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I. BACKGROUND ,-

Numerous evaluations of the acoustic field radiating from a
baffled transducer have appeared in the published literature. An
important feature is that these theories are applicable for a
wide range of parameters. Approximations, such as those describ-
ing an axisymmetric sound beam in the far field (Fraunhofer zone)
can substantially reduce computational cost, but they are not
necessary. Linear theory is valid when the source level is ,.
sufficiently low. Even then, diffraction effects in the near
field, which lead to localized cancellations and reinforcements,
complicate the task of correlating near field measurements to far
field propagation properties.,,,

The situation becomes more complicated when one tries to
increase the propagation range by raising the source level. It
is logical to try to overcome effects such as dissipation and
scattering by generating higher level signals. Such attempts
inevitably lead to a greater role for nonlinear effects. One of
the effects of nonlinearity is to divert energy from the fun-
damental signal to higher harmonics, which is equivalent to
lowering the efficiency of the transducer. In the face of these
concurrent effects it is apparent that developing a unified
theory for nonlinear effects in sound beams is a challenging
matter. However, such a theory is necessary if understanding of
the distortion phenomena is to be enhanced. A prime example of
the prior lack of insight is the observed differences between the
distortion of the compression and rarefaction phases of a signal,
which had no analog in simpler types of acoustic waves.

A variety of approaches have been employed to study the
effects of nonlinearity in this system. One approach has relied
on a conventional perturbation solution of an approximate non-
linear wave equation. Such an analysis seems to give very good
results near the transducer face. However, it quickly breaks
down with increasing range due to assumptions that are made in
the perturbation steps.

An investigation of properties in the far field was
developed based on an approximation as a quasi-spherical wave.
Such a formulation assumes that the wave arrives at the transi-
tion to the far field (e.g. the Rayleigh distance) without
substantial prior distortion. Hence, the spherical wave descrip-
tion is inherently limited to cases where the transducer
excitation is comparitively low level. This type of analysis
also leads to certain anomalies, such as the fact that the level
of distortion is dependent on the choice for the spherical tran- 4 ,
sition distance, which may be arbitrarily chosen beyond the
Rayleigh distance.

Another approach that has been widely employed in the
Russian literature is founded on a version of Burgers' equation
that has been modified to account for spreading and diffraction.
This nonlinear partial differential equation has been solved -

numerically for several types of boundary motion. The primary
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limitation of this approach are the approximations on which the
model equation are based, and computational difficulties stemming
from rapid transition due to diffraction. An alternative treat-
ment of this nonlinear parabolic equation based on Fourier series
expansions has reduced the computational problems, but quaestions

"* regarding the adequacy of the model equation still remain.

II. RESEARCH TECHNIQUE

a. The primary goal of this project was to develop an analyti-
cal description of transducer radiation in which finite amplitude
effects, diffraction, and spherical spreading are treated consis-
tently, without limitation to a speciific spatial domain. The
technique employed singular perturbation theory in conjunction

* with asymptotic analysis.

The general approach uses the King integral in linear
theory, which is a Fourier-Bessel integral transform, to develop
the second order source terms that generate nonlinearities in the
response. There are two kinds of nonlinear effects that arise at
the second order. Some produce terms that remain bounded as the
signal propagates. (One such effect is associated with the fact
that the input from the transducer originates from a moving
boundary, rather than the much simpler description, z = 0.) The
smallness of the acoustic Mach number leads to the conclusion
that these fixed magnitude effects cannot account for measured
'levels of distortion. The other group of nonlinear effects arise

Ufrom resonance-like phenomena. These terms lead to distortion
that grows with increasing distance. Shocks ultimately form from .-..

this effect, unless dissipation is adequate to overcome the
. nonlinear distortion process. It is this cumulative growth

effect that needs to be evaluated.

N . The growth effects in the second order terms are evaluated
by using asymptotic integration techniques to identify the por-
tion of the second order terms that grow most rapidly with

" .increasing range. The aforementioned breakdown of conventional
• (i.e. regular) perturbation solutions is avoided by introducing
"_ coordinate transformations that essentially are based on recogni-
-S tion that cumulative growth is a singularity.

This approach was the basis for a variety of studies. Some
were devoted to developing efficient numerical algorithms for
quantitative evaluation. Others increased the generality of the

* transducer vibration, including linkage with the effects of
elastic behavior. Another group of studies endeavored to obtain
insight into the nature of physical processes. These efforts are
surveyed below.

3
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III. RESEARCH ACHIEVEMENTS

A. Axisymmetric Monochromatic Excitation

The analysis described in the previous section involved a
large effort to place some of the steps on a firm mathematical
foundation. This effort has also clarified the physical under-
standing of the manner in which a continuous spectrum of modes
interact to create distortion. The initial presentation [2] was
improved substantially in the published version [6, 7). Those
works compared the analytical results to series of independent
measurements. The predictions for amplitude levels of the har-
monics were well within the identifiable experimental error.
Furthermore, a comparison of waveforms showed that the analysis
does describe the different shape of the waveform in the compres-
sion and arefaction phases. The comparison also confirmed a
change in this asymmetry associated with the transition from the
near field to the far field. No prior analysis had anticipated
this phenomenon.

The original version of the computer program for this model
was quite inefficient. It required a relatively large amount of
computer memory and long execution times. Of even greater con-
cern was the dependence of the analysis on a hypothesis regarding
the nature of the distortion process far from the axis in corn-
parison to very close to the axis. Both matters were effectively
treated by a recently completed Ph. D. thesis [12, 14]. That work
developed independent solutions in each region by using differentasymptotic approximations. The signal in the paraxial region was

found to behave like a spectrum of quasi-planar waves, whereas
the off-axis signal was found to consist of spectra of inward and
outward propagating conical waves. The individual responses were

.. then matched to obtain uniformly accurate expressions.
Significantly, the results agreed with the earlier mathematical
forms. A key benefit of the analysis was that the new perspec-
tive led to a Fourier series representation that decreased
computational time by as much as a factor of one hundred.

This improved computational power was exploited to test the
theoretical predictions against several prior series of
measurements. The agreement was generally very close, with one
exception. Experiments by Gould in the late 1960's investigated
the signal very close to the transducer face at a high reduced
frequency, ka = 114. The measured second harmonic distribution * -

was quite different from the theory. This discrepancy is now
under investigation. Current indications are that the dis-

Screpancies between theory and measurement correspond to the
second order terms that are discarded in the analysis because
they have minor influence far from the transducer.

The ease with which computations could be performed made it
possible to generalize the nature of the excitation. A study of

S particular interest considered the case where the transducer is -
actually a membrane that is subjected to steady-state harmonic
excitation [11] . The response of the membrane and the surface
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* pressure are fully coupled in this situation. The analysis of
the finite amplitude sound beam was combined with a vibration
analysis of the membrane to determine all aspects of the
response. It was shown that the vibration analysis could be
safely performed without recourse to nonlinear theories for the
acoustic signal, but that the acoustic signal required knowledge
of the effects of nonlinear elasticity when the excitation was at
a system resonance.

B. Nonsymmetric Monochromatic Excitation S.

The recent analysis of axisymmetric waves [12] also con-
sidered a situation in which the transducer vibration consists of
the superposition of an axisymmetric component and an azimuthally
travelling nonsymmetric part. The latter corresponds to a spa-
tially phased rocking motion that resembles the wobbling of a
rolling coin as it falls to the ground. The analysis was much
like that for the axisymmetric case. One benefit of the greater
generality was a clarification in the task of matching the off-
axis and paraxial signals. This study is apparently the first to

r address nonsymmetric finite amplitude sound beams. Indeed,
nonsymmetric situations have not been extensively explored in the
linear case. It was shown that because azimuth dependent signals
must vanish along the beam axis, the interaction with axisym-
metric effects cannot affect the signal on-axis.

C. Dual Frequency Axisymmetric Excitation

A major generalization was achieved in analyses of the
propagation of a signal generated by axisymmetric excitation at
two arbitrary frequencies. In the limit as the difference be-
tween these primary frequencies decreases, one obtains aIU. parametric array. The analysis followed the line of investiga- .
tion originally developed for the single frequency case. The
initial study of harmonic formation [5] identified the mechanism -.-

by which the primary signals interact, but it was limited to very
short ranges. The innovative aspects of the subsequent research
(13, 15] was in the identification of the approrpriate set of..-
coordinate transformations. It is such properties that represent
the actual interaction effects. It was shown that the distortion
of each primary signal is dependent in equal part on the signal .
in both primaries.

The analytical results were prohibitive for extensive
numerical evaluation, particularly at long ranges. For this
reason, an interface with a spherical propagation model was
developed. The same type of interface had been explored earlier
for monochromatic waves [4], but had been abandoned when the
Fourier series form of that signal was identified. The remark-
able aspect of the dual frequency study was that it showed far
better agreement than earlier theories with a variety of prior L
experiments on parametric arrays. It even reproduced features in

5



the difference frequency signal that had earlier seemed to be
anomolous.

D. Validation

An initial series of experiments was performed by Dr. Mark
Moffett in July 1982 at the NUSC facility at Newport, Rhode
Island in order to obtain data for a comparison with the
theoretical model [1]. Agreement between theory and experiment
for amplitudes of the harmonics was reasonably good. The
hydrophones employed for measurement showed substantial ir-
regularity in their frequency response and no phase calibration
was performed. The discrepancies between theory and experiment
were shown to be less than the uncertainty in the response of the
transducer.

In September 1983, Moffett endeavored to improve his measure
ments by resurrecting the special purpose transducers that were
utilized by Browning and Mellen. The data was sent to Georgia
Tech in its original digital form in order to provide a complete
data base for comparison. There was a great deal of difficulty
in reading the tapes due to limitations of the available
equipment. Eventually, the data were displayed as waveforms and
analyzed for frequency content.

As the data was being analyzed, it became apparent that the
receiving hydrophone exhibited extremely anamolous behavior at
high sound pressure levels, such as third harmonic levels that
execeeded the second, and fourth harmonics that exceeded the
third. The causes of this behavior that have not yet been
identified. However, an extremely important verification was
obtained at a far field location. The signal there had decayed
to a level that seemed to be within the tolerance of the
receiver, even though the source was being driven to a high
amplitude--it was found that the measured and predicted signals
coincided at that location [8].

E. Other Viewpoints

A key aspect of the King integral for linear radiation is
that it treats the signal as a superposition of a continuous
spectrum of modes. The physical significance of the nonlinear
interaction of these modes is obscured by the lack of a discrete
mode that could be traced through the anaalysis. The continuous
spectrum of modes in the King integral arises because the baffled
system is essentially a circular wave guide of infinite diameter.

A finite diameter waveguide has a discrete spectrum of
modes. By exciting only one such mode in a linear sense, it
would be possible to follow closely the manner in which resonant
interactions take place nonlinearly. Analyses of this problem in
circular [3] and two-dimensional waveguides [9, 10] followed
steps that were suggested by the analysis of sound beams. In the

6
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circular geometry the modes excited by the nonlinearities were
. similar to the directly excited one. As a result, all of the

harmonics were in phase. This is manifested by identical types
of distrortion for the compression and rarefaction phases of a
signal.

The two-dimensional study disclosed the existence of an
internal resonance that had not been identified in earlier
investigations. Specifically, it was found that the transverse
variation nonlinearly excites the planar mode, as well as second
and higher spatial harmonics. At high frequencies, the phase I....-
speeds of the various modes coalesce, which results in nonlinear
dispersive interaction between the modes. Significantly, the
signal in this case was shown to be display waveform distortion
of the type observed in sound beams. This verifies the nonlinear
King integral approach to sound beams, which treats the signal as --
the dispersive interaction of neighboring modes in an infinite
wavegu ide.

F. Parameter Studies

The main computer program for sound beams was modified to
provide predictive capabilities for an assortment of transducer
vibration patterns f(R). Propagation curves showing the depend-
ence of the amplitudes and phase angles in the region from the
transducer to the far field have been carried out [8, 11, 14] for

* a piston transducer, in which the particle velocity across the
piston face is uniform. Results for a hypothetical transducer,
in which the pressure is uniform across the face, were also
obtained, because that had been the basis for studies using the
modified Burgers' equation. Another configuration receiving
consideration was the elastic membrane, in which case the pattern
for the transducer vibration is a Bessel function.

The effect of diffraction decreases with the progression
from the piston to the membrane configuration because spatial
transitions are less severe. It was found that, although the
fundamental frequency signal inside the Rayleigh length is sub-
stantially different between the cases of uniform particle
velocity and pressure, the second and higher harmonics were quite
close. In the membrane case, the rapid spatial variations in the
fundamental were substantially reduced, and the higher harmonics
varied quite smoothly. This could prove to be useful for ap-
plications requiring near field measurements.

A noteworthy aspect of this study is the fact that there had
been no prior extensive evaluations of phase shifts for the
higher harmonics in the near field and the transition region.
The evaluations revealed an interesting trend for the phase
angles. The higher harmonics are close in phase to the fundamen-

" tal near the source. As the wave propagates, each harmonic tends
to lag further behind its predecessor, until there is a 90' phase
difference in the far field. This is significant because a true
spherical wave also undergoes a 90'. phase shift in the transition .

7
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from the near field to the far field. The implication of this
observation is that asymmetrical distortion results from spheri-
cal transitions for higher harmonics which are delayed by the
higher frequencies. -
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locations on the axis of a 0.5 -m-diam projector driven at 60 kHz in the
NUSC/Newport large acoustic tank facility. The locations were at the
last three pressure maxima in the nearfield. a quasifarfield point at 5 m,

* and two farfield positions at 10 m and 15 m. The projector was driven at
several levels, and yielded waveforms ranging from sinusoidal at the low-
est levels and shortest ranges to shock formation at the highest levels and
longer ranges. Two different hydrophones were used, but neither had a
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berg which accounts for diffraction as well as nonlinear propagation ef-
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I would like to describe some work Mark Moffett and I have

been doing with finite-amplitude waveforms in cases where _

diffraction occurs. No doubt you are all aware of what happens

to one-dimensional finite amplitude waves, such as plane waves or

spherically-spreading waves. In such cases, the pressure peaks .

Cravel slightly faster than the troughs, and it is an easy matter

to predict the waveform via weak-shock theory. For example, a

waveform which is initially sinusoidal distorts in an antisynmetric V

way and eventually can become a sawtooth shape because the peaks

move as far ahead as the troughs lag behind. A much more difficult

. problem is the prediction of the waveforms resulting when diffraction

" .is present, as in the nearfield of a piston projector. The

. propagation is not one-dimensional. It is no longer a simple matter

to follow a pressure signal as it propagates from one point in space ,

- "to another, because the diffracted field at any point results from

contributions from several source regions.

* Diffracted fields are normally calculated via linear theory, L.

and so nonlinear effects like distortion can't be handled readily.

*' We have been working at Georgia Tech on a new approach which can

- - account for diffraction and nonlinear distortion simultaneously,

under an ONR contract. We needed some experimental data for

comparison with the theory for the case of a circular piston

projector. Mark Moffett was asked to see if he could provide some _

data. I will show you some of those results shortly. *..,.,

* L -
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<< Viewgraph 1 - Browning and Mellen Waveforms >>

First, I'd like to show the kind of thing that happens when

diffraction and distortion operate together. These pictures are

from a 1962 letter to the editor by Browning and Mellen. They used

a tiny, 8/10ths-of-a-millimeter-diameter microprobe as a hydrophone

and looked at the waveforms on the axis of a 40-centimeter square

projector driven at 150 kHz. The top left picture shows the

waveforms measured at three different levels at the longest range,

which was 8 meters. Then the next two photos down the left hand

side and the three down the right hand side show the progressive

distortion of the pressure waveform as the range was increased from

I meter to 5 meters.

Positive pressure is up in these pictures, and so you can see

that the pressure peaks are sharp while the troughts become rounded.

In other words, we are not evolving toward the sawtooth shape which

would be expected for plane or spherical waves. Diffraction and

geometric dispersion shift the phase of the harmonics relative to

the fundamental.

0: $
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<< Viewgraph 2 - Block Diagram >>

Unfortunately, we couldn't use the Browning and Mellen data

for comparison with the theory, because the theory hasn't been

worked out yet for a square projector, which is a three-dimensional

problem. We therefore decided to repeat the experiment using a

circular projector. The projector was a 20-inch-diameter array of

60-kHz tonepiltz elements made by Raytheon Sub Signal Division.

The projector was driven with 60-kHz pulses which were amplified

with one of Bill Konrad's 20-kilowatt drivers. The hydrophone

output was captured with a Biomation transient recorder, which is

actually a digital machine containing an A-to-D converter. After

capturing and storing the waveform, it was plotted on an X-Y recorder.

The experiment was done at NUSC/s large tank facility at Newport,

Rhode Island.

It would have been nice if we could have used one of the

Browning and Mellen microprobe hydrophones, but we would have had

to operate the projector just below the surface. Also, we weren't

sure any of the probes were still working. We tried three different

hydrophones, hoping that one of them would have a flat enough response

to accurately reproduce the waveform. The first was an LC-5 hydrophone,

made by Celesco, or what used to be Atlantic Research. The LC-5 is a

1/16th-inch cylinder. It is just about the smallest commercially- , ""

available hydrophone there is. The second was lent to us by Gerry

Harris of the Bureau of Radiological Health. It consisted of a

polymer membrane stretched over a metal hoop. This hydrophone

turned out not to be useful below a megahertz, apparently, because

of resonances involving the supporting hoop.

t -
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<< Viewgraph 3 Raytheon Hydrophone Sensitivity >>

The third hydrophone we had was also a polymer-type used in

medical ultrasonics, but in this case the polymer is backed wilh -

a silicone rubber absorber. This hydrophone was made by the

Raytheon Research Division and lent to us by Roger Tancrell and

Dave Wilson. This is a plot of its sensitivity and you can see

that it's not bad, but it's not really flat either. Nevertheless,

the Raytheon hydrophone turned out to be the best of the three.
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<< Viewgraph 4 - Waveforms at 2.63m>>

Here are some typical results. They are waveforms on the

projector axis at 5 meters. The waveforms correspond to

approximately 10-dB increments in drive. The receiving amplifier '.', K...

was also changed in 10-dB steps to make the signal levels

comparable. Positive pressure is up in these plots.

