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BACKGROUND

I.

Numerous evaluations of the acoustic field radiating from a .
baffled transducer have appeared in the published literature. An
important feature is that these theories are applicable for a -
wide range of parameters. Approximations, such as those describ- -
ing an axisymmetric sound beam in the far field (Fraunhofer 2zone) )
can substantially reduce computational cost, but they are not
necessary. Linear theory is valid when the source level is <.
sufficiently low. Even then, diffraction effects in the near
field, which lead to localized cancellations and reinforcements,
complicate the task of correlating near field measurements to far -r
field propagation properties. - '

The situation becomes more complicated when one tries to
increase the propagation range by raising the source level. It
is logical to try to overcome effects such as dissipation and
scattering by generating higher level signals. Such attempts
inevitably lead to a greater role for nonlinear effects. One of
the effects of nonlinearity is to divert energy from the fun-
damental signal to higher harmonics, which is equivalent to
lowering the efficiency of the transducer. 1In the face of these .
concurrent effects it is apparent that developing a unified -
theory for nonlinear effects in sound beams is a challenging
matter. However, such a theory is necessary if understanding of
the distortion phenomena is to be enhanced. A prime example of
the prior lack of insight is the observed differences between the
distortion of the compression and rarefaction phases of a signal,
which had no analog in simpler types of acoustic waves.

A variety of approaches have been employed to study the
effects of nonlinearity in this system. One approach has relied
on a conventional perturbation solution of an approximate non-
linear wave equation. Such an analysis seems to give very good
results near the transducer face. However, it quickly breaks
down with increasing range due to assumptions that are made in e
the perturbation steps. -

An investigation of properties in the far field was
developed based on an approximation as a quasi-spherical wave.
Such a formulation assumes that the wave arrives at the transi-
tion to the far field (e.g. the Rayleigh distance) without -
substantial prior distortion. Hence, the spherical wave descrip- :
tion is inherently limited to cases where the transducer
excitation is comparitively low level. This type of analysis
also leads to certain anomalies, such as the fact that the level
of distortion is dependent on the choice for the spherical tran- -
sition distance, which may be arbitrarily chosen beyond the
Rayleigh distance. -

Another approach that has been widely employed in the
Russian literature is founded on a version of Burgers' equation
that has been modified to account for spreading and diffraction. ~
This nonlinear partial differential equation has been solved -
numerically for several types of boundary motion. The primary
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limitation of this approach are the approximations on which the
model equation are based, and computational difficulties stemming
from rapid transition due to diffraction. An alternative treat-
ment of this nonlinear parabolic equation based on Fourier series
expansions has reduced the computational problems, but quaestions
regarding the adequacy of the model equation still remain.

I1. RESEARCH TECHNIQUE

The primary goal of this project was to develop an analyti-
cal description of transducer radiation in which finite amplitude
effects, diffraction, and spherical spreading are treated consis-
tently, without limitation to a speciific spatial domain. The
technigque employed singular perturbation theory in conjunction
with asymptotic analysis. .7

The general approach uses the King integral in linear
theory, which is a Fourier-Bessel integral transform, to develop
the second order source terms that generate nonlinearities in the
response. There are two kinds of nonlinear effects that arise at
the second order. Some produce terms that remain bounded as the
signal propagates. (One such effect is associated with the fact
that the input from the transducer originates from a moving
boundary, rather than the much simpler description, z = 0.) The
smallness of the acoustic Mach number leads to the conclusion
that these fixed magnitude effects cannot account for measured
‘levels of distortion. The other group of nonlinear effects arise
from resonance-like phenomena. These terms lead to distortion
that grows with increasing distance. Shocks ultimately form from
this effect, unless dissipation is adequate to overcome the
nonlinear distortion process. It is this cumulative growth
effect that needs to be evaluated.

The growth effects in the second order terms are evaluated
by using asymptotic integration techniques to identify the por-
tion of the second order terms that grow most rapidly with
increasing range. The aforementioned breakdown of conventional
(i.e. regular) perturbation solutions is avoided by introducing
coordinate transformations that essentially are based on recogni-
tion that cumulative growth is a singularity.

This approach was the basis for a variety of studies. Some
were devoted to developing efficient numerical algorithms for
quantitative evaluation. Others increased the generality of the
transducer vibration, including linkage with the effects of
elastic behavior. Another group of studies endeavored to obtain
insight into the nature of physical processes. These efforts are
surveyed below.
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III. RESEARCH ACHIEVEMENTS

A. Axisymmetric Monochromatic Excitation

The analysis described in the previous section involved a
large effort to place some of the steps on a firm mathematical
foundation. This effort has also clarified the physical under-
standing of the manner in which a continuous spectrum of modes
interact to create distortion. The initial presentation [2] was
improved substantially in the published version [6, 7]. Those
works compared the analytical results to series of independent
measurements. The predictions for amplitude levels of the har-
monics were well within the identifiable experimental error.
Furthermore, a comparison of waveforms showed that the analysis
does describe the different shape of the waveform in the compres-
sion and arefaction phases. The comparison also confirmed a
change in this asymmetry associated with the transition from the
near field to the far field. No prior analysis had anticipated
this phenomenon.

The original version of the computer program for this model
was quite inefficient. It required a relatively large amount of
computer memory and long execution times. Of even greater con-
cern was the dependence of the analysis on a hypothesis regarding
the nature of the distortion process far from the axis in com-
parison to very close to the axis. Both matters were effectively
treated by a recently completed Ph. D. thesis {12, 14]. That work
developed independent solutions in each region by using different
asymptotic approximations. The signal in the paraxial region was
found to behave like a spectrum of quasi-planar waves, whereas
the off-axis signal was found to consist of spectra of inward and
outward propagating conical waves. The individual responses were
then matched to obtain uniformly accurate expressions.
Significantly, the results agreed with the earlier mathematical
forms. A key benefit of the analysis was that the new perspec-
tive led to a Fourier series representation that decreased
computational time by as much as a factor of one hundred.

This improved computational power was exploited to test the
theoretical predictions against several prior series of
measurements. The agreement was denerally very close, with one
exception. Experiments by Gould in the late 1960's investigated
the signal very close to the transducer face at a high reduced
frequency, ka = 114. The measured second harmonic distribution
was quite different from the theory. This discrepancy is now
under investigation. Current indications are that the dis-
crepancies between theory and measurement correspond to the
second order terms that are discarded in the analysis because
they have minor influence far from the transducer.

The ease with which computations could be performed made it
possible to generalize the nature of the excitation. A study of
particular interest considered the case where the transducer is
actually a membrane that is subjected to steady-state harmonic
excitation (l1l]]. The response of the membrane and the surface
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pressure are fully coupled in this situation. The analysis of
the finite amplitude sound beam was combined with a vibration
analysis of the membrane to determine all aspects of the
response. It was shown that the vibration analysis could be
safely performed without recourse to nonlinear theories for the
acoustic signal, but that the acoustic signal required knowledge
of the effects of nonlinear elasticity when the excitation was at
a system resonance.

B. Nonsymmetric Monochromatic Excitation

The recent analysis of axisymmetric waves [l2] also con-
sidered a situation in which the transducer vibration consists of
the superposition of an axisymmetric component and an azimuthally
travelling nonsymmetric part. The latter corresponds to a spa-
tially phased rocking motion that resembles the wobbling of a
rolling coin as it falls to the ground. The analysis was much
like that for the axisymmetric case. One benefit of the greater
generality was a clarification in the task of matching the off-
axis and paraxial signals. This study is apparently the first to
address nonsymmetric finite amplitude sound beams. Indeed,
nonsymmetric situations have not been extensively explored in the
linear case. It was shown that because azimuth dependent signals
must vanish along the beam axis, the interaction with axisym-
metric effects cannot affect the signal on-axis.

C. Dual Frequency Axisymmetric Excitation

A major generalization was achieved in analyses of the
propagation of a signal generated by axisymmetric excitation at
two arbitrary frequencies. In the limit as the difference be~
tween these primary frequencies decreases, one obtains a
parametric array. The analysis followed the line of investiga-
tion originally developed for the single frequency case. The
initial study of harmonic formation [5] identified the mechanism
by which the primary signals interact, but it was limited to very
short ranges. The innovative aspects of the subsequent research
{13, 15] was in the identification of the approrpriate set of
coordinate transformations. It is such properties that represent
the actual interaction effects. It was shown that the distortion
of each primary signal is dependent in equal part on the signal
in both primaries.

The analytical results were prohibitive for extensive
numerical evaluation, particularly at long ranges. For this
reason, an interface with a spherical propagation model was
developed. The same type of interface had been explored earlier
for monochromatic waves [4], but had been abandoned when the
Fourier series form of that signal was identified. The remark-
able aspect of the dual frequency study was that it showed far
better agreement than earlier theories with a variety of prior
experiments on parametric arrays. It even reproduced features in
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the difference frequency signal that had earlier seemed to be
anomolous.

D. Validation

......

An initial series of experiments was performed by Dr. Mark
Moffett in July 1982 at the NUSC facility at Newport, Rhode
Island in order to obtain data for a comparison with the
theoretical model [l]. Agreement between theory and experiment
for amplitudes of the harmonics was reasonably good. The
hydrophones employed for measurement showed substantial ir-
regularity in their frequency response and no phase calibration
was performed. The discrepancies between theory and experiment
were shown to be less than the uncertainty in the response of the
transducer.

In September 1983, Moffett endeavored to improve his measure
ments by resurrecting the special purpose transducers that were
utilized by Browning and Mellen. The data was sent to Georgia
Tech in its original digital form in order to provide a complete
data base for comparison. There was a great deal of difficulty
in reading the tapes due to limitations of the available
equipment. Eventually, the data were displayed as waveforms and
analyzed for frequency content.

As the data was being analyzed, it became apparent that the
receiving hydrophone exhibited extremely anamolous behavior at
high sound pressure levels, such as third harmonic levels that
execeeded the second, and fourth harmonics that exceeded the
third. The causes of this behavior that have not yet been
identified. However, an extremely important verification was
obtained at a far field location. The signal there had decayed
to a level that seemed to be within the tolerance of the
receiver, even though the source was being driven to a high
amplitude--it was found that the measured and predicted signals
coincided at that location [8].

E. Other Viewpoints

A key aspect of the King integral for linear radiation is
that it treats the signal as a superposition of a continuous
spectrum of modes. The physical significance of the nonlinear
interaction of these modes is obscured by the lack of a discrete
mode that could be traced through the anaalysis. The continuous
spectrum of modes in the King integral arises because the baffled
system is essentially a circular wave guide of infinite diameter.

A finite diameter waveguide has a discrete spectrum of
modes. By exciting only one such mode in a linear sense, it
would be possible to follow closely the manner in which resonant
interactions take place nonlinearly. Analyses of this problem in
circular [3] and two-dimensional waveguides [9, 10] followed
steps that were suggested by the analysis of sound beams. In the
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circular geometry the modes excited by the nonlinearities were
similar to the directly excited one. As a result, all of the
harmonics were in phase. This is manifested by identical types
of distrortion for the compression and rarefaction phases of a
signal.

The two-dimensional study disclosed the existence of an
internal resonance that had not been identified in earlier
investigations. Specifically, it was found that the transverse
variation nonlinearly excites the planar mode, as well as sacond
and higher spatial harmonics. At high frequencies, the phase
speeds of the various modes coalesce, which results in nonlinear
dispersive interaction between the modes. Significantly, the
signal in this case was shown to be display waveform distortion
of the type observed in sound beams. This verifies the nonlinear
King integral approach to sound beams, which treats the signal as
the dispersive interaction of neighboring modes in an infinite
waveguide.

F. Parameter Studies

The main computer program for sound beams was modified to
provide predictive capabilities for an assortment of transducer
vibration patterns f(R). Propagation curves showing the depend-
ence of the amplitudes and phase angles in the region from the
transducer to the far field have been carried out [8, 11, 14] for
a piston transducer, in which the particle velocity across the
piston face is uniform. Results for a hypothetical transducer,
in which the pressure is uniform across the face, were also
obtained, because that had been the basis for studies using the
modified Burgers' equation. Another configuration receiving
consideration was the elastic membrane, in which case the pattern
for the transducer vibration is a Bessel function.

The effect of diffraction decreases with the progression
from the piston to the membrane configuration because spatial
transitions are less severe. It was found that, although the
fundamental frequency signal inside the Rayleigh length is sub-
stantially different between the cases of uniform particle
velocity and pressure, the second and higher harmonics were quite
close. In the membrane case, the rapid spatial variations in the
fundamental were substantially reduced, and the higher harmonics
varied quite smoothly. This could prove to be useful for ap-
plications requiring near field measurements.

A noteworthy aspect of this study is the fact that there had
been no prior extensive evaluations of phase shifts for the
higher harmonics in the near field and the transition region.
The evaluations revealed an interesting trend for the phase
angles. The higher harmonics are close in phase to the fundamen-
tal near the source. As the wave propagates, each harmonic tends
to lag further behind its predecessor, until there is a 90% phase
difference in the far field. This is significant because a true
spherical wave also undergoes a 90% phase shift in the transition
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from the near field to the far field. The implication of this
observation is that asymmetrical distortion results from spheri-
. cal transitions for higher harmonics which are delayed by the
I higher frequencies.
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VA4, Finite-amplitude waveforms produced by a circular piston projector. L
Mark B. Moffett (Naval Underwater Systems Center, New London, CT l,;,.
06320) and Jerry H. Ginsberg (Georgia Institute of Technology, Atlanta, .

GA 30332)

Measurements were made of the waveforms produced at six different
locations on the axis of a 0.51-m-diam projector driven at 60 kHz in the
NUSC/Newport large acoustic tank facility. The locations were at the
last three pressure maxima in the nearfield, a quasifarfield pomt at 5 m,
and two farfield positions at 10 m and 15 m. The projector was driven at
several levels, and yielded waveforms ranging from sinusoidal at the low-
est levels and shortest ranges to shock formation at the highest levels and
longer ranges. Two different hydrophones were used, but neither had 2
flat enough response to avoid ringing when shocks were present. The
waveforms exhibit the asymmetry (sharp pressure peaks and rounded
pressure troughs) previously observed by Browning and Mellen {J.
Acoust. Soc. 44, 644-646 (1968)] and predicted by recent work of Gins-
berg which accounts for diffraction as well as nonlinear propagation ¢f-
fects. [Work supported by ONR Code 425 UA ]

Sheraton Twin Towers
Orlando, Florida
8-12 November 1982
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I would like to describe some work Mark Moffett and I have
been doing with finite-amplitude waveforms in cases where
diffraction occurs. No doubt you are all aware of what happens

to one-dimensional finite amplitude waves, such as plane waves or

spherically-spreading waves. In such cases, the pressure peaks
travel slightly faster than the troughs, and it is an easy matter
to predict the waveform via weak-shock theory. For example, a
waveform which is initially sinusoidal distorts in an antisymmetric L.
way and eventually can become a sawtooth shape because the peaks

move as far ahead as the troughs lag behind. A much more difficult

problem is the prediction of the waveforms resulting when diffraction

is present, as in the nearfield of a piston prcjector. The

propagation is not one-~dimensional. It is no longer a simple matter

to follow a pressure signal as it propagates from one point in space i_;ﬁ

to another, because the diffracted field at any point results from

contributions from several source regiomns.

Diffracted fields are normally calculated via linear theory,
and so nonlinear effects like distortion can't be handled readily.

We have been working at Georgia Tech on a new approach which can

account for diffraction and nonlinear distortion simultaneously,
under an ONR contract. We needed some experimental data for e
comparison with the theory for the case of a circular piston

projector. Mark Moffett was asked to see if he could provide some

data. I will show you some of those results shortly.




<< Viewgraph 1 - Browning and Mellen Waveforms >>

First, I'd like to show the kind of thing that happens when ' ;33:

-l diffraction and distortion operate together. These pictures are B

. from a 1962 letter to the editor by Browning and Mellen. They used
a tiny, 8/10ths-of-a-millimeter-diameter microprobe as a hydrophone
and looked at the waveforms on the axis of a 40-centimeter square

.f projector driven at 150 kHz. The top left picture shows the S
waveforms measured at three different levels at the longest range, = ;;{f
which was 8 meters. Then the next two photos down the left hand . ‘
side and the three down the right hand side show the progressive 3' SN

distortion of the pressure waveform as the range was increased from A

1 meter to 5 meters.

Positive pressure is up in these pictures, and so you can see -
: that the pressure peaks are sharp while the troughts become rounded. e
In other words, we are not evolving toward the sawtooth shape which .
p would be expected for plane or spherical waves. Diffraction and
- geometric dispersion shift the phase of the harmonics relative to K
. the fundamental. -
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LETTERS TO

FiG. 0 Wavetorm at 2 m (Py=0.3 ber).

%0 as to minimize wall reflections. For the projcc!.or dimensions
and wavelength of this experiment, the Fresnel zone extends to
about 4 m but the Fraunhoier zone spreading is quite insignificant
over the remaining tank length.’ The hydrophone is then set on
the projector axis, and waveform oheervations are made at
appropriate distances.
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Fic. 9. Waweform a1 S m (Py=0.5 bar).

Figure 3 gives & comparison of two waveforms; the more
sinusoidal one was messured at 2 m and the more distorted, at
8 m. The initial peak pressure P, mcasured at | m was approzi-
mately 1 bar. The oaccllations on the truling side of the 8-m trace
are art icts caused by “‘shock” exciation of hydrophone reso-
nances that fall above the useful frequency range.
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<< Viewgraph 2 - Block Diagram >>

Unfortunately, we couldn't use the Browning and Mellen data
for comparison with the theory, because the theory hasn't been
worked out yet for a square projector, which is a three~dimensional
problem. We therefore decided to repeat the experiment using a
circular projector. The projector was a 20-inch-diameter array of
60-kHz tonepiltz elements made by Raytheon Sub Signal Division.

The projector was driven with 60-kHz pulses which were amplified
with one of Bill Konrad's 20-kilowatt drivers. The hydrophone
output was captured with a Biomation transient recorder, which is

actually a digital machine containing an A-to-D converter. After

capturing and storing the waveform, it was plotted on an X-Y recorder.

The experiment was done at NUSC/s large tank facility at Newport,
Rhode Island.

