b CMU-CS-84-113 @ R

- amael

Experience with the ZOG
Human-Computer Interface System

Donald L. McCracken and Robert M. Akscyn

Computer Science Depariment
Carnegie-Mellon University
Pittsburgh, PA 15213

AD-A164 558 —

February 1984

®
—

: DEPARTMENT
COMPUTER SCIENCE *

& FEB 1 919865 1)

#
>

- ;?-z
Carnegie-Mellon University ._
’ " This document Las bean approv o
i sen 10 eay [EEEEEE]

TMC FILE COPY

SRS ot 2R AERE NN A
:' 4. oo .

for public release and sale; its
distribution is unlimited.

.

".-‘ r'_lf_ B » I.""l-"f N .

. ‘.'.‘.': P ‘,".I'.'..'- L
. [t PSRN I

E'I e

[CMU-CS=-84-113

- Experience with the ZOG
: Human-Computer Interface System

ﬁ Donald L. McCracken and Robeit M. Akscyn

. Computer Science Department

v Carnegie-Mellon Uriversity -

Pittsburgh, PA 15213 Q}t o,
e, @

February 1984

}j‘_- Abstract. This paper is primarily a reflection on more than eight years of research with the ZOG

-'_’.1 human- computer mterface e system. During that time we have experienced extensive use of ZOG. We

]

. begm\he paper ,,wnh a short description of the current ZOG implementation; then we proceed t0 a

higher plane to descnbe a generai ZOG philosophy that has evolved from our experience. Followlng

the phulosophy, we bnefly describe the appllcatlons we have explored with ZOG, including a major

-:_ application project for the Navy. Then we provode a crmque of the current ZOG implementation by

elucidating its strong and weak pomts We end tne paperrwnh a brief glimpse at our plans for ZOG in
the future.

This paper was presented at a workshop on Intelligent User Interfaces, 26-29 October, 1983, in
Jackson, New Hampshire. The paper is also to appear in the July, 1984, issue of the International

Journal of Man-Machine Studies.

..
....................................

SW e

-..
P“
o
o
P,

Table of Contents

1. What is ZOG?
1.1. The struciure of ZOG frames
1.2. Interaction with ZOG
1.3. The ZOG editor
1.4. Actions and agents
1.5. History of ZOG
2. The Philosophy of ZOG
2.1. General tenets
2.2. The database
2.3. User interaction
2.4. Functional exiension
3. Applications of ZOG
3.1. Some apglication areas we have explored
3.2. The Z0G/ USS CARL VINSON project
4. A Critique of ZOG
4.1. ZOG's strong points
4.2. Z0G's weak points
4.3. Evidence for our beliefs
. The Future of ZOG
. Acknowledgements
. References

~N 0

OCOOOOMELELELWWON = =

S8ocaxazam

B S AN

List of Figures
Figure 1-1: Aseif-describing ZOG frame 1
Figure 1-2: Second self-describing ZOG frame 2
Figure 3-1: First example Pascal code frame 11
Figure 3-2: Second example Pascal code frame 11
Figure 3-3: Mail frame exampie 12

o RS Al

row

, P -,

£ T e .

v e Tem . Tot e
» .
’ B

PRy 4

.
. N

L.

< %2
n'v
R

L)

e
3y

.

)

.

SF AL

‘\‘t'.'\' o s |"-"-‘\'-'\' -»'\'-‘\'.4‘-_‘» - ..'\
N e A T S SV A o i e, P

S e At S0 ed - AR § e MM IS e g RACRATEALA Vb e L bhsh e il dre it i At i A Rt el Soiid o NEGTL ST DYS VL RE U B B AR R e

T
oot
¢

®l
—

[}
’

o 1 N
L" ‘\ ‘.)
ol - AN
o 1. What is ZOG? D
’ 206 i . o S
20G is a general-purpose, human-computer interface system based primarily on the concept of r
menu-selection, with a large d_zgt_a_base of menus and rapid respo.se to selections.(Robertson, G., :‘
{ Tt - . — e ' AL
McCracken & Newell, 1981). ZOG is intended to be used by both navice and expert users, providing a iy el
single interface mechanism that integrates ali the computer functions nee=ded by the user. é:f.-:‘fx-

/

1

!
AV
R

>
N ad s
,t,
)
. I8

1.1. The structure of ZOG frames
The basic unit of representation in ZOG is called a frame. Originally, the ngtion of a frame meant a
"structured screenful”, i.e., everything the user could se2 on the terminal screen at one time.
Nowadays, with the advent of high-resolution screens, implementaticns of ZOG provide for several [
frames to be displayed simulianeously on the screen. A ZOG frame consists of a set of items of
different types, euch of which carries its own positioning information. These item types are illustrated
in the self-aescribing frame shown in Figure 1-1 below. A typical ZOG database may contain tens of
thousands of interconnected frames.

This TITLE 11ne susmarizes the frame's contenta u1107

This TEXT expands the frame's mzin point of information, but s somatimss S
omitted. The GPTIONS below sre used to point to subordinate sections or to P

provide an anumerated sxpansion of the mcin topic. LOCAL PADS do not have AR
the connutation of 1eading to deepar detail, but rather to tangentisl points e
such as relatead material 1n snother document or dstabaze. Invoking programs e
13 another function typically reserved for LOCAL PADS. At the bottom of the
frams 13 a set of general functions calied GLOBAL PADS, which aro made IR
available et every frame. -

e
1. This OPTION Yasads to another frame L_v
2. OPTIONS are oftan used 11ke sudpointe in an outitine tl_‘-:f-
-'_[: 3.-This OPTICN leads nowhers (indicated by ihs minus sign at tha Tront)
~ A.-LOCAL PADS are uses to point to

s periphersl information, or to
invoke programs

ed1t help back next prev top goto acc mark ret z0Q disp user find info win xchg '.‘~_'f

Figuio 1-1: A self-describing ZOG frame

T T N L A U e L R T L A W Y R T N A A e T S N e N - O T T W W W T T a Tt o JJATEN R RAAR et R T i a2 e 3 N

1.2. Interaction with 20G

. There are three types of interactions with ZOG: navigation, invoking programs, and editing. The
i defauli mode of interaction is navigation, in which the user makes a selection via the keyboard or

pointing device (mouse), and the system then responds by dispiaying the next frame. Most selections