You can see that the waveform goes from nearly sinusoidal

at the lowest level (shown in black) to a form with sharp peaks

and rounded troughs (shown in red).

You can also see that the zero crossings on the ascending

part of the wave shifts back as the level increases. In contrast,

zero crossings are unchanged in one-dimensional waves. The rise "

in the peak pressure which accompanies the narrowing of the

compression phase is consistent with conservation of momentum,

as is the broader and shallower form of the rarefaction phase.
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<< Viewgraph 5 - Waveforms At All Ranges >>

This shows how the waveform evolves with increasing range

from half a meter to a little over 15 meters from the projector.

All measurements were made on the projector axis. The upper

three waveforms were taken at axial maxima. (Probing was done

to make sure that they were maxima). The 5-meter point is

beyond the last axial maximum at 2.63 meters, but is not yet

in the true farfield. The 10 and 15 meter distances do qualify -

as genuine farfield measurements.

These plots are for a source level of approximately 243 dB

with respect to one micropascal-meter. You can again see the

sharpening of the peaks and the rounding of the troughs as the - -

propagation distance is increased. Each plot begins at an

instant where the pressure is zero. You can see that the first

zero crossing moves back in retarded time as the range increases.

I should explain that the zero of the retarded time was determined

by referring to the signal at a very low drive level, where it was

sinusoidal.

In order to be sure that the nonlinear distortion we measured

was not due to hydrophone nonlinearity, we determined the secord

order sentitivity in a subsequent measurement. It was low enough

that we didn't have to worry about it. Also, we can see that the

waveform close to the projector is nearly sinusoidal. Since the

highest levels were measured at short ranges, the short-range

waveforms would be more distorted than those farther away if the .

hydrophone were behaving in a nonlinear way.
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<< Viewgraph 6 - Raytheon and LC - 5 Waveforms >>

Unfortunately, since we did not have a hydrophone with a flat

response from 60 kHz to 600 kHz or so, we did not know that the

hydrophone did not introduce some artifacts into the signal. Here

is a comparison of the Raytheon hydrophone (the solid curve) and

the LC-5 (the dotted curve) at the highest source level and longest

range.

The sharp rise corresponds to the formation of a shock. There

is some ringing just after the shocked portion of the LC-5, so the

Raytheon seems to have done a better job. However, the analytical

results indicate that the secondary lump on the Raytheon hydrophone

waveform is a result of the second harmonic (120 kHz) emphasis in

the hydrophone response.

In computing results of the analytical model, we found that

the computational time to evaluate the diffraction integral

became excessive at the larger distances. Also we encountered

convergence difficulties at the larger distances. Accordingly,

we focused on the predictions for the smaller ranges.
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< Viewgraph 7-Computed Waveform >>"

Here is a comparison of the computed waveform (shown in

black) and the measured one (shown in red) at 2.63 meters. The

irregularities in the analytical result arise from nonconvergence,

but the results are reliable at most time instants, r should

mention that this is pretty much the worst case. The other

computed waveforms were much more regular.

When we compare this result to the measured waveform we note

some significant discrepancies. However, we must also account

for the hydrophone response. We did not have a phase calibration

for the Raytheon. Instead, we wrote a microcomputer program that

describes the analytical result in terms of its frequency response.

-J

,ii~ q!!

" . .. .

- ' .

4



-~~~~~~~T 

7=-- 

.-.-...... 

. -- j

Ia I I \

--

C p~ f e 39111L3aL

z I

oo 058 116 F

TIM P



°..~

<< Viewgraph 8 - Frequency Response >>

A Fourier analysis of the computed waveform was used to

reconstruct the signal from the lowest five harmonics. This is

the green curve. Using the known amplitude sensitivity and

modifying the relative phases of the harmonics yielded the

result shown in black. For comparison, the experimental result

is shown in red. The agreement with the measured signal is remarkably

good.

Similar analyses for the other cases indicated that the

theory over-predicts the distortion very close to the source,

but it seems to be quite accurate beyond one transducer

diameter.
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integral describing the distortion associated with tinite acoustic Mach t

. 'numbers. That analysis was shown (M. B. Moffctt and ). H. Ginsberg, ).

Acousi. Soc. Am. Suppl. 1 72. 540 (198211 to exhibit excessive nearfield
distortion in comparison to experiment. Using the linear King integral in
its conventional complex function form, as opposed to the real function
analysis employed previously, leads to formulation of the second order
potential in terms of complex functions. Asymptotic integration of this

p potential function reveals that there may be significant contribution from

the evanescent spectrum (small transverse wavenumbersl, as well as from .
the propagating spectrum. A coordinate straining transformation de-
scribing the full spc:trum is deduced. From it, the previous analysis is
shown to be only asymptotically correct. The new analysis reveals that the ."
distortion is governed by a transformation that involves Fresnel integrals
for the propagating spectrum and the error function for the evanescent

spectrum. Some comparisons of the analytical prediction and the results
of Moffett and Ginsberg are presented [Work supported by ONR, Code
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FINITE AMPLITUDE ACOUSTIC WAVE PROPAGATION IN A CYLINDRICAL WAVEGUIDE

GINSBERG, Jerry H. and MIAO, H. C.

Georgia Institute of Technology
School of Mechanical Engineering
Atlanta, Georgia 30332
USA

Introduction

A signal propagating through a hard-walled circular duct can undergo
significant nonlinear distortion, even if the acoustic Mach number is a
small fraction. Keller and Millman [1] and Nayfeh [2] investigated this
problem under the assumption that other duct modes are not resonantly

..-excited by driven modes. The present work discloses that tlere is a non-
linear mechanism in which cumulative distortion is generated. The method .
for analyzing this phenomenon is a direct perturbation scheme using
coordinate straining transformations. Much of the development draws on
techniques used by the first author to analyze cylindrically propagating
waves [3,4]. For simplicity, only axisymmetric duct modes are considered
here. -, " -

Analytical Formulation

Let (z/k, R/k) denote dimensional axial and transverse coordinates,
respectively, for the cylindrical duct, and let dimensional time be t/R,
where £2 is the frequency of an excitation at z = 0 and k = £/c0 , with c 0
being the speed of sound in the reference state.

The nonlinear wave equation governing the potential function in
this case is

2 1) L6720(a)2 2 2(0 + (7 •O) + 0(0-

where 0 is the coefficient of nonlinearity (- 1 + B/2A for a liquid). For
a hard-walled duct the potential function must satisfy

yR1 c0 0 (2)
VR'R-ka= c 0R R-ka

where a is the dimensional radius of the duct. The harmonic excitation .....

considered here gives rise to only one duct mode in a linearized analysis,
which is the case when

v cO c J (IiR) cos t; J '(pka) = 0 (3) ""
Vz zO z"O" 0'
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where J denotes the Bessel function of the first kind of order zero. Note
that ika > 0 can be any of the zeroes of J0'"

The acoustic Mach number C is much less than unity. It is used as
the perturbation parameter for the potential function. .. ?

0 +  +  (4) -

The leading term in this expansion is

= - 1 sin(t - az) J0(iR) (5)

where the wave number a is found by satisfying the linear wave equation to
be

a = (1- P (6) -..6

Second Order Analysis

Using the first order solution 01 to form the source terms exciting
the second order potential 02 obviously leads to products of Bessel func-
tions. Such terms are not amenable to conventional techniques for finding
particular solutions. Consider instead the region off-axis where PR is

--sufficiently large to replace the Bessel function by its asymptotic
expansion. Such a region exists if ka is sufficiently large. In cases
where ka is not large, the analysis may be conceptualized as temporarily ,
removing the walls of the duct, thereby converting the system to an

." infinite half plane in z > 0. Carrying out the analysis in the fictitious
region where UR is large nevertheless leads to a response which satisfies
the boundary conditions for the original problem. -'

When pR >> 1, eq. (5) may be represented as

- 1 2 - az) cos(R ) + 0[(iR)-3/2-) sin(t az o(I )+Of(R 1 (7

" Substituting this expression into the second order part of the wave
equation yields

2

V'02 22 2 [(0 - 212) + 0 sin(2iR)] sin(2t - 2az)
at2  721R .-2

+ 0 [ (JR)-  (8)

Only the part of the particular solution which exhibits growth with
increasing z need be evaluated. The remainder of the particular solution,
as well as the complementary solution, remain very small in the entire
domain. The result is that in the region where pR >> 1, for all z,

*' -2 
=  .~ z cos(2t - 2az) sin(2PR) + 0[(IiR)- ]  (9)

The foregoing is recognizable as the asymptotic expansion for large 'iR of

80 2
2- - z cos(2t - 2az) [J0 (]R)

2 
- J0 ' (pR) 2 ] + 0(i) (10)

8a3 . . . . . . . .,.... -

..... •.*",-"..".-.
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where 0(l) represents terms that are bounded for all z. This expression
is descriptive of the most significant part of the second order potential ..--

at all pR.

Renormalization

Expressions for the particle velocity components v;, v1 and the

pressure p may be obtained by taking the appropriate derivatives of the
potential function as obtained from eqs. (4), (5), and (9). The general
form of these variables is

Ef 1(t - az, iR) + E2 z f2 (t - cz, 1R) + 0(E 2) (11)

where f and f, denote bounded functions. These expressions lose validity

when z = 0(1/), where the second order term is no longer small. This
situation is corrected by replacing the independent variables by a set of
strained coordinates. Because time appears only in combination with az, no

separate transformation of t is required. The general form of this

transformation is

az =  + .zgl(,n) iR = n + czg 2 (,rI) (12)

Equations (12) are substituted into the expressions described by eqs. (11).
-Then the functions g1 and g. may be determined by requiring that the 0(E

2 )

terms in a Taylor series expansion remain bounded for all z. The result of
this procedure is that

az = + .- z cos(t - (J1(3R))
2o2 Vi _ . %- ... .

UR =  L z sin(t - 0)Jot ( )

The particle velocity and pressure resulting from this transformation are

p0 0  p0c0  2
p=- v 0  cos(t - )J 0 (n) + 0() (14)'"P = p z ~(14).- ,,=_

vR =- c 0  sin(t - )J 0 (T) + 0(c 2 )

Discussion and Example

D Equations (13) and (14) jointly describe the signal. For the
purpose of interpreting the results it is instructive to first observe
that the coordinate transformation may be rewritten as

-" 8~0  v8 0  vR •..z + z ;iR n + yR( c) (15)

ac 0 0

Lines of constant and n represent wavefronts and rays of constant phase,
respectively, for the signal described by eqs. (14). Thus eq. (15)
describes a process of self-refraction, in which rays (constant n) are
bent by the transverse velocity. This is in addition to the amplitude
dispersion which shifts the wavefronts (constant c) in one-dimensionalwaves.

S%
.".- .. ...- . . .-.... '.'-.-. . ...-.-'i. . . . . .•-."..-.'..-. '--..-.......4.
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The waveforms in Figure 1 describe a signal in air when the funda-
mental nonplanar duct mode is excited. The corresponding sound pressure
level at the source is 156.5 dB (re 20 VPa) and ka - 9.5. Each waveform
is plotted in retarded time, such that the linearized signal for each case
would appear in the figure as one period of a sine curve having essentially .*...'-.

the same amplitude as that for the nonlinear signal. The signal at R = 6.0
shows a predominant second harmonic because the position is near a nodal
ray for the linear signal. This is one of the effects of self-refraction.

Figures 2 and 3 describe the amplitudes P of the first six harmonics
as a function of the source amplitude P0 1 Figure 2 (on-axis) is reminiscent
of the result for planar waves. Figure 3 is for an off-axis location near

* a nodal line for the linear theory. The higher harmonics grow much more 0
* rapidly than the fundamental here, as a result of self-refraction of the

nodal ray. The gap in the plot of P1 corresponds to a thus far unexplained
null when P0 = 156 dB.
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Nonlinear King integral for arbitrary axisymmetric sound beams at s
finite amplitudes. I. Asymptotic evaluation of the velocity potential

Jerry H. Ginsberg
* School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 15 August 1983; accepted for publication 22 May 1984)

- This paper initiates the derivation of a general analytical model for nonlinear effects in sound
beams driven at high source pressure levels. The excitation is generated by a planar transducer
that is in harmonic motion in an arbitrary axisymmetric pattern. The analysis develops a
perturbation solution of a nonlinear equation for the velocity potential. The first-order term,
which is derived with the aid of a Hankel transform to represent the transverse dependence, is the

King integral for a linear sound beam. Using this integral to form the source terms exciting the 4

second-order potential leads to a dual Hankel transform. Reduction to a single integral is achieved
with the aid of an asymptotic integration following Laplace's method. The second-order term that
is derived in this manner describes the tendency for the second harmonic to grow with increasing
distance from the source. This result is an intermediate step in the overall development, because
the integrand loses validity in the spectrum of transverse wavenumbers near the transition
between evanescent and propagating wavelets, as well as for increasing distance from the
transducer.

PACS numbers: 43.25.Cb

The nearfield was the specific concern of the analysis
INTRODUCTION performed by Ingenito and Williams." They employed a per-

Recent surveys' 2 have noted that the "infinite baffle" turbation series for the potential function, in which the lead-
* problem has been described by several alternative formula- ing term was described by the Rayleigh integral. That result

- tions. The specific concern in this subject is the signal gener- was then used to evaluate the source terms exciting the sec-
S ated within a fluid by small amplitude oscillations of a trans- ond-order potential. Neglecting backscattering at the second

ducer which is contained within an infinite planar boundary. order and introducing some additional approximations then
Such results are valid for very weak signals, in which case led to a description of second harmonic formation that had a

" material and convective nonlinearities are negligible effects. quadrature form.
" Two basic formulations of the linear problem are the Ray- One limitation of that analysis is that it is valid only for

leigh and King integrals. very high frequencies: ka > 100 according to Ref. 7. Another
The Rayleigh integral3 treats the signal as a superposi- shortcoming is one that is often encountered in perturbation |

tion of spherical wavelets which are generated by infinitesi- analyses. Specifically, if a dependent variable is expanded in
mal sources on the transducer face. In contrast, the King a perturbation series, then the results are only valid when the

- integral4 results from a Hankel (Fourier-Bessel) integral second-order terms are very small compared to the first or-
transform transverse to the axis of symmetry. The acoustical der ones. The analysis performed by Ingenito and Williams
medium in such an analysis becomes a waveguide of infinite indicated that the second harmonic grows with increasing
diameter. The transducer then seems to generate a spectrum axial distance, whereas the first harmonic (i.e., linear result) I -i
of guided planar mode wavelets whose strength varies with shows no such growth. It follows that these results shed light
the transverse position. The significant aspect of both qua- on how harmonics begin to form, but further extrapolation
drature solutions is that they provide a convenient frame- might lead to errors. (This seems to be the case for their Fig.
work for quantitative evaluations of the signal at any loca- 1.)

.'. tion. They also lead to analytical approximations that are Another formulation of finite amplitude sound beams,
valid in certain ranges, such as the Fraunhofer (farfield) re- which has been prominent in the Soviet literature, employs a
gion. modified Burgers' equation. The basic assumption made in

The same is not true for treatments of nonlinear effects the derivation of this equation" is that there are three spa-
which arise when the transducer is driven to large ampli- tial scales for the signal. The shortest scale is the axial wave-
tudes. One type of analysis of this question was performed by length and the longest scale describes the development of
Lockwood et al. They considered the case where the excita- nonlinear effects axially. The intermediate scale describes
tion is reasonably small, so that nonlinearity is not signifi- the variation transverse to the axis of symmetry.
cant in the nearfield. Such a restriction leads to a farfield These approximations seem reasonable for the high-fre-

-" description based on Lockwood's analysis of nonuniform quency limit. Unfortunately, solutions for monochromatic
spherical waves.' Obviously, such an analysis provides no transducer motion have only been obtained by finite-differ-
information regarding nonlinear effects in the nearfield. ence techniques. Typical of such investigations are Refs. 10-
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12, which all seem to have employed the same (incompletely Thus50 = 9 y + 1}/2 for an ideal gas, where y is the ratio of
described) computer code. It is significant that this group of specific heats. Let (R, z) denote nondimensional cylindrical
investigations have only considered situations where the coordinates laxisymmetric), with R = 0 corresponding to
boundary excitation is a prescribed pressure. Extending the center of the transducer which is on the boundary z = 0.
those analyses to cases where the particle velocity on the Also, denote the nondimensional time variable as t. The cor-
boundary is known, as is the case for most transducers, re- responding dimensional position coordinates are (R /k, z/k i-
quires a relation between pressure and velocity that is not and the dimensional time is t/w, where w is the frequency of
contained in the basic theory. Also, it should be noted that the monochromatic excitation and k = w/c, is the wave-
the small scale of some diffraction effects 3 introduces some number for a nominal planar wave.
doubt regarding the length scales assumed to derive the The dimensionless velocity potential d is related to the
modified Burgers' equation. particle velocity components by

The present investigation is a perturbation analysis, as a6 -
was the work by Ingenito and Williams, although the King V. =Co- v R = C-. i2)

. integral is used here to describe the first-order term. The 3 dz

analysis is founded on the recognition that nonlinearities The boundary condition corresponding to the axisymmetric

arise in two forms when the signal level is moderately high. motion of an arbitrary transducer may then be written in

Some nonlinear effects maintain their level or die out as the complex form as

signal propagates away from the transducer. Typical of such aI = )expit) + c.c., (3)
an effect is the fact that the transducer face represents a mov- dz = 2f(Rc
ing, rather than a fixed boundary, for satisfying continuity of
particle velocity, where f(R (is any complex function whose magnitude ap-

Order of magnitude considerations indicate that such proaches zero with increasing R. In general, c.c. will be used
effects are too small to describe the levels of higher harmon- to denote the complex conjugate of the preceding term.
ics that have been measured ... .. As is the case for planar and (Forming products of complex functions necessitates retain-

