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1.0 INTRODUCTION

1.1 Review of Literature

The efficient numerical propagation of waves in complex

three-dimensionally varying environments has been a problem of

considerable geophysical interest over the past few years, yet has

proven extremely difficult even for the case of acoustic wave

propagation in two dimensional structures. This is primarily due to the

fact that although the differential equations of motion are linear in the .

field quantities of interest, they are non-linear in terms of the

boundary conditions for most realistic structures. This fundamental

nonlinearity precludes construction of the solution for complex

structures by superposition of the solutions for simple structures, and

forces one into computationally costly schemes.

Techniques for dealing with this fundamental nonlinearity have spanned

the range from the crudest classical ray tracing approach to the
computational-bound finite difference type methods. However, no single

technique has ever proven entirely satisfactory for redsons of accuracy,

completeness of solution, generality of application, cost or combinations

thereof. For example, in cases where significant diffraction and %

interierence effects require "exact" solutions, finite difference

techniques have received widespread use. Yet, the finite difference

approach is well known for its cumbersome computational demands in two

dimensions and almost insurmountable computational demands in three
dimensions even on the fastest computers available today.

The heavy computation requirements of the finite difference type

methods are created by the necessity of refining the numerical grid
proportionately to the wavelengths of interest in all spatial directions,

including regions of constant material properties. For problems

involving wave propagation in irregular layers of constant material

properties within each layer, however, the Boundary Integral Equation " "

(BIE) approach provides a more concise and efficient formulation.

SGI-R-85-120
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Basically, the BIE formulation takes advantage of the fact that the

propagation of waves through a region of constant material properties

can be treated analytically, leaving only the interactions at the

bounding surfaces to be treated numerically. Rather than imposing a

grid over the entire volume, the BIE method only requires gridding of

the interfaces between regions of constant material properties. Not

only are there potential savings in computational effort to solve a

smaller system of equations, but the formulation represents a concise

treatment of the pertinent physics involved. By virtue of this

contraction of information, the smaller matrices in the BIE approach are

much denser than the corresponding matrices in the finite difference

approach. These dense matrices are typically poorly conditioned and

must be given careful consideration during implementation of matrix

solution techniques to avoid numerical instabilities.

Various techniques have appeared in the literature for dealing with the

dense matrices in the BIE approach. One technique involves

introduction of a Kirchhoff approximation into the BIE formalism (eg.,

Berryhill, 1979; Scott and HElmberger, 1982; Mellman, et al., 1982). In

the Kirchhoff approximation the interaction between neighboring points

on a boundary is ignored by locally approximating the boundary at each

sample point by the tangent plane at that point and then using plane

wave reflection and transmission coefficients to compute the unknown

boundary values. Even with the Kirchhoff approximation, one is still

confronted with the denseness of the matrices used to propagate the

boundary values forward to the desired positions. Furthermore, and of
utmost importance, is the fact that this decoupling of neighboring

boundary points in the Kirchhoff approximation precludes simulation of

head waves, surface waves, most diffraction effects and any other

dynamic effects related to multiple interactions of the wavefield with a

single interface.

A time domain treatment of the full system of equations has been

addressed by Cole (1980) fir two-dimensional acoustical problems in
geophysics. Cole's approach becomes expensive at high frequencies or

for late arriving signals as the product of the frequency step times the

SGI-R-85-120



3 r'd° -"=

time step must be less than about 10 to maintain stability. More

importantly, the formulation does not handle the dense matrices

efficiently, precluding generalization to three-dimensional elastic

multilayered problems. Also, it is difficult to include realistic material

attenuation and to suppress late arriving spurious reflections off the

artificial extremities of the grid using a time domain formulation.

Ferguson (1982) studied two-dimensional elastic problems using a

frequency-domain BIE treatment in which the unknown boundary values

are expanded in a series of plane waves with unknown amplitudes

determined by performing enormous matrix inversions at each

frequency/wavenumber pair to satisfy the boundary conditions.

Although realistic attenuation is included, the computational cost of

Ferguson's approach is at least an order of magnitude larger than finite

difference type methods and provides incorrect results for problems

involving interfaces with slopes exceeding about 60 degrees.

Schuster (1984) has formulated a frequency domain BIE approach based

on first solving a set of smaller uncoupled singular boundary integral

equations for the individual primary responses of each interface and.- -

then coupling them together by successive iterations using a Neumann

series perturbation treatment. Schuster's method is stable, accurate,

nicely convergent and increases in cost linearly with the number of

layers, yet the algorithm still requires large matrix inversions for the

individual self-interaction operators preventing a cost-competitive

alternative to finite difference methods.

Apsel, et at., (1983) formulated a frequency domain BIE approach in -

which there are no matrix inversions, realistic attenuation is included,

the method is stable and accurate and the algorithm is significantly

more cost-effective than finite difference type algorithms. A

fundamental ingredient in the formulation is the realization that the

integrable singularities in the self-interaction operators along each

interface have the same convolutional form as those for a flat reference

plane. Then instead ot perturbing the entire primary response of the

individual interfaces as in Schuster's approach (1984), the exact solu-

SGI-R-85-120
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tion including all kinematic and dynamic effects is obtained

iteratively from the singular self-interaction responses using a specially

designed perturbation treatment guaranteed to be uniformly and

optimally convergent. All matrix inverse operations are reduced to..

simple deconvolutional operations, which are efficiently handled using

Fast Fourier Transform algorithms.
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1.2 WORK COMPLETED TO DATE

The BIE formulation presented in Section 4.1 of Apsel et al. (1983) has

been implemented for 2-D multilayered acoustic geologic structures.

There were two significant problems with the original implementation.

First, the Neumann series iterative procedure exhibited poor and often

non-existent convergence for models departing even moderately from the

flat reference planes. The second problem was the presence of

spurious edge reflections for models with interfaces that failed to return

to the depths of the reference planes near the horizontal model

extremes.

To address the convergence problems, it was necessary to make four

improvements to the simple Neumann series iterative procedure. The

first improvement was to express the boundary values at the n-th

iteration, Xn as a series of basis vectors, 4', with unknown

coefficients, a,.

