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Acquiring Procedural Skills From Lesson Sequences

Kurt VanLehn

Abstract

This document is the final report for ONR contract N00014-82C-0067.
[t provides an informal overview of a theory that describes how people
learn certain procedural skills, such as arithmetic and algebra, from
multi-lesson curricula. The central hypothesis is that students and
teachers obey conventions that cause the goal hierarchy of the acquired
procedure to be a particular structural function of the sequential
ordering of lessons. This learning theory is an extension of Repair
Theory, which describes how people mix interpretation and a certain
type of meta-level problem solving as they try to solve practice problems.

- The learning theory has been embedded in a program that generates

detailed predictions about the products of published curricula. The
predictions have been tested against data from several thousand

7 mathematics students.
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Acquiring Procedural Skills From Lesson Sequences

Kurt VanLehn

The research presented here began with the "buggy™ studies of Brown and
Burton (1978). Those studies found that students of certain procedural skills, such as
ordinary multicolumn subtraction, had a surprisingly large variety of bugs (small, local
misconceptions that cause systematic errors). Early investigations into the origins of
bugs yielded a theory of procedural problem solving, Repair Theory (Brown &
VanlLehn, 1980). A subsequent empirical study (VanLehn, 1982) confirmed many of
Repair Theory's predictions, including the surprising prediction that certain bugs
would be replaced by others during a short periods of time, a phenomenon called bug
migration. Recent research has investigated the relationship between the curriculum,
the students’ learning processes and the acquisition of bugs. A learning theory has
been added to Repair Theory, yielding an integrated explanation for the acquisition of
correct and buggy procedures (VanLehn, 1983).

This article provides an introduction to the learning theory. It omits as much
detail as possible in order to concentrate on the theoretical and methodological
intuitions that underlie the theory. In particular, it omits the empirical arguments that
support the theory's hypotheses. Facts about student behavior are sprinkled
throughout, but are used merely to illustrate the theory’s cluims. Proper arguments for
a theory of this complexity require a book (e.g., VanLehn, forthcoming-a) to present
them.

The article begins with a discussion of methodological goals of the research.
The middle sections introduces the main hypotheses of the theory. The final section
outlines the validation methods.

1. Eliminating of the program parameter

Artificial Intelligence has always had difficulty validating the models of
cognition that it proposes (VanLehn, Brown & Greeno, 1984). This is due, in part, to
the complexity of those models. Recently, increasing computer power has made it
feasible for programs to learn how to do complex tasks, and it is much ¢asier to validate
a learning program than a program that does not lcarn.  This may seem
counterintuitive, since learning programs are generally more complicated than
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3‘: non-learning programs. Yet validating a learning model is easier because it avoids an
3‘,,. important methodological problem, which 1 call the program parameter problem. This
Y problem is complex and subtle. The following treatment of it is at best a mere gloss of
- the issues involved. A thorough discussion can be found in Pylyshyn's excellent book
Y (Pylyshyn, 1984).

;2 The program parameter problem occurs when a model must be givena
\ complicated expression, written in a formal representation language, in order to
L simulate a given task. It is appropriate to call the expression a program because the
t'ji actions of the model are determined by interpreting the cxpression.  This is true
! }.\:Z regardless of whether the expression is a procedural encoding of knowledge or a
e declarative encoding. From a methodological point of view, the programisa
, parameter of the model, although a powerful and multi-faceted one. So the defining
,: characteristic of the models under discussion is that they take a program parameter.
pr The following examples illustrate this concept. Newell (1978) proposes a certain
) f production system architecture as a model of the mind. To parameterize it for a given
37 task, the theorist provides a list of productions. The production system’s speed is
Z:E;‘ intended to correlate with the subject’s speed when they are given the same problems
,:Z-_j to solve. For a second example, Collins and Loftus (1975) propose a spreading
:'.’. activation architecture for semantic memory. It is parameterized by writing a semantic

net in a representation language. The time required for activation to spread through

- the given net is intended to be proportional to the speed with which subjects answer
\ questions. In both these examples, the model of cognition has a program parameter:
}' productions in the first example; a semantic net in the second example.
@) When a model has a program parameter, it almost always has two undesirable

% characteristics. First, small changes in the value of the program parameter (i.e.,a

W shightly different program) can cause significant changes in the predictions made by the
" model. That is, the model is extremely sensitive to the value of its parameter. If one
y assumes that all possible programs are, a priori, equally probable, then the theory must
explain why onc particular program is the only one that works. Thus, the model has
converted a hard problem, such as explaining why people solve problems or answer
questions at certain speeds, into an even harder problem: explaining why they have a
certain program for that task.
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The second undesirable characteristic of program parameter models is that it is
almost always the case that one can devise a new model, convert the old program into
the appropriate format for the new model, and get cqually accurate preditions. For
instance, Newcell (1973) and Newell (1978) proposed different production system
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architectures, but get roughly the same accuracy for a certain task (the Sternberg task).
To take a new example, Newell and Simon (1972) propose a certain cognitive
architecture and demonstrate that it can be programmed to accurately simulate long,
complicated protocols of subjects solving difficult puzzles. However, it is clear that one
could re-write their programs to run on an implausible cognitive architecture, e.g.,
Pascal, and still produce an accurate simulation of the subjects’ performance. This
indicates that the predictive accuracy of the model as a whole depends entirely on the
program parameter's value (i.e., a certain program). One gets cquivalent predictions
by substituting various architectures while keeping the same program (i.e., the same
value for the parameter).

A cognitive model that /earns how to solve a task does not need a program
parameter. [t constructs (learns) the program that a theorist would otherwise have to
provide. Although such a model has no program parameter, it does have one input, a
formal expression that stands for the training and/or instructions that the subjects’
received. However, this input is not a parameter, because its value can be observed. It
is an independent variable, not a parameter.

Because models of learning lack program parameters, they are much easier to
validate. If the model is making successful predictions, then one must credit the model
because there are no program parameters to steal the credit from the model. The
problem of explaining why program parameters have ccrtain values and not others
does not exist for independent variables. They have the values they do because those
values are nroper encodings of certain observable facts.

On the other hand, computer models of learning are much harder to build.
Worse, they have a tendency to run quite slowly and use large amounts of memory.
Only in recent years has it become feasible to construct and debug models of
non-trivial learnir:z. Even so, such models are difficult to work with. For instance, the
learning model described herein is implemented as a Lisp program named Sierra.
Sierra takes a week of computer time (i.e., 150 cpu-hours on a Dorado, which is one of
the fastest personal Lisp machine currently available) to do one run, where a run
consist of learning a skill from a lesson secquence while gencrating predictions about
the subjects’ problem-solving behavior at various points along the way. Many runs
have been made, both to debug Sierra and to try out various versions of the model in
order to see which ones produced the most accurate predictions.  The amount of
computer time required for such testing was simply unavailable a decade ago.
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Trying out various versions of the model contributes significantly to the cpu
usage, but it is essential for moving beyond a mere demonstration that Sierrais
sufficient to predict the data. In order to converge on a demonstration that Sierra (or
rather, a class of Sierra-equivalents) is necessary for accurate prediction, many versions
of the program must be tried with alternative, competing hypotheses substituted for
the hypotheses that the model/theory subscribes to. The importance of moving from
sufficiency to necessity is discussed in section 3, and more fully in VanLehn, Brown &
Greeno (1984) and Pylyshyn (1984)

Increasing computer power sets the stage for a new era in cognitive science
where complex cognition, the kind that Al has speculated about, can be studied
empirically and rigorously. The key is to eliminate program parameters from cognitive
models by studying not only how a complex skill is performed, but how the skill is
acquired as well.

2. Learning elementary mathematical skills

The goal of this research is to develop an rigorously supported theory of
learning by taking advantage of Al's new modelling power. The long term research
strategy is to begin by studying a particular kind of cognition, then if all goes well, to
test the theory's generality on other kinds of cognition. The initial studies focused on
how elementary school students learn ordinary, written mathematical calculations.