,.. lead to other frames, but some have "actions”, which perform a procedural function such as running

'::: a particular program. Finaliy, the user can enter the frame editor at any frame and make changes to

_- the frame (if he has the requisite privileges, protection being implemented at the level of the individual -

p) frame).
To be concrete, suppose the user was faced with the frame shown in Figure 1-1 and wanted to know _______
ﬁ more. The user might select option 2, either by moving the mouse cursor to some pari of option 2 and B

clicking a mouse button, or by typing the character 2 on the keyboard. Immediately, the frame would
be replaced by the frame shown in Figure 1-2. The user might then want to ge on, for example, by
selecting option 1 of that frame. Alternatively, he might want to go back to the frame of Figure 1-1,

which he could do by selecting the global pad back.

OPTIONS are oiten used 1tke subpoints in an outline IUI132 -,‘}'.‘_,

This TEXT expands on tha point mads ebuve. :
Note that in keeping with Z0G convention, the TITLE above ts the same as
the tesxt of the option that 1ed here from the other frame.

1. This OPTION s the first subpcint =- 1t Teads to yet further information.

2.-This OPTION makes a second subdpoint, dut leads no further.

'
F 7
.

‘D
L

£
‘!

>
¥’
AN

{
|

.y

e '
ol

R ad LA

G

YT
ATV :

edit help back nsxt prev top goto acc mark ret 209 disp user find info win xchg

Figure 1-2: JSecond self-describing ZOG frame

Y

' . -
N e Y

1.3. The ZOG editor
The ZOG frame editor, ZED, is the principal editor for making changes to the database It does more

> v

¥+ X

than a standard text editor, since it must deal with the substructure on the frame. For exampie, there

s,

are commands for changing the position of a selection, changing the type of a selection, adding a

[
0}

;ST
[

new selection, and changing what frame a selection links to.

A

1.4. Actions and agents

e

-
k
r
[
‘r’

A selection in a ZOG frame can have an action associated with it. An action is a sequence of
commands i.. the ZOG action language -- a simple programming language. This language contains
commands for traversing the network, invoking intrinsic utilities, and entering the editor. However, the
language also enables the user to invoke an arbitrary program. We call the programs agents, since
typically their purpose is to perform some service on behalf of the user. In the current system, agents

are simply Pascal programs that follow several conventions about how they receive input and return
output, so that they can be integrated with the basic ZOG system. ZOG's tunctionality 1s extended by

SR
B A
'. Vo v

ki

.

adding new agents.

- e
.

1.5. History of ZOG
Work on ZOG at Carnegie-Melion University (CMU) dates back to 1972, We buiit a precursur {o ihe
current ZOG system for participants in a cognitive science summer workshop, to allow them to aasily

[P et LN o

use a wide variety of computer systems by providing a uniform interface. After the workshop, we
shelved ZOG because 300 baud terminal techinology was inadequate. We rekindled work on ZOG in
1976, after we became familiar with the PROMIS system at the University of Vermont -- 2 menu system

[AR

based on rapid-response terminal technology, applied to the task of hospital management (Schultz & »E A
N Davis, 1979). Qur research goal was to understand in some generality the characteristics of large- il: :._Z
- network, rapid-res.onse menu systems. ;i:_r

In 1980 we feit that ZOG was sufficiently mature to be tested irs the real wor':. So w2 embarked on a ._':,

¢

0
.
%
Vo
-~

major ZOG application prcject -- to build a computer-assisted management system for the Navy's
newest nuclear-powerad aircraft carrier, the USS CARL VINSON (Newell, McCracken, Robertson &
Akscyn, 1981). This was a joint project between the ZOG Group at CMU and the officers of the CARL fos
VINSON. 't was unconventional because it attempted to transfer the results of university rescarch)
directly into an operational environment. The development phease of the project ended in March, 1983,
when the CARL VINSON left on her first deployment with a distributed ZOG system running on &
network of 28 powerful personal computers (FERQS). . o

T T

(B

{
188

a’a®sla

e
2,
oot
5
-

'v-
"‘l

s

J’J‘

. .- - - e m e = am

= e = = e . . e S L SIS, LA YN S S ML AL P T S T N S P T R O e e S P G G O € S L R A

2.The Philosophy of ZOG

The ZOG system is based on a broad set of principles that we have come 10 call the ZOG Philosophy.

o T
L LT

-

— This philosophy is a distillation of our experience with ZOG over the years. Some of the principles are

general ones that we subscribed to betore our work on ZOG, but maost of them have evoived from our

LI 4
fte v

experience with ZOG. The principles provide a good description ol the essential features of ZOG.

I,
)

They also can be interpreted as requirements that must be satisfied by an ideal ZOG implementation.

.-a

We begin with some general philosophical tenets about the design of a human-computer interface,
and then describe thie three major compaonents of the philosophy: the database, user interaction, and

- functional extension.

2.1. General tenets

Total environment. There should be a single environment with a single human-computer interface,

in which the user can accomplish ali of his various computing tasks. This avoids dealing with the

_‘;7 idiosyncracies of many different user interfaces when switching from one program to ancther.
Flexible, eff:cient tool. The human.computer interface should be a flexible, efficient tool, not an
active intelligence. Thus, there is no mystery about the workings of the interface -- it is under the total

‘ control of the user. Any intelligence the system may contain is in "frozen" form, i.e., in the content

'-‘.:j and structure of the viewable knowledge base. The place in such a system for active intelligence is at

SZ: the subsystem level (e.g., as ZOG agents), not at the top level.

= n

Direct manipulation of data. The user should be able to work with visual representations of data

stored by the system, and be able to operate on that data incrementally with commands whose effect
is immediately displayed (Shneiderman, 1983),

Semi-automatic operation. When a user needs to do something with the system that it is not
specifically adapted for, it should be always possible to fall back to manual use of its general-purpose
tacilities. This gives the system a real robustness as it is pressed into new uses. When functions are
used frequently, they can be automated by adding special purpose programs.