It would have been niqe if we could have used one of the
Browning and Mellen microprobe hydrophones, but we would have had
to operate the projector just below the surface. Also, we weren't

sure any of the probes were still working. We tried three difrerent

hydrophones, hoping that one of them would have a flat enough response
to accurately reproduce the waveform. The first was an LC-5 hydrophone..

made by Celesco, or what used to be Atlantic Research. The LC-5 is a

1/16th-inch cylinder. It is just about the smallest commercially-
available hydrophone there is. The second was lent to us by Gerry
Harris of the Bureau of Radiological Health. It consisted of a
polymer membrane stretched over a metal hoop. This hydrophone
turned out not to be useful below a megahertz, apparently, because

of resonances involving the supporting hoop.
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<< Viewgraph 3 - Raytheon Hydrophone Sensitivity >> beos S
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' The third hydrophone we had was also a polymer-type used in ..
medical ultrasonics, but in this case the polymer is backed wi‘h -

a silicone rubber absorber. This hydrophone was made by the

Raytheon Research Division and lent to us by Roger Tancrell and
Dave Wilson. This is a plot of its sensitivity and you can see
that it's not bad, but it's not really flat either. Nevertheless,

!i the Raytheon hydrophone turned out to be the best of the three. .
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<< Viewgraph 4 - Waveforms at 2.63m>>

Here are some typical results. They are waveforms on the
projector axis at 5 meters. The waveforms correspond to
approximately 10-dB increments in drive. The receiving amplifier
was also changed in 10-dB steps to make the signal levels
comparable. Positive pressure is up in these plots.

You can see that the waveform goes from nearly sinusoidal
at the lowest level (shown in black) to a form with sharp peaks
and rounded troughs (shown in red).

You can also see that the zero crossings on the ascending
part of the wave shifts back as the level increases. 1In contrast,
zero crossings are unchanged in one-dimensional waves. The rise
in the peak pressure which accompanies the narrowing of the
compression phase is consistent with conservation of momentum,

as is the broader and shallower form of the rarefaction phase.
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<< Viewgraph 5 - Waveforms At All Ranges >>

This shows how the waveform evolves with increasing range
from half a meter to a little over 15 meters from the projector.
All measurements were made on the projector axis. The upper
three waveforms were taken at axial maxima. (Probing was done
to make sure that they were maxima). The 5-meter point is
beyond the last axial maximum at 2.63 meters, but is not yet
in the true farfield. The 10 and 15 meter distances do qualify
as genuine farfield measurements.

These plots are for a source level of approximately 243 dB
with respect to one micropascal-meter. You can again see the
sharpening of the peaks and the rounding of the troughs as the
propagation distance is increased. Each plot begins at an
instant where the pressure is zero. You can see that the first
zero crossing moves back in retarded time as the range increases.
I should explain that the zero of the retarded time was determined
by referring to the signal at a very low drive level, where it was
sinusoidal.

In order to be sure that the nonlinear distortion we measured
was not due to hydrophone nonlinearity, we determined the second
order sentitivity in a subsequent measurement. It was low enough
that we didn't have to worry about it. Also, we can see that the
waveform close to the projector is nearly sinusoidal. Since the
highest levels were measured at short ranges, the short-range
waveforms would be more distorted than those farther away if the

hydrophone were behaving in a nonlinear way.
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<< Viewgraph 6 - Raytheon and LC - 5 Waveforms >>

Unforturiately, since we did not have a hydrophone with a flat

response from 60 kHz to 600 kHz or so, we did not know that the

STt
(AR

hydrophone did not introduce some artifacts into the signal. Here
is a comparison of the Raytheon hydrophone (the solid curve) and
I; the LC-5 (the dotted curve) at the highest source level and longest

. range. - 'A;j

The sharp rise corresponds to the formation of a shock. There : ]

is some ringing just after the shocked portion of the LC-5, so the
b Raytheon seems to have done a better job. However, the analytical
results indicate that the secondary lump on the Raytheon hydrophone
waveform is a result of the second harmonic (120 kHz) emphasis in

the hydrophone response.
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In computing results of the analytical model, we found that
the computational time to evaluate the diffraction integral
became excessive at the larger distances. Also we encountered

convergence difficulties at the larger distances. Accordingly,

we focused on the predictions for the smaller ranges.
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<< Viewgraph 7 -Computed Waveform >>

Here is a comparison of the computed waveform (shown in
black) and the measured one (shown in red) at 2.63 meters. The “
irregularities in the analytical result arise from nonconvergence,
but the results are reliable at most time instants, I should
mention that this is pretty much the worst case. The other -
computed waveforms were much more regular.

When we compare this result to the measured waveform we note sl
some significant discrepancies. However, we must also account
for the hydrophone response. We did not have a phase calibration
for the Raytheon. Instead, we wrote a microcomputer program that

describes the analytical result in terms of its frequency response.
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<< Viewgraph 8 - Frequency Response >>
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A Fourier analysis of the computed waveform was used to

A s

N ~ <
Cal e
hTRIN

reconstruct the signal from the lowest five harmonics. This is
the green curve. Using the known amplitude sensitivity and
modifying the relative phases of the harmonics yielded the
result shown in black. For comparison, the éxperimental result
is shown in red. The agreement with the measured signal is remarkably
good.
Similar analyses for the other cases indicated that the
theory over-predicts the distortion very close to the source,
but it seems to be quite accurate beyond one transducer

diameter.
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Correction -for Fre, Uency Rcsp onse \ \
" ORIG AMPL CORR FACTOR OR16G LAG ADDED LAG .
1 1.821E-84 1 135.183 -43 '
2 3.0495E-05 1.41253755 3dB 200.552 -92
3 1.0379E-05 .891250938-14dB 251.19? -30
4 3.6479E-06 1.25892541 2 d0 344.974 -75
| 1.6637E-06 1.496235663,54855.1545 -4
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Acoustical Society of America

g Supplement 1, Vol. 73, Spring 1983

I Program of the
: 105th Meeting

i THURSDAY AFTERNOON, 12 MAY 1983 IVORY ROOM A, 2:00 TO 3:50 P.M.

Session LL. Physical Acoustics VIII: Nonlinear Acoustics

i’ . 3:05
LLS. An improved King integral algorithm for finite amplitude sound
beams, Jerry H. Ginsberg {School of Mechanical Engineering, Georgia

: Insutute of Technology, Atlanta, GA 30332)

This paper supercedes the previous analysis (J. H. Ginsberg, J.

- Acoust. Soc. Am. Suppl. 1 71, $30{1982)] of the infinite baffle problem for
an anisymmetnc harmonic excitation, which derived a nonlinear King

l integrai descnbing the distortion associated with finite acoustic Mach
numbers. That analysis was shown (M. B. Moffett and J. H. Ginsberg, J.
Acoust. Soc. Am. Suppl. 1 72, S40 (1982)] to exhibit excessive nearfield

distortion in comparison to experiment. Using the linear King integral in
S its conventional complex function form, as opposed to the real function
v analysis employed previously, leads to formulation of the second order
T potential in terms of complex functions. Asymptotic integration of this
) potential function reveals that there may be significant contnbution from

the evanescent spectrum (small transverse wavenumbers), as well as from
the propagating spectrum. A coordinate straining transformation de-
- scribing the (ull spe:trum is deduced. From it, the previous analysis is
Vo shown to be only asymptotically correct. The new analysis reveals that the
distortion is governed by a transformation that involves Fresnel integrals
for the propagating spectrum and the error function for the evanescent

- ’ spectrum. Some comparisons of the analytical prediction and the results
_ of Moffett and Ginsberg are presented [Work supported by ONR, Code
420

Stouffer’s Cincinnati Towers
- Cincinnati, Ohio
o 9-13 May 1983
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Introduction o

A signal propagating through a hard-walled circular duct can undergo

significant nonlinear distortion, even if the acoustic Mach number is a

small fraction. Keller and Millman [1] and Nayfeh {[2] investigated this

problem under the assumption that other duct modes are not resonantly A
- - excited by driven modes. The present work discloses that there is a non- e
i linear mechanism in which cumulative distortion is generated. The method )

for analyzing this phenomenon is a direct perturbation scheme using Tk

coordinate straining transformations. Much of the development draws on .
- techniques used by the first author to analyze cylindrically propagating o
- waves [3,4]. For simplicity, only axisymmetric duct modes are considered S

here.

Analytical Formulation

Let (z/k, R/k) denote dimensional axial and transverse coordinates, .
respectively, for the cylindrical duct, and let dimensional time be t/Q2, N
where Q is the frequency of an excitation at z = 0 and k = Q/co, with <o ¢

< being the speed of sound in the reference state. -
The nonlinear wave equation governing the potential function in :
this case 1is .
2 . 7.
3 o o2 3 . :
-- 3 - 22 =28, - 1) 2% + 5= (Wo - ) + 0(0%) (1)
) 3t ’ l
N where 8. is the coefficient of nonlinearity (= 1 + B/2A for a liquid). For s
X a hard-walled duct the potential function must satisfy N
:" a¢ z
- v = o — = () (2)
- Rlgaka O R R=ka -
d where a is the dimensional radius of the duct. The harmonic excitation
considered here gives rise to only one duct mode in a linearized analysis,
. which is the case when
= a¢ - . ' =
: v, o 5L ecoJo(uR) cos t; J, (uka) = 0 (3)
> z=0 z=0

T T N T T B S P e T SR LML N A T A R - N -
D U UL S F oS S IR R S L R L ) S SR S IR S T I I L ) ~ v et et 0 o s e R Y

R N T A LAY I R P LRRI TR N P L R N I et . LI T S N LR O UL IR
LI I e e e I R I T R R . ~, LSl W R PR e L - N . D
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- where J,. denotes the Besscel function of the first kind of order zero. Note
that uka > 0 can be any of the zeroes of JO‘.

The acoustic Mach number € is much less than unity. It 1s used as
the perturbation parameter for the potential function.

- - 2
. ¢ s¢l+e¢>2+... (4)
The leading term in this expansion is {ﬂ;f{i
Ll - B
. ¢, = - g sin(t - az) J (uR) (5) BN
where the wave number o is found by satisfying the linear wave equation to 8:;:;:,
be 2.k P
a=(1-uH? (6) -
. Second Order Analysis
r

Using the first order solution ¢, to form the source terms exciting
the second order potential ¢, obviously leads to products of Bessel func-
tions. Such terms are not amenable to conventional techniques for finding
particular solutions. Consider instead the region off-axis where pR is

—sufficiently large to replace the Bessel function by its asymptotic
Il expansion. Such a region exists if ka is sufficiently large. 1In cases
where ka is not large, the analysis may be conceptualized as temporarily
removing the walls of the duct, thereby converting the system to an
-~ infinite half plane in z > 0. Carrying out the analysis in the fictitious
= region where UR is large nevertheless leads to a response which satisfies
the boundary conditions for the original problem.

![ When pR >> 1, eq. (5) may be represented as
<1 2% . T -3/2
_ ¢, 5 (ﬂuR) sin(t - 0z) cos(UR - 7) + O[(WR) ] (7
iy Substituting this expression into the second order part of the wave
equation yields

- L 1 2

v ¢2 - 5= = - > [(30 - 2u°) + BO sin(2uR) ] sin(2t - 2az)

at ma"uR -2 s

. + 0{(uR) °] (8) ST
‘ Only the part of the particular solution which exhibits growth with i;

increasing z need be evaluated. The remainder of the particular solution, I
as well as the complementary solution, remain very small in the entire ﬂf}: e
domain. The result is that in the region where LR >> 1, for all z, SR

6, = - —3— z cos(2t - 202) sin(2uR) + O[(WR) 1] )
4ma”uR

_ The foregoing is recognizable as the asymptotic expansion for large uR of
¢2 -3z cos(2t - 2uaz) [Jo(uR) - Jo'(uR) 1+0Q) (10)
8a '

I L I
IR ... LR . e Lt e T e LT
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where 0(1) represents terms that are bounded for all z. This expression
is descriptive of the most significant part of the second order potential
at all uR. o

Renormalization

et
e ¥t

e

Expressions for the particle velocity components Vs V and the
pressure p may be obtained by taking the appropriate derlvat%ves of the
potential function as obtained from eqs. (4), (5), and (9). The general

form of these variables is

W = ef (¢ - oz, WR) + 2, £,(t - az, WR) + 0(e?) (11)

B

where £, and f, denote bounded functions. These expressions lose validity
when z = 0(1/5?, where the second order term is no longer small. This
situation is corrected by replacing the independent variables by a set of
strained coordinates. Because time appears only in combination with oz, no

Y separate transformation of t is required. The general form of this
N transformation is RN
az = S + €2g,(§,n), WR =n+ €zg,(&,n) (12)
. Equations (12) are substituted into the expressions described by eqs. (11).
ii -Then the functions g, and g, may be determined by requiring tha* the 0(e?) -
: terms in a Taylor seTies expansion remain bounded for all z., The result of e
this procedure is that
eBo ]
az = & + — z cos(t - E)Jo(nk)
20
(13)
EBO 1
: MR = n - — z sin(t = £)J," (") B
2a -

The particle velocity and pressure resulting from this transformation are .
p.C paC
-.070 v =¢ 070

cos (& = ) (m) + 0(e?)

P
. U z H (14) -
v, = - ¢, & sin(t - £)J ' (n) + 0(e?) R
R 0« 0
Discussion and Example
® Equations (13) and (14) jointly describe the signal. For the
. purpose of interpreting the results it is instructive to first observe
§~ that the coordinate transformation may be rewritten as
- 8 v B v.
sz =g+ =252 (B 5 W=+ (1s)
2a 0 0
= Lines of constant § and n represent wavefronts and rays of constant phase,
o respectively, for the signal described by eqs. (14). Thus eq. (15)

describes a process of self-refraction, in which rays (constant n) are
- bent by the transverse velocity. This is in addition to the amplitude
= dispersion which shifts the wavefronts (comstant €) in one-dimensional waves,
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The waveforms in Figure 1 describe a signal in air when the funda-
mental nonplanar duct mode is excited. The corresponding sound pressure
- level at the source is 156.5 dB (re 20 pPa) and ka = 9.5. Each waveform
- is plotted in retarded time, such that the linearized signal for each case
' would appear in the figure as one period of a sine curve having essentially
the same amplitude as that for the nonlinear signal. The signal at R = 6.0
shows a predominant second harmonic because the position is near a nodal
ray for the linear signal. This is one of the effects of self-refraction.

Figures 2 and 3 describe the amplitudes P of the first six harmonics
as a function of the source amplitude P Flgure 2 (on-axis) is reminiscent
of the result for planar waves, Figure 3 is for an off-axis location near
a nodal line for the linear theory. The higher harmonics grow much more
rapidly than the fundamental here, as a result of self-refraction of the
- nodal ray. The gap in the plot of P corresponds to a thus far unexplained

null when P = 156 dB.
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Nonlinear King integral for arbitrary axisymmetric sound beams at
finite amplitudes. I. Asymptotic evaluation of the velocity potential

Jerry H. Ginsberg

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 15 August 1983; accepted for publication 22 May 1984)

This paper initiates the derivation of a general analytical model for nonlinear effects in sound
beams driven at high source pressure levels. The excitation is generated by a planar transducer
that is in harmonic motion in an arbitrary axisymmetric pattern. The analysis develops a
perturbation solution of a nonlinear equation for the velocity potential. The first-order term,
which is derived with the aid of a Hankel transform to represent the transverse dependence, is the
King integral for a linear sound beam. Using this integral to form the source terms exciting the
second-order potential leads to a dual Hankel transform. Reduction to a single integral is achieved
with the aid of an asymptotic integration following Laplace’s method. The second-order term that
is derived in this manner describes the tendency for the second harmonic to grow with increasing
distance from the source. This result is an intermediate step in the overall development, because :
the integrand loses validity in the spectrum of transverse wavenumbers near the transition
between evanescent and propagating wavelets, as well as for increasing distance from the

transducer.

PACS numbers: 43.25.Cb

INTRODUCTION

Recent surveys' have noted that the “infinite baffle”
problem has been described by several alternative formula-
tions. The specific concern in this subject is the signal gener-
ated within a fluid by small amplitude oscillations of a trans-
ducer which is contained within an infinite planar boundary.
Such results are valid for very weak signals, in which case
material and convective nonlinearities are negligible effects.
Two basic formulations of the linear problem are the Ray-
leigh and King integrals.

The Rayleigh integral® treats the signal as a superposi-
tion of spherical wavelets which are generated by infinitesi-
mal sources on the transducer face. In contrast, the King
integral® results from a Hankel (Fourier~Bessel) integral
transform transverse to the axis of symmetry. The acoustical
medium in such an analysis becomes a waveguide of infinite
diameter. The transducer then seems to generate a spectrum
of guided planar mode wavelets whose strength varies with
the transverse position. The significant aspect of both qua-
drature solutions is that they provide a convenient frame-
work for quantitative evaluations of the signal at any loca-
tion. They also lead to analytical approximations that are
valid in certain ranges, such as the Fraunhofer (farfield) re-
gion.

The same is not true for treatments of nonlinear effects
which arise when the transducer is driven to large ampli-
tudes. One type of analysis of this question was performed by
Lockwood er al.’ They considered the case where the excita-
tion is reasonably small, so that nonlinearity is not signifi-
cant in the nearfield. Such a restriction leads to a farfield
description based on Lockwood's analysis of nonuniform
spherical waves.® Obviously, such an analysis provides no
information regarding nonlinear effects in the nearfield.

inng 1 Arnpier, $oc. Am. 76 (4) Oc vy 0001-4966/84/101201-07%00.80

The nearfield was the specific concern of the analysis
performed by Ingenito and Williams.” They employed a per-
turbation series for the potential function, in which the lead-
ing term was described by the Rayleigh integral. That result
was then used to evaluate the source terms exciting the sec-
ond-order potential. Neglecting backscattering at the second
order and introducing some additional approximations then
led to a description of second harmonic formation that had a
quadrature form.

One limitation of that analysis is that it is valid only for
very high frequencies: ka > 100 according to Ref. 7. Another
shortcoming is one that is often encountered in perturbation
analyses. Specifically, if 2 dependent variable is expanded in
a perturbation series, then the results are only valid when the
second-order terms are very small compared to the first or-
der ones. The analysis performed by Ingenito and Williams
indicated that the second harmonic grows with increasing
axial distance, whereas the first harmonic (i.e., linear result)
shows no such growth. It follows that these results shed light
on how harmonics begin to form, but further extrapolation
might lead to errors. (This seems to be the case for their Fig.
1)

Another formulation of finite amplitude sound beams,
which has been prominent in the Soviet literature, employs a
modified Burgers’ equation. The basic assumption made in
the derivation of this equation®® is that there are three spa-
tial scales for the signal. The shortest scale is the axial wave-
length and the longest scale describes the development of
nonlinear effects axially. The intermediate scale describes
the veriation transverse to the axis of symmetry.