Xn i=1 t

In

-1 i-1 -1 . . -

in which 4. = ([C][A)) [C]I{F}. The unknown coefficients at

the n-th iteration (all a2 ,.. an are determined by minimizing the

residual in the boundary integral equations in a least-squared error

norm. If all the coefficients were determined to be unity, then the

expansion in Eq. (1) would correspond to the Neumann series solution.

With variable coefficients at each iteration, the method is guaranteed to

be uniformly convergent in the absence of numerical roundoff.

The second improvement was to orthogonalize and normalize the basis

vectors in Eq. (1) in order to more rapidly span the solution space.

This resulted in approximately a 20 percent improvement in the overall

convergence rate.

SGI -R-85-120
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The third improvement was Lo implement an automatic restart on the

iteration loop to: eliminate tne potential roundoff problems; reduce the

cost of the least-squares operation at each iteration by limiting the

number of iterations to ten per pass; and increase the rate of

convergence by iterating on differences of boundary values from

previous passes rather than directly on Lhe boundary values. This

resulted in approximately a 10 percent improvement in the overall 4

convergence rate.

The fourth improvement was to use the boundary values from previous
-1

frequencies to achieve a better starting solution than [C] {F) at the I

current frequency. This resulted in approximately a 20 percent

reduction in the number of iterations. A further improvement would be

possible using more sophisticited extrapolation and phase unwrapping

P techniques to more closely predict the boundary values at the current

frequencies from the boundary values from previous frequencies.

Even though these four improvements provided a much more reliable

algorithm, the convergence was still far too slow for models with

moderate or large perturbations in interface depths from the flat

reference planes.

The second problem area related to spurious edge effects was addressed 4

by padding the models by at least ten percent at both horizontal
extremes and applying tapers in the spatial domain to suppress edge

reflections. Wrap-around events in the spatial domain caused by the

discrete inverse Fourier transforms in the wavenumber deconvolution _

step at each iteration were completely suppressed by simple padding in

the wavenumber domain. Also, potential ringing from the finite Fourier

transforms was suppressed by applying tapers at large wavenumbers for

the inverse transforms and in the spatial taper zones for the forward 4

transforms.

This combination of tapering and padding was very effective at

eliminating spurious edge effects except for, models with non-zero relief

from the reference planes near the edges of the interfaces. These

SGI-R-85- 120
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remaining spurious effects and the inadequate rate of convergence are

being addressed in the work currently in progress as discussed in

Section 1.3. The original approach with the flat reference planes is

described in more detail in Section 2.1 and the current work is

described in more detail in Section 2.2.

Throughout the project, rigorous internal and external validations of

the algorithm have been performed. The results from some of the most

important validations using the original approach are presented in

Section 3.1. Also, some preliminary results on simple models for AFGL

are presented in Section 3.2.

SGI-R-85-120
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1.3 WORK CURRENTLY IN PROGRESS

The outstanding problems discussed in Se(tion 1.2 on the inadequate

rate of convergence and the spurious ecge effects for models with -..-

interfaces that did not coincide with the reference planes are currently

being addressed. Both problems were directly related to trying to

handle general models with large perturbations in interface depths with

respect to the reference planes using basically a perturbation approach.

Using the flat layer deconvolutional coefficients to precondition the

system of equations did not improve the rate of convergence for models

with large perturbations and did not solve the edge effects problem for

those models with edge perturbations from the flat reference planes.

To address both problems, the new formulation has eliminated the

dependence on the reference planes to suppress edge reflections and an

improved iterative solution technique is being implemented to replace the

old technique. ;n the new method, the models are padded at the

horizontal extremes with a thin absorption zone at least twenty samples

wide in which the forcing functions and integration quadrature

coefficients are exponentially tapered to zero at the edges to suppress

the spurious edge reflections. The tapers are applied in the frequency

domain by prescribing Q values that are tapered to nearty zero in the

absorption zone. This is similar to the work of Cerjan, et al. (1985)

except that the exponential tapers operate only on the amplitudes and

do not affect the phase information.

The improved iterative solution technique is an asymmetric conjugate

direction method with an iteration restart capability similar to the

original method and a more sophisticated extrapolation of the boundary

values from previous frequencies to achieve a closer starting guess at

the next frequency. The method is proving to be stable even for the

most complex models with convergence rates on the order of the square

root of the number of samples per interface. The largest improvement

is the more uniform convergence rate provided by more optionally

picking new search directions, whereas the rate of convergence would

slow down considerably when approaching the true solution in the

previous method.

SGI-R-85-120
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1.4 WORK PLANNED FOR THE NEXT 12 MONTHS

The first task is to fully test the new iterative solution technique and

new edge reflection suppression techrique in the 2-D acoustic code as

described in Section 1.3. This will involve repeating the internal and

external validation exercises using the upgraded algorithm. Once U
successful, various 2-D acoustic simul3tions of interest to AFGL will be

performed.

The next phase of the project would then be to extend the algorithm to

the 3-D acoustic case and perform more validation exercises and

simulations for 3-D cases. After the 3-D acoustic algorithm is complete,

development will begin on the 3-D elastic algorithm.

SGI-R-85-120
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2.0 METHODOLOGY

2.1 ORIGINAL BINTEQ FORMULATION

The boundary integral equations describing complete wave propagation
through arbitrary three-dimensional elastic multilayered media are

derived in two steps. First, the known characterization of wave

propagation within a single irregular layer is written in terms of

integral representations involving the full space Green's functions with

properties of that layer. Second, the interaction of the wavefield is

simultaneously imposed at all boundaries to satisfy all boundary and

continuity conditions leading to a system of Fredholm integral equations

of the second kind for the unknown boundary values. Once this

system of equations is solved for the unknown boundary values, the

wavefield may be propagated from the boundaries to all receiver

positions of interest within a given layer using the integral

representations of the first ',tep. The formulation for the 2-D and 3-D

acoustic cases is analogous to the 3-D elastic case and will not be

repeated here.