Low laarning overhead. It should be easy to learn how to use the system, so that it can be used by
people for whem the computer is only a tool to help them perform their real job. Many people are
subject to such time pressure in their jobs that they cannot afford a large investment in learning to

operate a computer system, even if the system woulkd prove very helpful once learned.

Safe, exploratory environment. The system should provide an enviranment where it is safe to
explore and learn by doing -- where there are no dangerous, irreversible actions that a user might
stumble onto. The concept of an exploratory enviranment is described in some detail by Carroll
(1982).

2.2. The database
A major component of a ZOG system is its database, which is somewhat ditterent from the traditionai

notion of a database. The following principles govern the design of the database:

Large size, The database architecture should be atle to accomodate hundreds of thousands of
tframes without adversely affecting the responsiveness of the system. This translates into a

requirement for large secondary starage devices with a minimum capacity of around one billion bytes.

Shared by multiple users. The database shculd accomodate simultaneous use by many different
users, so that it can provide a simple but rich means of communication among the users. Locking

should be provided at the frame ievel to prevent users from editing the same frame at the same time.

Generslity of representation. The database should be general in the sense thai it can represent
ar’ ‘trary textual and graphical information (though the current ZOG system supports only text). Thus,
one can represent objects as varied as research articles, one-page letters, Pascal programs, and

budgets.

Netwaork structures. The database should have a network structure in which data items can be
linked to other data items in the databasa.

Tree structures. Aithough the database can represent arbitrary network structures, there should be
a strong preference for the representation of tree structures. This is largely a convention for the way
frames are interconnected when buiit. However, th.: system should supbon a distinction between
selections on a frame that point to lower leveis in a treg versus selections that are “cross-referances"
to frames not within the tree structure. In ZOG, there is such a distinction: options are the "tree

selections”, and /ocal pads are the "cross-references™.

Menus. The use of menus of selectable items should be ubiguitous -- the database should contain
nothing but menus. Menus may contain “pure" information items (like stort paragraphs or points in
an itemization) as well as items that lead to other frames or have associated actions. This allows
graceful growth of the database, as pure information items are expanded to link to new frames

LAaEm

M AAAEIIENAS SN SENPATRE DTRTR RN

s

coniaining more detailed information.

Multi-level organization. The database should have the following four levels of organization:

e At the bottom level, there is substructure on single data items -- e.g.. a name component
or value component of a data item. (In ZOG this ic supported only by embedded text
conventions).

* One level up from the bottom there are single data items -- a muiti-line unit of text (a
phrase or paragraph), or a graphical entity (line or picture).

o One level up from sinyle items are collections {menus) of items. This is the unit of display
to the user (a frame in ZOG).

e At the top level. there are tunctional groupings of menus (called subnets in ZOG). The
menus in the collection often have a common structure taken from a schema menu that is
copied when they are created.

Default view. A default view of the data should be provided that organizes the tree structures in a
breadth-first fashion, with a frame being a node in the tree. This view contains explicit positioning
information that determines how the frame will be displayed to the user. Representation of the
database on secondary storage is optimized for efticient access to the defauit viaw by storing all the
items ot one frame together. Other views of the data must be produced by processing the breadth-first
representation.

2.3. User interaction

The ZOG philosophy also makes a major commitment to a particular style of interaction between thg
user and the system, as indicated by the foilowing principles:

Menu selection. Almost all interaction with the system should be done by muking selections from

‘the currently displayed menus. The exceptions are using the editor, plus the few cases where the user

is prompted for & simple response, such as the identifier of a frame to be displayed. Even creation of
new frames is triggered by selection of rnenu items that do nct yet lead to other frames.

Fast response. Responsa of the system to a user selection shouid be fast. For the normal casa
wherg the selection simply results in the display of another frame, response shouic be well under one
second. For standard video display terminals, this means that {ransmission speeds must be 9600 baud
or better. The fast response requirament has strong implications for the implementation: when a
frame is retrieved and displayed, there is no time to dynamically compose the display by gathering

data from many locatior:s in the database.

Browsing. The defauit mode of the system should be browsing through the network of link d menus.
This distinguishes the system from most other database systems, which recurre that a query be

fermulated to access data.

Active selections. in addition io hinking to other frames, selections should nave actions associated
with them, which are execuied whenaver the user chooses the selection. There is o set of common
utility functions provided by the system, along with a simple language to express sequences of these
functior.s as selection actions. One of the functions provided is to call arbitrary programs that have

been integrated within the system (sce the discussion of functional extension below).

No hidden selections. The currently visible tunctions should be the only tunctions available to the
user. For example, there should be no hidden keyboard commands that a user has to rernember. This
mears that users can rely totally on their recognition memory, i.e., their ability' to recognize that a

particular seiection they see displayed will provide the desired function.’

Common commands. Some common commands are of such general use that they should be
available on every frame. !n the ZOG system these are calied globa! pads. The ideal numbaer of such
command selections is probably around iwenty. If there are fewer than twenty the user's efficiency
may be impaired because of the extra time to access common functions; more than twenty and the

frame becomes too cluttered and confusing to beginners.

Editor. There should be a general editor that operates on individual frames and is always available as

one of the common command selections.

No scrolling. Frames should not be permitted to grow larger than the size of the available display
space, and thus there should be no functions for scrofiing the information within a single frame. This
piece of philosophy is one that distinguishes ZOG from most other systems that provide similar
functions. It is motivated largely by a desire for simplicity and by the need for all available functions to
be visible. There are, of course, occasions where one must represent a linear data structure that is
too large to fit on a single frame (though in our experience these are rare). In these cases, one can
either introduce extra levels ot hierarchy,? or simply link frames together in a linear sequence.

1The current ZC'G system violates this bit of philosophy in atveral places, particitacly in tha editor. But ap editor imsy require
excepticns to this principle in genera!, bacause of the need tor a high rate of interaction ang a fairly wide and flat command
structure for efficient expert use.