These approximations seem reasonable for the high-fre-
quency limit. Unfortunately, solutions for monochromatic
transducer motion have only been obtained by finite-differ-
ence techniques. Typical of such investigations are Refs.10-

® 1984 Acoustical Society of America 1201
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12, which all seem to have employed the same (incompletely
described) computer code. It is significant that this group of
investigations have only considered situations where the
boundary excitation is a prescribed pressure. Extending
those analyses to cases where the particle velocity on the
boundary is known, as is the case for most transducers, re-
quires a relation between pressure and velocity that is not
contained in the basic theory. Also, it should be noted that
the small scale of some diffraction effects'? introduces some
doubt regarding the length scales assumed to derive the
modified Burgers' equation.

The present investigation is a perturbation analysis, as
was the work by Ingenito and Williams, although the King
integral is used here to describe the first-order term. The
analysis is founded on the recognition that nonlinearities
anse in two forms when the signal level is moderately high.
Some nonlinear effects maintain their level or die out as the
signal propagates away from the transducer. Typical of such
an effect is the fact that the transducer face represents a mov-
ing, rather than a fixed boundary, for satisfying continuity of
particle velocity.

Order of magnitude considerations indicate that such
effects are too small to describe the levels of higher harmon-
ics that have been measured.'*** As is the case for planar and
other one-dimensional waves,'® significant distortion phe-
nomena stem from cumulative growth of higher harmonics.
Such action is a result of the fact that the acoustic medium is
nondispersive, so that higher harmonics propagate with, and
resonantly interact with, the primary signal.

The present analysis consistently accounts for cumula-
tive growth effects. The sole assumption introduced in the
course of the analysis is that the nonlinear mechanism caus-
ing harmonic generation has the same behavior at all loca-
tions in the acoustic field. The first part of the investigation,
described in this paper, obtains an expression for the first
two orders of approximation of the velocity potential. The
second part of the investigation'” will employ coordinate
straining transformations to correct irregularities in the re-
sponse associated with the derived potential function. The
acoustic signal will be described in a quadrature form that is
reminiscent of the linear King integral. A quantitative exam-
ple will compare the harmonic content of the waveform to
measurements recently reported by Gallego-Juarez and
Gaete-Garreton. '’

The overall analytical procedure may be traced back to
the author’s previous investigation of two-dimensional radi-
ation from a boundary.'®'®> However, the use of compiex
functional forms and the introduction of Hankel transforms
to treat the axisymmetrical geometry require substantial al-
terations from previous work.

I. FUNDAMENTAL EQUATIONS

The propagation speed of infinitesimal planar waves is
denoted as ¢, and (B, — 1} is the nonlinearity parameter in
the pressure-density relation at fixed entropy’

p=put] (2 ;0’"’) + 6 - 1)(%”—")2 L Y
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Thus 8, = (¥ + 1)/2 for an ideal gas, where 7 is the ratio of
specific heats. Let {R, z) denote nondimensional cylindrical
coordinates (axisymmetric), with R = 0 corresponding to
the center of the transducer which is on the boundary z = 0.
Also, denote the nondimensional time variable as 7. The cor-
responding dimensional position coordinates are (R /k, z/k |
and the dimensional time is ¢ /w, where w is the frequency of
the monochromatic excitation and k& = w/c, 1s the wave-
number for a nominal planar wave.

The dimensionless velocity potential ¢ is related to the
particle velocity components by

ad dé ‘
U, =C—— Up =C—x- i2)
oz JdR
The boundary condition corresponding to the axisymmetric
motion of an arbitrary transducer may then be written in

complex form as

£

€
== f(R 7
3 s 2I_f( Jexplit) + c.c., (3)

where f(R ) is any complex function whose magnitude ap-
proaches zero with increasing R. In general, c.c. will be used
to denote the complex conjugate of the preceding term.
(Forming products of complex functions necessitates retain-
ing conjugate parts, rather than identifying only real parts.|
For weakly nonlinear waves, the acoustic Mach number € is
a finite parameter with j¢| € 1. The nonlinear wave equation
governing & is™

2 4% aé
Vi — =2(8, — 1)—V?
® =G (ﬂ(’a A
+ E—W@W’ J+ 0%, (4a)
where
., 3% 1 dp 3%
Vi = =+,
¢ dR? * R dR o7 (4b)
ad )3 (acﬁ )2
VoV ={— ] .
96 (3R * 9z

In addition to Eq. (3), the other boundary condition for & is
that the signal should be either an outgoing wave or an
evanescent wave at large z, and that it show suitable decay
with increasing R.

The velocity potential is expanded in a perturbation se-
ries

b =¢€d, + €Sy + - {5)
The equations governing 4, and &, are found by collecting
like powers of € in Egs. (3) and (4a). The first-order equations
are

a 2
v2¢l - a’ﬁl = 07
(6)
9%,
aZ z=0
Equations (6) are the statement of the linearized prob-
lem. The nonlinear effects are contained in ¢, and succeed-
ing terms. A complete solution for ¢, requires satisfaction of
the boundary conditions, which involves evaluation of the

= l.f(R Jexplit) + c.c.
2i

Jerry H. Ginsberg: Beams at tinite ampiitudes. !. Potential 1202

-




complementary solution, as well as of the particular solution
associated with the source terms arising from ¢,. However,
the complementary solution is bounded and therefore repre-
sents a noncumulative O |€7) contribution to the signal at all
locations. As noted earlier such effects are usually insignifi-
cant compared to the observed levels of nonlinear distortion.
Thus it is only necessary to find a particular solution of the
second-order equation. The first of Eqgs. (6) provides a simple
identity for V°¢,. The resulting second-order equation aris-
ing from Eq. {4a) is

37d-

v, - L% =

3,
== 2lig, - 1(%Y Vab-VdS].
RN ﬂ; %) T

II. LINEARIZED SOLUTION

Two approaches that have been employed to solve the
linearized problem, Egs. (6), are the Rayleigh integral and
the King integral. The latter, which is essentially an inver-
sion of a Hankel (Fourier—Bessel) transform, is more suitable
for the task of evaluating #.. Hence let

d, = J n® nzt WV inRdn + c.c. (8)

Substituting this expression into Egs. (6) and using the fact
that J,(nR } 1s a solution of Bessel's equation leads to

8'?, - L'?, -, =0,
132’ Jr-
9
9%, = F, explit),
dz N
where
F,=~| RfRUnRGR (10)
ula

is the transtform of the icomplex) spatial excitation function
SR

The solution of Egs. {9) 1s a propagating wave when
0 <n < 1,0r an evanescent wave when n > 1. This solution is

P, = —(F,/u,lexplit —p,z), (n
where
ui=n"=1 (12a}

Satisfying the radiation condition as z— « leads to the fol-
lowing choice for the branch cuts:

B {i(l —n’)'"?, O<nc<l,

i = 0", n>1. (12b)
The result of substituting Eq. {11) into Eq. (8) is
=( nF,
b, = —J (n “ )exp(it —p,zWnR Mdn + cc.  (13)
o\ U,

This is the King integral representation of the potential func-
tion for the linearized sound beam.
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111. SECOND-ORDER POTENTIAL

The first-order solution &, in Eq. {13} is used to form the
source terms driving @, in Eq. (7). Forming quadratic pro-
ducts of ¢, requires that different symbols be used to repre-
sent the transverse wavenumber forming each term in the
product. Also, care must be taken to include the complex
conjugate parts in the product. A quadratic product of sinu-
soidal terms generally leads to a term having a nonzero mean
value, but the time derivative appearing on the right side of
Eq. (7) removes such an effect. The result is

v, — a‘asz

mnF,, F)
= —4 ‘ﬂ —1- m n)
JJ( PR A Kkt
XJomR Wy(nR ) — mnJ,(mR J,(nR )]

Xexp[2it — W, +u,i2}dmdn +c.c., (14}

where the symmetry of the integrand has been exploited to
reduce the integration over the first wavenumber to a finite
range. (This introduces an additional factor of two.)

It is consistent with the form of Eq. (14) to try to con-
struct the particular solution for 4, as the sum of two dual
Hankel transforms. The kernel of one transform would be
mn Jo(mR ) Jo{nR ) and the kernel of the second would be mn
Ji(mR)J\(nR ). Thefollowingequivalent form, which utilizes
linear combinations of the aforementioned kernel functions,
leads to significant analytical simplifications.

é'_v:J‘ (pzdn' (lsa'
o
where

b, = nf ma®,,(z,t,m.n\[J(mR W,nR )

—J\mR)J,(nR )}dm + nf mP.,(z,t,m.n)

X [JolmR ) JyinR ) + J (mR W, (nR )]ldm.  (15b}

The following identities, which are derived from the
recursion relations for Bessel functions,”' are useful for eval-
vating the transverse derivatives of ¢-.

2 1 4
(5 + o PolmR VR
— (m* + n*Wo(mR WonR ) + 2mnJ (mR W (nR ),

az (16)
(5 + 7 3 P mR ViR

= 2mnJymR WJonR ) — (m* + n* — 4/R M (mR )
XJ((nR) — 2(m/R Wo(mR \J,(nR )
—2(n/R W\ (mR WJynR).
In view of these relations, the result of substituting Eqs 1<

into Eq. (14) and matching the integrands on either wide ¢
the equality sign is
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a—:& - éii —im+ n):¢:|][-’o("‘R MolnR ) = J,(mR W,(nR )]
oz or*
-2 - Th im - 0| LR WnR )+ JmR ViinR )
4 -
— [14/R*V,(mR J,\nR ) — 2m/R JoimR W {nR ) — 2{n/R W,(mR WJo(nR ) }{®P3;, — P-,)
= - 4’(Fan/.um ﬂn)[(ﬂo -1 —Hm .unuO‘MR ’-’o("R ) - anl(mR ul(”R )]exp[th - wrn +/un )Z] +cc. [17}
[

If the last bracketed term on the left side of this equation
was not present, it would be a simple matter to match like
functions of R on zither side. In order to address this matter.
note that the functions @,, and @,. are independent of R.
Conditions governing them in a specific region of R should
be applicable for all R. This is significant because the brack-
eted term causing difficulty in Eq. (17} decreases at a rate 1/
R faster than the other terms as R increases. The foregoing
argument suggests that because the term is negligible at large
R. it should be negligible in the evaluation of @,, and @,, at
any R

The validity of this hypothesis might be questioned for
situations where 7 and m are small. In that case, the asymp-
totic decay of Bessel functions having arguments mR or nR
might be approached at unacceptably large values of R. This
question may be examined by using the series expansions of
the Bessel functions for small arguments. Specifically, when
mR <1 and nR 1, it may be shown that

4
—F/ImRV (nR) ~ Z%Jo(mR V,(nR )~ Z%J.(mR )

XJnR)= — mn[l — {{m* + n*)R 2
+ &l5m*n* —m* —n*\R* — -]1.  (18)
Thus the third bracketed term in Eq. (17) is O (mn) when mR
and nR are small, whereas other terms in that equation are
order unity. Thus the troublesome bracketed term should
have negligible influence in this region also.

Neglecting the aforementioned term has a physical jus-
tification. Recall that in the King integral formulation, the
acoustic signal is viewed as a spectrum of modes in an infinite
waveguide. The wavenumbers m and n are merely param-
eters charactenzing the transverse rate of variation of these
modes. It is reasonable to expect that the nonlinear mecha-
nism generating the second-order contributions to these
modes are described by the same differential equations at all
values of R, and for all values of m and n.

When the third bracketed term in Eq. {17) is ignored,
matching like functions of R in that equation leads to

‘e, &P, »
- =l P,
9z o’ A
FFIFM
= - 4——By, - 1 —pu,pu, +nm)
#n#m
xexp[2it - (u, +pu,R] +cc., (19)
az¢:2 — az¢22 - (m —- ")2¢
or  an? -
F,.F,
= = 2By — | —p i, — nm)
HBalbbm

X exp[2it — (u, +punl2] +c.c.
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The virtue of constructing the solution for &, in the form of
Egs. (15} is now evident; any other form would not have
resulted in uncoupling of the equations for the transform
variables @,, and P-,.

The form of the solution of Egs. (19) is suggested by the
physical implication of the linear King integral, which con-
sists of a continuous spectrum of modes in a circular wave-
guide of infinite extent. The axis of the sound beam (i.e., the z
axis) is the direction in which these modes propagate In
general, nonlinear generation of harmonics increases with
increasing propagation distance. Hence the particular solu-
tions may be written as

@,y = aiz,m,njexp[2it — u, + @4, 2] +cc.,
(20)

®,, = blz.m,njexp[2it — (u, +p..)2] + cc.,

where cumulative growth will be manifested by increasing
values of the amplitudes a and 5. Substitution of Egs. (20}
into Eqgs. (19) leads to a set of uncoupled ordinary differential
equations for these amplitudes.

d’a da ) 2
— — 2y ) — + [+ —(m+ 1) +4]a
= (m 'u)dz (W, +pml = J |

) .FHFM
= - 2i—By—1—pu,pu, +nm), (21a)
Hnth
d? db 2
—_ 2 2_(m—nP+416
= Uln-*'#m}—dz + (n + ) = (m —n)* + 4]

= - Ziﬂ‘ﬂo -l—u
Hnbhm

At this stage, it is appropriate to recall that the analysis
of @, requires evaluation of only the portion that exhibits
growth. If the values of m and n are such that the coefficient
of a or b in Egs. (21) does not vanish, then the particular
solution is independent of z. In contrast, if this coefficient
should vanish, then the corresponding particular solution
for a or b is proportional to z. (Vanishing of the coefficient is
equivalent to secularity in perturbation analyses of nonlinear
vibrations.) It is found with the aid of Eq. (12b) that the
condition of a vanishing coefficient only occurs when m = n
in Eq. {19a). Therefore only the contribution of g needs to be
evaluated. The magnitude of b is bounded at all z, which
means that b does not represent a cumulative distortion ef-
fect.

wldm — NM). {21b)

IV. INTEGRATION BY LAPLACE'S METHOD

The condition where the solution to Eq. (21a) grows
with increasing z has been shown to arise as m—n. In con-
trast, regions far from m = n represent contributions that do
not change in overall magnitude with increasing distance.
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The contribution of the region around m = n may be deter-
mined by following Laplace’s asymptotic integration meth-
od** based on an expansion using

g=011), (22a)
where A and g are positive because m < n for the integrals in
Egs. (151 Note that 4 is a fixed parameter indicating the

scale of the difference between m and n. The Taylor series for
the coefficient u,, defined in Eq. (12b) is found to be

m=n—gqd, Jd<«l,

{22b)
These expressions for m and 4, lead to the following
representation of Eq. (21a) in the region where m = n:

da _ Z,a,,(Z _red _ 49,04 ’))i“—
7 2u, dz

—[Fai/ul + 0@ Y)a, = = 2BF /pu; . (22¢)
Now observe that when ¢ = 0 (m = n), the particular solu-
tion of this equation is

alq~ 0= “B(»Fi/zﬂilz (23)
In contrast, the general solution for @ when g0 has the
form
a=dA,explo,2) + A, explo2) + 2B Fi/q°4°,  (24)

where the coefficients o, and o, are the roots of the charac-
teristic equation governing the complementary solution:

Mo =tV = ngd /p} — @A/ 2u5 + ).

0" = 2u,(2 — ngd /u; ~ ¢°A°/2un)o — ¢°A/u} =0.
(25)
Solving this quadratic equation yields
o= —¢'A%/4u) +0(4%), o,=4u,+0(4)
(26)
As ¢—0, Eq. (24) must approach Eq. (23). Because o, is
Ol and Eq. (23) has no term that varies expenentially in z,
set A, = 0. Also. because o, is O (4 °), exp{o,z) may be re-

placed by the leading terms in a series. The ~andition that
Eq. 124) approach Eq. (23) then leads to

lim Al +0.2) + 2BF /g3 7] = iBoF 2/ 2u0k2.  (27)

The first of Eqgs. (26) shows that this condition is satisfied at
all values of z by

A= - UBFi/g 4" (28)
Substituting this expression into Eq. (24} yields the general
solution

a = (2iBoF2/q°d Y)[ 1 — exp( — ¢°4 *2/4u))]. (29)

The next step is to evaluate the total contribution to &,
of the value of a associated with all wavenumbers m. For this
determination the first wavenumber 7 is held constant at an
arbitrary value. The combined effect is defined by Egs. (15)
and (20) to be

Q. =n f m{aiz,mnlexp{2it — (g, + pm2] + c.c.}
0

X [JomR Wo(nR ) — J\(mR V\(nR )]dm + O(1).
(30)
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Equation {29) gives the behavior of g in the region where
m =n. According to Laplace's integration technique, the be-
havior at large z may be found by using that relation only. In
order to demonstrate this feature, the region of integration is
broken into two intervals. The boundary between these in-
tervals is defined to be m = n — §, where § is a small finite
quantity. Then

n -5
@, =f do, + | do.. (31)
(]

n-5
Because the first domain of integration does not contain the
secularity condition, the oscillatory nature of the integrand
results in boundedness of the first integral for all z.*> This
term, like comparable effects that occurred earlier, does not
contribute to the cumulative distortion process, so it is dis-
carded. In essence, this region features destructive interfer-
ence between the m and n waves.

In order to evaluate the second integral, Egs. (22) and
(29) are substituted into Eq. (30). The difference between m
and n is less than & in the region of integration, so m may be
replaced by n in the Bessel function. Similarly, u,, may be
replaced by u, in the exponential term in Eq. (30). The inte-
gral arising from Eq. (31) then simplifies to

@, = {2iB*FIE(6,4,2/ul)exp(2it — 2u,2) +c.c.}

X[JolnR \* — J\(nR )], (32)

where

/4 (| — expl — ¢°A *z/4u’
E (8A2/u3) =f ( il qzjz a ’)(Adq).
0

(33)
Evaluation of the function E introduces a square root of

z/u?, for which it is important to account for the fact that u,,
is imaginary when n < 1. Specifically,

z \'2 ( UaZ )1/2 an'llz
— = —_— = = 34
(ﬂi ) In* —1]? bt >

where an overbar denotes the complex conjugate of the
marked quantity. Integration by parts of Eq. (33) then gives

(””"2)1/2 5(#"2)112
E (8.42/4} =( i )rr( il )
(04/k) 2nth, © pnpa,

—(1/8)[ 1 — exp( — 8%2/4u3)], (35)

where erf denotes the error function.