The model geometry for the wave propagation problem solved in the BIE

formulation is depicted in Figure 1 by N irregular layers overlying a

semi-infinite half-space. The layers are allowed to pinchout but not to

cross in this formulation. Each layer is characterized by constant

shear and compressional wave velocities and constant densities.

Realistic material attenuation is introduced by allowing the velocities to

be complex. Wave propagation within a given layer is expressed in

terms of the Green's functions for a full-space with the properties of

that layer. The formulation is not restricted to constant material

properties within a given layer, although the Green's functions for that

case are quite simple. The formulation is carried out for the full

elastic case and the corresponding acoustic formulation is obtainable

from the derived equations by replacing the vector equations with

scalar equations.

SGI-R-85-120
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r • constant material properties. The source and receiver can

be located anywhere in the medium.
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The first step in the formulation is to write expressions for the

displacement field within a single layer without consideration of the

boundary interaction. In layer R (2=1,2,... ,N+1), the displacement

vector must satisfy the homogeneous (kis) or inhomogeneous (k=s)

equations of motion (depending on whether or not the source layer s is k%,%

the same as layer k) for a full-space with properties of layer 2. The

Representation Theorem of Elastodynamics (see, for example, deHoop, 4

1958) provides an expression for the displacement vector located any-

where within volume V contining layer k in terms of integrals of the

displacement and traction field over the bounding surface of volume Vk

times the corresponding Green's functions for a full-space with

properties of that layer. The i-component of displacement at location

x£ can then be written in the frequency domain using the

Representation Theorem for a volume V£ bounded by layer interfaces S

and Sk+1 .

((,y£)T=f ) -G ,y)Uj(y) dS(y)

Sk

- ,2£+1 H -H. )U f(dS(* -o)
i + l j (+1 -2+1 i (x2 Y2+l j ky+l)J d +1

+ 6 [G2.(X 9z)fj( 2) dV zk) (2)

V2  (i,j=1 ,2,3)

in which the summation over repeated indices is understood, the

frequency arguments have been omitted for brevity and

YM an integration point on bounding surface Sm;

GZ(x 2,Y) = the j-component of the full-space Green's,
function displacement vector at location y

on surface S due to point force in the
i-direction at location x with properties of
layer 2;

SGI-R-85-120
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H. (x2,ym ) = the j-component of the corresponding Green's
function traction vector formed from the

inner-product of the kj-componeni of the
Green's function stress tensor G k- at location ym
on surface S with the k-compon~ni of the m_. ,,, unit upward m or a m '' -:
unit upward normal Vk at point y (summing "'" -.

over k=1,2,3); -

U. (ym) = he j-component of displacement at location
Ym on surface S;

T.(y ) the j-component of the corresponding traction
at location y on surface S formed from the

m minner-product of the kj-component of the
stress tensor with the k-component of the
unit upward normal v at point y (summing
over k=1,2,3);

fj(ZQ) the j-comRonent of the source function at
location zQ anywhere in layer 9 (assuming the -,-4

source is a Delta-function in space, then the
volume integral reduces to the evaluation of
the integrand at point z);9

5£S = O, if Its ' '0, if ls ,s source layer number;
2s1, if I1sL

1, if inside layer k
(x, if x on surface bounding layer I

0, if x outside layer k.

In Eq. (2), the layer comprising volume V is assumed to extend to
k

infinity at the horizontal extremes to eliminate the surface integrals

along those portions of the surface bounding volume Vk and the nega-

tive sign for the integral over surface S is associated with using the

upward normal v -V in the definition of the traction components.

Once the boundary values for U ym) and T (ym) are determined for

bounding interfaces S and S9+1, Eq. (1) can then be used to obtain

the displacement field at any point x within layer 9. Expressions for

the full-space Green's functions with constant material properties are

given in Appendix A of ApseJ, et al. (1983) for two and three -

dimensional wave propagation in elastic as well as acoustic media. This

completes the propagation step of the BIE formulation and what remains

is to impose the boundary interaction coupling.

SGI-R-85-120
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The boundary interaction coupling requires simultaneous satisfaction of

a tractionless free surface (interface 1) and continuous displacements

and tractions across each layer interface (2,3,...,N+1). The coupled

boundary integral equations arising from the zero traction conditions

along the free surface are obtained by evaluating Eq. (1) in volume V1

(layer 1) at a discrete number (ql) of observation points x I along

surface SI and imposing the zero traction condition, T'( 1 ) = 0,ii ...

(j=1,2,3), for all quadrature points Y on surface S This leads to a1 1.
simultaneous set of 3ql Fredholm integral equations of the second kind

for the same number of unknown displacement boundary values U.,
j=1,2,3, on surface S1 , which are coupled to the unknown boundary

values on surface S through the integral over surface S2 .2 2

The coupled boundary integral equations arising from the continuity

conditions across each layer interface, Sk (=2,3,... ,N+1), are obtained

by evaluating Eq. (2) in volumes V_ 1 and V2 (layers 2-1 and k) at a

discrete number (q 2 ) of observations x along common surface S£ and

imposing the natural boundary conditions of continuous displacements

and tractions, 9) =x U 9 and . )
j=1,2,3, for all quadrature points y on !.urface S This leads to a

simultaneous set of 6q 2 Fredholm integral (quations of the second kind

for the same number of unknown displace nent and traction boundary

values, and Tri, j=1,2,3, on surface S, which are coupled to the

unknown boundary values on surfaces and S +1 through the °-1 k+1°

integrals over surfaces S and S respectively. Note that when
k-12=,eintegrals involving

9=2, the integrals involving (y,. 1 ) are identically zero because of
the tractionless free surface conditions. Also, note that when k=N+1,

the integrals over surface S vanish by virtue of the radiation
k+1

conditions implicit in the Green's functions for the underlying

semi-infinite space.

