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ABSTRACT

The purpose of this work is to analyze and evaluate the

effect of jamming waveforms on both coherent and noncoherent

digital communications receivers. Specifically, random processes ,

are utilized as jamming models in which it is assumed that the

jamming waveforms have been produced by a shaping filter driven

by white Gaussian noise. Such jamming waveforms are then

assumed to be present at the input of known receiver

structures (in addition to- the signals and channel noise

normally present), and optimum jamming waveform spectra are

determined for different receiver schemes and modulation

techniques.

Graphical results based on numerical analyses are presented

in order to demonstrate the effect of different jamming

strategies on receiver performance. In order to quantify

receiver performance, bit error probabilities are determined for

binary modulation systems and symbol error probabilities are

determined for M-ary modulation systems. In each case, the

error probabilities are functions of signal-to-noise ratio

(SNR) and jammer-to-signal ratio (JSR). Results show that

it is generally possible to significantly degrade the

performance of binary as well as M-ary modulation communica-

tion receivers by introducing suitably chosen jamming waveforms.
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I. INTRODUCTION

The theory of statistical signal detection and estimation

in the presence of additive white Gaussian noise is widely

described in many textbooks [Refs. 1,2,3]. Signal detectors

are typically designed and built to either optimize the

receiver output signal to noise ratio, or as is the case with

digital communications receivers, to minimize the error

probability.

While it has been demonstrated that receivers designed

under a white noise interference assumption tend to perform

reasonably well even when the interference is not white

[Ref. 41, the assumption of white noise interference is often

invalid, especially when the receiver must operate in a jamming

environment.

The goal of this thesis is to analyze the vulnerability of

certain digital communications receivers designed to operate

in a white noise interference environment, that must operate

in the presence of jamming also. The mathematical model of

the jamming utilized is a colored Gaussian noise process

whose power spectral density is to be shaped in such a manner

so as to cause a large increase in the receiver probabilitv"

of error. While it is not always possible to solve certain

snectral shacina optimization problems, it is possible to

2ostulate technicues that intuitively achieve 2fficient -"-

utaiization of the available Jammer 7cwer.

I :<:
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This thesis is divided up as follows. In Chapter II, we

present results on colored noise interference effects in

coherent M-ary Phase Shift Keyed (MPSK) receivers, and receiver

symbol error probability in the presence of noise and jamming

is derived. In Chapter III we analyze and determine performance

of a coherent M-ary Frequency Shift Keyed (MFSK) receiver

operating in the presence of noise and jamming. Chapter IV

deals with non-coherent Binary Frequency Shift Keyed (BFSK)

signal detection in the presence of noise and jamming. The

performance of the well-known quadrature receiver is analyzed

under dual channel and single channel operation. In Chapter V

graphical results are presented and discussed, and performance

comparisons are carried out. The conclusions and interpreta-

tions of the results obtained are presented in Chapter VI.

0J
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II. COLORED NOISE INTERFERENCE EFFECTS IN COHERENT
M-ARY PHASE SHIFT KEYED MODULATION

A. SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE

The system whose performance is to be analyzed is described

in Fig. 2.1. The structure shown is the optimum receiver for

recovery of MPSK modulated data, in the presence of additive

white Gaussian noise. In PSK modulation, the source (or

modulator) transmits one of M signals s. (t) , where1

i = 1,2,.,M, over a prescribed time interval. Because in

transmissions and reception these signals are interfered with

by noise, at the receiver one observes the signal r(t) rather

than just one of the transmitted signals. Using hypothesis

testing concepts, we say that under hypotheses H. , r(t)

takes on the form

H.: r(t) = iE S. (t) - w (t) + n (t) (2 1)
I. I c

0<t<T, i= ,2,....M

where for M-ary PSK modulation

S.(t) = c + 2-T(i-1)) (2.2)

T T M

i = 1 2 . .M. .

k is an integer

Here W(t) is a sample function of a white Gaussian noise

process of Power Spectral Density level No/2 and n c(t) is a

12
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sample function of a colorud Gaussian noise process having

autocorrelation function K (T) . We assume also w(t) and
c

n (t) are statistically independent random processes.
c

The receiver of Fig. 2.1 is, as previously pointed out, an

optimum processor (in minimum error probability sense) when

n (t) _= . The analysis that follows evaluates the effect
c

of n (t) on the performance of this receiver. Since n (t)
c c

may represent some form of jamming, the error probability

expression to be derived can be used to determine the vulnera-

bility of such a receiver to colored noise jamming, or

conversely, to determine the colored noise spectrum that most

effectively causes poor or inadequate receiver performance,

namely, high error probability.

The signals Si(t) , i = 1,2,3,...,M can be shown to

have cross-correlation coefficients

T12T ( i-j '
i f S.(t) 5(t) dt = cos a (2.3)

i,j = 1,2,...,M

The receiver takes advantage of the fact that we can express

the S. (t) functions, i = 1,2,...,M, as an exact (rather
i"

than approximate) expression of a linear combination of two

functions i-(t) and ' 2 (t) In other words

14



2
S (t) S in S n ~(t). i = 1,2,3,...,m (2.4)

n= 1

with

T
=. f S (t) ~P(t)dt- n =1,2; (2.5)

0 =

These basis functions t$(t) and tp(t) can be derived via a

% Grammi-Schmitt orthonormalization procedure (or almost by

inspection in this case). It turns out that q) (t) and ()

(which must be orthogonal) are given by

_Cos 2rkt/T(2)

and

Sin 2-Tkt/T
(t) (2.7)

2,~

where k is an integer.

It can be easily shown that

S 1  Cos 2-(-) i 12. H(2.8)

and

S. i2 Sin 2r(-) 2 (2.9)

15
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We define
'I

. = 2Tr(i-l)/M i = 1,2,...,M (2.10)

and assuming equal prior probabilties, namely, each signal is

equally likely to be transmitted, the receiver computes

2
= S r 1 = l,2,...,M (2.11)
1 ~ sin nn=l n

and makes decisions based on which V! value is largest. Thus

with

T
rn = f r(t) on(t) dt n = 1,2 (2.12)

0

we have

r T
i =[Cos 9i ]f r (t) wl(t) dt

T

Sin f r(t) , 2 (t) dt i 1,2,.. ,i (2.13)

00

and using simple trigonometric identities, *

V Cos(. + ) i = 1,2 ,... . (2.14)
1

16 :ii

. . , .. . . . . . . .° .
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Clearly -

2 2 1/2(215
V ={V~ +V (215

where

T .
-C f -r(t) ip1 (t) dt ,(2.16)

0

T
-s J r(t) (t) dt (2.17) *-

0

and

V

B. RECEIVER PERFORMANCE

Since conditioned on any hypothesis H. i 1,,..M

Vand V sare Gaussian random variables, we can obtain the

statistics of the appropriate random variables, in the follow-

ing manner. First, we have

T_
E"V /H.], E{, EvE S(t) + w(t) + n (t) V(t) dt';c 3 J

T
= yE f S (t) Q(t) dt = 'E S 1  j 1, 2,....

(2. 19)

17



E{V /H} I E{ f VyE S.(t) + w t) + nt (t) d

s /E ft S t2p() t=(.0
0

j =1,2,3,... ,M

also

T 2
Var{V /H. - E{[ f [w(t)+n (~(t)t dt] -

0

T T
-E{ f flw(t)+n (t) I [W (T) +n(T (t p()dd-

0 0C

N T T
0 -~ + f f K (t-T) p(t)q),(T) dt d-, (2. 21)

and

T 2
VariV /H.; E{[ f [w(t)4-n (h (t)dt]

0c 2

T T
-E( f f [w (t) +nl (t) I 1w (i) +nc (r) Iy 2 (t); 2 ()dt d--

0 0

N T T

2 -+f f K c(t- r) ',2 (t) 2 (T)dtd7 (2.22)

In Appendix A we demonstrate that

118



-~ ~~~~~~~ -* T. .--. . m--' -I -

T T

00

= TT
f f K (t-T)()d dT CF2 (A. 7)
0 0 c 1P2 (t) p2 (Tcd

* so that Vc and V conditioned on H. have identical variances.-.-

Observe also that

Ej[V -E{V /H.} [V -E{V /H }]/H.c c j s s

T T
- f Ef [w(t)+n c(t)Lp1 (t)dt f 1w(T) +n c(T) P(T)d:

T T N
- (fo -22 (t-:)'Pl(t) j2 (T)dt dT

T T
+ f f K (t--r-c(223

0 0 c )p 1 (t) q2 (dtdr2.3

We can observe that the first double integral in Eq. 2.23

is zero, so that

[V ErC /H EI /H~ ],

TT

K-t-) (-)d d- -~2 (2.24)

We demonstrate in Appendix A that in generalisntzr
1,2

so that V and V conditioned on H may not be uncorrelated.
C SJ

19



However we are still able to express the joint probability

density function of Vand V5 by using the general form [Ref.