One noteworthy feature of Eqs. (32) and (35) is that the
only remaining parameter associated with the asymptotic
integration is the integration limit §, which is finite value.
Consider Eq. (35) as z increases while § is held fixed. An
expansion of the error function for large arguments leads to

. sw.«r_)"’)~l_ Hbnttn exp(-azz)
zﬂn/‘n 5(77'#,.2)”2 4!‘,3. '

(36)
E(8.4.2/p3)~ [(mua2)"*2u,1, ] — 1/6.

The growth effect comes from the first term in £ above.
In general, the behavior as z— oo is said to be the *“‘dominant
term.”*? The dominant term in @, originates from the por-
tion of the particular solution associated with the region of

Jarry H. Ginsberg: Beams at finite amplitudes. |. Potentiat 1205

ERAERAEE L N R




DA AN Bon b s hue B gne -2 tafe ab Al et Bl Sad Aee Sud B g A AT AR a0 SR SR oS AN s Ak gt e G S st g R

secularity, m = n. Subdominant terms, such as the particular
solution associated with m = n, have already been neglected
because they do not represent a growth effect. Thus the func-
tion £ in Eq. 132) may be replaced by its dominant term, as
given by Eq. (36) when 1/ is neglected. When the resulting
expression for @, is used to form the second-order potential
according io Eq. {15a), and then combined with the first-
order potential in Eq. {13), the resuit is

6= f @dn, (37aj
0
where
nfn ) a0 WF 12
= — e——explit — u,2Mo(nR ) + €ifp—="mu,2)
n "#"
xexpiit — 2u, 2){JoinR ¥ — J tnR V')
+ ¢.c. + subdominant terms. (37b)
V. CLOSURE

An expression for the pressure may be obtained by dif-
ferentiating Eqs. (37) with respect to time, but the result has
some problematical aspects. First, it is clear that the o(€)
term grows as =''°, while the O(€) term remains bounded.
Thus the second-order term satisfies the smallness assump-
tions inherent to a perturbation series only when z is small
compared to 1/¢".”* From a practical viewpoint this limits
the validity of the result to distances that are very small com-
pared to the shock formation distance.

Another aspect relating to the validity of the result is
less obvious. Consider the situation where n—1, in which
case i, —0. The expression for pressure derived from Eq.
{37V has i, in the denominator, so it is singular atn = 1. The
key aspect of the singularity is that the O (€) term will contain
a factor 1/u,, while the O(€) term will contain a factor
1/u,u!* Thus, the O (€°) term grows more rapidly than the
O () term as n— 1. This is another instance where the magni-
tude of the second-order term grows relative to the first-
order term. As was true for the z'/? dependence, nonuniform
accuracy limits the usefulness of the pressure derived from
Egs. (37).

The lack of uniform accuracy in z is not surprising, be-
cause 1t 1s the equivalent of secular terms in nonlinear vibra-
tion analyses. The nonuniform accuracy in the wavenumber
n is a result of the analytical procedure that was followed.
The integration by Laplace’s method assumed that (4, | is
not very small. This is most clearly indicated in Eq. (22b),
where the truncation of the series expansion is appropriate
only if gd /u’ <1. Only very small values of g satisfy this
criterion when n—1 (u, —0). Therefore, the contribution to
the second-order potential from the region around n =1 is
not well described asymptotically.

There are other shortcomings in the form of Eq. (37b).
First, the O l¢) term is the same as that obtained from linear
theory, i.e.. it is the conventional King integral. Thus the
relation does not indicate that there is depletion of the funda-
mental harmonic as energy is transferred to higher harmon-
ics.”® Another important limitation is that Eq. (37b) de-
scribes only the second harmonic, but higher harmonics are
known to be significant to the distortion process.
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The aforementioned items lead to concern regarding
the validity of any prediction of pressure. This would cer-
tainly be the case if Egs. (37) were to be used directly. The
analysis in the next part of this investigation'’ overcomes
these difficulties. It treats the response obtained from Egs.
{37) as the asymptotic representation for small ez' * and
n# 1 of functional forms that are uniformly accurate. Such
an analysis is not applied directly to the velocity potential
because there are situations where a portion of the potential
may exhibit nonuniform growth while the pressure and oth-
er state variable do not.*®
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Nonlinear King integral for arbitrary axisymmetric sound beams at
finite amplitude. I1. Derivation of uniformly accurate expressions

Jerry H. Ginsberg

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
(Received 15 August 1983; accepted for publication 23 May 1984)

The first part of this investigation {J. Acoust. Soc. Am. 76, 12011207 (1984)] derived a
perturbation representation of the velocity potential for an axisymmetric, monochromatic sound
beam in the form of a complex function. That result, which used Hankel transforms to describe
the dependence on transverse position, lacked uniform validity in the corresponding
wavenumber, as well as the distance from the transducer. Expressions for the state variables
derived from the potential have the same behavior. The example of a planar wave is used to adapt
the singular perturbation method of renormalization to the case where the potential is in complex
form. The resulting technique is used to obtain a coordinate straining transformation that makes
the state variables uniformly accurate. The expression for the pressure is similar to the King
integral in linear theory, except that the integrand is a function of the strained coordinates.
Comparison of the predicted waveform properties with experimental data [Gallego-Juarez and
Gaete-Garreton, J. Acoust. Soc. Am. 73, 761-765 (1983)] shows good correlation. Further
evaluations disclose some new features of the distortion phenomena in both the time and

frequency domains.
PACS numbers: 43.25.Cb

INTRODUCTION

A general analysis of axisymmetric sound beams was
initiated in Part [ of this study.’ The overall goal of the inves-
tigation is to develop a theory that can be used to evaluate
how various features of harmonic transducer motion are
manifested within the entire acoustic field. This intent obvi-
ates the use of theories founded on effects that arise only in
the near- or farfield.

It was found in Part I that combining a consistent non-
linear wave equation with a Hankel integral transform and
an asymptotic integration technique led to a representation
of the velocity potential in the form of a perturbation series.
The second part of the analysis, presented here, will utilize
that potential function to derive an integral expression for
the acoustic pressure. This integral reduces to the King inte-
gral of linear theory” in the limit of an infinitesimal source
pressure level.

Numerical evaluation of this integral permits compari-
son of the theoretical predictions to those in one series of
experiments. In addition to providing validation, the exam-
ple will yield some insight into the unusual distortion phe-
nomena that have been observed in sound beams.>

1. NONUNIFORMLY ACCURATE EXPRESSIONS

In the first part of this investigation z and R were nondi-
mensional cylindrical coordinates for a transducer centered
at z= R =0, and ¢ was nondimensional time. The corre-
sponding dimensional quantities are obtained by using 1/
to define the time scale and 1/k = c/w to define the length
scale, where w is the frequency of the monochromatic mo-
tion of the transducer and ¢, is the linearized speed of sound.
The transducer motion was written in complex form as

v, = (€/2ikc, f(R) explit) + c.c., (n
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where f(R ) is an arbitrary complex function whose magni-
tude goes to zero as R—s . The acoustic Mach number € is
small compared to unity, so it is a convenient parameter for a
perturbation series. In general, c.c. will denote the complex
conjugate of the preceding terms.

A Hankel transform was used to describe the first-order
effects transverse to the axis of the sound beam. For a speci-
fied transverse wavenumber 1, which is the parameter for
the transform, there is a corresponding Hankel transform F,
of the shape function f(R ),

1 (™ )
=1 R)Jy 2
F, Zifo Rf(R)JonR \dR )

as well as a (nondimensional) axial wavenumber u,,, where
the radiation condition is satisfied by

B, =il —n?)'% 0<n<l,

3)
H, == 1Y% nnl.

As a result of employing a Hankel transform, the first-
order velocity potential was expressed in terms of the King
integral. This first-order result led to an inhomogeneous
wave equation for the second-order potential. An asympto-
tic integration by Laplace’s method was crucial to the eva-
luation of second-order effects. The expression for the veloc-
ity potential that was derived by this method retained only
the part of the second-order terms that displayed cumulative
growth of higher harmonics. Thus, it did not evaluate any
term whose magnitude is O (€?) at all values of z. The derived
velocity potential was written as

s=["oan @
0
where, for |u, |*'?> Ole),
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F .. nF; i
®= —el" explit —u,zWonR | + i€ fo———mu,z2)'"?
M., Hafhy

wexp(2it = 2u, 2 JynR ¥ = J,(nR )*) + c.c. + SDT,

{5)

where SDT represents subdominant terms that do not grow
with increasing z, and an overbar denotes the complex conju-
gate. Note that 3, is the coeflicient of nonlinearity, equal to
iy + 1}for an ideal gas, where  is the ratio of specific heats.

The limitation on the value of u,, for Eq. (5) means that
the expression is not applicable in the vicinity of n = 1. This
is a consequence of the asymptotic expansion that led to Eq.
(5), for which it was assumed thatu, = O {(l). Equation (5 is
said to lack uniform accuracy in both n and z, because the
magnitude of the second-order term grows relative to the
first-order term as n—1 and as z— <. The primary task here
is to obtain from Eq. (5) expressions that are uniformly accu-
rate.

Differentiating Eqs. (4) and (5) yields expressions for the
particle velocit, components and pressure. As suggested by
the form of Eq. (4), let V., ¥, and P denote the contribution
of a specific wavenumber # to the axial velocity v,, trans-
verse velocity v, , and pressure p, according to

v, = c(,f V,dn, vg = q,f Vg dn, (6)
Q (o]

P =p(,(,‘(:) J. Pdn. (7)
0

In the evaluation of the expression for V., the factor z'/* in

the O |€°) term of @ may be considered to be constant, be-
cause its derivative leads to an O (€%z~'/?) term, which de-
creases in importance as z increases. The physical variables
associated with Egs. (S) and (6) are then found to be, for 7 not
closeto 1,

v 92
dz
= enF, explit — p,2){Jy(nR ) — 2ieBy\nF,/i1,)
X (mpa2)' ' explit — p,2)[JonR | — J\(nR )]
+cc+SDT, (8)
X = 9@ _ _ €(n°F,/u,) explit — p,2){J 4 (nR)
IR
— 2iefo\nF, /i, )\mp,2)'"? explit — p,2)
X [JonR W 5(nR) = J(nR Vi (nR)])
+c.c. + SDT, (9)
P =i/, V.. (10)

It is convenient for later operations to denote the derivatives
of Bessel functions by primes, rather than making use of
identities for derivatives.

Il. CORRECTION OF THE DEPENDENCE ON THE
TRANSVERSE WAVENUMBER

Equations (8)—(10) suffer from the same lack of uniform
accuracy as that associated with Eq. (5). Such behavior is not
acceptable for state variables such as particle velocity and
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pressure.’ The recognition that the integration regarded
‘1, | to be substantially larger than zero is crucial to correct-
ing the dependence on n. It leads to the conclusion that Egs.
(8)~{10) are the asymptotic representation for nonsmall i, of
alternative functional fcrms that behave properly as 2, —0.
Note that each O (€’) term contains a factor . '~ higher
than the corresponding O (¢} term. It follows that the alterna-
tive forms must feature a function whose expansion for large
1,2 is proportional to u,” /2.

A variety of functions, such as Bessel functions, are pos-
sible candidates in this regard. However, recall that u, is
either real or imaginary, depending on the value of #. Most
functions whose asymptotic behavior is appropriate for real
u, introduce new singularities for imaginary u,, or vice
versa. The only function that was found to be acceptable for
all values of n was the complementary error function. Spe-
cifically, it is known® that for large u,, z,

erfe[(u,2)'?]
= (mu,z)" " expl — u,2)[1 + O(1/u,2)]. (1

Using Eq. {11} to recast the O (€°) terms in Eqs. (8)-(10}
leads to

Vz = E"Fn exp(it —/l,'Z”JO(HR ) - ZI'VGBOWn/ﬁn]
XnF,zerfc[(u,z2)''?] explit)[JolnR )* — J,(nR )’}
+ c.c. + SDT, (12)

n*F,
Ve = —€——explit —p,z)|J;(nR | — 2ireBolu, /i, )

X nF,z erfc((u,2)'?] explit)[JolnR W §(nR )
—Ji(aR W {(nR)]} + c.c. + SDT, (13)
P=i/u,)V,. (14)

Note that the coefficient &, /ii, is merely + 1or — 1
depending on whether 4, is real (7 > 1) or imaginary (n < 1).
Thus Eqgs. (12)-{14) have the same degree of singularity in u,,
for the first- and second-order terms; they are descriptive of
the response for all n.

lll. DERIVATION OF RENORMALIZATION USING
COMPLEX VARIABLES

Although Eqgs. {12)-{14) are valid for all n, they still are
not uniformly accurate for all z. One method for correcting
this situation is the renormalization version of the method of
strained coordinates.® The general basis for this method is
the argument that nonuniform behavior relative to one of the
independent variables (space or time} is the result of improp-
er truncation of a Taylor series expansion in powers of €. A
much simpler example is to expand sin(z + €z)in powers of ¢,
and to truncate such an expansion. The original function is
periodic, but the truncated representation shows cumulative
growth in ez.

As a consequence of the foregoing argument, it may be
anticipated that there is a transformation of the space-time
variables for which the response does not exhibit cumulative
growth. The difference between the magnitude of the phys-
ical vaniables and the transformed ones will grow cumula-
tively in the same manner as the O (€7) terms in Egs. (12)(14).

Jorry H. Ginsberg: Beams at finite amplitude II. Unitorm 1209
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The transformed variables therefore represent a straining of
the physical space-time gnd.

All prior applications of the renormalization technique
seem to have employed real functional forms. In order to
adapt the method to the complex functions in Egs. (12){14),
it is useful to consider the analogous steps for a finite ampli-
tude planar wave. Consider such a wave propagating in the z
direction. due to a harmonic particle velocity imposed at
z = 0. The potential function in this case is governed by

dé Fé . db 3

Fé J'e N 3
= - —=f -l ——=+2—=—+ 00",
iz o eV e @

(15)
%’: Y = (%) explit) + c.c.,

where “ie scales for nondimensionalizing position and time
are the same as those for the sound beam.
Carrying out a perturbation analysis based on

b=¢d, + €y + (16)

yields a homogeneous wave equation for &,, which is solved
for a wave propagating in the positive z direction. This solu-
tion is used to form the source terms in an inhomogeneous
wave equation for é.. The particular solution of the latter is
readily obtained by elementary methods, with the result that

¢ = leexplilt — 2] + J€'Bz exp|2ilt — 2)]
+cc+ O€), (17

where the O (¢€°) terms not appearing explicitly are bounded
for all z.

The expressions for particle velocity and pressure cor-
responding to Eq. (17) are

v, = cog—f = %eco explilt — z)]
X {1 + eBz explilt — 2)]} + c.c. + O(€), (18)

. db
P = —Pofo—— = Pufol;.
at

These are not uniformly accurate because the O (€?) term
grows with increasing z relative to the O (€) term. It is postu-
lated that the dependence on the strained coordinate varia-
bles 1s uniformly accurate. Because ¢ only occurs in conjunc-
tion with 2, it is adequate to strain only the space variable.
The strained coordinate ¢ approaches z when é—0, so the
transformation is considered to have the form

=S+ e[SEN+SE)] + (19)

The task now is to evaluate the function S. The first new
feature of the complex variable formulation of the planar
wave is that Sis considered to be complex, in agreement with
the form of Eq. (18). It is necessary to introduce the complex
conjugate of Sin Eq. (19) because the transformation must be
real.

Presumably, expressing v, and p in terms of § rather
than z leads to uniform accuracy. This should be the result of
substituting Eq. (19) into Eq. {18). Because the earlier analy-
sts considered only the first two orders of ¢, enforcing unifor-
mity will involve considering only those powers in a series
expansion. First note that for e<1,
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exp( — iz) = exp[ — i({ + €S + €S)]
=exp(—iE)[1 —ielS+S)) +0(€) (20

Substitution of Eq. (19) into Eq. (18) in conjunction with Eq.
(20) leads to the following € and € terms:

P/pucs = v,/¢,
= (172 explitt — £} {1 - ie(S+ )
+ 1eBot explilt — $)) +cc. + O(€),  (21)

where O (€) means terms having that order of magnitude at
all z.

Equation (21) will be nonuniform in { unless the €5 term
is canceled. This is the criterion for the straining function S.
Thus, set

S = (17208 explilr — & )]. (22)
The terms remaining in Eq. (21) are

p

Py

Pocs

= %eexp[i(t —&)](1 — ieS) + c.c. + O(€)
i

E%G explit - )] + 4% EBL +cc. +0(€). (23

Note that the € term appearing above is imaginary. Ac-
counting for the complex conjugate of each term yields

Pz =U—'=esin(t—§)+0(€2) (24)
PoCa  Co

and the transformation obtained by substituting S and S into
Eq. (19} is
z2=§ + €BL sin(t - §). (25)
In order to demonstrate the correctness of the wave

described by Egs. {24} and (25), Eq. (24} is used to eliminate
the sine term in Eq. (25):

z2=§(1 + Bov, /cy). (26)

Solving this relation for { and substituting the result back
into Eq. (24) then yields

)
Pl =—f-=esin(t-
Poo o

Except for the fact that z and ¢ are nondimensional here, Eq.
(27) is identical to Earnshaw's closed form solution for finite
amplitude planar waves’ in the case of harmonic excitation
at a boundary. The same result using real functions was ob-
tained previously.*

The perturbation analysis of the velocity potential pro-
vided an indication of how higher harmonics tend to be
formed. Although the expressions that resulted were not
uniformly accurate, the information the analysis provided
was sufficient to permit the coordinate straining procedure
to identify the more general signal. The exactness of the re-
sult in this case was fortuitous. In general, all that can be
expected from the procedure is that the error in the uniform-
ly accurate prediction will be no larger than O(€°) at any
location.

;) (27)
(l + ﬁouz/co)
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IV. APPLICATION OF RENORMALIZATION TO THE
SOUND BEAM

Only a few modifications are required to apply the
method in the preceding section to Egs. (12)~(14). As was
true for the planar wave, ¢ only occurs in combination with z,
s0 no transformation of the time scale shall be introduced.
However, R is an independent coordinate, so a straining
transformation for that spatial variable is also needed. Thus
the coordinate straiming 1o be tried is

z2=y, +€[S.(5..a,.tm +cc],

{28)

R=a, ~€[Sgis,a,.tnl+cc. ]
Note that a subscript n has been associated with the strained
coordinates in order to emphasize that the strained coordi-
nate describes only one transverse wavenumber in a contin-
uous spectrum.