When the entire discrete set of boundary and continuity conditions is

simultaneously imposed, one obtains a coupled system of singular

Fredholm integral equations of the second kind for the unknown

boundary values along all the interfaces, which can be written in matrix

notation as:

SGI-R-85-120

S. .'.
. . . .r. . ... -- °



7 71
15:'

[12 ][U} [G){T) - [H]{U} + [F) (3)

in which [12] is a di-diagonal matrix consisting of the & = 1/2 factors -

obtained when specializing Eq. (2) to points on the interfaces; [G) and

[H] are the block tri-diagonal displacement and traction Green's L
function matrices, respectively; [F) is the forcing vector consisting of
the direct source contributions at nodes only on the interfaces bounding

the source; and {U} and {T} are the unknown displacement and traction

boundary value vectors, respectively, at all nodes in the model. The -

singularities occur in [G] and [H] when quadrature point Ym

approaches observation point xm in the self-interaction integrals along

each interface and in the propagation integrals between adjacent

interfaces for the special case of a layer pinchout.
L. o .

The original BINTEQ solution to Eq. 3 was formulated to meet four

objectives:

1) optimize computational speed;

2) minimize memory requirements for efficient execution in
array processors and/or multi-user environments;

3) suppress spurious edge effects from the horizontal
finiteness of the numerical grid;

4) generate accurate complete sclutions including all possible

kinematic and dynamic effects;

To accommodate these objectives, the BINTEQ formulation proceeded by

recognizing that the singular self-interaction elements of matrices [G]

and [H] are identical in the limit to those for a flat reference plane

with the same upper and lower material properties as the interfaceL.

being considered. The rows of the self-interaction matrices for layer

interfaces are simple convolutional operators and are ideal for

preconditioning the original matrix equation. Therefore, by subtracting

the self-interaction matrices for flat planes referenced to each interface

from both sides of Eq. (3), the system of equations can be rewritten

as:

SGI-R-85-120



°- . -

16

[Cjl{}i+1 [A{4}i + [F) (4)

in which [C] is a block diagonal matrix containing the 1/2 factors from

[121 and the singular convolutional coefficients from the flat

self-interaction matrices; [A] is the combined perturbation Green's

function matrix obtained by subtracting the flat self-interaction matrices

from [G] and [H]; and {4} is the combined vector of unknown

displacement and traction boundary values {U) and {T}.

For models with small perturbations from the flat reference planes, the

preconditioned system of equations in Eq. (4) is more numerically

tractable and is well suited to satisfy all four objectives simultaneously.

The interaction singularities are analytically integrable and appear only

in the convolutional matrix [C) and the pinchout singularities (if any

exist) are .ilso analytically integrable and appear only in perturbation

matrix 1A]. If it could be guaranteed that the norm of the [A] matrix

is always less than the norm of the [C] matrix, then Eq. (4) could be

solved as accurately as desired using the following iterative Neumann

series solution technique with {J} ° = 0 to initialize the series: first the

solution from iteration i, {}i' is recursively passed through the

right-hand-side of Eq. (4); then the right-hand-side is transformed

into the horizontal wavenumber domain using a discrete FFT algorithm;

then an updated solution {}l is immediately obtained by applying the
i+1

deconvolutional coefficients of the [C] matrix in the wavenumber

domain; and then the updated solution is transformed back into the

spatial domain for the next iteration.

This procedure would satisfy the first objective by: (a) eliminating all

matrix inversion operations; (b) saving the nonzero perturbation

submatrices of [Al in the spatial domain and the nonzero

deconvolutional coefficients of IC] in the wavenumber domain for

recursive iterations and multiple sources; (c) reducing the number of

iterations of the precondition system relative to the original system; and

(d) using an array processor to rapidly calculate the nonzero elements

of [Al and [CI, process all the required FFTs and perform all the

required complex matrix/vector multiplies.

.-..................

S •... . . . .. . . . . . . .. .... . . . . . ..".'-.'- , ,- .... "..-, .'.,-' .'-.'.-'-'- "-V.;." .'......-'.-.-.......... .....-. .. .- ....... .-...- v:.... .- '.....-..-..



17

This procedure also satisfies the second objective by: (a) saving

nontrivial perturbation submatrices and deconvolutional coefficients on

disk if memory is insufficient; and (b) the largest in-core memory

requirement is governed merely by a single complex multiplication of a

submatrix times a bounoary value subvector.

To understand how the third objective is satisfied, it is instructive to

consider the origins of the three possible types of spurious edge .T.

effects. First, edge reflections from the deconvolutional operation on

the forcing vector {F} during the first iteration are possible for forcing

vectors without compact support, which would usually be the case

except possibly for structures with significant amounts of material

attenuation in the source layer (i.e., low Q values). Second, edge

reflections are similarly possible when updating the right-hand-side of

Eq. (4) if the perturbed Green's function integration operators in [A.

do not have compact support. Third, spatial wraparound effects are

possible if the convolutional coefficients are not sufficiently padded with

zeroes. It should also be pointed out that for interfaces which return

to their respective flat reference planes at both horizontal extremes, -

the second type of edge reflections would require less care than the

first type. Therewith, the second objective is correspondingly satisfied

by: (a) extending the model somewhat at the horizontal extremes with ,..

and tapering the forcing functions and perturbed integration operations

to zero; (b) tapering the convolutional coefficients; and (c) padding

the convolutional coefficients and the right-hand-sides with zeroes out

to twice the model size to totally prevent the circular deconvolution

process in the wavenumber domain from wrapping any arrivals back into

the model.