51 of an N-dimensional Gaussian random vector X, namely,

* (X) =expj--(X-_m )T A- (X-m) (2.25)
( 21T N/2 ~/2 2 x -x -- xj~r~) IAI'

where

m =EfX} (2.26)-x

and

A =EJ(X -mx)(X _m )T (2.27)

In our case, we have a 2-dimensional problem in which (see

* Eqs. 2.19 and 2.20),

111 j '1 12,...M . 2.28)

and

2 2

x [ 1 NoJ(2.29)

so thlat

2 2 *2k2.30)

11. is sirnTJie to snc,v:

20
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-P

N(2 C 2
A 1  , (2.31)
x NT

Thus

(V v/H. = 1 exp [V VEcSj IT

2 1( 3 1

[2 A2,-.E•J(2. 32)
22u N

c'Vs/H 'V/j(-2" /A.2A ES j"

1, 2 ' "-"2-

with 1,2,...,

Now we need to obtain from this probability density function the

joint probability density function of V and n conditioned on H,.

This type of transformation [Ref. 6] is well known and can be

used here to obtain * -

-° 2 / V -2- + (cV Co s 2Si /

V,7/H. Vc. 
Js

+ VPj -V Cos n -V SinM/H v 0, (2. 3)

Using the probability density function of Vc and v (En. 2.32,

yields

(V ,n/HH) (V pt-f [ 'Cos,-v ESi1 ]1Ea Sb1Cosr vl 11

PV, r-/H i c' b a ..

(2-)S baJVSn'--vEj 2

+ J V ,v sl a-Vcina/Hj), V 0, (2.33)
2 L-VSinn,-vESJ Lb aJLVSin,-l'~ 2

21
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and

N0 2a -2+ CTc UA(2. 34)

12/ (2. 35)

This probability density funct-ion can be expressed in the form

- V 1 - 2

PV n/H (Vn/ exp{-[a (vCos j+ /ES j

j 2

+ a (V Sin ri vES.2

-2b (V Sin n-IES 2 (V Cos n -/ES.)

'/(j 2 ji+aVnnES)

- ~ ~ x 2bVSi4a/S2  (V Cos nl + V ES.) 2 (226

(2 -T2

2b (VE( Sin n + / S)( Cos n + ES S.]1 (2.361r

and r ha the exponential of the second term simplifies to

22

a ~~~~~ ~ ~ ~ ~ 6V SCs+SSn-]2( i o

............

.. .. . .. .E S S n , o E 2 -7



a(V2 +E +2Vi/E(sjl Cos n+Sj2 Sinn)] 2b[V Sin nCos n

+ Vv/E(S. 1 Sinn +Sj Cos n) + ES. 1lSj 2 ] (2. 38)

We can now group certain terms together. Observe from Eq. 2.8,

Eq. 2.9 and Eq. 2.10 that

1 CsnS.Sinn =Cos e. Cos r)-Sin 6. Sin n

-Cos (6. +n) (2.39)

also

S. 1 Sinn +S. 2 Cos n =Cos 8.Sin r) Sine. Cos

-Sin 5r -. (2.40)

for j 1,2,... ,M, so from Eq. 2.36 we have

P (,7/HV_ exp{-!ta [V2 +E-2VV'ECos(.-'j

2
2b (V Sijn Cos T-, Vv'ESin (n-i. -E Cos Sin

V .1 2+ exp',-~-[a [V +E+2vECos(±+f
22

(2 _) 2:

2
-2b[V Sin -Cos -+ VvESin-)-E Cos9 SinV (2.41)

for V ~'0 and 0 r

Since

Cos).-) - Cos(- ±'a-)2.42)

23



and

S in ri el Sin (n -6 + Tr) (2.43)

we have

V 1 2
P (V, n/H. 2 [exp{-lja[V +E-2VY/ECos(4.1)

V~V/ (2nT) A -

2
-2b[V Sin rjCos r- Vv/ESin(n-8 )-ECos e Sin e.l

1 2 2+ exp;_- -a[V +E-2Vv'ECos(;2.+n+r)] -2b[V Sin -Cos

~VYESin(n-- +)-E CoSe Sine.]} (2.44)

for V > 0 and 0 < _i

it is apparent from the range of ni that the two exponential

terms can be replaced by a single term with n~ ranqing from 0

to 2-.

Thus, we have

P (V,-,/H ) expl- I [a[V 2+E-2VY'ECos(-.+'i22

-2b[V
2 Sin~ Cos -- VY ESin n>-E CosY Sins 2.43)

-or 7 0 and 0 2-. The probability density function of

conditioned on H. sotie via integration of P,~ 7 .

namely,

24



V, Vn//)d

Returning to our decision rule, (Eq. 2.14) , recall that we

decide bajed on which

Z! V Cos (8.+n i =1,2 ...... 1 (2.14)

is largest.

So, if H. is the true hypothesis, then a correct decision

is made if

V VCos 5+) v VCos (5+j); i 1 ,2,...m (2.47)

Since Cos x is maximum when 'x is minimum, we see that if

H. is the true hypothesis, a correct decision is made if

-1. +7 + 1,2 ,...,M (2.48)

Now from Eq. 2.9 we know that,

0~~2 -. =2(j-1),/M

So Eq. 2.54 is satisfied for inl the region

0+

*Thus, the ?Drobabilit-v of makina a correct decision, iven that

H. is the true hvcothesis, Pr-c H-. is ;iven b".
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.'.~-'.-.---- 
_T .. F7..> K. -

IT

Pr{c/H. = fnHd (.0
IT (n/)d 2.0

If we make the variable change

= j + _e(2.51)

Then Eq. 2.50 becomes

7T/M
Pr{c/H. f P (3-8 /H )ds (2.52)

Now from Eq. 2.45 and Eq. 2.46 we have

P n/.)f V . . 2
n/H 2 exp(i--[a[V +E-2VvE Cos (+

J 0 ~ (27r

2
2b (V Sin nCos n-VvESil(neV-E Cos Sinfe ]VdV (2.53)

0 < < 2<

so that

1 2
p (3~)/H. f Vx a[ +-V o

* n/Ha ~~~0 V'(2, 21 ,\ -- aV 4E2~~S

b[ i2H- 2, ~n -,-- i dV (2.54)
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and Eq. 2.52 now becomes

Tr/M V
Pr~/H fexp{-[~aV +E-2VViECosa

22

-b[V Sin 2(a-6.)-2VVESin(a-2 e.-E Sin 26.I dV dB (2.55)

Since the hypotheses have been assumed to be equally likely,

we have

M

M ~c Prfc/H 1 (2.56)
j=2.

so that

P Pr4'c:.

M ~Tr/M (V
Z ~ < /~ exp{-~-[a[ +E

J2 7

(2. 57)

observe that if colored noise is not present, then from Equations

2.24, 2.30 and 2.35, A (N 0 /2) 2and b = 0, so that Eq. 2.57

simplifies to the well-known expression for the performance of

the M-PSK receiver operating in the presence of additive ';CU.

That is,

27



7T/M V1o 2
P = - f 2 N/2xp

-e/M 0 0. '.-

- 2V/E Cos 8+E] }dV d (2.58)

where in Eq. 2.57, the dependence on the index j disappears

when b = 0. While Eq. 2.57 yields a mathematical result on

the performance on the M-PSK receiver in the presence of

WGN and colored noise jamming, its further analysis represents

a separate project in itself. Not only must Eq. 2.57 be

* optimized for energy constrained jamming but also it must be

evaluated when the jamming spectrum takes on some simple forms.

For this reason, no effort has been made to further develop

the above results.

28

-- • *, ,



III. COLORED NOISE INTERFERENCE IN COHERENT M-ARY
FREQUENCY SHIFT KEYED MODULATED SYSTEMS

A. SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE

The structure of the demodulator whose performance is

to be analyzed is shown in Fig. 3.1. This receiver is

known to be optimum for deciding with minimum probability of

error, which one of M different signals forming an orthogonal, -'-.

equal energy set received in additive white Gaussian noise was

actually transmitted. The problem analyzed here, can be

stated as follows: A waveform r(t), received in the interval

(0,T), contains one of the M signals, Si(t), i = 1,2,...,M,

with equal probability, as well as white Gaussian noise w(t)

of Power Spectral Density level N /2 and colored Gaussian noise

nc(t) having autocorrelation function Kc CT). The signals are

orthogonal with energy E. That is

= Si(t)S (t)dL = 0 (3.1)

The decision rule used by the receiver, is to choose S (t)
1

as the transmitted signal if G is a maximum, where

T
G r(t) Si (t) dt i = 1,2,... ,M . (3.2)

29
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While this is an optimum test (in minimum probability of error

sense) in the absence of the colored noise n (t), the analy-

sis of the next section is carried out in order to determine

the effect of nc (t) on the receiver performance. Since nc(t)

will typically be inserted in the channel by an unfriendly

jammer, it is reasonable to assume that n(t) and n (t) are 4

statistically independent random processes.