In order to focus on the conceptual aspects of renormal-
1zation, Egs. (12 and (13} are written in the standard form,

V, = ¢f)iz.R.1.n) + €28 (z.R.t.n) + c.c. + O(€7),;

j=1x (29)
Substituting Eqgs. (28) into Eq. (29} and retaining the € and €*
terms in a Taylor series expansion leads to

V. =¢ef (&, .a,.n) + e:(|S: +5. )%—f,(;’,. b1t}

+1Sq + Sk ;i/;(;,, a,,t.n)
da,,

+ ;,,g,(;,,,a,,.t.n)) +ce.+0(E); j=12.

{30)

The foregoing is analogous to Eq. {21) for the case of planar

waves. The straining functions S. and S, must annihilate
the nonuniform J, g, term in Eq. (30). Hence, set

J

2 d._:"

= =g le.annn); =12 31

S S, )+ Skijjls“,,.a,,,t,n)
Jda,

It is necessary to find functions S, and S, that satisfy
Eq. (31 for both values of j. This is achieved by using trial
forms that are suggested by comparing the functions g to
the denvatives of f,. The actual transformation obtained by
satisfying Eq. (31) and then forming Eqs. (28) is

2=y, —2m€Bys, |inF,/i,) explit)

Xerfc{(,u,)'?] + c.c.}/ylna,),
(32)

R = an + Z”EB();nxi(Fn#n/ﬁn) exp(")
xerfc[Was,)'"?] + cc.}/na,).

In general, the terms remaining in Eq. (30) when Eq.
131} holds are

V, = Ej;{gn 'an "‘n’ + é(g:%j;(;n 'an VI’n)

+ 5, %f,(s"" .a..!'n)) +cc +0(€). (33)

"
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This expression is comparable to Eq. (231 for a planar wave.
The & term in that case was imaginary, so that no such terms
appeared explicitly when the real form of the solution was
written. The expressions for the sound beam are more com-
plicated, primarily due to the presence of Bessel functions
describing the transverse variation of the sound beam. Here,
renormalization removes any O (€°) terms in V, that depend
explicitly on time.

In other words, the coordinate straining transformation
derived from Eq. (31) is based on matching the tendency for
generation of higher harmonics. Such a transformation in-
troduces a mean value over one period. The €* terms appear-
ing in Eq. (33) cancel that mean value at all locations.

All of the state variables may be obtained from Eq. (33).
The quantity of primary interest is the pressure, for which
the proportionality in Eq. (14} is used to determine P. The
contribution of all transverse wavenumbers 1 is obtained by
integrating according to Eq. (6}, with the result that

=(inF, .
p=p&é€f ( )exm — Hab explit Mylna,)
o \ p

n

— 2ireByF, &, erfe[(@, &)
X[Jolna,)? — (. /p, Mna, )} idn +cc.  (34)

Equations (32) and (34) jointly describe the pressure at
specified values of z, R, and ¢. Because of the complicated
nature of these relations, quantitative evaluations require
numerical algorithms for solving the coordinate transforma-
tion, and for integrating over all values of n. When n < 1, in
which case 1, is imaginary, evaluating the pressure accord-
ing to Egs. (32) and (34) requires computing the complement
of the error function for complex arguments. Useful identi-
ties® for this task are

erfc[(io)'’?]

=22 exp( — im/4){[} — Sy(0)] + i[{ — Cal]1,
(35)

erfc] — (ig)'’?]
=2"?exp( — ir/4){[§ — Cy0)] + il — Syol},
where S.(o} and C.(o) denote Fresnel integrals, defined as

1 sin x
Salo) = PE f 172 dx,

0 X

1 cos x
GO = J: P

The occurrence of Fresnel integrals here is intuitively ap-
pealing, because such functions are known to enter into the
evaluation of diffraction effects in the linear infinite baffle
problem.®

(36)

V.RESULTS FOR A PISTON

Expressions describing the response in terms of real
functions may be obtained from Eqgs. (32) and (34). In view of
Egs. (35), different expressions are required for the propagat-
ing modes In < 1) and the evanescent modes (n>1). The sin-
gularity in Eq. (34) at n = | is regular. Numerical evaluation
of the pressure integral therefore presents no unforeseen dif-
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ficulties. As is usual for diffraction integrals, the pressure
integrand in Eq. (34) oscillates rapidly as a function of n at
large distances from the transducer (large z or R }. The tran-
scendental nature of the coordinate transformation, Eqgs.
(32}, at a specified n makes the usual n* merical algorithms
for efficiently evaluating such integrals unsuitable. How-
ever, a Gauss-Chebychev integration formula® is particular-
ly well-suited to the 1/u, singularity. This matter, as well as
the algorithm by which the coordinate transformation is
evaluated at discrete values of n, will be described elsewhere.

The net result is an algorithm that is relatively costly for
extensive computation. Nevertheless, it yields a prediction
of the instantaneous acoustic pressure that can be utilized to
generate waveforms or spatial profiles of the signal.

Such predictions are limited to locations where shocks
do not form in the individual duct modes. Shocks are mani-
fested by a vanishing value of the Jacobian of the coordinate
transformation, corresponding to a multivalued solution.
Selecting the appropriate solution in the presence of a shock
requires considerations not addressed in the present study.

The experiments recently reported by Gallego-Juarez
and Gaete-Garreton'® for propagation in air provide useful
data for validating the analysis. The transducer for those
experiments was a circular plate whose spatial vibration pat-
tern was combined with steps on the plate in order to simu-
late a piston. For a piston of diameter 2a, the shape function
SIR)in Eq. (1) 1s

l. R <ka,
SR} = 0, R>ka, 37)
which leads to the following Hankel transform amplitude:
F, =\ka/2in\J (n ka). 38)

The transducer diameter in the aforementioned study
was 200 mm and the frequency was 20.4 kHz. This corre-
sponds to Aa = 37.1 when ¢, = 345 m/s. (The ambient con-
ditions were not specified.} Only measurements beyond a
distance z/k = 900 mm were reported, whereas the last axial
maximum on axis occurred at z/k = 218 mm. Comparing
the experimental and computed results will therefore indi-
cate how well farfield propagation properties are predicted.

Figures 1-3 reproduce the amplitude response curves in
Ref. 10 for the fundamental frequency and the first three

LA NS D]

peb 0 F Tve i)

FIG 1. Amphtude response at 3.2 m on-axis. Harmonic number as indicat-

ed k=311 m™' a=01m Bp=12 ------ : Theory for source
SPL = 132.5dB. ‘Ref 10....... : Linearized response.
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F1G. 2. Amplitude response at 2 m on-axis. Harmonic number as indicated.
k=371 m~', a=01 m, B,=12 ------ : Theory for source
SPL =132.5dB. :Ref. 10, ... : Linearized response.

higher harmonics obtained at three locations on the axis of
symmetry. The sloping dotted line is the closed form linear
solution of the Rayleigh integral for the pressure amplitude
on-axis.”® Comparing the measured fundamental at low
source pressure levels with the Rayleigh prediction for Fig. 2
causes concern. Mechanisms such as dissipation which af-
fect the fundamental at very low source levels, where linear
theory is valid, do not explain why the measured amplitude
should be higher than the theoretical one. Also, increasing
the source level in the linear domain ( < 115 dB) did not ex-
actly increase the received fundamental SPL in the experi-
ments by the same amount.

Because of this uncertainty regarding the measure-
ments, comparisons with the present analysis based on
source SPL might be erroneous. The method used for com-
parison was to evaluate the analytical waveform at a nominal
source level. The waveform was then Fourier analyzed to
determine the corresponding amplitude levels (and phase an-
gles) for all harmonics. The comparable experimental data
point was selected by matching the predicted and measured
amplitudes of the fundamental. This matching is indicated
by the dotted horizontal lines marked by the number 1.

Figure 1, which is for the most remote location, shows
that the second and third harmonic levels agree to within 2
dB between theory and experiment, while the fourth har-

-~ . 1
8 135}p-------- - ,
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|
[ [
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o 1S}T"755
a .
>
T 1
¥ 95t \
x : '
95 115 135 155

SOURCE SPL (dB)

FIG. 3. Amplitude response at 1.2 m on-axis. Harmonic number as indicat-
ed k=3T11m " By=12.------ : Theory for source SPL = 142.5 dB

- -« ~: Theory for source SPL = 132.5 dB. :Ref 10, --.... :
Linearized response.
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monics are even closer. The discrepancies between theory
and experiment are slightly larger in Fig. 2, but they are well
within the uncertainty associated with the difference
between the measured fundamental and the prediction of
linear theory at low levels. It is possible that the disagree-
ment results from the experimental configuration, which
employed a stepped transducer face. Even though the funda-
mental was believed to match well with an ideal piston,"'
minor discrepancies might have a substantial effect on the
higher harmonics. Also, it is conceivable that the motion of
the transducer face was not exactly axisymmetric. This
could substantially alter the on-axis diffraction effects.

Figure 3 presents the response curves for the closest
location in the experiments. As indicated by the amount of
reduction in the fundamental amplitude, most measure-
ments of the third and fourth harmonics were taken at
source levels for which the effects of shock formation are
significant. The coordinate transformation for a range of val-
ues of the transverse wavenumber n has multiple solutions
when shocks are present. The theory is not formally valid in
this case, but the numerical algorithm was implemented to
select the value of the strained coordinate 5, closest to the
value of z when a shocks occurs.

Two source levels were evaluated for Fig. 3. The dashed
lines for a theoretical 142.5 dB SPL correspond to significant
shocking effects. The agreement between theory and experi-
ment for the lowest three harmonics is remarkable, especial-
ly in view of the uncertainty about how shocks should be
treated theoretically. The broken line for a theoretical SPL
of 132.5 dB show the same degree of agreement for the sec-
ond harmonic. Extrapolating the curve for the third har-
monic back to this level would show that the theory closely
predicts this harmonic also.

Figures 1-3 do not provide a complete picture. First,
they describe locations which are in the farfield. Further-
more, the response curves do not display the phase angles for
the various harmonics. The higher harmonics for planar
waves are in-phase with the fundamental, as are cylindrical
and spherical waves in the farfield. Asymmetry between the
compression and rarefaction phases, which was observed by
Mellen and Browning,® cortesponds in the frequency do-
main to out-of-phase conditions.

Figures 4 and § display waveforms at axial locations in
the nearfield and in the farfield, respectively. Reference 10
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FIG. 4. Waveform at 0.184 m on-axis for 142.5 dB source SPL. & = 371
m'a=0ImB, =12 : Theory. -+ - - - Lineanzed response.
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FIG. 5. Waveform at 2.1 m on-axis for 133.5 dB source SPL. & = 371 m "',
a=01m,8,=12 - Theory. - ---- : Measured in Ref. 10 for
130.5 dB source SPL. - - - - - - : Lineanzed response.

measured a waveform at the same location as that described
by Fig. §, but for a source level of 130.5 dB. The theoretical
waveform obtained from the present analysis for the same
source level would show less distortion than the observed
one. This discrepancy is consistent with those discussed in
regard to Fig. 2, which describes a nearby location. For this
reason, the theoretical source SPL was increased by 3 dB for
the comparison. The source level for Fig. 4 was selected to
give a comparable amount of distortion at the closer loca-
tion.

Several features of the measured waveform in Fig. 5
must be noted. Although an interval of two periods is shown,
the shape for the second period does not duplicate that for
the first. Also the null pressure level was not indicated in
Ref. 10; the experimental waveform reproduced in Fig. 5 has
been plotted to give a zero mean value. Finally, the original
waveform was drawn to a very small scale, so its enlarge-
ment to obtain Fig. 5 may have introduced additional inac-
curacies. In view of these uncertainties, the agreement
between the experimental and theoretical waveforms is quite
good, particularly for the second period.

The distortion of the waveform in Fig. 4 is the type
reported by Browning and Meilen.? One effect of nonlinear-
ity is to shift the extrema in the manner that a plane wave
distorts. Nonlinearity also enhances and narrows the com-
pression phase, while it has the opposite effect on the rarefac-
tion phase.

The waveform in Fig. 5 is for a lower source level than
the one for Fig. 4, so less of the distortion is associated with
the nearfield. This gives rise to a phenomenon that is some-
what different from the one appearing in Fig. 4. It is instruc-
tive to compare the waveforms in both figures to the corre-
sponding linearized signals. It seems that the maximum
compression, which occurs sooner than the linear signai in
the nearfield, is retarded as it propagates until it matches the
linear maximum. Also, the maximum rarefaction is retarded
more in the farfield. Recall that in the Rayleigh formulation,
the individual harmonics appear to be nonuniform spherical
waves in the farfield. The aforementioned retardation effect
might be a consequence of the 90° phase shift that spherical
waves undergo in the transition from the nearfield to the
farfield. In addition, the fact that Fig. 4 describes a nearfield
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TABLE I. Founier senes data for the waveforms in Figs. 4 and §

Amplitude
Harmonic \ received Phase lag ¥
Location number —l-o—f— SPL |dB) re: fundamental
Pofs

2/k =0.184m linear 2.646 1425 —-4.1°
1 2.479 142.0

2 0.426 126.7 6.9

3 0.208 120.4 54.8°

3 0083 112.4 472

5 0055 108.8 66.6°

zk=21m iinear 0.4010 126.1 -70
1 0.3384 124.7

2 0.0623 110.0 64.2°

3 0.0247 101.9 122.3°

4 0.0103 94.3 -177.1°

S 0.0044 86.9 —129.6°

location suggests that the asymmetry is produced by diffrac-
tion associated with cancellations of the wavelets emanating
from the various points on the piston. The generality of these
observation needs to be explored further.

The waveforms were Fourier analyzed using a retarded
time in which the fundamental is a pure sine. The form of
this representation is

p= ip_, sin{jtt — 1) = ¥, ],

=0, —180°<¥,<I180"

The ampiitudes p, and the phase lags ¢; of the higher har-
monics relative to the fundamental are presented in Table L.
There is no obvious pattern to the phase lags in the nearfield
case, but the farfield location shows that the increment in the
phase lag from a harmonic to next higher one is nearly uni-
form. This same pattern was observed in the computed
waveforms at other farfield locations, with the increments
ranging between 40° and 70°. The underlying mechanism for
this effect is open to conjecture at this time.

VI. CONCLUSION

The theory for finite amplitude sound beams developed
in Part I and here provides a versatile algorithm for evaluat-
ing the effects of nonlinearity. The theory has been shown to
agree well with experimental data for on-axis responses,

1214 J Acoust Soc. Am., Vol. 76, No 4, October 1984

both qualitatively and quantitatively. The derived expres-
sions are applicable to off-axis responses, but no such results
have been computed thus far.

Comparisons with other available experiments are now
underway, but past experiments have been limited in scope.
Measurement of amnlitude levels in the higher harmonics
has received more attention than measurement of the corre-
sponding phase angles and overall waveforms (for under-
standable reasons). Also, measurements in the true nearfield
have been sparse. Hence the theory has not yet been fully

confirmed, but insight into basic phenomena has already
been gained.
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The propagation of fimite amplitude waves radiating from a baifled
piston has been described 1n terms of directional spherical waves [J. C.
Lockwood, T. G. Muir, and D. T. Blackstock, J. Acoust. Soc. Am. 53,
1148-1153 {1973)). That analysis predicts wavetorms at large distances,
provided that comparable information 1s known at a reference location in
the farficld. Lockwood et al. used this approach based on assuming that
liear theory is accurate at the reference location. Such an assumption 1s
inaccurate when the source pressure level 1s sufficient to generate signifi-
cant nonlincar effects [growth of higher harmonics and depletion of the
‘undamental) within the near field. The present work descnibes the inter-
racing of the spherical propagation theory and the nonlinear King integral
(3. H. Ginsberg, J. Acoust. Soc. Am. Suppl. | 71, $30{1982)]. The latter
theory 1s uscd in this approach to evaluate the nonlinear waveform at the
reference location. Comparing the results of interfacing, and of direct
propagation according the nonlinear integral formulation, with expen-
mental data provides a strong validation for both theories. The advantage
of using directive spherical wave theory lies in its superior computational
efficiency and its atility to descnibe shock formation. [Work supported by
ONR, Code 425-UA, and NSF, Grant MEA-8101106.]
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CONCLUSIONS
. Farfield distortion undcrprelu.‘s harmoate
h 7¢n¢fa‘wﬁ- best resylés when a<§"- kat

2. Matched distortion gives best predichions

whea r"‘, >-z'— ka® (factor of 2 or more
at low frc,qencces)

3. Prcd.dm, phase shiefts 1s much mmore

| difficult thean prcdul'm, amplibudes -
farfreld distortion 13 not useful Sor
this teask

4, Closeness of wmatched distortion and

King 1ategral validetes Kiag 1afegral
in  the CQI‘ccl‘ ( prope ation over a
renge by radepeadecat theores

yrelds similar reaults)
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VV4, Analysis of nonlinear harmonic generation for arbitrary dual
frequency transducer excitation. Mosaad A. Foda and Jerry
H. Ginsberg (School of Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA 30332)

An earlier study of finite amplitude axisymmetric sound beams [J. H.