* other one-dimensional waves, 6 significant distortion phe- ing conjugate parts, rather than identifying only real parts.I
nomena stem from cumulative growth of higher harmonics. For weakly nonlinear waves, the acoustic Mach number e is
Such action is a result of the fact that the acoustic medium is a finite parameter with Ie 11. The nonlinear wave equation
nondispersive, so that higher harmonics propagate with, and governing d is20

resonantly interact with, the primary signal. (9_ 1)a ' VZ
The present analysis consistently accounts for cumula- V2 -t2 2(,8 -

dt
tive growth effects. The sole assumption introduced in the d
course of the analysis is that the nonlinear mechanism caus- + dttIV(vi) + 0 0 (4a)

ing harmonic generation has the same behavior at all loca-
tions in the acoustic field. The first part of the investigation, wheaea2

• described in this paper, obtains an expression for the first (b= 1d ( + 2

two orders of approximation of the velocity potential. The dR 2 R "R a3z- (4b) .

second part of the investigation" will employ coordinate /a 2

straining transformations to correct irregularities in the re- = i- + -

" sponse associated with the derived potential function. The
acoustic signal will be described in a quadrature form that is In addition to Eq (3), the other boundary condition for (b is
reminiscent of the linear King integral. A quantitative exam- that the signal should be either an outgoing wave or an
pie will compare the harmonic content of the waveform to evanescent wave at large z, and that it show suitable decay
measurements recently reported by Gallego-Juarez and with increasing R.
Gaete-Garreton. '5 The velocity potential is expanded in a perturbation se-

The overall analytical procedure may be traced back to ries
the author's previous investigation of two-dimensional radi- 6 = EC, + e2 tb2 + .. (5)
ation from a boundary...9 However, the use of complex The equations governing 6, and 6, are found by collecting
functional forms and the introduction of Hankel transforms T
to treat the axisymmetrical geometry require substantial al- like powers of e in Eqs. (3) and (4a). The first-order equationsare 

-

terations from previous work. - -- -

a9t
I. FUNDAMENTAL EQUATIONS (6)

The propagation speed of infinitesimal planar waves is aI, 1 )-+. c.
denoted as co, and ( - 1) is the nonlinearity parameter in a . = -2f(R )exp(it) + c.c.
the pressure-density relation at fixed entropy Equations (6) are the statement of the linearized prob-

2 " lem. The nonlinear effects are contained in 40 and succeed-
-Po P-Po 2 +.... (1) ing terms. A complete solution for 02 requires satisfaction of
PP°t ) + P0 ] the boundary conditions, which involves evaluation of the

1202 J. Acoust. Soc Am., Vol. 76, No. 4, October 1984 Jerry H Ginsberg: Beams at finite amplitudes. I. Potential 1202
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complementary solution, as well as of the particular solution III. SECOND-ORDER POTENTIAL P.

associated with the source terms arising from ib. However, The first-order solution 6, in Eq. (131is used to form the
the complementary solution is bounded and therefore repre- source terms driving 62 in Eq. (7). Forming quadratic pro-
sents a noncumulative 0 e6) contribution to the signal at all ducts of 6, requires that different symbols be used to repre-
locations. As noted earlier such effects are usually insignifi- sent the transverse wavenumber forming each term in the

__ cant compared to the observed levels of nonlinear distortion. product. Also, care must be taken to include the complex
. Thus it is only necessary to find a particular solution of the conjugate parts in the product. A quadratic product of sinu-

second-order equation. The first of Eqs. (6) provides a simple soidal terms generally leads to a term having a nonzero mean
identity for V2,. The resulting second-order equation aris- value, but the time derivative appearing on the right side of
ing from Eq. (4a) is Eq. (7) removes such an effect. The result is

V2(d = 3 (,, )1 + V.Vh (7)1.1'" "  -: |t atat d -6

II. LINEARIZED SOLUTION at

Two approaches that have been employed to solve the - 4if ((mnF. '[( -1 -Fz,.)

linearized problem, Eqs. (6), are the Rayleigh integral and 0 0
the King integral. The latter, which is essentially an inver- XJo(mR )Jo(nR) - mnJ,(mR )J(nR)]
sion of a Hankel (Fourier-Bessel) transform, is more suitable X exp [ 2it - (., +.u,)z]dm dn + c.c., (14

* for the task of evaluating 0.. Hence let

where the symmetry of the integrand has been exploited to
Jn, fn.z.Zt ,,InR Idn + c.c. (8) reduce the integration over the first wavenumber to a finite

Substituting this expression into Eqs. (6) and using the fact range. (This introduces an additional factor of two.)

that J,(nR (is a solution of Bessel's equation leads to It is consistent with the form of Eq. (14) to try to con-
struct the particular solution for 5._ as the sum of two dual
Hankel transforms. The kernel of one transform would be

S_ ', n:0,, = 0. mn Jo(mR )Jo(nR ) and the kernel ofthesecond would be mn
J(mR )J,(nR ).The following equivalent form, which utilizes
linear combinations of the aforementioned kernel functions,

d o aq, = F, explit l, leads to significant analytical simplifications.
Iak

where f' n ".. ih, f 0, dn, (I15a) .

F, I R fR J,,(nR dR (10)
2 .where

* is the transform of the icomplexi spatial excitation function 0= mO.,(z,t,m,ni[Jo(mR klolnR )
fiR ).0l

rhe solution of Eqs. J91 is a propagating wave when -J(mR )J,(nR )]dm + nf m0 2 (z,t,m,n)
0 < n < I. or an evanescent wave when n > 1. This solution is 0

', =(X [JomR ) Jo0 nR ) + J,(mR J1(nR )dm. (15b)

* where The following identities, which are derived from the
recursion relations for Bessel functions,2' are useful for eval-

S= n- . (12al uating the transverse derivatives ofd..

Satisfying the radiation condition as z- oo leads to the fol- (I + - )(mR )Jo(nR)
lowing choice for the branch cuts:

0= - (m2 + n)J 0 (mR WJo(nR) + 2mnJ,(mR Vl(nR),

u, =Jill-n n'' 2 , 0<n<l, (12b) 2 (16)
.. .- W/2' n>. + b((mR )J,(nR (

The result of substituting Eq. (11) into Eq. (8) is 2mnJo(mR )Jo(nR) (in2 + n - 4/R 2)J,(rR

~1nF\ XJ(nR 2(m/R )J1(mR WJ(nR
",= _ l jexp(it _u,zVJ(nR )dn + c.c. (13) - 2(n/R V,(mR WJo(nR).

In view of these relations, the result of substituting Eqs
This is the King integral representation ofthe potential func- into Eq. (14) and matching the integrands on either %idc t

. tion for the linearized sound beam. the equality sign is

*. 1203 J. Acoust Soc. Am., Vol. 76, No. 4, October 1984 Jerry H. Ginsberg: Beams at finite amplitudes I Pote't a
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dP 2i (m+nO. _ ,[Jo(mR )J(nR) - J1(mR)J,(nR)]

____ - ¢ - (m - n)'012 ] [Jo(mR).Jo(nR + J,(mR 1(nR)]
-r ~at """.. -

- [t4/R :,mR LJnR) - 21m/R (Jo(mR )J1{nR) - 2(n/R Wl(mR ).(nR)](,, - 012)

- 4i(F_,F1,u/.)[ (flO - I -,,, ji)J 0(mR Vo1(nR ( - mnJ,(mR (J1(nR )Iexp[2it - 'U,, +±Y,j]--+ cc. 1171 ..

If the last bracketed term on the left side of this equation The virtue of constructing the solution for 6. in the form of
was not present, it would be a simple matter to match like Eqs. (15) is now evident; any other form would not have ."

functions of R on either side. In order to address this matter. resulted in uncoupling of the equations for the transform
note that the functions 0.., and 0. are independent of R. variables 0,, and 0,2.

Conditions governing them in a specific region of R should The form of the solution of Eqs. (19) is suggested by the
be applicable for all R. This is significant because the brack- physical implication of the linear King integral, which con-
eted term causing difficulty in Eq. (171 decreases at a rate 1/ sists of a continuous spectrum of modes in a circular wave-
R faster than the other terms as R increases. The foregoing guide of infinite extent. The axis ofthe sound beam (i.e., the z
argument suggests that because the term is negligible at large axis) is the direction in which these modes propagate In
R. it should be negligible in the evaluation of 'P. and '.P2 at general, nonlinear generation of harmonics increases with
any R increasing propagation distance. Hence the particular solu-

The validity of this hypothesis might be questioned for tions may be written as
situations where n and m are small. In that case, the asymp- ',2 = az,m,n)exp[2it - Cu. -t-/,u (z] + c.c.,
totic decay of Bessel functions having arguments mR or nR (20)
might be approached at unacceptably large values of R. This -W

question may be examined by using the series expansions of 022= b(z,m,nexp[2it- .+1 sjz] +c.c., -
the Bessel functions for small arguments. Specifically, when where cumulative growth will be manifested by increasing
mR < I and nR < I, it may be shown that values of the amplitudes a and b. Substitution of Eqs. (20)

4 M A into Eqs. (19) leads to a set of uncoupled ordinary differential
...-. 11(mR dnR )2 R 2n)-2 (mR) equations for these amplitudes.

R R 2A2 R
xJ,,InR= - mn[ l - (m + n)R 2  d 2a d

2(A, +I,.)--+ [(u. +,,,-(m +n)'+4]a
+ A(5mn 2 - m 4 - n4)R-4 - (18) di dz

Thus the third bracketed term in Eq. (17) isO (in) when mR F F
- 2i-----2 fo - I - ,. + nm), (21a

and nR are small, whereas other terms in that equation are
order unity. Thus the troublesome bracketed term should d b db
have negligible influence in this region also. - - 2(u. + iF-.- + [(a. + )2 - (m - n12 + 41b

Neglecting the aforementioned term has a physical jus- dz dz -

tification. Recall that in the King integral formulation, the = F F

acoustic signal is viewed as a spectrum of modes in an infinite
waveguide. The wavenumbers m and n are merely param- At this stage, it is appropriate to recall that the analysis . ,
eters characterizing the transverse rate of variation of these of 0, requires evaluation of only the portion that exhibits
modes. It is reasonable to expect that the nonlinear mecha- growth. If the values of m and n are such that the coefficient
nism generating the second-order contributions to these of a or b in Eqs. (21) does not vanish, then the particular -

modes are described by the same differential equations at all solution is independent of z. In contrast, if this coefficient
values of R, and for all values of m and nt. should vanish, then the corresponding particular solution

When the third bracketed term in Eq. (17) is ignored, for a or b is proportional to z. (Vanishing of the coefficient is
matching like functions of R in that equation leads to equivalent to secularity in perturbation analyses of nonlinear

30 M - n)20, (m + vibrations.) It is found with the aid of Eq. (12b) that the
d.iz at n " condition of a vanishing coefficient only occurs when m = n

FF- in Eq. (I 9a). Therefore only the contribution of a needs to be
= - 2i

2
-f - I - + nm) evaluated. The magnitude of b is bounded at all z, which

means that b does not represent a cumulative distortion ef-
xexp[2it - (u, +u,,)zI + c.c., fect.

(19)
____ - -± -(m - n)'0,2  IV. INTEGRATION BY LAPLACE'S METHODat72 at -

FF The condition where the solution to Eq. (21a) grows
= - 2i---(o - I -.. - nm) with increasing z has been shown to arise as m-n. In con-

trast, regions far from m = n represent contributions that do
× exp [ 2it - (u, +,-u )z I + c.c. not change in overall magnitude with in..reasing distance.

1204 J Acoust Soc Am., Vol. 76, No. 4, October 1984 Jerry H. Ginsberg: Beams at finite amplitudes. I. Potential 1204
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* The contribution of the region around m n may be deter- Equation (291 gives the behavior of a in the region where

" mined by following Laplace's asymptotic integration meth- m = n. According to Laplace's integration technique, the be-

* od22 based on an expansion using havior at large z may be found by using that relation only. In
order to demonstrate this feature, the region of integration is

m = n - q 1 .< 1, q = 0 (1), (22a broken into two intervals. The boundary between these in-
* where 4 and q are positive because m < n for the integrals in tervals is defined to be m = n - 6, where 6 is a small finite

Eqs 1151. Note that J is a fixed parameter indicating the quantity. Then
scale of the difference between m and n. The Taylor series for
the coefficient u., defined in Eq. (12b) is found to be 0. = dO. + dO,. (31.

) .. tI,, = ,, I I - nql /p,2 - q2. 2/2u4, + (.). 22b) Because the first domain of integration does not contain the

These expressions for m and i,, lead to the following secularity condition, the oscillatory nature of the integrand

0, representation of Eq. (21a) in the region where m zzn: results in boundedness of the first integral for all z.23 This
d(a.4 . term, like comparable effects that occurred earlier, does not
d- 2P nq 2 + 0  )da contribute to the cumulative distortion process, so it is dis-

d " ,1 2,4 + dz carded. In essence, this region features destructive interfer-

- q.1 -/, + 0 (4 ')a = -- 2iF2/a . (22c) ence between the m and n waves.
In order to evaluate the second integral, Eqs. (22) and

Now observe that when q = 0 m n), the particular solu- (29) are substituted into Eq. (30). The difference between m P
and n is less than 6 in the region of integration, so m may be

a q , = (i4,,F/2p'Iz. (231 replaced by n in the Bessel function. Similarly, /i,, may be

In contrast, the general solution for a when q90 has the replaced byo, in the exponential term in Eq. (30). The inte-

form gral arising from Eq. (3 1) then simplifies to

a = A, exp(a,z) + A, exp~c'z) + 2ifl3F./q24- 2, (24) 0, = {2ifn2F'E(6,,z/3,)exp2it - 2tuz) + c.c.}

where the coefficients ar, and a, are the roots of the charac-
teristic equation governing the complementary solution: Xfd(lR (2 - dnR (2], (32)

- 2,u, (2 - nq /' - q .2 /24 ) -- q -/,, = 0. where

(25) E (6 ,z/ 3) = 1 - exp( - q2 A4 ).(d...

-5 Solving this quadratic equation yields q2(33)

a, 2=1-q 2/4, 0(+ ), A 4, + 0(A). Evaluation of the function E introduces a square root of

(26) z/y., for which it is important to account for the fact thatp.

As q--O, Eq. (24) must approach Eq. (23). Because or, is is imaginary when n < 1. Specifically,
O I and Eq. (23) has no term that varies exponentially in z, [z 1/

2 
U( .z 1I/2 (uz) 1/2

set .4. = 0. Also. because a, is 0(A -), exp(a,z) may be re- 1 " in - 112) (34) P.
placed by the leading terms in a series. The -'ndition that
Eq. 124) approach Eq. (23) then leads to where an overbar denotes the complex conjugate of the

marked quantity. Integration by parts of Eq. (33) then gives
lim [A,(l + rz) + 2iF2, /q4A 21 = (i"F12jc4)z. (27) E( ) ( )

The first of Eqs. (26) shows that this condition is satisfied at - (1/5)[1 - exp( - 6 2z/4.) V (35)
all values of z by

a , v u of 2zI3~,F~ /by 2~(28) where erf denotes the error function.
A,=- 2ifF',q-. (28) One noteworthy feature of Eqs. (32) and (35) is that the

Substituting this expression into Eq. (24) yields the general only remaining parameter associated with the asymptotic

solution integration is the integration limit 6, which is finite value.
a = (2ifoF2/q4A 

2)( 1 - exp( - qI2 2 Z/4#4)]. (29) Consider Eq. (35) as z increases while 65 is held fixed. An

The next step is to evaluate the total contribution to 02 expansion of the error function for large arguments leads to
of the value of a associated with all wavenumbers m. For this ei ('/ 2 SV..l - I ______ -6z \"
determination the first wavenumber n is held constant at an 2#p. (n--',z exp t4)' (36.
arbitrary value. The combined effect is defined by Eqs. (15) (36)
and 1201 to be E (6Az/ #) [(TI ,zI /22 ,., ] - 1/6.

0 n maz,m,n)exp [2it - (,. + u,,)z] + c.c.} The growth effect comes from the first term in E above.
-" "PLIn general, the behavior as z---o oo is said to be the "dominant

X [J0 (mR V,,(nR) - .I(mR J,(nR (1dm + 0(1). term. 22 The dominant term in 02 originates from the por-
(30) tion of the particular solution associated with the region of
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6.,

secularitv, m z n. Subdominant terms, such as the particular The aforementioned items lead to concern regarding
solution associated with m = n, have already been neglected the validity of any prediction of pressure. This would cer-
because they do not represent a growth effect. Thus the func- tainly be the case if Eqs. (37) were to be used directly. The
tion E in Eq. 132 may be replaced by its dominant term, as analysis in the next part of this investigation" overcomes
given by Eq. j361 when 1/6 is neglected. When the resulting these difficulties. It treats the response obtained from Eqs.
expression for 'P. is used to form the second-order potential (37) as the asymptotic representation for small ez' 2 and
according to Eq. (1 5al, and then combined with the first- n # 1 of functional forms that are uniformly accurate. Such .'-.. -.

order potential in Eq. 113), the result is an analysis is not applied directly to the velocity potential
because there are situations where a portion of the potential " -

6 = P dn, (37a) may exhibit nonuniform growth while the pressure and oth- '".
fn er state variable do not.

where
" n~n . , n"F , ACKNOWLEDGMENTS "-,."

0 e-/ - 1 z nR + ±ci0o _'PrAz)' This research was supported by the National Science

X< expi2it - 2,u . z)[JlnR )2 - JdtnR tFoundation, grant MEA-8101106, and the Office of Naval
Research, code 425-UA. Much gratitude is owed to H. C.
Miao and M. A. Foda of Georgia Tech. for critically examin-
ing the analytical foundation of this work.

"'An expression for the pressure may be obtained by dif- R. Harris. "Review of transient field theory for a baffled planar pis-
An e eo o h r u m b bton." J. Acoust. Soc. Am. 70, 10-20 (198 11.

! ferentiating Eqs. 137) with respect to time, but the result has R. New, R. 1. Becker, and P. Wilhelmig, "'A limiting form for the nearfield
some problematical aspects. First, it is clear that the 0)It2 of the baffled piston," J. Acoust. Soc. 70, 1518-1526j1981).

term grows as z'2 , while the Ole) term remains bounded. 'A. D. Pierce, Acoustics (McGraw- Hill, New York, 19811. Chap. 5.