As mentioned previously, if one could guarantee that the norm of [A.

be less than the norm of [C], then the iterative Neumann series

solution technique would converge rapidly and uniformly to the exact .. 7

solution and the fourth objective would be met automatically. However,

this cannot always be guaranteed especially for large model

perturbations away from the flat reference planes. In Schuster's

iterative BIE solution technique, the Neumann series is guaranteed to

SGI-R-85-120
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be uniformly convergent because the full interaction submatrices are

inverted, leaving only Le coupling between interfaces to control the

rate of convergence. As will be seen shortly, however, Schuster's

approach is extremely inefficient because of having to perform the

matrix inversions and furthermore, there are alternatives to the S-
Neumann series expansion which are guaranteed to be uniformly

convergent. The alternative adopted for the original BINTEQ formulation

is to expand the unknown boundary values in a series of basis vectors

with unknown coefficients as shown in Eq. (1) in Section 1.2. Each

basis vector is generated recursively as described above for the

Neumann method and is made orthogonal to all previous basis vectors

using a modified Gram-Schmidt orthogonalization procedure. The

unknown basis vector coefficients are determined at a given iteration to

satisfy the boundary and continuity conditions implicit in Eq. (4) in a

least-squared error norm. To avoid numerical roundoff problems, an

automatic restart on the iteration loop is required whenever the

condition number of the least-squares system for the unknown

coefficients exceeds single precision accuracy. The iterated solution

contains all the possible arrivals (e.g., direct waves, multiples,

converted phases, head waves, diffractions and surface waves). Once

all the boundary values are determined at a given frequency, the field

at any location x2 within any layer 9 may be obtained by evaluating Eq.'.--.

(2). Time domain response would be obtained through discrete Fourier

synthesis.

The main problem with this procedure is the requirement that the

perturbations of the irregular interfaces from the flat reference planes

be small at the center of the model and zero at the edges. Otherwise,

the preconditioning from subtracting the flat self-interaction matrices

would not improve the rate of convergence and the simple tapering

described above would be insufficient to suppress all the spurious edge

effects. Because the basis vectors are recursively dependent on the fl"-
-1layer self-interaction solution ([C][{F), the more iterations required

to satisfy the desired error tolerance, the slower the rate of

convergence. Therefore the rate of convergence is model dependent and

is too slow for practical applications using this original procedure.

SGI-R-85-120
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Improvements to the iterative procedure are currently being worked on

as described in the following section.

SGI-R-85-120



20

2.2 IMPROVED BINTEQ FORMULATION

The preconditioning of the system of equations in Eq. (4) is physically

motivated and useful only for small perturbation problems with respect

to the flat reference planes. To solve the more desirable general

layered cases more efficiently, it was necessary to choose a more

reliable preconditioning technique and an iterative scheme that more ...

rapidly spans the solution space.

First, the flat layer reference planes are being eliminated and a more

robust technique is being implemented to suppress the spurious edge

reflections. The layers are padded at the horizontal extremes with thin

absorption zones in which the Q values for the layer are smoothly

tapered to a small waterlevel value at the edge of the model. This

introduces an extra exponential decay into the forcing functions and

Green's function integration operators which gradually reduces the

amplitudes of the boundary values in the absorption zone. The

waterlevel value is set at each frequency such that any spurious edge

reflections are too small to contaminate the real signal.

The implementation of the absorption zones is portrayed in Figure 2 for

observation point Y in the absorption zone and source point X in the
k m

original unpadded model. Defining A to be the width of the absorption
z

zone (typically the greater of 20 samples or 10 percent of the model

width in that direction), the Q-values at position j in the absorption

zone are given by IS
(1-W COS 7 9j + w (5)

*A

in which "W." is the waterlevel factor, s. controls the power of the

decay and Y signifies the horizontal starting position of one of thet
absorption zones or Xm if X m is within the absorption zone.

Therefore, the Q-values are smoothly tapered from a value of Q at the

start of the absorption zone to WQQ at the end of the absorption zone.

SGI-R-85-120
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The differential amplitude reduction factors, RF, for the Green's

functions are then given by multiplying thE N reduction factors for the

N cells between Y and Yt:

4 
r NI

ma 2
,, - -''.

for which w is the angular frequency and Ar is the slant distance along

each of the cells contributing to the reduction factor. The waterlevel j
factor, W9. is computed to make the reduction less than or equal to 0.1
for the last cell's contribution:"]

= [2aQln (0.1) + 1 (7) -ii

If AX is different from AY for 3-D models, then W would be calculated

separately in the two horizontal directions. The power s£ is computed

such that Q2 j = 0.1 (1-W )Q£ at the mid-point of the absorption zone in

order to provide gradual reduction factors throughout the absorption

zone. -.

This procedure to suppress edge reflections is similar to the work of

Cerjan, et al. (1985), with two exceptions. First, the constants in the

exponential reduction factors are based on physical quantities in the

present approach and do not alter the phase information. Second,

there is no need for an absorbing zone at the bottom of the models

because the radiation conditions are handled exactly by the Green's

functions for the underlying half-space layer. This new procedure is

in the process of being tested and some of the constants may need to

be altered for optimal suppression of the spurious edge reflections.

- SGI-R-85-120
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0. P..

Along with the new edge retlection suppression procedure, a new

iterative solution technique is being implemented and tested. The

largest problems with the original iterative solution technique were:

(1) using basically a perturbation method on models with moderate or

large perturbations in the interface depths with respect to the flat

reference planes; (2) less than optimal preconditioning of the matrix

equations for these non-perturbation problems; and (3) no facility to

pick optional search directions for the successive iterations. In the

new method, a conjugate gradient iterative solution technique is used

instead and the singular diagonal terms are used to precondition the

system of equations.

Numerically, the problem with the original method was that the search

directions became too similar at successive iterations causing

prohibitively slow convergence in many cases. This is the same type of

problem encountered in using the method of steepest descent where t.

minimization in the gradient direction causes convergence back and

forth across the valley rather than more directly down the valley. The

conjugate gradient (CG) method provides a framework for picking the

search directions to minimize the residuals more rapidly while still

guaranteeing uniform convergence.

To derive the CG solution, Eq. (3) is recast into the simple form:

A X =B (8)

in which A is a general, asymmetric complex matrix containing the

Green's function integration submatrices from [G] and [H] and the

c-factors from [121, B is the forcing vector iFJ, and X is the unknown

boundary value vector. The standard CG method is for symmetric

positive definite matrix equations. Before deriving the generalization to

the asymmetric case, the basic formulae and properties of the CG r-

solution will be discussed for the normal equations:

T r
AAx = A B (9) -.