Ginsberg, J. Acoust. Soc. Am. Suppl. 1 73, S83 (1983}] considered the case

. of monochromatic excitation. That work featured a singular perturbation
: analysis combining asymptotic integration and the renormalization ver-
sion of the method of strained coordinates. The present paper initiates an
extension of those techniques to the case of a dual frequeacy source. The
parametric array, in which the primary beams are at closely spaced fre-
quencies, has already received much attention. The system discussed here
permits disparate frequencies. Aside from a restriction to axisymmetry,
the excitation at each frequency is arbitrary. The analysis thus far has
obtained the first two orders of approximation for the velocity potential.
This expression describes the manner in which nonlinear effects accumu-
late for the various sum and difference frequencies. It is the foundation for
a future derivation of an expression for the pressure that is descriptive of
the entire field. In addition, the trend for harmonic generation indicated
. by the analysis suggests that conversion efficiency in the parametric array
. might be improved by altering the transverse vibration pattern of the

" individual primary beams. [Work supported by ONR, code 425-UA ]
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P K7. Evaluation of the overall sound field properties for a finite amplitude T:'.:::::
N sound beam. J. H. Ginsberg (School of Mechanical Engineering, Georgia o
Institute of Technology, Atlanta, GA 30332)

h The nonlinear King integral [J. H. Ginsberg, J. Acoust. Soc. Am. (to .
9 be published)] provides a general algorithm for finite amplitude axisym- "
f:’. : metric waves radiating from a harmonically vibrating transducer. The

derivation of that result was based on asymptotic analyses of the trans-
verse wavenumber spectrum near the axis for almost planar modes and far _
off axis. The validity of the analysis is confirmed here by a change of -~
variables that yields an overall measure of the associated error. Previous :
evaluations using the nonlinear King integral provided temporal and fre-

quency spectrum predictions at selected locations, primarily on axis. The ,
present paper reports on an extensive mapping of the field for a moderate- -
ly high frequency in terms of amplitude and relative phase lags for the .o
fundamental and several higher harmonics. This mapping is cross-refer-
enced to waveform displays that show the changing nature of the asym- NN
metrical distortion process associated with transition from the nearfield to RSN
the farfield. [Work supported by ONR, Code 425-UA ] -
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THE JOURNAL
of the )

Acoustical Society of America

Supplement 1,.Vol. 77, Spring 1985

Program of the
109th Meeting

WEDNESDAY AFTERNOON, 10 APRIL 1985 ROOM 3-122, 2:00 TO 4:48 P.M. '

Session V. Physical Acoustics IV: Nonlinear Acoustics ' i

3:36 ..

V9, Finite amplitude distortion and dispersion in a hard-walled
waveguide. J. H. Ginsberg and H. C. Miao (School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA 30332)

The fundamental symmetric two-dimensional mode in a hard-walled

rectangular waveguide is decomposed into a pair of obliquely propagating
planar waves, in order to treat the effect of nonlinearity. A perturbation N
analysis of the nonlinear wave equation for the velocity potential identifies .
amplitude dispersion as one source of singularity. The only interaction .
between the oblique waves attributable to this effect is a change in the
distance parameter affecting the magnitude of the higher harmonics. An-
other singularity arises when the frequency o or width L is large. The
oblique waves are then closely aligned with the axis, resulting in resonant
interaction with the true planar mode. Harmonic generation in this case
has the appearance of a spatinl beating pattern. A set of coordinatc trans-
formations make the representation uniformly valid. Analyses of limiting
forms are confirmed by quantitative examples, Small values of ;L are well
described by an earlier general solution in terms of groups of nondisper-
sive modes [J. H. Ginsberg, J. Acoust. Soc. Am. 65, 1127-1133 (1979}),
while large L yields a quasiplanar signal. The transition at moderate oL
is characterized by frequency, as well as amplitude, dispersion. The dis-
tortion of waveforms then is very close to that obtained in the nearfield of
sound beams. {[Work supported by ONR.]
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Finite Amplitude Distortion and Dispersion

of a Symmetric Mode in a Waveguide

Jerry H. Ginsberg
Hsu-Chiang Miao
School of Mechanical Engineering
Georgia Institute of Technology

Atlanta, GA 30332

Abstract

The perturbation method of renormalization is used to study the effect of
nonlinearity in a hard-walled waveguide. The excitation would induce only the
fundamental symmetric mode if the system was linear. The analysis develops a
solution that satisfies a nonlinear wave equation for the velocity potential,
as well as all boundary conditions. The response consists of a pair of
oblique planar waves that interact through second order excitation of the true
planar mode;

The investigation discloses that when the transverse width is much larger
than the axial wavelength, the signal has a quasi-planar behavior. In
contrast, when the axial wavelength 1is large, the oblique waves are
essentially independent. The distortion is then a result of self-refraction,
in which the particle motion shifts the wavefronts and rays. The transition
between the long and the short wavelength approximations is marked by the
appearance of nonlinear frequency dispersion which produces asymmetrical

distortion of the waveform.

..................................................................
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1. INTRODUCTION o
Finite amplitude effects 1in a waveguide feature multidimensional

phenomena involving interacting waves, In linear theory a mode in a -

hardwalled waveguide may be constructed from pairs of oblique planar waves

that are reflected from the walls. The present study will employ the same v

type of decomposition to show that distortion resulting from nonlinearity e

displays a phenomenological change as the excitation frequency is increased.
This transition is associated with an anomaly contained in previous studies,
'I which only considered the low frequency case. . ﬂyAi
Initial explorations of finite amplitude nonplanar modes in waveguides - .

employed the perturbation method of multiple scales in a rudimentary fashion

that considered selected aspects of wave interaction [1-3]. A different
method of ‘vestigation was developed to study waves radiating from a flat
plate [4-9]. To a certain extent tha latter studies were academic 1in
nature. The system they treated featured a periodically supported plate of
infinite extent, They assumed periodicity of the signal parallel to the
plate, which meant that energy was propagating inward from infinite
boundaries. This apparent violation of the uniqueness condition nevertheless -,
proved to be instructive, because the system could be studied by a variety of
analytical techniques. The perturbation methods of multiple scales and of
renormalization, and the method of characteristics mutually agreed for the -
case of a spatially sinusoidal excitation. One significant aspect of their

result was the prediction of self-refraction, in which the wavefronts and rays

of constant phase are distorted by the particle velocity.

Although the plate problem did not treat a physically realizable system,

the relevance of these investigations to waveguides was recognized in a

subsequent investigation [10]. The basis of that work was that there are -
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2

nodal lines in the plate system along which the velocity component parallel to

the surface of the plate vanishes. Such lines are perpendicular to the plate,
ﬂ as they are in linear theory. This observation led to the conclusion that the

infinite plate analyses had actually derived a single mode in a waveguide,

LY R . e T Th W Y ¥ e -

;Q The treatment of general excitation in a waveguide performed in Reference

- (10], which was a straighiforward extension of the method of
: | renormalization, disclosed a type of superposition principle. Modes having
E identical phase speed were found to form distinct groups whose distortion in
' - self-refraction was a consequence of only the particle velocity arising from
? that group. The overall response consisted of a linear combination of the
E response in each group.
b f: A similar analysis had been used to study waves radiating from cylinders

(11-14]. One of those studies [12] identified a paradox associated with very
long axial wavelengths. One would expect that if the wavelength along the
axis of a cylinder is large, so that the rate of variation in that direction
is very gradual, then the response would approach that for the case of a two-
dimensional system, in which the axial wavelength is actually infinite. This

was found to be the case, except that the distortion phenomena in the limit

were found to be too weak by a factor of one half., This dilemma was resolved
by noting that distinct modes in the case of axial variation coalesce only
when the wavelength is actually infinite.

These observations also apply to the investigation of waveguides [10].
For example, as the width of a waveguide is increased, the earlier analysis
predicts that the distortion of the planar mode will be twice as strong as
that of the fundamental symmetric (2,0) mode. Although the explanation of
coalescing effects for infinite transverse wavelength (i.e., the planar mode)

is plausible, it nevertheless 1is unsettling from a physical viewpoint,
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ﬁf Distortion arises from higher harmonic sources that are generated by e
. nonlinearity 1in the entire acoustic field. Could it be that minor

ll discrepancies between the long and infinite wavelength cases accumulate to N

create the discrepancy? Lack of experimental data prevented an earlier
response to this question, but discussions with researchers currently involved
in such activity [15] sparked the present authors' interest in exploring these
concerns,

The analysis presented herein treats an excitation of only the (2,0) mode
E in a hard-walled waveguide. It will be shown that this mode excites the
‘ planar mode in an insignificant fashion, unless g L/c0 >> 2%, where L is the
_ transverse width, o is the (circular) frequency, and o is the linear speed of
! sound. The phase speed of the (2,0) mode then differs slightly from that of
2 the planar mode. This sets up a spatial beating phenomenon that leads to a
E smooth transition to the planar mode response in the manner one would
—i expect, The analysis will confirm the earlier theory for waveguides
when wL/c° is not large. It will also show that the transition from the
earlier theory to the short wavelength case is marked by frequency dispersion,
in which the waveforms are remarkably similar to those observed in the 2

nearfield of intense beams of sound [16].

2. FORMULATION
A pressure excitation of the fundamental, symmetric, two-dimensional mode

in a hard-walled waveguide may be written as -

Pl, - 0" epocg sin(mt)cos(kxx), e << 1, -L/2 <x < L/2 (1) "

where °s ic the ambient pressure, o is the speed of sound at ambient

....................
....................




conditions, and the transverse wave number kx is related to the duct width L

by

k. = 2q/L (2)

The question to be addressed here is the effect of nonlinearity associated
with the finiteness of ¢ on the waves that propagate in the positive z
direction as a result of this excitation,

The equations of continuity, momentum, and state may be combined to form
a single nonlinear wave equation governing the velocity potential [17] under

isentropic conditions.

2 2
¢ ? % - Sk [:lg (8- 1) (22) + v vel + 0(47) (3)

where the nonlinearity coefficient Bo is the constant associated with the
second order term in a polynomial expansion of the pressure perturbation p as

a function of the density perturbation p at fixed entropy.

Z) = ofpy + (8, - 1) (plp,0) + - (a)

p/ oy ¢, o

The pressure is related to the potential by

P

d ) 1
I ?_P_—Tp — +;%+§v¢-v.¢=0 (5)
0

0

From equations (4) and (5) p, p and ¢ have the same order of magnitude, so

elimination of p from these relations yields
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3 (6)

The boundary conditions for ¢ are obtained by making the particle

velocity normal to the walls vanish,
o0 at x=13 (7)

as well as by matching Eq. (6) at z = 0 to Eq. (1). Also, for uniqueness, it

is required that the signal consist of a wave propagating in the positive z
direction,
The initial stage of the solution technique employs a regular

perturbation expansion of the potential in terms of the small parameter ¢,
_ 2
=€) teo,t (8)
Matching 1ike powers of ¢ in the differential equation and boundary

conditions leads to a sequence of equations in the usual manner, The order ¢

terms are
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30, c

‘ = 9 i -
T, . =1 - {exp [i(wt kxx)] (9¢)

+ exp [i(wt + kxx)]} + CC

where CC 1in general shall denote the complex conjugate of all preceding

terms. The order 52 perturbation equations are

L
2
374 3¢, 2 .
2 2 2 _3 1 - 1 :
Co ¥V 0y - 2 et [c 5 (8o = 1) (557) + Yoy . o] (10a) .
0 ’ i ]
3¢ DA
§ 3355 =0 (10b) RS
".~ X = : L/z FURIR
\ IR
3¢2{ 1 3% ‘ 1 ‘
L i " hEe ) -7y ] (10¢)
- z=0 c = 0 e
5 A ° z = »
3. EVALUATION OF THE POTENTIAL BRI
[_ It is a straightforward matter to solve Eqs. (9) by separation of variables, i.i:_i
. with the result that
Y 2 it
. Co . .‘.‘-7'
. 91 =7, (exp [ilwt -k x -k, 2)] e
+exp [ i(wt + kx X - kZ 2)]}y + CC (11)
Ei where

RNV

- e cin-1 - -
kK = m/Co , 8 = sin (kx/k), kz = k cos 8 =z (k «

(12)




Only the case of propagating, rather than evanescent, waves is of interest,
which means that k, < k. This condition is obtained whenever y exceeds the
cutoff frequency for the fundamental mode, w > 2n co/L .

Equation (11) represents the first order solution as two trains of planar
waves propagating symmetrically relative to the centerline x = 0. These waves

are depicted in Figure 1, where e, and e, are the individual directions. The

1 2
angle 8 measures the direction in which these waves propagate relative to the
centerline. Each wave represents the reflection of the other from the rigid
walls, Increasing either the frequency w or width L decreases 9. In the
limit 8 » 0, the two trains of waves merge into the planar mode.

The first step in deriving b9 is to use Eq. (11) to form the
inhomogeneous terms in Eq. (10a). This yields
2 2 32¢2

C. YV by = —5—
o] 2 atz

2 .
Co v By (EXP [2i(wt - kxx - kzz)]

ml —~bo

+ exp [21 (ut + kxx - kzz)]}
k2
1 2 .
75 m(Bo -2 ;% Yexp [2i(wt - kzz)] + CC (13)

The first two exponentials in Eq. (13) excite second harmonics. Such signals
propagate parallel to the two waves forming b1 which are homogeneous
solutions of the 1linearized wave equation. The corresponding particular

solution may be obtained hy the method of variation of parameters, in which

the amplitude of the homogeneous solution is considered to be an unknown

oy

- . e
e .
.
o,




. T L T R . oo e e,
fLatatatalaafallalnals it s ittt Mt PSR 0. PP LT LR PR

8

function, The last inhomogeneous term is a planar second harmonic, Such an
excitation matches the planar mode for the waveguide when kZ = k., Hence,
decreasing k, brings the planar part of the excitation into close coincidence
with the planar mode for that frequency, which means that this excitation is
nearly resonant at small k,. The method of variation of parameters will also

yield the solution associated with this term, Thus, let

by = u(x,z) exp (2iwt) + CC

[
]

C(z) {exp [- 2i (kzz + kxx)] + exp [-2i (kzz - kxx)]}

+ D(z) exp (-2ik,2) (14)

It should be noted that the unknown functions C and D depend on the axial
distance only. The periodic nature of the excitation eliminates dependence of
these functions on t. Similarly, the rigid wall conditions, Eq. (10b),
imposed along x = + n/kx, could not be satisfied if C or D were functions of
X.

The result of requiring that Eq. (14) satisfy Eq. (13) is a set of
uncoupled differential equations for the amplitude functions. After Eq. (12)
for kZ is applied, these equations are found to be

C"-4isz'=-%is o (15)

D" - 4i k. D' + 4k %D = -
r4 X

AL
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where a prime denotes differentiation with respect to z,

The particular solutions of Eqs. (15) are readily found to be

8

0

C. = z

p 32 kz
- 8
.. dw O 2
T Gz T e
X

It is convenient to let the constant coefficients of Cp and Dp appear

explicitly in the corresponding complementary solutions, which are therefore

written as
Bow
C. = ——§§—F;—— [Cl + C2 exp (41kz z)]
: 8
. o0 2
be= - 16 (- 2 [0y exelry 2)
X
+ 0, exp (A, 2)] (17)

where M and xz are roots of the characteristic equation

2 2

A1,2 -4 ikz A1,2 +4 kx =0 (18a)

The roots are found with the aid of Eqs. (12) to be

Al = Zi(kz - k), A, = 21(kz + k) (18b)

2

e,




obtained by substituting Egqs. (16) and (17) into

The expressions for

&)

Eqs. (14) must satisfy the radiation condition. In order for to

®2
represent an out-going wave in the z-direction, it must only contain negative

imaginary exponentials in the z variable. Satisfaction of this condition

requires that C_ = D2 = 0. The remaining terms yield

2

U = (z + Cl) { exp [- Zi(kZ z+ kx x)]

+ exp [-Zi(kZ z - kx x) 1}

e %) [exp (-2ik,2) + D) exp(-2ikz)] (19)
X

Note that C1 describes complementary solutions of the wave equation associated
with second harmonics of the oblique waves, whereas Dl js the planar eigenmode
at the secand harmanic frequency.

The case kx =0 corresponds to a true planar mode, which is governed
by the Earnshaw solution for a nonlinear planar wave, However,
letting kx > 0 in Eq. (19) rzsults in a singularity in the coefficient of the
Tast terms.

Such behavior resembles the case of resonance in a one-degree-of-freedom

oscillator whose equation of motion is

X +wlx = F sin at (20)

DR St AR S At Jub it S S e AR
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When a4 » w, the amplitude of the particular solution for @ = 4 seems to
become infinite. This ignores the presence of the complementary solution,
which forms a beating response when it is added to the particular solution.
In the limit Q@ = w, the resonant response reduces to a harmonic at
frequency w whose amplitude grows in proportion to t.

In the same manner the singularity of Eq. (19) at kx + 0 may be removed
by an appropriate selection of the coefficient of the homogeneous solutions.
The coefficient C; is not used for this purpose because the singularity is
associated with the planar mode.

In order to study k » 0, the troublesome terms in Eq. (19) are expanded

in a Taylor series about kx/k.

2
= (k4 2y1/2 1 x, ...
k, = (K5 -k )=k -5 2
2
; : 1 kx
exp(-ik, z) = exp [-i(k - 5 F)z + ---]
ik2
= (1 *‘EEL z + -.-) exp(-ikz) (21)

The corresponding asymptotic form of the planar terms in Eq. (19) is

; 8
- 12 ( S - 25) [exp(-2ik,z) + D, exp(-2ikz)]
kx k
iw BO 2 1.k)z(z .
e (— - — ) 1+ +D ] exp (-2ikz) (22)
16 K 2 k2 2k 1 1
X
The singularity for kx + 0 is cancelled if the leading term in Dl = -1,

BN
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D, = -1 + D* (23a)

where the coefficient D* may depend on kx in any manner that satisfies the

condition

] *
Hm B (23b)
k -0 k
X X

where § is a bounded number. Similarly the coefficient C1 is restricted to
depend on kx in any manner that is not singular as kX + 0.

The second order potential is now found from Eqs. (14) and (19) to be

B w
%2 © 3gkz (z + C))exp(2iut) [exp(-2iy;) + exp(-2iy,)]
2 (B—O - L) exp (2iut) (expl-i(y; * v,)]
16 272 P wt) {exp A7)
X
+ (-1 + o*) exp [-i(wl + ¢2)k/k2]} + CC (24)

where

wl = kzz + kxx

¥, = kzz - kxx (25)

The foregoing expression for 9y satisfies the wall conditions, Eqs. (10b),

At this juncture, ¢, does not satisfy the boundary condition, Eq. (10c), S
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which specifies that there should be no second order contribution to the

4
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AR

'.'

p{ pressure at z = 0. This condition could be satisfied by appropriate selection
,l
. of the coefficients C1 and D*, However, both of these describe homogeneous -
solutions for 9os and they are not singular as kx » 0. Thus, they represent
o
effects that are O(ez) at all locations. In contrast, observable distortion -
phenomena are associated with second order terms that grow with increasing :
distance. Therefore, setting
C1 =D* =0 (26)
i
3
' leads to insignificant errors, The corresponding potential function then
LE.‘ obtained from Eqs. (8), (11), and (24) is
c2
o = ¢ g exp(fut)[exp(-iy;) + exp(-iy,)]
2 8ov .
*e 3o 2 exp(2iwt) [exp(-Ziwl) + exp(-21¢2)]
z
S2dw Bo 2y i) (exel-tln, ¢ 0)]
© 16 272 P PL=Tlby ¥ 92
x A
- expl-i(py * wp)k/k, Ty + CC + 0(c) (27)
where 0 52 )} refers to terms having that order of magnitude at all locations.

