
CMU-CS-84-113 -

00Lfl
Lf. Experience with the ZOG

Human-Computer Interface System

(Donald L. McCracken and Robert M. Akscyn

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

W1February 1984

* _ __.___ __ __

DEPARTMENT
of DTIC,- ,• ELECTE. .VI:

COMPUTER SCIENCE E
*o .. ,, A

Carnegie-Mlellon University
T-his docArent has been approved~
foi public rlaeand sale; its7disibution is unlmited. "

-. -- - -

C~ LIU- -34. 1

Experience with the ZOG
Human-Computer Interface System

Donald L. McCracken and Robert M. Akscyn ,

Comput er Science Department
Carnegie-Mellon Universi'ly

Pittsburgh, PA 15213

February 1984

paperis tfiiii _____ti

OL Astrct. hispape isprimarily a reflection on more than eight years of research with the ZOO
humancoputer interface system. During that time we have experncdetnieseoZG.W

huma-comrieced xteniveuse f ZO. W

begtirKl'e paper,/with a short description of the current ZOG implementation; then we proceed o a

higher plane to describe a general ZOG philosophy that has evolved from our experience. Following

the philosophy, ver briefly describe the applications we have explored with ZOO, including a major

application project for the Navy. Then we provide a critiqjue of the current ZOG implementation by

elucidating its strong and weak points. We end the paper with a brief glimpse at our plans for ZOO in

the future.

This paper was presented at a workshop on Intelligent User Interfaces, 26-29 October, 1983, In

Jackson, New Hampshire. The paper is also to appear in the July, 1984, issue of the International

Journal of Man-Machine Studies.

.~~ ~~~ ~ .

Table of Contents
1. What is ZOG? 1

1.1. The strucjre of ZOG frames 1

1.2. Interaction with ZOG 2

1.3. The ZOG editor 3
1.4. Actions and agents 3

1.5. History of ZOG 3

2. The Philosophy of ZOG 4

2.1. General tenets 4

2.2. The database 5
2.3. User interaction 6
2.4. Functional extension 8

3. Applications of ZOG 8

3.1. Some applicatioi areas we have explored 9
3.2. The ZOG/ USS CARL VINSON project 12

4. A Critique of ZOG 13
4.1. ZOG's strong points 14

4.2. ZOG's weak points 16
4.3. Evidence for our beliefs 18

5. The Future of ZOG 19

6. ACknowledgements 20

7. References 20

r

'I-2-•

Figur: i-i: A self-describing ZOG frame ofFgue
Fgrl2Seodself -describing ZOG frame 2

Figure 3-1: First example Pascal code frame 11
Figure 3-2: Second example Pascal code frame 11
Figure 3-3: Mail frame example 12

1. What is ZOG?
ZOG is a general-purpose, human-computer interface system based primarily on the concept of

menu-selection, with a large database of menus and rapid respoise to selections,(Robertson, G.,

McCracken & Newell, 1981 ZOG is intended to be used by both novice and expert users, providing a

single interface mechanism that integrates all the computer functions needed by the user.

1.1. The structure of ZOG frames

The basic unit of representation in ZOG is called a frame, Originally, the notion of a frame meant a
"structured screenful", i.e., everything the user could sea on the terminal screen at one time.

Nowadays, with the advent of high-resolution screens, implementations of ZOG provide for several

frames to be displayed simultaneously on the screen. A ZOG frame consists of a set of items of

different types, each of which carries its own positioning information. These item types are illustrated

in the self -cescribing frame shown in Figure 1-1 below. A typical ZOG database may contain tens of

thousands of interconnected frames.

This TITLE line sumerizes the from's contents LUI107 -

This TEXT expands the frame's main point of informotion. but la so,6t•sm-
omitted. The OPTIONS below are used to point tO subordinate sections or to -
provide an enumerated expansion of the m.in topic. LOCAL PADS do not have
the connotation of leading to deeper detail, but rather to tangential points
such as related material In another document or database. Invoking programs
Is another function typically reserved for LOCAL PADS. At the bottom of the
frame is a set of general functions called GLOBAL PADS, which are made
available at every frame.

1. This OPTION leads to another fraue

2. OPTIONS are often used like su0pointr in an outline --.

3.-This OPTION leads nowhere (indicated by the minus sign at the front)

A.-LOCAL PAOS are use6 to point to L-
peripheral Information, or to
invoke programs

edit help back next prev top goto &cc mark rat zoo disp user find Info win xchg

Figuie 1-1: A self.describing ZOG frame

V '

2

1.2. Interaction with ZOG

There are three types of interactions with ZOG: navigation, invoking programs, and editing. The

default mode of interaction is navigation, in which the user makes a selection via the keyboard or

pointing device (mouse), and the system then responds by dispiaying the next frame. Most selections

lead to other frames, but some have "actions", which perform a procedural function such as runningj

a particular program. Finally, the user can enter the frame editor at any frame and make changes to

the frame (if he has the requisite privileges, protection being implemented at the level of the individual

frame).

To be concrete, suppose the user was faced with the frame shown in Figure 1-1 and wanted to know

more. The user might select option 2, either by moving the mouse cursor to some part of option 2 and

clicking a mouse button, or by typing the character 2 on the keyboard. Immediately, the frame would

be replaced by the frame shown in Figure 1-2. The user might then want to go on, for example, by

selecting option 1 of that frame. Alternatively, he might want to go back to the frame of Figure 1-1,
which he could do by selecting the global pad back.

OPTIONS are often used like subpolnts in in outline IU1132

This TEXT expands on the point made above.
Note that in keeping with ZOG convention, the TITLE above is the same as -the text of the option that led here from the other frame.