The main advantage of mathematical procedures, from a methodological point
of view, is that they are virtually mcaningless to most students. They seem as isolated
from common sense inwitions as the nonsense syllables of early learning research. In
the case of the subtraction procedure, for example, most elementary school students
have only a dim concepticn of its underlying scmantics, which is rooted in the base-ten
representation of numbers (VanLehn & Brown, 1980; Vanl.chn, 1983; VanLehn,
1985b). When compared to the procedures students use to operate vending machines
or play games, arithmetic procedures are as dry, formal and isolated from everyday
interests as nonsense syllables are different from real words. This isolation is the bane
of teachers, but a boon to psychologists. It allows psychologists to study a skill that is
much more complex than recalling nonsense syllables, and yet it avoids bringing in a
whole world’s worth of associations. Given the mcthodological goal of a
zero-parameter model, this is ¢ssential.  [f a skill were chosen that did require
significant prior knowledge, then that knowledge might have to be represented as a
program parameter,

________
\ -




v PP TN RN N O N NN EY FA T R T RN T PN N TRy TR RN T T VU Wwow sy rwar v Wy '\!r.xv]

7

The remainder of this section introduces the domain. First it describes the
instruction that students receive, and then it describes the behavior they produce. The
theory's main job is to explain what kinds of mental structures are engendered by that
instruction and how those structures guide the production of the observed behavior.

Learning from lesson sequences of examples and exercises

In a typical American school. mathematical procedures are taught incrementally
via a lesson sequence that extends over several years. In the case of subtraction, there
are about ten lessons in the scquence that introduce new material. The lesson
sequence introduces the procedure incrementally, one step per lesson, so to speak. For
instance, the first lesson might show how to do subtraction of two-column problems.
The second lesson demonstrates three-column problem solving. The third introduces
borrowing, and so on. The ten lessons are spread over about three years, starting in the
late second grade (i.e., at about age seven). These lessons are interleaved with lessons
on other topics, as well as many lessons for reviewing and practicing the material
introduced by the ten lessons. In the classroom, a typical lesson lasts an hour. The '
teacher solves some problems on the board with the class, then the students solve
problems on their own. If they need help, they ask the teacher, or they refer to worked
examples in the textbook. A textbook example consists of a sequence of captioned
“shapshots” of a problem being solved (see figure 1). Textbooks have very little text
explaining the procedure (young children do not read well). Textbooks contain mostly
examples and exercises.

Take aten to Subtract Subtract
make 10 ones. the ones. the tens.
2 15 2 15 2 15
3 5 3 .5 3 5
1 9 -1 9 -1 9
6 1 6
Figure 1

A typical textbook example




This brief overview of subtraction instruction illustrates (but does not validate)
two important hypotheses that seem to hold for all the skills in this domain. First, skill
acquisition in this domain is some kind of induction (i.e., the discovery of a general
idea from examples of it). That is, procedures are learned from examples of their
application. Second, inductive learning occurs in the context of an extended lesson
sequence that introduces the skill incrementally. Students in the middle of the lesson
sequence can be expected to have incomplete procedures that can successfiilly solve
only some of the class of possible problems in the domain.

Describing systematic errors with "bugs”

The observable output of the students’ learning process is their performance
while solving exercise problems. A traditional measure of such performanceisa
protocol that records the student’s actions in detail, including the time between actions.
In this domain, the timing data is rather uninteresting. Often, students cannot
remember an arithmetic fact. (In this paper, "arithmetic facts” will referto
propositions like S+7=12 or 7<11.) When students forget an arithmetic fact, they
count, which shows up as long pauses in the protocols. The timing data reveals more
about their knowledge of arithmetic facts than their knowledge of the procedure.
Since it is their procedural knowledge that is the target of this theory's explanations,
error data have been used in preference to timing data.

There have been many empirical studies of the errors that students make in
arithmetic (Buswell, 1926; Brueckner, 1930; Brownell, 1941; Roberts, 1968; Lankford,
1972; Cox, 1975; Ashlock, 1976). A common analytic notion is to separate systematic
errors from slips (Norman, 1981). Systematic errors appear to stem from consistent
application of a faulty method, algorithm or rule. Slips are unsystematic "careless”
errors (e.g., facts errors, such as 7—3=35). Since slips occur in expert performance as
well as student behavior, the common opinion is that they are due to inherent "noise”
in the human information processor. Systematic errors on the other hand are taken as
stemming from mistaken or missing knowledge, the product of incomplete or
misguided learning. Only systematic errors are used in testing the present theory. See
Siegler & Shrager (in press) for a theory of addition slips.

Brown and Burton (1978) used the metaphor of bugs in computer programs in
developing a precise, detailed formalism for describing systematic errors, The basic
idea is that a student’s errors can be accurately repreduced by taking some formal
representation of a correct procedure and making one or more small perturbations to
it, e.g., deleting a rule. The perturbations are called bugs. A systematic error is
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N represented as a correct algorithm for the skill plus a list of one or more bugs. Bugs
a . . . .. .
: describe systematic errors with unprecedented precision. If a student makes no slips,
)

Y

then his or her answers on a test exactly match the buggy algorithm’s answers, digit for
digit. Bug data are the main data for testing this theory.

f Burton (1981) developed an automated data analysis program, called Debuggy.
tlj Using it, data from thousands of students learning subtraction were analyzed, and 76
N different kinds of bugs were observed (VanLehn, 1982). Similar studies discovered 68
bugs in addition of fractions (Shaw et. al., 1982), several dozen bugs in simple linear

-

: equation solving (Sleeman, 1984), and 57 bugs in addition and subtraction of signed
f numbers (Tatsuoka & Baillie, 1982).

s

! It i1s important to stress that bugs are only a notation for systematic errors and
= not an explanation. The connotations of "bugs” in the computer programming sense
do not necessarily apply. I[n particular, bugs in human procedures are not always
- stable. They may appear and disappear over short periods of time, often with no
; intervening instruction, and sometimes even in the middle of a testing session

(VanlLehn, 1982). Often, one bug is replaced by another, a phenomenon called bug
& ' migration.

Mysteries abound in the bug data. Why are there so many different bugs?
‘ What causes them? What causes them to migrate or disappear? Why do certain bugs
- migrate only into certain other bugs? Often a student has more than one bug at a time.
— why do certain bugs almost always occur together? Do co-occurring bugs have the
same cause? Most importantly, how is the e¢ducational process involved in the

“asanns

development of bugs? One objective of the theory is to explain some of these bug
F mysteries.
R
\ Another objective is to explain how procedural skills are acquired from
multi-year curricula. This objective seems to require longitudinal data, where each
: h student in the study is tested several times during the multi-year period. Such data is
L notoriously difficult to acquire. Bug data are readily available and nearly as good. Our
bug data are obtained by testing students at all stages in the curriculum. Thus, the bug
data are like between-subjects longitudinal data. Instead of testing the same student at
. several times at different stages of his or her learning, different students at different
- stages are tested just once. As will be seen in the next scction, such data can perform
- nearly as well as longitudinal data in testing a lcarning theory, and yet they are much
- casier to collect.
&
'
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3. An introduction to the model: Explaining Always-Borrow-Left

Most of the mental structures and processes proposed by the theory can be
introduced and illustrated by going through an explanation for a certain subtraction
bug, called Always-Borrow-Left. Students with this bug always borrow from the
leftmost column in the problem no matter which column originates the borrowing.
Problem A below shows the correct placcment of borrow's decrement. Problem B
shows the bug's placement.

A. !

(@]
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(The small numbers represent the student’s scratch marks.) Always-Borrow-Leftis
moderately common. In a sample of 375 students with bugs, six students had this bug
(VanlLehn, 1982). It has been observed for years (c.f. Buswell, 1926, pg. 173, bad habit
number s27). However, this theory is the first to offer an explanation for it.