B. RECEIVER PERFORMANCE

Since Gi is the output of the ith correlator, and, condi-

tioned on any hypothesis, Gi is a Gaussian random variable,

we can obtain the appropriate conditional statistics that allow

determination of Pe namely the receiver error probability.

Thus

T
E .G/H i  = E{ f [Si(t)+w(t)+n (t)]S (t)dt_

0 
o -,c

T
- f S (t)S.(t)dt (3.3)
0

* and

T 2
arG /H = E [ It 1w(t)+d3(tI .3(t)dt]

00

TT .

-Etf) [w(t)+n(t)]1WCT,)+nC(T)]S.(t)S.(-)dtd-
00 J- -
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I VV,

ci TT N
Var G /H ~ f ff [- (t--[) + K (t--T)]S.(t) S.(T)dtdt .

N T T T
2 S.(t) S.(t) dt + f f K (t-T)S.(t)S (-c)dtd-,
2 00 CJ J

N TT

- ; f K (t-) S (t)S.(T)dt dT (3.4)

Def ine

T T
2 ~ f K (t-T) S (t) S.(T) dt dT (3. 5)
c00 c

so that

N

Va{.h} - (3.6)

Observe furthermore that

E 1[ 3 lAG3/Hi![G k E!G k/H} ]/H;

T T
E [(t)-4+n (t) S. (t) dt [w(:+n (7) I Sk(d-

o, c 0,

TT N T T
-(t-:)S. (tS(){d j (c i k tS(-dd

o 2 J~)k dt
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E{f[G-E{G./H i }1[G -E{Gk/H }I/H i }J . k k 1 1

N T TT
fo Sj (t)Sk(t)dt + ff K (t-T)S (t)Sk(T)dt dT0 00 .,..

N TT
2 0 jk + ff K (t-J) (t)Sk(T)dt dT (3.7)

As can be seen from Eq. 3.7, due to the presence of the colored
noise, the random variables -{G/Hi} are not uncorrelated.

However we will show that for MFSK with signal frequencies

that are sufficiently separated, the integral

V TT
f Kc (t-r)S (t)Sk(r)dt dz (3.8)

00 C S(),(.-

vanishes for j 4 k, so that the random variables are indeed

uncorrelated.

Thus, conditioned on Hi . the G. are statistically indepen-

dent. Assume now that S (t) is transmitted and G. = x. Then

the conditional probability of a correct decision, Pr.c/H i .

G, =x. becomes

33

, : ,_ , -- ~~~~~~~. ..-.. .. . . . -. . ... . . .. .. . . " -. . . . .. . . . . . . . . . . . . . . . . . . . . - .. . . . . .. - . . .-.. .- . . -. ..



P{c/Hi,G i =x} P{G1 <x,...,Gi 1 <x,Gi+ 1 <x,...,GM <x/Hi,G i =x}

TI PG k <x/Hi,G i =X}
k=l 1..

k/i

M x N S23.9)f - exp _y2/2(t-2+ c, k (3.9

k=l -co N 2 C

k/i 27T( 2 E+4--c.)

Introducing a change of variable,

N
Z = Y/ + 2

2 c,k

we have

N
M 2 ck 22

Plc/Hi,G. =x} F -Z d 31- 2
1 1 k=. --eO /2 dz (3.-

k= v~ 27
k/4i

Now, since

EiG./H i} ( 3.3)

and

VarG ./H +2
i i 2 + c k

we have that

34
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12 N02P{cIH. J P{c/H.G.-x} ---exp{-x-E) /2(+c ):dx

2F" C, I

so that using Eq. 3.11, we obtain

M0 2 c,k2

1 2 N /
N epl-x-E e2-~o~ dx3.2

NiN

Si CteACs w +C-(M1) /2A) 0-2~ < t < (3.13)

= t os(, +IS t(t) (Ml /2 L=w t1,2t (3.14)

i 1, 2, ..



xq- -~ .- I -. -, -, ~ J ~ w F, 07, . ~ f

1 O~t<T-jwT/2Sin wT/2 -

pt) =-- P~w M Te T2(3.15)

0 otherwise

and S!(t) is just S (t) with <~ t <c Thus

F S! (t)p(t)} f 1 , (3.16)
-00c

where with

= 2i-(+)l( 7

we have

S -) A 3 + 3 (W+ (W +Wi)) (3.18)

for i 1,,.M

Thus

-j _T/2
FS(tn~) -- 7 Ai(-('. +~K'+. +~ Te Sin J/ d,

21c i c i T/'2

or~ covnene e

+ e (3.19
T/29



L~w) = jwT/2 Sin wT/2 (.0

wT/2

So that Eq. 3.79 becomes

F{S!(t)p(t)} F{S (t)} I Si (W)-

- A[L (w -LWi) + L (w+w +W.) (3. 21)

Let us examine now the correlation coefficient :,namely

T T

~ijf S (t)s (t)dt f ACos(w +W)tACos(. +- )t dt

A 2 T rSin(wi-w )T Sin(2w +W.+W.)T1
)T + (2 C (3.22)

If we assume that c T >> 7, then the second term in Eq. 3.22

vanishes and we have

T 2
0 S.(t)S.(t)dt A AT Sin(i-j)1-T (323)

- 1 2' (i-j) 1.,T

In order to have orthogonal signals we need at least I

or equivalently -/.= T. Normally, we will have

=k-/T (3.24)



where k is a large integer, so that p, 0 for i ~ . Thus,

from Eq. 3.23 and Eq. 3.24,

2
STA ~= T/2 i j

= f S (t)s (t)dt =(3.25)

0 i j 4

2From Eq. 3.5 it appears however that the term a

independent of i. Nevertheless Eq. 3.12 becomes

M c 2
P -.c/H. = fL ~ eZ ~dz

k34i

1~~ 0x- x s 2

ex/2p-:+ /2 --C, x :)I (3.26)

Let

N (3.271)

2~ c,i

Then

x + 'V 0 (3.28)

So that Eq. 3.26 becomes



No 2 N

0M ci 2ck2
P~c/H} = 1 -z /2 -PcHl f a f -e dz

2

-- r /2 dp (3.29)

Finally,

Picj = c/M (3. 30)

* or equiv~alently

22

DO )G-Ej 2 CG -E H2

kN N T 2

and mut secuson te becomesevefomE. . ta

0

E G G /H [G E-,G/H3/



ff K(t-T) S (t) Sk (r) dtdT c (-) S!(t)S (T) dt dT

0~~ 0 -°.-O °

L

0 ff K (t-.t

__ Sc(w)s' i-wi;(I .-:% - f S W -)S W w(3.32) '

It has been shown in Appendix B that S!(-w) and S,'() are

essentially frequey. cy disjoint, therefore Eq. 3.32 is zero

for j € k. For j = k, we have (using Eq. 3.21)

-2 ( ) iSk(, ) 12d.,-

00

U2 k 1 f Sc M.... d

= A2 " - f S c (w) IL(w-wc-wk) + L(w+ c +u k) 12 dw (3. 33)"

If we define

I 2 f S() ) + L(w+w+W+k) 2 dw (3.34)
-_00

k = 1,2,...,m

2
then, with z A T/2 (Eq. 3.25)

2 = k = 1,2,. . M (3.35)
~~c,k .. .

Thus from Eq. 3.31
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N

22 -neI 2*P{c} f II erfc*, ~ e' dan (3.36)
k-- -~k1 ( ,r2-,k

so that

0~

1 1 2

e .1 f f erfc, e-/ dn (3. 37)
e 1 = 1 k -k 1 / 2 -7

Observe that

Z+,l 0-+ci. n &+E2+Ii
________(3. 38)

o 1+21 SNR
2- +~k 1I+21! SNR

1 N

Where /No SNR and V' -s ith channel JSR.

Then

-SNR

m M(f+ 0. 5+1! SNR2

k~~i + 2 1! SNP.V
S

Consider now the following colored noise power spectral

density,

41



M
Sw M 2TTK [ 6(w+w +w.) + 6 (w-w&-w.) (3.40)

cC c

Thus, the colored noise consists of equally weighted "tones"

at the signal frequencies. Therefore, Eq. 3.34 becomes

00 M
T2

k 2T f 27K 7 (+w +w.)+ 6(u)-w -W Luj -k+ (w )duk 2T7 c 1 c wi)] ILww-k+~~ c+)d

= M2+ 2
TK [ILC-2wc-wk-w.) +L(wk-wi)l IL~w.-wk)9 +L(2w+a.k+w.) (3.41)

Since wc is typically large, we can justify the statement that

the terms involving 2wc are negligible small, so that,

M22

k~ ~ (wk-wi) I + ILwi-u )

i2~~~~~, M S n((j Wk)T/

-2TK 2 wiw 2TK /Snw-kT/2 2i~l =l -ik/

~i-wk) T/

-2TK (i-k) ''T/2 (3. 42)

With >T2=M7 where m is large, we have

= 2TK for i k (3.43)

We can impose a constraint that
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P f~c S U(w K f 1 16 (w+w.)+ 6(uw ww)Idw

-2KM (3. 44)

Then

K =P ./2M (3. 45)
n]j

and

Pn. TP n
I MT (3. 46)

Furthermore

I' - TPn(34)
k n 3.3

and since

TPn jammer energy and

E signal energy,

this implies that TP ./c JSR. We have therefore that
nj

Eq. 3.39 becomes

_______ M-1
l M 00+J e

1/r SNR 1 2

-1- jIlerfc 0 5+JSR dN/~ - (3.47)
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Observe that for JSR =0, Eq. 3.47 is identical to the well-

known formula for the performance of the receiver of Fig. 3.1

under MFSI( modulation.
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IV. NON-COHERENT BINARY FREQUENCY SHIFT KEYED
SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE

A. THE QUADRATURE RECEIVER, EQUIVALENT FORMS AND RECEIVER

PERFORMANCE IN THE PRESENCE OF WHITE GAUSSIAN NOISE -"".