Thus the second-order term satisfies the smallness assump- 'E. Skudrzyk. The Foundations ofAcoustics iSpringer-Verlag, New York,
1971), pp. 429-430.

tions inherent to a perturbation series only when z is small 'J C. Lockwood, T. G. Muir, and D. T. Blackstock,"Directive harmonic

compared to I /e. " From a practical viewpoint this limits generation in the radiation field of a circular piston," J. Acoust. Soc. Am.

the validity of the result to distances that are very small com- 53, 1148-115311973).
sJ. C. Lockwood, "Two problems in high-intensity sound," Univ. Texas atpared to the shock formation distance. Austin, Appi. Res. Lab., ARL-TR-71-26 11971).

Another aspect relating to the validity of the result is 'F Ingenito and A. O. Williams, "Calculation ofsecond-harmonic genera-
less obvious. Consider the situation where n-1-, in which tion in a piston beam," J. Acoust. Soc. Am. 49, 319-328 4197 1).
case/.--0. The expression for pressure derived from Eq. 'E. A. Zabolotskaya and R. V Khokhlov, "Quasi-plane waves in the non-7asp,, in the de ontor sitssur arv f . linear acoustics ofconfined beams," Sov. Phys. Acoust. 15, 35-40(1969).
(37) has/, in the denominator, so it is singular at n = 1. The 9E. A. Zabolotskaya and R. V. Khokhlov, "Convergent and divergent
key aspect of the singularity is that the 0 (c) term will contain sound beams in nonlinear media," Sov. Phys. Acoust. 19, 39-42 1970).
a factor I/p,, while the 0If term will contain a factor 'ON.S. Bakhvalov, Ya.M. Zhileikin, E.A. Zabolotskaya, andR.V Khokh-
I/ '

r
. Thus, the 0(2) term grows more rapidly than the lov, "Nonlinear propagation of a sound beam in a nondissipative medi-

um." Soy. Phys. Acoust. 22, 272-274 (19761.O (c) term as n- I. This is another instance where the magni- 'N. S. Bakhvalov, Ya. M. Zhileikin, E. A. Zabolotskaya, and R. V. Khokh- -
tude of the second-order term grows relative to the first- lov, "Propagation of finite amplitude sound beams in a dissipative medi-

order term. As was true for the z" dependence, nonuniform um," Soy. Phys. Acoust. 24, 271-275 1978).
'N. S. Bakhvalov, Ya. M. Zhileikin. E. A. Zabolotskaya, and R. V Khokh-

•curacy lmshuele othlov, "Harmonic generation in sound beams." Sov. Phys. Acoust. 25. 101-

Eqs. (37). 106(1979).
The lack of uniform accuracy in z is not surprising, be- "J. Zemanek. "Beam behavior within the nearfield of a vibrating piston." J.

cause it is the equivalent of secular terms in nonlinear vibra- Acoust. Soc. Am. 49. 181-191 (1971).The nuniftorm cuac in t eaviubr "M B. Moffett, "Measurement of fundamental and second harmonic pres-tion analyses. sures in the field ofa circular piston source." 1. Acoust. Soc. Am. 65. 318-
n is a result of the analytical procedure that was followed. 323 (19791.
The integration by Laplace's method assumed that Ju, I is "J A. Gallego-Juarez and L. Gaete-Garreton, "Experimental study of
not very small. This is most clearly indicated in Eq. (22b), nonlinearity in free progressive acoustic waves in air at 20 kHz.'* 1. Phv-

sique,40(Cl), 336-340(1978); "Propagation of finite-amplitude ultrasonic
where the truncation of the series expansion is appropriate waves in air -i. Spherically diverging waves in the free field," J. Acoust. -

only if qA /./M 1. Only very small values of q satisfy this Soc. Am. 73, 761-765(1983).
criterion when n- I W., -. 0). Therefore, the contribution to "D. T. Blackstock, "On plane, spherical, and cylindrical sound waves of

the second-order potential from the region around n = I is finite amplitude in lossless fluids," J. Acoust. Soc. Am. .36, 217-219
(1964).

not well described asymptotically. "J H. Ginsberg, "Nonlinear King integral for arbitrary axisymmetric
There are other shortcomings in the form of Eq. (37b). sound beams at finite amplitudes-I. Derivation of uniformly accurate

First, the 0(I) term is the same as that obtained from linear expressions," J. Acoust. Soc. Am. 76.1208-1214 (1984-.
theory, i.e., it is the conventional King integral. Thus the "). H. Ginsberg, "On the nonlinear generation of harmonics in sound radi-

ation from a vibrating planar boundary." J Acoust. Soc. Am. 69, 60-65
relation does not indicate that there is depletion of the funda- (19811.

mental harmonic as energy is transferred to higher harmon- "I H. Ginsberg, "Uniformly accurate description of finite amplitude
ics.25 Another important limitation is that Eq. 137b) de- sound radiation from a harmonically vibrating planar boundary," J."

Acoust. Soc. Am. 69, 929-936 198 )1.
scribes only the second harmonic, but higher harmonics are "S. Goldstein, Lectures in Fluid Mechanics iWiley-interscience, New
known to be significant to the distortion process. York, 1960), Chap. 4.

1206 J. Acoust Soc. Am.. Vol. 76, No. 4, October 1984 Jerry H. Ginsberg: Beams at finite amplitudes. I. Potential 1206

-----------------------------------------2.



-Handbook of Mathentcal Foundations, edit ed by M. Abramowitz and!1. 2A. H. Nayfeh. Perturbation Methods (Wiley-Interscience. New York.
A Stegun iDover, New York. 1965). Chap. 7. 1973), pp. 16-18.

~C M. Bender and S. A. Orszag. Advanced Mathematical Methods for 2'W. Keck and R. T. Beyer, "Frequency spectrum of finite amplitude ultra- X
* Scienlsts and Engineering (McGraw-Hill, New York. 1978). pp. 261-267. sonic waves in liquids," Phys. Fluids 3. 346-352 (1960).

-T'I N. Sneddon. Fourier Transforms (McGraw-Hill. New York, 1951), "'A. H. Nayfeh and A. Kluwick. "A comparison atf three perturbation
Chaps. 1-2. methods for non-linear waves," J. Sound Vib. 48, 293-299 (1976).

% ,

120- J. 

.cut 

o.A. o.7,N.4 coe 94JryH Gnbr:Basa iieaiitd .Ptnil 10



Nonlinear King integral for arbitrary axisymmetric sound beams at
finite amplitude. II. Derivation of uniformly accurate expressions

Jerry H. Ginsberg
School of Mechanical Engineering, Georgia Institute of Technology. Atlanta. Georgia 30332

(Received 15 August 1983; accepted for publication 23 May 1984) V,

The first part of this investigation [J. Acoust. Soc. Am. 76, 1201-1207 (1984)1] derived a
perturbation representation of the velocity potential for an axisymmetric, monochromatic sound
beam in the form of a complex function. That result, which used Hankel transforms to describe ",d
the dependence on transverse position, lacked uniform validity in the corresponding
wavenumber, as well as the distance from the transducer. Expressions for the state variables
derived from the potential have the same behavior. The example of a planar wave is used to adapt
the singular perturbation method of renormalization to the case where the potential is in complex
form. The resulting technique is used to obtain a coordinate straining transformation that makes
the state variables uniformly accurate. The expression for the pressure is similar to the King
integral in linear theory, except that the integrand is a function of the strained coordinates.
Comparison of the predicted waveform properties with experimental data (Gallego-Juarez and
Gaete-Garreton, J. Acoust. Soc. Am. 73, 761-765 (1983)] shows good correlation. Further
evaluations disclose some new features of the distortion phenomenA in both the time and
frequency domains.

PACS numbers: 43.25.Cb

INTRODUCTION wheref(R) is an arbitrary complex function whose magni-.
A general analysis of axisymmetric sound beams was tude goes to zero as R- o. The acoustic Mach number e is

initiated in Part I of this study.' The overall goal of the inves- small compared to unity, so it is a convenient parameter for a
tigation is to develop a theory that can be used to evaluate perturbation series. In general, c.c. will denote the complex
how various features of harmonic transducer motion are conjugate of the preceding terms.
manifested within the entire acoustic field. This intent obvi- A Hankel transform was used to describe the first-order
ates the use of theories founded on effects that arise only in effects transverse to the axis of the sound beam. For a speci-
the near- or farfield. fied transverse wavenumber n, which is the parameter for

It was found in Part I that combining a consistent non- the transform, there is a corresponding Hankel transform F,•
linear wave equation with a Hankel integral transform and of the shape functionf(R),
an asymptotic integration technique led to a representation I f* "'" "" -
of the velocity potential in the form of a perturbation series. 2iJoThe second part of the analysis, presented here, will utilize as well as a (nondimensional) axial wavenumber/.s,, where

that potential function to derive an integral expression for the radiation condition is satisfied by
the acoustic pressure. This integral reduces to the K ing inte- " • ".-.n..a.-.b

* gral of linear theory- in the limit of an infinitesimal source /=i(1 - n2)12 ; 0n<l,
pressure level. (3)

P Numerical evaluation of this integral permits compari- 3)l- _.).
son of the theoretical predictions to those in one series of > n2 - l )./2; n;1.
experiments. In addition to providing validation, the exam- As a result of employing a Hankel transform, the first-
pie will yield some insight into the unusual distortion phe- o c ti a r n f n
norder velocity potential was expressed in terms of the Kingbeams..

integral. This first-order result led to an inhomogeneous
I. NONUNIFORMLY ACCURATE EXPRESSIONS wave equation for the second-order potential. An asympto-

tic integration by Laplace's method was crucial to the eva-
*In the first part of this investigation z and R were nondi- luation of second-order effects. The expression for the veloc-

mensional cylindrical coordinates for a transducer centered ity potential that was derived by this method retained only
at z = R = 0, and t was nondimensional time. The corre- the part of the second-order terms that displayed cumulative

" sponding dimensional quantities are obtained by using l/a growth of higher harmonics. Thus, it did not evaluate any
to define the time scale and Ilk = co~/ to define the length term whose magnitude is O (e') at all values ofz. The derived
scale, where a is the frequency of the monochromatic mo- velocity potential was written as-.....-
tion of the transducer and c. is the linearized speed of sound.
The transducer motion was written in complex form as = dn, 4)

v. =(/2i)c,,f(R ) exp~it) + c.c., (1) where, for I >, 13 2>0 (e),
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nFe p nkFZz, pressure.4 The recognition that the integration regarded )
0 - - explit -,.zWl,(nR i - if/Z~) ," , j/Z to be substantially larger than zero is crucial to correct-

ing the dependence on n. It leads to the conclusion that Eqs.
xexp(2it - 2,u~zl[l(o1nR 1: - J(nR )"1 + c.c. + SDT, (8}-10)are the asymptotic representation for nonsmallp, of

(5) alternative functional fcrms that behave properly as/Z--.. "

where SDT represents subdominant terms that do not grow Note that each 0 (e2) term contains a factor u : higher
with increasing:, and an overbar denotes the complex conju- than the corresponding 0 (e) term. It follows that the alterna-
gate. Note that f,, is the coefficient of nonlinearity, equal to tive forms must feature a function whose expansion for large
ly I for an ideal gas, where y is the ratio of specific heats. p,,z is proportional toI- /2

The limitation on the value ofu,, for Eq. (5) means that A variety of functions, such as Bessel functions, are pos-
the expression is not applicable in the vicinity of n = 1. This sible candidates in this regard. However, recall that q, is
is a consequence of the asymptotic expansion that led to Eq. either real or imaginary, depending on the value of n. Most
( 15, for which it was assumed that I. = 0(1). Equation (5) is functions whose asymptotic behavior is appropriate for real
said to lack uniform accuracy in both n and z, because the Un introduce new singularities for imaginary u,, or vice
magnitude of the second-order term grows relative to the versa. The only function that was found to be acceptable for

first-order term as n- I and as z- c. The primary task here all values of n was the complementary error function. Spe-
is to obtain from Eq. (5) expressions that are uniformly accu- cifically, it is known5 that for large/,z,
rate. erfc[ zZ .]_

Differentiating Eqs. (4) and (51 yields expressions for the c
particle velocit, components and pressure. As suggested by = (1r/zz- " 1 exp( -- z)z[ 1 + 0(I/,zz)]. I11

the form of Eq. 14). let V. VR, and P denote the contribution Using Eq. (I1I) to recast the 0 (e) terms in Eqs. (8)-10)
of a specific wavenumber n to the axial velocity v., trans- leads to
verse velocity t,R, and pressurep, according to V= enF. exp(it -/,,zz Jo(nR ) -/Ti, )

v. = c,, V, dn, V. =co V, dn, (6) XnFzerfc[ (Mz)" exp~it)[J)nR )2 -JJnR) )2)

Sp =poc{Pdn. (7) + c.c. + SDT, (12)
n2Fn

In the evaluation of the expression for V., the factor z'12 in V = -E- -exp(it -/Z.zj)J;(nR) - 2iire/30(u./1i2,,)

the 0 1c) term of 0 may be considered to be constant, be- A.
cause its derivative leads to an 0('z/) term, which de- XnF.z erfc[p.z)"2 ] exp(it)[Jo(nR )Jo,(nR-

creases in importance as z increases. The physical variables p.
associated with Eqs. j5) and (6) are then found to be, for n not - J,(nR )J (nRI + c.c. + SDT, (13)

close to 1, P= (i/j.)V, (14)
V d Note that the coefficient./ /IA is merely + 1 or -

3z depending on whether M, is real (n > 1) or imaginary (n < 1).

= enF expit -,,:z)J 0 nR I - 2il 0(nF./p,) Thus Eqs. ( 12H 14) have the same degree of singularity in..
for the first- and second-order terms; they are descriptive of

r" x (,-z) '2 exp(it - Iz)[Jo(nR )2 - J(nR )21) the response for all n.

+ c.c + SDT, (8)

Ill. DERIVATION OF RENORMALIZATION USING

V,- E(n2F/,.) exp(it -p,.z)IJ (nR) COMPLEX VARIABLES
dR Although Eqs. 12)-( 14) are valid for all n, they still are P

2icfl.(nF /ijirp, z)" exp(it -pu.z) not uniformly accurate for all z. One method for correcting
2 this situation is the renormalization version of the method of

x [JonR )J -JnR J1(nR (1 (nR)] strained coordinates.' The general basis for this method is
the argument that nonuniform behavior relative to one of the

+ c.c. + SDT, (9) independent variables (space or time) is the result of improp-
= (i/ er truncation of a Taylor series expansion in powers of c. A •= i,. (10) much simpler example is to expand sin(z + ez) in powers of c,

It is convenient for later operations to denote the derivatives and to truncate such an expansion. The original function is
of Bessel functions by primes, rather than making use of periodic, but the truncated representation shows cumulative
identities for derivatives, growth in ez.

As a consequence of the foregoing argument, it may beII. CORRECTION OF THE DEPENDENCE ON THE anticipated that there is a transformation of the space-time
TRANSVERSE WAVENUMBER variables for which the response does not exhibit cumulative

Equations SH 10) suffer from the same lack of uniform growth. The difference between the magnitude of the phys-
accuracy as that associated with Eq. (5). Such behavior is not ical variables and the transformed ones will grow cumula-

acceptable for state variables such as particle velocity and tively in the same manner as the 0e 2 ) terms in Eqs. ( 12)-- 14).
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The transformed variables therefore represent a straining of exp( - iz) = exp[ - i(" + eS + eS)]
the physical space-time gnd.

All prior applications of the renormalization technique= exp( - i " )[1 - ie(S + S] + 0 (c2) (20) . .
seem to have employed real functional forms. In order to

adapt the method to the complex functions in Eqs. (12-(14), Substitution of Eq. (19) into Eq. (18) in conjunction with Eq.

it is useful to consider the analogous steps for a finite ampli- (20) leads to the following E and e 2 terms:

tude planar wave. Consider such a wave propagating in thez "
direction, due to a harmonic particle velocity imposed at ,... U...

z 0. The potential function in this case is governed by = (l/21)e exp[i({ - (I - if(S + S)

3,26 d!6 dd- = = 2(flo - L 6 + 2A z- 26 + 0(ea + 0 exp(i(t -"] + c.c. + 0(e2), (21)

(15) where 0 (e2) means terms having that order of magnitude atd6all z.... '. .

exp(t I + c.c., alz
az i - Equation (21) will be nonuniform in unless the e term

where 'ie scales for nondimensionalizing position and time is canceled. This is the criterion for the straining function S.

are the same as those for the sound beam. Thus, set
Carrying out a perturbation analysis based on S = (1/2i~o exp[i(t - ()]. 22)

= F6, + C-26, + ... (16) The terms remaining in Eq. (21) are

yields a homogeneous wave equation for 4, which is solved p 1
for a wave propagating in the positive z direction. This solu- -poc exp [i(t - C1( - jS) + c.c. + 0(2)

tion is used to form the source terms in an inhomogeneous "i0L- '2i
wave equation for 6.. The particular solution of the latter is =_-e exp[*~- )] +-e + c.c. + 0 (i). (23)
readily obtained by elementary methods, with the result that 2i Q

di = Ic exp[i(t- z)] + Jc2,oz exp[2i(t - z)J Note that the c
2 term appearing above is imaginary. Ac-

-j- c~c + 0 (C), (17) counting for the complex conjugate of each term yields

where the 0 (e) terms not appearing explicitly are bounded p _- = c sin(t - ) + 0 (2) (24)
for all z. PoCo2  Co

The expressions for particle velocity and pressure cor- and the transformation obtained by substituting SandS into L
responding to Eq. (17) are Eq. (19) is

V, i=c-=--.coexp[i(t-z)] z=" + E sin(t-i. (25)
az 22o -In order to demonstrate the correctness of the wave

X 1 + tEf3z exp[i(t - z(] ( + c.c. + 0 ( 2 ), (18) described by Eqs. (24) and (25), Eq. (24) is used to eliminate

136 the sine term in Eq. (25): -. .

z = 1+ov./co). (26)
These are not uniformly accurate because the O() term
grows with increasing z relative to the 0 (e) term. It is postu- Solving this relation for 4 and substituting the result back
lated that the dependence on the strained coordinate varia- into Eq. (24) then yields

bles is uniformly accurate. Because t only occurs in conjunc- ( z - -

tion with z, it is adequate to strain only the space variable. 2 == O sin t - (27)
The strained coordinate approaches z when e-O, so the PoCo Co (1 +

transformation is considered to have the form Except for the fact that z and t are nondimensional here, Eq.
(19) (27) is identical to Earnshaw's closed form solution for finite

amplitude planar waves' in the case of harmonic excitation

The task now is to evaluate the function S. The first new at a boundary. The same result using real functions was ob-
feature of the complex variable formulation of the planar tained previously.4

wave is that S is considered to be complex, in agreement with The perturbation analysis of the velocity potential pro- "
the form of Eq. (18). It is necessary to introduce the complex vided an indication of how higher harmonics tend to be
conjugate ofSin Eq. (19) because the transformation must be formed. Although the expressions that resulted were not
real. uniformly accurate, the information the analysis provided

Presumably, expressing v, and p in terms of ' rather was sufficient to permit the coordinate straining procedure
than z leads to uniform accuracy. This should be the result of to identify the more general signal. The exactness of the re-
substituting Eq. (19) into Eq. (18). Because the earlier analy- suit in this case was fortuitous. In general, all that can be
sis considered only the first two orders of e, enforcing unifor- expected from the procedure is that the error in the uniform-
mity will involve considering only those powers in a series ly accurate prediction will be no larger than O(c2) at any

expansion. First note that for e < 1, location.
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IV. APPLICATION OF RENORMALIZATION TO THE This expression is comparable to Eq. (231 for a planar wave.
SOUND BEAM The c term in that case was imaginary, so that no such terms

- Only a few modifications are required to apply the appeared explicitly when the real form of the solution was
, method in the preceding section to Eqs. (12)-(14). As was written. The expressions for the sound beam are more corn-

true for the planar wave, t only occurs in combination with z, plicated, primarily due to the presence of Bessel functions
so no transformation of the time scale shall be introduced, describing the transverse variation of the sound beam. Here,
Howe~er. R is an independent coordinate, so a straining renormalization removes any 0 (e2) terms in V that depend

. transformation for that spatial variable is also needed. Thus explicitly on time.
the coordinate straining to be tried is In other words, the coordinate straining transformation

S= -- [S,a ,,,ni .]derived from Eq. (31) is based on matching the tendency for
" cc.]. generation of higher harmonics. Such a transformation in-

troduces a mean value over one period. The e2 terms appear- '.
R = a, ((S i_ ,a, ,t,' - c.c. J" ing in Eq. (331 cancel that mean value at all locations.