The explanation begins with the hypothesis that students use induction
(generalization of examples) in learning where to place the borrow’s decrement. All
the textbooks used by students in our sample introduce borrowing using only
two-column problems, such as problem C above. Multi-column problems, such as A,
are not used. Consequently, the student has insufficient information to induce an
unambiguous description of where to place the borrow's decrement. The correct
placement is in the left-adjacent column, as in A. However, two-column examples are
also consistent with decrementing the leftmost column, as in B.

The next hypothesis of the theory is that when a student is faced with such an
ambiguity in how to describe a place, the student takes a conservative strategy and
saves all the relevant descriptions.  When inducing from two-column problems (e.g.,
C), the student describes the borrow-from column as "a column that is both
left-adjacent to the current column and the leftmost column in the problem.”

Suppose that our student is given a diagnostic test at this point in the lesson
sequence and that the test contains borrowing problems of all kinds. The student is
faced with solving problem D, below.

D. 365 E. 3 6!
-1009 -10

@0 o,
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The student starts to borrow, gets as far as E, and is suddenly stuck. The student's
description of where to borrow is ambiguous because there is no column that is both
left-adjacent and the leftmost column. [n the terminology of the theory, getting stuck
while problem solving is called reaching an impasse.

It is hypothesized that whenever students reach an impasse on a test, they
engage in local problem solving. Local problem solving is just like classical puzzle
solving (e.g., Newell & Simon, 1972), in that there is an initial state, a desired final
state, and state-change operators. Here, the initial state is being stuck, and the desired
final state is being unstuck. Unlike traditional problem solving, however, the
state-change operators of local problem solving don’t change the state of the exercise
problem. Instead, they change the siate of the interpreter that is executing the
procedure. The operators do things like pop the stack of goals or relax the criterion for
matching a description to the exercise problem. They do not do things like writing
digits on the test paper. Because the local problem solver modifies the state of the
procedure’s interpretation, it is a kind of meta-level problem solving. The sequences of
meta-level operators that succeed in getting students unstuck are called repairs. Note
that what is being repaired is, roughly speaking, the impasse. Repairs do not change
the procedure. To put it in terms of Newell's problem space hypothesis (Newell,
1980), the procedure works in one problem space, and local problem solving works in a
second problem space that is "meta"” to the base problem space. Returning to our stuck
student, three common repairs to the impasse are illustrated below.

-
_ gy N
@0 v
1
o®¢ v
(o
O o;
1
oo o

In F, the student has relaxed the description of which column to borrow from by
ignoring the restriction that the column be left-adjacent to the current column. The
remaining restriction, that the column be the left-most column in the problem, has the
student decrement the hundreds column, as shown in F. This is one repair. It
generates the bug Always-Borrow-Left. Another repair i1s shown in G. Here, the
student has relaxed the borrow-from description by ignoring the left-most
requirement. The decrement is placed in the left-adjacent column, yielding G. This
repair generates a correct solution to the problem. [n H, the student has chosen to skip
the borrow-from entirely, and go on to the next step in the procedure.  This repair
generates a bug that 1s named Borrow-No-Decrement-Except-Last, because it only
executes a borrow-from when it is unambiguous where to place the decrement, and
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that occurs only when the borrow originates in the last possible column for borrow. To
sum up, three different repairs to the same impasse generate two different bugs and a
correct version of subtraction.

It was mentioned earlier that students’ bugs are not like bugs in computer
programs because students’ bugs are unstable. Students shift back and forth among
bugs, a phenomenon called bug migration. The theory’s explanation for bug migration
is that the student has a stable underlying procedure, but that the procedure is
incomplete in such a way that the student reaches impasses on some problems. The
student can apply any repair she can think of. Sometimes she chooses one repair, and
sometimes she chooses others. The different repairs manifest themselves as different
bugs. So bug migration comes from varying the choice of repairs to a stable,
underlying impasse. In particular, the theory predicts that the three repairs just
discussed ought to show up as a bug migration. In fact, they do. Figure 2 is a verbatim
presentation of a diagnostic test showing the predicted bug migration.

DA ¥4 4 10 12 LI ¥
A;’/z’ B/s/))/ C yos 0/564 E1o/ F/z’/G 900
.43 - 23 . 70 . 88 7 39 8 6 8 8
3 9 2 7 3 9 1 8 7 7 3 1 9 2 2 2
H | J 57 s " L Me 0N
K/
716 311 8 85 /5/;/9/ 8 355 ;’o/o//
598 21 4 205 2697 3 . 4°3
118 g 7 6 8 0 2 90 4 8 3 5 2 6 0 6 8
2
N/‘° 15 lo] [- I 10 Q "2 R 2 S s 12
wH g sar gog  Fog  yoorg  Jaf
. 6 0 7 - 35 4 103 2 1 4 - 136
2 4 18 6 0 2 4 00 6 6 0 9 2 0 8 6 1 6
Figure 2

Verbatim presentation of a test by subject 8 of class 17 showing three repairs to the
same impasse. On problems D, E and G, one repair generates the bug
Borrow-No-Decrement- Except-Last. On problems H and [, another repair generates
the correct borrow-from placement. On problems K, M, N, P, Q, R and §, a third
repair generates the bug Always-Borrow- Left.  There are slips on problems D, P, Q
and S.
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This discussion of the bug Always-Borrow-Left has illustrated many of the
important claims of the theory. First, procedures are the result of generalization of
examples, rather than, say memorization of verbal or written recipes. There are
accidental, visual characteristics of the examples, viz. the placement of the decrement,
that a non-example source of instruction, such as a verbal recipe, would not mention.
The appearance of these visual characteristics in the acquired procedure is evidence
that they were learned principally by induction (sce VanLehn, 1985b, for a full defense
of this idealization).

A second claim is that learning occurs in the context of a lesson sequence, and
that many bugs are caused by testing students who are in the middle of the lesson
sequence on exercise types that they have not yet been taught how to solve. Perhaps
such bugs should be weclcomed as signs of a healthy learning process that may
eventuate in a correct understanding of the procedure. Such a view of bugs is radically
different from the traditional view, which considers bugs to be "bad habits” that need
to be remediated. On the other hand, the bad-habit view may be appropriate for older
students, some of whom have bugs long after the lesson sequence has been completed
(VanLehn, 1982).

Another set of claims involves the notions of interpretation, impasses and
repairs. A particularly important hypothesis is that repairs occur at the meta-level and
change only the state of the interpretation. This hypothesis predicts the existence of
bug migration. In fact, this prediction was made before any evidence of bug migration
had been found (Brown & VanLehn, 1980). The surprising success of this forecast and
the fact that it is an almost unavoidable consequence of the hypothesis provide strong
support for the theory.

4, Felicity conditions: Further specification of the learning process

Not much as been said yet about the learning process, except that it is inductive
and that it occurs in the context of a lesson sequence. Saving that learning is inductive
is saying only that the input to the learning process is examples as opposed to, say,
written recipes for performing the procedure. This section describes the particular
kind of inductive learning that occurs in this domain,

Before beginning, itis important to establish the level of aggregation that will be
employed. As Pylyshyn (1984), Newell and Simon (1972) and others have pointed out,
it is important to characterize the behavior under study at a level of detail thatis
neither too fine, so that the important regularitics are lost in a whelter of gratuitous
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! details, nor too giuss, so that all the interesting behavior occurs “inside” the primitive
N components of the description. A practical difficulty has determined the level of
{-' aggregation employed in the present investigation, but the choice has proved a
i . profitable one nonetheless. The difficulty is that learning is a long, complicated
} process in this domain. Consequently, the learning process must be described at a high
level of detail. One way to indicate the level of aggregation of a process is to specify its
-5 "grain size,” which corresponds to the smallest observable actions admitted under that
) level of analysis. For instance, in the earlier sections’ description of test taking, the
» smallest observable action is writing a single digit. A finer-grained process would
'T:: predict how the student writes a digit, i.e.. the shape, sequence and timing of writing
'-2; strokes. A larger grained process would predict, say, only the answers and not the
i sequence of writing actions used to produce them. Although the test-taking process
can use digit-writing as its grain size, the learning process must be modelled at a much
EI: larger grain size. Students engage in so many different kinds of activities while
~. learning procedures that a fine-grained model for all those activities would be
i.: inscrutably complicated or hopelessly incomplete. For instance, a process model that is
.f.‘ detailed enough to account for the second-by-second learning behavior of a student
. being tutored would probably be inadequate to account for learning from textbook
Y examples or from watching other students working problems at the blackboard. The
"' variety of learning activities in this domain makes it mandatory that the theory employ
_ a large-grained process to model skill acquisition.
The grain used in this theory corresponds, roughly speaking, to a single lesson®.
. One cycle of the learning model consist of taking in a lesson and a procedure, and
P producing a procedure. The procedures correspond to the students’ procedural
knowledge before and after the lesson. Actually, the model usually produces several
B~

M post-lesson procedures. This amounts to the prediction that students may learn
N different things from the lesson, and so different students will acquire different
A procedures from the lesson even if they all started with the same pre-lesson procedure.

