Γ	RD-A16	4 522	Jam Noni Modi	NING E COHERE ELS(U)	FFECTS NT DIC NAVAL	5 ON N DITAL 1 POST	-ARY C RECEIV GRADUA	OHEREN ERS US TE SCH	IT AND Ing Ri Iool Mi	BINAR ANDOM DNTERE	Y JAMMER Y_CA	· · · · ·	3/3	2	اچ. ۱
ן י	JNCLAS	SIFIED	LA	MUNOZ	DEC 8	85					F/G 1	.7/4	NĽ		1
								-							
															1

÷

MICROCOPY RESOLUTION TEST CHART

JAMMING EFFECTS ON M-ARY COHERENT AND BINARY NONCOHERENT DIGITAL RECEIVERS USING RANDOM JAMMER MODELS

by

Luis Alberto Munoz

December 1985

Thesis Advisor:

522

AD-A164

FILE COPY

J

D. Bukofzer

80

Approved for public release; distribution is unlimited

A. TSPORT SECURITY CLASSFICATION Unclassified Instruction 3. TSPORT SECURITY CLASSFICATION Unclassified Instruction 3. SECURITY CLASSFICATION Unclassified Instruction 3. SECURITY CLASSFICATION DECLASSFICATION/DOWNGRADING SCHEDULE 3. DISTRUCTION (AVAILABULTY OF REPORT Approved for public release; distribution is unlimited 5. DECLASSFICATION NOWGRADING SCHEDULE 3. DISTRUCTION (AVAILABULTY OF REPORT Approved for public release; distribution is unlimited 5. DECLASSFICATION NOWGRADING SCHEDULE 5. OFFICE SYNEOL (If approved for public release; aname of REGORAMING ORGANIZATION (If approved) 5. MONITORING ORGANIZATION (If approved) NAME OF FUNDING STATUTON NAME OF LUNDING STATUTON (If approved) 5. MONITORING ORGANIZATION (If approved) 7. NAME OF MONITORING ORGANIZATION (If approved) Nonterey, California 93943-5100 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER (If approved) 7. NAME OF MONITOR NUMBERS (If approved) Nonterey, California 93943-5100 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER (If approved) 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER (If approved) Name of REGORAN (If approved) 10. SOURCE OF FUNDING NUMBERS (If approved) 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER (If approved) Number of DECLASSING (If approved) 10. SOURCE OF FUNDING NUMBERS (If approved) 10. SOURCE OF FUNDING NUMBERS (If approved) If		PEPORT DOCU	MENTATION	PAGE		
Unclassified Instruction automate Declassified Instruction automate Declassified for public release; distribution is unlimited Declassified for public release; distribution is unlimited Name of PERFORMING ORGANIZATION REPORT NUMBER(S) Name of PERFORMING ORGANIZATION (Scheres YMMOL (Mappicable) Name of PERFORMING ORGANIZATION (Scheres YMMOL (Mappicable) Name of PERFORMING ORGANIZATION (Mappicable) Nonterey, California 93943-5100 Monterey, California 93943-5100 Montere	A FEPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS		
a. SECURPT CLASSIFICATION AUTHORITY 1 DISTRUMENT CLASSIFICATION AUTHORITY b. DECLASSIFICATION ADD/WIGRADING SCHEDULE 1 DISTRUMENT CLASSIFICATION ADD/WIGRADING SCHEDULE b. DECLASSIFICATION ADD/WIGRADING SCHEDULE 1 DISTRUMENT CLASSIFICATION REPORT NUMBER(S) c. ANAME OF REFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) c. NAME OF REFORMING ORGANIZATION (* OPERATION (* OPERATION) 6. OFFICE SYMBOL (* OPERATION) Naval Postgraduate School Code 62 K. ADDRESS (Chy, State, and ZIP Code) 7b. ADDRESS (Chy, State, and ZIP Code) Monterey, California 93943-5100 Monterey, California 93943-5100 Sa OPECE SYMBOL (Maxwarion) 5b. OFFICE SYMBOL (* addresse; Chy, State, and ZIP Code) 9 PROCEMENT INSTRUMENT IDENTIFICATION NUMBER Monterey, California 93943-5100 B. OFFICE SYMBOL (* addresse; Chy, State, and ZIP Code) 9 PROCEMENT INSTRUMENT IDENTIFICATION NUMBER Monterey, California 93943-5100 Jamming SROLECT 10 SOURCE OF FUNDING NUMBERS PROCEMENT NO. BADRESS (Chy, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS Monterey, California 10 SOURCE OF FUNDING NUMBERS 10 SOURCE OF FUNDING NUMBERS PROCAMA PROCEMENT NO. 10 SOURCE OF FUNDING NUMBERS State is The	Unclassified					
bit CLASSFCATON / DOWNGRADING SCHEDULE distribution is unlimited distribution is unlimited distribution is unlimited PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) Naval Postgraduate School Gb. OFFICE SYMBOL (# applicable) Naval Postgraduate School Naval Postgraduate School Gb. OFFICE SYMBOL (# applicable) Naval Postgraduate School x address (Gr, State, and ZP Code) Nonterey, California 93943-5100 a wake of FUNDING (SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER SPOGRAM x address (Gr, State, and ZP Code) Bb. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER SPOGRAM x address (Gr, State, and ZP Code) Is SOURCE OF FUNDING NUMBERS SPOGRAM PROGRAM x address (Gr, State, and ZP Code) Is SOURCE OF FUNDING NUMBERS SPOGRAM PROCEEDER x address (Gr, State, and ZP Code) Is SOURCE OF FUNDING NUMBERS SPOGRAM PROCEEDER x address (Gr, State, and ZP Code) Is SOURCE OF FUNDING NUMBERS SPOGRAM PROCEEDER x address (Gr, State, and ZP Code) Is SOURCE OF FUNDING NUMBERS SPOGRAM PROCEEDER x address (Gr, State, and ZP Code) Is SOURCE OF FUNDING NUMBERS SPOGRAM PROCERSENT NONCOHERENT DIGITAL PROCEME	a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION Approve	AVAILABILITY C	of REPORT	se:
PREFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL (* applicable) 7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School (* applicable) 7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School (* applicable) 7a. NAME OF MONITORING ORGANIZATION Monterey, California 93943-5100 Noterey, California 93943-5100 A. NAME OF FUNDING/SPONSORING (b) OFFICE SYMBOL (* applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Monterey, California 93943-5100 Noterey, California 93943-5100 A. NAME OF FUNDING/SPONSORING (b) OFFICE SYMBOL (* applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM PROCEMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM PROJECT NO ADDRESS(CIR, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROCEMENT INSTRUMENT IDENTIFICATION NUMBER ************************************	b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	distrib	oution is	unlimited	
a. NAME OF PERFORMING ORGANIZATION 65: OFFICE SYMBOL (# applicable) 72: NAME OF MONITORING ORGANIZATION Naval Postgraduate School Code 62 Naval Postgraduate School C ADDRESS (GR, Size, and ZIP Code) 75: ADDRESS (Chy, Size, and ZIP Code) Naval Postgraduate School A ADDRESS (GR, Size, and ZIP Code) 75: ADDRESS (Chy, Size, and ZIP Code) Monterey, California 93943-5100 A MAE OF FUNDING/SPONSORING 85: OFFICE SYMBOL (# applicable) 9: PROCUREMENT INSTRUMENT INSTRUMEN	PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION	REPORT NUMBER	(5)
a NAME OF PERFORMING ORGANIZATION Naval Postgraduate School 66. OFFICE SYMBOL (# applicable) Code 62 72. NAME OF MONITORING ORGANIZATION Naval Postgraduate School Naval Postgraduate School 72. NAME OF MONITORING ORGANIZATION Naval Postgraduate School 73. NAME OF MONITORING ORGANIZATION Naval Postgraduate School A NAME OF FUNDING (SPONSORING ORGANIZATION 83. OFFICE SYMBOL (# applicable) 74. NAME OF MUNITER (DENTIFICATION NUMBER PROGRAM NOTEREY, California 93943-5100 A NAME OF FUNDING (SPONSORING ORGANIZATION 85. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER PROGRAM NO C ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM NO NO TITE (INCLUSE Security Classification) JAMMENG EFFECTS ON M-ARY COHERENT AND BINARY NONCOHERENT DIGITAL RECEIVERS USING RANDOM JAMMER MODELS NOCET NO 2 TATION 115. TIME COVERED FROM TO SECURITION 14. DATE OF REPORT (New, Month. Dev) 15. PAGE COUNT 113 15. PAGE COUNT 113 3 JASTRACT (Continue on reverse if necessary and identify by block number) 15. PAGE COUNT 113 2 JASTRACT (Continue on reverse if necessary and identify by block number) 113 3 JASTRACT (Continue on reverse if necessary and identify by block number) 113 2 JASTRACT (Continue on reverse if necessary and identify by block number) 113 2 JASTRACT (Continue on reverse if necessary and identify by block						
Naval Postgraduate School (# applicable) Code 62 Naval Postgraduate School Sc address (Gr, Sizie, and ZPCode) 75. Address (Cir, Sizie, and ZPCode) Monterey, California 93943-5100 Monterey, California 93943-5100 Sa WANE OF FUNDING /SPONSORING ONGANIZATION 8b. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM Sa WANE OF FUNDING /SPONSORING ONGANIZATION 8b. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM St ADDRESS (Ciry, Sizie, and ZPCode) 10. SOURCE OF FUNDING NUMBERS PROGRAM 10. SOURCE OF FUNDING NUMBERS PROGRAM St ADDRESS (Ciry, Sizie, and ZPCode) 10. SOURCE OF FUNDING NUMBERS PROGRAM 10. SOURCE OF FUNDING NUMBERS PROGRAM St ADDRESS (Ciry, Sizie, and ZPCode) 11. SOURCE OF FUNDING NUMBERS PROGRAM 10. SOURCE OF FUNDING NUMBERS PROGRAM St ADDRESS (Ciry, Sizie, and ZPCode) 11. SOURCE OF FUNDING NUMBERS PROGRAM 10. SOURCE OF FUNDING NUMBERS PROGRAM St ADDRESS (Ciry, Sizie, and ZPCode) 11. SOURCE OF FUNDING NUMBERS PROGRAM 10. SOURCE OF FUNDING NUMBERS PROGRAM St ADDRESS (Ciry, Sizie, and ZPCode) 11. SOURCE OF FUNDING NUMBERS PROGRAM 10. SOURCE OF FUNDING NUMBERS PROGRAM St ADDRESS (Ciry, Sizie, and ZPCode) 11. SOURCE OF FUNDING NUMBERS PROGRAM 10. SOURCE OF FUNDING NUMERS St ADDRESS (Ciry,	A NAME OF PERFORMING ORGANIZATION	65. OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORGA		
Naval Postgraduate School Code 62 Naval Postgraduate School X addess (Gr, State, and ZP Code) 7b. Addess (Gr, State, and ZP Code) Monterey, California 93943-5100 Monterey, California 93943-5100 Aname of FUNDING/SPONSORING JRGANIZATION b. office SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT INSTRUMENTI		(If applicable)	Name 1 D		ta Cabaal	
Monterey, California 93943-5100 Monterey, California 93943-5100 a vake OF FUNDING/SPONSORING ORGANIZATION Bb OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER A VARE OF FUNDING/SPONSORING ORGANIZATION Bb OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER A VARE OF FUNDING/SPONSORING ORGANIZATION Bb OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER A VARE OF FUNDING/SPONSORING ORGANIZATION Bb OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER A VARE OF FUNDING/SPONSORING ORGANIZATION Bb OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER A VALUE OF FUNDING/SPONSORING NUMPOZ, LUIS A Task NO Accession in accession in No A VALUE OF REPORT NUMPOZ, LUIS A 13b TIME COVERED I applicable 14 DATE OF REPORT (Near Month Day) 15 PAGE COUNT 1133 A STRACT (Continue on reverse if necessary and identify by block number) The purpose of this work is to analyze and evaluate the effect of jamming waveforms on both coehrent and noncoherent digital communications receivers. Specifically, random processes are utilized as jamming waveforms receivers. Specifically, random processes are utilized as jamming waveforms receivers. Specifically, random processes are utilized as jamming waveforms in which it is assumed that the jamming waveforms have been produced by a shaping filter driven by white Gaussian noise. Such jamming waveforms in addition to	ADDRESS (City State and Zig Code)	Code 62	INAVAL P	USEGIAUUA	Code)	
Monterey, California 93943-5100 Monterey, California 93943-5100 ANME OF FUNDING/SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER A NAME OF FUNDING/SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER C ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS TASK PROGRAM NO TASK NUMBERS C ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS INCOMPOSITION THE (Include Security Classification) JAMMER MODELS TASK PROGRAM NO TASK NUMDRZ, LUIS A. 14 DATE OF REPORT Naster's Thesis 13. TIME COVERED FROM 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 113 13 JASTRACT (Continue on reverse if necessary and identify by block number) 113 2 SUPPLEMENTARY NOTATION 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 2 SUPPLEMENTARY NOTATION 13 JASTRACT (Continue on reverse if necessary and identify by block number) 2 SUPPLEMENTARY NOTATION 13 JASTRACT (Continue on reverse if necessary and identify by block number) 2 SUPPLEMENTARY NOTATION 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 113 3 JASTRACT (Continue on reverse if necessary and identify by block number) 113	L ADDRESS (DIV, State, and Zir Code)		-	y, state, and sir		
NAME OF FUNDING/SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER : ADDRESS(Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS WORK JWIT :: ADDRESS(Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS WORK JWIT NO :: ADDRESS(Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS WORK JWIT NO :: ADDRESS(Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS WORK JWIT NO :: ADDRESS(Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS WORK JWIT NO :: ADDRESS(Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS WORK JWIT NO :: ADDRESS(Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS WORK JWIT NO :: ADDRESS(Chy, State, and ZIP Code) : SOURCE OF FUNDING NUMBERS WORK JWIT NO : ADDRESS (Chy, State, and ZIP Code) : SOURCE OF FUNDING NUMBERS WORK JWIT NO : JAMING EFFECTS NM - ARY COHERENT AND BINARY NONCOHERENT DIGITAL : State : 'S Thesis : STATE 'S Thesis 'S COLONE : JAME OF REPORT : IS SUBJECT TERMS (Continue on reverse if necessary and identify by Block number) : State : 'S COSATI CODES : Is SUBJECT TERMS (Continue on reverse if necessary and identify by Block number) : State	Monterey, California 939	43-5100	Montere	y, Califo	rnia 9394	3-5100
ORGANIZATION (# applicable) 3c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROGRAM PROGRAM PROJECT TASK MOCK UNIT JAMMING EFFECTS ON M-ARY COHERENT AND BINARY NONCOHERENT DIGITAL RECEIVERS USING RANDOM JAMMER MODELS PERSONAL AUTHOR(S) Municz, Luis A. 13. "Det of REPORT 13. TIME COVERED 14. DATE OF REPORT (Wext, Month, Day) 15. PAGE COUNT Master's Thesis 14. DATE OF REPORT (Wext, Month, Day) 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 7 ASTRACT (Continue on reverse if necessary and identify by block number) 7 13. ASTRACT (Continue on reverse if necessary and identify by block number) 7 14. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 14. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 ASTRACT (Continue on reverse if necessary and identify by block number) 7 ASTRACT Continue on reverse if necessary and identify by block number) 14. ASTRACT (Cont	a. NAME OF FUNDING / SPONSORING	86. OFFICE SYMBOL	9. PROCUREMENT	T INSTRUMENT IC	ENTIFICATION N	JMBER
ADDRESS (GR, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK PROGRAM PROJECT TASK VITLE (include Security Classification) NO NO JAMMING EFFECTS ON M-ARY COHERENT AND BINARY NONCOHERENT DIGITAL RECEIVERS USING RANDOM JAMMER MODELS 12 SEGOVAL AUTHORS) 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT Munoz, Luis A. 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 13 ASTRACT (Continue on reverse if necessary and identify by block number) 113 113 Subject TERMS (Continue on reverse if necessary and identify by block number) 113 13 ASTRACT (Continue on reverse if necessary and identify by block number) 113 The purpose of this work is to analyze and evaluate the effect of jamming waveforms on both coehrent and noncoherent digital communications receivers. Specifically, random processes are utilized as jamming waveforms are then assumed that the jamming waveforms have been produced by a shaping filter driven by white Gaussian noise. Such jamming waveforms are then assumed to be present at the input of known receiver structures (in addition to be signals and channel noise normally present), and optimum jamming waveform spectra are determined for different receiver schemes and modulation techniques. Craphical results based on numerical analyses are presented in order to demonstrate	ORGANIZATION	(it applicable)				
PROGRAM ELEMENT NO PROJECT NO TASK NO WORK JUT ACCESSION ' 'TTLE (include Security Classification) JAMMING EFFECTS ON M-ARY COHERENT AND BINARY NONCOHERENT DIGITAL RECEIVERS USING RANDOM JAMMER MODELS I<	c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF F	UNDING NUMBE	RS	
¹ TITLE (include Security Classification) JAMMING EFFECTS ON M-ARY COHERENT AND BINARY NONCOHERENT DIGITAL RECEIVERS USING RANDOM JAMMER MODELS ¹ SERSONAL AUTHOR(S) MUNDZ, LUIS A. ¹ Step of ateodr ¹ Ib time COVERED ¹⁴ DATE OF REPORT (Year, Month, Day) ¹⁵ PAGE COUNT ¹⁶ SThesis ¹⁶ FROM ¹⁰ TO ¹⁹ DECEMber ¹¹ JB TIME COVERED ¹⁴ DATE OF REPORT (Year, Month, Day) ¹⁵ PAGE COUNT ¹⁶ SUPPLEMENTARY NOTATION ² COSATI CODES ¹⁸ SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ² JASSTRACT (Continue on reverse if necessary and identify by block number) ² ASSTRACT (Continue on reverse if necessary and identify by block number) ³ ASSTRACT (Continue on reverse if necessary and identify by block number) ³ ASSTRACT (Continue on reverse if necessary and identify by block number) ⁴ The purpose of this work is to analyze and evaluate the effect of jamming waveforms on both coehrent and noncoherent digital communications receivers. Specifically, random processes are utilized as jamming models in which it is assumed that the jamming waveforms have been produced by a shaping filter driven by white Gaussian noise. Such jamming waveforms are then assumed to be present at the input of known receiver structures (in addition to the signals and channel noise normally present), and optimum jamming waveform spectra are determined for different receiver schemes and modulation techniques. ⁵ Craphical results based on numerical analyses are presented in order to demonstrate the effect of different jamming strategies on receiver ⁵ Difference response notion correct security CLASSIFICATION ¹ DIFC USERS ²¹ ABSTRACT SECURITY CLASSIFICATION ²¹ DIFC S. COLLEMENTED ²¹ SAME AS REF ²¹ DIFC USERS ²¹ DIFC USERS ²¹ DIFC USERS ²¹ DIFC USERS ²¹ DIFC USERS<			PROGRAM ELEMENT NO.	PROJECT NO	TASK NO	WORK JNIT
THE Include Secury Classification) JAMMING EFFECTS ON M-ARY COHERENT AND BINARY NONCOHERENT DIGITAL RECEIVERS USING RANDOM JAMMER MODELS PERSONAL AUTHOR(S) MUNOZ, LUIS A. a 'VPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 13 aster's Thesis 12 PROM TO 1985, December 1113 SUPPLEMENTARY NOTATION COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Jamming Effects; MPSK; MFSK; BFSK Asstract (Continue on reverse if necessary and identify by block number) Jamming Effects; MPSK; MFSK; BFSK Asstract (Continue on reverse if necessary and identify by block number) Asstract (Continue on reverse if necessary and identify by block number) The purpose of this work is to analyze and evaluate the effect of jamming waveforms on both coehrent and noncoherent digital communications in which it is assumed that the jamming waveforms have been produced by a shaping filter driven by white Gaussian noise. Such jamming waveforms are then assumed to be present at the input of known receiver structures (in addition to the signals and channel noise normally present), and optimum jamming waveform spectra are determined for different receiver Schemes and modulation techniques. Craphical results based on numerical analyses are presented in order to demonstrate the effect of different jamming strategies on receiver (1) 1573, CON:AVAILABULTY OF ABSTRACT E: ACLASSFREDUNUMINED SAME AS REF DOT USERS (2) AMED FREDONSCIAL						
COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FELD GROUP SUB-GROUP Jamming Effects; MPSK; MFSK; BFSK A35TRACT (Continue on reverse if necessary and identify by block number) The purpose of this work is to analyze and evaluate the effect of jamming waveforms on both coehrent and noncoherent digital communications receivers. Specifically, random processes are utilized as jamming models in which it is assumed that the jamming waveforms have been produced by a shaping filter driven by white Gaussian noise. Such jamming waveforms are then assumed to be present at the input of known receiver structures (in addition to the signals and channel noise normally present), and optimum jamming waveform spectra are determined for different receiver schemes and modulation techniques. Craphical results based on numerical analyses are presented in order to demonstrate the effect of different jamming strategies on receiver Circustric Cassified 21 ABSTRACT SECURITY CLASSIFICATION Unclassified Strake PREPONENTIMIED SAME AS RPT DIC USERS 212 TELEPHONE (Include Area Code) [22C OFFICE SYMBOL	PERSONAL AUTHOR(S) Munoz, Luis A. a "YPE OF REPORT laster's Thesis FROM	DVERED TO	14 DATE OF REPO 1985, De	RT (Year, Month, Cember	Day) 15 PAGE 113	COUNT
The purpose of this work is to analyze and evaluate the effect of jamming waveforms on both coehrent and noncoherent digital communications receivers. Specifically, random processes are utilized as jamming models in which it is assumed that the jamming waveforms have been produced by a shaping filter driven by white Gaussian noise. Such jamming waveforms are then assumed to be present at the input of known receiver structures (in addition to the signals and channel noise normally present), and optimum jamming waveform spectra are determined for different receiver schemes and modulation techniques. Graphical results based on numerical analyses are presented in order to demonstrate the effect of different jamming strategies on receiver Schemes Provided Schemes and Provide Area Code 226 TELEPHONE (Include Area Code) 226 OFFICE SYMBOL	COSATI CODES = ELD GROUP SUB-GROUP 3 ABSTRACT (Continue on reverse if necessary	18. SUBJECT TERMS (Jamming Ef and identify by block r	Continue on reverse fects; MPS number)	e if necessary an K; MFSK;	d identify by bloc BFSK	ck number)
Craphical results based on numerical analyses are presented in order to demonstrate the effect of different jamming strategies on receiver COSTRADION/AVAILABILITY OF ABSTRACT COSTRADION/AVAILABILITY COSTRADION	The purpose of this v jamming waveforms on bot	work is to an h coehrent an , random proc hat the jammi by white Gaus	alyze and d noncoher esses are ng wavefor sian noise	evaluate ent digit utilized ms have b . Such j known rec	the effec al commun as jammin een produ amming wa eiver str	t of ications g models ced by veforms uctures and
D STRYBUTYON / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION Model: Security Classified Unclassified Unclassified MAME OF RESPONSIBLE NOIVIDUAL 226 TELEPHONE (Include Area Code) (220 OFFICE SYMBOL)	receivers. Specifically in which it is assumed th a shaping filter driven h are then assumed to be pr (in addition to the signal optimum jamming waveform schemes and modulation to	resent at the als and chann spectra are echniques.	e input of del noise n determined	ormally p for diff	resent), erent rec	eiver
225 TELEPHONE (Include Area Code) 22c OFFICE SYMBOL	receivers. Specifically in which it is assumed the a shaping filter driven here are then assumed to be pro- (in addition to the sign optimum jamming waveform schemes and modulation to Craphical results base to demonstrate the effect	resent at the als and chann spectra are echniques. sed on numeri t of differen	e input of lel noise n determined cal analys t jamming	ormally p for diff es are pr strategie	resent), erent rec esented i s on rece	eiver n order iver
	receivers. Specifically in which it is assumed the a shaping filter driven here are then assumed to be po- (in addition to the signal optimum jamming waveform schemes and modulation to Graphical results bas to demonstrate the effect DSTPHETION/AVAILABILITY OF ABSTRACT	resent at the als and chann spectra are echniques. sed on numeri t of differen	cal analys cal analys t jamming	ormally p for diff es are pr strategie CURITY CLASSIFIC ified	resent), erent rec esented i s on rece	eiver n order iver
Prof. Daniel C. Bukofzer (408) 646-2859 Code 62Bh	receivers. Specifically in which it is assumed the a shaping filter driven he are then assumed to be provided to the sign optimum jamming waveform schemes and modulation to Craphical results base to demonstrate the effect Costant of Advancements of the struct Costant of the struct of the struct of the struct Costant of the struct of the struct of the struct Costant of the struct of t	resent at the als and chann spectra are echniques. sed on numeri t of differen	21 ABSTRACT SE Unclass 22b TELEPHONE (ormally p for diff es are pr strategie CURITY CLASSIFIC ified	resent), erent rec esented i s on rece ATION	n order iver
UPUPE 1473,84 MAR DIS AFREDICION may be used until exhaustedSECURITY_CLASSIFICATION_OF_THIS_PAGE	receivers. Specifically in which it is assumed the assumed it is assumed the are then assumed to be provided in addition to the signal optimum jamming waveform schemes and modulation to Graphical results bas to demonstrate the effect DSTPADION/AVAILABILITY OF ABSTRACT SINCLASSIFIED/UNLIMITED SAME AS F SINCLASSIFIED/UNLIMITED SAME AS F SINCLASSIFIED/UNLIMITES SAME AS F SINCLASSI	resent at the als and chann spectra are echniques. sed on numeri t of differen PPT DTC USERS	<pre>cal analys cal an</pre>	ormally p for diff es are pr strategie CURITY CLASSIFIC ified Include Area Code -2859	resent), erent rec esented i s on rece ATION e) 22c OFFICE S Code 6	n order iver