1. This OPTION is the first vubpcint -- it leads to yet further Information.

2.-This OPTION makes a second subpoint, but leads no further.

Sp

edit help back next prey top goto acc mark rot zog dlsp user find Info win xcbho j

Figure 1-2: -3econd self-describing ZOG frame t

,..

o J -

.- °

_ . -. .' -. - -.

3 f

1.3. The ZOG editor

The ZOG frame editor, ZED, is the principal editor for making changes to the database It does more

than a standard text editor, since it must deal with !he substructure on the frame- For example, there

are commands for changing the position of a selection, changing the type of a selection, adding a -

new selection, and changi, ig what frame a selection links to.

•" " -'1 -

1.4. Actions and agents

A selection in a ZO3 frame can have an action associated with it. An action is a sequence of

commands i.r the ZOr action language -- a simple programming language. This language contains

commands for traversing the network, invoking intrinsic utilities, and entering the editor. However, the

language also enables the user to invoke an arbitrary program. We call the programs agents, since

typicaly their purpose is to perform some service on behalf of the user. In the current system, agents

otw so anh ccan be integrated with the basic ZOG system. ZOG's functionality is extended by

1.4. Acnew agents.

1 .5. History of ZOG
slWork on ZOG at Carnegie-Mellon University (CMo) dates bacK to 1972. We buiti a precursor to ihe"-

* ~current ZOO system for participants in a cognitive science summer workshop, to allow them to ea~sily

* use a wide variety of computer systems by providing a uniform interface. After the workshop, we
shelved ZOO because 300 baud terminal technology wasinadequate. We rekindled work on ZOt in

1975, after we became familiar with the PROMIS system at the University of Vermont -- a menu system
based on rapid-response terminal technology, applied to the task of hospital management (Schultz

Davis, 1979). Our research goal was to understand in some generality the characteristics of large- . -"

network, rapidrespponse menu systems.ere.

In 1980 we felt that ZOg was sufficiently mature to be tested in the real wrei So we embarked on a

major ZOt application prject -- to build a computer- assisted management system for the Navy's

newest nuclear- power-ad aircri~Jt carrier, the USS CARL VINSON (Newell, McCracken, Robertson &

Akscyn, 1981). This was a joint project between the ZOO Group at CMIU arid the officers of the CARL

VINSON. 4t was unconventional because it attempted to transfer the results of university resoarch

* ~directly into an operational environment. The development ph~.se of the project ended in March, 1983, -

when the CARL VINSON left on her first deployment with a distributed ZO system running on a--

network of 28 powerful personal computers (GERs).

. "

4

2. The Philosophy of ZOG
The ZOG system is based on a broad set of principles that we have come to call the ZOG Philosophy.

This philosophy is a distillation of our experience with ZOG over the years. Some of the principles are

general ones that we subscribed to before our work on ZOG, but most of them have evolved from our

experience with ZOG. The principles provide a good description of the essential features of ZOG. .

They also can be interpreted as requirements that must be satisfied by an ideal ZOG implementation.

We begin with some general philosophical tenets about the design of a human-computer interface,

and then describe the three major components of the philosophy: the database, user interaction, and

functional extension.

2.1. General tenets

Total environment. There should be a single environment with a single human-computer interface,

in which the user can accomplish all of his various computing tasks. This avoids dealing with the

idiosyncracies of many different user interfaces when switching from one program to another.

Flexible, efficient tool. The human-computer interface should be a flexible, efficient tool, not an

active intelligence. Thus, there is no mystery about the workings of the interface -- it is under the total

control of the user. Any intelligence the system may contain is in "frozen" form, i.e., in the content

and structure of the viewable knowledge base. The place in such a system for active intelligence is at

the subsystem level (e.g., as ZOG agents), not at the top level.

Direct manipulation of data. The user should be able to work with visual representations of data

stored by the system, and be able to operate on that data incrementally with commands whose effect

is immediately displayed (Shneiderman, 1983).

Semi-automatic operation. When a user needs to do something with the system that it is not

specifically adapted for, it should be always possible to fall back to manual use of its general-purpose

- facilities. This gives the system a real robustness as it is pressed into new uses. When functions are

used frequently, they can be automated by adding special purpose programs.

Low lfarning overhead. It should be easy to learn how to use the system, so that it can be used by .

people for whom the computer is only a tool to help them perform their real job. Many people are

subject to such time pressure in their jobs that they cannot afford a large investment in learning to .*..

operate a computer system, even if the system would prove very helpful once learned.

,.r "%

5

Safe, explorctory environment. The system should provide an environment where it is safe to

explore and learn by doing -- where there are no dangerous, irreversible actions that a user might

stumble onto. The concept of an exploratory environment is described in some detail by Carroll

(1982).

2.2. The database ,-•iI
A major component of a ZOG system is its database. which is somewhat different from the traditional

notion of a database. The following principles govern the design of the database:

Large size. The database architecture should be able to accomodate hu'ndreds of thousands of -

frames without adversely affecting the responsiveness of the system. This translates into a

requirement for large secondary storage devices with a minimum capacity of around one billion bytes.

Shared by multiple users. The database should accomodate simultaneous use by many different

users, so that it can provide a simple but rich means of communication among the users. Locking

should be provided at the frame level to prevent users from editing the same frame at the same time.

Generality of representation. The database should be general in the sense that it can represent

ar trary textual and graphical information (though the current ZOG system supports only text). Thus,

one can represent objects as varied as research articles, one-page letters, Pascal programs, and

budgets.