R
S *Actually, by "lesson,” I mean the introductory lesson for a topic and the drill lessons that accompany it.
K Often, these are grouped together as chapters or units in a textbook. They are quite clearly marked in
. the textbooks and the teachers” guides. T'll continue using the term "lesson™ to refer to such collections
. of related activitics.  Also. I'm ignoring the spiralling structure of clementary mathematics curricula,

o where the previous year's lessons are reviewed before introducing this year's lessons.
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:\ Although the grain-size of the theory was set large for practical reasons, it was a
’\ providential choice. As will be shown in a moment, there are important regularities at
_n this level of aggregation that have escaped the notice of educators and cognitive
en scientists, perhaps because they have viewed learning in too microscopic a way.
A
-{3 With the level of aggregation set, the central question can be addressed: what
“ kind of inductive lcarning is taking place in this domain?
Y In principle, an inductive learning machine can be incredibly powerful (if it is
4}’ given the right predilections for simplicity, representation, and so on). For instance, it
N would not be difficult to build an inductive learner that could learn all of subtraction
:: from a single example, provided the example were long enough to display all the
' - various subskills of subtraction, e.g.:
::'." a9 aly 5 4
5617 52'3 5615047327
. -1081781581816115
P 4993454033231212
-
"g Donald Smith’s learner (Smith, 1982) could probably handle this task with only a few
"4 modifications. However, children are not such powerful inductive learners. Their
N learning is some restricted form of induction. The job is to find out what those
restrictions are.
.‘ One way to uncover the limitations on children’s inductive power is to examine
e the difference between curricula that are learnable and those that are not. Before
o embarking on this comparison, it is important to clarify the learnability criterion. In
e this context, learnability is not meant to be a precise criterion. In particular, it is not
ﬁ meant to imply that all students finish the curriculum with a correct version of the skill.
- For instance, current mathematical curricula are learnable. Although not all students
K : finish with a perfect understanding of the target skill, almost all students seem to learn
¢ something even if it is an incomplete or misconceived version of the skill. In contrast,
- the single-example curriculum mentioned above is unlecarnable, because few students
‘.’ would learn anything from it, unless a teacher broke the example into parts and taught
e each part separately. But that would just convert the unlcarnable single-example
& curriculum into a traditional, learnable, multi-example curriculum. Roughly put, a
. learnable curriculum is one from which almost all students can learn a general
approximation of the target skill.
@
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' ,., L1. Solving two columns L6. One borrow in three columns

L2. Handling partial columns L7. Two adjacent borrows

;7_. : L3. Regrouping L8 . Borrowing from one zero

_ j~“_:'j, L4. Simple borrowing LS. Borrowing from multiple zeros

b L5. Solving 3 columns; no borrows

1 A

! v-..\ A

. Figure 3

" A nine-lesson sequence. The topics of each lesson are listed in the lower part of the
'Z::j figure. Typical examples for each lesson are shown in the upper part.

:\:_:j Learnability is an objectively testible criterion, even though the learnability
“~:ji "facts” employed below are not the result of experimentation. Such experiments
o8 would be difficult and perhaps even immoral. The following discussion is intended to
motivate and clarify certain hypotheses. [t is not intended to be a convincing
demonstration of their validity.

::Z:j Figure 3 shows a subtraction curriculum from a popular American textbook
e series, published by Heath, and used by some of the schools we studied (VanLehn,
o 1983) It certainly qualifies as a learnable lesson sequence. Suppcse one took all the
""Iji examples used in this lesson sequence (there are probably thousands, if one counts the
EAP . . ..
3 examples the teacher puts on the blackboard), randomized their order, and divided
“rad them into lessons of the same size as the original Heath lessons. This new curriculum

- would have cxactly the same content and pacing as the Hcath curriculum, but the
s ‘ examples would be in a different order, a random one. This curriculum would

e certainly be unlearnable. So, under one ordering, Heath's, the examples are learnable,
but under another ordering, they are not learnable. Therefore, whatever the students’
@ learning process is, it relies crucially on the ordering of the examples.

This is an
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important conclusion, for it eliminates a large class of potential hypotheses about the
learning process, inciuding most proposed models of natural language acquisition and
of concept formation (see¢ VanLehn, 1983, for a brief review, and Cohen &
Feigenbaum, 1982, for a longer one), and most induction algorithms from recursive
function theory (e.g., Gold, 1967; Angluin, 1980).

Imagine the Heath curriculum laid out as a long sequence of examples with
marks that partition the scquences into lessons. Suppose one holds the sequential
order of the examples the same, but moves the lesson boundaries around. For
instance, a "lesson” in such a curriculum might have examples from Heath's L7 in its
first half (i.e., two adjacent borrows: 542-168) and examples from L8 in its second half
(i.e, borrowing across zero: 304-126). The only way for a teacher to make such a lesson
sequence learnable would be to tell the students at the half-way point that a new
subskill, borrowing across zero, is going to be introduced. This would, of course,
convert the curriculum back into the Heath curriculum. If such shifted-lesson
curriculum were taught straight, without the elaborations that would convert it back
into the Heath curriculum, then it would be unlearnable. From this illustration, we can
infer that learning depends crucially not only on the ordering of example, but on how
the examples are partitioned into lessons.

Intuitively, the problem with the lesson that mixes L7 and L8 is that students
will try to unify the ideas taught in the first half of the lesson with the ideas taught in
the second half and end up with a confused mish-mash. because those two subskills
have little in common. If this intuition is correct, then students can learn at most one
subskill per lesson. Of course, the folklore of teaching endorses this by advising the
teacher to teach slowly, one "topic” or “step” per lesson. [f more than one topic must
be taught during the alotted class time, then the teacher should divide the class time
into mini-lessons, teach one concept per mini-lesson, and make it clear to the students
where one mini-lesson ends and the next begins.  Such advice about teaching is
designed, | suggest, to accomodate a certain characteristic of students’ learning
processes, viz., that they learn at most one topic per lesson.

Because the material being learned in this domain is procedural, this key
hypothesis will be rephrased as students learn at most one subprocedure per lesson. The
question of what kind of learning occurs in this domain has been sharpened. Next we
necd a precise characterization of a subprocedure.
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NS L1. Solving multiple columns L4. Simple borrowing
i L2. Handling partial columns L5. Borrowing from zeros
! L3. Regrouping
o
-} - Figure 4
~3
) A very short lesson sequence.

X

:* One approach to finding a definition of subprocedure is to find a learnable
"f;. curriculum that contains so much material per lesson that one can assume that the
.' lesson “fills” the subprocedure to capacity. Such a lesson sequence would help one see
v, the limits on what a subprocedure can be. Judging from a survey of textbook series,
; probably the shortest subtraction lesson sequence that is learnable is the one shown in
‘ -3f figure 4.