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entere

#19 - ABSTRACT - (CONTINUED)

performance. In order to quantify receiver performance, bit error probabilities are determined for binary modulation systems and symbol error probabilities are determined for M-ary modulation systems. In each case, the error probabilities are functions of signal-to-noise ratio (SNR) and jammerto-signal ratio (JSR). Results show that it is generally possible to significantly degrade the performance of binary as well as M-ary modulation communication receivers by introducing suitably chosen jamming waveforms.

-2

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Approved for public release; distribution is unlimited.

Jamming Effects on M-ary Coherent and Binary Noncoherent Digital Receivers Using Random Jammer Models

A DESCRIPTION DESCRIPTION

by

Luis Alberto Muñoz Major, Peruvian Army B.S., Peruvian Army Institute of Technology, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1985

ng

ABSTRACT

The purpose of this work is to analyze and evaluate the effect of jamming waveforms on both coherent and noncoherent digital communications receivers. Specifically, random processes are utilized as jamming models in which it is assumed that the jamming waveforms have been produced by a shaping filter driven by white Gaussian noise. Such jamming waveforms are then assumed to be present at the input of known receiver structures (in addition to the signals and channel noise normally present), and optimum jamming waveform spectra are determined for different receiver schemes and modulation techniques.

Graphical results based on numerical analyses are presented in order to demonstrate the effect of different jamming strategies on receiver performance. In order to quantify receiver performance, bit error probabilities are determined for binary modulation systems and symbol error probabilities are determined for M-ary modulation systems. In each case, the error probabilities are functions of signal-to-noise ratio (SNR) and jammer-to-signal ratio (JSR). Results show that it is generally possible to significantly degrade the performance of binary as well as M-ary modulation communication receivers by introducing suitably chosen jamming waveforms.

TABLE OF CONTENTS

)

I.	INTI	RODUCTION		10	
II.	COLO M-AI	ORED NOISE INTERFERENCE IN COHERENT RY PHASE SHIFT KEYED MODULATION		12	
·	Α.	SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE		12	
	в.	RECEIVER PERFORMANCE		17	
III.	COLO M-AI	DRED NOISE INTERFERENCE IN COHERENT RY FREQUENCY KEYED MODULATION SYSTEMS		29	
	Α.	SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE		29	
	в.	RECEIVER PERFORMANCE		31	
IV.	NON- SIGN COLC	-COHERENT BINARY FREQUENCY SHIFT KEYED NAL DETECTION IN THE PRESENCE OF DRED NOISE		45	
	Α.	THE QUADRATURE RECEIVER, EQUIVALENT FOR AND RECEIVER PERFORMANCE IN THE PRESENC OF WHITE GAUSSIAN NOISE	MS E	45	
	в.	RECEIVER PERFORMANCE IN THE PRESENCE OF COLORED NOISE		49	
	c.	RECEIVER PERFORMANCE IN THE PRESENCE OF WHITE GAUSSIAN NOISE UNDER SINGLE CHANNEL OPERATION		65	
	D.	RECEIVER PERFORMANCE IN THE PRESENCE OF COLORED NOISE UNDER SINGLE CHANNEL OPERATION		69	
۷.	GRAI	PHICAL RESULTS		74	
	Α.	GRAPHICAL RESULTS FOR COLORED NOISE INTERFERENCE IN COHERENT M-ARY FREQUENC SHIFT KEYED MODULATED SYSTEMS	Y	- 74	
	в.	GRAPHICAL RESULTS FOR NON-COHERENT BINARY SHIFT KEYED SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE		83	
			Du. L IE	_tio.i/	
		5	A	vailability	Codes
			Dist	Speci	al
			A-1		

VI. CONC	LUSIONS	98
APPENDIX A:	DETAILED INVESTIGATION OF THE VARIANCES OF V _C AND V CONDITIONED ON HYPOTHESES H	101
APPENDIX B:	DETAILED INVESTIGATION OF THE BEHAVIOR OF THE PRODUCT OF $S'_{j}(-\omega)$ AND $S'_{k}(\omega)$	104
APPENDIX C:	DETAILED INVESTIGATION OF THE VARIANCES	
	$\sigma_{c,o}^2$ AND $\sigma_{c,1}^2$ DUE TO COLORED NOISE	107
LIST OF REFE	RENCES	111
INITIAL DIST	RIBUTION LIST	112

•

•

•

LIST OF TABLES

5.1.	PERFORMANCE OF 2-FSK RECEIVER	75
5.2.	PERFORMANCE OF 4-FSK RECEIVER	76
5.3.	PERFORMANCE OF 8-FSK RECEIVER	77
5.4.	PERFORMANCE OF 16-FSK RECEIVER	78
5.5	PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 9	86
5.6.	PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 0 db	86
5.7.	PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 5 db	87
5.8.	PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 10 db	87
5.9.	PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 15 db	88
5.10.	PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 20 db	88
5.11.	PERFORMANCE OF THE QUADRATURE RECEIVER SINGLE CHANNEL OPERATION FOR DIFFERENT JAMMING FREQUENCIES AND JSR = 5 db	97
5.12.	PERFORMANCE OF THE QUADRATURE RECEIVER SINGLE CHANNEL OPERATION FOR DIFFERENT JAMMING FREQUENCIES AND JSR = 10 db	97

LIST OF FIGURES

3.1 MFSK Receiver	30
4.1 Quadrature Receiver	48
4.2 Matched Filter Equivalent to Quadrature Receiver	48
5.1 Performance of M-ary FSK for M = 2	79
5.2 Performance of M-ary FSK for M = 4	80
5.3 Performance of M-ary FSK for M = 8	81
5.4 Performance of M-ary FSK for M = 16	82
5.5 Performance of the Quadrature Receiver for JSR = 0	84
5.6 Performance of the Quadrature Receiver for JSR = 0 db	89
5.7 Performance of the Quadrature Receiver for JSR = 5 db	90
5.8 Performance of the Quadrature Receiver for JSR = 10 db	91
5.9 Performance of the Quadrature Receiver for JSR = 15 db	92
5.10 Performance of the Quadrature Receiver for JSR = 20 db	93
5.11 Performance of the Quadrature Receiver for Single Channel Operation for Different Jamming Frequencies and JSR = 5 db	95
5.12 Performance of the Quadrature Receiver for Single Channel Operation for Different Jamming Frequencies and JSR = 10 db	96

ACKNOWLEDGMENTS

I wish to express my appreciation to my thesis advisor Professor Daniel Bukofzer for his efforts, guidance, patience and friendship which contributed to the completion of this work. I would also like to express my gratitude to my wife Eliana for her support, and my love to my children to whom this work is dedicated.

I. INTRODUCTION

The theory of statistical signal detection and estimation in the presence of additive white Gaussian noise is widely described in many textbooks [Refs. 1,2,3]. Signal detectors are typically designed and built to either optimize the receiver output signal to noise ratio, or as is the case with digital communications receivers, to minimize the error probability.

While it has been demonstrated that receivers designed under a white noise interference assumption tend to perform reasonably well even when the interference is not white [Ref. 4], the assumption of white noise interference is often invalid, especially when the receiver must operate in a jamming environment.

The goal of this thesis is to analyze the vulnerability of certain digital communications receivers designed to operate in a white noise interference environment, that must operate in the presence of jamming also. The mathematical model of the jamming utilized is a colored Gaussian noise process whose power spectral density is to be shaped in such a manner so as to cause a large increase in the receiver probability of error. While it is not always possible to solve certain spectral shaping optimization problems, it is possible to postulate techniques that intuitively achieve efficient utilization of the available jammer power.

This thesis is divided up as follows. In Chapter II, we present results on colored noise interference effects in coherent M-ary Phase Shift Keyed (MPSK) receivers, and receiver symbol error probability in the presence of noise and jamming is derived. In Chapter III we analyze and determine performance of a coherent M-ary Frequency Shift Keyed (MFSK) receiver operating in the presence of noise and jamming. Chapter IV deals with non-coherent Binary Frequency Shift Keyed (BFSK) signal detection in the presence of noise and jamming. The performance of the well-known quadrature receiver is analyzed under dual channel and single channel operation. In Chapter V graphical results are presented and discussed, and performance comparisons are carried out. The conclusions and interpretations of the results obtained are presented in Chapter VI.

II. COLORED NOISE INTERFERENCE EFFECTS IN COHERENT M-ARY PHASE SHIFT KEYED MODULATION

A. SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE The system whose performance is to be analyzed is described in Fig. 2.1. The structure shown is the optimum receiver for recovery of MPSK modulated data, in the presence of additive white Gaussian noise. In PSK modulation, the source (or modulator) transmits one of M signals $s_i(t)$, where i = 1, 2, ..., M, over a prescribed time interval. Because in transmissions and reception these signals are interfered with by noise, at the receiver one observes the signal r(t) rather than just one of the transmitted signals. Using hypothesis testing concepts, we say that under hypotheses H_i , r(t)takes on the form

$$H_{i}: r(t) = \sqrt{E} S_{i}(t) + w(t) + n_{c}(t)$$
(2.1)
$$0 \le t \le T, \quad i = 1, 2, ..., M$$

where for M-ary PSK modulation

$$S_{i}(t) = \sqrt{2/T} \cos\left(\frac{2\pi kt}{T} + \frac{2\pi (i-1)}{M}\right) \qquad (2.2)$$
$$i = 1, 2, \dots, M$$
k is an integer

Here W(t) is a sample function of a white Gaussian noise process of Power Spectral Density level $N_0/2$ and $n_c(t)$ is a

sample function of a colored Gaussian noise process having autocorrelation function $K_{c}(\tau)$. We assume also w(t) and $n_{c}(t)$ are statistically independent random processes.

The receiver of Fig. 2.1 is, as previously pointed out, an optimum processor (in minimum error probability sense) when $n_c(t) \equiv 0$. The analysis that follows evaluates the effect of $n_c(t)$ on the performance of this receiver. Since $n_c(t)$ may represent some form of jamming, the error probability expression to be derived can be used to determine the vulnerability of such a receiver to colored noise jamming, or conversely, to determine the colored noise spectrum that most effectively causes poor or inadequate receiver performance, namely, high error probability.

The signals $S_i(t)$, i = 1, 2, 3, ..., M can be shown to have cross-correlation coefficients

$$s_{ij} \stackrel{\Delta}{=} \int_{0}^{T} s_{i}(t) s_{j}(t) dt = \cos \frac{2\pi (i-j)}{M}$$
(2.3)

$$i,j = 1,2,...,M$$

The receiver takes advantage of the fact that we can express the $S_i(t)$ functions, i = 1, 2, ..., M, as an exact (rather than approximate) expression of a linear combination of two functions $\psi_1(t)$ and $\psi_2(t)$. In other words

$$S_{i}(t) = \sum_{n=1}^{2} S_{in} \psi_{n}(t)$$
 $i = 1, 2, 3, ..., M$ (2.4)

with

$$S_{in} = \int_{0}^{T} S_{i}(t) \psi_{n}(t) dt \quad n = 1, 2; \qquad (2.5)$$
$$i = 1, 2, \dots, M$$

These basis functions $\psi_1(t)$ and $\psi_2(t)$ can be derived via a Gramm-Schmitt orthonormalization procedure (or almost by inspection in this case). It turns out that $\psi_1(t)$ and $\psi_2(t)$ (which must be orthogonal) are given by

$$\psi_1(t) = \frac{\cos 2\pi kt/T}{\sqrt{T/2}}$$
(2.6)

and

$$v_2(t) = \frac{\sin 2\pi k t/T}{\sqrt{T/2}}$$
 (2.7)

where k is an integer.

