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model for a porous medium within a circular cylinder is Loty
carried out. The basic mechanisms considered in the theory
are: a carbon energy conservation equation, energy balance
on the air, and an oxygen mass balance equation. Heat trans-
fer mechanisms included in the model are conduction, convec-
tion, and radiation. A heat generation term arising from
combustion of the carbon is included in the model. Transport
mechanisms for oxygen mass transfer are molecular diffusion

and convective transport. The governing heat arnd mass trans-

fer equations are solved numerically by the Galerkin formula-

tion of the Finite Element Method. The results show the

effects of permeability, porosity, geometry and initial condi-

tion on the behavior of the system.
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I. INTRODUCTION

Combustion of porous media has far-reaching practical
consequences. As there are large reserves of available coal
in many places, coal combustion is a potential source of
increased energy production if some of the pollution problems
can be resolved. The combustion of coal is also useful for
the heating of homes and buildings. On the other hand, unde-
sirable combustion of matter in the form of fires causes
great losses in lives and property destruction every year.

In order to gain the most advantage from its beneficial
uses, and to minimize its destructive power, a clear under-
standing of combustion behavior is necessary. Among the
various engineering disciplines, combustion is one of the
least understood. The combustion problem isespecially diffi-
cult because of its multi-disciplinary nature, involving the
areas of fluid mechanics, heat transfer and chemical kinetics.
Chemical kinetics of combustion is a most complex subject in
itself, and the difficulty is compounded by the additional
complications introduced by the other disciplinary areas.

Because of its importance, however, the area of combustion
has been the subject of much investigation, both analytically
and experimentally. In a 1973 survey paper, Emmons [Ref. 1]
points out that the three major obstacles in the study of fires

are turbulence, the immensely intricate chemistry, and the lack
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of knowledge of the physical parameters dependence on tempera-
ture and composition. Emmons discusses the essential role of
heat and mass transfer in fires, and points out that the con-
servation laws of mass, energy, and momentum must be supple-
mented by many other facts and laws accounting for chemistry,
gas and liquid diffusion, mutual diffusion of gases, radiation
effects, and the variation of thermodynamic, chemical, kinetic,
transport, radiative and mechanical properties over the fire
temperature range. Neverless Emmons assets "Now is the time
to take a new look, to detect and analyze the simpler parts
of a fire, and thus open up the future of rational approaches."

Emmons points out that inclusion of the complete chemistry
in a model would be overwhelming even if it were known, and
that only that chemistry which is essential to the problem
be included in the formulation. A brief summary of several
"simpler" problems provides some insight into the overall
problem.

In a 1936 paper, Parker and Hottel [Ref. 2], presented the
results of an experimental study on the combustion of carbon.
This fundamental investigation considered cylindrical carbon

specimens combusting in air. They determined the distribution

of N,, CO, CO,, and O, in the gaseous "film" surrounding the e
carbon at varying ambient temperatures and air velocities. - f%
Resulting combustion temperatures varied between 1000 K and :?ﬁ;
1500 K (725°C to 1225°C, 1340°F to 2240°F). Results show that E
the partial pressure of CO decreases with distance from the ;ﬁ$ﬁ

13
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carbon surface, while the partial pressure of 02 increases with

distance from the carbon surface. At a fixed temperature, the
partial pressure of 0, at the carbon surface increased with
increasing air velocity; while at fixed velocity the partial
pressure of oxygen decreased with increasing temperature.
Additionally, a separate experiment measured combustion rate
as a function of temperature and air velocity. Their results
show that at constant velocity, the reaction rate increases
with increasing temperature; and the reaction rate increases
with increasing velocity when the temperature is held constant.
The experiments demonstrated that there is little CO at the
carbon surface at the higher temperatures. An equation for
the reaction rate of carbon brush is presented. The denominator
of this equation contains two additive terms, namely, the
diffusional resistance Rd and the chemical resistance Rc'
Viith increasing temperature, Rc decreases and the combustion is
diffusion controlled; when the velocity increases, Rd decreases
and the combustion is kinetically controlled.

In a 1951 paper, Arthur [Ref. 3] presents the results of
an experimental investigation of the combustion of two carbons
of widely different reactivities in the temperature range of
735-1175 K (460-900°C, 860-1650°F). The study shows that two
reactions occur; one leads to CO2 formation and the other to
CO formation. It was shown that 1) the rate of carbon gasi-
fication decreases but slightly with carbon consumption, 2)

the combustion temperatures increase with air flow rate,

14
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3) the CO/CO2 ratio increases with temperature, with CO/CO2
about 8.2 at 1105 K (834°C, 1533°F) and 11.1 &t 1168 K (895°C,
1645°F), 4) the gasification rate is independent of air flow
rate at low temperatures and increases rapidly at higher
temperatures (the transition occurred at 595 K for carbon A,
and 993 K for carbon B), and 5) the CO/CO2 ratio was indepen-
dent of the initial partial pressure of oxygen. The most
significant result is that in the 673 K to 1173 K temperature
range, the CO/CO2 ratio increases exponentially with temperature
from 1% at 673 K to 12% at 1173 K.