Consider students who traverse this curriculum, and have the luck to make the
T right choices at every point where the lesson sequence is ambiguot . They will have

f:‘; correct, albeit incomplete procedures after each lesson. The new n aterial added to
1:1 their procedures will correspond to subprocedures. Figure 5 displays the appropriate
procedures as augmented transition nets (ATNs). PO is the assumed initial state of
knowledge. The other Pi correspond to the procedure after L& The labels on the arcs
stand for actions. Although arcs also bear conditions that say whether or not an arch
o should be traversed, those conditions are not shown in the figure.
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PO is a procedure for solving single-column problems. It has a single
non-trivial arc, labelled "Ans«Top-Bot,” which stands for an action that subtracts the
two digits in the column and writes their difference in the answer. (Top. Bot and Ans
stand for the top. bottom and answer places in a column.) P1 is the procedure that
results from taking lesson L1. The subprocedure added by L1 consists of an arc
bearing the action NextColumn. This addition makes Pl able to iterate across
columns, subtracting them. The subprocedure added by L2 is an arc to answer partial
columns. The subprocedure added by L3 is an arc that calls Regroup and a new level
to define the regrouping network. T'he subprocedure added by L4 is an arc that callsa
new level, Borrow, that does borrowing from non-zero digits. LS completes the
procedure by adding a new level, labelled B.f.zero, that does borrowing from zero. In
the ATN notation, it becomes quite clear that all the subprocedures share the
characteristic that they add just one new "branch"” or path to the procedure. [n that
notation, a subprocedure is an arc, plus an optional new level to define the action
called by the arc, where the new level may not have branches.

This definition of "subprocedure” depends on notating procedures in a certain
representation, ATNs. There doesn’t seem to be any way around notating procedures
in some way. However, the definition can be made more general and perspicous if
procedures are notated in first order logic. This is similar in spirit to analyzing them at
the knowledge level (Newell, 1982). Branches in the flow of control in a procedure
become disjunctions (ORs) when the procedure is notated in first order logic. The
one-ATN-arc-per-lesson constraint becomes one-disjunct-per-lesson when procedures
are analyzed at the knowledge level.

The most direct way to test the one-disjunct-per-lesson hypothesis is to
construct a curriculum whose lessons sometimes introduce more than one disjunct per
lesson, then sce if students can from it in their ordinary way. In some cases, such as
merging lessons L4 and L5 in the above curriculum, I believe that the students will
have a difficult time but they will manage to learn something. Would such a result
refute the hypothesis? The answer depends on the ontological status one attributes to
the hypothesis. | doubt that students are "hardware limited” in such a way that they
simply cannot learn a lesson that introduces more than one disjunct. On the other
hand, | doubt that they employ a uniform induction process that can gracefully learn
subprocedures of any number of disjuncts, given enough time and willpower.
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These beliefs follow in part from the fact that distinctly different induction
algorithms are required for multi-disjunct-per-lesson learning than for
one-disjunct-per-lesson learning, and that the multi-disjunct algorithms have much
worse combinatorial properties. To use Brachman and Leveque’s (1984) apt phrase,
there is a computational cliff between one-disjunct-per-lesson learning and
multi-disjunct-per-lesson learning. The existence of such a cliff is well known. There
are a variety of formal results that show that induction with disjunctions is hard or even
impossible, while induction of disjunction-free concepts can be achicved quite
economically (Berwick, 1983: Angluin, 1980). One such result is particularly
interesting, because it refers to concepts expressed in first-order logic, which is the
notation used for knowledge level analysis. [t can be shown (VanLehn, forthcoming-b)
that there are exactly three constructions in first order logic that cause computational
cliffs (put more technically, they cause the number of expressions consistent with any
finite set of examples to become infinite):

1. Disjunction
2. Function nesting (e.g., f{lg(x)) where fand g are functions)
3. Quantifier scoping (e.g., For all x, there existsay ...)

Suppose that computational cliffs cause the teacher-student cultural system to
evolve conventions that help the student climb the cliff, so to speak. The conventions
dictate that the teacher gives the student certain kinds of hints whenever the students is
faced with a computationally intractible induction task. The convention not only leads
the student to expect such hints, but more importantly, it tells the student how to
interpret them. Because the hints, under the interpretation of the convention, provide
extra information beyond the mere examples, the student can employ modified,
quasi-inductive learning processes that can acquire the troublesome constructions.
These learning process remain tractible because they utilize extra information that pure
induction does not. For reasons that will be discussed shortly, this conjecture will be
called the felicity conditions conjecture, and the conventions that have evolved to
facilitate learning will be called felicity conditions.

If the felicity conditions conjecture is right, then there should be felicity
conditions for disjunctions, function nesting and quantificr scoping, as these are the
constructions that cause computational cliffs.  One-disjunct-per-lesson is the felicity
condition for disjunction. What about the other two?

The cliff caused by function nesting is due to the fact that when functions are
nested, the intermediate results are not constituents of the examples. Without being
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J able to see the input-output rclations of each function in the nest, it is difficult to

';I:ZET induce them. To put it intuitively, if you are given few number triples, such as [1,2,2]

L3 and [5.1,5], and asked to induce what the numerical relationship among the numbers is,

then the task is trivial when you are guaranteed that expressing the relationship does
not require nesting arithmetic functions. For the triples just given, the only answer is

Z: x*y =z (and its logical equivalents, of course). However, if nesting is allowed, then the
'-"37 answer could be x2+y2=zz+ 1. If you could see all the intermediate results, namely x>,
) ' y*. x*+y*, and 7 in the latter case, and you were informed that a// the intermediate
:}:f::‘; results were listed in the example tuples, then the problem would once again be trivial.
el

\ Is there any evidence of a felicity condition for function nesting in mathematical
" curricula? As it turns out, subtraction does not employ any hidden, intermediate
s results. Scratch marks are used instead. However, adding three or more numbers does
R require hidden intermediate results. If it were learned by induction, then the learner
o would have to climb a computation cliff in order to discover the appropriate nesting of
VAR functions. Multi-addend addition is an appropriate place to look for a felicity
.;'_'"-." condition concerning function nesting.
:_'-;Z‘:‘_ Textbooks usually teach three-number addition in two adjacent lessons. The
first lesson uses an ad hoc notational format that provides a place for the intermediate
e result to be written down. Figure 6 shows some of the formats used. Because the
B intermediate results are made visible in the examples, the students can induce a
.:?}_ three-number procedure without climbing the computational cliff. The next lesson is
o specially marked. In fact, most textbooks title the lesson "A shorter way to add." Such
labels, plus the teacher’s explanations of course, inform the learner that this lesson will
' not be an induction lesson. Rather, the same old stuffis going to be accomplished in a
ncw way by suppressing some of the writing. That is, they are going to hidea
:::;:'_ previously visible intermediate result by creating a nest of two functions that are
;;:I;; already present in the procedure. The combinatorial problems involved in doing this

8., are trivial. An impossibily difficult induction problem has been converted into two
\ simple problems by adopting a convention. Normal lessons always "show all the
':‘ work.” Only specially marked "hide work™ lessons introduce function nests. This
~;. feticity condition is called the show-work convention. [f it is an accurate

! characterization of the teacher-student system, then special formats and special

'::fz hide-work lessons should be found whenever a procedure employs a hidden
\’: intermediate result. Of 14 cases over 6 textbooks, there were only 4 violations of the
NN show-work condition. Figure 7 shows some illustratory formats.
b
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3+2 + 4 = 3+2 + 4 =
+ 4 = 5 + 4 = 9

3 3

3 2 3 2

+ |2 + 4 + |2 + 4

5 9

Figure 6
Show-work formats for multi-row addition.
Problems are shown unsolved on the left and solved on the right.