In this section, a short presentation of the basic princi-

ples of statistical communication theory that lead to the design

of the well-known quadrature receiver is undertaken. Basic

results that are useful in the sequel are presented only, since

the details have been worked out in numerous textbooks (see

[Ref. 7] for example).

Consider a binary digital communication system model in -"

which one of two signals, S0 (t) or Sl(t), with energy E0 and

E1 , respectively, is received in the time interval (0,T). At

the receiver, white Gaussian noise with zero mean and spectral

density No/2 is added to the signal. The actual received

signal r(t) takes on one of the two forms, namely

r(t) = ,Ei  S.(t) + n(t) 0 < t < T, i = 0,1 (4.1)

The likelihood ratio test which operates on r(t) in order to

choose which one of the two hypotheses is believed to be

the true one, namely

H.: r(t) = E. Si(t) + n(t), 0 t T, (4.2)

i = 0,1
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is"--..

1 T 2 "-'---
exp{- f Cr(t) vFS (t) }dt0 0 > '

A(r(t)) 14. 3)T 2 (43exp - f [ r(t) - So S (t) I dt ""'
000 0

where is a threshold whose value depends on the decision

criteria used. This test can be applied to any communication

problem involving transmission of known signals S0 (t) and Sl(t).

One such example is the well-known BFSK modulation scheme.

-ne :rol'em of interest, which is a slight modification of

SFSK modulation problems, involves signals

- , A Sin()it+,i) i =0, (4.4)

0 <t < T

where the phases i' = 0,1 are statistically independent

random variables, uniformly distributed over the interval

(0,2-), and the amplitudes A are known and equal. It turns

out that the test specified by Eq. 4.3 can be modified to

account for the random phases D by using conditional proba-

bility densities.

The details of the procedure have been worked out in Reference

8. It can be shown that when the signals are given by Eq. 4.4,

the test of Eq. 4.3 becomes

=I~ (2Aql/N) . (4..
(r(t)) 1 0o(2Aqo/ N o )  (4.5) . .

(2Aq IN

0 0 0

46
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where

2
2 f r(t)Sin ktdt + r (t) Cos wktdt k= 0,1  (4.6)1k0 0 .,...

and Io(-) is the modified Bessel function, defined by
0

2-n0 = (n!)2 of eXC(s(n+!)da (4.7)

For minimum error probability decision criterion, the decision

rule of Eq. 4.5 assuming equal prior probability of trans-

mitting S0 (t) or S1 (t), is to choose H1 if

I (2Aql/No ) > I (2Aqo/No ) (4.8)

or equivalently, to choose H1 if

2 2
q - q.,.'-

Otherwise H is chosen. (Observe that I X) is a monotonically
0 0

increasing function.)

The receiver structure that implements the test of Ea.

4.8 is shown in Fig. 4.1. Another (equivalent) form of the

receiver of Fig. 4.1 is shown in Fig. 4.2, involving a combina-

tion of matched filters and the envelope detectors. The '" '

47
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.)'dt ~ UA E

*I A

I"So

Figure 4. 1. Quadrature receiver

0ac Is_ C - O
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receiver of Fig. 4.2 is completely equivalent to the receiver

of Fig. 4.1.

The evaluation of the performance of the receiver has been

worked out in Reference 9 and is given by

1 -E/2No

P e= E/2N 0 (4.9)

2where E = A T/2 is the average signal energy. If we now

define the signal to noise ratio, (SNR) as

SNR E/N o

we obtain the simple result

P e - exp{- SNR/2} (4.10)

B. RECEIVER PERFORMANCE IN THE PRESENCE OF COLORED NOISE

The receiver presented in Section A is optimum in minimum

probability of error sense when operating in a white Gaussian

noise interference environment. In this section we analyze the

vulnerability (probability of error) of the quadrature receiver

in the presence of an additional additive nQise that is modeled

as colored and Gaussian, having autocorrelation function

K C(:). (We denote n c(t) as this additional colored noise).

The problem can then be restated as follows. Under

hypotheses H., i = 0,1, r(t) takes on the form

49
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H r (t) S.(t) + w (t) + fl (t) i 0,1 (4.11)
0 t <T

where

S (t) = v'E S! (t) =A Sin(wit +,) i =0,1 (4.12)

In order to determine the effect of n (t) on the receiver
C

probability of error, we evaluate the statistics of the random

2
variables qk k 0,1, where, as defined by Eq. 4.6, -

2 ~ fr~n kdl dt~~ (4.6)

k 0,1

Thus, conditioned on H., i =0,1

2 FT2
q [f [s (t) 4-w(t) + n (t) Sin wkt dt]

+ [T2

x2 + Yi2 i = 0, k =0O,1 (4.13)

Observe first that the integral
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T T
f S.(t) Sin w tadt = f ASjn(wt+ .)Sin w tdt

0 1k0 1k

ATSin(wi-wk)T/2 CO[.+
AT (wk T/2( lWk)T/2 +~~

2 (W.4W )T/2 1
i k

(W +wk)T/2  Cos[(W i +-k )T/2 + il i = 0, (4.14)
k =0,1

If we now assume that

(W-W )T =2m7r and (W +W T 2.'-,r (4.15)

we have that Sin~w +W )T/2 =0, for i =0,1, k 0,1; Thusi k

T AT Sin(wi-wk)T/2

f~ S (t)Si-n uktdt - ~ ~~T2 Cos[(wi-tw.i.T/2 +~Li (4. 16)

i 0,1 k=0,1

where

I1 if i =k

(4. 17)
0i if i k

* By arguments similar to the above,

S(T)s= AT Sin(w.-,)/
0 (tCo -,..-ktdt Sin[ -- k )T/ 2 +: (4.18)i 2 1w.,,kT/ i k

i = 0, k = 0,



Now conditioned on .,i =0,1, the Xi and Yi are Gaussian

*random variables, so it is possible to obtain the conditional

Iprobability density function of q k =0,1. Thus

T
E{X ik /H ci} 0 f S i(t)Sin wk tdt i =0,1 k =0,1 (4.19)

and

Var ,XkH, il E E f (w(t)-4n (t))Sin '-uktdt]2

T T
E jf t EWw + n (t) w((T Si -ktSin -dtd-,C c )Snu

T N 2TT

2 J Sin k tdt +ff K C(t-T) Si kSin JkTdtd-,
0 00 ~ 1At

+ 27 i=0,1, k 0,1 (4.20)
w 'c,k

-where, assuming that 2-. T >> 1
k

N T N T
2 0 2 _ 0 k 01(.)

w 2 ~Sin kt dt 4- ' (.1

and

I~ T
*2K(t--)Sin kt Sin 7dt d- k =0,1 (4.22)

c,k 60 Ckk

52



* Similarly

EfY ik /H2.o f 0 2. (t) Cosw ktdt i =0,1 k =0,1 (4.23)

and

T 2 TT
Var(Yk/4) f -~Csctdt + f f K (t-u) CosutCo Ljdd-

0 f 2 o k 0 0 C

A~ 2 2
uw +E a k 0,1 i 0,1 (4.24)

since it can be demonstrated that

T T T T -

*fK (t-L) Sin ckt Sin -ok dtdT f ff K (t-"i)Cs ut Cos fTdtdT (4.25)
6bc 00 ad

k =0,1

Finally

* E [x -E XikH~~n [YikE(Y /ii /Hil:

T T

= W(t) nr (t)IS in tdt i W(j r :I Cos d -

T N TT

~o ~dt+ K (t-i Sin ~t Cos qdt d-4.)
0 O

i =0,1 k=0,1
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It can be shown that these two integrals are zero so that

Xi and k are conditionally uncorrelated, and therefore

independent since they are Gaussian random variables. Now

define

q k 0,1 (4. 27)

and

2 2 2
Gow + a k 0,1 (4.28)

so that the conditional density functions for q~, k 0,1 are,

p(q/Ho (D u(~u~~ (4. 29)

0 0

where u(-) is the unit step function, and

= 2 2
00 0Oo 0'' 0 0, 010i

Using Eq. 4.16 and Eq. 4.18, we have

- AT 2 AT 2 AT 2 (.0
_ (-Cos ~ + (-Sin ( -) (.0

00 2 02 0 2

Also

S(q'+ j '

0 0 0
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where

xi, 0  E 2 {X1 , 0/H, Ol} + 2 {Y1 ,0/H1 , 1 } = 0 (4.32)

due to the result of Eqs. 4.16, 4.17 and 4.18 for i k.