In a 1956 investigation, Koizumi [Ref. 4] conducted an
experimental and analytical study of combustion of solid fuels
in fixed beds. He found 1) that the oxidation zone is only
one or two partical diameters deep from the burning front,

2} that the burning rate is controlled by the rate of gas
diffusion in the boundary layer (i.e., the chemical reation
occurs instantaneously, aﬁd 3) that the CO to CO2 combustion
occurs in the boundary layer.

In 1961, Green and Perry [Ref. 5] presented the results of
an analytical investigation of heat transfer with a flowing
fluid through a porous medium. They formulated a one-dimensional
transient model including conduction and convection. The
fluid flow rate was assumed constant, and the thermophysical
properties were assumed to be independent of temperature. Two
coupled p.d.e. were obtained from energy balances on the solid

(porous media), and the flowing fluid. Boundary conditions
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were taken as equal fluid and solid temperatures at X = 0, and ol n s
X - », The initial condition was taken as equal fluid and &ihd
solid temperatures for all X. The p.d.e. were solved by the
finite-difference method. They found that heat conduction

and convection are both important for internal Reynolds num-~
bers less than unity; and that the fluid and solid tempera-
tures are essentially the same when the dimensionless parameter

(hz/kf)l/2°(kf/pf cfu) is greater than 0.342.

In a 1974 paper, Anderson and Zienkiewicz [Ref. 6] pre-
sented an analytical investigation of a reactive solid with
zero order kinetics. Two problems were considered: the '?L
steady state problem, and the transient problem. In the steady
state problem, the Frank-Kamenetski parameter is determined.

This parameter indicates whether combustion will occur or not.

In the transient case, the body is immersed in a thermal field

whose temperature is greater than the ignition temperature of

the body. Here the time to ignition (i.e., the induction time) ;niﬁ
is determined, as well as transient solutions T(x,y,t) of NN

two-dimensional bodies. The problem is solved by the Galerkin

finite element method. Although the formulation permits varia- ;:;;
ble conductivity and specific heats, the authors assume these
parameters constant in their illustrative examples. A single
nonlinear p.d.e. obtained by an energy balance, includes
conduction and convection heat transfer models.

In a 1976 paper, Kim and Chung [Ref. 7] presented the

results of an analytical investigation of conditions leading

16




to a state of self-sustaining combustion in a porous medium.
The one-dimensional transient model includes combustion and
conduction. Two p.d.e. were obtained from an energy and
mass balance of the porous medium. Thermophysical property
dependence on temperature was not accounted for. Laplace's
asymptotic method was used to obtain a solution. Solid gas
reactions are considered to occur volumically throughout the
porous medium. A constant rate of oxidant fuel is assumed at
X = 0. 2ero gradients of temperature and oxidant concentra-
tion at X » » were taken as boundary conditions. The boundary
conditions at X = 0 are -A3T/3X = q and -D3C/3X = m. Their
results for a semi-infinite slab show that ignition is strongly
dependent upon temperature and reactant concentration. The
Lewis number was taken as unity. They also show that as
either the activation energy decreases .or the initial tempera-
ture of the porous medium increases, the ignition occurs faster.
In 1976, Sawyer and Shuck [Ref. 8] presented a transient,
one-dimensional model for underground cocal gasification of a
coal bed with vertical micro fissures along which combustion
occurs. Mass and energy balance for the solid and gas phases,
and mass balance equation for each species (oxygen, carbon
monoxide, and carbon dioxide) leads to 7 coupled, nonlinear
p-d.e. The heat transfer mechanisms include conduction in the
solid, convection in the gas and convection between the solid
and gas. All properties except permeability and reaction rates
were assumed constant. The 7 p.d.e. are supplemented by an

17
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equation of state for the gas, and a Darcy flow equation in

the fissures. The system is solved by the finite-difference
method.

Sahota and Pagni [Ref. $] present the results of an analy-
tical investigation of heat and mass transfer in porous media
subject to fires in a 1978 paper. The one-dimensional tran-
sient model includes conduction and convection. Energy and
mass conservation equations, together with species conserva-
tion equations, Darcy's law and state equations lead to 8
equations which are solved by the finite difference method.