2C)ne of our ZOG users coined the term “nodes of convenience” for these ext:a irames, which later tuned into “nodas of
inconvenience” in certain circumstances where they seemed particularly awkward,

2.4 Functionat extension
A Z0G sysiem needs more than just a database with an inierface -- it needs some mechanism for
extending the system io provide new functions for the user. The following principles describe how

this is done;

Mapping data structures. The fust stes in adding a new apglication to the system should be to map
the data structures of the new apphication into frame formats and inteiconnection struciures within
the database Frames can be used as record structures, with individual itemns being fields in the
record. The interconnection structure of frames can be used to represent hierarchical relationships,

and to create access paths (indexes) to stured data.

Imbedded programs. Pragrams that are needed to implemant new functions are written in a spewvial
way that allows them to be imbeaded within the system, so that they can be used without having to

leave the ystem. These agents can be invoked within the system via active menu selections.

Environment frames. Agents are invoked and controlled from special frames called environmeni

frames, which contan slots for all the input parameters for the agent and slots for the agent to store

3]

output -:;f.!ue::.3 There is a special aditor {the siot oditer) for cnivironment frames thay provides for
efficient filling-in of the agent’s input slots. The slot editor does type-checking on input values and
allows values to be selected from a menu where appropriate. There is a special menu item on the

environment frame that. when selecied, causes the agent to begin execution.

Frames for input/ouiput. Agents directly access frumes in the database 12 get input data. (The
environment frame would typically have an agent input slot that contains a painter into the
appropriate area of :he database). When agents nced to produse large data objscts as output, they
simply create frame structures in the database, which are then available to the user in permanerit

form.

3. Applications of ZOG

From the very beginning, our work on ZOG has often been driven by particular applications. We
wouldn't wish it any other way, because we believe that rea! applications are the best breeding
grounds fcr new research ideas. Ir. the early days, we attempted to apply ZOG to our own

professional needs -- for project management and for teaching ZOG to new users. In recent ysars, we

3‘l'his scheme is an adaptation of the environment mechanism dueveloped for the CMU Cousin system (Hayes & Sexokely,
1883).

’

.
A R

. ™~ .t . [
A S
b : AT

’ - s 4

-~
'
’
PRAPSE

have devoted most of ou: efiort to developing the USS CARL VINSON application. Although it taok us
away from our normal research lives, it proved to be an excellent source of new discoveries about
20G.

3.1. Some applicaticn areas we have explored
Below we hst some general categories of applications we have worked on, along with a brief

descnption of how ZOG has been used in each.

Database systems. One of the major functions that ZOG provides is storage ard retrieval of
information 2ZOG can therelore be viewed as a database system that uses the "network " data model.
On the storage side, Z0G allows users to grow the database one frame at a time, using any existing
frame as a departure point (much like axpanding a network of rzads into the countryside). The
databases that have been constructed using ZOG range irom small personal databases to large
project databases. Most of the frames in these databases were created directly by users, but in some
cases agents were used to automate the frame-creation process. For ingtance, a frame development
system called BROWSE partiaily automated the construction of a library database in ZOG frame form
(Fox & Palay. 1978).4 On the retrieval side, ZOG provides navigation commands (some of the global
pads) wingh enabie the user 10 Faveise the NBIWoIR. THEese Coimmanas germil ussrs &

unfamilar database and progressively acquire & madel of its contents and structure.

Management information systams. We have accumulated soma meaty experience with ZOG as a
management information system. For several years, we have becn using a ZOG database to manage
the 20G project. This databese contains all of our documents, software, reports, scheduies and many
other types of project-related informeation. The ZOG database for the CARL VINSCN can also be
viewed as a managemeant information system, since its primary purpose is to help the Commanding
Qtticer and his department heads administer the hip.

Inetruction/training. ZOG has been usad as a training system in several capacities: (1) providing
on-ling help; (2) as a guidance sysiem for using other on-iine systems by shielding users from the
idiosyncracies of a particular interiace; and (3) as an index and contre .- anism for a videodisc
playes.

Document management. We have used ZCOG as a document producticn environment by mapping

‘srv\wse began with an siready existing biblography database aeparats from ZOG, and provided a way ‘G automaticaity
conslruct ZOG tramaes irom the bibkography sntries. slong with indexing hames that provided access to the sritries ascording
to a standard classification achoms.

D T U A PP ST .

- e e e e e - DR SN T Nt
R U LR R A S A SRR R GRS AP S ST N A R AL SRNN NS NS 2 ESTON N K

LA

. AR A
gL TR R R
AR .
.

L
,or »

. S

"

2
.
'\-'.\"f}i

N

"

10

the natural hierarchical structure of documents intc trees of ZOG frames. ZOG ¢an then be used as a
kind of tree-structured document editor. We also developed an agent that traverses the tree of frames
and transforms the structure and content of those frames into a form suitable as input to a document
formatting system (in this case Scribe). This provides a means for automatically producing high-
yuality hardcopy documents from ZOG frames. without having to explicitly provide most of the
tormatting commands.®

Software management. ZOG has alsc been used as a programming environment. The programmer
represents code in frames, after which another special agent is applied to the frames to generate a
compilable version of the code in a file. By equating the notion of a frame with the notion of a block in
block-structured programming languages, ZOG provides a natural environment for a top-down,
stagewise approach to developing code. Most of the code for the Z0G system itself is now in frames,
along with various data structures associated with software develgpment, such as change logs, bug
reports, old versions, design notes, and user guides. Figure 3-1 shows a sample frame of Pascal code
from the middle of an agent cailed AgO/d. Note that each statement is a separate gption, and that
options 3 and 4 both lead to other frames (nc "-" atter the "."). Figure 3-2 shows the frame that option

4 leads to. Note that the BEGIN and END around the two statements are implicit -- they are added by the

agent that writes the cade to a file for compilation,

.
)
B
‘e

'

e

Erhia paper itseit was cres’ed tofaily from within ZOG. As a rusult, ks style is decidely mare structured and "chunky™ than ls -
the normal ce80. Some of us believe this is 8 gocd thing; others may reasonably disagres.