Therefore

1 , 2"?
p(qo/Hl,,)= - exp{- qo/2y }U(q ) (4.33)

07 00

Furthermore

1 x) (qi+A~ 6,1)
= - 2 Io u(q{) (4.34)

2a 2i al /

where again due to Eqs. 4.16, 4.17 and 4.18,

E22 {X 2""""
A0,1l E , X O/HofI} + E {Y 0,1 /HIi } = 0 (4.35)

so that

P(q=/Ho,o I expi-q!/2{21u(qi) ( 36)

Finally

P (qij 2jj1  I u(qi) (4.37)
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EX(X / + E {Y11 /Hp 1  2 (4.38)

{11 /H01 } 2

We now have the statistical information needed to compute the

probability of receiver error Pe Assuming that each hypothe-

sis has equal prior probability, we have

p = P (q, > 01HU + pfql qo < 0/Hl (4.39)
e 27 q0  0~2~l o

Observe that

000

where

P{ql >q 0 /H 0,qo =p} f P(q1 /H0 )dq1  (4.41)

Since the conditional probabilities functions are not

dependent on the individual phases, that is

P(q 1 /H) i PNq /H ,-l ) i =0, (4.42)

and

P(q /H) = P(q /H.,;.) i = 0, (4.43)
00 11
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we can rewrite the conditional probability functions in

the following formi

a 00a

222 q /T/2 + q ) u q)

-~exp{ q (/2a(}u(%) (4.44)
2c a

0

2

- exp- q /2a }u (q,) (4.46)
CF

22qP(q /H141)

- 2 2a1  0 2

Thus

P q- .0/H } fP(q /H-i)dq IP (2/H )dc (4.48)
L0 lo %
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Similarly

P{q 1-%o<0/Hl} f P q, <%q/Hl,%=p p(p/til) dp (4. 49)

where

P {ql cq 0 /H 1 1,qp} f P(q1/Hl) dql (4.50) -

so that

P~q1-%<0/Hf = p(q /H )dql p (p/H )dp (4. 51)

Using now Eq. 4.44 and Eq. 4.46 we have

.- q f/ 2-H ) S(A) j22a Ju1 )d 1]/2\ u(Q/)d,- (.,2

For convenience, let =AT/2 and,recalling u(,D) = ,c 0

Eq. 4.52 becomes
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000

Letting

2 2

2 2 += 2 2 (4.54)
2r 2 a 2 a 2ya

1 0 o1

so that

2 2 2/ 2 2) Cr(4. 55
T~ o 10

we have

/20~ -2  E /2a0  ~iTd

P~ql-q > O/H0} f ex{- 2 2a2 T~2 e0 %/2 0 -(T dc,/(456

whereT 0 2,,a

0 aT/

Now~~~ th inega itefyed0,snei steitga

of22 aO prbailt dest f +nctin Therefore

T -F /2( 0 a/20Te- T 1 (110dp ( .56

2 e e59

---------------- 2 .N. -

0. a mr7~& ~ .



, 4
2 22, 2 ,,.:-

aT 2 e
P {q,-% >0/'HO  - exp - 2Ll: Oo~C 202 2 T

,.-'" ,

2 2o
o 2

Texp 2- 1 T (4.58) '
-7ex2 -7 i

a 0 2 0  1o 1.. '0

Similarly for Eq. 4.51

AT " 2 2 AT
0 p ql(( ql (l) 112oP~ql-qO <01/11 } = f f ~ e  o q -,.

u q) qI  (4.59)

Observing first, the quantity in brackets can be expressed as

2 2 2

Dq -(T2 q -)(/2- +q- 21""..."-oc

oq +(A 21AT
1- f -- e I - u(ql)dql (4.60)

ID C1  0l

Letting

% 4

AT/2o1  (4. 61)

and making a change of variable

x ql/,- ( 4.62)"-[--
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we have that Eg. 4.60 becomes

00 -(x +at2)2

x e(at x) u(x) dx 1Q (a±, P/a(463
f 0.

where Q,)is the well-known Marcum Q function [Ref. 10].

Therefore Eq. 4.59 becomes

2 2
P~q 1 %(0/1} f~lQ(~L 1 .~..) 1 -9  P /2a 0

r 22

0 a, ala
0

TA,0 2 2 F

2 2

2Y 2 2

0 1 1

2 2 )
0T2

1- ' 2 +ex (7/)~(.5

16

+> - 2 2 Q 0



'.AA ~V7 7 T ~ 7 -

Thus Eq. 4.59 becomes

P{ql-qo</1 1 } a 0(AT/2) (4.66)

Now using Eq. 4.58 and Eq. 4.59 in Eq. 4.39, we have that

2 F 2- 22 aa Gl2
1e lT~ (AT/2) 'T +l 0~a ~ AT/2)2

a2 oa 0oJ0J o+ 1 f2707 )

Recalling that E AT/2, using Eq. 4.55, we have

1p
2

P exp 2(~+~ (4.67)

2 2c"+
00

must maximize a +a7 subject to some constraint on the colored

noise power. By Eq. 4.20

2 2 2 2 2 2+ +a +a +0 w c,o w c,l

2 2 22 +a~ + ad(4.68)

where
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2 2 T T
a +I~ Cy f f K (t-Cos wT+ Cos wTdt dT

00 C0 0

T T
+ f f K c(t-T) COS W t Cos W rdt d T (4.69)

00 C

As an example, consider the case where the power spectral

density of the jammner is

Sc (W) = 7 [6(W-W.) + 6(w+W.)]

Under this assumption it has been shown in Appendix C, that

Eq. 4.69 becomes

2 p rSin(w -w.)T/2 )2 + Sin(w -W )T/2 21
Z~ 01 -. )/2 ) '()j (4.70)
C'o ~l 4 (W - T/2(W -W T/2

where wiand Pc are the frequency and the power of the jammi~ng

waveform, respectively. It has also been demonstrated in -

Appendix C that Eq. 4.70 is maximum at U)*= or wj = 'so
0

that

2 TZfISin(wl w )T/2 2 1
(1O~~,l) - lo+ 11 (4. 71)

C. o\(w 2.-4 0 )T/2

and Eq. 4.68 now becomes
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r~ T2
NT P 2 rSin(w -W )T/2\

2 2 1 0 i ~-a +- CF 2-~- +1 (4.72)
0 1 4 ~ 4 w,,..T

Thus Eq. 4.67 becomes i

1~ -x~~ A2T /4

e2 2
P T + i (w -w)T/2\2

_1 0

N + 1 +2 /4-~ex 10 T 2[ Si(W-w)T/22

A 2-T)T/2

2 T2 2 Sin (w w T/2 21 }(.3
JS[1 + c +_____

0

tonie ai an jamn top sinl ratio respctiely

Obsre that wit 2S T// 0,d Eq. 4.7 become id/)rpencal nto

Eq. 4.10. This result is appealing because for the case of

no jamming, the receiver performance should be identical to that

of a receiver operating in white Gaussian noise interference

only.
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C. RECEIVER PERFORMANCE IN THE PRESENCE OF WHITE GAUSSIAN
NOISE UNDER SINGLE CHANNEL OPERATION

In Section B, we have analyzed the performance of the

quadrature receiver in the presence of white and colored , .. .%.'

Gaussian noise. Results were specifically obtained when the

colored noise interference was a single frequency jammer. Sup-

pose now that the quadrature receiver experiences a single

frequency interference which corresponds to one of the signal

frequencies, say wO. Since the receiver makes binary decisions

based on whether ql > qo or vice versa, the presence of the

interference at frequency w will cause qo to be greater than

q_ most of the time creating decision errors nearly 50% of the

time.

In order to prevent this type of situation from arising,-

the receiver can turn off the affected channel, or equivalently,

make decisions based only on the output of the other channel,

that is, based only on the size of ql. In this section the

performance of the quadrature receiver is analyzed assuming

white Gaussian noise only interference, and that decisions based

on only one channel output are made.