SNetwork structures. The database should have a network structure in which data items can be

linked to other data items in the database.

"Tree structures. Although the database can represent arbitrary network structures, there should be ,.1

a strong preference for the representation of tree structures. This is largely a convention for the way

frames are interconnected when built. However, th.o system should support a distinction between

selections on a frame that point to lower levels in a tree versus selections that are "cross-references"

to frames not within the tree structure. In ZOG, there is such a distinction: options are the "tree

selections", and local pads are the "cross-references".

Menus. The use of menus of selectable items should be ubiquitous .- the database should contain :-
nothing but menus. Menus may contain "pure" information items (like short paragraphs or points in

an itemization) as well as items that lead to other frames or have associated actions. This allows

graceful growth of the database, as pure information items are expanded to link to new frames

r .. ~*-

6 -

containing more detailed information.

Multi-level organization. The database should have the following four levels of organization:

* At the bottom level, there is substructure on single data items -- e.g.. a name component
or value component of a data item. (In ZOG this is supported only by embedded text " '
conventions).

* One level up from the bottom there are single data items -- a multi-line unit of text (a
phrase or paragraph), or a graphical entity (line or picture).

e One level up from sinyle items are collections (menus) of items. This is the unit of display
to the user (a frame in ZOG).

* At the top level, there are functional groupings of menus (called subnets in ZOG). The
menus in the collection often have a common structure taken from a schema menu that is
copied when they are created.

• ." .. o ."

Default view. A default view of the data should be provided that organizes the tree structures in a JA

breadth-first fashion, with a frame being a node in the tree. This view contains explicit positioning - ..- ,.,

information that determines how the frame will be displayed to the user. Representation of the

database on secondary storage is optimized for efficient access to the default view by storing all the

items of one frame together, Other views of the data must be produced by processing the breadth-first .

representation.

2.3. User Interaction

The ZOG philosophy also makes a major commitment to a particular style of interaction between the

user and the system, as indicated by the foilowing principles:

Menu selec~ion. Almost all interaction with the system should be done by making selections from

the currently displayed menus. The exceptions are using the editor, plus the few cases where the user

is prompted for a simple response, such as the identifier of a frame to be displayed. Even creation of

new frames is triggered by selection of menu items that do not yet lead to other frames.

Fast response. Response of the system to a user selection should be fast. For the normal case -

where the selection simply results in the display of another frame, response shouio be well under one

second. For standard video display terminals, this means that transmission speeds must be 9600 baud

or better. The fast response requirament has strong implications for the implementation: when a

frame is retrieved and displayed, there is no time to dynamically compose the display by gathering

data from many locations in the database.

R6•,, .- '

Bi,

7

Browsing. The defauit mode of the system should be browsing through the network of IinP J menus.

This distinguishes the system from most other database systems, which reQuire that a query be

formulated to access data.

SActive selections. In addition io linking to other irames, selections should hiave actions associated

with them, which are executed whenever the user chooses the selection. There is a set of common

utility functions provided by the system, along with a simple language to express sequences of these

functiors as selection actions. One of the functions provided is to ý&all arbitrary programs that have

been integrated within the system (see the discussion of tunctional extension below).

No hidden selections. The currently visible functions should be the only functions available to the

user. For example, there should be no hidden keyLoard commands that a user has to remember. This

means that users can rely totally on their recognition memory, i.e., their ability to recognize that a

particular selection they see displayed will provide the desired function."

•...
Common commands. Some common commands are of such general use that they should be

available on every frame. in the ZOG system these are called global pads. The ideal number of such

command selections is probably around twenty. If there are fewer than twenty the user's efficiency

may be impaired because of the extra time to access common functions; more than twenty and the am

frame becomes too cluttered and confusing to beginners.

Editor. There should be a general editor that operates on individual frames and is always available as

one of the common command selections. .

No scrolling. Frames should not be permitted to grow larger than the size of the available display

space, and thus there should be no functions for scrolling the information within a single frame. This
piece of philosophy is one that distinguishes ZOG from most other systems that provide similar

functions. It is motivated largely by a desire for simplicity and by the need for all available functions to

be visible. There are, of course, occa3ions where one must represent a linear data structure that is

too large to fit on a single frame (though in our experience these are rare). In these cases, one can

2either introduce extra levels of hierarchy, or simp!y link frames together in a linear sequence.

1 The current ZCG system violates this bit of philosophy in aweral places, partictawly in the editor. But 3r, editor n-sy require
exceptions to this principle in Uenera!, because of th6 need for a high r&te of intel action and a fairly wide mid flat command
structure for efflcient expert use.

2One of our ZOG users coined the term "nodes of convenience" for these ext:a ,rames, which later tu-ned Into 'lodeu of

inconvenience" in certain circumstances where they seemed particularly awkwarl.

Lo *,%

' . , "1

2.4. Functional extension

A ZOG sysiem needs more than just a database with an inierface - it needs some mechanism for

extending the system to crovide new functions for the usf.r. The following principles describe how

this is done..:

Mapping data structures. The first step in adding a new aop!ication to the system should be to map

the data structures of the new application into frame formats and interconnection structure3 within

the database Frames can be used as record structures, with individual iteins being fields in 'he

record. The interconnection structure of framl.s can be used to reorescnt hierarchical relationships.

and to create access paths (indexes) to stored data. -.

Imbedded programs. Programs that are needed to implement new functions are written in a special

way that allows them to be imbedded within the system, so that they can be used withou, having to

leave thp .ystem. These agents can De invoke.oe within the system via active menu 3telections.