A portion of the domain has initial moisture. The energy
balance includes a heat sink term to account for the evapora-
tion of water. Thermophysical properties are treated as con-
stants. When pressures are not required, a simplified technique
for determining temperature has been developed. The method
neglects heat transfer by convection and mass diffusion. This
analysis is valid when very small air vapor mixture velocity

is present, and for very small Jewis numbers (i.e., when

cnUm << 1 and Cule << L.

In a 1980 paper, Saatdjian and Caltergirone [Ref. 10] pre-
sented a mathematical model for a plane porous matrix bounded
by two impermeable surfaces. The porous matrix is composed
of a mixture of nonreacting fiber glass and a resin which
decomposes exothermically into gaseous products as the matrix
temperature increases. The two-dimensional transient model

includes conduction, convection and combustion, but does not

18
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account for temperature dependent properties. The fluid is P
RO
modelled as' a perfect gas, and flow through the porous matrix el

is governed by Darcy's law. It is assumed that the matrix
properties remain unchanged during the reaction (i.e., the
fiber fraction/resin remains greater than 0.90), and the
gaseous products and the fluid which initially filled the
enclosed region are the same. The density of the saturating
gas is allowed to vary. Results show temperature and density
as functions of time. The problem couples the effects of
two phenomena, convective movement and chemical reaction. As
the reaction is depleted, natural convection alone subsists.
In a 1981 paper, Chan and Banejess [Ref. 11] investigated

transient three~dimensional natural convection in porous media.

The model includes a continuity equation, two momentum equa-
tions and two enerqgy balance equations. The finite difference

method solves the five p.d.e.'s for the solid and fluid tem-

peratures, the velocityv components in the X and Y directions,
and the pressure. The method uses upwind differencing for

the advective term. This model allows for unequal solid and

fluid temperatures. The authors state that the solid and
fluid temperatures are equal ("equal diffusivity" model) when

the filtration velocity is not too high and both phases are

.
N

well dispersed. Fictitious conductivities take into account
the dispersed structure of the solid matrix and the effect of
hydrodynamic dispersion in the fluid energy balance equation.

The porous medium is modelled as an assembly of spheres.
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. The authors introduce a scheme to reduce diffusional trunca-

‘ tion errors. Analytical results show good agreement with
i experimental results for Rayleigh numbers between 36 and 800. , g&»
Numerical results at higher Rayleigh numbers deviate from ;E?;
experimental results. The model predicts convective insta- A ‘ng
. bilities at high Rayleigh numbers.
| In a 1981 paper, Hickox [Ref. 12] presented an investiga-
tion into convective flow, induced by a heat source, through -
i a porous medium of low permeability. The two-dimensional ;ﬁﬁ;

transient model includes conduction and convection. Four
equations are obtained: an equation of continuity, Darcy's
law for fluid flow, an energy balance on the porous medium
and a state equation. The problem arises, for example, when
a ccutainer of radiocactive waste material is deposited in a
sea bed below the sedimentary layer. The Boussinesq approxi-

mation that density changes are due only to huoyancy is used.

Permeability, viscosity, thermal conductance, thermal capacity
and the thermal expansion coefficient are treated as constants.

Numerical solutions based on similarity transformations were

obtained for steady state point and line sources, as well as
a steady state, constant temperature sphere. The results

are predicted to be accurate for Reynolds numbers less than ,€$g
unity. In the case of the subseabed porous medium, a Reynolds

number of 10 is anticipated. The analysis is valid only for

distances a few cannisters away from the disposed cannister.

." l_' l: \. l.' . "

¥ ¥

20

T T T I .,
e P A St et



II. DESCRIPTION OF THE PROBLEM

This investigation considers the combustion of a porous
graphite medium. The porous medium is constructed from
graphite particulate matter, either in the form of spherical
particles or cylindrical fibers, imbedded in a cylindrical
container. We assume the porous medium has a regular periodic
structure with interconnecting pores which permit the flow of
air through the medium. Figure 2.1 shows a geometric model
of a regqular periodic structure.

Initially the porous medium is at ambient conditions.

It is then subjected to a heat source at the bottom of the
vertical container for a specified period of time. Upon
termination of the heat flux, the system is at a greater
temperature (and lower oxygen concentration) than the ambient
temperature. Thereafter the system temperature will either
decrease to ambient temperature, or it will continue to burn
at higher temperature. The former process leads to extinction,
the latter process is combustion. Which of these processes
occurs depends on the particular attributes of the system such
as its porosity, permeability, thickness and other distinguish-
ing properties. This investigation seeks to determine how
combustion of the porous graphite medium is related to the
properties of the medium.