Assuming that the receiver bases decisions only or the

size of ql, the decision rule now becomes

ql < (4. 74)

H
0

Recall from E. 4.6 that,
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q2- [fr(t)Sin wtdtl 2 + f]r()CsU d (4.6)

k =0,1

A 2 2(4 )
=Xk +Yk (.5

The probability of error is -

P e = ql >y(/H 0 P{H0 } + P{ql <-y/H 1 }P{Hll (4.76)

and assuming that P{H I P( = 1/2 then Eq. 4.76 becomes

P P {ql > y/H0  + P P{ql (/Hl 4.7

The information bearing signals are

/ES.i(t) =A sin(wit +cV) i =0,1 (4.4) r

0 KtT

and in Section B we found that

2 2
=q/ -e (4.46)

2(q 1 /H 0) 2
00

and

2 2 2
P~1/ 1) =q 1  -- +q )/2- q

1 1 4. 7
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where E AT/2 and

2 2 N (4.21
a r (4.211 w4

Thus, from Eqs. 4.19, 4.46, and 4.47, we obtain

2 2

q2 )/2a2

a 1  '1

ca be don by olin d d' =0ee

2 2 222
_q 1F r-)/(i /2qlEc+: /2

f 1--- e 1(. +-( uT('~q )u(.r78

22

*l 1

srehee that soao dreshl of 0y yield anw imlii soluinfo

nlamly,athehl thtmnmzsPesol becoe.Ti

can e doe bysoling P /dt-0
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2 2
IY~\ = e /2ai 4 0

Ye

Suppose now that yois the solution of Eq. 4.80 for a given

value of z and a2 Then

2 2
1 c q1 -q1/2a1

e P e u (ql)dq,e 2

Y 2 2 2

f+1 e- 1 1i/a I( 1 ) u q dql (4. 81)
21 0

Letting y q1/al, Eq. 4.81 becomes

2 21 &2 2
- I- -' U0-2 +y

P e+I11 f y e 1 I(y( )dy1
e 2 ,

1 1 0 1 1482
-~+e - Q(s/a1,fl/ 1) 4 2

Observe that

22 2
_ (AT/2) _A T SN(483

2 -2N T/4 -2N

2 jl 0o

so that defining
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=T /= (4.84)'YTH Y o "" '

we have

Y.. Y E

o TH - /2SNR (4.85)
01 UTH

so that the threshold setting equation (Eq. 4.80) becomes

SNR .'.
10 (TH (2SNR)) = e (4.86)

and Eq. 4.82 simplifies to

e 2 2{ 2YTH( 2 SNR) -Q (/2SNR,-(T(/2SNR) (4.87)

The receiver performance indicated by Eq. 4.87 is compared to

that of an incoherent BFSK receiver that utilizes both channels

for its decisions. (See. Eq. 4.10.) The result of this

comparison is presented in Chapter V.

D. RECEIVER PERFORMANCE IN THE PRESENCE OF COLORED NOISE

UNDER SINGLE CHANNEL OPERATION

In this section, we analyze the performance of the quadra-

ture receiver under the assumption of single channel operation,

as described in the previous section. Here however, it is

additionally assumed that a jamming signal is present, whose

energy is concentrated around the frequency 0* (Observe that

... 
.-

9..



the channel whose output is qo has a passband around w Thus0 0

a jammer concentrating its energy around w would significantly

affect the output q0  Consequently, turning off or ignoring

q would make sense under these circumstances. Hence, the -

single channel operation being considered here.)

Our decision rule continues to be 4

H
>

ql < Y (4.74)

H
0

and

P 1 P ql >  1/Ho +  q, < -/H1 (4.77)

e 2 1 >~H P~ 1 </~

Observe that due to the presence of a jammer

2 2 2:,-2J 2 + 2 (4.28)
1 w C'l

where

TT K (t-Tc)Sin w t Sin 1l:dt dT (4.20)

00

As shown in Appendix C,

2 T 2 (Sin(,.-,, )T/2 2-- C --3 '-(-.12

'C,1 4 ( 3-i )T/2
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when the jamimer is concentrated at frequency w. with
J*

W. =W, Eq. C.12 becomes

T 2
2 T Sin(w -w )T/2 ]2

0
c,1 -L (w-wT/2(4.88)

so that the probability of error is

2

2 A T/2N

02 .2 P CT 2 S Sin (w -W )T/2 12
w c,1 1 A C T/2 0 1

f 2T N0  (-w-wl)T/2 j
A T/2 0i

2SNR12(90

JSRSNR WO J
Defining

00

SSQ L~- 1  2(4.91)

we have
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V-~~~ V- 76 1Z-F

e T 2 { H( 1+JSR-SNR.SSQ)}

1 Q_2SNR 2SNR
2SR ~ 1THRSN~S (4. 92)

-+JSR"SNR-SSQ 'TH +JSR-SNRSSQ

Observe that with JSR = 0, Eq. 4.92 becomes identical to Eq.

4.87, as must be the case.

Furthermore if the frequency separation (wo-Wl) is such

that (wo-Wl)T/2 >> 1 or (w - l)T/2 = m7, where m is an integer

then, SSQ becomes very small or zero so that the effect

of the presence of the jamming is negligible. The numerical

results obtained from Eq. 4.92 are very similar to those

obtained from Eq. 4.87 as demonstrated in greater detail in

Chapter V.

Recall that the threshold is obtained from the solution of

Eq. 4.86, namely

SNRI(TH( 2 SNR)) = e (4. 86)

However if our goal is to set a threshold that minimizes P e

for the case being considered here, we can solve for an opti-

mum threshold setting by minimizing Eq. 4.92 with respect to

o r TH If this procedure is carried out, we obtain the threshold

setting equation

Io ( I (+JSR- SNR" SSQ = e 1p l+JSR-SNRSSQ
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While this result is intuitively appealing, a practical

problem arises in that in most cases, the receiver does not

know the operating JSR value, hence a threshold could not be

set.

Fortunately, computer evaluations carried out using both

Eq. 4.86 and Eq. 4.93 to set the threshold have demonstrated -

that the Pe resulting with thresholds set by Eqs. 4.86 and

4.93 are almost (and for all practical purposes) identical.

7 .,
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V. GRAPHICAL RESULTS

* A. GRAPHICAL RESULTS FOR COLORED NOISE INTERFERENCE IN
COHERENT M-ARY FREQUENCY SHIFT KEYED MODULATED SYSTEMS

In Chapter III, the performance of the MFSK receiver in

-; . . P

the presence of white and colo-red noise was derived. This

mathematical result is used now to evaluate and graphically

display receiver performance under the presence of white

noise only and under the presence of white and colored noise

interference.

Results are presented sequentially for values of M =2, 4,

I8, and 16 on the performance of the M-ary FSK receiver for

white noise as the only source of interference as well as for

various conditions of colqred noise powers in addition to the

normally present WGN interference. The performance results

for the M-ary FSK receiver presented in this section in terms

of the probability of error are shown as the SNR changesforL

* specified values of JSR. Some representative results are

summarized in Tables 5.1, 5.2, 5.3 and 5.4. Figures 5.1 through .

5.4 include the performance of the M-ary FSK receiver when the

transmitted signal is interfered by white noise only, namelr

*JSR 0. This makes it possible to evaluate the effect of the

jamming on the receiver in comparison to the case in which

WGN is the only source of interference. These results have

pecibeen obtained by evaluating Eq. 3.47.
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TABLE 5.1

PERFORMANCE OF 2-FSK RECEIVER

p P
e

-The Receiver SNR (DB)

________-10.0 -5.0 0.0 5.0 10.0

-JSR =0 0.3759 0.286-9 0.1586 0.0376 0.0008

JSR =0 db 0.3815 0.3120 0.2397 0.1917 0.1702

*JSR =5 db 0.3914 0.3454 0.3120 0.2959 0.2899

JSR =10 db 0.4115 0.3914 0.3815 0.3778 0.3765

JSR =15 db 0.4384 0.4327 0.4305 0.4298 0.4295
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TABLE 5.2

PERFORMANCE OF 4-FSK RECEIVER

4 e

The Receiver SNR (DB)

________-10.0 -5.0 0.0 5.0 10.0

pJSR =0 0.6223 0.5132 0.3222 0.0915 0.0022

JSR =0 db 0.6262 0.5313 0.3995 0.2804 0.2153

JSR =5 db 0.6326 0.5598 0.4861 0.4395 0.4194

JSR 10 db 0.6478 0.6082 0.5825 0.5712 0.5671

JSR =15 db 0.6734 0.6598 0.6538 0.6517 0.6510
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TABLE 5.3

PERFORM'ANCE OF 8-FSK RECEIVER

e
THE RECEIVER SNR (DB) ____

-10.0 -5.0 0.0 5.0 10.0

JSR =0 0.7778 0.6794 0.4755 0.1617 0.0048

JSR =0 db 0.7792 0.6885 0.5261 0.3246 0.1885

JSR =5 db 0.7820 0.7047 0.5958 0.4992 0.4471

JSR =10 db 0.7894 0.7384 0.6914 0.6648 0.6540

JSR =15 db 0.8056 0.7834 0.7709 0.7658 0.7641
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TABLE 5.4

PERFORMANCE OF 16-FSK RECEIVER

p

THE RECEIVER SNR (DB)

I________ -10.0 -5. 0 0.0 5.0 10.0

JSR =0 0.8715 0.7949 0.6083 0.2455 0.0093

JSR 0 db 0.8720 0.7987 0.6354 0.3621 0.1374

PJSR =5 db 0.8731 0.8062 0.6796 0.5174 0.4019

JSR 10 db 0.8763 0.8243 0.7556 0.7000 0 .67 33

JSR =15 db 0.8839 0.8553 0.8329 0.8217 0.8175
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M F SK (M=16) -
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Figure 5.4. Performance or tii-ary FSK for *,1 =16
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B. GRAPHICAL RESULTS FOR NON-COHERENT BINARY FREQUENCY
SHIFT KEYED SIGNAL DETECTION IN THE PRESENCE OF
COLORED NOISE

In Chapter IV, the performance of the quadrature receiver

operating in the presence of white and colored noise was

derived. The mathematical results are now used to evaluate

and graphically display receiver performance under various

conditions of signal and noise-powers.