It can be easily shown that

$$S_{il} = \cos \frac{2\pi (i-1)}{M}$$
; $i = 1, 2, ..., M$ (2.8)

and

$$S_{i2} = -Sin \frac{2\pi(i-1)}{M}$$
; $i = 1, 2, ..., M$ (2.9)

We define

$$\theta_{i} = 2\pi (i-1)/M$$
 $i = 1, 2, ..., M$ (2.10)

and assuming equal prior probabilties, namely, each signal is equally likely to be transmitted, the receiver computes

$$l_{i} = \sum_{n=1}^{2} s_{in} r_{n} \quad i = 1, 2, ..., M$$
 (2.11)

and makes decisions based on which ℓ_{i}^{t} value is largest. Thus with

$$r_n = \int_0^T r(t) \psi_n(t) dt n = 1,2$$
 (2.12)

we have

$$\begin{aligned} z_{i}^{\prime} &= \left[\cos \theta_{i} \right]_{0} \int^{T} r(t) \psi_{1}(t) dt \\ &+ \left[-\sin \theta_{i} \right]_{0} \int^{T} r(t) \psi_{2}(t) dt \quad i = 1, 2, \dots, M \end{aligned}$$
(2.13)

and using simple trigonometric identities,

$$U_{i}^{\prime} = V \cos(\theta_{i} + \gamma) \qquad i = 1, 2, ..., M$$
 (2.14)

Clearly

$$v = \{v_c^2 + v_s^2\}^{1/2}$$
(2.15)

where

$$V_{c} = \int_{0}^{T} r(t) \psi_{1}(t) dt$$
, (2.16)

$$V_{s} = \int_{0}^{T} r(t) \psi_{2}(t) dt$$
 (2.17)

and

$$\eta = \operatorname{Tan}^{-1} \frac{V_{s}}{V_{c}}$$
 (2.18)

B. RECEIVER PERFORMANCE

Since conditioned on any hypothesis H_i , i = 1,2,...,M, V_c and V_s are Gaussian random variables, we can obtain the statistics of the appropriate random variables, in the following manner. First, we have

 $E\{V_{c}/H_{j}\} = E\{\int_{0}^{T} [\sqrt{E} S_{j}(t) + w(t) + n_{c}(t)]\psi_{1}(t) dt\}$ $= \sqrt{E} \int_{0}^{T} S_{j}(t) \psi_{1}(t) dt = \sqrt{E} S_{j1} \quad j = 1, 2, ..., M.$ (2.19)

$$E\{V_{s}/H_{j}\} = E\{\int_{0}^{T} [\sqrt{E} S_{j}(t) + w(t) + n_{c}(t)]\psi_{2}(t) dt\}$$

$$= \sqrt{E} \int_{0}^{T} S_{j}(t) \psi_{2}(t) dt = \sqrt{E} S_{j2}$$
(2.20)
$$j = 1, 2, 3, \dots, M$$

also

$$\operatorname{Var}\{V_{C}/H_{j}\} = E\{\{\int_{0}^{T} [w(t) + n_{C}(t)]\psi_{1}(t)dt\}^{2}\}$$

$$= E\{\{\int_{0}^{T} \int_{0}^{T} [w(t) + n_{C}(t)] [w(\tau) + n_{C}(\tau)]\psi_{1}(t)\psi_{1}(\tau)dtd\tau\}$$

$$= \frac{N_{O}}{2} + \int_{0}^{T} \int_{0}^{T} K_{C}(t-\tau)\psi_{1}(t)\psi_{1}(\tau)dtd\tau \qquad (2.21)$$

and

$$\operatorname{Var}\{V_{s}/H_{j}\} = E\{\left[\int_{0}^{T} [w(t) + n_{c}(t)]\psi_{2}(t)dt\right]^{2}\}$$
$$= E\{\int_{0}^{T} \int_{0}^{T} [w(t) + n_{c}(t)][w(\tau) + n_{c}(\tau)]\psi_{2}(t)\psi_{2}(\tau)dt d\tau\}$$
$$= \frac{N_{o}}{2} + \int_{0}^{T} \int_{0}^{T} K_{c}(t - \tau)\psi_{2}(t)\psi_{2}(\tau)dt d\tau \qquad (2.22)$$

In Appendix A we demonstrate that

$$\int_{0}^{T} \int_{0}^{T} K_{c}(t-\tau) \psi_{1}(t) \psi_{1}(\tau) dt d\tau$$

$$= \int_{0}^{T} \int_{0}^{T} K_{c}(t-\tau) \psi_{2}(t) \psi_{2}(\tau) dt d\tau \stackrel{\Delta}{=} \sigma_{c}^{2} \qquad (A.7)$$

so that V_{c} and V_{s} conditioned on H. have identical variances. Observe also that

$$E\{ [V_{c} - E\{V_{c}/H_{j}\}] [V_{s} - E\{V_{s}/H_{j}\}]/H_{j} \}$$

$$= E\{ \int_{0}^{T} [w(t) + n_{c}(t)] \psi_{1}(t) dt \int_{0}^{T} [w(\tau) + n_{c}(\tau)] \psi_{2}(\tau) d\tau$$

$$= \iint_{0}^{T} T \frac{N_{o}}{2} \delta(t - \tau) \psi_{1}(t) \psi_{2}(\tau) dt d\tau$$

$$+ \int_{0}^{T} \int_{0}^{T} K_{c}(t - \tau) \psi_{1}(t) \psi_{2}(\tau) dt d\tau \qquad (2.23)$$

We can observe that the first double integral in Eq. 2.23 is zero, so that

$$\mathbf{E} \{ [\mathbf{V}_{c}^{-\mathbf{E}} \{ \mathbf{V}_{c}^{/\mathbf{H}_{j}} \}] [\mathbf{V}_{s}^{-\mathbf{E}} \{ \mathbf{V}_{s}^{/\mathbf{H}_{j}} \}] / \mathbf{H}_{j} \}$$

$$= \int_{0}^{T^{T}} \kappa_{c}(t-\tau) \psi_{1}(t) \psi_{2}(\tau) dt d\tau \stackrel{\simeq}{=} \sigma_{1,2}^{2}$$
(2.24)

We demonstrate in Appendix A that in general $\frac{2}{1,2}$ is not zero so that V_c and V_s conditioned on H_j may not be uncorrelated.

However we are still able to express the joint probability density function of V_c and V_s by using the general form [Ref. 5] of an N-dimensional Gaussian random vector \underline{X} , namely,

$$P_{\underline{\mathbf{x}}}(\underline{\mathbf{x}}) = \frac{1}{(2\pi)^{N/2}} \exp\left\{-\frac{1}{2}(\underline{\mathbf{x}} - \underline{\mathbf{m}}_{\mathbf{x}})^{T} \bigwedge_{=\mathbf{x}}^{-1} (\underline{\mathbf{x}} - \underline{\mathbf{m}}_{\mathbf{x}})\right\}$$
(2.25)

where

$$\underline{\mathbf{m}}_{\mathbf{X}} = \mathbf{E}\{\underline{\mathbf{X}}\}$$
(2.26)

and

$$= E \left\{ (\underline{\mathbf{X}} - \underline{\mathbf{m}}_{\mathbf{X}}) (\underline{\mathbf{X}} - \underline{\mathbf{m}}_{\mathbf{X}})^{\mathrm{T}} \right\}$$
 (2.27)

In our case, we have a 2-dimensional problem in which (see Eqs. 2.19 and 2.20),

$$\underline{\mathbf{m}}_{\mathbf{x}} = \begin{bmatrix} \mathbf{v} \overline{\mathbf{E}} \ \mathbf{S}_{j1} \\ \mathbf{v} \overline{\mathbf{E}} \ \mathbf{S}_{j1} \end{bmatrix} \qquad j = 1, 2, \dots, M . \qquad (2.28)$$

and

>

$$\dot{\nabla}_{\mathbf{X}} = \begin{bmatrix} \frac{N_{0}}{2} + z_{c}^{2} & z_{1,2}^{2} \\ z_{1,2}^{2} & \frac{N_{0}}{2} + z_{c}^{2} \end{bmatrix}$$
(2.29)

so that

$$= \left(\frac{N_{\rm O}}{2} + \frac{2}{c}\right)^2 - \frac{2}{1,2} \stackrel{!}{=} (2.30)$$

It is simple to show that

$$\Lambda_{x}^{-1} = \begin{bmatrix} \frac{N_{o}}{2} + \sigma_{c}^{2} / \Delta & -\sigma_{1,2}^{2} / \Delta \\ -\sigma_{1,2}^{2} / \Delta & (\frac{N_{o}}{2} + \sigma_{c}^{2} / \Delta \end{bmatrix}$$
(2.31)

Thus

$$P_{V_{c},V_{s}/H_{j}}(V_{c},V_{s}/H_{j}) = \frac{1}{\sqrt{(2\pi)^{2}\Delta}} \exp\left\{-\frac{1}{2}\begin{bmatrix}V_{c}-\sqrt{E}S_{j1}\\V_{s}-\sqrt{E}S_{j2}\end{bmatrix}^{T}\right\}$$

$$\times \begin{bmatrix}\left(\frac{N_{c}}{2}+\sigma_{c}^{2}\right)/\Delta & -\sigma_{1,2}^{2}/\Delta\\-\sigma_{1,2}^{2}/\Delta & \left(\frac{N_{c}}{2}+\sigma_{c}^{2}\right)/\Delta\end{bmatrix}\begin{bmatrix}V_{c}-\sqrt{E}S_{j1}\\V_{s}-\sqrt{E}S_{j2}\end{bmatrix}\right\} \qquad (2.32)$$
with $j = 1, 2, \dots, M$.

Now we need to obtain from this probability density function the joint probability density function of V and n conditioned on H_j . This type of transformation [Ref. 6] is well known and can be used here to obtain

$$P_{V,n/H_{j}}(V,n/H_{j}) = VP_{V_{c}}(V \cos n, V \sin n/H_{j}) + VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V_{s}/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V_{s}/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V_{s}/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V_{s}/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V_{s}/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V_{s}/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V_{s}/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V_{s}/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V \cos n, -V \sin n/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V \cos n, -V \sin n/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V \cos n, -V \sin n/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V \cos n, -V \sin n/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V \cos n, -V \sin n/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}), V \ge 0,$$

$$V_{c}(V \cos n, -V \sin n/H_{j}) = VP_{V_{c}}(V \cos n, -V \sin n/H_{j}) = VP_{V_{c}}(V \cos n/H$$

Using the probability density function of $v_{\rm C}$ and $v_{\rm S}$ (Eqn. 2.32) yields

$$P_{V,n/H_{j}}(V,n/H_{j}) = \frac{V}{\sqrt{(2\pi)^{2}}} \exp \left\{ -\frac{1}{2} \begin{bmatrix} VCosn-v\overline{E}S_{j1} \\ VSinn-v\overline{E}S_{j2} \end{bmatrix}^{T} \begin{bmatrix} a & -b \\ -b & a \end{bmatrix} \begin{bmatrix} VCosn-v\overline{E}S_{j1} \\ VSinn-v\overline{E}S_{j2} \end{bmatrix}^{T} \\ + \frac{V}{\sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \begin{bmatrix} -VCosn-v\overline{E}S_{j1} \\ -VSinn-v\overline{E}S_{j2} \end{bmatrix}^{T} \begin{bmatrix} a & -b \\ -b & a \end{bmatrix} \begin{bmatrix} -VCosn-v\overline{E}S_{j1} \\ -VSinn-v\overline{E}S_{j2} \end{bmatrix}^{T} \\ -b & a \end{bmatrix} \begin{bmatrix} -VCosn-v\overline{E}S_{j1} \\ -VSinn-v\overline{E}S_{j2} \end{bmatrix}^{T} \\ -VSinn-v\overline{E}S_{j2} \end{bmatrix}^{T} \left[-\frac{a}{\sqrt{2\pi}} + \frac{b}{\sqrt{2\pi}} +$$

and

$$a = (\frac{N_{o}}{2} + \sigma_{c}^{2}) / \Delta$$
 (2.34)

$$b = \sigma_{1,2}^2 / \Delta$$
 (2.35)

This probability density function can be expressed in the form

$$P_{V,n/H_{j}}(V,n/H_{j}) = \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2}\{a(V \cos n + \sqrt{E}S_{j1})\}^{2} + a(V \sin n - \sqrt{E}S_{j2})^{2}$$

$$-2b(V \sin n - \sqrt{E}S_{j2})(V \cos n - \sqrt{E}S_{j1}))$$

$$+ \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2}[a(V \cos n + \sqrt{E}S_{j1})^{2} + a(V \sin n + \sqrt{E}S_{j2})^{2}$$

$$- 2b(V \sin n + \sqrt{E}S_{j2})(V \cos n + \sqrt{E}S_{j1})]\} \qquad (2.36)$$

which can be simplified somewhat.

Observe that the exponential of the first term simplifies to

$$a[V^{2} + E - 2V_{v}\widetilde{E}(S_{j1} \cos n + S_{j2} \sin n)] - 2b[V^{2} \sin n \cosh n - V_{v}\widetilde{E}(S_{j1} \sin n + S_{j2} \cos n) + ES_{j1}S_{j2}]$$
(2.37)

and the exponential of the second term simplifies to

$$a[v^{2} + E + 2v\sqrt{E}(S_{j1} \cos n + S_{j2} \sin n)] - 2b[v^{2} \sin n \cos n + v\sqrt{E}(S_{j1} \sin n + S_{j2} \cos n) + ES_{j1}S_{j2}]$$
(2.38)

We can now group certain terms together. Observe from Eq. 2.8, Eq. 2.9 and Eq. 2.10 that

$$S_{j1} \cos n + S_{j2} \sin n = \cos \theta_{j} \cos n - \sin \theta_{j} \sin n$$
$$= \cos (\theta_{j} + n) \qquad (2.39)$$

also

1

$$S_{j1} \sin n + S_{j2} \cos n = \cos \theta_{j} \sin n - \sin \theta_{j} \cos n$$
$$= \sin (n - \theta_{j}) \qquad (2.40)$$

for $j = 1, 2, \ldots, M$, so from Eq. 2.36 we have

$$P_{V,n/H_{j}}(V,n/H_{j}) = \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2}[a[V^{2}+E-2V\sqrt{E}Cos(\theta_{j}+n)] - 2b[V^{2}SinnCos(n - V\sqrt{E}Sin(n - \theta_{j}) - ECos\theta_{j}Sin\theta_{j}]\}$$

$$+ \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2}[a[V^{2}+E+2V\sqrt{E}Cos(\theta_{j}+n)] - 2b[V^{2}SinnCos(n + V\sqrt{E}Sin(n - \theta_{j}) - ECos\theta_{j}Sin\theta_{j}]\}$$

$$+ 2b[V^{2}SinnCos(n + V\sqrt{E}Sin(n - \theta_{j}) - ECos\theta_{j}Sin\theta_{j}]\} \qquad (2.41)$$
for $V \ge 0$ and $0 \le n \le \pi$.

$$\cos(\frac{1}{j} + r) = -\cos(\frac{1}{j} + r + r)$$
 (2.42)

 \mathtt{and}

$$\sin(n - \theta_j) = -\sin(n - \theta_j + \pi) \qquad (2.43)$$

we have

$$P_{V,n/H_{j}}(V,n/H_{j}) = \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \left[\exp\{-\frac{1}{2}a[V^{2}+E-2V\sqrt{E}\cos(\theta_{j}+\eta)] \right]$$

$$- 2b[V^{2}Sin n \cos \eta - V\sqrt{E}Sin(\eta-\theta_{j})-E\cos(\theta_{j}Sin(\theta_{j})]\}$$

$$+ \exp\{-\frac{1}{2}[a[V^{2}+E-2V\sqrt{E}\cos(\theta_{j}+\eta+\pi)] - 2b[V^{2}Sin(\eta\cos(\eta-\theta_{j}+\pi))-E\cos(\theta_{j}Sin(\theta_{j})]]\}$$

$$- V\sqrt{E}Sin(\eta-\theta_{j}+\pi)-E\cos(\theta_{j}Sin(\theta_{j})]\}] \qquad (2.44)$$

$$for \ V \ge 0 \ and \ 0 \le \eta \le \pi.$$

It is apparent from the range of η that the two exponential terms can be replaced by a single term with η ranging from 0 to 27.

Thus, we have

$$P_{V,n/H_{j}}(V,n/H_{j}) = \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2}[a[V^{2}+E-2V\sqrt{E}Cos(\theta_{j}+r)] - 2b[V^{2}SinnCosn-V\sqrt{E}Sin(n-\theta_{j})-ECos\theta_{j}Sin\theta_{j}]\}\}$$
(2.45)

for $V \geq 0$ and $0 \geq r \geq 2\pi$. The probability density function of \cdot conditioned on H_j is obtained via integration of $P_{V,r}\left(V,r,H_j\right)$, namely,

$$P_{n/H_{j}}(n/H_{j}) = \int_{-\infty}^{\infty} P_{V,n/H_{j}}(V,n/H_{j}) dV \qquad (2.46)$$

Returning to our decision rule, (Eq. 2.14), recall that we decide based on which

$$\ell_{i}^{*} = V \cos (\theta_{i} + \eta) \quad i = 1, 2, \dots, M$$
 (2.14)

is largest.

So, if ${\tt H}_{j}$ is the true hypothesis, then a correct decision is made if

$$V \cos(\theta_j + \eta) > V \cos(\theta_i + \eta); \quad i = 1, 2, ..., M$$
 (2.47)
 $i \neq j$

Since Cos x is maximum when |x| is minimum, we see that if H_i is the true hypothesis, a correct decision is made if

$$|\hat{e}_{j}+\eta| < |\hat{e}_{i}+\eta|$$
 $i = 1, 2, ..., M$ (2.48)
 $i \neq j$

Now from Eq. 2.9 we know that,

$$\frac{1}{j} = 2\pi (j-1) / M$$

So Eq. 2.54 is satisfied for n in the region

$$-\frac{1}{3} - \frac{1}{M} + \frac{1}{3} + \frac{1}{M}$$
 (2.49)

Thus, the probability of making a correct decision, given that H_j is the true hypothesis, $Pr \cdot c/H_j^{-1}$, is given by

$$Pr\{c/H_{j}\} = \begin{cases} P_{\eta/H_{j}}(\eta/H_{j})dn \qquad (2.50) \\ -\theta_{j}-\frac{\pi}{M} \end{cases}$$

If we make the variable change

$$3 = n + \theta_{i} \tag{2.51}$$

Then Eq. 2.50 becomes

$$Pr\{c/H_{j}\} = \int_{-\pi/M}^{\pi/M} p_{n/H_{j}}(\beta-\theta_{j}/H_{j}) d\beta \qquad (2.52)$$

Now from Eq. 2.45 and Eq. 2.46 we have

$$P_{n/H_{j}}(n/H_{j}) = \int_{0}^{\infty} \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2}[a[V^{2}+E-2V\sqrt{E}\cos(\theta_{j}+n)] - 2b[V^{2}\sin n\cos n-V\sqrt{E}\sin(n-\theta_{j})-E\cos(\theta_{j}\sin(\theta_{j})]\}dV$$

$$(2.53)$$

$$0 \le n \le 2\pi$$

so that

$$P_{\eta/H_{j}}(3-\theta_{j})/H_{j}) = \int_{0}^{\infty} \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2}[a[V^{2}+E-2V_{v}\overline{E}\cos\beta] - b[V^{2}\sin^{2}(3-\theta_{j})-2V_{v}\overline{E}\sin((3-2\theta_{j}))-E\sin^{2}(\theta_{j})]\} dV \qquad (2.54)$$

and Eq. 2.52 now becomes

$$\Pr\{c/H_{j}\} = \int_{-\pi/M}^{\pi/M} \int_{0}^{\infty} \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2}[a[V^{2}+E-2V\sqrt{E}Cos \beta]$$

$$-b[V^{2}\sin 2(\beta-\theta_{j})-2V\sqrt{E}\sin(\beta-2\theta_{j})-E\sin 2\theta_{j}]] dV d\beta \qquad (2.55)$$

Since the hypotheses have been assumed to be equally likely, we have

$$Pr\{c\} = \frac{1}{M} \sum_{j=1}^{M} Pr\{c/H_{j}\}$$
(2.56)

so that

$$P_e \stackrel{\Delta}{=} 1 - Pr\{c\}$$

 $= 1 - \frac{1}{M} \int_{j=1}^{M} \int_{-\pi/M}^{\pi/M} \int_{0}^{\infty} \frac{V}{\sqrt{(2\pi)^{2}\Delta}} \exp\{-\frac{1}{2} \{a [V^{2} + E] \} \}$

$$- 2V\sqrt{E} \cos \beta - b[V^{2} \sin 2(\beta - \theta_{j}) - 2V\sqrt{E} \sin(\beta - 2\theta_{j}) - E \sin 2\theta_{j}]] dV d\delta$$

$$(2.57)$$

Observe that if colored noise is not present, then from Equations 2.24, 2.30 and 2.35, $\Delta = (N_0/2)^2$ and b = 0, so that Eq. 2.57 simplifies to the well-known expression for the performance of the M-PSK receiver operating in the presence of additive WGN. That is,

$$P_{e} = 1 - \int_{-\pi/M}^{\pi/M} \int_{0}^{\infty} \frac{V}{2\pi N_{0}/2} \exp\{-\frac{1}{2}[\frac{N_{0}}{2}[V^{2} - 2V\sqrt{E}\cos\beta + E]]\} dV d\beta$$
(2.58)

where in Eq. 2.57, the dependence on the index j disappears when b = 0. While Eq. 2.57 yields a mathematical result on the performance on the M-PSK receiver in the presence of WGN and colored noise jamming, its further analysis represents a separate project in itself. Not only must Eq. 2.57 be optimized for energy constrained jamming but also it must be evaluated when the jamming spectrum takes on some simple forms. For this reason, no effort has been made to further develop the above results.

III. <u>COLORED NOISE INTERFERENCE IN COHERENT M-ARY</u> <u>FREQUENCY SHIFT KEYED MODULATED SYSTEMS</u>

A. SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE The structure of the demodulator whose performance is to be analyzed is shown in Fig. 3.1. This receiver is known to be optimum for deciding with minimum probability of error, which one of M different signals forming an orthogonal, equal energy set received in additive white Gaussian noise was actually transmitted. The problem analyzed here, can be stated as follows: A waveform r(t), received in the interval (0,T), contains one of the M signals, $S_i(t)$, i = 1, 2, ..., M, with equal probability, as well as white Gaussian noise w(t)of Power Spectral Density level $N_0/2$ and colored Gaussian noise $n_c(t)$ having autocorrelation function $K_c(\tau)$. The signals are orthogonal with energy ε . That is

$$v_{ij} = \int_{0}^{T} s_{i}(t) s_{j}(t) dt = \begin{cases} \varepsilon & i = j \\ 0 & i \neq j \end{cases}$$
(3.1)

The decision rule used by the receiver, is to choose $S_{i}(t)$ as the transmitted signal if G_{i} is a maximum, where

$$G_{i} = \int_{0}^{T} r(t) S_{i}(t) dt \quad i = 1, 2, ..., M.$$
 (3.2)

MPSK receiver Figure 3.1.