Note that a subscript n has been associated with the strained All of the state variables may be obtained from Eq. 1331.
coordinates in order to emphasize that the strained coordi- The quantity of primary interest is the pressure, for which
nate describes only one transverse wavenumber in a contin- the proportionality in Eq. (141 is used to determine P. The
uous spectrum. contribution of all transverse wavenumbers n is obtained by

In order to focus on the conceptual aspects of renormal- integrating according to Eq. (6), with the result that
ization. Eqs. (121 and (131 are written in the standard form, _nF•

V/= cflzR,t.n) + e-2zgj(z,R,t,n1 + c.c. + C(f(; p -poEJ expl - z,,}( explit d,,na-"
j = .•(29) - 2i~re,6inT, erfc[(/7,,',)11- ]•.

Substituting Eqs. (28) into Eq. (29) and retaining the c and e X2[J(na () - (jx,/I,,).ldna,,)(-] )dn + c.c. 34)
terms in a Taylor series expansion leads to

Equations (32) and (34) jointly describe the pressure at
V ef,( ,at..n) + +2 S S. -( ,a,, ,t,n) specified values of z, R, and t. Because of the complicated

-". nature of these relations, quantitative evaluations require

+a numerical algorithms for solving the coordinate transforma-+ SR + SRH-f(;..a,,t.n) tion, and for integrating over all values of n. When n < 1, in

which caselu,, is imaginary, evaluating the pressure accord-+ ( ,crt,n + c.c. + 0 (c2); j 1,2. ing to Eqs. (32) and (34) requires computing the complement

(30) of the error function for complex arguments. Useful identi-
The foregoing is analogous to Eq. (2 1) for the case of planar ties for this task are
waves. The straining functions S. and SR must annihilate erfc[(io')"-
the nonuniform g, g1 term in Eq. (30). Hence, set =2/ exp( - ilr/4)1 [ - S.(or)] + i[ : -:(o,)]

." f,..,r~ x-7 -,(,,,tnU *3* ~da, erfc( - (ia) 12

= - _.g,_,.a,n; j= 1,2. (31) 2 "exp( - ilr/4( ([ - C:(,)oi + i([ - S2(a,,-
It is necessary to find functions S. and S, that satisfy where S.(cr) and C.(c) denote Fresnel integrals, defined as

Eq. 13 1) for both values of]j. This is achieved by using trial1
forms that are suggested by comparing the functions g, to S.'(r) = (21/2 f 1 ," " dx"
the derivatives off. The actual transformation obtained by 0 (36)
satisfying Eq. (31) and then forming Eqs. (28) is ! lf ocosx

z 2-, -2riffl, ilnF./ .)expit C.(r) = Co
s dx.-

\erc f[u, J' ) -"2 + c.c. J(1na,), The occurrence of Fresnel integrals here is intuitively ap-
(32) pealing, because such functions are known to enter into the

R = a,. + 2Trf31 ,, I i(F.p,1/f,) exp(it) evaluation of diffraction effects in the linear infinite baffle

x erc [ lu,;.)1 2 ] + c.c.Idncj. problem..- -
In general, the terms remaining in Eq. (30) when Eq. V. RESULTS FOR A PISTON

311 holds are
Expressions describing the response in terms of real

V = f ( ,a,,n + (.,a.,t,n) functions may be obtained from Eqs. (32) and (34). In view of
Eqs. (35), different expressions are required for the propagat-
ing modes In < 1) and the evanescent modes (n > 1). The sin-

+ cc. + O 12). (33) gularity in Eq. (34) at n = I is regular. Numerical evaluation
of the pressure integral therefore presents no unforeseen dif-
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ficulties. As is usual for diffraction integrals, the pressure " --
integrand in Eq. (34) oscillates rapidly as a function of n at ,.

large distances from the transducer (large r or R ). The tran- .- ' .,,.

scendental nature of the coordinate transformation, Eqs.
(321, at a specified n makes the usual n' merical algorithms "
for efficiently evaluating such integrals unsuitable. How- - - -.- ,----:

ever, a Gauss-Chebychev integration formula9 is particular- ;--5

ly well-suited to the I//l,, singularity. This matter, as well as
the algorithm by which the coordinate transformation is
evaluated at discrete values of n, will be described elsewhere.

The net result is an algorithm that is relatively costly for 5 •• :s 5,
extensive computation. Nevertheless, it yields a prediction s=RCE SP2 (de)

of the instantaneous acoustic pressure that can be utilized to
generate waveforms or spatial profiles of the signal. FIG. 2. Amplitude response at 2 in on-axis. Harmonic number as indicated.

Such predictions are limited to locations where shocks =37! m -
'
, a=0.l, =-1.2.--------Theory for sourceSPL -- 132.5 dB. -- :Ref. 10. ...... Linearized response."

do not form in the individual duct modes. Shocks are mani-
fested by a vanishing value of the Jacobian of the coordinate
transformation, corresponding to a multivalued solution.
Selecting the appropriate solution in the presence of a shock higher harmonics obtained at three locations on the axis of

requires considerations not addressed in the present study. symmetry. The sloping dotted line is the closed form linear

The experiments recently reported by Gallego-Juarez solution of the Rayleigh integral for the pressure amplitude

and Gaete-Garreton' 0 for propagation in air provide useful on-axis. " Comparing the measured fundamental at low

data for validating the analysis. The transducer for those source pressure levels with the Rayleigh prediction for Fig. 2
was a circular plate whose spatial vibration pat- causes concern. Mechanisms such as dissipation which af-

experiments fect th fundamenta atat verye lowia sibureo leeswertina
tern was combined with steps on the plate in order to simu- 'uarle

late a piston. For a piston of diameter 2a, the shape function theory is valid, do not explain why the measured amplitude
f(r) inEq. (1is should be higher than the theoretical one. Also, increasingthe source level in the linear domain ( < 115 dB) did not ex-

I. R < ka, (37) actly increase the received fundamental SPL in the experi-
O, R>ka, ments by the same amount.

which leads to the following Hankel transform amplitude: Because of this uncertainty regarding the measure-
F. = tka/2in)J1(n ka). t38) metts, comparisons with the present analysis based on . . ...

source SPL might be erroneous. The method used for com-
The transducer diameter in the aforementioned study parison was to evaluate the analytical waveform at a nominal

was 200 mm and the frequency was 20.4 kHz. This corre- sourceelevel.sThenwave2ormewas thenoFourierranalyzed to
-ponds to ka = 37.1 when co = 345 m/s. (The ambient con- determine the corresponding amplitude levels (and phase an-
ditions were not specified.) Only measurements beyond a gles) for all harmonics. The comparable experimental data
distance z/k = 900 mm were reported, whereas the last axial point was selected by matching the predicted and measured
maximum on axis occurred at zik = 218 mm. Comparing amplitudes of the fundamental. This matching is indicated
the experimental and computed results will therefore indi- by the dotted horizontal lines marked by the number 1.
cate how well farfield propagation properties are predicted. Figure 1, which is for the most remote location, shows

Figures 1-3 reproduce the amplitude response curves in that the second and third harmonic levels agree to within 2
Ref. 10 for the fundamental frequency and the first three dB between theory and experiment, while the fourth har-

2: . -

n -1 -- - -__ _ -. . ..

2 0 115 33'"
2j 4

" .I...-

- Lij

95 1 15 135 155

::s :35 155 SOURCE SPL (dB) l

SC-RCE SPL (d9)
FIG. 3. Amplitude response at 1.2 m on-axis. Harmonic number as indicat.

FIG 1.AmFlituderesponseat3.2mon-axis. Harmonic number as indicat- ed k= 371 min.= 1.2. - .. Theory for source SPL = 142.5 dB
ed. k = 371 m. a: 0,1I m, o = 1.2. ------- : Theory for source ....- : Theory for source SPL= 132.5 dB. -- Ref. 10 ..
SPL = 132.5 dB. - : Ref. 10 ....... : Lineanzed response. Linearized response.
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monics are even closer. The discrepancies between theory
and experiment are slightly larger in Fig. 2, but they are well
within the uncertainty associated with the difference . : m.
between the measured fundamental and the prediction of - \ I .
linear theory at low levels. It is possible that the disagree- Z,

ment results from the experimental configuration, which C. Z N
employed a stepped transducer face. Even though the funda- .
mental was believed to match well with an ideal piston,"
minor discrepancies might have a substantial effect on the . -
higher harmonics. Also, it is conceivable that the motion of
the transducer face was not exactly axisymmetric. This -

could substantially alter the on-axis diffraction effects.
Figure 3 presents the response curves for the closest FIG. 5. Waveform at 2.1 mon-axisfor 133.5 dBsource SPL. k = 371 m.

location in the experiments. As indicated by the amount of a = 0.1 rn, fl0 = 1.2. - Theory ..... : Measured in Ref. 10 for
reduction in the fundamental amplitude, most measure- 130.5 dB source SPL .. . : Lineanzed response.

ments of the third and fourth harmonics were taken at
source levels for which the effects of shock formation are
significant. The coordinate transformation for a range of val- measured a waveform at the same location as that described
ues of the transverse wavenumber n has multiple solutions by Fig. 5, but for a source level of 130.5 dB. The theoretical
when shocks are present. The theory is not formally valid in waveform obtained from the present analysis for the same
this case, but the numerical algorithm was implemented to source level would show less distortion than the observed
select the value of the strained coordinate s. closest to the one. This discrepancy is consistent with those discussed in
value of z when a shocks occurs. regard to Fig. 2, which describes a nearby location. For this

• leTwo source levels were evaluated for Fig. 3. The dashed reason, the theoretical source SPL was increased by 3 dB forlines for a theoretical 142.5 dB SPL correspond to significant the comparison. The source level for Fig. 4 was selected to
shocking effects. The agreement between theory and experi- give a comparable amount of distortion at the closer loca-
ment for the lowest three harmonics is remarkable, especial- tion.
ly in view of the uncertainty about how shocks should be Several features of the measured waveform in Fig. 5
treated theoretically. The broken line for a theoretical SPL must be noted. Although an interval of two periods is shown, .. . -

I of 132.5 dB show the same degree of agreement for the sec- the shape for the second period does not duplicate that for
ond harmonic. Extrapolating the curve for the third har- the first. Also the null pressure level was not indicated in -

monic back to this level would show that the theory closely Ref. 10; the experimental waverm reproduced in Fig. 5 has " -.
predicts this harmonic also. been plotted to give a zero mean value. Finally, the original

Figures 1-3 do not provide a complete picture. First, waveform was drawn to a very small scale, so its enlarge-
they describe locations which are in the farfield. FLrther- ment to obtain Fig. 5 may have introduced additional inac-
more, the response curves do not display the phase angles for curacies. In view of these uncertainties, the agreement

r the various harmonics. The higher harmonics for planar between the experimental and theoretical waveforms is quite
waves are in-phase with the fundamental, as are cylindrical good, particularly for the second period.
and spherical waves in the farfield. Asymmetry between the god pa rtia o the seorid.The distortion of the waveform in Fig. 4 is the typecompression and rarefaction phases, which was observed by r b nef o"3 reported by Browning and Mellen.' J One effiect of nonlinear- -
. Mellen and Browning,3 corresponds in the frequency do- ity is to shift the extrema in the manner that a plane wave
main to out-of-phase conditions. distorts. Nonlinearity also enhances and narrows the com-

Figures 4 and 5 display waveforms at axial locations in pression phase, while it has the opposite effect on the rarefac-
the nearfield and in the farfield, respectively. Reference 10 tion phase.

The waveform in Fig. 5 is for a lower source level than
the one for Fig. 4, so less of the distortion is associated with

n the nearfield. This gives rise to a phenomenon that is some-
, ,- ~ ______what different from the one appearing in Fig. 4. It is instruc- " "

. / -. tive to compare the waveforms in both figures to the corre-
E' . ' \ sponding linearized signals. It seems that the maximum

% compression, which occurs sooner than the linear signal in
S_, the nearfield, is retarded as it propagates until it matches the

" , linear maximum. Also, the maximum rarefaction is retarded
more in the farfield. Recall that in the Rayleigh formulation,

-M the individual harmonics appear to be nonuniform spherical
"-:E ' ." >waves in the farfield. The aforementioned retardation effect

might be a consequence of the 90" phase shift that spherical
FIG 4. Waveform at 0.184 m on-axis for 142.5 dB source SPL. k = 371 waves undergo in the transition from the nearfield to the
m '. a 0. I m. ,, = 1.2. - Theory. Linearized response. farfield. In addition, the fact that Fig. 4 describes a nearfield
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S TABLE I. Fourier series data for the waveforms in Figs. 4 and 5 both qualitatively and quantitatively. The derived expres- "

sions are applicable to off-axis responses, but no such results
HaAmcivde Phave been computed thus far.Harmonic received Phase lag 0/ -. """"

nme 1 P Comparisons with other available experiments are nowLocation number SPL IdBI re: fundamental -:. .pocL0 underway, but past experiments have been limited in scope.

Measurement of amnlitude levels in the higher harmonics
:1k = 0.184 m linear 2.646 142 5 - 4 1" has received more attention than measurement of the corre-

2.479 142.0 ...

2 0.426 126.7 69' sponding phase angles and overall waveforms (for under-

3 0.208 120.4 54.8' standable reasons). Also, measurements in the true nearfield
4 0083 112.4 472" have been sparse. Hence the theory has not yet been fully - "":
5 0055 108.8 66.6' confirmed, but insight into basic phenomena has already " -

z/k =21 i ,inear 0.4010 126.1 - 7.0' been gained.
1 0.3384 124.7
2 0.0623 110.0 642' 4
3 0.0247 101 9 122.3' ACKNOWLEDGMENTS
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M9. Transition from the nonlinear King integral to spherical propagation
for a finite amplitude sound beam. Jerry H. Ginsberg (School of
Mechanical Engineering. Georgia Institute ofTcchnology. Atlanta, GA
30332)

The propagation of finite amplitude waves radiating from a baffled
piston has been described in terms of directional spherical waves [J. C.
Lockwood, T. G. Muir, and D. T. Blackstock, J. Acoust. Soc. Am. 53,
1148-1153 i19731]. That analysis predicts waveforms at large distances,

" . provided that comparable information is known at a reference location in
the farfield. Lockwood et al. used this approach based on assuming that

* linear theory is accurate at the reference location. Such an assumption is
inaccurate when the source pressure level is sufficient to generate signfi.
cant nonlinear effects (growth of higher harmonics and depletion of the
!'undamentall within the near field. The present work describes the inter-
:acing of the spherical propagation theory and the nonlinear King integral
[J. If. Ginsberg, J. Acoust. Soc. Am. Suppl. 1 71, S30(1982)]. The latter
i heory is used in this approach to evaluate the nonlinear waveform at the
reference location. Comparing the results of interfacing, and of direct
propagation according the nonlinear integral formulation, with expen-

mental data provides a strong validation for both theories. The advantage
of using directive spherical wave theory lies in its superior computational
efficiency and its ability to describe shock formation. [Work supported by
ONR, Code 425-UA, and NSF, Grant MEA-8101106.1

Town and Country Hotel
San Diego, California
7-11 November 1983
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VV4. Analysis of nonlinear harmonic generation for arbitrary dual
frequency transducer excitation. Mosaad A. Foda and Jerry
H. Ginsberg (School of Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA 30332)

An earlier study of finite amplitude axisymmetric sound beams [3. H.
Ginsberg. J. Acoust. Soc. Am. Suppl. 1 73, S83 (1983)) considered the case

if of monochromatic excitation. That work featured a singular perturbation
analysis combining asymptotic integration and the renormalization ver-
sion of the method of strained coordinates. The present paper initiates an
extension of those techniques to the case of a dual frequency source. The
parametric array, in which the primary beams are at closely spaced fre.
quencies, has already received much attention. The system discussed here
permits disparate frequencies. Aside from a restriction to axisymmetry,
the excitation at each frequency is arbitrary. The analysis thus far has
obtained the first two orders of approximation for the velocity potential.
This expression describes the manner in which nonlinear effects accumu-
late for the various sum and difference frequencies. It is the foundation for
a future derivation of an expression for the pressure that is descriptive of
the entire field. In addition, the trend for harmonic generation indicated
by the analysis suggests that conversion efficiency in the parametric array
might be improved by altering the transverse vibration pattern of the S
individual primary beams. (Work supported by ONR, code 425-UA.]