Environment frames. Agents are invoked and controlled from special fr~mes called environment .-.

frames, which contain slots for all the input parameters for the agent and slots for the agent to store
O"tp'u, ,.* .. -.a,-.e... 3 Th~ere , -•" p-Cia! -3*•,• - .-* If -10 cditcr) for crivironrmcnt framcG tha-:, providcz, for

efficient filling-in of the agent's input slots. The slot editor does type-checking on input values and

allows values to be selected from a menu where appropriate. There is a special menu itenm on the

Environment frame that. when selected, causes the agent to begin execution.

Frame,% for input/ouiput. Agents directly access frames in the database to get input data. (The t -

environment frame would typically have an agent input slot that contains a pointer into the

appropriate area of ;he database). When agents need to produce large data objects as output, they

simply create frame structurei in the database, which arc then available to the user in permanent

form.

3. Applications of ZOG
From the very beginning, our work on ZOG has often been driven by particular applications. We

wouldn't wish it any other way, because we believe that rea! applications are the best breeding,..-'

grounds fcr new research ideas. Ir. the early days, we attempted to apply ZOG to our own

professional needs -- for project management 3nd for teaching ZOG to new users. In recent years, we ,.

"3
This scheme is an adaptation of the envifonment mechanism deulzoied for the (CMU Cousin system (Hayes & Sutjwly,

1983).

AN--°.....

9

have devoted most of ouw efiort to developing the LISS CARL VINSON appi~cation. Although it took us

away from our normal research lives. it proved to be an excellent source of new discoveries about
ZOO.

3. 1. Some application areas we have explored

Below we list some general categories of applications we have worked on, along with a brief
description of how ZOO has been used in each.

Database systems. One of the major functions that ZOO provides is storage and retrieval of

information ZOG can therefore be viewed as a database system that uses the "network" data model.

On the storage side, ZOG allows users to grow the database one frame at a time, using any existing
frame as a departure point (much like expanding a network of frads into the countryside). The

databases that have been constructed using ZOG range from small personal databases to large

project databases- Most of the frames in these databases were created directly by users, but in some

L cases agents were used to automate the frame-creation process. For instance, a frame development

system called BROWSE partially automated the construction of a library database in ZOG frame form

(Fox & Palay. 1979).' On the retrieval side. ZOG provides navigation comma-ids (some of the global
pdati) wiliu~iI fah &is'ie Us~ io t. avefse the anetO.rK. T~ heecnia"sPrntLiam obos6ia

unfamitar database and progressively acquire a model of its contentz and structure.

Management information systems. We have accumulated some meaty experience with ZOO as a

management information system. For several years, we have bftn using a ZOG database to manage

the ZOO project. This databeqe contains all of our documents, software, reports, schedules and manyr

other types of project-related information. The ZOG database for the CARL VINSON can also be

viewed as a management information system, since its primary purpose is to help the Commanding

Officer and his department heads administer the Ohlp.

InstlructIon/t raining. ZOO has been used as a training system in several capacities: (1) providing

on-line help. (2) as a guidance system for using other on-line systems hw sh~ielding users from fth

idiosyncracies of a particular interface; and (3) as an index and contrc' inism for a videodisc

p ~playsi--

Document management. We have used ZOO as a document producticri environment by mapping -

S '6~E"WSE began vith an already existing bilog~raphy datalbase separulle train ZOO. and Provided a way to automatially
construct ZOG fran'es from the b~ibography entries. salng vith hidetiing frame Mat provkded sacces to fth tirftm &"codn** %
to a 2andard caimilicalloni sceme.

* ''

10

the natural hierarchical structure of documents into trees of ZOG frames. ZOG can then be used as a

kind of tree-structured document editor. We also developed an agent that traverses the tree of frames T.

and transforms the structure and content ol those frames into a form suitable as input to a document

formatting system (in this case Scribe). This provides a means for automatically producing high-

quality hardcopy docLvments from ZOG frames, without having to explicitly provide most of the

formatting commands.

Software management. ZOG has also been used as a programming environment. The programmer

represents code in frames, after which another special agent is applied to the frames to generate a

compilable version of the code in a file. By equating the notion of a frame with the notion of a block in

block-structured programming languages, ZOG provides a natural environment for a top-down,

stagewise approach to developing code. Most of the code for the ZOG system itself is now in frames,

along with various data structures associated with software development, such as change logs, bug

reports, old versions, design notes, and user guides. Figure 3-1 shows a sample frame of Pascal code

from the middle of an agent called AgOld. Note that each statement is a separate option, and that

options 3 and 4 both lead to other frames (no "-" after the "."). Figure 3-2 shows the frame that option

4 leads to. Note that the BEGIN and END around the two statements are implicit . they are added by the

agent that writes the mrip to a file for r~nmpilntnn,•

%
'.-o.=.

5This Pawe beit wasn creas-d totally from within ZOG. As a rusult. Ito Wt.e is decidelly *more structured and "chunky" tOw i s
the nrmaffl case. Some of us believe this is a good thing, ot~hers may reasonably dIsagrees.