: ii

{ Change/add 0. 01d local pad on the ORISINAL frame) 1UL133

.. 1.-0paf(FushFn FPX); { Open the origtnal frame for linking to copy }

2.-Se1P := GPadF(FPX,'\',SigPad); { Get pointer to \. 01d 1f exists }

fl 3. IF SigPad THEM { Re-1ink existing local ped }
4. ELSE { Add new local pad with COPY as next freme }
6.-CisF(Pushfa,FPX); { close the frame for modificetion }

4. Parent
*. top of AgOI¢

sdi1t help vack next prav top goto acc merk ret zog disp user find iafo muin xchg

T TR

Figure 3-1: First exampie Pascal code frame

iﬁ ELSE { Add new local pad with COPY as next frame } IuI13e
"
i 1.-Se1P := CrPadF(FPX,'\','01d',22,2,51gSpace); { Croats naeded local pad }
- 2.-1F SigSpace THEM RFrSeI(FPX,Se1P,Copyfn); { Set next frame to COPY)
»

t. Parant

e, top of AgOid
- edit help back next prav top goto scc mark ret zog disp user find info win achg

Figure 3-2: Second example Pascal code frame

Electronic communication. We have used ZOG for various forms of electronic communication

] such as electronic mail and bulletin boards. In ZOG, electronic communication occurs in a manner
quite different from conventional electronic communication systems. "Mail” messages are placed on

s
-

12

ZOG frames according to topic, so that all messages on a certain topic can be viewed together. Each
message does not have to re-establish context as it would if part of a series of unrelated imessages. In
other words, ZOG provides logical coherence for mail messages. Figure 3-3 shows an example of an
actual interchange of several mail messages batween two Navy officers ("cvmdf” and “"cvmir") over a

five day pericd.

Ma11: Fiytng time for mdf IU1134

1.-Mike: Please scheduls max flying for Tuesday and Wednesday. and
possibly Thursday afternoon. [cvadf 9/8/81]

2.-It turns cut the bast bet is to go with VRES, get your name
on a yallow sheet and spend the day flying on & C-9 going
from place to place. I may join you on one of these expeditions
and we can spend the whole day working "in the air”. [cvmlir 9/8/81]

3.-Sounds great...will you please meke arrangements with VRS6? [cvmdf 9/8/81]
4.-Scrstch option 2 1ts only for f11ght surgeons. It lonks 1ike

VRC40 1s now best bet. There's no need to schedule in advance

Just show up.(cvair 9/0/81)]

6.-Mark, 1 just remembered, I will be in Mansuvering Board School
next week.[cvmir $/90/81)

6.-1 w11l also ba working an option at VA42 to go flying in the afternoons
&t Uceana avier sciooi. We'il ses iT we can‘t work som@ining out where
I pick you up and take you too. [cvalr $/12/81] ([cvmd? 8/12/81]

odit help back next prev top goto acc mark ret zog disp user find info win xchg

Figure 3-3: Mail frame example

3.2. The Z0G/ USS CARL VINSON project
As mentioned in the introductory section, the Z0G/ USS CARL VINSON project was a joint project
between the ZOG researchers at CMU and the Captain and crew of the USS CARL VINSON, The
project officially began in early 1980. In earty 1983, a complete ZOG-based application system was
installed on board the ship, running on 28 PERQ computers connacted via an Ethernet network. The
system provided a transparent, distributed database of 20G frames (initially over 20,000 frames), with
ccess times of about 0.6 seconds for frames residing on the iocal disk, and 1.2 seconds for frames
on remote machines. There wera over 30 agents (application programs) that provided, in conjunction
with the basic ZOG system, four main application functions:

Ship Organization and Regulation Manual. One of the ariginal project goals was to represent the
Ship Organization and Regulation Manual (SORM) in a ZOG net, so that its contents could be
accessed on-line. The CARL VINSON's SORM had not yet been written. Thus ZOG was used as a

LN R T T T T AR S Y L T R T . U W T N - ~ - - .
: i
[]

- 13

x document production environment for developing the SORM. A major objective tor the SCRM was to

I make its contents usable not only by human users, but also by agents (management application

K programs).

Interactive task management system. Since the responsibilities section of the SORM is quite

e)
y %

structured, agents can be used to support task management. In simple terms, tasks described in the
SORM are copied and their ge.eric portions are instantiated to reflect the particulars at hand (times,
people, etc.). These specific structures are then used to track the status of these tasks and generate
reports of various types. An example task is "getting underway"”; this task resembles a space launch

“ countdown, with hundreds of synchronized subtasks occurring over a three day period.

Technical manuals. A function that was added to the original project agenda was the development :..\',4{'-'_1?,

of on-line technical manuals for the aircraft and weapons elevators. Here, as with the SORM, new ARESE

L
e

manuals were needed. The manuals were produced within ZOG by personnel from the shipbuilding

F“’"."., . ',' o g

company, as well as members of the crew. In addition, the on-line version of the manual was

¥
Y

TSR

s
s

integrated with videodisk material. Embedded in relevant places throughout the on-line manual are

.,
A
s, r " r

EX R ATl I

Z0OG selections that controi an adjacent videodisk player to play specific po:tions of the disk.

v
.
PO
‘.
h ’
g 4

R | UL

YA
{

User interface for AirPian. Another funciion noi in tie Griginai pian was an intgnace o an expent

T neam

4
(AN

artificial intelligence system called AirPlan8 AirPlan assists the Air Operations department in the

launch and recovery of the ship's aircraft. One of AirPlan's functions is to alert decision makers when

I
W
~
h
LS
I3

currently available options are soon to disappear (tor exampie, that a given airborne plane will go
below the requisite fuel for flying to an alternate landing site). Z0G provides an interface to AirPlan for
both input and output. The slot editor provides an etficient means for updating AirPlan on the state of
the world. Qutput from AirPlan is sent to ZOG and displayed in frames that any workstation on the
network may access. An incremental display feature was added to ZOG so that incremental changes
to these ouiput frames are highlighted; this reduces the cognitive overhead of identifying what
information on the dispiay has actually changed.

4. A Critique of ZOG
In our long experience with ZOG, we have been on the luokout for strengths and weaknesses that !—.-—.'
have appeared as we have pushed ZOG in new directions. In the following two sections we present F;f.-;:f;
the major strong and weak puints of ZOG, each with a brief elaboration. A third section summarizes vr-‘j "

the sources of evidence that support our analysis cf strong and weak points.