Is there a felicity condition for quantifier scoping? Quantifier scoping is rarely
used in mathematical procedures. I've only found one case, namely the definition of
the concept of "like terms,” which is employed in high school algebra. Textbooks use a
special lesson for this concept that includes negative examples. (Negative examples are
cases that the target concept should not match, whereas normal examples—also called
positive examples—are cases that the target concept should match.) Such lessons are
the only ones | know of that employ negative examples. There is probably a felicity
condition involved, but it is best to collect more cases before attempting to state it
precisely.
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2 3 2 3
X 6 X 6
1 3 8 18
+ 120
1 3 8
6 _ 3 6 _ 6FT2 3
16~ 8 16 16 T 2 8
tens ones tens ones
—— —_——
2 9 9
+ 1 8 + 1 8
4 7 17
47
Figure 7

Regular formats on the left; show-work formats on the right.

In short, it seems that the felicity-condition conjecture holds for mathematical
skill acquisition.  For each computational cliff, there is a felicity condition.  This
remarkable three-way convergence of evidence is a major picce of support tor the
felicity-condition conjecture.

Some informal evidence of the existence of felicity conditions has been
presented. But why should they exist? What would explain their existence? There are
several background assumptions that, taken together. imply that it s no acardent that
felicity conditions for skill acquisition exist. They also give felicity condinions ther odd
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[t is quite common, especially in Al to assume that skill acquisition consists of a
combination of communication and compilation. The tcacher somchow
communciates a skill to the students, and the students somchow compile their received
understanding into a smoothly operative form as they practice. To put it differently,
learning = communication + compilation.  There have been many studies of
practice-driven compilation (e.g.. Andcrson. 1983: Rosenbloom & Newell, 1981).
Complementary to those. this study concentrates on the communication half of the
equation.

Assuming skill acquisition involves a form of teacher-student communication,
then it ought to be like other forms of human communication in that the participants
followed certain conventions that make the communication smoother and more
reliable.  Such conventions have been extensively studied in natural language
conversations, where they are often called felicity conditions (Austin, 1962), or
conversational postulates (Gordon & Lakoff, 1971), or conversational maximes (Grice,
1975). A wvpical linguistic felicity conditions is: In normal conversation, the speaker
uses a definite noun phrase only if the speaker believes that the listener can
unambiguously determine the noun phrase’s referent (Clark & Marshall, 1981).
Typically, neither the speaker nor the hearer is aware of such constraints. Yetifa
conversation violates a felicity condition, it is somehow marked, c.g., by the speaker
appearing sarcastic or the hearer misunderstanding the speaker. Although felicity
conditions for conversations probably are not identical to felicity conditions for skill
acquisition, it is apparent that they share the secondary characteristic that the
participants in the communication are not aware of the rules they are following.
Teachers and textbook authors probably do not consciously realize that the lessons
they write obey, e.g., the one-disjunct-per-lesson constraint. They strive only to make
the lessons effective. The students do not realize that the "obvious” interpretation of
the lesson is the one-disjunct-per-lesson intcrpretation.

Part of the reason for believing that natural language is governed by
conventions is that humans have been talking to each other for so long that cultural
evolution, or perhaps even biological evolution has had ample time to develop
constraints that make tend to make communication more c¢tlicient. The same (weak)
reasoning applies to teacher-student communication, for humans were probably
teaching other humans how to do things long before they began talking to each other.
Our culture/species has had sufficient opportunity to evolve conventions on how to
teach and how to learn. Perhaps efficient customs for teaching/learning impart a
survival advantage to a species.
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o 5.  Methodology
- Most of the important claims of the theory have been presented. To summarize
. .
: them briefly, they are:
P
v e When students reach an impasse while solving a test exercise, they repair.

- Repatrs change the state of the interpretation, but not the test exercise or the
b, procedure.

e Students induce at most one subprocedure per lesson, where the definition of

I s

- "subprocedure™ embodies the one-disjunct-per-lesson hypothesis, the
3¢ show-work hypothesis, and several other hypotheses.

e One-disjunct-per-lesson and the other constraints on induction are probably
-_J deeply ingrained cultural conventions, and are thus called felicity conditions.

J The first two are bona fide hypotheses of the theory, while the third is a conjecture that
Aot would take a completely different sort of theory to test. The hypotheses have been
e illustrated with bugs and other empirical material. However, these facts were offered
only as a way to explain the hypotheses, and not as validation for them. This section
describes the validation method.

aoa I ]

Logically, all one needs to validate a theory is a formal statement of the theory's
hypotheses, a way of deriving the empirical entailments of the hypotheses, and a way
of testing those predictions. The validation is made a bit more elaborate in this case
because the theory has a large number of hypotheses. There are 31 major hypotheses,
and several more minor ones. Even if the best theorem provers were used, it would

R
i Tely

probably not be possible to generate predictions directly from the hypotheses. An
{r; intermediate stage is used. A computer program, Sierra, has been built to instantiate
M ! the hypotheses in a form that can efficiently generate predictions (see VanLehn, 1985a,
Q

for a description of Sierra). Sierra simulates the learning and problem solving
processes hypothesized by the theory. When given (1) a formalized version of the
o lesson sequence taken by some students and (2) a formalized version of the diagnostic
test taken by the students, Sierra predicts what the students’ bugs will be.

Logically, it is necessary to prove that Sierra computes the same input-output
=X function as the hypotheses. This is a familiar, but difficult task in computer science:
- given a set of formal specifications and a program, verify that the program meets the
specifications. Although the technology of program verification is improving steadily,
it 1s not sufticiently developed that a formal verification of Sierra can be written,

.......
------
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5 Informal techiques have been used. For instance, whenever possible, the program
o . .
_3'{:,», simple generate-and-test algorithms where the tests correspond to hypotheses of the
e theory. This slows the program down, but makes it easier to see that it is generating

what the hypotheses say it should be generating.

The major cmpirical test of the theory is its ability to predict the occurrence and
. non-occurrence of bugs. More specifically. Sterra generates a set of predicted bugs,
) and the students produce a sct of observed bugs. [Ideally, every observed bugisa
predicted bug, but not vice-versa. Even with an ideal theory, one would not want

'f.i'_i every predicted bug to be an observed bug. Because only a finite sample of the world’s
< .
;:{ students have been tested, one would not expect every possible observed bug to show

up in the sample. So the theory should predict some bugs that haven't yet been
observed. To put it more formally, if P is the set of predicted bugs and O is the set of
SN observed bugs, then

r 1. ONP should be large,
2N 2. O-P should be small, and
24 3. P-O should be non-empty. Itis the prediction of future

ey observations.

These criteria have a loophole. Consider a trivial theory that generates a huge
set of predictions, e.g., all logically possible procedures. Thus, OCP and the trivial
theory meets all three criteria. However, the theory is clearly empirically inadequate

asterick. In the judgment of native speakers, such sentences would never occur in
written or spoken language. That custom has becn adopted here. Srar bugs are bugs

T3 because it predicts bugs that probably would never be observed. It should be
penalized for such overgeneration. However, this requires somehow deciding which of
its predictions would never occur, and that is necessarily a non-objective judgment. All
~ generative theories have this same problem. In generative theories of grammar, the
: custom 1s to call ungrammatical sentences “star” sentences, and label them with an
A

that are so implausible that, in the opinion of experienced teachers and diagnosticians,
-*_'.;‘;ﬁ the bug will never occur. Often, it is quite clear when a bug is a star bug. For instance,
'-‘_.“,fjj_ Sierra has occasionally gencrated a procedure that performs all ty pes of borrowing with
;I'::;I perfect competence, yet it leaves the answer to the problem blank. This unlikely
;-: Juxtaposition of competence and incompetence makes this behavior a star bug.

r As an illustration of this kind of empirical testing. fizure 8 shows the bug counts
:-E for a 1147-student sample of subtraction students. The students (and Sierra) used the
‘x Heath subtraction curriculum (Dilley, Rucker & Jackson, 1975) and a similar
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curriculum from Scott-Foresman (Bolster et al.,, 1975). There were 79 observed bugs,
of which 22 (28%) were predicted by the theory. The remaining 57 bugs should have
been predicted by the theory. However, they are not a serious problem for several
reasons. First, some of the 57 bugs could be generated by the theory if the model were
given lesson sequences other than ones from Heath and Scott-Foresman. It is indeed
plausible that some students transferred into our sample schools from schools that use
different textbook series. However, we did not have access to the students’ educational
history and therefore could not ascertain all the lesson sequences that the students may
have learned from. We have conservatively chosen to evaluate the model using only
lesson sequences that we are certain were administered to the subjects.