. . . .

•••

30

•.

While this is an optimum test (in minimum probability of error sense) in the absence of the colored noise $n_c(t)$, the analysis of the next section is carried out in order to determine the effect of $n_c(t)$ on the receiver performance. Since $n_c(t)$ will typically be inserted in the channel by an unfriendly jammer, it is reasonable to assume that n(t) and $n_c(t)$ are statistically independent random processes.

B. RECEIVER PERFORMANCE

Since G_i is the output of the ith correlator, and conditioned on any hypothesis, G_i is a Gaussian random variable, we can obtain the appropriate conditional statistics that allow determination of P_e , namely the receiver error probability.

Thus

$$E:G_{j}/H_{i} = E\{ \int_{0}^{T} [S_{i}(t) + w(t) + n_{c}(t)]S_{j}(t)dt \}$$
$$= \int_{0}^{T} S_{i}(t)S_{j}(t)dt = E_{ij}$$
(3.3)

and

$$\operatorname{Var} (G_{j}/H_{i}) = E \{ \left[\int_{0}^{T} \left[w(t) + n_{e}(t) \right] S_{j}(t) dt \right]^{2} \}$$
$$= E \{ \int_{0}^{TT} \left[w(t) + n_{e}(t) \right] \left[w(t) + n_{e}(t) \right] S_{j}(t) S_{j}(t) dt dt \}$$

$$\operatorname{Var}\left\{G_{j}/H_{i}\right\} = \int_{0}^{T} \int_{0}^{T} \left[\frac{N_{0}}{2} \delta(t-\tau) + K_{c}(t-\tau)\right]S_{j}(t)S_{j}(\tau)dtd\tau$$
$$= \frac{N_{0}}{2} \int_{0}^{T} S_{j}(t)S_{j}(t)dt + \int_{0}^{T} K_{c}(t-\tau)S_{j}(t)S_{j}(\tau)dtd\tau$$
$$= \frac{N_{0}}{2} \varepsilon + \int_{0}^{T} K_{c}(t-\tau)S_{j}(t)S_{j}(\tau)dt d\tau \qquad (3.4)$$

Define

$$\sigma_{c,j}^{2} \stackrel{TT}{\stackrel{\cong}{=}} \int_{00}^{TT} K_{c} (t-\tau) S_{j}(t) S_{j}(\tau) dt d\tau \qquad (3.5)$$

so that

$$\operatorname{Var}\{G_{j}/H_{i}\} = \frac{N_{o}}{2} \varepsilon + \sigma_{c,j}^{2} \qquad (3.6)$$

Observe furthermore that

$$E \in [G_{j} - E \{G_{j}/H_{i}\}] [G_{k} - E \{G_{k}/H_{i}\}]/H_{i}\}$$

$$= E \left\{ \int_{0}^{T} [w(t) + n_{c}(t)] S_{j}(t) dt \int_{0}^{T} [w(t) + n_{c}(t)] S_{k}(t) dt \right\}$$

$$= \frac{T_{i}T_{i}}{\int_{0}^{T}} \frac{N_{c}}{2} (t - t) S_{j}(t) S_{k}(t) dt dt + \int_{0}^{T} \int_{0}^{T} K_{c}(t - t) S_{j}(t) S_{k}(t) dt dt$$

$$E\{[G_{j}-E\{G_{j}/H_{i}\}][G_{k}-E\{G_{k}/H_{i}\}]/H_{i}\}$$

$$= \frac{N}{2} \int_{0}^{T} S_{j}(t)S_{k}(t)dt + \int_{00}^{TT} K_{c}(t-\tau)S_{j}(t)S_{k}(\tau)dt d\tau$$

$$N \qquad TT$$

$$= \frac{N_0}{2} \varepsilon \hat{o}_{jk} + \int_{00}^{TT} K_c(t-\tau) S_j(t) S_k(\tau) dt d\tau \qquad (3.7)$$

As can be seen from Eq. 3.7, due to the presence of the colored noise, the random variables $\{G_j/H_i\}$ are not uncorrelated. However we will show that for MFSK with signal frequencies that are sufficiently separated, the integral

$$\int_{00}^{TT} K_{c}(t-\tau)S_{j}(t)S_{k}(\tau)dt d\tau \qquad (3.8)$$

vanishes for $j \neq k$, so that the random variables are indeed uncorrelated.

Thus, conditioned on H_i , the G_j are statistically independent. Assume now that $S_i(t)$ is transmitted and $G_i = x$. Then the conditional probability of a correct decision, $Pr(c/H_i)$, $G_i = x$; becomes
$$P\{c/H_i, G_i = x\} = P\{G_1 < x, \dots, G_{i-1} < x, G_{i+1} < x, \dots, G_M < x/H_i, G_i = x\}$$

$$= \prod_{\substack{k=1\\k\neq i}}^{M} P\{G_k < x/H_i, G_i = x\}$$

$$= \prod_{\substack{k=1 \ k \neq i}} \int_{k=1}^{\infty} \frac{1}{\sqrt{2\pi (\frac{N}{2}\varepsilon_{k} + \sigma_{c,k}^{2})}} \exp(-Y^{2}/2(\frac{N}{2}\varepsilon + \sigma_{c,k}^{2})) dy \quad (3.9)$$

Introducing a change of variable,

$$Z = Y/\sqrt{\frac{N_o}{2}\varepsilon + \sigma_c^2}, k$$
 (3.10)

we have

「ないというと言語」の人たちの言語で、

ĥ

)

)

$$P\{c/H_{i}, G_{i} = x\} = \prod_{\substack{k=1 \ k \neq i}}^{M} \int_{-\infty}^{x/\sqrt{\frac{N_{o}}{2}\epsilon + \sigma_{c}^{2}}, k} \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2} dz \qquad (3.11)$$

Now, since

$$E\{G_{i}/H_{i}\} = \varepsilon \qquad (3.3)$$

and

$$\operatorname{Var}\left\{G_{i}/H_{i}\right\} = \frac{N_{o}}{2} \in + J_{c,k}^{2} \qquad (3.6)$$

we have that

$$P\{c/H_{i}\} = \int_{-\infty}^{\infty} P\{c/H_{i}, G_{i}=x\} \frac{1}{2\pi (\frac{N_{o}}{2}\epsilon + \sigma_{c,i}^{2})} \exp\{-(x-\epsilon)^{2}/2(\frac{N_{o}}{2}\epsilon + \sigma_{c,i}^{2})\} dx$$

so that using Eq. 3.11, we obtain

$$P\{c/H_{i}\} = \int_{-\infty}^{\infty} \prod_{\substack{k=1 \ -\infty \\ k \neq i}}^{\infty} \int_{k=1}^{M} \int_{-\infty}^{\sqrt{N_{c}} \epsilon + \sigma_{c,k}^{2}} \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2} dz$$

$$= \frac{1}{\sqrt{2\pi \left(\frac{N_{o}}{2}\epsilon + \sigma_{c,i}^{2}\right)}} \exp\left\{-\left(x-\epsilon\right)^{2}/2\left(\frac{N_{o}}{2}\epsilon + \sigma_{c,i}^{2}\right)\right\} dx$$
(3.12)

Assume now for convenience that M is odd, and express the M-ary FSK signals as

$$S_{i}(t) = A \cos (\omega_{c} + (i - (M+1)/2) \Delta \omega) t \quad 0 < t < T \quad (3.13)$$

 $i = 1, 2, ..., M$

so that

$$\int_{0}^{T} S_{i}(t) e^{j\omega t} = \int_{-\infty}^{\infty} S_{i}(t) p(t) e^{j\omega t}$$
$$= F\{S_{i}(t)p(t)\} \quad i = 1, 2, \dots, M \quad (3.14)$$

where

$$p(t) = \begin{cases} 1 & 0 < t < T & -j\omega T/2 \\ & \leftrightarrow P(\omega) = Te & \frac{\sin \omega T/2}{\omega T/2} \\ 0 & \text{otherwise} \end{cases}$$
(3.15)

and $S_{i}(t)$ is just $S_{i}(t)$ with $-\infty \leq t \leq \infty$. Thus

 $F\{S_{i}(t)p(t)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{i}(\hat{\omega}-\Delta)P(\Delta) d\Delta$

$$\omega_{i} = (i - \frac{(M+1)}{2}) \Delta \omega \qquad (3.17)$$

where with

)

(3.16)

we have

$$S_{i}^{\prime}(\omega) = \pi A[S(\omega - (\omega_{c} + \omega_{i})) + S(\omega + (\omega_{c} + \omega_{i}))]$$
(3.18)
for $i = 1, 2, \dots, M$.

Thus

$$F(S_{1}^{*}(t)p(t)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} TA[\delta(\omega - v - (\omega_{c} + \omega_{1})) + \delta(\omega - v + (\omega_{c} + \omega_{1}))]Te^{-j\omega T/2} \frac{\sin(\omega - T/2)}{T/2} dv$$
$$= \frac{AT}{2} \left[e^{-j(\omega - \omega_{c} - \omega_{1})T/2} \frac{\sin(\omega - \omega_{c} - \omega_{1})T/2}{(\omega - \omega_{c} - \omega_{1})T/2} + e^{-j(\omega + \omega_{c} + \omega_{1})T/2} \frac{\sin(\omega + \omega_{c} + \omega_{1})T/2}{(\omega - \omega_{c} - \omega_{1})T/2} \right]$$
(3.19)

For convenience, let

$$L(\omega) = e^{-j\omega T/2} \frac{\sin \omega T/2}{\omega T/2}$$
(3.20)

So that Eq. 3.79 becomes

ĺ

$$F\{S_{i}^{\prime}(t)p(t)\} = F\{S_{i}^{\prime}(t)\} = S_{i}^{\prime}(\omega) =$$

$$= \frac{AT}{2}[L(\omega - \omega_{c} - \omega_{i}) + L(\omega + \omega_{c} + \omega_{i})]$$

$$i = 1, 2, \dots, M$$
(3.21)

Let us examine now the correlation coefficient cij, namely

$$\sum_{ij} = \int_{0}^{T} S_{i}(t) S_{j}(t) dt = \int_{0}^{T} ACos(\omega_{c} + \omega_{i}) tACos(\omega_{c} + \omega_{j}) t dt$$

$$= \frac{A^{2}T}{2} \left[\frac{Sin(\omega_{i} - \omega_{j})T}{(\omega_{i} - \omega_{j})T} + \frac{Sin(2\omega_{c} + \omega_{i} + \omega_{j})T}{(2\omega_{c} + \omega_{i} + \omega_{j})T} \right]$$

$$(3.22)$$

If we assume that $\omega_{\rm C}T$ >> $\pi,$ then the second term in Eq. 3.22 vanishes and we have

$$c_{ij} = \int_{0}^{T} s_{i}(t)s_{j}(t)dt = \frac{A^{2}T}{2} \frac{\sin(i-j)\Delta\omega T}{(i-j)\Delta\omega T}$$
(3.23)

In order to have orthogonal signals we need at least $\Delta_{\infty}T =$ or equivalently $\Delta_{\infty} = -/T$. Normally, we will have

 $\Delta \omega = k^{-}/T \qquad (3.24)$

where k is a large integer, so that $\rho_{ij} \simeq 0$ for $i \neq j$. Thus, from Eq. 3.23 and Eq. 3.24,

$$\rho_{ij} = \int_{0}^{T} S_{i}(t)S_{j}(t)dt = \begin{cases} \epsilon = A^{2}T/2 & i = j \\ 0 & i \neq j \end{cases}$$
(3.25)

From Eq. 3.5 it appears however that the term $\sigma^2_{c,i}$ independent of i. Nevertheless Eq. 3.12 becomes

$$P(c/H_{i}) = \int_{-\infty}^{\infty} \frac{M}{k=1} - \infty \frac{\sqrt{N_{o}} + \sigma_{c,k}^{2}}{\sqrt{2} \varepsilon + \sigma_{c,k}^{2}} \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2} dz$$

$$\times \frac{1}{\sqrt{2\pi (\frac{N_{o}}{2}\varepsilon + \sigma_{c,i}^{2})^{2}}} \exp[-(x-\varepsilon)^{2}/2(\frac{N_{o}}{2} + \sigma_{c,i}^{2})}$$
(3.26)

Let

ĥ

$$\approx \frac{x-\varepsilon}{\sqrt{\frac{N_{0}}{2}\varepsilon + \sigma_{c,i}^{2}}}$$
(3.27)

Then

$$x = \varepsilon + n \sqrt{\frac{N_0}{2}\varepsilon + \sigma_c^2}$$
(3.28)

So that Eq. 3.26 becomes

× $\frac{1}{\sqrt{2\pi}} e^{-\eta^2/2} d\eta$ (3.29)

Finally,

$$P\{c\} = \frac{1}{M} \sum_{i=1}^{M} P\{c/H_{i}\}$$
 (3.30)

or equivalently

$$P(c) = \frac{1}{M} \prod_{i=1}^{M} \int_{-\infty}^{\infty} \prod_{\substack{k=1\\k\neq i}}^{M} \operatorname{erfc}_{\star} \left(\frac{\varepsilon + \eta \sqrt{\frac{0}{2}\varepsilon + \sigma_{c,i}^{2}}}{\sqrt{\frac{0}{2}\varepsilon + \sigma_{c,k}^{2}}} \right) \frac{1}{\sqrt{2\tau}} e^{-\eta^{2}/2} d\eta \qquad (3.31)$$

We must focus on the $\sigma_{c,k}^2$ factor. Observe from Eq. 3.7 that

$$\mathsf{E}^{[\mathbf{G}_{j}-\mathsf{E}^{[\mathbf{G}_{j}/\mathsf{H}_{i}]}][\mathsf{G}_{k}-\mathsf{E}^{[\mathbf{G}_{k}/\mathsf{H}_{i}]}]/\mathsf{H}_{i}]}$$

$$= \frac{N_{0}}{2} + \frac{T}{jk} + \frac{T}{00} - \frac{K_{0}}{k} + \frac{T}{00} - \frac{K_{0}}{k} + \frac{T}{00} - \frac{K_{0}}{k} + \frac{T}{00} - \frac{T}{k} - \frac{T}{k} + \frac{T}{00} - \frac{T}{k} -$$

and the second term becomes

$$\int_{0}^{T} \int_{0}^{T} K_{c}(t-\tau) S_{j}(t) S_{k}(\tau) dt d\tau = \int_{-\infty-\infty}^{\infty} K_{c}(t-\tau) S_{j}'(t) S_{k}'(\tau) dt d\tau$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{c}(\omega) S_{j}'(-\omega) S_{k}'(\omega) d\omega \qquad (3.32)$$

It has been shown in Appendix B that $S_j^*(-\omega)$ and $S_k^*(\omega)$ are essentially frequency disjoint, therefore Eq. 3.32 is zero for $j \neq k$. For j = k, we have (using Eq. 3.21)

If we define

$$I_{k} = \frac{T}{2\pi} \int_{-\infty}^{\infty} S_{c}(\omega) \left| L(\omega - \omega_{c} - \omega_{k}) + L(\omega + \omega_{c} + \omega_{k}) \right|^{2} d\omega \qquad (3.34)$$

$$k = 1, 2, \dots, M$$

then, with $\varepsilon = A^2 T/2$ (Eq. 3.25)

$$\sigma_{c,k}^{2} = \varepsilon I_{k} \quad k = 1, 2, \dots, M$$
 (3.35)

Thus from Eq. 3.31

$$P\{c\} = \frac{1}{M} \sum_{i=1}^{M} \int_{-\infty}^{\infty} \prod_{\substack{k=1\\k\neq i}}^{M} \operatorname{erfc}_{\star} \left(\frac{\varepsilon + \eta \sqrt{\frac{N_{o}}{2} \varepsilon + \varepsilon I_{i}}}{\sqrt{\frac{N_{o}}{2} \varepsilon + \varepsilon I_{k}}} \right) \frac{1}{\sqrt{2\pi}} e^{-\eta^{2}/2} d\eta \qquad (3.36)$$

so that

$$P_{e} = 1 - \frac{1}{M} \int_{i=1}^{M} \int_{-\infty}^{\infty} \prod_{\substack{k=1\\k\neq i}}^{N} \operatorname{erfc}_{\star} \left(\frac{\varepsilon + \sqrt{\frac{O}{2}\varepsilon + \varepsilon I_{i}}}{\sqrt{\frac{O}{2}\varepsilon + \varepsilon I_{k}}} \right) \frac{1}{\sqrt{2\pi}} e^{-\eta^{2}/2} d\eta \qquad (3.37)$$

Observe that

Where $\varepsilon/N_0 = SNR$ and $I_1' = \frac{I_1}{\varepsilon} \approx$ ith channel JSR. Then

$$P_{e} = 1 - \frac{1}{M} \int_{i=1}^{M} \int_{-\infty}^{\infty} \int_{k=1}^{M} \operatorname{erfc}_{\star} \left(\frac{\eta + \sqrt{\frac{SNR}{0.5 + I_{i}' SNR}}}{\sqrt{\frac{1 + 2I_{k}' SNR}{1 + 2I_{i}' SNR}}} \right) \frac{1}{\sqrt{2\pi}} e^{-\eta^{2}/2} d\eta (3.39)$$

Consider now the following colored noise power spectral density,

$$S_{c}(\omega) = 2\pi K \sum_{i=1}^{M} [\delta(\omega + \omega_{c} + \omega_{i}) + \delta(\omega - \omega_{c} - \omega_{i})]$$
(3.40)

<u>v 1000</u>

Thus, the colored noise consists of equally weighted "tones" at the signal frequencies. Therefore, Eq. 3.34 becomes

$$\mathbf{I}_{\mathbf{k}} = \frac{\mathbf{T}}{2\pi} \int_{-\infty}^{\infty} 2\pi \mathbf{K} \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{M}} \left[\delta(\omega + \omega_{\mathbf{c}} + \omega_{\mathbf{i}}) + \delta(\omega - \omega_{\mathbf{c}} - \omega_{\mathbf{i}}) \right] \left| \mathbf{L}(\omega - \omega_{\mathbf{c}} - \omega_{\mathbf{k}}) + \mathbf{L}(\omega + \omega_{\mathbf{c}} + \omega_{\mathbf{k}}) \right|^{2} d\omega$$

$$= TK \sum_{i=1}^{M} \left[\left| L(-2\omega_{c} - \omega_{k} - \omega_{i}) + L(\omega_{k} - \omega_{i}) \right|^{2} + \left| L(\omega_{i} - \omega_{k}) + L(2\omega_{c} + \omega_{k} + \omega_{i}) \right|^{2} \right] (3.41)$$

Since $\omega_{_{\rm C}}$ is typically large, we can justify the statement that the terms involving $2\omega_{_{\rm C}}$ are negligible small, so that,

$$I_{k} \cong TK\left[\sum_{i=1}^{M} |L(\omega_{k}-\omega_{i})|^{2} + |L(\omega_{i}-\omega_{k})|^{2}\right]$$

$$= 2TK \sum_{i=1}^{M} |L(\omega_{i}-\omega_{k})|^{2} = 2TK \sum_{i=1}^{M} \left(\frac{\sin(\omega_{i}-\omega_{k})T/2}{(\omega_{i}-\omega_{k})T/2}\right)^{2}$$

$$= 2TK \sum_{i=1}^{M} \left(\frac{\sin(i-k)\Delta\omega T/2}{(i-k)\Delta\omega T/2}\right)^{2} \qquad (3.42)$$

With ${\rm i}\omega\,T/2$ = $m\pi$ where m is large, we have

$$I_k \stackrel{\simeq}{=} 2TK$$
 for $i = k$ (3.43)

We can impose a constraint that

$$P_{nj} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{c}(\omega) d\omega = K \int_{-\infty}^{\infty} \sum_{i=1}^{\infty} [\delta(\omega + \omega_{c} + \omega_{i}) + \delta(\omega - \omega_{c} - \omega_{i})] d\omega$$

Then

 $K = P_{nj}/2M$ (3.45)

and

$$I_{k} \stackrel{\simeq}{=} 2T \frac{P_{nj}}{2M} = \frac{TP_{nj}}{M}$$
(3.46)

Furthermore

$$I'_{k} = \frac{I}{\varepsilon} = \frac{TP_{nj}}{M\varepsilon}$$
(3.43)

and since

$$TP_{nj} = jammer energy and$$

 $\varepsilon = signal energy,$

this implies that TP_{nj}/ϵ = JSR. We have therefore that Eq. 3.39 becomes

$$P_{e} = 1 - \frac{1}{M} \int_{i=1}^{M} \int_{-\infty}^{\infty} \left[1 - \operatorname{erfc}_{\star} \left(\eta + \sqrt{\frac{\mathrm{SNR}}{0.5 + \mathrm{JSR} \cdot \mathrm{SNR}/\mathrm{M}}} \right) \right]^{M-1} - \frac{1}{\sqrt{2\pi}} e^{-\eta^{2}/2} d\eta$$
$$= 1 - \int_{-\infty}^{\infty} \left[1 - \operatorname{erfc}_{\star} \left(\eta + \sqrt{\frac{\mathrm{SNR}}{0.5 + \mathrm{JSR} \cdot \mathrm{SNR}/\mathrm{M}}} \right) \right]^{M-1} \frac{1}{\sqrt{2\pi}} e^{-\eta^{2}/2} d\eta \qquad (3.47)$$

Observe that for JSR = 0, Eq. 3.47 is identical to the wellknown formula for the performance of the receiver of Fig. 3.1 under MFSK modulation.