4, EVALUATION OF THE PRESSURE
Prior formutations of nonlinear propagation using the velocity potential
have generated the potential in the form of a separation of variables

solution. Specifically, the expression was a product of functions of each
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space variable and time, In that situation, it was necessary to consider
individually the state variables of particle velocity and pressure.

The present case is different because the potential is now represented as
two planar waves, each of which is described by a single propagation distance
parameter. In general, proper behavior of the expression for pressure in a
simple planar wave ensures comparable results for the other state variqbles.

The pressure is related to the potential function by Eq. (). Omission of the

quadratic products in that relation ignores terms that are uniformly 0(52) .
which is comparable to the error in Eq. (27) for ¢ . Thus,
P _ .1 3 2
2" "2t 0e)
Po”o 0
= - e ep(iut)lexp(-iv)) + exp(iy,)]
1 2. k2 .
-5 ¢ 18,5 2 exp(21mt)[exp(-21¢1)
z
12, K
+ exp(-21'lb2)] -8 € (Bo ? - 2) exp{2iwt)
X
x {expl-i(p; +v,)] - exp [~3(p; + v,)k/k )}
2
+ CC + 0(e") (28)

The first set of 0( 52 ) terms grows with increasing z in all cases, and
the second set grows when k,/k is very small. Such functional behavior is a
result of using z and x as position variables, neither of which consistently
match the spatial scaling of the nonlinear processes. In order to ascertain

the correct spatial dependence, a near-identity transformation in the form of
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a coordinate straining is employed. A different transformation is introduced
for =2ach wave variable ) and Wye

The presence of 0(52) terms in Eqs. (27) that depend on Wt
indicates that the waves interact. Further examination of the form of Eq.

(27) suggests the trial transformations

wj = a; + € [Fj(al,az) exp(iwt)

+ ?5(01’32) eXD('iwt)] * cees j = 1’2 (29)

where the complex conjugate term, denoted by an overbar, is introduced in
order to ensure that the transformation is real. Substitution for b and vy

in Eq. (28), followed by expansion in Taylor series in powers of ¢, yields

P

6%

5 = -‘% ci exp(imt)[exp(-ial) + exp(-iaz)]

%gz[rl exp(2iut - ia)) + T, exp(-ia)) (30)

+ Fy exp(2ivt - iaz) + ?é exp(-iaz)]
2

2 . k . .
ig, ?; z exp(2iunt) [exp(-21al)

1
16 €

kz

o ;f - 2) exp(2igt)
X

+ exp(-21a2)] --% ez (8

x

{eXPC'i(ul + 62)] - eXP['i(Gl + az)k/kz]}

+ CC + O(ez)
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The task now is to determine the functions F1 and F2 that cancel all
O(ez) second harmonic terms which grow with increasing z, For this, the terms
that depend on ay *a, are apportioned equally between F, and F2' The

appropriate choice is found to be

2

igok 1 k2
F1 = -7 kz 2z exp(-aal) -7 (Bo ;5 - 2) {exp(-iaz) (31)
X
. k . k
- exp [-ia (== 1) -lay, = ]
z z
isokz . 1 k2 .
F2 = -7 . z exp(-aaz) - z-(s0 ;5 - 2) {8xp(-101)
X

. k . k
- exp [-1a2 (E_ -1) - iay )]
4 4

These straining functions do not cancel all 0(52) terms in the
pressure, The remaining terms, which are created by the complex conjugates of
F1 and FZ' contain combinations of the ay and ay variables. Their presence is
not a problem, because they are independent of t. Their role is to cancel a
mean value of the pressure that is created by the cordinate transformation,

[t is convenient at this juncture to write the coordinate transformations
and pressure resulting from Eqs. (28) - (30) in real functional form. The

pressure is governed bv

..............................................

......
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where
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i

]

[sin{ut - a) + sin(ut - az)]

~Nojm

+

2
1 2 K
_8. € (BO -k—é- - 2) {2 COS(GI - 02)

X

cos [2&1 - -E—z- (cx1 + “2)]

1}

cos [20:2 - t—z (al + “2)]}

k.z + k x
z X
2
1 Kk .
a) +5 € By —kz Z sin(wt - a.l)
1 k
3 c(B ? - 2) {cos{wt - 62)
X

cos [wt - ay - (%; - 1) (a1 + uz)]}

kzz - kxx
2
1 k .
a, + 3 €8, E; z sin(wt - a2)
1 %
-5 ¢ (8, :5 - 2) {cos(ut - “1)
X

cos [wt - ay - (%; - 1) (al + 02)]}




The foregoing relations fully define the pressure. The value of p at
specified x, 2z, and t may be determined by solving Egs. (33) simultaneously
and then using those values to compute p. It

for the values of a, and a

1 2’
will be noted that the terms in which @ and ay couple do not explicitly grow
with z. However, their magnitude increases as kx/k + 0, so the spatial
beating phenomena created by this interaction takes on the appearance of

growth in the limit. This matter is treated in detail in the next section.

5. ASYMPTOTIC TRENDS

Equations (32) and (33) are generally valid, but examination of the
behavior at limiting values of k,/k provides important insights,
For kx/k << 1 (wL/c0 >> 2n), the coordinate transformation may be expanded in
a power series in kx/k. First, apply the identity for the cosine of a sum to
the last term in Egq. (33a).

1 K2
vy T et B, K z sinfut - o)

V]

k . 1,k
+ e(so ;5 -« 2) sinfet - ap - 5'(?; - 1)((31 + Ol2)]
X

X sin [F (5= - Doy + a1 (36)
r4

Since k/kZ > 1+ kx2/2k2 + hess the leading terms in a Taylor series

expansion of Eqs. (33) are

1 . 1 .
wl ~ Gl + 'é‘ eBokZ S1n(mt - (!1) + —4- eso(al + az)s'ln(mt - az) (356)
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When the same operations are performed on Eq. (33b), the result is

1 .

by ~a, t 3 esokz sin(wt - az)
1 .
t7 eBo(al + 0.2) sin(wt - al) (35b)

According to these relations the values of ay and a, may be estimated
as a; =y + 0(e kz). Hence, the factor s(a1 + az) may be replaced
by g(¢1 + wz) 2 2¢ kzz , which is approximately 2e¢kz because of the smallness

of kx/k. Thus, the coordinate transformations have the common limiting form

a. +-% €8 k2 [sin(wt - a;) + sin(wt - 62)]

Vi ~ %y
zagt esokz sin (wt - 31—;;22) cos (zl_%_ii) (36)
from which it follows that
¥y -, = 2 kxx ~ e - a,

“1 + a ay - az)

, 2
bty = 2 kzz ~ap ta, Zeeokz sin (wt - ——-7?—-) cos (—__TT__' (37)

The same analysis is now applied to Eq. (32). Series expansion in powers of

kx/k yields

t
®
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P _-=< [sin(wt - a,) + sin(ut = a,)]
c 2 2 1 2
pO o .::'_.'."
12, i R
! tFe (Bo k—z- - 2){2 Cos(a1 - az) - COS[(cz1 - 0.2) !-:.‘_.‘
X “}-::_.:
k2 y k2 ] =
. - ——{a, + a,)] - cos [(a; ~ a,) - =5 (a, + a,)]} NS
2k2 1 2 1 2 2k2 1 2 :_S'i;
LA N ..
a a Xy = O R
~ e sin(et - ——1—2—3) cos(—l-z———z) (38)
The next step is to substitute the first of Eqs. (37) into the foregoing, ;‘
and to use the resulting expression for p to eliminate oy + @y between the '
second of Eqs. (37) and Eq. (38). The pressure expression that is derived in ".-.‘,-.i:_
e this manner is -.
\. ..\_.1;
—9—2 ~ ¢ sin {ut - kzz + aokzp) cos (kxx) (39)
o Po%
7 A ’

If kx z 0, this expression reduces to the well known solution for a
planar finite amplitude wave at moderate amplitudes [18]. For very
small kx/k, the signal described by equation (39) is a quasi-planar wave.
The distortion is measured by the value of BOkZp. the change in the axial
phase variable from its value wt - kzz in linear theory. The wave is not .
truly planar because the amplitude varies with transverse position
as cos(kxx). Comparable phenomena are encountered in the far field of
cylindrical and spherical waves whose amplitude is not uniform in the

- transverse direction [11,19],

o Suppose that the limits of Egs. (32) and (33) for small kx/k had been 4__-T:j
T derived without considering the interaction terms (those containing :I:,lis‘
2 Ts both @) and az). The result would have been the same, except that 30 in such L

an expression would have been replaced by%so. In other words, half the
» -

)_'. T
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nonlinear effect when kx << k is due to interaction between the oblique waves.

The situation for comparatively low frequencies (exceeding cutoff) can
also be examined asymptotically. Suppose  that kx/k = 0(1) (recall
that kx < k for propagating modes). In that case the interactive terms in
Eqs. (32) and (33) are not associated with beating interactions, so they
remain 0(52) at all locations. Such effects may be ignored. The remaining

terms may be written as
- —i .1 _ - a): =
P =P+ Py 5 =3¢ sin(wt aj), j=1,2 (40a)
where
by =a; ¥ 8 72D, (40b)

The coordinate straining for each wave pj is reminiscent of that for a
planar wave, with an important exception. The nonlinear effect is measured by
the difference between the nonlinear and linear spatial phases, oy - wj . In
an jsolated planar wave, this difference is proportional to the propagation
distance, which would be (kzz_i kxx)/k for waves propagating in the direction
of either oblique wave, Instead, the distance »jarameter for each wave in Eq.
(40b) s z k/k,. 1t follows that although Eqs. (39) specify a superposition
of the oblique waves, the presence of one affects the other by altering the
spatial dependence for the distortion phenomena.

Another viewpoint for the low frequency (long axial wavelength) case may
be obtained from a different resolution. Define new strained

coordinates n, £ such that

a1=5+ﬂ: 02=§"ﬂ (41)
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Return now to Eqs. (32) and delete the second O(e) term in each, because those

terms are not growth effects when kx/k = 0(1). The variables a, and a, are

1 2
removed from the functional dependence by forming the sum and difference of

those equations after substitution of Eqs. (41)., This yields

1 K
k,2 =8 +%5 e E; z sin(wt - £) cos (n)
1 K .
k.x =n == ¢eB. -— 2 cos (wt - £) sin (n) (42) PRI
X z2 "ok, B
.t
The corresponding expression for pressure obtained from Eq. (32) is h
—L = ¢ sinfut - £) cos(n) + 0(c’) (43)
2 Y y
P c /Sl s Baany
00 SR,
The significance of this representation of the signal becomes apparent f[f
when the particle velocity is evaluated. For this, the oblique planar wave jéf f

decomposition is useful, The approximation v = p/pco is applicable to weakly
nonlinear, as well as linear, planar waves. The propagation
directions Eﬁ and Eé in Figure 1 may be used in conjunction with Egs. (32)
and (41) to represent the individual contributions. Thus

Vv =

N —

coe [ &) sinfut - g - n) +& sinfut - ¢+ n)] + O(ez) (44a)

The components of particle velocity are therefore

k
Zz .

v,=v e, =cepsinfut - g)cos(n) (44b)
kx

Ve=Yee =-Cep cos(ut - £) sin (n)
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These expressions may be substituted into Eqs. (41), with the result that the

new strained coordinates are found to be governed by

3 v
~ 1 k 4
- k.z2=¢ +%5 B -5 2 —
'._... V4 2 o] k2 Co
™. z
o~ 3 v
o 1 k X
kx =n+5 8 z — (45)
4 2 "o kxkz co

This form was derived in the earlier analysis that assumed noninteracting =
modes [10]. Constant values of ¢ and n are wavefronts and rays, respectively,
for the phase of the wave in Eq. (43). The velocity components transverse to
these lines are v, and Vs respectively, Hence, the dependence of the

F wavefronts on v and of the rays on v,, was ascribed to self-refraction in

2

the earlier work,

6. EXAMPLE :

The trends identified in the previous section indicate that at low
frequencies (kX = 0(k)) the distortion process involves only the harmonics of -
the fundamental mode for the waveguide. In contrast, at high

frequencies (kX << k) the tendency is to form a quasiplanar wave that

EE propagates like the true planar mode. Identification of these trends leaves l;
the questions of when the transitions to each situation occur, and what |
happens in the intermediate regime?

These matters may be addressed by numerical examples. Quantitative
results in general are obtained by solving the coupled transcendental Eqs. - oo

= (33) for the strained coordinates ay and ay corresponding to specified values

of x, z, and t. These values then yield the pressure according to Eq. (32).

[f desired, a waveform may be generated by incrementing wt through an

interval 2 r , and that result may be Fourier analyzed to determine the




frequency response. One simplification in performing a numerical evaluation
is that, for specified properties of the fluid, the value of p/poco2 obtained
from Eqs. (32) and (33) depends only on the independent variables kx, kz,
and »t and on the value of kL, (because k K = 2n/kL) . For the discussion
that follows, the fluid is air (o = 1.2 kg/m>, c, = M3 m/s, 8 = 1.2)
and » = 10 kHz.

A case of comparatively low frequency is illustrated in Figure 2, for
which L = 0.22 meter and ¢ = 0.0014166 corresponding to an excitation of 140
dB re 20 yPa at the origin. For comparison, the noninteractive theory, Egs.
(40), and the quasi-planar limit, Eq. (39) are also shown in the figure., The
unimportance of the mixing between the oblique waves is apparent, as is the
fact that the distortion associated with the planar theory is stronger.

Altering the frequency for the next example would change the overall
degree of nonlinearity. For example, the distance for shock formation in the
planar wave is

o = 1/(e8 k) (46)

Since the degree to which wave interaction 1is significant depends
(nondimensionally) only on the value of kL, the various phenomena shall be
explored by changing L. Thus, the next case, illustrated in Figure 3, is for
L = 2 meters, with the other parameters unchanged. The quasi-planar
approximation is now very close to the new theory.

The situation for a transitional case 1is shown in Figure 4, which
corresponds to L = 0.5 meter, Neither approximation is accurate here, The
difference between the axial phase speeds of the planar harmonic created by
nonlinearity and thé true planar mode is relatively small, This leads to

frequency dispersion in combination with the usual amplitude dispersion that

is associated with a sawtooth waveform. The effect is asymmetrical between
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compression and rarefaction; it is remarkably similar to the near field o
distortion observed for baffled transducers [16].

The relatively drastic transition from one approximate theory to another
resulting from increasing kL by a factor of 10 has a direct explanation. The
frequency dispersion phenomenon is attributable to spatial beating described
by the last terms in the coordinate transformations, Eqs. (33). The
trigonometric identity for the difference of cosines applied to these terms

shows that

-l 1) (g +a))

cos(wt - “i) -~ cos [wt - a
z J

i

. k . SR
= -2 sin [(aj + ay) (F; ~ 1)] sin [ot i1?5!

1 1 K - . . N
+7(“J-ai)-§(aj+ai)r;]; i, = 1,2, 1#] (47)

The first sinusoidal factor is independent of time; it governs the

wavelength of the beats. When the argument of that sine term is very small
compared to x, the factor is well approximately by (aj + “i)(k/kz - 1). . . R

Since a, and a, may be approximated by kzz, small values of the aforementioned

1 2
argument correspond to cumulative growth of the frequency dispersion effect.

It follows that the prominance of frequency dispersion is indicated —- ,,_,;J

by n/[ZkZz(k/kz - 1)]. In contrast, the significance of the sawtooth

distortion effect is measured by the ratio of the axial distance z to the

planar shock distance o. A comparison of the two nondimensional factors

indicates whether frequency dispersion will be noticeahle in the presence of

sawtooth distortion. Thus, define a beating parameter B according to
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g = Z/a
w/l2kz(k7k, = 171

1 - (1 - kx2/k2)1/2

] (48)
2,,2,1/2
(1 -k ~/k%)

Z g (k)%

This parameter is 5.08, 0.05, and 0.798 for Figures 2-4, respectively. Cases

where B is substantially greater than unity can be anticipated to be well

described by the earlier noninteractive theory for duct modes, whereas values

that are much less than unity will closely fit the planar wave approximation.

LBl A oa o —
D )

Another aspect of the distortion process is displayed in Figures 5 and 6, ;' i
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which are waveforms at off-axis locations. The line x/L = 1/4 is a node

according to linear theory, as well as the quasi-planar nonlinear

o

approximation, However, Figure 5, which corresponds to such a location, shows ik"‘

that only the odd harmonics are nulled in the oblique wave theories. Hence

‘.
.
e
el
L :h
2 -

the fundamental frequency of the signal at the "nodes" is twice the excitation
frequency. Note that both oblique wave theories indicate that the tendency to
form a sawtooth profile is still present.

The nulling of the odd harmonics was explained in the earlier analysis of
the plate problem as being a result of self-refraction [4,6]. The rays in the
non-interactive theory were shown to be distorted in the direction of the

transverse velocity component. This caused the nodal ray to cross the axial

line of zero linearlized pressure twice per axial wavelength, thereby setting
up the second harmonic signal. It is apparent from Figure 5 that this effect
also occurs in the presence of frequency dispersion resulting from interaction
of the oblique waves. § ;;:u

A waveform for a general 1location appears in Figure 6. The even

harmonics are more prominent than they were in Figure 4 because the odd

harmonics are lessened by the proximity to the nodal line. This effect is {”;' q

'
’

accompanied by amplitude dispersion, as evidenced by the tendency to a
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sawtooth profile, and by frequency dispersion, as indicated by the asymmetry

between compression and rarefaction,
' -
' A different perspective is offered by the amplitude and phase .

distribution curves in Figures 7-9, These curves were obtained by Fourier

;' series decomposition of the computer waveforms into -
i
Po= 1 Pysinlnalt - t) - x,di x; =0 (49)
°6%o n

l where tg is the arrival time of the fundamental in the interacting oblique
| wave theory. The amplitudes p, are displayed for the three nonlinear

theories. However the phase lags X are displayed only for the latest theory L
if -- they vanish in the other descriptions in which the waveform distorts -
. symmetrically,

Although only three harmonics are displayed in Figures 7-9, their trends A

ii are a'so indicative of higher harmonics. The earlier observation of the i_

increased relative contribution of the even harmonics in the vicinity of the -
: “nodal” 1ine x = L/4 is evident in Figures 8 and 9. In addtion, Figure 7 -
.‘ shows that the phase of each harmonic tends to 1lag behind that of its -
Ei predecessor by a uniform amount that increases as the signal propagates. This a
?f effact was also predicted for sound beams [20], whose waveform in the near f?
;; field is much like Figure 4. ) -
E 7. CONCLUSION
ii The excitation of the true planar mode, which provides a mechanism for
E: the interaction of the oblique waves forming the fundamental symmetric mode,
g& has been shown to be significant for large values of kL. In the 1limit,
i; multidimensionality 1is only manifested as sinusoidal variation in the

transverse direction, much like the directivity factor for nonuniform

STy
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spherical waves in the far field [19].