SGI-R-85-120
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in which superscript T indicates the complex-conjugate transpose

matrix. A good reference for the symmetric CG solution to Eq. (9) can

be found in Chapter 10 of Golub and van Loan (1983). The basic

approach is to span the solution X by a set of mutually A-orthogonal

search directions Pn, (n=1,2,...)

X X +ca P X best estimate, (10) . . _1n n-1 n n 0

Twith the corresponding residual vector r n A (B-AX ) given by

T T
rn= r - n AT AP ro = A (B-AXo) (11)n n-i On n 0 0

To directly minimize the residual vector in Eq. (11), the coefficients e!

are found by requiring that (Pni rn) = 0 to givenn

P r r_, rU n = n, n-i) (rn-irn-i) (12)
(AP nAP n ) (AP ,AP )

in which the second form is derived by using Eq. (14) and induction
T

arguments and the notation (X,Y) denotes the inner product X Y.

What remains is how to define the optimum search directions that satisfy

the A-orthogonality condition:

(APi, AP.) = 0 for i # j (13)

To reduce the residuals as rapidly as possible, it is desirable to choose

the search directions P to be the closest vectors to rn-1 that stillnn-

satisfy Eq. (13). With no loss in generality, the search directions can

be written recursively as:

P r + =r . (14)n n-I n n-)

SGI-R-85-120
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Applying Eq. (13) with i = n, introducing P from Eq. (14) and A TAP.n J
from Eq. (11), using induction arguments for j<n and the orthogonality

of the residual vectors (r.,r.) = 0 for i j I directly gives the

coefficients nn
%+.

- , (n = 2,,...). (15)
(rn-2 rn- 2 )

To optimize the rate of convergence, the system of equations in Eq.

(11) is preconditioned by the diagonal elements and the initial estimate

is derived by extrapolating the amplitude and phase information from 7.T7

the solution at previous frequencies.

Note that this CG algorithm for the normal equations requires two
Tmatrix-vector multiplications for each iteration because of the A APn

term. An additional drawback of solving the normal equations is that

the rate of convergence is governed by the square of the condition

number of the A-matri < instead of just the condition number with an

asymmetric algorithm.

The derivation of the asymmetric CG method is similar to the symmetric

case in Eqs. (10) through (15) with a few basic changes. As before,

the solution is expanded in a set of A-orthogonal search directions Pn'

(n=1,2,...) with coefficients a

Xn =Xn-1 + nPn , X= best estimate, (16)

with residual vector rn  B-AX given byn n

r r a AP r = B-AX (17)
n n-1 n n 0 6

SGI-R-85-120

*,- * .. ,.. ,.=. .=#.' = . b% = =-=. . j% =...' " ...- .



26

J. %"

In this case the coefficients a are determined to minimize the residual 'F

vector in Eq. (17) in a least-squared error sense to give:

= (APn -) r(18)
n (APAPn).. _

a nn n (8

Without symmetry arguments, the search directions, Pn' depend on all

previous search directions to satisfy Eq. (13): ....

n-i
.iPn rn- + I iP P. P1 ro (19)

nin 1 in 1 o019

Now, applying Eq. (13) with i=n and j 1,2,...,n-1 gives n-1
decoupled equations for the n-1 coefficients i at iteration n:

Ar A P
Pin -(An-, i) i=1,2, . .,n-1 (20)

(AP i , API)

This asymmetric procedure has the distinct advantage of only one

matrix-vector multiplication per iteration (Ar is obtained from Eq.
n-1

(19) in terms of the stored AP i vectors, i = I ... n). Furthermore,

the rate of convergence is governed by the condition number of matrix -2
TA instead of A A, which results in a substantial improvement over the

normal equations. Again, as in the normal equations, the rate of

convergence and number of iterations is significantly improved by

preconditioning Eq. (10) by the diagonal elements and making good -

extrapolations for X from previous frequencies.
0

The rate of convergence can slow down in the asymmetric algorithm

when the angle between rn.I and AP is sufficiently small that the
n-1 n

incremental reductions in the residue from successive iterations is

negligible. If this condition ever occurs before desired convergence is

reached, the iteration loop is restarted with the latest approximation as

the initial estimate and the initial search direction in Eq. (19) is

modified for the restart to maximize (AP, r ) One method to

SGI-R-85-120
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modify the search directions is to replace rn_ 1 in Eqs. (19) and (20)T-1
with A T r which essentially switches the method to the symmetric - -

case for one iteration. Again, this procedure is still in testing and

other possibilities may be equally plausible.
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2.3 COMPUTATIONAL COMPARISONS

The remainder of this section will discuss why BINTEQ represents the

optimal BIE formulation in terms of execution time to generate the exact

solution. A theoretically straightforward inversion to solve the linear

system in Eq. (2) would have been extremely computational inefficient

and numerically ill-conditioned because it would have entailed solving an

enormous singular system of (6N+3)q x (6N+3)q complex equations for

the (6N+3)q unknown displacement and traction boundary values, with

"N" being the number of layers and "q" being the average number of

nodes on one interface. Any full inversion type approach would
3)3require on the order of (6N+3) q floating point operations per

2frequency compared to about 144Nq P for the BINTEQ solution

technique, with P being the number of iterations. For example, with

N=5 and q=256, the full inversion requires about 5x1011 operations per

frequency whereas the BINTEQ technique would require about lx10 9

operations with P=20 iterations per frequency. Furthermore, the overall

cost of a BINTEQ calculation is controlled by the speed of repetitively

multiplying 3qx3q complex matrices times 3qxl complex vectors and is

ideally suited to execute with an array processor. Using an FPS

AP-120B array processor, this sample problem would take about 100

seconds per frequency, using BINTEQ, wshich is significantly faster

than a typical elastic finite difference type calculation with full volume

gridding. Compared to other BIE techniques and assuming adaptability

to achieve the high compute rates of the referenced array processor,

Ferguson's full inversion algorithm (1982) is estimated to take about 13

hours per frequency for this problem; Schuster's approach (1984) is 4

estimated to take about 4 hours per frequency for this problem based
3 2on (1728N+432)q + 72Nq P floating point operations per frequency

because of the N complex 6qx6q interface interaction matrix inversions

and the complex 3qx3q free surface interaction matrix inversion.