IV. NON-COHERENT BINARY FREQUENCY SHIFT KEYED SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE

A. THE QUADRATURE RECEIVER, EQUIVALENT FORMS AND RECEIVER PERFORMANCE IN THE PRESENCE OF WHITE GAUSSIAN NOISE

In this section, a short presentation of the basic principles of statistical communication theory that lead to the design of the well-known quadrature receiver is undertaken. Basic results that are useful in the sequel are presented only, since the details have been worked out in numerous textbooks (see [Ref. 7] for example).

Consider a binary digital communication system model in which one of two signals, $S_0(t)$ or $S_1(t)$, with energy E_0 and E_1 , respectively, is received in the time interval (0,T). At the receiver, white Gaussian noise with zero mean and spectral density $N_0/2$ is added to the signal. The actual received signal r(t) takes on one of the two forms, namely

$$r(t) = \sqrt{E_i} S_i(t) + n(t) \quad 0 \le t \le T, \quad i = 0, 1$$
 (4.1)

The likelihood ratio test which operates on r(t) in order to choose which one of the two hypotheses is believed to be the true one, namely

$$H_{i}: r(t) = \overline{E_{i}} S_{i}(t) + n(t), \quad 0 \le t \le T, \quad (4.2)$$

 $i = 0, 1$

$$\Lambda(\mathbf{r}(t)) = \frac{\exp\{-\frac{1}{N_{o}}\int_{0}^{T} [\mathbf{r}(t) - \sqrt{E_{1}} S_{1}(t)]^{2} dt}{\exp\{-\frac{1}{N_{o}}\int_{0}^{T} [\mathbf{r}(t) - \sqrt{E_{o}} S_{0}(t)]^{2} dt}$$
 (4.3)

where \pm is a threshold whose value depends on the decision criteria used. This test can be applied to any communication problem involving transmission of known signals $S_0(t)$ and $S_1(t)$. One such example is the well-known BFSK modulation scheme.

One problem of interest, which is a slight modification of BFSK modulation problems, involves signals

$$\overline{E_{i}} S_{i}(t) = A Sin(\omega_{i}t+\gamma_{i}) \qquad i = 0, 1 \qquad (4.4)$$

$$0 < t < T$$

where the phases ϕ_i , i = 0,1 are statistically independent random variables, uniformly distributed over the interval $(0,2^{-})$, and the amplitudes A are known and equal. It turns out that the test specified by Eq. 4.3 can be modified to account for the random phases ϕ_i by using conditional probability densities.

The details of the procedure have been worked out in Reference 8. It can be shown that when the signals are given by Eq. 4.4, the test of Eq. 4.3 becomes

$$\lambda(\mathbf{r}(t)) = \frac{I_{0}(2Aq_{1}/N_{0})}{I_{0}(2Aq_{0}/N_{0})}$$
(4.5)

where

$$q_{k}^{2} = \begin{bmatrix} T \\ \int r(t) \sin \omega_{k} t dt \end{bmatrix}^{2} + \begin{bmatrix} T \\ \int r(t) \cos \omega_{k} t dt \end{bmatrix}^{2}, \quad k = 0, 1 \quad (4.6)$$

and $I_{O}(\cdot)$ is the modified Bessel function, defined by

$$I_{0}(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^{2n}(n!)^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{x \cos(\theta + \alpha)} d\alpha$$
(4.7)

For minimum error probability decision criterion, the decision rule of Eq. 4.5 assuming equal prior probability of transmitting $S_0(t)$ or $S_1(t)$, is to choose H_1 if

 $I_{o}(2Aq_{1}/N_{o}) \geq I_{o}(2Aq_{o}/N_{o})$ (4.8)

or equivalently, to choose H_1 if

$$q_1^2 \xrightarrow{>} q_0^2$$

Otherwise H_0 is chosen. (Observe that $I_0(x)$ is a monotonically increasing function.)

The receiver structure that implements the test of Eq. 4.8 is shown in Fig. 4.1. Another (equivalent) form of the receiver of Fig. 4.1 is shown in Fig. 4.2, involving a combination of matched filters and the envelope detectors. The

Figure 4.1. Quadrature receiver

4

Ð

. . .

Figure 4.2. Matched filter equivalent to quadrature receiver

receiver of Fig. 4.2 is completely equivalent to the receiver of Fig. 4.1.

The evaluation of the performance of the receiver has been worked out in Reference 9 and is given by

$$P_{e} = \frac{1}{2} e^{-E/2N_{o}}$$
(4.9)

where $E = A^2 T/2$ is the average signal energy. If we now define the signal to noise ratio, (SNR) as

we obtain the simple result

$$P_{e} = \frac{1}{2} \exp\{-SNR/2\}$$
 (4.10)

B. RECEIVER PERFORMANCE IN THE PRESENCE OF COLORED NOISE

The receiver presented in Section A is optimum in minimum probability of error sense when operating in a white Gaussian noise interference environment. In this section we analyze the vulnerability (probability of error) of the quadrature receiver in the presence of an additional additive noise that is modeled as colored and Gaussian, having autocorrelation function $K_c(z)$. (We denote $n_c(z)$ as this additional colored noise).

The problem can then be restated as follows. Under hypotheses H_i , i = 0,1, r(t) takes on the form

$$H_{i}: r(t) = S_{i}(t) + w(t) + n_{c}(t) \qquad i = 0, 1 \qquad (4.11)$$

$$0 \le t \le T$$

where

$$S_{i}(t) = \sqrt{E} S_{i}(t) = A Sin(\omega_{i}t + \phi_{i}) \quad i = 0, 1$$
 (4.12)

In order to determine the effect of $n_c(t)$ on the receiver probability of error, we evaluate the statistics of the random variables q_k^2 , k = 0,1, where, as defined by Eq. 4.6,

$$q_{k}^{2} = \begin{bmatrix} T \\ 0 \end{bmatrix} r(t) \sin \omega_{k} t dt \end{bmatrix}^{2} + \begin{bmatrix} T \\ 0 \end{bmatrix} r(t) \cos \omega_{k} t dt \end{bmatrix}^{2}$$
(4.6)
$$k = 0, 1$$

Thus, conditioned on H_i , i = 0,1

$$q_{k}^{2} = \left[\int_{0}^{T} [s_{i}(t) + w(t) + n_{c}(t)] \sin \omega_{k} t dt \right]^{2} + \left[\int_{0}^{T} [s_{i}(t) + w(t) + n_{c}(t)] \sin \omega_{k} t dt \right]^{2}$$
$$\stackrel{\simeq}{=} x_{i,k}^{2} + y_{i,k}^{2} \quad i = 0, 1 \quad k = 0, 1 \quad (4.13)$$

Observe first that the integral

$$\int_{0}^{T} S_{i}(t) \sin \omega_{k} t dt = \int_{0}^{T} A \sin (\omega_{i} t + \phi_{i}) \sin \omega_{k} t dt$$

$$= \frac{AT}{2} \left[\frac{\sin(\omega_{i} - \omega_{k})T/2}{(\omega_{i} - \omega_{k})T/2} \cos[(\omega_{i} - \omega_{k})T/2 + \phi_{i}] \right]$$

$$-\frac{\sin(\omega_{i}+\omega_{k})T/2}{(\omega_{i}+\omega_{k})T/2}\cos[(\omega_{i}+\omega_{k})T/2 + \phi_{i}]\right] \quad i = 0,1 \quad (4.14)$$

$$k = 0,1$$

If we now assume that

$$(\omega_1 - \omega_0) T = 2m\pi$$
 and $(\omega_1 + \omega_0) T = 2\lambda\pi$ (4.15)

we have that $Sin(\omega_i + \omega_k)T/2 = 0$, for i = 0, 1, k = 0, 1. Thus

$$\int_{0}^{T} S_{i}(t) \sin \omega_{k} t dt = \frac{AT}{2} \frac{\sin(\omega_{i} - \omega_{k})T/2}{(\omega_{i} - \omega_{k})T/2} \cos[(\omega_{i} - \omega_{k})T/2 + \phi_{i}] \hat{\sigma}_{i,k} \qquad (4.16)$$
$$i = 0, 1 \qquad k = 0, 1$$

where

$$S_{ik} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$$

$$(4.17)$$

By arguments similar to the above,

$$\int_{0}^{T} S_{i}(t) \cos \omega_{k} t dt = \frac{AT}{2} \frac{\sin(\omega_{i} - \omega_{k})T/2}{(\omega_{i} - \omega_{k})T/2} \sin[(\omega_{i} - \omega_{k})T/2 + z_{i}]^{2} i, k \qquad (4.18)$$

$$i = 0, 1 \qquad k = 0, 1$$

Now conditioned on ϕ_i , i = 0,1, the $X_{i,k}$ and $Y_{i,k}$ are Gaussian random variables, so it is possible to obtain the conditional probability density function of q_k , k = 0,1. Thus

$$E\{X_{i,k}/H_{i,\phi_{i}}\} = \int_{0}^{T} S_{i}(t) \sin \omega_{k} t dt \quad i = 0, 1 \quad k = 0, 1 \quad (4.19)$$

and

$$\operatorname{Var} \{X_{\mathbf{i},\mathbf{k}}/\mathbf{H}_{\mathbf{i}}, \mathfrak{d}_{\mathbf{i}}\} = E\left\{ \left\{ \int_{0}^{T} (w(t) + n_{c}(t)) \sin \omega_{\mathbf{k}} t dt \right\}^{2} \right\}$$
$$= \int_{0}^{T} \sum_{0}^{T} E\left\{ w(t) w(\tau) + n_{c}(t) n_{c}(\tau) \right\} \sin \omega_{\mathbf{k}} t \sin \omega_{\mathbf{k}} \tau dt d\tau$$
$$= \int_{0}^{T} \frac{N_{o}}{2} \sin^{2} \omega_{\mathbf{k}} t dt + \int_{0}^{T} K_{c}(t-\tau) \sin \omega_{\mathbf{k}} t \sin \omega_{\mathbf{k}} \tau dt d\tau$$
$$\stackrel{\Delta}{=} c_{w}^{2} + c_{c,\mathbf{k}}^{2} \quad \mathbf{i} = 0, 1, \quad \mathbf{k} = 0, 1 \qquad (4.20)$$

where, assuming that $2\omega_k^T >> 1$

$$z_{w}^{2} \equiv \frac{N_{o}}{2} \int_{0}^{T} \sin^{2} z_{k} t dt = \frac{N_{o}T}{4} \quad k = 0,1 \quad (4.21)$$

and

$$\sigma_{c,k}^{2} \stackrel{i}{\equiv} \int_{00}^{T} K_{c}(t-\tau) \sin \omega_{k} \tau \sin \omega_{k} \tau dt d\tau k = 0,1 \qquad (4.22)$$

Similarly

$$E \{Y_{i,k}/H_{i}, \phi_{i}\} = \int_{0}^{T} S_{i}(t) \cos \omega_{k} t dt \quad i = 0, 1 \quad k = 0, 1 \quad (4.23)$$

and

$$\operatorname{Var}(Y_{i,k}/H_{i},\phi_{i}) = \int_{0}^{T} \frac{N}{2} \cos^{2} \omega_{k} t dt + \int_{0}^{TT} K_{c}(t-\tau) \cos \omega_{k} t \cos \omega_{k} t dt dt$$

 $\stackrel{\Delta}{=} \sigma_{w}^{2} + \sigma_{c,k}^{2} \qquad k = 0,1 \quad i = 0,1 \qquad (4.24)$

since it can be demonstrated that

$$\int_{0}^{T} K_{C} (t-\tau) \sin \omega_{k} t \sin \omega_{k} dt d\tau = \int_{0}^{T} K_{C} (t-\tau) \cos \omega_{k} t \cos \omega_{k} \tau dt d\tau$$

$$k = 0, 1$$

$$k = 0, 1$$

Finally

It can be shown that these two integrals are zero so that $X_{i,k}$ and $Y_{i,k}$ are conditionally uncorrelated, and therefore independent since they are Gaussian random variables. Now define

$$q'_k \stackrel{\Delta}{=} q^2_k \qquad k = 0,1$$
 (4.27)

and

$$\sigma_{k}^{2} = \sigma_{w}^{2} + \sigma_{c,k}^{2}$$
 $k = 0,1$ (4.28)

so that the conditional density functions for q'_k , k = 0,1 are,

$$P(q_0'/H_0, \phi_0) = \frac{1}{2\sigma_0^2} \exp\left\{\frac{-\frac{(q'+\lambda_0')}{2\sigma_0^2}}{2\sigma_0^2}\right\} I_0\left(\sqrt{\frac{q'\lambda'}{\sigma_0^2}}\right) u(q_0')$$
(4.29)

where $u(\cdot)$ is the unit step function, and

$$V_{00} = E^{2} \{ X_{0,0} / H_{0,0} \} + E^{2} \{ Y_{0,0} / H_{0,0} \}$$

Using Eq. 4.16 and Eq. 4.18, we have

$$\frac{1}{2} = \left(\frac{AT}{2}\cos_{5}\right)^{2} + \left(\frac{AT}{2}\sin_{5}\right)^{2} = \left(\frac{AT}{2}\right)^{2}$$
(4.30)

Also

$$P(q'_{O}/H_{1}, z_{1}) = \frac{1}{2\sigma_{O}^{2}} \exp\left\{-\frac{(q'_{O}+z'_{1}, 0)}{2\sigma_{O}^{2}}\right\} I_{O}\left(\frac{\sqrt{\frac{q'_{O}+z'_{1}}{2\sigma_{O}^{2}}}}{z_{O}^{2}}\right) u(q'_{O})$$
(4.31)

where

$$\lambda_{1,0} = E^{2} \{ X_{1,0} / H_{1,0} \} + E^{2} \{ Y_{1,0} / H_{1,0} \} = 0 \quad (4.32)$$

due to the result of Eqs. 4.16, 4.17 and 4.18 for $i \neq k$. Therefore

$$P(q_0'/H_1, \phi_1) = \frac{1}{2\sigma_0^2} \exp\{-q_0'/2\sigma_0^2\}u(q_0')$$
(4.33)

Furthermore

$$F(q_{1}^{\prime}/H_{0},\phi_{0}) = \frac{1}{2\sigma_{1}^{2}} \exp\left\{-\frac{(q_{1}^{\prime}+\lambda_{0,1}^{\prime})}{2\sigma_{1}^{2}}\right\} I_{0}\left(\sqrt{\frac{q_{1}^{\prime}\lambda_{0,1}^{\prime}}{\sigma_{1}^{2}}}\right) u(q_{1}^{\prime})$$
(4.34)

where again due to Eqs. 4.16, 4.17 and 4.18,

$$\lambda_{0,1}^{2} = E^{2} \{ X_{0,1} / H_{0}, \phi_{1} \} + E^{2} \{ Y_{0,1} / H_{1}, \phi_{1} \} = 0 \quad (4.35)$$

so that

$$P(q_{1}^{\prime}/H_{0}^{\prime},\phi_{0}) = \frac{1}{2\sigma_{1}^{2}} \exp\{-q_{1}^{\prime}/2\sigma_{1}^{2}\}u(q_{1}^{\prime})$$
(4.36)

Finally

$$P(q_{1}^{\prime}/H_{1}^{\prime}, z_{1}^{\prime}) = \frac{1}{2\sigma_{1}^{2}} \exp\left\{\frac{-(q_{1}^{\prime}+\lambda_{11}^{\prime})}{2\sigma_{1}^{2}}\right\} I_{O}\left(\sqrt{\frac{q_{1}^{\prime}\lambda_{11}^{\prime}}{\sigma_{1}^{2}}}\right) u(q_{1}^{\prime})$$
(4.37)

$$\lambda_{11} = E^{2} \{ X_{11} / H_{1} \phi_{1} \} + E^{2} \{ Y_{11} / H_{1} \phi_{1} \} = (\frac{AT}{2})^{2}$$
(4.38)

We now have the statistical information needed to compute the probability of receiver error P_e . Assuming that each hypothesis has equal prior probability, we have

$$P_{e} = \frac{1}{2} P\{q_{1} - q_{0} > 0/H_{0}\} + \frac{1}{2} P\{q_{1} - q_{0} < 0/H_{1}\}$$
(4.39)

Observe that

$$P\{q_{1}-q_{0} > 0/H_{0}\} = \int_{-\infty}^{\infty} P\{q_{1} > q_{0}/H_{0}, q_{0} = \rho\}P_{q_{0}}(\rho/H_{0})d\rho \qquad (4.40)$$

where

$$P\{q_{1} > q_{0}/H_{0}, q_{0} = p\} = \int_{0}^{\infty} P(q_{1}/H_{0}) dq_{1}$$
(4.41)

Since the conditional probabilities functions are not dependent on the individual phases, that is

$$P(q_1/H_i) = P(q_1/H_i, \phi_i) \quad i = 0, 1$$
 (4.42)

and

$$P(q_0/H_i) = P(q_0/H_i, \phi_i)$$
 $i = 0, 1$ (4.43)

we can rewrite the conditional probability functions in the following form

$$P(q_{0}/H_{0},\phi_{0}) = 2q_{0}P(q_{0}^{2}/H_{0},\phi_{0})$$

$$= \frac{q_{0}}{\sigma_{0}^{2}} \exp \left\{ -\frac{((AT/2)^{2} + q_{0}^{2})}{2\sigma_{0}^{2}} \right\} I_{0}\left(\frac{q_{0}(AT/2)}{\sigma_{0}^{2}}\right) u(q_{0}) \qquad (4.44)$$

$$P(q_0/H_1, \phi_1) = 2q_0 P(q_0^2/H_1, \phi_1)$$

= $\frac{q_0}{\sigma_0^2} \exp\{-q_0^2/2\sigma_0^2\}u(q_0)$ (4.45)

$$P(q_1/H_0, \phi_0) = 2q_1P(q_1^2/H_0, \phi_0)$$

$$= \frac{q_1}{\sigma_1^2} \exp\{-q_1^2/2\sigma_1^2\} u(q_1)$$
(4.46)

$$F(q_{1}/H_{1},\phi_{1}) = 2q_{1}P(q_{1}^{2}/H_{1},\phi_{1})$$

$$= \frac{q_{1}}{\sigma_{1}^{2}} \exp \left\{ -\frac{((AT/2)^{2} + q_{1}^{2})}{2\sigma_{1}^{2}} \right\} I_{o}\left(\frac{q_{o}(AT/2)}{\sigma_{1}^{2}}\right) u(q_{1}) \qquad (4.47)$$