The air which flows through the porous medium has two

effects: it supplies oxygen for combustion which produces

21
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heat, and it provides for convective heat transfer through
the medium. Combustion occurs if the heat generation of
combustion is the dominant effect. 1If the heat transfer is
the dominant effect, then extinction will occur. Which of
these effects dominates depends upon the physical system
under consideration, as well as the boundary and initial
conditions.

The mathematical model is formulated in the following way.
We assume the air flow through the norous medium is governed
by Darcy's law. Previous investigation has shown that the
Darcy law model is an excellent approximation when the Reynolds
number is less than 1. This occurs for the flow through the
porous media covered in this investigation. 1In anv case, that
Reynolds number is less than one must be verified from the
results of the analysis. The use of Darcy's law obviates
the conservation of momentum equations. This results in a
very significant simplification of the mathematical model,
with a corresponding reduction of computational effort.

Energy balance on the porous solid, and on the air flowing
through the porous solid vield two heat transfer equations.
These heat transfer equations include conduction, and convec-
tion mechanisms. Tn addition the porous solid energy equation
includes a radiation term; and the air energyv balance equation
includes a term to account for the energy transport by flow.

The porous solid energy balance equation also contains a

heat generation term to account for the combustion of the
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porous graphite. This term is obtained as the product of the f

reaction rate and enthalpy of formation. Both energy balance

v v v .
STt T,
. M TR

equations have a term reflecting the change in internal energy.

vy
.2
.

We note, in passing, that the independent variables are the

spatial cylindrical coordinates r and z, and the time coordinate

t. The dependent variables are the temperatures of the porous
graphite Tg, and the air flowing through the medium T,- In
addition the heat generation term in the porous solid energy
balance equation introduces another dependent variable, the
oxygen concentration, into the equation.

The third field equation is obtained by a mass balance
- of oxygen. This oxygen transport equation includes a molecu-
lar diffusion term, a convective transport term and a term

to account for oxygen consumption due to combustion. This

last term is obtained as the product of the reaction rate

-'_.'_‘v_'

and the inverse of the stoichiometric ratio of the reaction.

WL RS

Diffusion due to temperature and pressure gradients were

3 assumed to be negligible.

Finally a fourth field equation was obtained by combining

i

Eii Darcy's law for flow with the continuity egquation. This ﬁ;ia
?_ equation introduces nressure as the fourth field variable.

.

;f» The above description is a brief summary and is not com- iﬁi;
o L
& plete in and of itself. FEach of the individual terms in L
i; each of the field equations must be modeled in their own right.

Ef; For example, there is a model for the diffusion coefficient

gi of oxygen into air; there is a model for the effective

. 24
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conductivity parameter for the porous solid, and so on. This
investigation did not develop each of these models, and there-
fore the interested reader can obtain details of all of the
models in the original developments of Vatikiotis [Ref. 12]
and Martinez [Ref. 13].

For the sake of completeness, a brief description of the
combustion and chemical kinetic models follows. The essen-
tial ideas of the combustion model were presented by N.N.
Semenov [Ref. 14]. Semenov's model proposes that the combus-
tion process occurs in two phases, the kinetic regime, and the
diffusion regime. The initial combustion at lower temperatures
is called the kinetic regime because there is sufficient oxy-
gen present for combustion to proceed and the reaction is
controlled by the actual kinetics of the surface reaction and
does not depend on the diffusion rate. 1In the kinetic re-
gime, the reaction rate increases, exponentially with tempera-
ture. As the temperature increases, the reaction rate increases
and the rate of osygen consumption increases; causing a lack
of oxygen for further increase in the reaction. In this case,
the lack of oxygen slows down the reaction. This regime of
combustion, whereby the reaction rate is limited by the diffu-
sion of oxygen is known as the diffusion regime. A graph of
reaction rate versus temperature results in the well-known
S-curve. The lower portion of the S-curve defines the kinetic
regime; the upper portion of the S-curve defines the diffusion

regime.
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The chemical kinetics of combustion is much too complex
to model all chemical reactions in detail. Instead, an
approximate model was used whereby we assumed that the products
of graphite combustion were only carbon monoxide and carbon
dioxide. Empirical results by other investigations have
proposed such models. 1In the present work, the model pro-

posed by Arthur [Ref. 3] was taken. This model presents an

expression which relates the ratio of CO and CO2 to the

-

v

temperature of the reaction.

e

SN

The expression used for the reaction rate itself, is of !