--..'..--~-* -.-..-.-.---.--... -~~ -- ~ . -o - - o-

(Change/add 0. Old local pad on the ORIGINAL framge I U1133

I.-OpnF(PushFn.FPX); {Open the original frame for linking to copy

2.-SelP :- GPadF(FPX,'\ .SigPad); (Get pointer to \~. Old if exists }~ 2i

3. IF SigPad3 THEN {Re-link existing local p~ad f
4. ELSE {Add now local pad with COPY as next frame

5.-ClsF(PushFn.FPX); close the frame for modification)

*.Parent

.top of AgOld

edit help back next prov top goto &cc sark ret zog disp user find into win xChg

Figufe 3.1: First example'Pascal code frame

IELSE (Add new local pad with COPY as next frame I UI236

1.-SelF : CrPadF(FPX.*\'.'Oldl.ZZ.2.SigSpace); {Create needed local pad)

2.-IF SigSpacs THEN RFlnSe1(FPX.Se1P,CapVFn): (Set next tram to COPY

In

~.Parent

.top of AgOld

edit help back next prey top gato &cc mark ret zog disp user find info win xchg

Figure 3.2: Second example Pascal code frame

Electronic communication. We have used ZOG for various forms of electronic communication

w such as electronic mail and bulletin boards. In ZOG, electronic communication occurs in a manner
quite different from conventional electronic communication systems. "Mail" messages are placed on.

12

ZOG frames according to topic, so that all messages on a certain topic can be viewed together. Each

message does not have to re-establish context as it would if part of a series of unrelated messages. In

other words, ZOG provides logical coherence for mail messages. Figure 3-3 shows an example of an

actual interchange of several mail messages between two Navy officers ("cvmdf" and "cvmlr") over a

five day period.

Mail: Flying time for mdf IU1134

1.-Mike: Please schedule max flying for Tuesday and Wednesday. and
possibly Thursday afternoon. [cvadf 9/8/81]

2.-It turns Cut the best bet is to go with VR56, get your name
on a yellow sheet and spend the day tlyin e on a C-9 g toin

from place to place. I may join you on ohs of these expeditions-."-

and we can spend the whole day working "in the air". [cvmlr 9/6/81]

3.-Sounds great.. .wlll you please make arrangements with VR56? [cvmdf 9/8/813

4.-Scratch option 2 Its only for flight surgeons, It looks like
VRC40 Is now best bet. There's no need to schedule in advance
just show up.(cvmlr 9/g/81]

8.-Mark. I just remembered. I will be In Maneuvering Board School
next week.tcvmlr /9/831]

B.-I will also he working an option at VA42 to go flying in the afternoons
at Oceans after school. We'il see if we can't work sometning out where .
I pick you up and take you too. Cc¢vlr 9/22/81] Ecvmdf 9/12/81]

edit help back next prey top goto acc mark rat zog disp user ftind info win xchg

Figure 3-3: Mail frame example

3.2. The ZOG/ USS CARL VINSON project

As mentioned in the introductory section, the ZOG/ USS CARL VINSON project was a joint project

between the ZOG researchers at CMU and the Captain and crew of the USS CARL VINSON, The

project officially began in early 1980. In early 1983, a complete ZOG-based application system was

installed on board the ship, running on 28 PERO computers connected via an Ethernet network. The

system provided a transparent, distributed database of ZOG frames (initially over 20,000 frames), w-th

access times of about 0.6 seconds for frames residing on the local disk, and 1.2 seconds for frames

on remote machines. There were over 30 agents (application programs) that provided, In conjunction

with the basic ZOG system, four main application functions: -"

Ship Organization and Regulation Manual. One of the original project goals was to iepresent the

Ship Organization and Regulation Manual (SORM) in a ZOO net, so that its contents could be

accessed on-line. The CARL VINSON's SORM had not yet been written. Thus ZOG was used as a . -

* *.- .-...-.

B 13 " .'11

"document production environment for developing the SORM. A major objective for the SORM was to

make its contents usable not only by human users, but also by agents (management application

"- programs).

. Interactive task management system. Since the responsibilities section of the SORM is quite

structured, agents can be used to support task management. In simple terms, tasks described in the

SORM are copied and their ge;eric portions are instantiated to reflect the particulars at hand (times,

people, etc.). These specific structures are then used to track the status of these tasks and generate

reports of various types. An example task is "getting underway"; this task resembles a space launch

countdown, with hundreds of synchronized subtasks occurring over a three day period.

Technical manuals. A function that was added to the original project agenda was the development

of on-line technical manuals for the aircraft and weapons elevators. Here, as with the SORM, new

manuals were needed. The manuals were produced within ZOG by personnel from the shipbuilding 4,

company, as well as members of the crew. In addition, the on-line version of the manual was

integrated with videodisk material. Embedded in relevant places throughout the on-line manual are

ZOG selections that control an adjacent videodisk player to play specific po-tions of the disk. -

User interface for AirPian. Anoiher funciion noi in the Origi-•ai plan was an inteface '"o an expLt

artificial intelligence system called AirPlan.6 AirPlan assists the Air Operations department in the

launch and recovery of the ship's aircraft. One of AirPlan's functions is to alert decision makers when

currently available options are soon to disappear (for example, that a given airborne plane will go

below the requisite fuel for flying to an alternate landing site). ZOG provides an interface to AirPlan for i.- i

both input and output. The slot editor provides an efficient means for updating AirPlan on the state of

the world. Output from AirPlan is sent to ZOG and displayed in frames that any workstation on the

network may access. An incremental display feature was added to ZOG so that incremental changes

to these output frames are highlighted; this reduces the cognitive overhead of identifying what

information on the display has actually changed.

4. A Critique of ZOG
In our long experience with ZOG, we have been on the lookout for strengths and weaknesses that "

have appeared as we have pushed ZOG in new directions. In the following two sections we present

the major strong and weak points of ZOG, each with a brief elaboration. A third section summarizes r. 1.%ý

the sources of evidence that support our analysis of strong and weak points.

-The expert system itlall w3a developed by another group of researchers at CMU, headed by John McDermott.