Thus

$$P^{i}q_{1}-q_{0} > 0/H_{0} = \int_{-\infty}^{\infty} \left[\int_{0}^{\infty} P(q_{1}/H_{0}) dq_{1}\right] P_{q_{0}}(o/H_{0}) dc \qquad (4.48)$$

Similarly

$$P\{q_{1}-q_{0} < 0/H_{1}\} = \int_{-\infty}^{\infty} P\{q_{1} < q_{0}/H_{1}, q_{0} = \rho\}P_{q_{0}}(\rho/H_{1})d\rho \qquad (4.49)$$

where

$$P\{q_{1} < q_{0}/H_{1}, q_{0} = \rho\} = \int_{-\infty}^{\rho} P(q_{1}/H_{1}) dq_{1}$$
(4.50)

so that

$$P\{q_{1}-q_{0} < 0/H_{1}\} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\rho} P(q_{1}/H_{1}) dq_{1}\right] P_{q_{0}}(\rho/H_{1}) d\rho$$
(4.51)

Using now Eq. 4.44 and Eq. 4.46 we have

$$P\{q_{1}-q_{0} > 0/H_{0}\} = \int_{-\infty}^{\infty} \left[\int_{\rho}^{\infty} \frac{q_{1}}{\sigma_{1}^{2}} \exp\{-q_{1}^{2}/2\sigma_{1}^{2}\}u(q_{1})dq_{1}\right] P_{q_{0}}(\rho/H_{0})d\rho$$
$$= \int_{-\infty}^{\infty} \exp\{\rho^{2}/2\sigma_{1}^{2}\}\frac{\rho}{\sigma_{0}^{2}} \exp\{\frac{-((AT/2)^{2}+\rho^{2})}{2\sigma_{0}^{2}}\right] I_{0}\left(\frac{\rho(AT/2)}{\sigma_{0}^{2}}\right)u(\rho)d\rho \qquad (4.52)$$

For convenience, let $\varepsilon = AT/2$ and,recalling u(o) = 1, o > 0Eq. 4.52 becomes

$$\mathbb{P}\{q_{1}-q_{0} > 0/H_{0}\} = \int_{0}^{\infty} \exp\left\{-\rho^{2}\left(\frac{1}{2\sigma_{1}^{2}} + \frac{1}{2\sigma_{0}^{2}}\right)\right\} \frac{\rho}{\sigma_{0}^{2}} \exp\left\{-\epsilon^{2}/2\sigma_{0}\right\} \mathbb{I}_{0}\left(\frac{\rho\epsilon}{\sigma_{0}^{2}}\right) d\rho \qquad (4.53)$$

Letting

$$\frac{1}{2\sigma_{\rm T}^2} = \frac{1}{2\sigma_{\rm 1}^2} + \frac{1}{2\sigma_{\rm 0}^2} = \frac{\sigma_{\rm 0}^2 + \sigma_{\rm 1}^2}{2\sigma_{\rm 0}^2 \sigma_{\rm 1}^2}$$
(4.54)

so that

$$\sigma_{\rm T}^2 = \sigma_{\rm o}^2 \sigma_{\rm 1}^2 / \left(\sigma_{\rm o}^2 + \sigma_{\rm 1}^2 \right)$$
(4.55)

we have

$$P\{q_{1}-q_{0} > 0/H_{0}\} = \int_{0}^{\infty} \exp\{-\rho^{2}/2\sigma_{T}^{2}\} \frac{\sigma_{T}^{2}}{\sigma_{0}^{2}} \frac{\rho}{\sigma_{T}^{2}} e^{-\epsilon^{2}/2\sigma_{0}^{2}} I_{0} \left(\frac{\rho}{\sigma_{T}^{2}} \frac{\epsilon\sigma_{T}^{2}}{\sigma_{0}^{2}}\right) dc$$
$$= \frac{\sigma_{T}^{2}}{\sigma_{0}^{2}} e^{-\epsilon^{2}/2\sigma_{0}^{2}} e^{\alpha_{0}^{2}/2\sigma_{T}^{2}} \int_{0}^{\infty} \frac{\rho}{\sigma_{T}^{2}} e^{-(\rho^{2}+\alpha_{0}^{2})/2\sigma_{T}^{2}} I_{0} (\frac{\rho\alpha_{0}}{\sigma_{T}^{2}}) d\rho \qquad (4.56)$$

where

$$\alpha_{\rm o} = \varepsilon \sigma_{\rm T}^2 / \sigma_{\rm o}^2 \tag{4.57}$$

Now the integral itself yields 1, since it is the integral of a probability density function. Therefore

$$P\{q_{1} \neg q_{0} > 0/H_{0}\} = \frac{\sigma_{T}^{2}}{\sigma_{0}^{2}} \exp\left\{-\frac{\varepsilon^{2}}{2\sigma_{0}^{2}} + \frac{\varepsilon^{2}\sigma_{T}^{2}/\sigma_{0}^{2}}{2\sigma_{T}^{2}}\right\}$$
$$= \frac{\sigma_{T}^{2}}{\sigma_{0}^{2}} \exp\left\{-\frac{\varepsilon^{2}}{2\sigma_{0}^{2}} \left[1 - \frac{\sigma_{T}^{2}}{\sigma_{0}^{2}}\right]\right\}$$
(4.58)

Similarly for Eq. 4.51

$$P\{q_{1}-q_{0} < 0/H_{1}\} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\rho} \frac{q_{1}}{\sigma_{1}^{2}} e^{-((\frac{AT}{2})^{2}+q_{1}^{2})/2\sigma_{1}^{2}} \int_{0}^{2} \left(\frac{q_{1}(\frac{AT}{2})}{\sigma_{1}^{2}}\right)\right]$$

 $u(q_1)dq_1 P_{q_0}(\rho/H_1)d\rho \qquad (4.59)$

Observing first, the quantity in brackets can be expressed as

$$\int_{-\infty}^{\rho} \frac{q_{1}}{\sigma_{1}^{2}} e^{-((AT/2)^{2}+q_{1}^{2})/2\sigma_{1}^{2}} I_{0}\left(\frac{q_{1}(\frac{AT}{2})}{\sigma_{1}^{2}}\right) u(q_{1}) dq_{1}$$

$$= 1 - \int_{\rho}^{\infty} \frac{q_{1}}{\sigma_{1}^{2}} e^{-((\frac{AT}{2})^{2}+q_{1}^{2})/2\sigma_{1}^{2}} I_{0}\left(\frac{q_{1}(\frac{AT}{2})}{\sigma_{1}^{2}}\right) u(q_{1}) dq_{1} \qquad (4.60)$$

Letting

1

$$\alpha_1 = AT/2\sigma_1 \tag{4.61}$$

and making a change of variable

$$x = q_1 / \sigma_1$$
 (4.62)

we have that Eq. 4.60 becomes

÷

.

•

$$1 - \int_{\rho/\sigma_{1}}^{\infty} x e^{-(x^{2} + \alpha_{1}^{2})2} I_{\rho}(\alpha_{1}x)u(x)dx = 1 - Q(\alpha_{1}, \rho/\sigma_{1})$$
(4.63)

where $Q(\cdot, \cdot)$ is the well-known Marcum Q function [Ref. 10]. Therefore Eq. 4.59 becomes

$$P\{q_{1}-q_{0} < 0/H_{1}\} = \int_{-\infty}^{\infty} \left[1-Q\left(\frac{AT/2}{\sigma_{1}},\frac{\rho}{\sigma_{1}}\right)\right] \frac{\rho}{\sigma_{0}^{2}} e^{-\rho^{2}/2\sigma_{0}^{2}} u(\rho)d\rho$$
$$= 1 - \int_{0}^{\infty} Q\left(\frac{AT/2}{\sigma_{1}},\frac{\rho}{\sigma_{1}}\right) \frac{\rho}{\sigma_{0}^{2}} e^{-\rho^{2}/2\sigma_{0}^{2}} d\rho \qquad (4.64)$$

From Reference 11, the integral of Eq. 4.64 becomes

$$\int_{0}^{T} Q\left(\frac{AT/2}{\sigma_{1}}, \frac{\rho}{\sigma_{1}}\right) \frac{\rho}{\sigma_{0}^{2}} e^{-\rho^{2}/2\sigma_{0}^{2}} d\rho = \frac{\sigma_{0}^{2}}{\sigma_{0}^{2} + \sigma_{1}^{2}} \left[1 - Q\left(0, \sqrt{\frac{(AT/2)^{2}}{\sigma_{0}^{2} + \sigma_{1}^{2}}}\right)\right] + \frac{\sigma_{1}^{2}}{\sigma_{0}^{2} + \sigma_{1}^{2}} Q\left(\sqrt{\frac{(AT/2)^{2}}{\sigma_{0}^{2} + \sigma_{1}^{2}}}, 0\right)\right]$$

$$= \frac{z_{0}^{2}}{z_{0}^{2} + \sigma_{1}^{2}} \left[1 - \exp\left\{-\frac{(AT/2)^{2}}{2(\sigma_{0}^{2} + \sigma_{1}^{2})}\right\}\right] + \frac{z_{1}^{2}}{\sigma_{0}^{2} + z_{1}^{2}}$$

$$= 1 - \frac{z_{0}^{2}}{z_{0}^{2} + z_{1}^{2}} \exp\left\{-\frac{(AT/2)^{2}}{2(\sigma_{0}^{2} + z_{1}^{2})}\right\}\right] \qquad (1 - 1)$$

61

4.65)

Thus Eq. 4.59 becomes

$$P\{q_1 - q_0 < 0/H_1\} = \frac{\sigma_0^2}{\sigma_0^2 + \sigma_1^2} \exp\left\{-\frac{(AT/2)^2}{2(\sigma_0^2 + \sigma_1^2)}\right\}$$
(4.66)

Now using Eq. 4.58 and Eq. 4.59 in Eq. 4.39, we have that

$$P_{e} = \frac{1}{2} \frac{\sigma_{T}^{2}}{\sigma_{2}^{2}} \exp\left\{-\frac{(AT/2)^{2}}{2\sigma_{0}^{2}} \left[1 - \frac{\sigma_{T}^{2}}{\sigma_{0}^{2}}\right]\right\} + \frac{1}{2} \frac{\sigma_{0}^{2}}{\sigma_{0}^{2} + \sigma_{1}^{2}} \exp\left\{-\frac{(AT/2)^{2}}{2(\sigma_{0}^{2} + \sigma_{1}^{2})}\right\}$$

Recalling that $\varepsilon = AT/2$, using Eq. 4.55, we have

$$P_{e} = \frac{1}{2} \exp \left\{ -\frac{\varepsilon^{2}}{2(\sigma_{0}^{2} + \sigma_{1}^{2})} \right\}$$
(4.67)

From Eq. 4.67 it is clear that in order to minimize P_e , we must maximize $\sigma_o^2 + \sigma_1^2$ subject to some constraint on the colored noise power. By Eq. 4.20

 $\sigma_{0}^{2} + \sigma_{1}^{2} = \sigma_{w}^{2} + \sigma_{c,0}^{2} + \sigma_{w}^{2} + \sigma_{c,1}^{2}$ $= 2\sigma_{w}^{2} + \sigma_{c,0}^{2} + \sigma_{c,1}^{2}$ (4.68)

where

$$\sigma_{c,o}^{2} + \sigma_{c,1}^{2} = \iint_{00}^{T T} K_{c} (t-\tau) \cos \omega_{0} \tau + \cos \omega_{0} \tau dt d\tau$$

$$+ \iint_{00} K_{c}(t-\tau) \cos \omega_{1} t \cos \omega_{1} \tau dt d\tau \qquad (4.69)$$

As an example, consider the case where the power spectral density of the jammer is

$$S_{C}(\omega) = \pi P_{C} [\delta(\omega - \omega_{i}) + \delta(\omega + \omega_{i})]$$

Under this assumption it has been shown in Appendix C, that Eq. 4.69 becomes

$$\sigma_{c,0}^{2} + \sigma_{c,1}^{2} = \frac{P_{c}T^{2}}{4} \left[\frac{(\sin(\omega_{0} - \omega_{j})T/2)}{(\omega_{0} - \omega_{j})T/2} \right]^{2} + \left(\frac{\sin(\omega_{1} - \omega_{j})T/2}{(\omega_{1} - \omega_{j})T/2} \right)^{2} \right]$$
(4.70)

where ω_j and P_c are the frequency and the power of the jamming waveform, respectively. It has also been demonstrated in Appendix C that Eq. 4.70 is maximum at $\omega_j = \omega_0$ or $\omega_j = \omega_1$, so that

$$\left(z_{c,0}^{2} + z_{c,1}^{2}\right)_{\max} = \frac{P_{c}T^{2}}{4} \left[\left(\frac{\sin(\omega_{1} - \omega_{0})T/2}{(\omega_{1} - \omega_{0})T/2} \right)^{2} + 1 \right]$$
(4.71)

and Eq. 4.68 now becomes

$$\sigma_{0}^{2} + \sigma_{1}^{2} = 2 \frac{N_{0}T}{4} + \frac{\tilde{P}_{c}T^{2}}{4} \left[\left(\frac{\sin(\omega_{1} - \omega_{0})T/2}{(\omega_{1} - \omega_{0})T/2} \right)^{2} + 1 \right]$$
(4.72)

Thus Eq. 4.67 becomes

$$P_{e} = \frac{1}{2} \exp \left\{ \frac{-A^{2}T^{2}/4}{N_{o}T + \frac{P_{c}T^{2}}{2} \left[1 + \left(\frac{\sin(\omega_{1} - \omega_{o})T/2}{(\omega_{1} - \omega_{o})T/2} \right)^{2} \right]} \right\}$$
$$= \frac{1}{2} \exp \left\{ \frac{A^{2}T/4N_{o}}{1 + \frac{P_{c}T^{2}}{2N_{o}} \left[1 + \left(\frac{\sin(\omega_{1} - \omega_{o})T/2}{(\omega_{1} - \omega_{o})T/2} \right)^{2} \right]} \right\}$$

$$P_{e} = \frac{1}{2} \exp \left\{ \frac{-SNR}{2 + JSR \cdot SNR \left[1 + \left(\frac{Sin(\omega_{1} - \omega_{0})T/2}{(\omega_{1} - \omega_{0})T/2} \right)^{2} \right]^{2} \right\}}$$
(4.73)

where SNR = $(A^2T/2)/N_0$ and JSR = $P_C T/(A^2T/2)$, represent signal to noise ratio and jamming to signal ratio respectively.

Observe that with JSR = 0, Eq.4.73 becomes identical to Eq. 4.10. This result is appealing because for the case of no jamming, the receiver performance should be identical to that of a receiver operating in white Gaussian noise interference only.

C. RECEIVER PERFORMANCE IN THE PRESENCE OF WHITE GAUSSIAN NOISE UNDER SINGLE CHANNEL OPERATION

In Section B, we have analyzed the performance of the quadrature receiver in the presence of white and colored Gaussian noise. Results were specifically obtained when the colored noise interference was a single frequency jammer. Suppose now that the quadrature receiver experiences a single frequency interference which corresponds to one of the signal frequencies, say ω_0 . Since the receiver makes binary decisions based on whether $q_1 > q_0$ or vice versa, the presence of the interference at frequency ω_0 will cause q_0 to be greater than q_1 most of the time creating decision errors nearly 50% of the time.

In order to prevent this type of situation from arising, the receiver can turn off the affected channel, or equivalently, make decisions based only on the output of the other channel, that is, based only on the size of q_1 . In this section the performance of the quadrature receiver is analyzed assuming white Gaussian noise only interference, and that decisions based on only one channel output are made.

Assuming that the receiver bases decisions only on the size of q_1 , the decision rule now becomes

 $\begin{array}{c} H_{1} \\ q_{1} \\ H_{0} \end{array}$ (4.74)

Recall from Eq. 4.6 that,

$$q_{k}^{2} = \begin{bmatrix} \int_{0}^{T} r(t) \sin \omega_{k} t dt \end{bmatrix}^{2} + \begin{bmatrix} \int_{0}^{T} r(t) \cos \omega_{k} t dt \end{bmatrix}^{2}$$
(4.6)
$$k = 0, 1$$
$$\triangleq x_{k}^{2} + y_{k}^{2}$$
(4.75)

The probability of error is -

$$P_{e} = P\{q_{1} > \gamma/H_{0}\}P\{H_{0}\} + P\{q_{1} < \gamma/H_{1}\}P\{H_{1}\}$$
(4.76)

and assuming that $P\{H_0\} = P\{H_1\} = 1/2$ then Eq. 4.76 becomes

$$P_{e} = \frac{1}{2} P\{q_{1} > \gamma/H_{0}\} + \frac{1}{2} P\{q_{1} < \gamma/H_{1}\}$$
(4.77)

The information bearing signals are

$$\sqrt{E_{i}} S_{i}(t) = A \sin(\omega_{i}t + \phi_{i}) \quad i = 0, 1 \quad (4.4)$$

$$0 \le t \le T$$

and in Section B we found that

$$P(q_{1}/H_{0}) = \frac{q_{1}}{\sigma_{1}^{2}} e^{-q_{1}^{2}/2\sigma_{1}^{2}} u(q_{1})$$
(4.46)

and

an M

$$P(q_{1}/H_{1}) = \frac{q_{1}}{\frac{2}{1}} e^{-(e^{2}+q_{1}^{2})/2e_{1}^{2}} I_{0}(\frac{q_{1}e}{\frac{2}{1}}) u(q_{1})$$
(4.47)

where $\varepsilon = AT/2$ and

$$\sigma_1^2 = \sigma_w^2 = \frac{N_o^T}{4}$$
 (4.21)

Thus, from Eqs. 4.19, 4.46, and 4.47, we obtain

$$P_{e} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{q_{1}}{\sigma_{1}^{2}} e^{-q_{1}^{2}/2\sigma_{1}^{2}} u(q_{1}) dq_{1}$$

$$+ \frac{1}{2} \int_{-\infty}^{\gamma} \frac{q_{1}}{\sigma_{1}^{2}} e^{-(\varepsilon^{2}+q_{1}^{2})/2\sigma_{1}^{2}} I_{o}\left(\frac{q_{1}\varepsilon}{\sigma_{1}^{2}}\right) u(q_{1}) dq_{1} \qquad (4.78)$$

Observe however that a threshold of γ must now be defined. Clearly, a threshold that minimizes P_e should be chosen. This can be done by solving dP_e/d γ = 0.