There is a second reason why the predicting only 28% of the observed bugs is
not a serious problem. It is simple to relax the theory’s hypotheses in such a way that
significantly more observed bugs are predicted. Under one relaxation (Brown &
VanLehn, 1980), 48% of the observed bugs are predicted. Under another (VanLehn,
1985b), 85% are predicted.  However, such relaxations also cause the theory to
generate more star bugs. Currently the theory predicts just three star bugs. The
hypotheses have been adjusted to reduce the number of star bugs to a minimum. The
reason for taking this stand is that more than one learning process may be going on in
this domain, and some of the 57 bugs could come from those other processes.
However, augmenting the theory with another learning process will not block the
generation of the three star bugs.

Observed Predicted Star
Figure 8

Observational adequacy circa March, 1983
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[t should be obvious that merely counting the observed bugs and star bugs
generated by the theory is not a revealing measure of its empincal adequacy,
particularly when one can "trade” observed bugs for star bugs and vice-versa. Itis
impossible to tell from the bug counts whether the theory is terribly wrong or only
slightly askew. Worse, one can not tell whether individual hypotheses are right or
wrong. One can't tell, for instance, whether one-disjunct-per-lesson is an accurate
characterization of students’ learning. The overall observational adequacy of the
theory just doesn’t suffice to answer the really interesting questions.

Ideally, we would perform a perturbation analysis of the theory. As there are 31
major hypotheses, and we want to assign empirical credit or blame to each hypothesis
individually, suppose we form 31 new scts, each with a single hypothesis deleted (i.e.,
31 sets of 30 hypotheses each), then revise Sierra appropriately and generate 31 new
sets of predictions and their corresponding bug counts. Better still, alternatives to the
various hypotheses would be substituted into the set of 31, and the resulting
observational adequacy would be measured. Such an analysis would allow us to assess
the empirical responsibility of each hypothesis and contrast its performance to
competing, alternative hypotheses.

Unfortunately, the hypotheses of the theory are not independent. In general,
one can't just remove a hypothesis or substitute an alternative hypothesis without also
modifying several other hyptheses in order to accomodatc the change. This oes not
make a perturbation analysis impossible, but it does make it more complicated.

A technique has evolved for doing such analyses. VanlLehn, Brown and Greeno
(1984) call it competitive argumentation, and show how it can solve many of the
methodological problems that plague current cognitive science. Most competitive
arguments have a certain "king of the mountain™ form. The argument shows thata
hypothesesis acceunts for certain facts, and that certain alicrnative hypotheses, while
perhaps not without empirical merit, are flawed in some way. That is, the argument
shows that its hypothesis stands at the top of a mountain of cvidence, then proceeds to
knock the competitors down. Perhaps the best way to describe competitive arguments
is to present an example of one.

Earlier, an cxplanation for the bug Always-Borrow-1 ¢ft was presented. Part of
the explanation involved how students acquired a description of which column to
borrow from. The claim was that, given two-column problems as cxamples, students
would induce that the column to borrow-from is both the leftmost column in the
problem and the column that is left-adjacent to the column causing the borrow.
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K;{ Because both descriptors are included, the student reaches an impasse on three-column
A borrowing problems. For the problem
P
'.:‘ & 624
“b -1567
:. the hundreds column is the leftmost column and the tens column is the left-adjacent
WS column. On this problem, the induced description is unsatisfiable. This causes an
', impasse. One repair, 1gnoring the left-adjacency descriptor, gencrates
-' Always-Borrow-Left.  Another repair, skipping the decrement entirely, generates

Borrow-No-Decrement-Except-Last. A third repair, ignoring the .. ft-most descriptor,
generates a correct subtraction procedure.

However, why should a student include both descriptors in the description? A

P plausible alternative hypothesis is that students only include enough material in the
;’.ji borrow-from column’s description to differentiate that column from the others. This
':L; kind of induction is called discrimination. The other kind of induction, which puts
e. both descriptors in the borrow-from column’s description, is called generalization
YA . . .
;;“«.‘ (Langley et al., 1980). So there are two competing hypotheses. As just mentioned, the
D . . . . .
:}i_‘_ generalization hypothesis generates three bugs, all of which occur. It also predicts,
“-Z-;; correctly, that there will be bug migrations among the three bugs. Let's see what the
i discrimination hypothesis predicts.

-'I-l‘

o . . .. . . gy -
‘rx Under the discrimination hypothesis, some students will induce left-most as the
f;:;:: discriminating feature of the borrow-from column, and other students will induce
‘N left-adjacent as the discriminating feature (of course, there could be other
o discriminating features, but just two will be used to keep the illustration simple). A
AN ) ) .

N student who thinks the column to borrow-from is the left-most column will have the
& . :
\ﬁk bug Always-Borrow-Left. A student who thinks the borrow-from columnis
:‘,:_\ left-adjacent to the borrow-into column will have a correct subtraction procedure.
(> Neither student will reach an impasse. Their descriptions are always satisfiable and
MR unambigouous.  Consequently, there is no way to gencrate the third bug,
i Borrow-No-Decrement-Except-Last, which skips the borrow-tfrom action in certain

= . . . .

.r_\;-f circumstances.  Moreover, there is no way to generate a bug migration.  So the
.-- discrimination hypothesis can only generate two of the four predictions that the
A generalization hy pothesis makes.
1taal]
S . T .
0 Morcover, the predictions that the discrimination hypothesis misses are not
3‘_& generated by other mechanisms in the model.  The onlv known derivation of
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Borrow-No-Decrement-Except-Last and the bug migration is the deriviation that
requires the generalization hypothesis. Thus, some students must be employing
generalization.  Other students could be employing either generalization or
discrimination. In order to totally defeat the discrimination hypothesis, it would be
necessary to show that discrimination generates on/y star bugs. This cannot be done. [t
has already been shown that discrimination generates some observed bugs.

However, there is weaker argument against discrimination. It is based on
parsimony. Generalization alone covers all the data. Discrimination alone does not
cover all the data. so that hypothesis is out. However, discrimination is consistent with
some of the data, so it might be that some students generalize and other discriminate.
The generalization-plus-discrimination hypothesis adds no additional coverage when
compared to the generalization hypothesis, but it does add an additional mechanism
(and a parameter of between-subjects variability, which raises the issue of explaining
why some students generalize and other discriminate). By Occam’s razor, the simpler,
one-mechanism hypothesis is preferred. The generalization hypothesis wins the
compeltitive argument.

With this illustratory argument in hand, several methodological points can be
made. First, there is no a priori source of competing hypotheses. In this case, the
hypotheses concern concept formation, on which there is a large literature containing
many hypotheses (see Anderson, Kline & Beasley, 1979. for a comparative review).
Discrimination and generalization are perhaps the two most important hypotheses. A
full-fledged competitive argument would contrast all the hypotheses mentioned in the
literature. Of course, there are infinitely many hypotheses that haven't yet appeared in
the literature. Logically, the argument is incomplete until they too have been included.
But this is just the normal incompleteness of empirical scicnce. The best one can ever
do is to show that the present hypotheses is the best of the known hypotheses. Later, a
better hypothesis might be invented. Indeed, the hope is that one will be discovered.