- - - - - - - - - -- --..---.-

14

15-I

4.1. ZOG's strong points

We believe that ZOG has many strong points; in fact, it has often surprised us (even with our

understandable optimism) how well ZOG has adapted to the many demands we have made of it. The

most important of the strong points are described below:

Robust enough to be put into operational use. Compared with other types of research interfaces,

such as natural language interfaces, ZOG is extremely robust. This is becausa of its simplicity and its

openness. Many new tasks can still be performed, though perhaps awkwardly at first, even if they lie

outside the capabilities of existing ZOG agents.

Easy for computer novices to learn and use. Computer nov;ces can learn to do basic ZOG

navigation in under a half hour. Learning enough of the ZOG editor to add new material in a

reasonably effective manner takes about another two hours.
ir %= !-t

Users do not outgrow ZOG as they become expert. As users gain experience, they seem to

become progressively more attached to ZOG. Several aspects of ZOG seem to account for this
:1-. phnomenon menu.

phenomenon: (1) the system's high response rate makes menu selection competitive with a command

language interface; (2) experts tend to use a much broader range of functions than novices, and thus

appreciate the fact that ZOG eases their memory burden; and (3) the capacity of the database to

absorb multiple indices allows experts to develop additional structures that make their use more

Can assimilate and integrate many different applications. ZOG has demonstrated that It Is

capable of assimilating and integrating a wide range of applications We believe this is primarily due

to the generality of ZOG frame structures for representing information of all kinds.

Supports database browsinq. ZOG provides good support for browsing because of Its rapid

response and the network structure of its database. The ability to search a database by query

methods is strongly dependent on having a model of what information the system contains. Browsing

provides a means for a user to start searching with minimal a priori knowledge, yet the user can

exploit what he learns about the database over time. In ZOG, the user's knowledge of the contents

and structure of th(database is continuously reinforced through use.

Supports large databases. The structure of the database is such that there is no limit to the size

ZOG can operate with, except for those limits inherited from the hardware or operating system levels.

Consequently, the maximum size of the database is a function of the collective size of secondary

o°°..7

lbl

memory. in a distributed system with many nodes this size can be extremely large, but then the

bandwidth of the network may begin to degrade system response. [

Can exploit schemas for building databases. A schema is essentially a chunk of ZOG data (e.g.,

a single frame or a tree of frames) that contains variable parts; a schema can be instantiated by

copying it and then providing constant values for the variable parts of the copy. Schemas aid in the

building of a number of data objects that have some common parts. In ZOG, a simple schema

mechanism is provided through the ability to copy a schema frame when a new frame is created, or to

copy whole trees of frames. Ramakrishna (1981) developed more elaborate schema mechanisms for

ZOG and studied their use experimentally.

Can be used as the sole interface (shell) for an operating system. ZOG has the capability to

assimilate all the utility functions normally associated with an operating system shell. Single selection

actions can invoke simple utilities, and environment frames can be used for utilities with several

parameters (essentially revising the utilities to behave as ZOG agents).

Has a simplified model of window use. In the PERO version of ZOG, there are three windows

(two for frames and one for messages), fixed in size and in location. The need to maintain multiple

active working contexts, which is often solved by allowing arbitrary numbers of overlapping windows,

is satisfied in ZOG by navigating among the different contexts in a single ZOG window. This simplified

model may have some real virtues such as ease of learnability.

Has a simplified model of multiple processes.. There is only a single ZOG process that interacts

directly with the user. All other processes are simply background processes running agents, which

operate on the ZOG database but do not need to communicate directly with the user. This is a simpler

model than the common one where each process has its own display window, and can potentially

interact with the user independently of the other processes.

Can be used as an Interface mechanism for video discs. Video discs are wonderful devices for

storing visual material, but they lack any structured way of gainitng access to the stored images

-- there is simply a flat sequence of tens of thousands of images. ZOG frames can be built to provide

structured access to the material, with special actions on ZOG frames that can call up partic;dar

images or motion scenes.

Can make good use of a pointing device (mouse). Because ol' the high proportion of selection

1[,, 0

--16

operations by the user, ZOG i-s well suited for using a pointing device such as a mouse.7 This is

especially true of ZOG's editor since positioning the cursor and repositioning items are frequent

operations.

Can exploit distributed systems. We have come to appreciate ZOG's ability to exploit the positive

features of distributed systems while shielding the additional complexity from the user. ZOG's

implementation of the distributed database allows a user to think in terms of a large, single database

and not worry about which machine particular frames are on. Furthermore, the user need not be

aware which machine on the network is actually executing an agent the user invoked.

Supports a community of communicating users. A large, shared database provides a

"commons" in which users can jointly develop and share data, rather than simply exchange it. This is

important to the individual user because his ability to assimilate information far outstrips his ability to

generate it. Large, interesting databases can only be built by many hands.

4.2. ZOG's weak points

Below are the weaknesses of ZOG that we have become aware of:

. "

ZOG sacrifices efficiency of particular applications to get integration. Because ZOG is

attempting to be all things to a user, compromises must be made when fitting an application into the

ZOG structure. The ZOG data structures for an application are usually less efficient in both time to

process and space than they would be for an application system built for that special function. Also,

accomplishing some application functions may take more steps in ZOG than in a specialized

implementation, because more general, and hence less powerful, operators are being used.

ZOG does not support a fast database query language. The ZOG database is represented on

secondary storage as text files for flexibility -- parts of the database can be easily backed up or moved

from one system to another, and standard text editors can be used on the database in emergency *..

situations. There is thus a substantial overhead incurred in "parsing" and "unparsing" frames for

internal system use.