First, results are presented for the case in which white

noise is the only source of interference. This yields the

well-known probability of error curves for the standard quadra-

ture receiver for non-coherent BFSK. These are presented in

Fig. 5.5, along with a corresponding plot of the probability of

error of the quadrtature receiver in which only one channel

output is used to make binary decisions.

Additionally, the performance of the quadrature receiver

operating in the presence of white and colored noise is evalu-

ated under dual channel and single channel operation. Under

single channel operation, it is assumed that the colored noise

jamming concentrates its energy around one of the FSK operating

frequencies, and that the receiver is able to make a determinis-

tic as to which "channel is being jammed" so that the outputs

of this channel are ignored in the process of making decisions.

Evaluations are carried out using receiver thresholds that are

dependent as well as independent of jamming power levels.

(Both cases are considered separately.) The performance of

the quadrature receiver in the presence of noise and the jamminc
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waveform described in this section in terms of the probability .'

of error is calculated as the SNR changes for specified values

of JSR. Some important results are summarized in Table 5.5

for JSR = 0 and in Tables 5.6-5.10 as JSR takes on values

of 0.0 db, 5.0 db, 10.0 db, 15.0 and 20.0 db, respectively.

In Figure 5.5 theperformance of the standard quadrature receiver

and the single channel operation of the quadrature receiver is

plotted when the transmitted signal is interfered by white

noise only. The theoretical performance of the standard

quadrature receiver is calculated from Equation 4.10, and the

performance of the quadrature receiver under single channel

operation is calculated from Equation 4.87.

In Figures 5.6-5.10, the performance of the standard

quadrature receiver and the quadrature receiver under single

channel operation with the threshold dependent as well as

independent of the jamming power level is plotted when the

transmitted signal is interfered by white noise and by the

jamming waveform having Power Spectral Desnity given by Equation

C.7. Each of the figures corresponds to a specific value of

JSR as shown in the headings. The performance of the standard

quadrature receiver is calculated from Equation 4.73. The

theoretical results for the single channel operation of the

quadrature receiver with a threshold that is independent of the

jamming power (Eq. 4.86) is calculated from Equation 4.82, and

Equation 4.92 is used to compute performance of the same re-

ceiver when the threshold is dependent on the jamming power
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TABLE 5.5

PERFORMANCE OF THE QUADRATURE RECEIVER JSR =0

THE RECEIVER SR(B

_______-10.0 -5.0 0.0 15.0 10.0 13.0

Standard
Operation 0.4756 0.4268- 0.3032 0.1028 0.0033 0.0000000u

Single
Channel
operation 0.4820 0.4460 0.3531 0.1806 0.0268 0.00009

TABLE 5.6

PERFORM3ANCE OF THE QUADRATURE RECEIVER JSR =0 DB

P
e

THE RECEIVER SNR (DB)

_________-10.0 -5.0 0.0 50 10.0 1.0

Standard
Operation 0.4767 0.4361 0.3582 0.2709 0.2172 0.1952

Single
Channel
operation 0.4820 0.4460 0.3531 0.180 0.0268 0-0001)9
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TABLE 5.7

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 5 DB

e
THE RECEIVER SNR (DB)

-10.0 -5.0 0.0 5.0 10.0 15.0

Standard
Operation 0.4788 0.4499 0.4119 0.3841 0.3713 0.3667

Single
Channel
Operation 0.4820 0.4460 0.3531 0.1806 0.0268 0.00009

TABLE 5.8

PERFORMANCE OF THE QUADRATURE RECEIVER JSR 10 DB

P . ,
e

THE RECEIVER SNR (DB) "

________-10.0 -5.0 0.0 5.0 10.0 15.0

Standard
Operation 0.4836 0.4702 0.4600 0.4551 0.4533 0.4527

Single
Channel
Operation 0.4820 0.4460 0.3531 10.180610.0268. 0.000091
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TABLE 5.9

PERFORMANCE OF THE QUADRATURE RECEIVER JSR 15 DB

P

THE RECEIVER SNR (DB) ____~

_______-10.0 -5.0 0.0 5.0 10.0 15.0

Standard

Operation 0.4904 0.4869 0.4853 0.4847 0.4845 0.4844

Single
Channel
Operation 0.4820 0.4460 0.3531 0.180610.0268 0.00009

TABLE 5.10

PERFORMANCE OF THE QUADRATURE RECEIVER JSR =20 DE

p
e

THE RLCEIVER SNR (DB)

________-10.0 -5.0 0.0 5.0 10.0 15.0

Standard
*Operation 0.4958 0.4953 0.4951 0.4950 0.4950 0.4950

Single
Channel
Operation 0.4820 0.4460 0.3531 .. 180610.0268 0. 00009
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level. As pointed out in Section D of Chapter IV, the proba-

bility of error calculated from Equation 4.92 with the thres-

hold set by Equations 4.86 and 4.93 show almost identical

results.

Tables 5.5 through 5.10 demonstrate that the performance

of the quadrature receiver under single channel operation is

unaffected by changing values of JSR. This is due to the fact

that for ,of Wl and T values used in the simulation, the value

of SSQ term in Eq. 4.92 is identical to zero. Thus in order

to demonstrate the effect of the jammer on the receiver under

single channel operation, the value of the jamming frequency

wj has been allowed to vary from w all the way up to
J0

Thus, in place of the SSQ term as defined in Eq. 4.92, we use

the modified term

Sin(w jW 1 ) T/2
SSQ < W.- <(W T/2 Wo - 3

The results of these modifications are presented in Fig. 5.11

and Fig. 5.12 where the probability of error of the receiver

* given by Eq. 4.93 is evaluated for JSR = 5 db and JSR = 10 db,

respectively, where the jamming frequency ( j) is allowed to

take on values ,j - (which corresponds to the results given

by Eqs. 4.91 and 4.92 without modification), and values of

3 + )/4 and & Some of the important results

obtained are summarized in Tables 5.11 and 5.12 for JSR = 5 db

and JSR = 10db respectively.

94



BF SIK (JSR=5 DB)

LEGEND

C6JW

o6J3(lW

a0JW

-100 001. 2. 004.

I. D

F g r P 2 ~ r, a c f h u ci a u e re e - rs0( -

o0~ a i n :r d 'm a g f e u n i2
"DL



ND-A164 522 JANNING EFFECTS ON N-ARY COHERENT AND BINRRY 2/2
I NONCOHERENT DIGITAL RECEIVERS USING RANDOM JANNER
I NODELS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CR

UNCLASSIFIED L A MUNOZ DEC 95 F/G 07/4 N

MEu.'..



1-2.

.1&.12

lL-0 1.0 2.02

111&2_5 13

MICROCOPY RESOLUTION TEST CHART

- 11' i~11 I "L) Ds 19b A



-. ~ ~ ~ ~ ~ ~ ~ T -. .- ' 54v:~,J~w-~. r~ r.r-t ~ r I-.-IL- IW-7 Q. W . V - -

* B F S K (JSR=1O DB)

=J=

0. 0 0._____. 3 . 4 .

* DI-w- DB

7ijur 3.1 . Pe fraco____dr --ue ree vr snceca -e

ooertionfor i~frentjammng rcquncie a.
0.R 10 ___



TABLE 5.11 b

PERFORMANCE OF THE QUADRATURE RECEIVER SINGLE CHANNEL OPERATION
FOR DIFFERENT JAMMING FREQUENCIES AND JSR =5 DB

SNR DB

THE RBCIVER -10.0 0.0 10.0 20.0 30.0

w.=0.4820 0.3530 0.0268 1 X10 1 X10

w. =( 0.4821 0.3589 0.0676 0.0049 0.0023
j 4 1"

W. w0.4853 0.4476 0.4297 0.4272 0.4269

TABLE 5.12

PERFORMANCE OF THE QUADRATURE RECEIVER SINCLE CHANNEL OPERATIC',
FOR DIFFERENT JAMMING FREQUENCIES AND JSR =10 DE

SNR DB

ME~ RECEIVER -10.0 0.0 10.0 20.0 30.0

-9 -9
-0.4820 0.3531 0.0268 1xl X10 I -0

(, = o 0.4823 0.3699 0.1491 0.0849 0.0773

=0.4894 0.4781 0.4755 0.4752 0.4751
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VI. CONCLUSIONS ____

The analysis carried out in this thesis presents the 
.