SGI-R-85-120
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3.0 RESULTS

3.1 VALIDATION CALCULATIONS

Since the improved method is still in the final development and testing

stages, the validation exercises from the original BINTEQ method will be

described in this section. There are very few exact solutions available

for checking the algorithm. Therefore, the philosophy of the validation

stage has been to perform as many internal checks as possible while at

the same time comparing solutions against those from established and

available algorithms.

An exhaustive set of internal checks of the BINTEQ algorithm have

been completed for thE 2-D acoustic code: verification that the free

surface boundary concitions and the continuity conditions are being

satisfied for a wide range of problems; verification that the effects of

varying impedance contrasts frOm no contrast to a range of contrasts

are correct; verification that the lower limit of two nodal points per

wavelength produces the same results as finer sampling for the same

structure (although user may occasionally use finer sampling to avoid

spatial aliasing with structures having very steeply sloping

irregularities); verification that there are no spurious edge reflections

contaminating solution for a wide range of conditions including very

high material attenuation (Q = 10) to almost no material attenuation (Q

2000); verification that extra padding at edge of model has no effect on

results; and numerous other verifications.

External validations hove included: verification of all arrivals for

problems with exactly flat interfaces including head waves and StoneJey

waves against Sierra Geophysics' VESPATM algorithm (Apsel, 1982) %

which simulates complete solutions in flat multilayered viscoelastic

structures; verification of geometrical arrival times and amplitudes for a

wide range of problems with irregular interfaces against Sierra

Geophysics' QUIKTM three-dimensional raytracing algorithm (Lundquist,

et al., 1982); and v rification of all arrivals including diffractions

against a limited set of available finite difference calculations. ~
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Figure 3 shows the model geometry for the flat layer comparison to the

exact VESPA solution. The source is located just beneath the interface

at a depth of 350 meters at an offset of 500 meters. Receivers are

located across the free surface from offset!, of 600 out to 2100 meters.

The compressional velocities are 5 km/sec and 10 km/sec for layers 1

and 2; densities are 2.0 gm/cc and 2.5 gn /cc; quality factors (Q) are

100 and 1000; the layer thickness is 300 melers. The simulations include

frequencies from 10 to 100 Hz. Figures 4 and 5 show the BINTEQ and V

VESPA shot records, respectively for all 80 receivers and travel times

ranging from 0.0 to 0.8 seconds. The traces have been convolved with

a Ricker wavelet with a center frequency of 50 Hz. The BINTEQ

solution in Figure 4 has been scaled by a time ramp to amplify the late

arrivals and the 3-D VESPA solution in Figure 5 has been scaled by an

extra square root of time to approximately account for the differences

in 2-D and 3-D geometrical spreading. The first event is the direct

compressional arrival that is refracted up to the free surface through

the interface. The event moving out at the slower 5 km/sec velocity

starting at 0.1 seconds and group 21 is a non-geometrical arrival that i"L
"tunnels" through the interface. The fact that BINTEQ is able to model

such non-geometrical arrivals is quite encouraging for the method. The

next four events beginning at 0.18, 0.30, 0.42 and 0.54 are multiples of

order 1 through 4 reverberating in the top layer. The excellent

agreement with the exact VESPA solution lends considerable confidence

in the method.

Figures 6, 7, and 8 repeat the same validation study except that a 200

meter thick basin has been placed on the interface as shown in Figure

6. This time the BINTEQ solution in Figure 7 is being compared

against the QUIK raytracing solution in Figure 8 which provides only

geometrical arrivals. All other parameters are the same as for the flat

layer comparison. The agreement is excellent for the geometrical

arrivals modeled by the QUIJK raytracing code. Notice how BINTEQ

gets continuous events including all defracted energy off the corners of

the basin whereas the raytracing code is unable to model the diffracted

energy. For example, the gap in the QUIK solution at 0.1 seconds and

groups 29 through 36 is where the smaller diffracted event through the

SGI-R-85-120
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FLAT LAYER MODEL FOR BINTEQIVESPA COMPARISON

0

200500m~e

E 400

x CX2 - 10000 rn/sec
C 00 P2 -2.5 gmcc

iLl 02= 1000

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
DISTANCE (meters)

Figure 3
Model geometry for the flat layer validation study between BINTEO and VESPA shown in Figures 4 and S.
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BASIN MODEL FOR BINTEQ/QUIK COMPARISON

0

200 Free p, 500.0 r/sc receivers
surface 0i .2.0gmc

*400
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a a2 L 10000 rn/sec
800 -P 2 =2.5 gm/cc

02= 1000

1000

0 200 400 600 800 1000 1200 1400 16 00 18;00 2000 2200 2400 2600

DISTANCE (meters)

Figure 6
- Model geometry for the basin model comparison between BINTEQ and QUIK shown in Figures 7 and 8.
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left corner of the basin appears. The non-geometrical event that

arrives early at the largest offsets in the BINTEQ solution is a head

wave traveling at the faster velocity of 10 km/sec along the bottom of

the basin. It is also interesting to note all the back scattered energy

bouncing around in the basin.

The model for the last set of validation studies shown in this section is

presented at the top of Figure 9. This more complex low-velocity

wedge model was used by Koslov and Baysal (1982) to demonstrate the

accuracy of the finite difference technique against a physical model. In

the physical model, the low velocity wedge was submerged in water and

pinched out against a plexiglass plate. The scaled seismic velocities

used in the comparison are 4 km/sec in the top layer (water), 2.3

km/sec in the second layer (wedge) and 6 km/sec in the underlying

layer (plate). The source is located under the free surface at a depth

of 100 meters and an offset of 4440 meters. Receivers are located just

under the free surface at a depth of 50 meters at offsets ranging

between 750 to 5700 meters at an increment of 100 meters. The BINTEQ

shot record is shown at the same scale as the model in Figure 9 and

includes all arrivals in the frequency range of 4 to 30 Hz. The

synthetic seismograms are shown as a function of time from 0.25 to 4.75

seconds so as to clip off the large impulse for the receivers near the

source at zero time. The most important events are identified by

numbers 1 through 17.