Inexperienced users can get lost. When a user faces a large, complex ZOG database that he is

unfamiliar witn, there is a strong possibility that he may become disoriented. (See Mantei (1982) for a .

7We emplared the use of touch screens. but learned that users found them inaccurate and inconvenient. In our opinioni, th,
mouse .s a clear winner over all other positioning dewces for use with ZOG..

17

study of disorientation in a ZOG database specially constructed for experimental purposes).

However, it has been our experience that this problem is not neL.,'y as severe as we once feared,

partly because ZOG has adequate means to find your way again once you have become lost.

Biased too much toward breadth-first view. ZOG frames store information in a "breadth-first"

fashion, and thus the user is forced to operate exclusively with this form. There. are, however, times

when other views of the data (e.g., depth-first, as with typical hardcopy) would be more appropriate to

the user's momentary needs.

ZOG depends too critically on the speed of the disk technology. ZOG needs to access a few
thousand bytes from secondary storage within every response cycle. This puts a stringent

requirement on the access time of the disk hardware and the overhead of the file system software.

Flexible disk ("floppy") drives are too slow; inexpensive hard disks are barely adequate.

Can't represent all states of , complex, unordered task environment. A complex, unordered

task is the proper domain for a rule-based system, where the individual rules can freely appiy in any

order as the current situation dictates. Attempting to create a decision tree with ZOG frames to

analyze some dynamic situation runs into difficulty because of the unpredictable order of state

changes, causing a combinatorial explosion in the size of the -equisite ZOG structure.

Can't handle highly dynamic data. ZOG cannot cope with situations where many updates to the

database are required every second, particularly it the updates are widely spread throughout the

database. This is due to the fact that data is updated in frame-sized chunks, rather than in smaller

units, and the overheads in reading and then rewriting a frame are substantial -- a second or two on r

the PERO.

Lack of graphics and multiple fonts. ZOO was originally developed for terminals that did not

support graphics and multiple fonts. When we moved ZOG to PERQs for the CARL VINSON, we took

the conservative route of emulating character terminals rather than exploiting the PERO graphics
capability. There is no fundamental reason why these capabilities could riot be added to ZOG. ••-••

ZOG cannot be used over standard telecommunication lines. Transmission rates of 1200 baud,

which are the norm for dialup phone connections, are simply too slow for proper use of ZOG

experts become impatient at those speeds. Even 9600 baud is barely adequate for experts.

2,0

4.3. Evidence for our beliefs

The strong and weak points listed above are of course not simple facts-- 'hey are merely our beliefs.

However, they are the product of a substantial body of experience with ZOG, both in the university

environment and on board the USS CARL VINSON. Below, we discuss four different aspects of this

experience: our own use of ZOG, use by the Navy, laboratory experiments, and instrumentation of

the system.

Oui own use of ZOG. Our primary source of beliefs about ZOG is our own use of the system over

the past six years. The early years saw rapid iteration on the ZOG design, with relatively little serious

use of the system for applications. Then during 1978 and 1979 we made a serious attempt to .

coordinate the management of the ZOG Project (involving about 10 peopie altogether) by using ZOG

to hold status information, discussion of issues, meeting notices, and other information of general

interest to project members. When we began the CARL VINSON project in 1980, we again attempted

to use ZOG for project communication, but this time with the added twist that some of the oroject

members were located in Newport News, VA. We were more successful this time, partly because the

remoteness of some project members made other means of communication more difficult, and partly

because we had more computing cycles available and faster communication lines. During the course

of the VINSON project, we expanded our use of ZOG into document and software management, and

actually reached a ,point where several of us used ZOG for nearly everything we did throughout the L .

workday. For the three-year period beginning in October, 1980, there were over 200,000 sessions of

ZOG use on our VAX version -- and by the middle of 1982, most ZOG use had shifted from the VAX to

PERCOs, for which we don't have session counts.

Use an board the CARL VINSON. Use of ZOG by members of the CARL VINSON crew began in late

1980 with the use of a VAX at CMU over leased phone lines. This usage continued fairly steadily for

two years, with six terminal lines available for most of that period. The main activity, besides project -:

communication, was the building of databases that the ship would use during cruise -- the SORM and

the two elevator technical manuals. More than 20,000 frames were created on the ZOG VAX for later

transfer to the ship's PERO system. In early 1982, the ship used a prototype version of the

management application software on the ZOG VAX to produce several large management schedules

for the ship's operation, such as the Builders' Trials. Then, beginning in March, 19S3, the ship had the

completed ZOG system available, although there were still many hardware and software problams '6

being ironed out. We know that there were at least 500 sessions of ZOG use on board during April

and May, but most of the usage was limited to a small subset of the total of 28 PERQs. By the end of

September, usage had increased considerably, with about 30 serious users and involvement by

85-90% of the ship's departments.

.. �. . .o-

19

Laboratory experiments. From the Deginning, we have viewed ZOG as a vehicle for research in the

psychology of human-computer interaction. We created a special laboratory where we could do

controlled experiments of people using ZOG. One of our main interests has been to study how people

use ZOG to learn how to use ZOG, so we do have some basis 'or beliefs about ZOG being easy to

learn. We have also studied use of the ZOG editor extensively. One specific experiment evaluated the

speed of expert use of the ZOG editor, with the result that ZOG compared unfavorably with several

other commonly used editors, such as a Wang word processor (Robertson, C., McCracken & Newell,

1981).8 Another specific study compared the time to learn the ZOG editor against data on eight other

editors, and showed that ZOG's editor is in the middle of the range of ease of learnability (Robertson

& Akscyn, 1982). This study also compared different teaching tools: a human teacher, an on-line a

tutorial, an on-line manual, and an off-line manual; results indicated that on-line and off-line manual

users take about the same time to complete a standard instruction sequence, but off-line manual

users use the editor more effectively at the end ci the sequence.