Omni International Hotel o
Norfolk, Virginia
6-10 May 1984
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K7. Evaluation of the overall sound field properties for a finite amplitude
sound beam. J. H. Ginsberg (School of Mechanical Engineering, Georgia
Institute of Technology, Atlanta, GA 30332)

The nonlinear King integral [J. H. Ginsberg, J. Acoust. Soc. Am. (to
be published)] provides a general algorithm for finite amplitude axisym-

metric waves radiating from a harmonically vibrating transducer. The
derivation of that result was based on asymptotic analyses of the trans-
verse wavenumber spectrum near the axis for almost planar modes and far
off axis. The validity of the analysis is confirmed here by a change of
variables that yields an overall measure of the associated error. Previous

evaluations using the nonlinear King integral provided temporal and fre-
quency spectrum predictions at selected locations, primarily on axis. The
present paper reports on an extensive mapping of the field for a moderate-
ly high frequency in terms of amplitude and relative phase lags for the
fundamental and several higher harmonics. This mapping is cross-refer-
enced to waveform displays that show the changing nature of the asym-
metrical distortion process associated with transition from the nearfield to " ...

the farfield. [Work supported by ONR, Code 425-UA.]
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V9. Finite amplitude distortion and dispersion in a hard-walled
waveguide. J. H. Ginsberg and H. C. Miao (School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta. GA 30332) t- . 7;

The fundamental symmetric two-dimensional mode in a hard-walled
rectangular waveguide is decomposed into a pair of obliquely propagating
planar waves, in order to treat the effect of nonlinearity. A perturbation
analysis of the nonlinear wave equation for the velocity potential identifies
amplitude dispersion as one source of singularity. The only interaction
between the oblique waves attributable to this effect is a change in the a
distance parameter affecting the magnitude of the higher harmonics. An- p-
other singularity arises when the frequency w or width L is large. The

oblique waves are then closely aligned with the axis, resulting in resonant
interaction with the true planar mode. Harmonic generation in this case
has the appearance of a spatial beating pattern. A set of coordinate iras-
formations make the representation uniformly valid. Analyses oflimiting

forms are confirmed by quantitative eiamples. Small values of.wL are well .
described by an earlier general solution in terms of groups of nondisper-
sive modes [V. H. Ginsberg, J. Acoust. Soc. Am. 65, 1127-1133 (1979)], . 77

while large nL yielda a quasiplanar signal. The transition at moderate niL
is characterized by frequency, as well as amplitude, dispersion. The dis-
tortion of waveforms then is very close to that obtained in the nearfield of %6.
sound beams. (Work supported by ONR.) . -*

A

Joe C. Thompson Conference Center
The University of Texas at Austin

Austin, Texas
8-12 April 1985
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Finite Amplitude Distortion and Dispersion

of a Symmietric Mode in a Wraveguide

CK Jerry H. Ginsberg

t Hsu-Chiang Miao

School of Mechanical Engineering

Georgia Institute of Technology

Atlanta, GA 30332

Abstract

* "The perturbation method of renormalization is used to study the effect of

nonlinearity in a hard-walled waveguide. The excitation would induce only the

I m fundamental symmetric mode if the system was linear. The analysis develops a .

solution that satisfies a nonlinear wave equation for the velocity potential,

as well as all boundary conditions. The response consists of a pair of

oblique planar waves that interact through second order excitation of the true

planar mode.

The investigation discloses that when the transverse width is much larger

than the axial wavelength, the signal has a quasi-planar behavior. In

contrast, when the axial wavelength is large, the oblique waves are

essentially independent. The distortion is then a result of self-refraction,

in which the particle motion shifts the wavefronts and rays. The transition

*'.. between the long and the short wavelength approximations is marked by the

appearance of nonlinear frequency dispersion which produces asymmetrical

distortion of the waveform. K 4

.................... - ......-.....-.......
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1. INTRODUCTION

Finite amplitude effects in a waveguide feature multidimensional

phenomena involving interacting waves. In linear theory a mode in a

hardwalled waveguide may be constructed from pairs of oblique planar waves

that are reflected from the walls. The present study will employ the same

type of decomposition to show that distortion resulting from nonlinearity

displays a phenomenological change as the excitation frequency is increased.

This transition is associated with an anomaly contained in previous studies,

which only considered the low frequency case.

Initial explorations of finite amplitude nonplanar modes in waveguides

employed the perturbation method of multiple scales in a rudimentary fashion

that considered selected aspects of wave interaction [1-3]. A different k .

method of 'vestigation was developed to study waves radiating from a flat

plate [4-9]. To a certain extent the latter studies were academic in

nature. The system they treated featured a periodically supported plate of

infinite extent. They assumed periodicity of the signal parallel to the

plate, which meant that energy was propagating inward from infinite

boundaries. This apparent violation of the uniqueness condition nevertheless - .

proved to be instructive, because the system could be studied by a variety of

analytical techniques. The perturbation methods of multiple scales and of

renormalization, and the method of characteristics mutually agreed for the - I

case of a spatially sinusoidal excitation. One significant aspect of their

result was the prediction of self-refraction, in which the wavefronts and rays

of constant phase are distorted by the particle velocity.

Although the plate problem did not treat a physically realizable system, --:

the relevance of these investigations to waveguides was recognized in a

subsequent investigation [10]. The basis of thit work was that there are

- -. -~ * -.- ,.- .
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nodal lines in the plate system along which the velocity component parallel to

the surface of the plate vanishes. Such lines are perpendicular to the plate,

ias they are in linear theory. This observation led to the conclusion that the

infinite plate analyses had actually derived a single mode in a waveguide.

The treatment of general excitation in a waveguide performed in Reference

[10], which was a straightforward extension of the method of

renormalization, disclosed a type of superposition principle. Modes having

identical phase speed were found to form distinct groups whose distortion in

self-refraction was a consequence of only the particle velocity arising from

that group. The overall response consisted of a linear combination of the

response in each group.

A similar analysis had been used to study waves radiating from cylinders p

[11-14]. One of those studies [12] identified a paradox associated with very

long axial wavelengths. One would expect that if the wavelength along the

I axis of a cylinder is large, so that the rate of variation in that direction p

is very gradual, then the response would approach that for the case of a two- -

. dimensional system, in which the axial wavelength is actually infinite. This

tI was found to be the case, except that the distortion phenomena in the limit .

were found to be too weak by a factor of one half. This dilemma was resolved

by noting that distinct modes in the case of axial variation coalesce only

0 when the wavelength is actially infinite.

These observations also apply to the investigation of waveguides [10].

For example, as the width of a waveguide is increased, the earlier analysis

predicts that the distortion of the planar mode will be twice as strong as

that of the fundamental symmetric (2,0) mode. Although the explanation of

coalescing effects for infinite transverse wavelength (i.e., the planar mode)

is plausible, it nevertheless is unsettling from a physical viewpoint.

WI L
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3

Distortion arises from higher harmonic sources that are generated by

nonlinearity in the entire acoustic field. Could it be that minor

discrepancies between the long and infinite wavelength cases accumulate to

create the discrepancy? Lack of experimental data prevented an earlier

response to this question, but discussions with researchers currently involved

in such activity [15] sparked the present authors' interest in exploring these

concerns.

The analysis presented herein treats an excitation of only the (2,0) mode

in a hard-walled waveguide. It will be shown that this mode excites the

planar mode in an insignificant fashion, unless L/c° >> 
21r, where L is the

transverse width, w is the (circular) frequency, and co is the linear speed of

sound. The phase speed of the (2,0) mode then differs slightly from that of

the planar mode. This sets up a spatial beating phenomenon that leads to a

smooth transition to the planar mode response in the manner one would

expect. The analysis will confirm the earlier theory for waveguides ' -

when wL/c is not large. It will also show that the transition from the
0

earlier theory to the short wavelength case is marked by frequency dispersion,

in which the waveforms are remarkably similar to those observed in the

nearfield of intense beams of sound [16].

2. FORMULATION

A pressure excitation of the fundamental, symmetric, two-dimensional mode

in a hard-walled waveguide may be written as

2"

I = 0 -- ePoCo sin(wt)cos(k x), e << 1, - L/2 4 x 4 L/2 (1)

where p0  1 the ambient pressure, co is the speed of sound at ambient ..-

..........................................-
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4

conditions, and the transverse wave number k is related to the duct width L

by

k : 21/L (2)
x

m l T The question to be addressed here is the effect of nonlinearity associated

with the finiteness of e on the waves that propagate in the positive z

direction as a result of this excitation.

The equations of continuity, momentum, and state may be combined to form

a single nonlinear wave equation governing the velocity potential [17] under

isentropic conditions.

2 2

"-2 2€ 1-  - 1) ( 2 + " + 0( 3) (3)01 o t2  at - 02 0at

- where the nonlinearity coefficient o is the constant associated with the

0

second order term in a polynomial expansion of the pressure perturbation p as

a function of the density perturbation p at fixed entropy.

2 2
P/(Po Co) = P/Po + (8 " 1) o )  + . (4)

The pressure is related to the potential by

p 0
0 4 )+ + v " = 0 (5)

From equations (4) and (5) p, p and 0 have the same order of magnitude, so

elimination of p from these relations yields L

". . . . ..I.
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1 2a ]vO--- - + N0(O) (6)
2c0

The boundary conditions for , are obtained by making the particle

velocity normal to the walls vanish,

0 at x L (7)

ax -2

as well as by matching Eq. (6) at z = 0 to Eq. (1). Also, for uniqueness, it

is required that the signal consist of a wave propagating in the positive z

* direction.

The initial stage of the solution technique employs a regular

perturbation expansion of the potential in terms of the small parameter e,

2

Matching like powers of in the differential equation and boundary -

conditions leads to a sequence of equations in the usual manner. The order -

terms are

2

co2 721 - 0 (9a)
at2

i

*1 0 (9b)
ax

x = * L/2

- .- "-°-"J

* -4 L .- ,,

-. '-,-"
;, . 1.-:
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6
2 '

at {exp [i(wt - k x)] (9c) .,z0

+ exp Ci(wt + k x)]} + CC
x

where CC in general shall denote the complex conjugate of all preceding

2
terms. The order 2  perturbation equations are

2
2 2 a 02  a 1 a 1  2

Co 02 .t 2 (so ) (-5-) + Vl. vil] (10a)
o 0

= 0 (10b)

x + L/2

2
at (z10 c

" o z=0

3. EVALUATION OF THE POTENTIAL

V. It is a straightforward matter to solve Eqs. (9) by separation of variables, .. !

with the result that

2c
-I =0 {exp Ci(wt - x x - kz z)]

+ exp C i(wt + k x - k z)]} + CC (11)

where

k w/co , = sin- (kx/k), kz = k cos e (2 k 1 2 (12)
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Only the case of propagating, rather than evanescent, waves is of interest,

which means that kx < k. This condition is obtained whenever w exceeds the

cutoff frequency for the fundamental mode, ) > 2m c /L
0

Equation (11) represents the first order solution as two trains of planar

waves propagating symmetrically relative to the centerline x = 0. These waves

are depicted in Figure 1, where e1 and e2 are the individual directions. The

angle 9 measures the direction in which these waves propagate relative to the

centerline. Each wave represents the reflection of the other from the rigid

walls. Increasing either the frequency w or width L decreases e. In the

limit a + 0, the two trains of waves merge into the planar mode.

The first step in deriving *2 is to use Eq. (11) to form the

inhomogeneous terms in Eq. (lOa). This yields

2.- 22 

.- 

2 

-

So2  22 2at2  
. .

i 2
= c"- co  a (exp [2i(wt - kx k z)

L.°

+ exp [2i (wt + kx - kz)]} 
"

z

i C 2  _ 2 -2 )exp [2i(wt - k z)] + CC (13)
4 0 k z

The first two exponentials in Eq. (13) excite second harmonics. Such signals

propagate parallel to the two waves forming 4I' which are homogeneous I

solutions of the linearized wave equation. The corresponding particular

solution may be obtained by the method of variation of parameters, in which

the amplitude of the homogeneous solution is considered to be an unknown

S;';

t ~ -,.-. *,t j. t tA .. Y UP~ VP- -s . - .0 . .~ 0 •.7 . .7 .' t
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function. The last inhomogeneous term is a planar second harmonic. Such an -.

excitation matches the planar mode for the waveguide when kz : k. Hence,

decreasing kx brings the planar part of the excitation into close coincidence •

with the planar mode for that frequency, which means that this excitation is

nearly resonant at small kx. The method of variation of parameters will also

V yield the solution associated with this term. Thus, let

2 = u(x,z) exp (2iwt) + CC

u = C(z) {exp [- 2i (k z + k xx)] + exp [-2i (k z - k xX)]

*+ D(z) exp (-2ik z) (14)
z

h It should be noted that the unknown functions C and D depend on the axial

distance only. The periodic nature of the excitation eliminates dependence of

these functions on t. Similarly, the rigid wall conditions, Eq. (lOb),

imposed along x = + Tr/kx could not be satisfied if C or D were functions of

x.x

The result of requiring that Eq. (14) satisfy Eq. (13) is a set of

S.uncoupled differential equations for the amplitude functions. After Eq. (12)

for kz is applied, these equations are found to be

C" 4 ikz C - t i o W (15)

"" D" D'2 12 k2 ""
0" 4i k D' + 4k D - i( o  2 k /k". -. z x 4 xI .'

. .
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where a prime denotes differentiation with res pect to z.

The particular solutions of Eqs. (15) are readily found to be

0
p 32 kg

.4

D I W 8s 2 (16)
p 16 k k

It is convenient to let the constant coefficients of C and D0 appear

explicitly in the corresponding complementary solutions, which are therefore

written as

0I

Cc= k (C + C exp (4ik z)]

= 32 k 1 2 x~x z)
x

+ D2 exp (x Z)] (17)

where x1and X2 are roots of the characteristic equation

2- 2

21(k k), 2i(k~ +k (18b)
I z 2

7,. 7 . . . . . . . . .
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The expressions for *2 obtained by substituting Eqs. (16) and (17) into

Eqs. (14) must satisfy the radiation condition. In order for to

represent an out-going wave in the z-direction, it must only contain negative

imaginary exponentials in the z variable. Satisfaction of this condition

requires that C 2  = 0. The remaining terms yield

0x)
u 32k (z + C) exp - 2i(k z z + kx x)]z -

+ exp [-2i(k z - k x)]}

. (LO° .L2)2 [exp (-2ik z) + DI exp(-2ikz)] (19) ..I' i.

k x k

Note that C1 describes complementary solutions of the wave equation associated

with second harmonics of the oblique waves, whereas D is the planar eigenmode

at the second harmonic frequency.

The case k 0 corresponds to a true planar mode, which is governed
x

by the Earnshaw solution for a nonlinear planar wave. However,

letting k + 0 in Eq. (19) r.!sults in a singularity in the coefficient of the

last terms.

Such behavior resembles the case of resonance in a one-degree-of-freedom

oscillator whose equation of motion is

x + 2x F sin st (20)

L

- . * -. . * .-



When L. , the amplitude of the particular solution for a = seems to

become infinite. This ignores the presence of the complementary solution,

which forms a beating response when it is added to the particular solution.

In the limit a = w, the resonant response reduces to a harmonic at

frequency w whose amplitude grows in proportion to t.

In the same manner the singularity of Eq. (19) at k x  0 may be removed..

by an appropriate selection of the coefficient of the homogeneous solutions.

The coefficient C1 is not used for this purpose because the singularity is ---.....

associated with the planar mode. I -

In order to study kx  0 , the troublesome terms in Eq. (19) are expanded

in a Taylor series about k /k.
x

2~
2k 2

k22)2 1/2 k I x:: .'"":'

kz  (k . k) = k 1 +..x 2 k

exp(-ik z) exp E-i(k - 2 z + ....

ik2

= (1 + z + .. ) exp(-ikz) (21)

The corresponding asymptotic form of the planar terms in Eq. (19) is

- iw 8° .. 2.) [exp(-2ik z) + DI exp(-2ikz)]

16 27 2k
2

iW 0o 2 ) [I + x"- i:T:.
+ + D] exp (-2ikz) (22)

= 16 " 2  2  2k 1 1
x

The singularity fork 0 is cancelled if the leading term in D -1.
x I

, S * S** *.-..S.,..

.- .. --.-
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Thus le

0~~~~ 1 1+- 2a

where the coefficient D* may depend on k in any manner that satisfies the

condition

Jim - 6 (23b)
k +.0 k
x X

where 6s i s a bounded number. Similarly the coefficient C1 is restricted to

depend on k in any manner that is not singular as k 0 0.
x x

The second order potential is now found from Eqs. (14) and (19) to be .

0@2 -~~--(z + C )exp(2iwt) Cexp(-2i ,) + exp(-2i@)

- LO L) 2 x 2w)(x[ig

kx k

+ +(1 0exp 1(i i+@)k/k 1+ CC (24)

where

1 z z~ x

*2 k z k xx (25)

The foregoing expression for 0, satisfies the wall conditions, Eqs. (10b).

At this juncture, @2 does not satisfy the boundary condition, Eq. (10c),

. . .