Thus

$$\frac{dP_{e}}{d\gamma} = \frac{1}{2} \left[-\frac{1}{\sigma_{1}^{2}} e^{-\gamma_{1}^{2}/2\sigma_{1}^{2}} u(\gamma) + \frac{1}{\sigma_{1}^{2}} e^{-(\varepsilon^{2}+\gamma^{2})/2\sigma_{1}^{2}} I_{O}(\frac{\gamma_{1}\varepsilon}{\sigma_{1}^{2}}) u(\gamma) \right]$$

$$= \frac{1}{2} \frac{1}{\sigma_{1}^{2}} e^{-\gamma_{1}^{2}/2\sigma_{1}^{2}} u(\gamma) \left[-1 + e^{-\varepsilon^{2}/2\sigma_{1}^{2}} I_{O}(\frac{\gamma_{2}\varepsilon}{\sigma_{1}^{2}}) \right]$$
(4.79)

so that solution of $dP_e/d_{\pm} = 0$ yields an implicit solution for \pm , namely,

$$I_{o}\left(\frac{\gamma_{\varepsilon}}{\sigma_{1}^{2}}\right) = e^{\varepsilon^{2}/2\sigma_{1}^{2}}$$
(4.80)

Suppose now that γ_0 is the solution of Eq. 4.80 for a given value of ϵ and σ_1^2 . Then

$$P_{e} = \frac{1}{2} \int_{\eta_{o}}^{\infty} \frac{q_{1}}{\sigma_{1}^{2}} e^{-q_{1}^{2}/2\sigma_{1}^{2}} u(q_{1}) dq_{1}$$

$$+\frac{1}{2}\int_{-\infty}^{\gamma} \frac{q_{1}}{\sigma_{1}^{2}} e^{-(\epsilon^{2}+q_{1}^{2})/2\sigma_{1}^{2}} I_{0}\left(\frac{q_{1}\epsilon}{\sigma_{1}^{2}}\right) u(q_{1}) dq_{1}$$
(4.81)

Letting $y = q_1 / \sigma_1$, Eq. 4.81 becomes

$$P_{e} = \frac{1}{2} e^{-\frac{\gamma^{2}}{0}/2\sigma_{1}^{2}} + \frac{1}{2} \left[1 - \int_{\gamma_{0}/\sigma_{1}}^{\infty} y e^{-\frac{1}{2}(\frac{\varepsilon}{\sigma_{1}})^{2} + y^{2}} I_{0}(y(\frac{\varepsilon}{\sigma_{1}})) dy \right]$$
$$= \frac{1}{2} + \frac{1}{2} e^{-\frac{\gamma^{2}}{0}/2\sigma_{1}^{2}} - \frac{1}{2} Q(\varepsilon/\sigma_{1}, \eta_{0}/\sigma_{1})$$
(4.82)

Observe that

$$\frac{z^2}{2\sigma_1^2} = \frac{(AT/2)^2}{2N_0T/4} = \frac{A^2T}{2N_0} = SNR$$
(4.83)

so that defining

$$\gamma_{\rm TH} = \gamma_0 / \varepsilon \qquad (4.84)$$

we have

$$\frac{\gamma_{o}}{\sigma_{1}} = \frac{\gamma_{TH}\varepsilon}{\sigma_{1}} = \gamma_{TH}\sqrt{2SNR}$$
(4.85)

so that the threshold setting equation (Eq. 4.80) becomes

$$I_{O}(\gamma_{TH}(2SNR)) \approx e^{SNR}$$
 (4.86)

and Eq. 4.82 simplifies to

$$P_{e} = \frac{1}{2} + \frac{1}{2} \exp \left\{-\frac{1}{2} \frac{2}{\gamma_{TH}} (2SNR)\right\} - \frac{1}{2} Q \left(\sqrt{2SNR}, \gamma_{TH} (\sqrt{2SNR})\right)$$
(4.87)

The receiver performance indicated by Eq. 4.87 is compared to that of an incoherent BFSK receiver that utilizes both channels for its decisions. (See. Eq. 4.10.) The result of this comparison is presented in Chapter V.

D. RECEIVER PERFORMANCE IN THE PRESENCE OF COLORED NOISE UNDER SINGLE CHANNEL OPERATION

In this section, we analyze the performance of the quadrature receiver under the assumption of single channel operation, as described in the previous section. Here however, it is additionally assumed that a jamming signal is present, whose energy is concentrated around the frequency ω_0 . (Observe that
the channel whose output is q_0 has a passband around ω_0 . Thus a jammer concentrating its energy around ω_0 would significantly affect the output q_0 . Consequently, turning off or ignoring q_0 would make sense under these circumstances. Hence, the single channel operation being considered here.)

Our decision rule continues to be

$$H_{1} \xrightarrow{>}_{\gamma} (4.74)$$

$$H_{0}$$

and

$$P_{e} = \frac{1}{2}P \{q_{1} > \gamma/H_{o}\} + \frac{1}{2}P \{q_{1} < \gamma/H_{1}\}$$
(4.77)

Observe that due to the presence of a jammer

$$\sigma_{1}^{2} = \sigma_{w}^{2} + \sigma_{c,1}^{2}$$
(4.28)

where

$$\sigma_{c,1}^{2} = \int_{00}^{TT} K_{c}(t-\tau) \sin \omega_{1} \tau dt d\tau \qquad (4.20)$$

As shown in Appendix C,

$$z_{c,1}^{2} = \frac{P_{c}T^{2}}{4} \left(\frac{\sin(\omega_{j} - \omega_{1})T/2}{(\omega_{j} - \omega_{1})T/2} \right)^{2}$$
(C.12)

when the jammer is concentrated at frequency ω_j . With $\omega_j = \omega_0$, Eq. C.12 becomes

$$\sigma_{c,1}^{2} = \frac{P_{c}T^{2}}{4} \left[\frac{\sin(\omega_{o} - \omega_{1})T/2}{(\omega_{o} - \omega_{1})T/2} \right]^{2}$$
(4.88)

so that the probability of error is

$$P_{e} = \frac{1}{2} + \frac{1}{2} \exp\left\{-\frac{1}{2}\gamma_{IH}^{2}\left[\frac{\varepsilon^{2}}{\sigma_{w}^{2} + \sigma_{c,1}^{2}}\right]\right\}$$
$$-\frac{1}{2}Q\left(\sqrt{\frac{\varepsilon^{2}}{\sigma_{w}^{2} + \sigma_{c,1}^{2}}}, \gamma_{Th}\sqrt{\frac{\varepsilon^{2}}{\sigma_{w}^{2} + \sigma_{c,1}^{2}}}\right)$$
(4.89)

Observe that

$$\frac{\varepsilon^{2}}{\sigma_{w}^{2} + \sigma_{c,1}^{2}} = \frac{A^{2}T/2N_{o}}{\frac{1}{2} + \frac{1}{2}\frac{P_{c}^{T}}{A^{2}T/2} \cdot \frac{A^{2}T/2}{N_{o}} \left[\frac{\sin(\omega_{o}-\omega_{1})T/2}{(\omega_{o}-\omega_{1})T/2}\right]^{2}$$

$$= \frac{2 \text{SNR}}{1 + \text{JSR} \cdot \text{SNR}} \left[\frac{\sin(\omega_0 - \omega_1) \text{T/2}}{(\omega_0 - \omega_1) \text{T/2}} \right]^2$$
(4.90)

Defining

$$SSQ = \left[\frac{\sin(\omega_{0} - \omega_{1})T/2}{(\omega_{0} - \omega_{1})T/2}\right]^{2}$$
(4.91)

we have

$$P_{e} = \frac{1}{2} + \frac{1}{2} \exp \left\{ -\frac{1}{2} \gamma_{IH}^{2} \left(\frac{2SNR}{1 + JSR \cdot SNR \cdot SSQ} \right) \right\}$$

$$-\frac{1}{2} Q \left(\sqrt{\frac{2 \text{SNR}}{1 + \text{JSR} \cdot \text{SNR} \cdot \text{SSQ}}}, \gamma_{\text{TH}} \sqrt{\frac{2 \text{SNR}}{1 + \text{JSR} \cdot \text{SNR} \cdot \text{SSQ}}} \right)$$
(4.92)

Observe that with JSR = 0, Eq. 4.92 becomes identical to Eq. 4.87, as must be the case.

Furthermore if the frequency separation $(\omega_0 - \omega_1)$ is such that $(\omega_0 - \omega_1)T/2 >> 1$ or $(\omega_0 - \omega_1)T/2 = m\pi$, where m is an integer then, SSQ becomes very small or zero so that the effect of the presence of the jamming is negligible. The numerical results obtained from Eq. 4.92 are very similar to those obtained from Eq. 4.87 as demonstrated in greater detail in Chapter V.

Recall that the threshold is obtained from the solution of Eq. 4.86, namely

$$I_{O}(_{TH}(2SNR)) = e^{SNR}$$

$$(4.86)$$

However if our goal is to set a threshold that minimizes P_e , for the case being considered here, we can solve for an optimum threshold setting by minimizing Eq. 4.92 with respect to $r_{\rm TH}$. If this procedure is carried out, we obtain the threshold setting equation

$$I_{O}\left(-\frac{2SNR}{1+JSR\cdot SNR\cdot SSQ}\right) = \exp\left\{-\frac{SNR}{1+JSR\cdot SNR\cdot SSQ}\right\}$$
(4.93)

While this result is intuitively appealing, a practical problem arises in that in most cases, the receiver does not know the operating JSR value, hence a threshold could not be set.

Fortunately, computer evaluations carried out using both Eq. 4.86 and Eq. 4.93 to set the threshold have demonstrated that the P_e resulting with thresholds set by Eqs. 4.86 and 4.93 are almost (and for all practical purposes) identical.

V. GRAPHICAL RESULTS

A. GRAPHICAL RESULTS FOR COLORED NOISE INTERFERENCE IN COHERENT M-ARY FREQUENCY SHIFT KEYED MODULATED SYSTEMS

In Chapter III, the performance of the MFSK receiver in the presence of white and colored noise was derived. This mathematical result is used now to evaluate and graphically display receiver performance under the presence of white noise only and under the presence of white and colored noise interference.

Results are presented sequentially for values of M = 2, 4, 8, and 16 on the performance of the M-ary FSK receiver for white noise as the only source of interference as well as for various conditions of colored noise powers in addition to the normally present WGN interference. The performance results for the M-ary FSK receiver presented in this section in terms of the probability of error are shown as the SNR changes for specified values of JSR. Some representative results are summarized in Tables 5.1, 5.2, 5.3 and 5.4. Figures 5.1 through 5.4 include the performance of the M-ary FSK receiver when the transmitted signal is interfered by white noise only, namely, JSR = 0. This makes it possible to evaluate the effect of the jamming on the receiver in comparison to the case in which WGN is the only source of interference. These results have been obtained by evaluating Eq. 3.47.

|--|

The Receiver	Pe SNR (DB)						
	-10.0	-5.0	0.0	5.0	10.0		
JSR = 0	0.3759	0.2869	0.1586	0.0376	0.0008		
JSR = 0 db	0.3815	0.3120	0.2397	0.1917	0.1702		
JSR = 5 db	0.3914	0.3454	0.3120	0.2959	0.2899		
JSR = 10 db	0.4115	0.3914	0.3815	0.3778	0.3765		
JSR = 15 db	0.4384	0.4327	0.4305	0.4298	0.4295		

PERFORMANCE OF 2-FSK RECEIVER

TABLE 5.2	
-----------	--

The Receiver	Pe SNR (DB)							
	-10.0	-5.0	0.0	5.0	10.0			
JSR = 0	0.6223	0.5132	0.3222	0.0915	0.0022			
JSR = 0 db	0.6262	0.5313	0.3995	0.2804	0.2153			
JSR = 5 db	0.6326	0.5598	0.4861	0.4395	0.4194			
JSR = 10 db	0.6478	0.6082	0.5825	0.5712	0.5671			
JSR = 15 db	0.6734	0.6598	0.6538	0.6517	0.6510			

PERFORMANCE OF 4-FSK RECEIVER

	FABLE	5.3
--	--------------	-----

THE RECEIVER	Pe SNR (DB)							
	-10.0	-5.0	0.0	5.0	10.0			
JSR = 0	0.7778	0.6794	0.4755	0.1617	0.0048			
JSR = 0 db	0.7792	0.6885	0.5261	0.3246	0.1885			
JSR = 5 db	0.7820	0.7047	0.5958	0.4992	0.4471			
JSR = 10 db	0.7894	0.7384	0.6914	0.6648	0.6540			
JSR = 15 db	0.8056	0.7834	0.7709	0.7658	0.7641			

PERFORMANCE OF 8-FSK RECEIVER

THE RECEIVER					
	-10.0	-5.0	0.0	5.0	10.0
JSR = 0	0.8715	0.7949	0.6083	0.2455	0.0093
JSR = 0 db	0.8720	0.7987	0.6354	0.3621	0.1374
JSR = 5 db	0.8731	0.8062	0.6796	0.5174	0.4019
JSR = 10 db	0.8763	0.8243	0.7556	0.7000	0.6733
JSR = 15 db	0.8839	0.8553	0.8329	0.8217	0.8175

PERFORMANCE OF 16-FSK RECEIVER

...

Ê

Figure 5.1. Performance of M-ary FSK for M = 2

÷

۰.

)

Figure 5.2. Performance of M-ary FSK for M = 4

Figure 5.4. Performance of M-ary FSK for M = 16

•

B. GRAPHICAL RESULTS FOR NON-COHERENT BINARY FREQUENCY SHIFT KEYED SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE

In Chapter IV, the performance of the quadrature receiver operating in the presence of white and colored noise was derived. The mathematical results are now used to evaluate and graphically display receiver performance under various conditions of signal and noise powers.

First, results are presented for the case in which white noise is the only source of interference. This yields the well-known probability of error curves for the standard quadrature receiver for non-coherent BFSK. These are presented in Fig. 5.5, along with a corresponding plot of the probability of error of the quadrtature receiver in which only one channel output is used to make binary decisions.

Additionally, the performance of the quadrature receiver operating in the presence of white and colored noise is evaluated under dual channel and single channel operation. Under single channel operation, it is assumed that the colored noise jamming concentrates its energy around one of the FSK operating frequencies, and that the receiver is able to make a deterministic as to which "channel is being jammed" so that the outputs of this channel are ignored in the process of making decisions. Evaluations are carried out using receiver thresholds that are dependent as well as independent of jamming power levels. (Both cases are considered separately.) The performance of the quadrature receiver in the presence of noise and the jamming

waveform described in this section in terms of the probability of error is calculated as the SNR changes for specified values of JSR. Some important results are summarized in Table 5.5 for JSR = 0 and in Tables 5.6-5.10 as JSR takes on values of 0.0 db, 5.0 db, 10.0 db, 15.0 and 20.0 db, respectively. In Figure 5.5 the performance of the standard quadrature receiver and the single channel operation of the quadrature receiver is plotted when the transmitted signal is interfered by white noise only. The theoretical performance of the standard quadrature receiver is calculated from Equation 4.10, and the performance of the quadrature receiver under single channel operation is calculated from Equation 4.87.

In Figures 5.6-5.10, the performance of the standard quadrature receiver and the quadrature receiver under single channel operation with the threshold dependent as well as independent of the jamming power level is plotted when the transmitted signal is interfered by white noise and by the jamming waveform having Power Spectral Desnity given by Equation C.7. Each of the figures corresponds to a specific value of JSR as shown in the headings. The performance of the standard quadrature receiver is calculated from Equation 4.73. The theoretical results for the single channel operation of the quadrature receiver with a threshold that is independent of the jamming power (Eq. 4.86) is calculated from Equation 4.82, and Equation 4.92 is used to compute performance of the same receiver when the threshold is dependent on the jamming power

10000 2.2	TAE	BLE	5.	. 5
-----------	-----	-----	----	-----

Pe SNR (DB) THE RECEIVER -10.0 -5.0 0.0 5.0 10.0 15.0 Standard Operation 0.4756 0.4268 -0.3032 0.1028 0.0033 0.00000000 Single Channel Operation 0.4820 0.4460 0.3531 0.1806 0.0268 0.00009

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 0

TABLE 5.6

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 0 DB

THE RECEIVER	Pe SNR (DB)					
	-10.0	-5.0	0.0	5.0	10.0	15.0
Standard Operation	0.4767	0.4361	0.3582	0.2709	0.2172	0.1952
Single Channel Operation	0.4820	0.4460	0.3531	0.1806	0.0268	0.00009

TABLE 5.	.7
----------	----

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 5 DB

THE RECEIVER	Pe SNR (DB)					
	-10.0	-5.0	0.0	5.0	10.0	15.0
Standard Operation	0.4788	0.4499	0.4119	0.3841	0.3713	0.3667
Single Channel Operation	0.4820	0.4460	0.3531	0.1806	0.0268	0.00009

TABLE 5.8

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 10 DB

THE RECEIVER	Pe SNR (DB)					
	-10.0	-5.0	0.0	5.0	10.0	15.0
Standard Operation	0.4836	0.4702	0.4600	0.4551	0.4533	0.4527
Single Channel Operation	0.4820	0.4460	0.3531	0.1806	0.0268	0.00009

TABLE 5.9	
-----------	--

THE RECEIVER	Pe SNR (DB)					
	-10.0	-5.0	0.0	5.0	10.0	15.0
Standard Operation	0.4904	0.4869	0.4853	0.4847	0.4845	0.4844
Single Channel Operation	0.4820	0.4460	0.3531	0.1806	0.0268	0.00009

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 15 DB

TABLE 5.10

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 20 DB

THE RLCEIVER	Pe SNR (DB)						
	-10.0	-5.0	0.0	5.0	10.0	15.0	
Standard Operation	0.4958	0.4953	0.4951	0.4950	0.4950	0.4950	
Single Channel Operation	0.4820	0.4460	0.3531	J.1806	0.0268	0.00009	

JSR = 0 db

Figure 5.7. Performance of the quadrature receiver for JSR = 5 db

۲

Figure 5.8. Performance of the quadrature receiver for JSR = 10 db

• •

÷.,

...

Figure 5.9. Performance of the quadrature receiver for $JSR = 15 d_{s}$

level. As pointed out in Section D of Chapter IV, the probability of error calculated from Equation 4.92 with the threshold set by Equations 4.86 and 4.93 show almost identical results.

Ļ

Tables 5.5 through 5.10 demonstrate that the performance of the quadrature receiver under single channel operation is unaffected by changing values of JSR. This is due to the fact that for ω_0 , ω_1 and T values used in the simulation, the value of SSQ term in Eq. 4.92 is identical to zero. Thus in order to demonstrate the effect of the jammer on the receiver under single channel operation, the value of the jamming frequency ω_j has been allowed to vary from ω_0 all the way up to ω_1 . Thus, in place of the SSQ term as defined in Eq. 4.92, we use the modified term

$$SSQ = \frac{Sin(\omega_j - \omega_1)T/2}{(\omega_j - \omega_1)T/2} \quad \omega_0 \leq \omega_j \leq \omega_1$$

The results of these modifications are presented in Fig. 5.11 and Fig. 5.12 where the probability of error of the receiver given by Eq. 4.93 is evaluated for JSR = 5 db and JSR = 10 db, respectively, where the jamming frequency (ω_j) is allowed to take on values $\omega_j = \omega_c$ (which corresponds to the results given by Eqs. 4.91 and 4.92 without modification), and values of $\omega_j = 3(\omega_1 + \omega_c)/4$ and $\omega_j = \omega_1$. Some of the important results obtained are summarized in Tables 5.11 and 5.12 for JSR = 5 db and JSR = 10 db respectively.

j

L

•

MICROCOPY RESOLUTION TEST CHART

Performance of the quadrature receiver single channel operation for different jamming frequencies and JSR = 10 db

TABLE 5.	. 1 1
----------	-------

	SNR DB						
THE RECEIVER	-10.0	0.0	10.0	20.0	30.0		
$\omega_j = \omega_o$	0.4820	0.3530	0.0268	1×10 ⁻⁹	1×10 ⁻⁹		
$\omega_{j} = \frac{3}{4}(\omega_{1} + \omega_{0})$	0.4821	0.3589	0.0676	0.0049	0.0023		
ω _j = ω ₁	0.4853	0.4476	0.4297	0.4272	0.4269		

PERFORMANCE OF THE QUADRATURE RECEIVER SINGLE CHANNEL OPERATION FOR DIFFERENT JAMMING FREQUENCIES AND JSR = 5 DB

TABLE 5.12

PERFORMANCE OF THE QUADRATURE RECEIVER SINCLE CHANNEL OPERATIC: FOR DIFFERENT JAMMING FREQUENCIES AND JSR = 10 DB

.

	SNR DB						
THE RECEIVER	-10.0	0.0	10.0	20.0	30.0		
$\omega_j = \omega_o$	0.4820	0.3531	0.0268	1 × 10 ⁻⁹	1×10^{-9}		
$\omega_{j} = \frac{3}{4}(\omega_{1}+\omega_{0})$	0.4823	0.3699	0.1491	0.0849	0.0773		
	0.4894	0.4781	0.4755	0.4752	0.4751		

VI. CONCLUSIONS

The analysis carried out in this thesis presents the application of concepts derived in statistical communication theory, specifically in the theory of signal detection under the assumption of colored noise interference. The performance of digital receivers in terms of probability of error is determined when the receivers operate in the presence of white and colored Gaussian noise. Three techniques are examined separately, one for MPSK modulation, another for coherent MFSK modulation and the last one for (incoherent) BFSK modulation.

The mathematical model of the jamming waveform proposed, consists of colored Gaussian noise of different spectral shapes and power content.