6'nw expert system itssif was developed by anciher group of researchers at CMU, headed by John McDermatt.

.t P, L. e, L LN ST SRSt S e
ST T T e e e T T T e T T T T AT T A e T e e T T T
Ce e T T T e e e S T e e e e e e e e R e

| Sl 'aiia 4 Savi siAn B4 i IS Ani ARt RAUIML AT e S S TS A e A S L SR S M D e A R MR T S A R e R A

: 3
4.1. Z0G's strong points :_‘ _".
We believe that ZOG has many strong points; in fact, it has often surprised us (even with our :-:’-J‘i
understandable optimism) how well ZOG has adapted to the many demands we have made of it. The --'_::-:;:::
most important of the strong points are described below: E?::::::’:
e
S

Robust enough to be put into operational use. Compared with other types of research interfaces,

such as natural language interfaces, ZOG is extremely robust. This is because of its simplicity and its

openness. Many new tasks can still be performed, though perhaps awkwardly at first, even if they lie ‘."_'--‘Zj':
outside the capabilities of existing ZOG agents. ; :_-‘.'-}"

o Easy for compuler novices to learn and use. Computer novices can iearn to do basic ZOG
L‘,-'_-. navigation in under a hailf hour. Learning enough of the ZOG editor to add new material in a
; reasonably effective manner takes ahout another two hours.

. Users do not outgrow ZOG as they become expert. As users gain experience, they seem to
E become progressively more attached to ZOG. Several aspects of ZOG seem to account for this
yj." phenomengcn: (1) the system’s high response rate makes menu selection competitive with a command
‘ language interface; (2) experts tend to use a much broader range of functions than novices, and thus

appreciate the fact that ZOG eases their memory burden; and (3) the capacity of the database to

e, v
¥

rl 'l »
o
e

absorb multipie indices allows experts to develop additional structures that make their use more
efficient.

r 5

. - Can assimilate and integrate many different applications. ZOG has demonstrated that it is AGNY
_--:. capable of assimilating and integrating a wide range of applications. ¥We believe this is primarily due -

. to the generality of ZOG frame structures for representing information of all kinds.

A Supports database browsing. ZOG provides good support for browsing because of its rapid L~ _J
) response and the network siructure of its database. The ability t0 search a database by query \\

methods is strongly dependent on having a model of what information the system contains. Browsing
provides a means for a user to start searching with minimal a priori knowledge, yet the user can
exploit what he learns about the database over time. In ZOG, the user's knowledge of the contents
and structure of the database is continuously reinforced through use.

..'- Supports large databases. The structure of the database is such that there is no limit to the size
- Z0OG can operate with, except for those limits inherited from the hardware or operating system leveis.
Consequently, the maximum size of the database is a function of the collective size of secondary

15

memory. In a distributed system with many nodes this size can be extremely large, but then the

bandwidth of the network may begin to degrade system response.

Can exploit schemas for building databases. A schema is essentially a chunk of ZOG data (e.q.,
a single frame or a tree of frames) that contains variable parts; a schema can be instantiated by
copying it and then providing constant vaiues for the variable parts of the copy. Schemas aid in the
- building of a number of data objects that have some common parts. In ZOG, a simple schema
mechanism is provided through the ability to copy a scliema frame when a new frame is created, or to
copy whole trees of frames. Ramakrishna (1981) developed more elaborate schema mechanisms for

' Z0G and studied their use experimentally.

Can be used as the scle interface (shell) for an operating system. ZOG has the capability to
assimilate all the utility functions normally associated with an operating system shell. Single selection

actions can invoke simple utilities, and environment frames can be used for utilities with several

F parameters (essentially revising the utilities to behave as ZOG agents).
- Has a simpliitied model of window use. In the PERQ version of ZOG, there are three windows

(twa for frames and one for messages), fixed in size and in location. The need to maintain multiple -
a active working contexts, which is often solved by allowing arbitrary numbers of overlapping windows,

is satisfied in ZOG by navigating among the different contexts in a single Z0G window. This simplified

model may have some real virtues such as ease of learnability.
i Has a simplitied model of multiple processes.. There is only a single ZOG process that interacts
- directly with the user. All other processes are simply background processes running agents, which R
‘ operate on the ZOG database but do not need to communicate directly with the user. This is a simpler \
. model than the common one where each process has its own display window, and can potentialiy
; interact with the user independently of the other processes.
N
K Can be usad as an interface mechanism for video discs. Video discs are wonderful devices for -
‘f storing visual material, but they lack any structured way of gaining access to the stored images :j‘.
I -- there is simply a flat sequence of tens of thousands of images. ZOG frames can be buiit to provide ’[-:-1
T structured access to the material, with special actions on ZOG frames that can call up particular SAOAE,
images or motion scenes. n‘)
. e
; Can make yood use of a pointing device {mouss). Because oi the high proportion of selection . “:: :
: S
= ﬂf’
& 5
: 5

v
S
a7
A
NS
e

-~

e S S A S S VU N RS SR ST S B WY WL G UL S VN NG I UL G IO LN .0 B P N Y N P

~

o ‘;.,'_ wr

LANE L |

-
¥

16

operations by the user, ZOG is well suited for using a pointing device such as a mouse.” This is
especially true of ZOG's editor since positioning the cursor and repaositioning items are frequent
operations.

Can zxploit distributed systems. We have come to appreciate Z0G’s ability to exploit the positive
features of distributed systems while shieiding the additicnal complexity from the user. ZOG's
implementation of the distributed database allows a user to think in terms of a large, single database
and not worry about which machine particular frames are on. Furthermore, the user need not be

aware which machine on the network is actually executing an agent the user invoked.

Supporis a community of communicating users. A large, shared database provides a
"commons” in which users can jointly develop and share data, rather than simply exchange it. This is
important to the individual user because his ability to assimilate information far outstrips his ability to
generate it. Large, interesting databases can only be built by many hands.