* application of concepts derived in 
statistical communication 

^ 'p

theory, specifically in the theory of signal detection under 4.,,

the assumption of colored noise interference. The performance

of digital receivers in terms of probability of error is

determined when the receivers operate in the presence of white

and colored Gaussian noise. Three techniques are examined

separately, one for MPSK modulation, another for coherent

MFSK modulation and the last one for (incoherent) BFSK -

modulation.

The mathematical model of the jamming waveform proposed,

consists of colored Gaussian 
noise of different spectral 

shapes .-

and power content.

For MPSK modulation, a mathematical result on the performance

of the (coherent) receiver in the presence of WGN and colored

noise jamming was derived. The complexity of the result along

with the many possible trade-offs involving spectral shapes,

power levels and frequencies of operation made it impossible

to address in this thesis the issue of optimum jamming strate-

gies for MPSK.

For MFSK modulation results on the effect of the coherent

receiver, were derived. A simple assumption was made on the -

spectrum of the jamming. By assuming that each signal frequency
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was interfered with a tone subject to a total jamming power

constraint, the receiver Pe was evaluated for different values

of SNR, JSR, and M. The results demonstrate that this

form of jamming can be quite effective or that significant

* increases on P can be achieved even at low JSR values. .'.,

For the case of BFSK modulation, the quadrature receiver -4

was analyzed under two conditions of operation, standard

operation and single channel operation, in the presence of

colored noise jamming with different power levels. The single

channel operation was introduced as a method for mitigating the

effect of a single tone jammer at one of the carrier frequen-

cies. When no jamming is present, single channel operation ,, I

performs slightly worse than standard receiver (both channels)

operation. However, in the presence of jamming, single channel

operation is superior to standard operation because the receiver

is capable of eliminating much of the jammer energy and its

effect by ignoring the output of the jammed channel during

single channel operation. As pointed out in Chapter IV, the

effect of the jamming waveform on the receiver under single

channel operation depends strongly on the jamming frequency

chosen. For the single channel operation, it was assumed that

the jamming is present at one of the two signal frequencies, and

that the receiver turns off the channel affected. Thus, deci-

sions are made based only on the output of the unaffected

channel. However, if under this condition of operation the

Jamming changes its frequency .j in such a way as to "mrove .-
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IC I

closer" to the frequency of the unaffected channe-l, it has

been demonstrated that the receiver probability of error in-

creases as wj approaches the frequency of the unaffected

channel.
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APPENDIX A J

DETAILED INVESTIGATION OF THE VARIANCES OF VC AND V
CONDITIONED ON HYPOTHESES H~

Let

Tt 0f t < T 2 ,

= ~pz~t)(A. 1)

0 otherwise

and

(w f 1,2 (A.2)

Thus

2 _T T

cn cn

1W S(eJ(t-T) T T
f S M d44 (t) 1) )dt dT

f SL (T jp _jj (A. 3)

where K 7) S Cw)

Now
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2rrn
T Sin(w -- )T/2
T j (-2 i n/T)T/2

2= ([v i2wT n'T)TT/2

27rn
+Snw T2 eT 1

+ 2rrn (+TrV) / (A. 4)

and

T -jwT/4n T
(W e ('fW) (A. 5)

T T
*Because of the relationship between ,(jw) and 2 wit is

clear that

T (Wq)T (W PT (- T(W(A6

so that

2 -x 2(A.7)
C, c,2 c

Thus indeed, a =c. Observe also by similiar arguments, that

2 _ siT, T\ s(Tj T,4l )d-~
-1,2 2.c \) 2 Wu 2r-,T 1 - ~ -

2
-21 S o c 0 T 11 A8
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where

wT ir 2Tn
2rj Sn(-w) +2rSin- f2

VPT(w)l 2
=T ~ 2

2 (-~-+nr)

wT wT
Sin (- -nr) Sin (.--~r
+ WT 2 4Tn' (A. 9)

(7- nw)

2 2

So it is clear that in general, a 2  will not be zero.
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APPENDIX B

DETAILED INVESTIGATION OF THE BEHAVIOR OF THE PRODUCTS OF

S! (-w) AND S' (w)

We have defined

F{!t~~) AT -
F{Sj(t)p(t) -  [L(w- c-W) + L(w+wc-Lj)] (B.1)

Then

F S! (t)p(t) } ×  FfS' (-)p(T) } = S!(- ) ,

_AT A
[L (-w-w W.) + L (- j+w +w.)I -[Lw- ) + L (+I,, +

2 c",-/ c

ATn
(- L(-C -wJ)L(w-w -Wk ) + L(-w+wc+' )L..,()c k k

+ Lk) ] + ---+

(B.2)

Observe that for reasonably large values of - ,pthe first and

the last term in this expression vanish, and we are left with

the products
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cJ

-j (wk-w) T/2 Sin (w-w +w. ) T/2 Sin (w4-wwc+ck) T/2
+ e 3T/ (B.3)

(w+w.T/2 (.w+ /

Now focusing on the first terrT of Eq. B.3, which has significant

components for w in the neighborhood of wcwe see that if

j-k >> 1 then there is essentially no overlap between sine

functions. Therefore the product S!(-w~)Sk) is zero for

j 7$ k.

For k =j ±1, we have

Sin(,L-w. Wzj)T/2 Sin(w-wk)T/2

)T/2 ~o(2j2w -w -w )T/2 (B.4)
- -Cos(wk-wj)T/

2  cj k

and when w is in the neighborhood of wic the product becomes

approximately

e ( "kc w)T/2 C o( k - T2 -To -- 2]
2 L .T/2 J /

k

j (k-j)i wT/2 FCos(k-j)h.-T/2 -Cos(k-j) ' T/21
=e I MlMl (B.5)
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The orthogonality condition on the signals required that

AwT = 7 or AwT/2 = 7/2, so that Eq. B.5 becomes (approximately)

e (±-Tr/2) - Cos(2j ±l)Tr/2
2j r/2 2 +

1L [COS j7r Cos 7r/2 ±Sin jTr Sin 7r/2 1

2 Ml 2 + . Y-l J
(T/2) (j( -- )

Eq. B.6 is zero for all values of the integer j, so we have

that for oT = TT, the product Sj(-,J)Sk(wJ) is equal to zero for

j k.
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APPENDIX C

DETAILED INVESTIGATION OF THE VARIANCES
2 2 '

a AND ay DUE TO COLORED NOISEc,o c,1

Let us define

P ci(t) =Cos wj t i =0,1 0 < t <T (C.1)

Then Eq. 4.69 becomes

-2 + 2 Kc (t-T)P 0 (t)P~ CT,)dt dT

+~ j Kt--T)P (t)P (:,)dtd-

- -cc sju co ~~t (t) P c (T) dt d-, d-

++ S (e. (t-t) p (-)dt d:

2- e> (t)P

1 r 2- 2

2* k IL1'c ld

where
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T T i(wi-w) T/2 Sin (wi-w) T/2
(W)= f Cos wite dt = -e (T/2 -

T -j(wi+w)T/2 Sin(wi+w)T/2
+ e (wi+W)T/2 i = 0,i (C.3)

and

S (w) + K ()

Furthermore

T Sin(w -T/2 2 Sin(wi +w)T/2 2

Sin(w.-w)T/2 Sin(wi+w)T/2

T21 1 .'+ 2 Cos wiT (wi-w)T/2 (wi+ )T/2 (C.4)

i =0,1

The third term in Eq. C.4 can be assumed for all practical

purposes to be zero. In essence, we require that 27/T,

i = 0,1 for the approximation to be correct.

Consider now the case where

Sc(, = K ('.L-r ) + (. +.,j) (C.5)
cj

Since
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00 -'" ~PC f S(.ots M d.

f ,-'.) " (C. 6)

then K 7P so that we use

CC

S (W) = -r p [6(W-) + 6(w+w.)j (C7)

From Eq. C.2, we now have

P4
a2 ,2 ,C 2 + 2
c 0 c 2'. co W + co ,j,

+ IP(W )1 12 + 1 "Wj) I (C.8)

Assuming that w. will always be in the vicinity of woand

we can state that

2 2 (w)T/2 (c. 9)

22 (Sin(w-W -)T/2

i (-C( ) = -. 0 + (C. 10)
co j -( c)T/2

clT Sin (w -W.T/2 2

2 2 (w )T/2 /cl
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r p. ~ w .- LP 77 -- -7

Thus

P2 ~ c T (Sll(w -w )T/2)2 2( ( T2 2j
C'o c'l 2+ T -(T Sinw-w.)T/2~2

In order to maximize the quantity in brackets as a function of

wi. we need to take derivatives of the expression and set it

equal to zero. The result of this operation leads to a

maximum at values of w. W or w. =W 1  Therefore, the
0

maximum value becomes

P T- S in Cwl-w )T/2

C clmax 4(W (W1  )T/2 2+C.1)
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