Event 1 is simply the direct arrival from the source plus the reflection "..-*

off the free surface. Events 2 through 6 represent arrivals interacting

with the wedge and the free surface: events 2, 4 and 6 are the

primary reflection and the first and second multiple reflections off the

wedge, respectively; event 3 represents the diffracted arrivals off

corner B; and event 5 represents a twice diffracted arrival off corner

B.

Events 7 through 12 represent arrivals involving primary reflections off

the plate: event 7 is the primary off the plate transmitting through

and diffracting off the wedge in the vicinity of corner C and traveling

SGI-R-85-120
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resolve the sharp corner of the wedge with too few samples. The

comparison was repeated with the 4th order finite difference algorithm

of John Vidale at California Institute of Technology. The results from

this comparison are shown in Figure 13 on the same scale as the j

BINTEQ and QUIK shot records in Figures 11 and 12. The agreement

with this finite difference simulation is quite spectacular.
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3.2 CALCULATION FOR AFGL MODELS

The results from two sample calculations are presented in Figures 14

and 15 to show the effects of surface irregularities on the synthetic

seismograms. Both 2-D models represent simple layer over half-space

structures with a flat free surface and an irregular interface with

compressional velocities of 4 and 8 km/sec, densities of 2.0 and 3.4

gm/cc and material quality fa-tors of 50 and 1000 in the layer and the

underlying half-space, respectively. The simulations have been carried

out from 0 to 2.5 Hz and include all possible arrivals in the time

window of 0 to 50 seconds. Thc models are shown to the left of the

seismic sections with tick marks on the free surface denoting the

location of receivers at modcl distances from 8 km to 94.4 km. The

interfaces have been discretized at a sampling interval of 0.8 km for

128 points satisfying the minimum requirement of 2 sample points per

wavelength at the highest frequency of interest. Both figures show

true relative amplitudes except for a multiplicative scaling factor of the ,.-

hypocentral distance to the power unity for display purposes only.

The results in Figure 14 can be used to examine the effects of

irregularities on refracting horizons. A point isotropic source is

located at a horizontal model distance of 10 km at a depth of 11 km,

just one kilometer below the irregular interface. The results will be

discussed with the aide of the labelled arrivals. First one can follow

the direct arrival (A) as it moves out at the upper velocity of 4

km/sec. At about 20 km, cirrival B emerges ahead of arrival A as it

travels almost horizontally at the higher velocity of 8 km/sec before

being refracted up to the free surface. \s arrival B passes through

the interface irregularities, it undergoes significant interference effects

destroying the coherence of the phase and causing some back scattered

energy (arrivals C). Then after passing through the irregularities, a

coherent arrival re-emerges with a moveout of 8 km/sec (arrival D).

The first multiple in the layer is arrival E and it is interesting to watch

it merge with the direct arrival A at distances beyond about 70 km. . -

Arrivals F and I represent back-scattered energy from the first multiple

off the interface irregularities. At distances beyond about 72 km, the
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BINTEO2O-REV3.O: RFOSR MODEL MOD4-128
HORIONTL SISMI SETIO AT EPT( 1- 0.10000

TYPE 2s X.Y1 2)- 0.000 0.0000 TO X.TY 561- 94. 40 0.0000 L

Depth CKm) i
CO

00

-4

00

56-

10 70

f V 0

N N

C) A 0 4
A,

0D

CD8

0.01.02.0 00 00

RCUR TIEI0EODFi u e1.B NTQ s mu ai n ( -.Tz f h esi et o
fo * on orelctdi hemdlsona h etwt

surface~~~~ ~ ~ ~~ ireuaiis ntescnditrae



46

BINTEQ2D-MEV3.O: RFOSR MODEL MO03-128
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Figure 15. BINTEQ Simulation (0-2.5 hz) of the seismic section
for a point source located in the model shown at the left for
a deep basin structure.
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first multiple (arrival E) generates a head wave on the interface

(arrival G) with a moveout of 8 km/sec. This arrival appears to grow

beyond 90 km because of constructive interference from direct arrivals

scattered toward the free surface at a moveout of 4 km/sec (arrivals

originating between C and D). Arrivals H and K represent the next two

higher order multiples in the layer and arrivals J plus other unmarked .

small arrivals represent more back scattered energy off the interface

irregularities from these higher multiples.

The results in Figure 15 can be used to understand the effects of wave

propagation through a basin. Direct arrivals A and B have the same

interpretation as in Figure 14. In this figure, arrival C represents a

true head wave off the bottom of the basin and arrival D represents a

creeping wave corresponding to the continuation of arrival D past the

eastern rise of the basin. The sequence of arrivals E represent

diffractions off the rough corners of the discretely sampled western

slope of the basin (and are not present at lower frequency where

sampling is sufficient to emulate a smooth slope). As in the previous
example, arrival F represents back-scattered energy off the eastern

rise of the basin. Arrivals G, H and I are the first multiple, its

back-scattered energy off eastern slope and its head wave generated

after the eastern slope, analogous to arrivals E, F and G of the

previous example. Arrivals J and K represent the next two higher

order multipies and again the small back-scattered arrivals from these

multiples are too small to demarcate.

In conclusion, BINTEQ has been verified through an exhaustive series

of internal and external validation tests. Exact synthetic seismograms

were shown for two models to study the influence of interface

irregularities on seismic wave propagation in the earth. The most

important findings from these studies are: I) the interference effects

observed from interface irregularities (arrivals C in Figure 2) may help

explain the phase incoherence observed in real data from head wave

energy along the Moho discontinuity; (2) significant back-scattered

energy is to be expected from interface irregularities (arrivals F, I, J . A

in Figure 14) and from basins (arrivals F, H in Figure 15); and (3) the

SGI-R-85-120
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appearance and disappearance of critically refracted energy (arrivals G
in Figure 14 and I in Figure 15) could easily have been misinterpreted .

in real data as a head wave from a deeper interface.
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