. . . . . . . . . . . . . .. . . . . . . . . . . . . '~ - ... ', ., .. -A
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which specifies that there should be no second order contribution to the

pressure at z = 0. This condition could be satisfied by appropriate selection

of the coefficients C1 and D*. However, both of these describe homogeneous

solutions for *2' and they are not singular as kx  0. Thus, they represent

* 2
effects that are O(e ) at all locations. In contrast, observable distortion

phenomena are associated with second order terms that grow with increasing

distance. Therefore, setting

C1  D* = 0 (26)

leads to insignificant errors. The corresponding potential function then

obtained from Eqs. (8), (11), and (24) is L

2c
Co exp(iwt)[exp(-i*l) + exp(-iq 2)]

4w -" ")

+ T - z exp(2iwt) [exp(-2i1,) + exp(-2i10 2 )]
z

2 iw Bo 2-j-T ( - 2 -) exp(2iwt) {exp[-i(,l +.

exp[-i( j + *2 )k/kz]) + CC + 0(e (27)

where 0( e2 refers to terms having that order of magnitude at all locations.

4. EVALUATION OF THE PRESSURE

Prior formulations of nonlinear propagation using the velocity potential

have generated the potential in the form of a separation of variables

solution. Specifically, the expression was a product of functions of each

. . . . .. . .-
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67 space variable and time. In that situation, it was necessary to consider

* individually the state variables of particle velocity and pressure.

j iThe present case is different because the potential is now represented as

"two planar waves, each of which is described by a single propagation distance

parameter. In general, proper behavior of the expression for pressure in a

simple planar wave ensures comparable results for the other state variables.

The pressure is related to the potential function by Eq. (6). Omission of the

quadratic products in that relation ignores terms that are uniformly O(
2 2

which is comparable to the error in Eq. (27) for 0 , Thus,

p I + 0 2) (
2c 2 a t 0(

0o 0 0 ,-"

2
- 1i exp(it)[exp(-iw) + exp(-i, 2)]

1 2

i I. 2~ i% exp(2iwt)Eexp(-',s,2) .

12 k2

+ exp(-2i, 2)] - £ (8o - - 2) exp(2iwt)
kx

rLL
Kx{exp[-i(tpl + *2)] - exp [-i(g,1 + ,)/z}i'i'

+ CC + 0(e2 ) (28) L

The first set of 0( 2 terms grows with increasing z in all cases, and

0 the second set grows when kx/k is very small. Such functional behavior is a

result of using z and x as position variables, neither of which consistently

match the spatial scaling of the nonlinear processes. In order to ascertain -"

the correct spatial dependence, a near-identity transformation in the form of

• •" "• ".
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a coordinate straining is employed. A different transformation is introduced

for each wave variable 1 and ,-
12 2

The presence of O(k) terms in Eqs. (27) that depend on I + 2 .

indicates that the waves interact. Further examination of the form of Eq. . -"-

(27) suggests the trial transformations " --.

II

j. = a. + E [Fj(li,al ) exp(iwt)

+ T'j(a 1 , 2 ) exp(-iwt)] + .. ,; j 1,2 (29)

where the complex conjugate term, denoted by an overbar, is introduced in

order to ensure that the transformation is real. Substitution for I and

in Eq. (28), followed by expansion in Taylor series in powers of , yields -. :*. -

P = - i exp(iwt)[exp(-ial) + exp(-ia 2)]oo2  4 1 2-

- exp(2iwt - ial) + 1 exp(-ial) (30)

+ F2 exp(2i~t - ia 2) + r2 exp(-ia 2)]
1 c2.•k 2 -..

11 2

- 1Bo is z exp(2iwt) [exp(-2ia 1  . i"?.--- '

+ exp(-2ia 2)] - 2 (s - - 2) exp(2it)
X

x {expC-i(al + a2)] - exp[-i(al + a2)k/kz]}

+ CC + o(E
2)

I-: -- -:"

..........................................................
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The task now is to determine the functions F1 and F2 that cancel all
2

O(e 2 ) second harmonic terms which grow with increasing z. For this, the terms

that depend on a1 + c2  are apportioned equally between F, and F2. The 0

appropriate choice is found to be

ia0k2  1 k2
F k z exp(-ia I )  - °  - 2) )  (31)

4 k z 4

1 ~exp(i 1) (8 {xp-i 2

k k- exp [-ia1 ( k-z - 1) -ia 2 kr ]

z z-2i

F2 4 k exp(-ic 2) - (so -: - 2) {exp(-ia I )
2 4k k 1 'L2 k2

- exp [-io 2 (ia- 1)-i k .
z z

These straining functions do not cancel all 0(e 2) terms in the

R pressure. The remaining terms, which are created by the complex conjugates of P

F1 and F2 , contain combinations of the a1 and a2 variables. Their presence is

not a problem, because they are independent of t. Their role is to cancel a

mean value of the pressure that is created by the cordinate transformation. I

It is convCnient at this juncture to write the coordinate transformations

and pressure resulting from Eqs. (28) - (30) in real functional form. The

pressure is governed by 3

6 4

-... ::;

,-"-L j°

I•°. "
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S pC2 =- [sin(wt - a1 ) + sifl(wt -a)

2: ( - - 2) {2 cos(a1  a)

x

- Cos [2 k - ( + a ]
z

-Cos [2a2 -- (a1 + aL2)]) (32)
2 kz

Io
where

mkz 4IX

CLa + c siw -,)

2. 1 {Cos(wt -g2

Okx

* - COS Ewt ~a k ~ 2 ) (ci + 2 J (33a)

k z z k x

*0- 2

12  2 0ok a2

12
* - £(% - - 2) {cos(wt a ii

k
x

- Cwt al ~ -1 (ali + 02)])(3b
z
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The foregoing relations fully define the pressure. The value of p at

* specified x, z, and t may be determined by solving Eqs. (33) simultaneously

for the values of aI and a 2 ' and then using those values to compute p. It

will be noted that the terms in which al and a2  couple do not explicitly grow

with z. However, their magnitude increases as k /k * 0, so the spatial
x

beating phenomena created by this interaction takes on the appearance of

growth in the limit. This matter is treated in detail in the next section.

5. ASYMPTOTIC TRENDS

Equations (32) and (33) are generally valid, but examination of the

behavior at limiting values of kx/k provides important insights.

For k /k << 1 (wL/c ° >> 
27), the coordinate transformation may be expanded in p

a power series in k /k. First, apply the identity for the cosine of a sum to

the last term in Eq. (33a).

a 1  k2

z sin(t a)
z

hik 2  1 k" ""

* ~ + (% -! - 2) sin[wt - a2 - - l)(aI + a2)]
k z
x

1 k
x sin [a (- " 1)(aI + a2)] (34)

z

2 2
Since k/kz  1 + k x/2k + ... , the leading terms in a Taylor series
expansion of Eqs. (33) are

1 1.. .

a 1 + -a ekZ sin(wt - a1 ) + 8O(a I + a2 )sin(wt a2) (35a)
1. 2 0-+

V
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When the same operations are performed on Eq. (33b), the result is .. -

~ a2 + 7 okz sin(wt - a2) .

+ o1 E B2 ) sin(wt - a1) (35b) -

According to these relations the values of aI and a2 may be estimated

as aii + O(e kz). Hence, the factor E(aI + a2) may be replaced

by E( I + 2 - 2 e k z , which is approximately 2ekz because of the smallness

of k /k. Thus, the coordinate transformations have the common limiting form

i i + 7 cEokz [sin(,t - ai) + sin(wt - a2)]

+ al"
1 a 2  1 -aO2

-i + $ 0 kz sin (wt 2 cos 2 (36)

from which it follows that

I "2 -2 k x - I " 2 a a

.1 2 a2

2 2k) c2 kz sin Cos ( 2 (37)

The same analysis is now applied to Eq. (32). Series expansion in powers of

kx /k yields •x. .- . .

. -.

I..-° .

. .. . . .. , . .. ... U ____.________________
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p22 [SIfl(wt -a) + sin(w~t - a 2 )! 2 k2 2 "..-
P 0 C0

1 2 2+ -- 30+ +2 2){2 cos(a1  xa cos[(a 1 ,,)
k

k 2 k 2
&2  Cos [(a1  a2) - 2 (a1 + a2)]}

2k 2k

1__ 2 a1 -a 2P _ sin(t - 2 cos(- 2 (38)

The next step is to substitute the first of Eqs. (37) into the foregoing,

and to use the resulting expression for p to eliminate a1 + a2 between the

second of Eqs. (37) and Eq. (38). The pressure expression that is derived in

this manner is

pS
e ~ sin (wt - k z + Bokzp) cos (k x) (39)

2 o 0X
I pC

P o0  
._.0.

If kx  0, this expression reduces to the well known solution for a
X

planar finite amplitude wave at moderate amplitudes [18]. For very

small kx/k, the signal described by equation (39) is a quasi-planar wave.

The distortion is measured by the value of a kzp, the change in the axial
0

phase variable from its value wt - k z in linear theory. The wave is not

truly planar because the amplitude varies with transverse position

as cos(k xx). Comparable phenomena are encountered in the far field of

cylindrical and spherical waves whose amplitude is not uniform in the

- transverse direction [11,19]. --

Suppose that the limits of Eqs. (32) and (33) for small k /k had been

derived without considering the interaction terms (those containing

both a 1 and a2). The result would have been the same, except that a in such

an expression would have been replaced by In other words, half the

2 &

•L_

* .. '* .-. 
o

+'"'" "" ", -''+' " .'5.' .' " "" . " " ..- ."... . . _ -.. * . = - __6 , _ ._, ~ - .,. . . .. . , .
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nonlinear effect when k << k is due to interaction between the oblique waves.
x

The situation for comparatively low frequencies (exceeding cutoff) can

also be examined asymptotically. Suppose that k /k = 0(0) (recall

that k < k for propagating modes). In that case the interactive terms in
x

Eqs. (32) and (33) are not associated with beating interactions, so they " "

2
remain O(e ) at all locations. Such effects may be ignored. The remaining

terms may be written as

P p + p2 ' 
p  2 .

- sin(wt - aj); j = 1,2 (40a)1 % PaCe 2  2. ."-

0 0

where

J J + z pj (40b)
z

The coordinate straining for each wave p. is reminiscent of that for a

planar wave, with an important exception. The nonlinear effect is measured by

the difference between the nonlinear and linear spatial phases, a. - 4. In

an isolated planar wave, this difference is proportional to the propagation

distance, which would be (k z + k x)/k for waves propagating in the directionz- x
of either oblique wave. Instead, the distance )arameter for each wave in Eq.

(40b) is z k/kz. It follows that although Eqs. (39) specify a superposition - - -

of the oblique waves, the presence of one affects the other by altering the

spatial dependence for the distortion phenomena.

Another viewpoint for the low frequency (long axial wavelength) case may

be obtained from a different resolution. Define new strained

coordinates n, g such that

(41)
a1 = + n 2 = " (41)

121L
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Return now to Eqs. (32) and delete the second O(e) term in each, because those

K terms are not growth effects when k /k = 0(1). The variables a and a are-

removed from the functional dependence by forming the sum and difference of

those equations after substitution of Eqs. (41). This yields ..-

kz = + C5 - z sin(wt - ) cos (n) 1 .. -

z

kxX n - B z cos (wt - ) sin (n) (42)

The corresponding expression for pressure obtained from Eq. (32) is

P = sin(wt - E) cos(n) + 0(2) (43)
Pc2

0 0

The significance of this representation of the signal becomes apparent

when the particle velocity is evaluated. For this, the oblique planar wave

decomposition is useful. The approximation v = p/pc is applicable to weakly
0

nonlinear, as well as linear, planar waves. The propagation

directions ji and '2 in Figure 1 may be used in conjunction with Eqs. (32)

- and (41) to represent the individual contributions. Thus

1 2
2 c 0 e [ eI sin(wt - -n) + 2 sin(wt - + n)] 0(e 2 ) (44a)

The components of particle velocity are therefore

k 0

v sin(wt - {)cos(n) (44b) --

k
vx  v* e =- c -1 cos(wt -E) sin (n)

x - -x--..:o:-k

0 k

%% . • . •.. o o ° . ' , . ° - . " ° . . ° . °. . . ' . • ° ° • . • ° % ° - . ' ° * . ' . . '. •. °.' .
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These expressions may be substituted into Eqs. (41), with the result that the

new strained coordinates are found to be governed by

1 3 v
z 2 0 2  co

k .
z -

%.

k3  V;,-.

x= 1z Co (45)kzX n 0 kxkz c- --

x z 0

This form was derived in the earlier analysis that assumed noninteracting -

modes [10]. Constant values of E and n are wavefronts and rays, respectively,

for the phase of the wave in Eq. (43). The velocity components transverse to

these lines are vz and vx, respectively. Hence, the dependence of the

wavefronts on vz, and of the rays on vx, was ascribed to self-refraction in-

the earlier work. ,

6. EXAMPLE

The trends identified in the previous section indicate that at low

frequencies (kx  O(k)) the distortion process involves only the harmonics of

the fundamental mode for the waveguide. In contrast, at high

frequencies (k << k) the tendency is to form a quasiplanar wave that
x

propagates like the true planar mode. Identification of these trends leaves 1'

the questions of when the transitions to each situation occur, and what

happens in the intermediate regime?

These matters may be addressed by numerical examples. Quantitative

results in general are obtained by solving the coupled transcendental Eqs.

(33) for the strained coordinates a, and a2 corresponding to specified values

of x, z, and t. These values then yield the pressure according to Eq. (32).

If desired, a waveform may be generated by incrementing wt through an _

interval 2 r , and that result may be Fourier analyzed to determine the

* * * * * *. *- ** -'V

* * * * ' * C

.% ,-j.=,,,-.. :.:... .-.... , .-.K --_ . .: * . . :..., . .,q ........ . . .... *. - -. ., - ,.., .,'._',_r-. .L ,-d-,-,' " . , ,r
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IS

fre4uency response. One simplification in performing a numerical evaluation

* 2
is that, for specified properties of the fluid, the value of p/PoCo obtained

from Eqs. (32) and (33) depends only on the independent variables kx, kz, .

and wt and on the value of kL, (because k /k 2ff/kL) For the discussionx

. that follows, the fluid is air (pO 1.2 kg/r, co 33 ms, B 1.2)
00

i and =0 kHz. p

A case of comparatively low frequency is illustrated in Figure 2, for

which L 0.20 meter and e = 0.0014166 corresponding to an excitation of 140

dB re 20 uPa at the origin. For comparison, the noninteractive theory, Eqs.

(40), and the quasi-planar limit, Eq. (39) are also shown in the figure. The

unimportance of the mixing between the oblique waves is apparent, as is the

fact that the distortion associated with the planar theory is stronger. .

Altering the frequency for the next example would change the overall

degree of nonlinearity. For example, the distance for shock formation in the

a planar wave is

a /( eok) (46)

Since the degree to which wave interaction is significant depends

(nondimensionally) only on the value of kL, the various phenomena shall be

explored by changing L. Thus, the next case, illustrated in Figure 3, is for

L = 2 meters, with the other parameters unchanged. The quasi-planar

approximation is now very close to the new theory.

The situation for a transitional case is shown in Figure 4, which

corresponds to L = 0.5 meter. Neither approximation is accurate here. The

- -difference between the axial phase speeds of the planar harmonic created by

nonlinearity and the true planar mode is relatively small. This leads to

frequency dispersion in combination with the usual amplitude dispersion that

is associated with a sawtooth waveform. The effect is asymmetrical between

-. : .
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compression and rarefaction; it is remarkably similar to the near field

distortion observed for baffled transducers [16].

The relatively drastic transition from one approximate theory to another

resulting from increasing kL by a factor of 10 has a direct explanation. The

frequency dispersion phenomenon is attributable to spatial beating described '-.-
by the last terms in the coordinate transformations, Eqs. (33). The

trigonometric identity for the difference of cosines applied to these terms

shows that
I

cos(Wt -Cii) -cos £wt - (kz"1) (i + j)] 
z

k= -2 sin [(j+ a i C( - 1)) sin [wt _._

z

+ (aj -cii) - (aj + ai) *z]; i,j = 1,2, i*j (47)

The first sinusoidal factor is independent of time; it governs the

wavelength of the beats. When the argument of that sine term is very small

compared to ', the factor is well approximately by (c, + ai)(k/k -1). ..

Since a and a2 may be approximated by k z, small values of the aforementioned

argument correspond to cumulative growth of the frequency dispersion effect.

It follows that the prominance of frequency dispersion is indicated

by T/[2k z(k/k - 1)]. In contrast, the significance of the sawtooth
z z

distortion effect is measured by the ratio of the axial distance z to the

planar shock distance a. A comparison of the two nondimensional factors 1_

indicates whether frequency dispersion will be noticeable in the presence of

sawtooth distortion. Thus, define a beating parameter B according to

.............. ... *.. . .. .. . .. .



/l[2kz(k/kz - I)].

2 - (I - */k2 -/ (48)

I1T- (1 - k 2 /k 2 )"1 2

* This parameter is 5.08, 0.05, and 0.798 for Figures 2-4, respectively. Cases

O I[where B is substantially greater than unity can be anticipated to be well

described by the earlier noninteractive theory for duct modes, whereas values

that are much less than unity will closely fit the planar wave approximation.

Another aspect of the distortion process is displayed in Figures 5 and 6,

which are waveforms at off-axis locations. The line x/L = 1/4 is a node

according to linear theory, as well as the quasi-planar nonlinear

approximation. However, Figure 5, which corresponds to such a location, shows I .

that only the odd harmonics are nulled in the oblique wave theories. Hence

- the fundamental frequency of the signal at the "nodes" is twice the excitation

* & frequency. Note that both oblique wave theories indicate that the tendency to

form a sawtooth profile is still present.

" * The nulling of the odd harmonics was explained in the earlier analysis of

j_ the plate problem as being a result of self-refraction [4,6]. The rays in the '-A
non-interactive theory were shown to be distorted in the direction of the

Stransverse velocity component. This caused the nodal ray to cross the axial

line of zero linearlized pressure twice per axial wavelength, thereby setting

up the second harmonic signal. It is apparent from Figure 5 that this effect

also occurs in the presence of frequency dispersion resulting from interaction

of the oblique waves.

* A waveform for a general location appears in Figure 6. The even

* harmonics are more prominent than they were in Figure 4 because the odd

harmonics are lessened by the proximity to the nodal line. This effect is

" -" accompanied by amplitude dispersion, as evidenced by the tendency to a

.. ". -.I -.*-. . . . . . .
.- :..-: - * * * ,-..o *,

. . * ...-*...._.;,**-
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sawtooth profile, and by frequency dispersion, as indicated by the asyrmetry

between compression and rarefaction.