4.2. 20G's weak points

Below are the weaknesses of ZOG that we have become aware of:

Z0OG sacrifices efficiency of particular applications to get integratior:.. Because ZOG is
attempting o be all things to a user, compromises must be made when fitting an application into the
ZOG structure. The ZOG data structures for an application are usually less efficient in both time to
process and space than they would be for an applicatién system built for that special function. Also,
accomplishing some application functions may take more steps in ZOG than in a specialized
implementation, because more general, and hence less powerful, operators are being used.

Z0G does not support a fast database query language. The ZOG database is represented on
secondary storage as text files for flexibility -- parts of the database can be easily backed up or moved
from one system to another, and standard text editors can be used on the database in emergency
situations. There is thus a substantial overhead incurred in "parsing” and "unparsing" frames for
internal system use.

Inexperienced users can get lost. When a user faces a large, complex ZOG database that he is
unfamiliar with, there is a strong possibility that he may become disoriented. (See Mantei (1982) for a

7We explared the use of touch screens, but fearned that users found them inaccurate and inconvenient. in our opinion, the
mouse is a clear winner over all otiwar positioning devices for use with ZOG.

LA

17

) study of disorientation in a ZOG database specially constructed for experimegniai purposes).
I However, it has been our experience that this problem is not nea:''y as severe as we once feared,

o partly because ZOG has adequate means to find your way again once you have become lost.

s
[R

e
« ‘e

Biased too much toward breadth-first view. ZOG frames store information in a "breadth-first”

r
]

i fashion, and thus the user is forced to operate exclusively with this form. Ther=e are, however, times
when other views of the data (e.g., depth-first, as with typical hardcopy) would be mare appropriate to

the user’s momentary needs.

- Z0G depends too critically on the speed of the disk technology. ZOG needs to access a few
l thousand bytes from secondary storage within every respanse cycle. This puts a stringent
requirementi on the access time of the disk hardware and the overhead of the file system software.
Flexible disk (“floppy") drives are too slow; inexpensive hard disks are barely adequate.

I_; Can’t represent all states of & complex, unordered task environment. A complex, unordered
task is the proper domain for a rule-based system, where the individual rules can freely appiy in any
oraer as the current situation dictates. Atternpting to create a decision tree with ZOG frames to
analyze some dynamic situation runs intc difficulty because of the unpredictable order of state

m changes, causing a combinatorial explosion in the size of the requisite ZOG structure.

Can’t handle kighly dynamic data. ZOG cannot ¢ope with situations where many updates to the
database are required every second, particuiarly if the updates are widely spread throughout the
database. This is due to the fact that data is updated in frame-sized chunks, rather than in smaller
units, and the overheads in reading and then rewriting a frame are substantial -- a second or two on
the PERQ.

Lack of graphics and multip!e fonts. ZOG was originally developed for termirals that did not
support graphics and multipte fonts. When we moved ZOG to PERQs for the CARL VINSON, we took
the conservative route of emulating character terminals rather than exploiting the PERQ graphics
capability. There is no fundamental reason why these capabilities could not be added to ZOG.

Z0G cannot be usad cver standard telecammunication linas. Transmission rates of 1200 baud,
which are the norm for dialup phone connections, are simply too siow for proper use of ZOG
-- experts become impatient at those speeds. Even 9600 baud is barely adequate for experts.

LIPS S L N . T S I S NP Rl Sl S Sl SR S Sl AT SR S Y S

N SRR

(o '-i
2tatsls

! s

. e 1
. 4 '
.]

18

4.3. Evidence for our belietfs .

The strong and weak points listed above are of course not simple tacts -- they are merely our beliefs.
However, they are the product of a substantial body of experience with ZOG, both in the university
environment and on board the USS CARL VINSON. Below, we discuss four different aspects of this
experience: our own use of ZOG, use by the Navy, laboratory experiments, and instrumentation of

the system.

Oui own use of ZOG. Our primary source of beliefs about ZOG is our own use of the system over
the past six years. The early years saw rapid iteration on the ZGOG design, with relatively little serious
use of the system for applications. Then during 197B and 1979 we made a serious attempt to
coordinate the management of the ZOG Project (involving about 10 peopie aliogether) by using ZOG
to hold status information, discussion of issues, meeting notices, and other information of general
interest to project members. When we began the CARL VINSON project in 1980, we again attempted
to use ZOG for project communication, but this time with the added twist that some of the nroject
membets were locater in Newport News, VA, We were mare successful this time, partly because the
remoteness of some project members made other means of communication more difficult, and partly
because we had more computing cycles available and faster communication lines. During the course
of the VINSON projact, we expanded our use of ZOG into document and software management, and
actually reached a point where several of us>used ZOG tor nearly everything we did throughout the
werkday. For the three-year period beginning in October, 1980, there were over 200,000 sessions of
Z0G use on our VAX version -- and by the middle of 1982, most ZOG use had shifted from the VAX to
PERQs, for which we don't have session counts.

Use on board the CARL VINSON. Use of ZOG by members of the CARL VINSON crew began in late
1980 with the use of a VAX at CMU over leased phone lines. This usage continued fairly steadily for
two years, with six terminal iines available for most of that period. The main activity, besides project
communication, was the building of databases thai the ship would use during cruise -- the SORM and
the two elevator technical manuals. More than 20,000 frames were created on the ZOS VAX ior latar
transfer to the ship’'s PERQ system. In early 1982, the ship used a prototype versicn of the
management application software on the ZOG VAX to produce severai large management schedules
for the ship’s operation, such as the Builders' Trials. Then, beginning in March, 1983, the ship had the
completed ZOG systemn available, although there were still many hardware and software problams
being ironed out. We know that there were at least 500 sessions of ZOG use on board during April
and May, but most of the usage was limited to a small subset of the total of 28 PERQs. By the end of

September, usage had increased considerably, with about 30 serious users and involvement by
85-90% of the ship's departments.