In the earlier (small kL) theory the modes are formed from obliquely
propagating waves whose interaction is only manifested by a change in the
distance parameter governing the distortion, If each wave were truly
independent, that parameter would have bee.. the distance over which the wave
had propagated. Instead the distortion of the oblique waves depends on the
axial distance. That theory has been shown here to be valid when the
underlying assumption of distinct phase speeds is valid. In that case, kL is
moderately larger than 2r , so that the scales with which the signal varies in
the transverse and axial directions are comparable. The transition from small
to large kL is predicted by the present theory to exhibit frequency dispersion
that is responsible for distortion of the waveform that is not symmetrical
between compression and rarefaction,

The same mechanism can be expected to enter into other situations in a
waveguide. For example, suppose two modes are excited. If they have
different phase speeds, they superpose according to the noninteractive theory,
(10]. If the two modes have identical phase speeds, the modes combine to form
a nondispersive group, for which the earlier theory 1is also valid. In the
transitional situation, the two modes have phase speeds that are nearly
jdentical. The interaction of such modes may be anticipated to lead to

frequency dispersion phenomena of the type identified here.
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List of Captions

FIG. 1 Geometry of the oblique waves.

' FIG. 2 Waveform on-axis at z = 3.05 m for 140 dB at the origin, L = 0.2 - e

m, w = 10 kHz,———: Interacting waves,— — —: Noninteractive L L

) theory;— — —: Quasi-planar wave. N
. FIG. 3 Waveform on-axis at z = 3.05 m for 140 dB at the origin, L = 2.0 -

N m, « = 10 kHz, ———: Interacting waves;— — —: Noninteractive N S

theory; — — —: Quasi-planar wave. »a

FIG. 4 Waveform on-axis at z = 3,05 m for 140 dB at the origin, L = 0.5
m, w = 10 kHz. Interacting waves;— — —: Noninteractive

theory; — — —: Quasi-planar wave.
g FIG. 5 Waveform at x = 0.125 m, z = 3.05 m for 140 dB at the origin, L = 0,5 -
m, w = 10 kHz, ————: Interacting waves;— — —: Noninteractive
theory; — — —: Quasi-planar wave,
FIG. 6 Waveform at x = 0.1 m, z = 3.05 m for 140 dB at the origin, L = 0.5
m, w = 10 kHz, Interacting waves; — — —: Noninteractive ) .
theory; — - —: Quasi-planar wave, _ IS
FIG. 7 Axial dependence of frequency response along x = 0 for 140 dB at the
origin, L = 0.5 my w = 10 kHz, —————: Interacting waves; — — —:
Noninteractive theory; : Quasi-planar wave,
FIG., 8 Axial dependence of frequency response along x = 0,1 m for 140 dB at
the origin, L = 0.5 my w = 10 kHz, —————— : Interacting
waves; — — —: Noninteractive theory;— — —: Quasi-planar wave.
FIG. 9 Transverse dependence of frequency response along z = 3.05 m for 140
dB at the origin, L = 0.5 m, « = 10 kHz, ————: Interacting
waves; — — —: Noninteractive theory;—- — —: Quasi-planar wave.
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) FINITE AMPLITUDE SOUND BEAMS RESULTING FROM NONLINEAR VIBRATION OF
' A CIRCULAR MEMBRANE UNDERGOING AXISYMMETRIC RESONANT EXCITATION

| ‘ J. H. GINSBERG

School of Mechanical Englneering
Georgia Institute of Technology
Atlanta, Georgia

Summary fuﬁuji

I This paper analyses the interaction between a vibrating circular membrane 'Y
contained in an infinite baffle and the resulting sound field radiated :
into a fluid medium contained in the half-space above the membrane. The
case of resonant excitation of the membrane leads to nonlinear coupling
between transverse and in~plane displacement. Nonlinearity within the

o fluid medium is described by a recent general treatment of finite

i t amplitude sound beams resulting from boundary motion. The vibratory

response of the membrane is evaluated in a perturbation technique based on

the modes of free vibration. The results give amplitude-frequency rela-
tions for the plate that account for the inertial and damping impedances
of the fluid, as well as expressions that may be solved for the pressure

. 8ignal in the fluid.

Finite Amplitude Effects in Acoustic Radiation

Consider a circular membrane of radius a that is fixed at its edges

' ' to an infinite baffle. An excitation at frequency w close to a natural
:: frequency is applied on one side, and a fluid medium occupies the half-
;; space on the other side. The speed of sound and density of the fluid at
ti ambient conditions are ¢, and p,, respectively. Dimensional cylindrical
i ‘ coordinates are R/k and z/k within the fluidJWhich occupies z > 0, and

- dimensional time is t/w, where k = w/c,. A recent study described the .
. effects of material and convective nonlinearity on the acoustic radiation s;
- resulting from an arbitrary motion on the boundary [1]. Suppose that the f' X
; . normal velocity on the boundary is E: :~:
% v, s = %Y € co F(R) exp(it) + c.c. (1) .
é ‘ where ¢ << 1 is the acoustic Mach number and t‘(R)/Rw2 is bounded for . L;:.
;j large R. Then the pressure at any (R, z), omitting a mean value correc- 5 s
ZE tion term, was found to be described by g 5
. )
by ! i_ e
s
:.3.-;?-:-‘;5‘;3:135:»;:: e e T e - T T
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p = % cp°C°2 [ my exp(it - ug) Jo(ma) dm + c.c. (2)
ou

In general, c.c. shall denote the complex conjugate of all preceding
terms. The parameters m and u are transverse and axial wavenumbers,
respectively, J,( ) denotes the Bessel function of zero order, and V is

the Hankel transform of the spatial pattern f(R).

2 /2

/2 - 1) ifm>

a2 it mct & uo=(m

we=1i(1 -

v = f R f(R) Jo(mR) dR (3)
0

The parameters {a, £) are strained coordinates defined in implicit form by

N
n

£ - meBoE [(mV/u) exp(it) erfc[(u£)1/2] + c.c} J,(na)

a + meB,E {(mv/u) exp(it) erfc[(uﬁ)t/z] + c.c} J, (aa) (4)

0
"

The evaluation of the response of the fluid-membrane system requires that

eqs. (3) and (4) be interfaced with the equations governing the membrane,.

Equations of Motion for the Membrane

An elastic membrane undergoing finite deformation due to a resonant
excitation was studied by Chobotov and Binder [2]. Several shortcomings
of the earlier work shall be corrected here. Small errors associated with
using an assumed mode function shall be addressed by employing the exact
Bessel function mode. Furthermore, the study here shall describe the
situation for resonance of any mode, rather tha; only the fundamental.
The last matter is that the resistive and reactive portions of the fluid
impedance will be derived analytically. 1In Ref. [2] the acoustic im-
pedance was based on a low frequency approximation that did not account
for diffraction.

Chobotov and Binder began with a derivation of displacment equations
of motion that accounted for in-plane deformation and geometrical
nonlinearity. Examination of these equations reveals that the membrane

displacements are scaled such that

transverse displacement = ¢ E ; in-plane displac:ment = 52 E (5)
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Based on these definitions and the fact that the acoustic Mach number e in

eq. (1) is very small, the equation for in-plane motion may be rewritten

from its original form in [2] as

2 2 2 .2
3 112 13 3", (- w) e, 3%
wlE w3 wG) T & o 2 5.2 (6)
u
The corresponding equation for transverse motion 1s
RETRCTINLI A VI VISR "I R I
R 9R af e, aR OR 3R 2 oR
pl,. 2 42
v L [Q(R) cos(r) - =221 - %o 2 (1)
eka PoCo cw ot

In the foregoing T = pocoza/o,h (h is the thickness of the membrane), Q(R) ;iifj'“
is the radial profile of the excitation applied to the membrane, and

2111/2 172
vllve s

c, = [E/p[1 - c, " (go/p) i €y = (cw/cu)2 (8)

Note for later use that cw << cu. In addition, the magnitude of Q is
required to be sufficiently small to induce a transverse displacement

whose peak velocity actually is a small fraction of c,. s_“

Vibratory Response

The eigenfunctions for a membrane whose edges are fixed are

Qj = Jo(n) where n = AJR/ka and JO(AJ) = 0 (9)

= 2,405, A, = 5.520, A. = 8.654. Proximity

Some approximate values are A 3

1
to resonance is specified by w = A ,c /a.

Jw

In general, the transverse displacement may be expanded in a series

o

of modes. When the excitation is close to one of tre natural frequencies,
the corresponding mode may be expected to dominate the response. Since
the nonlinear terms in eq. (7) are 0(62), the transverse motion in this

case should satisfy

W = oJ wj(t) + czQ(R. t) (10}

-~

where w(R,t) is orthogonal to ¢, £ over the interval 0 S$ R s Kka.

J



Supstitution of eq. (10) into eqs. (6) and (7) shows that all deriva-

tives have comparable magnitudes. The largeness of c, relative to C in
combination with the resonance of w, makes it permissible to neglect the
inertia of in-plane motion. An expression for u may then be found
analytically. Toward this end the 0(1) term for w in eq. (10) is sub-
stituted into eq. (6). Using the chain rule to replace.R by n results in

an inhomogeneous ordinary differential equation for u.

A,

n(nu)] = - 5—% wj2 [%; [J,(n)2] + Ll;:—ﬁl [J,(n)z]l (11)

o)1
Q)lQ)

9
5

This equation may be integrated twice, after which the constants of in-
tegration are selected so as to satisfy the condition that u = 0 at R=20
ond R = ka. Repeated application of the recursion relations for Bessel

functions yields the following expression.

A,
N R
u a wj U
2
)

; - Jum - a,m? 2

U= g0+ v) Jo(n) dy(m) + gv o [3,0

Amplitude~Frequency Relations

The equation for wj(t) is obtained by substituting egs. (10) and (12)
into eq. (7), then applying orthogonality of w with respect to °j' The

result is
2 2 4
A 2 2 3w 2 X
1 i wa J £ J 3
— () I, 3] [5) =2+ w ]+ = (=) s, v
2 ka J J xjcw atz J €, 'ka J
A p| X,
r J z2=0 . T J
* T J n 5 Jo(n) dn “ia cos(t)‘] n Q Jo(n) dn (13)
0 PoCo 0

where GJ is a coefficient of nonlinear elasticity that is found to be

A
5 - [ Hu [+ v) 9, (2 = 20 do(m) 3, (m] + %n It e awm
0

values of this parame‘2r for the first three resonances when v = 0,29 are
6]- 0.08206, 62 = 0.11996, 63 = 0.14069. Chobotov and Binder used the
approximate fundamental mode 01 =1 - (R/ka)2 to obtain 61 = 0.08424,

Because of the smallness of the nonlinear term in eq. (13), w, will

J
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be harmonic in the first order approximation. Let A be the complex

- amplitude, and let W denote the dimensional transverse displacement found

- from eq. (5).
E -4 exp(it) + Cc.Cc. ; W = £A Jo(n) exp(it) + c.c. + 0(52) (15)
- w‘j > p .C. 3 5% Yo .C.

- The Hankel transform V of the normal velocity at the membrane may be
evaluated by comparing the (dimensional) time derivative of W to eq. (1),
f This defines the shape factor f(R) for R < ka. For R > ka, f(R) = O

' because the baffle is stationary. The transform is found in this manner

to be

ka
V==-AGC; G-= I R JO(XJR/ka) Jo(mR) dm (16)
0

The coefficient G, which may be evaluated in closed form, leads to an
expression for p according to eq. (3). The acoustic loading applied to
the membrane is readily found from that expression, because £ = 0 and a =

R at z = 0, see egs. (4).

b ol

-1 poco2 €A I ng exp(it - uz) J,(mR) dm + c.c. a7
z=0 2 o ¥

The final step leading to the amplitude-frequency relations is to use
i the method of harmonic balance to equate all terms in the equation of
motion that are proportional to exp(it). (This procedure is equivalent to
removing secular terms in singular perturbation schemes.) The equation
obtained in this manner relates the amplitude €A to the frequency w and

the generalized modal amplitude Q, for the excitgtion.

J

3 2 * . . A
2 35 . eoA°A 3
(1o rrgi =) - (322-) ] e J 5 =T Boq, 08 R
i%w 2e°[kaJ,(AJ)] y J N

*
where eA denotes the complex conjugate., The coefficients Ym and Yd are

reactance (added mass) and resistance (damping) impedance coefficients,

respectively, resulting from the acoustic¢ radiation.

1 2 P
2 I mG PRI
- Yy " dm poete
e d 2 2 _.2\1/2 Lo
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® 2

2 m G .
Y = dm (19)
T 172
™ va xJZ J,(Aj)z f1 (m° B

Equivalent expressions were derived by Bouwkamp [3] by using a scattering
integral.

The real and imaginary parts of eq. (18) may be solved for the mag-
nitude and phase of €A; the latter represents the phase lag of the
response relative to the excitation. Then the acoustic signal may be

evaluated by substituting the value of €A into egs. (16) to form the
Hankel transform V.

Results

Figures 1 and 2 depict the resistance and reactance coefficients as a
function of ka. The peaks in Ym are centered around ka = AJ for the
respective resonances, whereas Yd rises almost linearly beyond those
locations. Suppose that the fluld is water, in which case cw/c° << 1 (o,
<< poco2 because o, cannot exceed the yield stress), Furthermore, note -

that ka = AJ cw/co when w = Wy and that ka >> 2n for closely confined

sound beams. It follows that resonant excitations at high ka values for

beam forming only arise for very high order modes.

1 - 1
7 ™ 1\2
o Q O 1 ORI,
Qo Q 4t NACa
C c R A
2 - 2 ¥l ]
.!’ -1 0 ] _-1‘ M [ :‘..-‘
v 8 1 :'|| f -
O ] 2
o i - o 4 ’l,.. \ "... - " *_'“'1
(o] o I';u T l\ﬁ".‘l‘ L | T
0.0 0.0 10.0 20.0 o
ka N B
< . K
Fig. 1. Resistance Y, for Fig. 2. Reactance Y_for
the three lowest modeés., the three lowest moges.

The dependence of the harmonic amplitudes forming the pressure
waveform along the axis of a sound beam is depicted in Figure 3. Only the

fundamental frequency, marked #1, 1s treated by a linearized analysis. - f}ff‘:

-t
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The ccrresponding result for a plston (uniform velocity) 1s shown in
Figure 4. In both cases ka = 40 and € = 0.00102, which produces a maximum

sound pressure level in the piston case of 250 dB re 1 wPa. The fluctua-

tions in the piston case are due to diffraction effects that alternately RO
reinforce and cancel the fundamental frequency in the near field, z < Y.
(ka)2/2ﬂ. Diffraction effects are much less significant for the membrane -

because the particle velocity is continuous across the edge, 50 the

propagation curves are smoother, and the peak values are lessened.

T o o
52 - 1 o
- .
% * -
ge) T Q - -
t
= ow 1
= i I N -
Q. =
£ o
O 4 _g __________ EE -
Q| AT 0o -2 '
o s ——r———1— o ~f- "Al.... D T,
T o it Fohnall I
0.0 200.0 400. L
e by 0.0 . 200.0 4
axial distance z o 00.0 T
axial distance z
!
Fig. 3. Range dependence of Fig. 4. Range dependence of i,;
the amplitude of the three the amplitude of the three .
lowest harmonics in a sound lowest harmonics in a sound -
beam generated by a membrane, beam generated by a piston, j: .
as a fraction of p,C,2. as a fraction of p.c,?. .
Lo
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83, Fourier serics representation of finite am; litude sound beams. Hsu-

. . Chiang MiaoandJerry H. Ginsberg School of Mechanical Engineering,
e Georgia Institute of Technology, Atlanta, GA 30332}

Out)

3
’

An earlier analysis of finite amplitude sound beams derived general

expressions from the behavior in the off-axis 1egion [J. H. Ginsberg, J.

f Acoust. Soc. Am. 76, 1201-1214 (1984)]). An asymptotic analysis of the

) region very close to the beam axis confirms the earlier result for the veloc-

ity potential. The signal is rewritten in a form that makes the contribution

of each wavenumber in a continuous spectrum appear to be the sum of two

- . waves traveling transverscly, as well as axially. The coordinate transfor-

- mations required to renormalize this form lead to a temporal Fourier

e senes that is reminiscent of the Fuoini solution for finite amplitude planar

waves. The comp’ex amplitude of each harmonic is obtained from an

-— .ntegration over the transverse wavenumber. The computational effi-

L- ciency of this repres. ~ation permits extensive evaluation of propagation

- ' properties. An example ¢ mpares the signal derived from a piston to that

: ' obtained rom the one-ditnensional assumption that p = pcv, on the

i boundary, which has been emg loyed in prior investigations using approxi-
- - mate parabolic quations. [Work supported by ONR, Code 425-UA.]
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$4. Finite amplitude acoustic waves generated by a baffied dual frequency
transducer. Mosaad A. Foda and Jerry H. Ginsberg {School of
Mechanical Engincering, Georgia Institute of Technology, Atlanta, GA
30332)

In a previous presentation [J. Acoust. Soc. Am. Suppl. 1 75, $92
{1984)}, a nonuniformly accurate expression for the velocity potential was
derived using a singular perturbation procedurc. The lincarized signal
was represented by a dual King integral, and the cumulative growth was
evaluated asymptotically. In this paper, the renormalization version of
the method of strained coordinates is employed to annihilate the secular
terms. The result is a uniformly valid expression for the acoustic pressure
at all locations preceding the formation of a shock. Additional discussion
is devoted to a simpler model that interfaces the dual frequency King
integral in the nearfield with nonlinear spherical distortion in the farfield.
The results obtained from both descriptions in the case of a parametric
array (proximate primary frequencies) agree better than earlier theories
with previous measurements performed for a wide range of parameters
[Work supported by ONR, Code 425-UA.]
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