A different perspective is offered by the amplitude and phase

distribution curves in Figures 7-9. These curves were obtained by Fourier

series decomposition of the computer waveforms into
.- a.- .a

P n sin[n ,(t-t o) - Xn]; X1  0 (49)
n 0 npc n

00o

where to is the arrival time of the fundamental in the interacting oblique

wave theory. The amplitudes Pn are displayed for the three nonlinear

theories. However the phase lags Xn are displayed only for the latest theory

-- they vanish in the other descriptions in which the waveform distorts

symmetrically.

Although only three harmonics are displayed in Figures 7-9, their trends

are also indicative of higher harmonics. The earlier observation of the

increased relative contribution of the even harmonics in the vicinity of the

nodal" line x = L/4 is evident in Figures 8 and 9. In addtion, Figure 7
6

shows that the phase of each harmonic tends to lag behind that of its

predecessor by a uniform amount that increases as the signal propagates. This

effect was also predicted for sound beams [20], whose waveform in the near

field is much like Figure 4.

7. CONCLUSION

The excitation of the true planar mode, which provides a mechanism for r

the interaction of the oblique waves forming the fundamental symmetric mode,

has been shown to be significant for large values of kL. In the limit,

multidimensionality is only manifested as sinusoidal variation in the

transverse direction, much like the directivity factor for nonuniform
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spherical waves in the far field [19].

In the earlier (small kL) theory the modes are formed from obliquely

propagating waves whose interaction is only manifested by a change in the •

distance parameter governing the distortion. If each wave were truly

independent, that parameter would have beei, the distance over which the wave

had propagated. Instead the distortion of the oblique waves depends on the p0.

axial distance. That theory has been shown here to be valid when the

underlying assumption of distinct phase speeds is valid. In that case, kL is

moderately larger than 2w , so that the scales with which the signal varies in .

the transverse and axial directions are comparable. The transition from small

to large kL is predicted by the present theory to exhibit frequency dispersion

that is responsible for distortion of the waveform that is not symmetrical p

* between compression and rarefaction.

The same mechanism can be expected to enter into other situations in a

5 waveguide. For example, suppose two modes are excited. If they have .

different phase speeds, they superpose according to the noninteractive theory,

[10]. If the two modes have identical phase speeds, the modes combine to form

f a nondispersive group, for which the earlier theory is also valid. In the I

transitional situation, the two modes have phase speeds that are nearly

identical. The interaction of such modes may be anticipated to lead to

_ frequency dispersion phenomena of the type identified here. I
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List of Captions

FIG. 1 Geometry of the oblique waves.

FIG. 2 Waveform on-axis at z = 3.05 m for 140 dB at the origin, L = 0.2
m, w = 10 kHz. : Interacting waves; --- : Noninteractive
theory; -: Quasi-planar wave.

FIG. 3 Waveform on-axis at z = 3.05 m for 140 dB at the origin, L = 2.0
m, w = 10 kHz. : Interacting waves;---: Noninteractive
theory; --- : Quasi-planar wave.

FIG. 4 Waveform on-axis at z = 3.05 m for 140 dB at the origin, L = 0.5
m, = 10 kHz. Interacting waves;---: Noninteractive
theory; -- -: Quasi-planar wave.

FIG. 5 Waveform at x = 0.125 m, z = 3.05 m for 140 dB at the origin, L = 0.5
m, W = 10 kHz. - : Interacting waves;---: Noninteractive
theory; - - Quasi-planar wave.

FIG. 6 Waveform at x = 0.1 m, z = 3.05 m for 140 dB at the origin, L = 0.5
m, w = 10 kHz.- : Interacting waves; : Noninteractive
theory;- - -: Quasi-planar wave.

FIG. 7 Axial dependence of frequency response along x = 0 for 140 dB at the
origin, L = 0.5 m, 10 kHz. : Interacting waves;---:
Noninteractive theory; : Quasi-planar wave.

FIG. 8 Axial dependence of frequency response along x = 0.1 m for 140 dB at
the origin, L = 0.5 m, w = 10 kHz. : Interacting
waves;---: Noninteractive theory;- Quasi-planar wave.

FIG. 9 Transverse dependence of frequency response along z = 3.05 m for 140
dB at the origin, L = 0.5 m, w = 10 kHz. Interacting
waves; • Noninteractive theory;- : Quasi-planar wave. .

7 ., . _ .

. . .. . . . .. .. .



S
.~. J. ~.

p

N

I I 'V

I.

~

LIf
4-

O\~4r~

*
---- 4-----

4-p
*

Jt~

I

I
,. /



II

InI

0 0M

/ lx /



L
S

Ii.

4 4-

6.. 5

C

- N

/
If)

I.
- I

-4-

/ C

/h -

C

4-
-4-

-4-

I, C

17 o C C C
C C C C C

N - C - N
I I

* (~oI x)~ %%/d

*

I.



4-4-

0 0

0 0

0 0.
/,- )3 /



A . A

LnI

0 0

vI--Vz /



LL

0 )

-l X) 0 0d



0 0

I' I o

0 0 0 0 0 LCT0

L' 0 0r 0 CC m 0

C\J c;

01 X \\ Ise~p 0.



4

0 0-

0

-4C (" C) \

I0 0~

0

01 X \ud (T)jap



IV

U-

U*) LA c

0 0

c; 0

1 0 L0

ci,

u

01 X)d(aa~p



SYMPOSIUM IUTAM

AERO ET HYDRO-ACOUSTIQUE

Du 3 au 6 juillet 1985

ECOLE CENTRALE DE LYON

FRANCE

SUBVENTIONNE PAR:

- IUTAM
- CMRS

0 PA - DRET
AUM

-C.G. Rhd^ne
-Ministere EnvironnementL

Avec le Patronage DU GALF . A



FINITE AMPLITUDE SOUND BEAMS RESULTING FROM NONLINEAR VIBRATION OF
A CIRCULAR MEMBRANE UNDERGOING AXISYMMETRIC RESONANT EXCITATION

J. H. GINSBERG

School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia

Summary

This paper analyses the interaction between a vibrating circular membrane
contained in an infinite baffle and the resulting sound field radiated
into a fluid medium contained in the half-space above the membrane. The
case of resonant excitation of the membrane leads to nonlinear coupling
between transverse and in-plane displacement. Nonlinearity within the

* fluid medium is described by a recent general treatment of finite
amplitude sound beams resulting from boundary motion. The vibratory
response of the membrane is evaluated in a perturbation technique based on

,* the modes of free vibration. The results give amplitude-frequency rela-
tions for the plate that account for the inertial and damping impedances
of the fluid, as well as expressions that may be solved for the pressure
Signal in the fluid.

Finite Amplitude Effects in Acoustic Radiation [ .

Consider a circular membrane of radius a that is fixed at its edges

- to an infinite baffle. An excitation at frequency w close to a natural

" "frequency is applied on one side, and a fluid medium occupies the half-

space on the other side. The speed of sound and density of the fluid at

ambient conditions are co and po, respectively. Dimensional cylindrical

coordinates are R/k and z/k within the fluidathich occupies z > 0, and

dimensional time is t/w, where k - w/c,. A recent study described the

effects of material and convective nonlinearity on the acoustic radiation

resulting from an arbitrary motion on the boundary El]. Suppose that the V

normal velocity on the boundary is

V = c. f(R) exp(it) * c.c. (1)
21

" 

/"2

where c << 1 is the acoustic Mach number and f(R)/R is bounded for

large R. Then the pressure at any (R, z), omitting a mean value correc-

tion term, was found to be described by

.-- 7 !7- . . .
% . . ..4** - - -. . * . . . . . ...~ . . ... ,- .... . . . . . . -.



p 2  f _ - exp(it - w ) Jo(ma) dm + c.c. (2)

0

In general, c.c. shall denote the complex conjugate of all preceding

terms. The parameters m and V are transverse and axial wavenumbers,

respectively, J,( ) denotes the Bessel function of zero order, and V is

the Hankel transform of the spatial pattern f(R).

2)1/2 2 1/2 ."
i(1 M if m < I & = _ 1) if m > 1 .

V = R f(R) J,(mR) dR (3)

0

The parameters (a, ) are strained coordinates defined in implicit form by

z = - .€a 1(mV/) exp(it) erfc[(v&)1 /2  + c.cI J0 (na)

R = a + ieB8o j(mV/P) exp(it) erfc[(P&) 112 ] + c.c} J,(na) (4)

The evaluation of the response of the fluid-membrane system requires that

eqs. (3) and (4) be interfaced with the equations governing the membrane.

Equations of Motion for the Membrane

An elastic membrane undergoing finite deformation due to a resonant

excitation was studied by Chobotov and Binder [2]. Several shortcomings

of the earlier work shall be corrected here. Small errors associated with

using an assumed mode function shall be addressed by employing the exact

Bessel function mode. Furthermore, the study here shall describe the
4

situation for resonance of any mode, rather than only the fundamental. 7 -

The last matter is that the resistive and reactive portions of the fluid

impedance will be derived analytically. In Ref. [2] the acoustic im-

pedance was based on a low frequency approximation that did not account

for diffraction.

Chobotov and Binder began with a derivation of displacment equations

of motion that accounted for in-plane deformation and geometrical

nonlinearity. Examination of these equations reveals that the membrane

displacements are scaled such that

transverse displacement C in-plane displac:ment 2 2 u (5)

Inpaek 5



Based on these definitions and the fact that the acoustic Mach number c in .

eq. (1) is very small, the equation for in-plane motion may be rewritten

from its original form in [2) as

Sa a 2 0 V) 2- 2 2
D[ "R R 2 2R C 2 62

The corresponding equation for transverse motion is

I aw 2 [R w aw 1R -::-
R Lw[R V eU RL ]

PlTDo R2 __2w (7) ,

-[Q(R) cos(t) 2I- 2CQ_ a t(7

g ka PC oc o at

2
In the foregoing r P~co a/ah (h iz the thickness of the membrane), Q(R)

is the radial profile of the excitation applied to the membrane, and

c u  [E/p(1 - 2 / c= (o0 )/2 ; eo (cw/cu2 "(8)

<Note for later use that c << c . In addition, the magnitude of Q is3 w u

required to be sufficiently small to induce a transverse displacement

whose peak velocity actually is a small fraction of c,."}: "

Vibratory Response

The eigenfunctions for a membrane whose edges are fixed are

" V. = J,(n) where n = A R/ka and J,(A.) - 0 (9)

Some approximate values are AI = 2.405, A2 " 5.520, A - 8.654. Proximity

to resonance is specified by w a X cw/a.

In general, the transverse displacement may be expanded in a series

of modes. When the excitation is close to one of t.e natural frequencies,

the corresponding mode may be expected to dominate the response. Since
2

the nonlinear terms in eq. (7) are (), the transverse motion in this

case should satisfy

w -j w (t) + r w(R, t) (10)-

where w R,t) is orthogonal to j over the interval 0 9 R S ka.

...



Substitution of eq. (10) into eqs. (6) and (7) shows that all deriva-

tives have comparable magnitudes. The largeness of cu relative to cw, in

combination with the resonance of w, makes it permissible to neglect the

inertia of in-plane motion. An expression for u may then be found

analytically. Toward this end the 0(I) term for w in eq. (10) is sub-

stituted into eq. (6). Using the chain rule to replace R by n results in -.

an inhomogeneous ordinary differential equation for u.

I -[ 1 L (nu)1 = 2 a [J,(n) 21 1 l- v) [J,(n) 2 ]} (11)

This equation may be integrated twice, after which the constants of in-

tegration are selected so as to satisfy the condition that u = 0 at R = 0

and R - ka. Repeated application of the recursion relations for Bessel

functions yields the following expression.

u W. -- 2  U . .

-1 v) Jo J,(n) 1v n [J,(A) 2 
-J() J(n) (12)

Amplitude-Frequency Relations

The equation for wi(t) is obtained by substituting eqs. (10) and (12)

into eq. (7), then applying orthogonality of w with respect to 0.. The

result is

2 2  4
1 () ~ ~(.) 2  a 2a w . 2 XA

2 ka A .c 2 C, ka)8 .w at2

r 01z=0 P
kaJ n 2 Ja(n) dn =c- cos(t)I n Q J0 (n) dn (13)

0 Paoo 0

where 6 is a coefficient of nonlinear elasticity that is found to be

J 2 : .1..

6- {JU [ii v) J,(n) - 2v Join) J,(n)] i n J1(n, I dn (114)
02

values of this param&ter for the first three resonances when v - 0.29 are

61. 0.08206, 62 - 0.11996, 63 " 0.14069. Chobotov and Binder used the3 2

approximate fundamental mode P " 1 - (R/ka) to obtain 6 = 0.08424.
1 1

Because of the smallness of the nonlinear term in eq. (13), w will

,. " - ' ,, . ' .. . ." . . . . . . .. . . " . . - . . . . - . .. . '- ' " - . . . . -.- -..... .. .-.. . ... ', _ , _ , . " ' . " . . _ . ' - " ' ," , '



be harmonic in the first order approximation. Let A be the complex

amplitude, and let w denote the dimensional transverse displacement found

from eq. (5).

A- eA 2
2 exp(it) +c.c ; w = J0 (n) exp(it) + c.c. + O(E 2 ) (15)

The Hankel transform V of the normal velocity at the membrane may be

evaluated by comparing the (dimensional) time derivative of w to eq. (1).

This defines the shape factor f(R) for R < ka. For R > ka, f(R) - 0

because the baffle is stationary. The transform is found in this manner

to be

ika j/a

V - A G ; G = J R J(0 R/ka) Jo(mR) dm (16)
0

The coefficient G, which may be evaluated in closed form, leads to an

expression for p according to eq. (3). The acoustic loading applied to .

the membrane is readily found from that expression, because - 0 and a =

R at z 0 0, see eqs. (4).

P1 = - O PoCO cA J exp(it - pz) J,(mR) dm + c.c. (17)

0

The final step leading to the amplitude-frequency relations is to use 7

the method of harmonic balance to equate all terms in the equation of

motion that are proportional to exp(it). (This procedure is equivalent to

removing secular terms in singular perturbation schemes.) The equation

obtained in this manner relates the amplitude cA to the frequency w and

the generalized modal amplitude Q for the excitation.

2 36 c3A2A
[ r (YdIa (-w) ] A r ka (18)

w 2eoEkaJ,(Aj)] A

where cA denotes the complex conjugate. The coefficients Y and Y are
m d

reactance (added mass) and resistance (damping) Impedance coefficients,

respectively, resulting from the acoustic radiation.

." 2 m_ G. .- ~ ~ka AZJ,( ) 0 m)i2d .. -'" "]"

". , . :.v.-



- . - .. .-

A w 2
2 f m G d"

m ka 2 2 (m2  1)1/2 (19)
kaA J,(A. (m

Equivalent expressions were derived by Bouwkamp [3] by using a scattering -.

integral. ." '-' .

The real and imaginary parts of eq. (18) may be solved for the mag-

nitude and phase of cA; the latter represents the phase lag of the

response relative to the excitation. Then the acoustic signal may be

evaluated by substituting the value of EA into eqs. (16) to form the

Hankel transform V.

Results

Figures 1 and 2 depict the resistance and reactance coefficients as a

function of ka. The peaks in Y are centered around ka = A. for the
m

respective resonances, whereas Y rises almost linearly beyond those

locations. Suppose that the fluid is water, in which case c /c, << (o .
2 w

<< PoCo because a, cannot exceed the yield stress). Furthermore, note

that ka = A. c /co when w = w., and that ka >> 2n for closely confined
jw j

sound beams. It follows that resonant excitations at high ka values for

beam forming only arise for very high order modes.

N *'-q

WI L)
.. .. ..... ...3. .

Fig. 1. I .U, L 0 .'I: . .

0.0 10.0 20.0 0.0 10.0 20.0.
ka ka ::

Fig. 1. Resistance Yd for Fig. 2. Reactance Y for -"

d
the three lowest modes. the three lowest moses.

The dependence of the harmonic amplitudes forming the pressure

waveform along the axis of a sound beam is depicted in Figure 3. Only the

fundamental frequency, marked #1, is treated by a linearized analysis.

..................................................... . ...... . . . . . . . . ... - . -. -. •
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The corresponding result for a piston (uniform velocity) is shown in

Figure 4. In both cases ka - 40 and E - 0.00102, which produces a maximum

sound pressure level in the piston case of 250 dB re 1 pPa. The fluctua-

tions in the piston case are due to diffraction effects that alternately

reiiforce and cancel the fundamental frequency in the near field, z <

2
S(ka) /2. Diffraction effects are much less significant for the membrane

* because the particle velocity is continuous across the edge, so the

* propagation curves are smoother, and the peak values are lessened.

0 C

*Q*

2 14
• -- ,- .<

0 3 o .--° 3 ........ 32 --..

00

S ..........................................-• ~0.0 200.0 400, . . . .
0.0 200.0 400.0

axial distance z 002 .0 40
axial distance z

Fig. 3. Range dependence of Fig. 4I. Range dependence of
the amplitude of the three the amplitude of the three

lowest harmonics in a sound lowest harmonics in a sound

beam generated by a membrane, beam generated by a piston,

as a fraction of poc 0
2 . as a fraction of poc, 2.
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An earlier analysis of finite amplitude sound beams derived general
expressions from the behavior in the off-axis legion (J. H. Ginsberg, J.
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region very close to the beam axis confirms the earlier result for the veloc-
ity potential. The signal is rewritten in a form that makes the contribution
ofeach wavenumber in a co-itinuous spectrum appear to be the sum of two
waves traveling transv'rscly, as well as axially. The coordinate transfor-
mations required to renormalize this form lead to a temporal Fourier
%enes that is reminiscent of the Fuotni solution for finite amplitude planar
waves. The comp'ex amplitude of each harmonic is obtained from an
ntegration over the transverse wavenumber. The computational effi-

ciency of ibis repres. t ation permits extensive evaluation of propagation
properties. An example c -ipares the signall derived from a piston to that
obtained ^rorn the one-dimnensional assumption that p =per, on the
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