ML
- '-. '—’ 1. ’v‘ "

£

Ve
LA
otaty

.
AL AR
oo

B3
LPRAN

'V'I'Iff

R
T e

19

lLaboratory experiments. From the beginning, we have viewed ZOG as a vehicle for research in the
psychology of human-computer interaction. We created a special laboratory where we could do
controlled experiments of people using ZOG. One of our main interests has been to study how people
use Z0G to learn how to use ZOG, so we do have some basis or beliefs about ZOG being easy to
learn. We have also studied use of the ZOG editor extensively. One specific experiment evaluated the
speed of expert use of the ZOG editor, with the result that ZOG compared unfavorably with several
other commonly used editors, such as a Wang word processor (Robertson, C., McCracken & Newell,
1981) 8 Another specific study compared the time tc learn the ZOG editor against data on eight other
editors, and showed that ZOG's editor is in the middle of the range cf ease of learnability (Robertson
& Akscyn, 1982). This study also compared different teaching tools: a human teacher, an on-line
tutoriai, an on-line manual, and an off-line manual; results indicated that on-line and off-line manual
users take about the same time to complete a standard instruction sequence, but off-line manual

users use the editor more effectively at the end cf the sequence.

System instrumentation. Both the VAX and PERQ versions of ZOG have been instrumented to
save statistics for each session of use. These statistics summarize the activity of the session with
information such as number of frames viewed, number of frames edited, distributions of times spent

[S SR - —ta e f_‘._‘ baimla

L - - - a - e . - miibmnnabn (ainen wialda, -~ ~r wirrioncnlle, o
viewing eacn aine a ls] Sqiung €acn waimeg, Wwniln subnets weie vual:cd, and sG on. Ong "

inany WS
planned to use the data to instruct the iterative development of the system; hawever, cn the CARL
VINSON the data is also being used for an official Navy evaluation of ZOG use on board the ship.
Although we have done some spot analysis of the statistics, a systematic attack on this great mass of

data still lies ahead.

5. The Future of ZOG

There is now work going on outside CMU to create a follow-on to ZOG called KMS (Knowledge
Management System). KMS is designed to remedy many of the shortcomings of the 20G
implementations, and specifically to make full use of the potential of high-resclution display

techaology. Some of the features of KMS that represent improvements over ZOG ase the foilowing:

o Graphics (lines, reclangles. curves, picture images) and muitiple fonts.

e Greater use of the pointing device to specify objects and parts of objects to operate on,
and screen cursor images to provide feedback of the current system context.

¢ Direct output of good quality hardcopy (no need for a separate formatting system that

GWG do believe that Z0G's editor is due for replecement, basad as it is on o!d editor 'techology that is clearly inferior to the
new breed of screen editors.

e

PRI

wn F rr v B
PR

i

20

operates as a post-processor).
e Copying material easily across frame boundaries.
e Additional intrinsic views of the database -- specifically, a depth-first view.

e Cipser integration of the editor with the rest of system, to make editing seem more
natural, rather than a special mode that one is continually entering and leaving.

Despite the years of work on ZOG, we still see many rich possibilities waiting to be explored. We have
only scratched the surface of some of the ZOG applications we have worked on, and there are many
potential applications as yet untouched. We are particularly interested in advancing the use of ZOG
as a high-quality documentation environment, and as a programming environment, since these are

tools that can greatly enhance our own daily work.

6. Acknowledgements

We wish to acknowledge the contributions of many people over the years. Those who have been
involved with ZOG at CMU: Allen Newell, George Robertson, Kamila Robertson, Elise Yoder, Sandy
Esch, Patty Nazarek, Angela Gugliotta, Marilyn Mantei, Kamesh Ramakrisinna, Roy Taylor, Mark Fox,
and Andy Palay. Thoase officers from the LISS CARL VINSOM who worked with us at CMLL: Mark Frost,
Paul Fischbeck, Hal Poweli, Russ Shoop, and Rich Anderson. Captain Richard Martin, Captain Tom
Mercer, and other officers and crew of the USS CARL. VINSON. And finaily, Marvin Denicoff from the
Oftice of Naval Research, our original ZOG research sponsor. We would also like to thank Elise Yoder
for her extensive comments on this paper.

This work was supported by the Office of Naval Research under contract NOOO14-76-0874. It was also
partiaily supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. The views
and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Ofﬁce of Naval Research, the
Defense Advanced Research Projects Agency, or the U.S. Governiment.

7. References
Carroll, J.M. (1982). The adventure of getting to know a computer. /IEEE Compuier, pp. 49-58
(November).

Fox, M. & Palay, A.(1979). The BROWSE system: ar introduction. Proceedings of the Annual

Conference of the American Society of Information Science, Minneapolis (October), pp.183-183.

T T e T LT
A
A Sy Y e e
AR "
0t At e

-.l,

sy
)
o

- AN

21

Hayes, P. & Szekely, P. (1983). Graceful interaction through the COUSIN user interface. international
Journal of Man-Mahine Studies, 19, pp. 285-305.

Mantei, M. (1982). A Study of Disorientation Behaviot in ZOG, PhD thesis, University of Southern

California.

Newell, A., McCracken, D., Robertson, G. & Akscyn, R. (1981). ZOG and the US3 CARL VINSON,

Computer Science Research Review, Carnegie-Mellon University, pp. 95-118.

Ramakrishna, K. (1981). Schemalization as an Aid to Organizing ZOG Infucimation Nets, PhD thesis,

Computer Science Department, Carnegie-Mellon University.

Robertson, C.K. & Akscyn, R. (1982). Experimental evalvalion of tools for teaching the ZOG frame
editor. Proceedings of the Iniernational Conference on Man/Machine Systems, Marnchester, UK

(July).

Robertson, C.K., McCracker, D. & Newell, A. (1981). Experimental evaluation of the ZOG frame editor.
Proceedings of the Tth Canacian Man-Computer Communications Conference, Waterloo, Ontario
(June), pp. 115-123.

flobertson, G., McCracken, D.& Newell, A.{(i981). The ZQOG approach to man-machine
communication. Internationai Journal of Man-Machine Studies, 14, pp. 461-488.

Schultz, J. & Davis, L. (1979). The technology of PROMIS. Proceedings cf the IEEE, 67, (September),
pp. 1237-1244.

Shneiderman, B.(1983). Direct manioulation: & step beyond programming languages. /EEE
Computer, {August), pp. 57-69.

YTy

(,’1"#.’.
l',"l‘l‘

R

[T U A B Wy

e u !
‘

2
Ay