System instrumentation. Both the VAX and PERQ versions of ZOG have been instrumented to

save statistics for each session of use. These statistics summarize the activity of the session with . '

information such as number of frames viewed, number of frames edited, distributions of times spent

viewinig e~t.II i i 4110 I i..y " ...ll .JA IC, whiCh " U6. .etS were ou3i .- A . ' s-I .--A

planned to use the data to instruct the iterative development of the system; however, on the CARL

VINSON the data is also being used for an official Navy evaluation of ZOG use on board the ship.

Although we have done some spot analysis of the statistics, a systematic attack on this great mass of

data still lies ahead. "

5. The Future of ZOG
There is now work going on outside CMU to create a follow-on to ZOG called KMS (Knowledge

Management System). KMS is designed to remedy many of the shortcomings of the ZOG

implementations, and specifically to make full use of the potential of high-resolution display

technology. Some of the features of KMS that represent improvemenits over ZOG ai e the following:

* Graphics (lines, rectangles, curves, picture images) and multiple fonts.

* Greater use of the pointing device to specify objects and parts of objects to operate on,
and screen cursor images to provide feedback of the current system context. .

* Direct output of good quality hardcopy (no need for a separate formatting system that

8 We do believe that ZOG's editor is due for replacement, based as it Is on old editor techology that is clearly inferior to the
now breed o' screen editorsm••(•

IL 'I. K ' %-*

20

operates as a post-processor).

* Copying material easily across frame boundaries. r

-. ' * Additional intrinsic views of the database -- specifically, a depth-first view.

* Closer integration of the editor with the rest of system, to make editing seem more
natural, rather than a special mode that one is continually entering and leaving.

Despite the years of work on ZOG, we still see many rich possibilities waiting to be explored. We have

only scratched the surface of some of the ZOG applications we have worked on, and there are many

potential applications as yet untouched. We are particularly interested in advancing the use of ZOG-

as a high-quality documentation environment, and as a programming environment, since these are

tools that can greatly enhance our own daily work.

6. Acknowledgements ty . s o e

We wish to acknowledge the contributions of many people over the years. Those who have been

involved with ZOG at CMU: Allen Newell, George Robertson, Kamila Robertson, Elise Yoder, Sandy

Esch, Patty Nazarek, Angela Gugliotta, Marilyn Mantei, Kamesh Rarnakrishna, Roy Taylor, Mark Fox,

and Andy Pa•ay. Those officers from the t USS CARL VINSON who worked w,,ith us at CMU: Mark Frost

Paul Fischbeck, Hal Powell, Russ Shoop, and Rich Anderson. Captain Richard Martin, Captain Tomr

Mercer, and other officers and crew of the USS CARL. VINSON. And finally, Marvin Denicoff from the

Office of Naval Research, our original ZOO research sponsor. We would also like to thank Elise Yoder

for her extensive comments on this paper.

This work was supported by the Office of Naval Research under contract N00014-76-0874. It was also

partially supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. . .

3597, monitored by the Air Force Avionics Laboratory under contract F33615.78-C-1551. The views

and conclusions contained in this document are those of the authors and should not be interpreted as -

representing the official policies, either expressed or implied, of the Office of Naval Research, the

Defense Advanced Research Projects Agency, or the U.S. Government.

7. References
Carroll, J.M. (1982). The adventure of getting to know a computer. IEEE Computer, pp. 49-58

"(November).

Fox, M. & Palay, A. (1979). The BROWSE system: an introduction. Proceedings of the Annual

Conference of the American Society of Information Science, Minneapolis (October), pp.183-193. .

%r

. p. *. =.

.'4

Hayes, P. & Szekely, P. (1983). Graceful interaction through the COUSIN user interface. internationalj

Journal ot Man-Mahine Studies, 19, pp. 265-305.

Mantei, M. (1982). A Study of Disorientation Behavior in ZOG, PhD thesis, University of Southern

California.

4
Newell, A., McCracken, D., Robertson, G. & Akscyn, R. (1981). ZOG and the UISS CARL VINSON,

Computer Science Reseairch Review, Carnegie-Mellon University, pp. 95-118.

Ramakrishna, K. (1981). Scheranazation as an Aid to Organizing ZOG lntcnmation Nets, PhD thesis,

Comrputer Science Department, Carnegie-Mellon Univeraity.L I

Robertson, O.K. & Akscyn, R. (1982). Experimental evaluati'on of tools for teaching the ZOG frame

* ~editor. Proceedings of the International Conferen~ce on Man/Machine Systems, Manchester, UK

(July).

Robertson, O.K.. McCracken', D. & Newell, A. (1981). Experimental evaluation of the ZOO frame editor.

* Proceedings ol the 7th Canadian Man-Computer Communications Conference, Waterloo, Ontario

U (June), pp. 115-123.

Robertson, G., McCrac.kan, D. & Newell, A. (19Wl). The ZOG approach to man-maz~hine

communication. International Journal of Man-Machine Studies, 14, pp. 461-488.

Schultz, J. & Davis, L. (1979). The technology of PPOMIS. Proceedings of !he ICEEE, 67, (September),

pp. 1237-1244.

Shneiderman, B. (1983). Direct manioulation: rt step beyond programmincg languages. :EEE

Computer, "August), pp. 57-69.

IR