For MPSK modulation, a mathematical result on the performance of the (coherent) receiver in the presence of WGN and colored noise jamming was derived. The complexity of the result along with the many possible trade-offs involving spectral shapes, power levels and frequencies of operation made it impossible to address in this thesis the issue of optimum jamming strategies for MPSK.

For MFSK modulation results on the effect of the coherent receiver, were derived. A simple assumption was made on the spectrum of the jamming. By assuming that each signal frequency

was interfered with a tone subject to a total jamming power constraint, the receiver P_e was evaluated for different values of SNR, JSR, and M. The results demonstrate that this form of jamming can be quite effective or that significant increases on P_e can be achieved even at low JSR values.

For the case of BFSK modulation, the quadrature receiver was analyzed under two conditions of operation, standard operation and single channel operation, in the presence of colored noise jamming with different power levels. The single channel operation was introduced as a method for mitigating the effect of a single tone jammer at one of the carrier frequencies. When no jamming is present, single channel operation performs slightly worse than standard receiver (both channels) operation. However, in the presence of jamming, single channel operation is superior to standard operation because the receiver is capable of eliminating much of the jammer energy and its effect by ignoring the output of the jammed channel during single channel operation. As pointed out in Chapter IV, the effect of the jamming waveform on the receiver under single channel operation depends strongly on the jamming frequency chosen. For the single channel operation, it was assumed that the jamming is present at one of the two signal frequencies, and that the receiver turns off the channel affected. Thus, decisions are made based only on the output of the unaffected channel. However, if under this condition of operation the jamming changes its frequency \mathbb{Z}_{+} in such a way as to "move

closer" to the frequency of the unaffected channel, it has been demonstrated that the receiver probability of error increases as ω_j approaches the frequency of the unaffected channel.

DETAILED INVESTIGATION OF THE VARIANCES OF V_C AND V_S CONDITIONED ON HYPOTHESES H_j

Let

$$\psi_{\ell}^{\mathbf{T}} = \begin{cases} \psi_{\ell}(t) & 0 \leq t \leq \mathbf{T} \quad \ell = 1,2 \\ 0 & \text{otherwise} \end{cases}$$
(A.1)

and

$$\psi_{\ell}^{\mathbf{T}}(\omega) = F\{\psi_{\ell}^{\mathbf{T}}(t)\} \quad \ell = 1,2 \quad (A.2)$$

Thus

$$J_{\mathbf{c},\lambda}^{2} = \iint_{-\infty}^{\infty} K_{\mathbf{c}}(\mathbf{t}-\mathbf{\tau}) \psi_{\lambda}^{\mathbf{T}}(\mathbf{t}) \psi_{\lambda}^{\mathbf{T}}(\mathbf{\tau}) d\mathbf{t} d\mathbf{\tau}$$

$$= \iint_{-\infty}^{\infty} \iint_{-\infty}^{\infty} \frac{1}{2\pi} S_{\mathbf{c}}^{-}(\omega) e^{j\omega(\mathbf{t}-\mathbf{\tau})} d\omega \psi_{\lambda}^{\mathbf{T}}(\mathbf{t}) \psi_{\lambda}^{\mathbf{T}}(\mathbf{\tau}) d\mathbf{t} d\mathbf{\tau}$$

$$= \frac{1}{2\pi} \iint_{-\infty}^{\infty} S_{\mathbf{c}}^{-}(\mathbf{\tau}) \psi_{\lambda}^{\mathbf{T}}(-\omega) \psi_{\lambda}^{\mathbf{T}}(\omega) d\omega \qquad (A.3)$$

where $K_{c}(\tau) \leftrightarrow S_{c}(\omega)$

Now

$$\psi_{1}^{T}(\omega) = \frac{1}{2} \left[\sqrt{2T} e^{-j(\omega - 2\pi n/T)T/2} \frac{\sin(\omega - \frac{2\pi n}{T})T/2}{(\omega - \frac{2\pi}{T})T/2} \right]$$

+
$$\sqrt{2T} e^{-j(\omega+2\pi n/T)T/2} \frac{\sin(\omega+\frac{2\pi n}{T})T/2}{(\omega+\frac{2\pi n}{T})T/2}$$
 (A.4)

and

$$\psi_2^{\mathrm{T}}(\omega) = \mathrm{e}^{-\mathrm{j}\omega\mathrm{T}/4\mathrm{n}} \psi_1^{\mathrm{T}}(\omega) \qquad (A.5)$$

Because of the relationship between $\psi_1^T(\omega)$ and $\psi_2^T(\omega)$, it is clear that

$$\psi_1^{\mathbf{T}}(-\omega)\psi_1^{\mathbf{T}}(\omega) = \psi_2^{\mathbf{T}}(-\omega)\psi_2^{\mathbf{T}}(\omega) \qquad (A.6)$$

so that

$$\sigma_{c,1}^2 = \sigma_{c,2}^2 \stackrel{i}{=} \sigma_c^2 \qquad (A.7)$$

Thus indeed, a = c. Observe also by similiar arguments, that

$$e_{1,2}^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{c}(\omega) \psi_{1}^{T}(-\omega) \psi_{2}^{T}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{c}(\omega) \psi_{1}^{T}(-\omega) e^{j\omega T/4n} f_{1}^{T}(\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{C}(\omega) \left[\psi_{1}^{T}(\omega)\right]^{2} \cos \frac{\omega T}{4n} d\omega$$
 (A.8)

where

$$\left|\psi_{1}^{T}(\omega)\right|^{2} = \frac{T}{2} \left\{ \left[\frac{\sin\left(\frac{\omega T}{2} - n\pi\right)}{\left(\frac{\omega T}{2} - n\pi\right)} \right]^{2} + \left[\frac{\sin\left(\frac{\omega T}{2} + n\pi\right)}{\left(\frac{\omega T}{2} + n\pi\right)} \right]^{2} + \frac{\sin\left(\frac{\omega T}{2} - n\pi\right)}{\left(\frac{\omega T}{2} - n\pi\right)} \cdot \frac{\sin\left(\frac{\omega T}{2} + n\pi\right)}{\left(\frac{\omega T}{2} + n\pi\right)} \right\}$$

$$(A.9)$$

So it is clear that in general, $\sigma_{1,2}^2$ will not be zero.

APPENDIX B

DETAILED INVESTIGATION OF THE BEHAVIOR OF THE PRODUCTS OF $S_j^{+}(-\omega)$ AND $S_k^{+}(\omega)$

We have defined

$$F\{S_{j}(t)p(t)\} = \frac{AT}{2}[L(\omega-\omega_{c}-\omega_{j}) + L(\omega+\omega_{c}+\omega_{j})]$$
(B.1)

Then

$$F\{S_{j}^{*}(t)p(t)\} \times F\{S_{k}^{*}(\tau)p(\tau)\} = S_{j}^{*}(-\omega)S_{k}^{*}(\omega)$$

$$= \frac{AT}{2}[L(-\omega-\omega_{c}-\omega_{j}) + L(-\omega+\omega_{c}+\omega_{j})]\frac{AT}{2}[L(\omega-\omega_{c}-\omega_{k}) + L(\omega+\omega_{c}+\omega_{k})]$$

$$= (\frac{AT}{2})^{2}[L(\omega-\omega_{c}-\omega_{j})L(\omega-\omega_{c}-\omega_{k}) + L(-\omega+\omega_{c}+\omega_{j})L(\omega-\omega_{c}-\omega_{k})$$

$$+ L(-\omega-\omega_{c}-\omega_{j})L(\omega+\omega_{c}+\omega_{j}) + L(-\omega+\omega_{c}+\omega_{j})L(\omega+\omega_{c}+\omega_{k})]$$
(B.2)

Observe that for reasonably large values of $\omega_{\rm C}$, the first and the last term in this expression vanish, and we are left with the products

$$e^{j(\omega_{k}-\omega_{j})T/2} \frac{\sin(\omega-\omega_{c}-\omega_{j})T/2}{(\omega-\omega_{c}-\omega_{j})T/2} \cdot \frac{\sin(\omega-\omega_{c}-\omega_{k})T/2}{(\omega-\omega_{c}-\omega_{k})T/2}$$

$$+ e \frac{-j(\omega_{\rm L}-\omega_{\rm j})T/2}{(\omega_{\rm L}+\omega_{\rm c}+\omega_{\rm j})T/2} \cdot \frac{\sin(\omega_{\rm L}+\omega_{\rm c}+\omega_{\rm j})T/2}{(\omega_{\rm L}+\omega_{\rm c}+\omega_{\rm j})T/2} \cdot \frac{(\omega_{\rm L}+\omega_{\rm c}+\omega_{\rm j})T/2}{(\omega_{\rm L}+\omega_{\rm c}+\omega_{\rm j})T/2}$$
(B.3)

Now focusing on the first term of Eq. B.3, which has significant components for ω in the neighborhood of ω_c , we see that if j-k >> 1 then there is essentially no overlap between sine functions. Therefore the product $S'_j(-\omega)S_k(\omega)$ is zero for $j \neq k$.

For $k = j \pm 1$, we have

$$\sin(\omega - \omega_c - \omega_i) T/2 \sin(\omega - \omega_c - \omega_k) T/2$$

$$= \frac{1}{2} \cos(\omega_{k} - \omega_{j}) T/2 - \frac{1}{2} \cos(2\omega_{c} - \omega_{j} - \omega_{k}) T/2$$
(B.4)

and when ω is in the neighborhood of $\omega_{_{\mbox{C}}}$, the product becomes approximately

$$\frac{e^{j(\omega_{k}-\omega_{j})T/2}}{2} \left[\frac{\cos(\omega_{k}-\omega_{j})T/2 - \cos(\omega_{j}+\omega_{k})T/2}{\omega_{j}T/2 \cdot \omega_{k}T/2} \right]$$

= $e^{j(k-j)\Delta\omega T/2} \left[\frac{\cos(k-j)\Delta\omega T/2 - \cos(k-j)\Delta\omega T/2}{(k-\frac{M+1}{2})T/2(j-\frac{M+1}{2})T/2} \right]$ (B.5)

105

The orthogonality condition on the signals required that $\Delta\omega T = \pi \text{ or } \Delta\omega T/2 = \pi/2$, so that Eq. B.5 becomes (approximately)

$$\frac{e^{\pm j\pi/2}}{(T/2)^2} \left[\frac{\cos(\pm \pi/2) - \cos(2j \pm 1)\pi/2}{(j - \frac{M+1}{2})^2 + (j - \frac{M+1}{2})} \right] =$$

$$= \frac{\pm j}{(T/2)^2} \left[\frac{\cos j\pi \cos \pi/2 \pm \sin j\pi \sin \pi/2}{(j - \frac{M+1}{2})^2 \pm (j - \frac{M+1}{2})} \right]$$
(B.6)

Eq. B.6 is zero for all values of the integer j, so we have that for $\Delta \omega T = \pi$, the product $S_j^*(-\omega)S_k(\omega)$ is equal to zero for $j \neq k$.

APPENDIX C

DETAILED	INVEST	IGATION	OF THE	VARIANCES
σ ² _{c,o} Al	ND $\sigma_{c,1}^2$	DUE TO	COLORED	NOISE

Let us define

$$P_{ci}(t) = \cos \omega_{i} t \quad i = 0, 1 \quad 0 \leq t \leq T \quad (C.1)$$

Then Eq. 4.69 becomes

$$\sigma_{c,o}^{2} + \sigma_{c,l}^{2} = \int_{-\infty}^{\infty} K_{c} (t-\tau) P_{co}(t) P_{co}(\tau) dt d\tau$$

+
$$\int_{-\infty,x}^{\infty} K_{c}(t-\tau)P_{cl}(t)P_{cl}(\tau)dt d\tau$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{c}(\omega) \int_{-\infty}^{\infty} e^{j\omega(t-\tau)} P_{co}(t) P_{co}(\tau) dt d\tau d\omega$$

$$+\frac{1}{2\tau}\int_{-\infty}^{\infty}S_{c}(\omega)\int_{-\infty-\infty}^{\infty\infty}e^{j\omega(t-\tau)}P_{cl}(t)P_{cl}(t)dt d\tau$$

$$= \frac{1}{2\pi} \sum_{\omega} \left[\left\{ \left\{ P_{c0}(\omega) \right\}^{2} + \left\{ P_{c1}(\omega) \right\}^{2} \right\} d\omega \right] \right] d\omega$$
 (C.2)

where

$$P_{ci}(\omega) = \int_{0}^{T} \cos \omega_{i} t e^{-j\omega t} dt = \frac{T}{2} e^{j(\omega_{i}-\omega)T/2} \frac{\sin(\omega_{i}-\omega)T/2}{(\omega_{i}-\omega)T/2}$$

$$+ \frac{T}{2} e^{-j(\omega_{i}+\omega)T/2} \frac{\sin(\omega_{i}+\omega)T/2}{(\omega_{i}+\omega)T/2} \quad i = 0,1$$
(C.3)

and

 $S_{c}(\omega) \leftrightarrow K_{c}(\tau)$

Furthermore

$$|\mathbf{P}_{ci}(\omega)|^{2} = \left(\frac{\mathbf{T}}{2}\right)^{2} \left(\frac{\sin\left(\omega_{i}-\omega\right)\mathbf{T}/2}{(\omega_{i}-\omega)\mathbf{T}/2}\right)^{2} + \left(\frac{\mathbf{T}}{2}\right)^{2} \left(\frac{\sin\left(\omega_{i}+\omega\right)\mathbf{T}/2}{(\omega_{i}+\omega)\mathbf{T}/2}\right)^{2}$$

+
$$\left(\frac{T}{2}\right)^2 2 \cos \omega_i T \frac{\sin (\omega_i - \omega) T/2}{(\omega_i - \omega) T/2} \cdot \frac{\sin (\omega_i + \omega) T/2}{(\omega_i + \omega) T/2}$$
 (C.4)
 $i = 0, 1$

The third term in Eq. C.4 can be assumed for all practical purposes to be zero. In essence, we require that $\omega_i >> 2\pi/T$, i = 0,1 for the approximation to be correct.

Consider now the case where

$$S_{c}(\omega) = K[\beta(\omega - \omega_{j}) + \beta(\omega + \omega_{j})]$$
(C.5)

Since

$$P_{c} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{c}(\omega) d\omega$$

$$= \frac{K}{2\pi} \int_{-\infty}^{\infty} [\delta(\omega - \omega_{j}) + \delta(\omega + \omega_{j})] d\omega = \frac{K}{\pi}$$
(C.6)

then $K = \pi P_C$ so that we use

$$S_{c}(\omega) = \pi P_{c} [\delta(\omega - \omega_{j}) + \delta(\omega + \omega_{j})]$$
(C.7)

From Eq. C.2, we now have

$$\sigma_{c,o}^{2} + \sigma_{c,1}^{2} = \frac{P_{c}}{2} [|P_{co}(\omega_{j})|^{2} + |P_{co}(-\omega_{j})|^{2} + |P_{cl}(-\omega_{j})|^{2}]$$

$$+ |P_{cl}(\omega_{j})|^{2} + |P_{cl}(-\omega_{j})|^{2}]$$
(C.8)

Assuming that ω_j will always be in the vicinity of ω_0 and ω_{l} we can state that

$$|P_{co}(\omega_{j})|^{2} \approx \left(\frac{T}{2}\right)^{2} \left(\frac{\sin(\omega_{o}-\omega_{j})T/2}{(\omega_{o}-\omega_{j})T/2}\right)^{2}$$
(c.9)

$$\left| P_{co}(-\omega_{j}) \right|^{2} = \left(\frac{T}{2}\right)^{2} \left(\frac{\sin(\omega_{o}-\omega_{j})T/2}{(\omega_{o}-\omega_{j})T/2} \right)^{2}$$
(C.10)

$$\left|P_{cl}(\omega_{j})\right|^{2} \approx \left(\frac{T}{2}\right)^{2} \left(\frac{\sin(\omega_{l}-\omega_{j})T/2}{(\omega_{l}-\omega_{j})T/2}\right)^{2} = \left|P_{cl}(-\omega_{j})\right|^{2}$$
(C.11)

109

 $\sigma_{c,o}^{2} + \sigma_{c,1}^{2} = \frac{P_{c}}{2} \left[2 \left(\frac{T}{2} \right)^{2} \left(\frac{\sin(\omega_{o} - \omega_{j})T/2}{(\omega_{o} - \omega_{j})T/2} \right)^{2} + 2 \left(\frac{T}{2} \right)^{2} \left(\frac{\sin(\omega_{1} - \omega_{j})T/2}{(\omega_{1} - \omega_{j})T/2} \right)^{2} \right]$ $= \frac{P_{c}T^{2}}{4} \left[\left(\frac{\sin(\omega_{o} - \omega_{j})T/2}{(\omega_{o} - \omega_{j})T/2} \right)^{2} + \left(\frac{\sin(\omega_{1} - \omega_{j})T/2}{(\omega_{1} - \omega_{j})T/2} \right)^{2} \right]$ (C.12)

Thus

In order to maximize the quantity in brackets as a function of ω_j , we need to take derivatives of the expression and set it equal to zero. The result of this operation leads to a maximum at values of $\omega_j = \omega_0$ or $\omega_j = \omega_1$. Therefore, the maximum value becomes

$$\left(\sigma_{c,0}^{2} + \sigma_{c,1}^{2}\right)_{\max} = \frac{P_{c}T^{2}}{4} \left[\left(\frac{\sin(\omega_{1} - \omega_{0})T/2}{(\omega_{1} - \omega_{0})T/2}\right)^{2} + 1 \right]$$
(C.13)

LIST OF REFERENCES

- 1. Van Trees, Harry L., <u>Detection Estimation and Modulation</u> <u>Theory</u>, Part I, pp. 246-287, Wiley, 1968.
- Srinath, M., P.K. Rajasekaran, <u>An Introduction to</u> <u>Statistical Signal Processing with Applications</u>, pp. 104-120, John Wiley, 1979.
- 3. Wozencraft, J., I.M. Jacobs, Principles of Communication Engineering, pp. 211-273, John Wiley, 1965.
- 4. Hasarchi, A., <u>An Analysis of Coherent Digital Receivers</u> <u>in the Presence of Colored Noise Interference</u>, <u>Master's</u> <u>Thesis</u>, <u>Naval Postgraduate School</u>, <u>Monterey</u>, <u>California</u>, June 1985.
- 5. Van Trees, Harry L., <u>Detection, Estimation and Modulation</u> <u>Theory</u>, Part I, pp. 96-98, Wiley, 1968.
- Papoulis, A., Probability, Random Variables and Stochastic Processes, pp. 143-146, Second Edition, McGraw-Hill, 1984.
- 7. Van Trees, Harry L., <u>Detection, Estimation and Modulation</u> <u>Theory</u>, Part I, pp. 247-257, Wiley, 1968.
- Whalen, Anthony D., <u>Detection of Signals in Noise</u>, pp. 209-210, Academic Press, 1971.
- 9 Whalen, Anthony D., <u>Detection of Signals in Noise</u>, pp. 210-211, Academic Press, 1971.
- Whalen, Anthony D., Detection of Signals in Noise, pp. 105-106, Academic Press, 1971.
- 11. Van Trees, Harry L., <u>Detection</u>, <u>Estimation</u> and <u>Modulation</u> Theory, Part I, pp. 395, Wiley, 1968.

INITIAL DISTRIBUTION LIST

1.

2.

3.

4.

5.

6.

7.

8.

PERU

.....

	No.	Copies
Defense Technical Information Center Cameron Station		2
Alexandria, Virginia 22304-6145		
Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5100		2
Prof. HarriettB. Rigas, Code 62 Naval Postgraduate School Monterey, California 93943-5100		1
Prof. D. Bukofzer, Code 62Bh Naval Postgraduate School Monterey, California 93943-5100		5
Prof. S. Jaurequi, Code 62Ja Naval Postgraduate School Monterey, California 93943-5100		2
Peruvian Military Attache 2201 Wisconsin Ave. N.W. Suite 360 Washington, DC 20007		1
Peruvian Military Attache Direción de Instrución e Instituto Technológico del Ejército 2201 Wisoncsin Ave. N.W. Suite 360 Washington, DC 20007		2
Maj. Juis A. Muñoz Calle Union No. 164 Monterrico Chico Lima 33		2