It was announced at the outset that one goal of the present researchis a
parameter-free learning theory. The preceding argument indicated that the theory has
at least one parameter, namely, the vocabulary of visual features, such as left-most and
left-adjacent, that are used to build descriptions of locations in exercise problems.
These visual features are primitives, in that their definitions are not constructed by the
lcarning model. Instead, the theorist chooses which primitives to employ, then writes
the code that defines them. Besides primitives for visual descriptions, the theory
requires primitives for representing writing actions and arithmetic facts (e.g., both "<"
and " <" are provided as arithmetic primitives). The sct of primitives is the theory's
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only parameter*. So the theory turns out to be a one-parameter theory. It is hard to
imagine a cognitive model that doesn’t have primitives of some kind. [ suspect,
therefore, that all cognitive theories will have at least one parameter, the setof
primitives they employ. So a zero-parameter theory is probably impossible. However,
one can try to arrange the theory so that it is relatively insensitive to the choice of
primitives. Indeed. several competitive arguments are decided by the desire to curtail
the sensitivity of the theory's predictions to its paramcter values.

Arguments generally nced to take certain hypotheses as givens. For the
argument given above, it was assumed (1) that lcarning was inductive, (2) that impasses
occur when descriptions are unsatisfied or ambigouous, and (3) that impasses are
repaired in certain ways. It is important to check for circularities in these assumptions.
It would be incorrect for the argument supporting hypothesis A to assume hypothesis
B. and the argument for B to assume A. Moreover, whenever new evidence is
discovered that changes the conclusion of an argument, all the arguments that depend
on its conclusion have to be reexamined to see if they still go through. Maintenance of
the argumentation structure became such a significant problem that a computer
program, the Xerox Notecards system, was enlisted to help. VanlLehn (1985c¢)
describes the system and how it was used.

If most hypotheses depend on other hypotheses for their support, then there
must be a few hypotheses that don’t depend on any other hypotheses. [t is almost
impossible to justify such hypothescs in any rigorous way. Such hypotheses are called
assumptions. The induction hypothesis is one. It, and the other assumptions, are
supported by informal observations and, indirectly, by the sucess of the theory asa
whole.

The logical structure of the theory is an acyclic directed graph (i.e., tangled
hierarchy, partial order). The nodes are the competitive arguments. Node A depends
on node B if the A argument takes B's conclusion as a given. The assumptions are
nodes that do not depend on any other nodes. This logical structure 1s a familiar one to
Al researchers. [t is sometimes called a data dependency net or a dependency graph.
A truth maintenance system (de Kleer's ATMS, in press) may be useful in helping
manage the argumentation, with the theorist playing the role usually performed by a
theorem prover or other problem solver. Such sophisticated support for theory
development may be extremely valuable in coping with the complexity of validating a
theory of this size.

* Actually. there is a sccond parameter. a grammar for the syntax of the exercise problems. Itis used to
define primitives like "column.” Sece Vanl.chn (1983) for detatls.
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-. Cognitive theories of skill acquisition, and cognitive science in general, are
?Z",\ entering a new phase in which such technology for supporting theorists will become
'-" increasingly important. In the carly years of Al, it was considered ar impressive
- accomplishment to get a machine to learn a simple skill, such as recognizing towers and
:C;'. arches made of toy blocks. The mere fact that the machine could perform the skill
\ acquisition was taken as an argument that the processes it employed were plausibly the
:J ones that humans used. Standards escalated in later years. As protocol analysis
' became common, psychological claims about cognitive processes had to be
,-'_ﬁ accompanied by a detailed match between the machine's performance and the
.:Z;I subject’'s performance. Learning theories temporarily disappeared during this era,
:-ZZ because protocols of subjects learning complex skills are intractibly long. However,
. these two earlier eras were of fundamental importance, even though they did not yield
scientifically adequate theories of skill acquisition, because they developed the
j:'.: computational and methodological tools that the present era uses.
L
Y

Nowadays, theories of skill acquisition are reappearing. There are at least three
theories presently under developement: ACT (Anderson, 1983), SOAR (Laird,1983;
'Zﬁ‘ Rosenbloom, 1983: Laird, Rosenbloom & Newell, 1985) and the theory described
here. Competitive argumentation will become increasingly important in order to to
compare these theories. Indeed, competitive argumentation seems necessary just to cut
through the jargon and see whether or not two theories are actually the same. To put it

t: bluntly, after several decades of struggling to understand the computational medium,
> computational research on skill acquisition has finally arrived at a place where it can
.}_I begin to embrace rigorous scientific methods. It is fortunate that the technology for
supporting the complicated competitive argumentation is here, because we need it to
- do science.
.
o 7.  Conclusions
é Much material has been covered in a brief, intuitive way. The main points,
:::: however, can be simply summarized. Three major claims have been made about
‘:::-_ human cognition:
e e When students reach an impasse while solving a test exercise, they repair.
! Repairs change the state of the interpretation, but not the test exercise or the
- procedure.
e Students induce at most one subprocedure per lesson, where “subprocedure” is
‘ defined by one-disjunct-per-lesson, show-waork and several other hypotheses.
N
S
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e One-disjunct-per-lesson and the other constraints on induction probably are
deeply ingrained cultural conventions, and are thus called felicity conditions.

There are other important claims made by the theory beyond the three listed above.
Some of the most important concern the structure of procedures. For instance, one
hypothesis is that procedures are hicrarchical. A procedure is a tree of goals, and its
interpretation requires maintaining a goal stack. This hypothesis is similar to ones in
ACT (Anderson, 1983) and SOAR (Laird, Rosenbloom & Newell, 1985), which also
postulate goal hierarchies as the organization of problem solving knowledge. Another
hypothesis, which is not shared by those theories, is that focus of attention is
maintained applicatively (VanLehn, 1983). That is, goals are instantiated with a focus
of attention directed at a specific region of the problem state. The focus may not be
changed during the (brief) lifetime of the goal instance. In ACT, for instance, focus is
maintained in a global resource, the working memory, which may be changed
arbitrarily during the processing of goals. To put it crudely, ACT uses Fortran-like
global variables to hold focus of attention, while this theory uses lambda-calculus-like
local variables to hold focus of attention.

Such hypotheses about the mental representation of procedures have far
reaching consequences. They effect both the kinds of learning processes that can be
employed to acquire them, and the kinds of problem solving processes that can be
employed to interpret them and solve exercise problems. The ontological status of the
putative mental representations is a matter of some interest (Fodor, 1975). [n what
sense is mental information stuctured? What does it mcan for proceduresto be
tree-structured and applicative? These are very subtle issues, and a short paper like
this one can not do them justice. Neither can it review, unfortunately, the evidence
that supports the theory's specific claims about mental representations, for the
arguments that support those hypotheses are some of the most intricate in the whole
theory.

Roughly half of this article has discussed methodology: the challenges of
validating a complicated theory of cognitive processes, and the techniques that have
evolved to meet those challenges. To summarize briefly, the main methodological
points are:

e Program paramecters should be eliminated from cognitive theories. This has
recently become feasible as the computer power required for learning theories
is now available. This theory has no program parameter. Its only parameter is a
sct of primitives used to represent problem states, actions and arithmetic facts.

-------
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o e The theory has a well-defined empirical test: it should generate all the observed

\ bug data without generating implausible predictions (e.g., star bugs).

T e The theory has both a set of formal hypotheses and a computer program. The

: program is claimed to be logically equivalent to the hypotheses, but more

:\ efficient for generating the theory's predictions.

]

"‘ e Each hypothesis has been individually motivated by examining the empirical

N entailments of alternatives to it. Such competitive argumentation is vital for

‘_:Iz complex cognitive theories but difficult to accomplish. Fortunately,

4::'; argumentation support tools, which have recently become available, make the

o~ job easier.

In many ways, the stage is set for rapid advances in cognitive science. The decades

y \ spent in coming to grips with the computational medium have paid off in a technology
Vo suitable for modelling cognitive processes, especially learning. Intelligent tutoring and

vy diagnostic systems (Sleeman & Brown, 1982) make it simple to collect and analyze

A detailed data from thousands of students. The refined methods of linguistic inquiry

= have been successfully adapted for supporting generative theories in non-linguistic
- domains. The evolution of text editors and database tools irio "idea editors” provide
\ an appropriate medium for developing the argumentation structures needed to connect

:. complicated cognitive simulation programs to rich behavioral data.
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