Rosenbloom, 1983: Laird, Rosenbloom & Newell, 1985) and the theory described
here. Competitive argumentation will become increasingly important in order to to
compare these theories. Indeed, competitive argumentation seems necessary just to cut
through the jargon and see whether or not two theories are actually the same. To put it
bluntly, after several decades of struggling to understand the computational medium,
computational research on skill acquisition has finally arrived at a place where it can
begin to embrace rigorous scientific methods. It is fortunate that the technology for
supporting the complicated competitive argumentation is here, because we need it to
do science.

7. Conclusions

Much material has been covered in a brief, intuitive way. The main points,
however, can be simply summarized. Three major claims have been made about
human cognition:

* When students reach an impasse while solving a test exercise, they repair.
Repairs change the state of the interpretation, but not the test exercise or the
procedure.

* Students induce at most one subprocedure per lesson, where "subprocedure" is
defined by one-disjunct-per-lesson, show-work and several other hypotheses.

" 
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* One-disjunct-per-lesson and the other constraints on induction probably are
deeply ingrained cultural conventions, and are thus called felicity conditions.

There are other important claims made by the theory beyond the three listed above.
Some of the most important concern the structure of procedures. For instance, one
hypothesis is that procedures are hierarchical. A procedure is a tree of goals, and its
interpretation requires maintaining a goal stack. This hypothesis is similar to ones in
ACT (Anderson, 1983) and SOAR (Laird, Rosenbloom & Newell, 1985), which also
postulate goal hierarchies as the organization of problem solving knowledge. Another
hypothesis, which is not shared by those theories, is that focus of attention is
maintained applicatively (VanLehn, 1983). That is, goals are instantiated with a focus
of attention directed at a specific region of the problem state. The focus may not be
changed during the (brief) lifetime of the goal instance. In ACT, for instance, focus is
maintained in a global resource, the working memory, which may be changed
arbitrarily during the processing of goals. To put it crudely, ACT uses Fortran-like
global variables to hold focus of attention, while this theory uses lambda-calculus-like
local variables to hold focus of attention.

Such hypothcses about the mental representation of procedures have far
reaching consequences. They effect both the kinds of learning processes that can be
employed to acquire them, and the kinds of problem solving processes that can be

employed to interpret them and solve exercise problems. The ontological status of the
putative mental representations is a matter of some interest (Fodor, 1975). In what
sense is mental information stuctured? What does it mean for procedures to be
tree-structured and applicative? These are very subtle issues, and a short paper like
this one can not do them justice. Neither can it review, unfortunately, the evidence
that supports the theory's specific claims about mental representations, for the
arguments that support those hypotheses are some of the most intricate in the whole
theory.

Roughly half of this article has discussed methodology: the challenges of
validating a complicated theory of cognitive processes, and thc techniques that have
e~olNed to meet those challenges. To summarize briefly, the main methodological
points are:

o Program parameters should be eliminated from cognitive theories. This has
recently become feasible as the computer power required for learning theories
is now available. This theory has no program parameter. Its only parameter is a
set of primitives used to represent problem states, actions and arithmetic facts.

6r
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e The theory has a well-defined empirical test: it should generate all the observed
bug data without generating implausible predictions (e.g., star bugs).

* The theory has both a set of formal hypotheses and a computer program. The
program is claimed to be logically equivalent to the hypotheses, but more
efficient for generating the theory's predictions.

'*- Each hypothesis has been individually motivated by examining the empirical

entailments of alternatives to it. Such competitive argumentation is vital for
complex cognitive theories but difficult to accomplish. Fortunately,
argumentation support tools, which have recently become available, make the
job easier.

In many ways, the stage is set for rapid advances in cognitive science. The decades
spent in coming to grips with the computational medium have paid off in a technology
suitable for modelling cognitive processes, especially learning. Intelligent tutoring and
diagnostic systems (Sleeman & Brown, 1982) make it simple to collect and analyze
detailed data from thousands of students. The refined methods of linguistic inquiry
have been successfully adapted for supporting generative theories in non-linguistic
domains. The evolution of text editors and database tools ifto "idea editors" provide

an appropriate medium for developing the argumentation structures needed to connect
complicated cognitive simulation programs to rich behavioral data.
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