W R
."-".". "-
. £
As D

the Arrhenius type. However, in accordance with the remarks o

of Frank-Kamenetskii [Ref. 15]), the order of the reaction was

|

not set to unity. Frank-Kamenetskii proposed that a fractional
order reaction between 1/3 and 2/3 is a better representation
of the experimental data of Parker and Hottel (Ref. 2]. This
parameter was left to the selection of the investigator. It
should be noted that combustion analyses show that significant
changes in the system behavior occur with small changes in the
reaction order.

The final mathematical model consists of four transient
field equations in the four unknowns: graphite temperature,
air temperature, oxygen concentration and pressure. These
partial differential equations are both coupled and nonlinear.
Together with boundary and initial conditions, these equations
form a well-posed problem which cannot be solved exactly. Aan

approximate solution was obtained by transforming the set of
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. using a Galerkin formulation of the finite element method. Seded
- Details of the finite element formulation can be found in
. o
N [Ref. 13]. o
: "-:..S."
- ‘\‘: \--
: 27 ;\:\:::“
; RN

RO SE IS




AR AR R et et A SR et et b aullal Rt S0 0y lat, b a®, T W B RS I W RIS, - Ca ] > el By & Catalgtetth

=5

: i

: o

i III. NUMERICAL CONSIDERATIONS

i A Galerkin formulation of the finite element method was -

3 used to obtain solutions of the porous medium and air energy ' aggg
equations, the oxygen diffusion equation, and the continuity Eypf

;E equation. ;ﬁgi

: A grid arrangement as shown in Figure 3.1, which has 7 i;ij
non-uniform divisions in the r-direction and 14 non-uniform ;ﬁqj
divisions in the z-direction, was selected. The z-direction :
divisions were‘smaller near the z/zO = 0.0, where the carbon

: temperature and oxygen concentration change rapidly. The

; r-direction divisions were uniform in the middle, and non-

i uniform at the two ends r/ry = 0.0 and r/ro = 1.0, where the

! carbon temperature and oxygen concentration change slightly. §3;:

: The r and z grid lines are as follows: 5&%2

- NN

. r/ro: 0.000, 0.125, 0.250, 0.500, ©0.750, 0.875, iiif

: 1.000

E z/z5: 0.000, 0.001, 0.0025, 0.005, 0.0075, 0.010, }3-‘

0.015, 0.020, 0.0500, 0.100, ©0.2500, 0.500, ;;;é

0.750, 1.000
The results obtained from this grid compared very well (within dﬂi

i 5% at all nodal points) with results obtained by a finer e

S 14 <14 grid, and therefore the 7 x 14 grid was used for all

; computer analyses.
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Grid Convergence for the Finite Element Method
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The inputs for the integration program include (1) initial
time step, (2) minimum time step, (3) maximum time step, and
- (4) property up-date time. The selection of these parameters

affects the accuracy of the numerical solution. However, it

is not possible to determine the error associated with any

particular selection of these parameters. The selection of E

jf these parameters is by trial and error. If they're made

very "small" the program runs very slowly and meaningful n o
results could be very computationally expensive to obtain. ui;i
If these parameters are selected too "large" the program may ,ﬁéf
give poor results or it may not run at all. For this program, ;;:j

L . . -6 .. . .
the initial time step is 10 hr, the minimum time step 1is

% 10_9 hr, the maximum time step is 0.25 hr, and the up-date

" time 1is ].O_l4 hr. If the initial time step and the up-date

time is larger than a certain time interval, the program

R overflows or underflows in subprogram NUITSL and LDASUB.




IV. DISCUSSION AND CONCLUSIONS

v .
’,

)
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A heat transfer and combustion model for a porous medium

h glh % 23
LY
’l

e,
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within a cylinder is considered. The assumption of the model o

\J

is that of the idealized porous medium described in Chapter

III. The results of this investigation are intended to des-
cribe the behavior of a porous carbon medium with a heat
generation term. The behavior of the temperature and oxygen
concentration of the system depends upon the initial conditions,
the boundary conditions, the geometry of the system, the
porosity, the permeability, and the heat flux. A number of
analyses were performed to determine how some of these param-
eters affect the system behavior. The boundary conditions

for the investigations of Sections A, B, C, and D are pre~ fﬂ¢m
sented in the Appendix. The porous media was initially at a z;
constant temperature of 100 degrees Fahrenheit, a constant

oxygen concentration of 0.0172 lbm/ft3 (ambient conditioas),

and a constant pressure of 2118.7 lbf/ft2 (14.7 psi).

A. EFFECTS OF POROSITY AND PERMEABILITY

Section IV.A.l presents the results of varying d/D ratios
(Table I, Figures 4.1-4.6). Section IV.A.2 changes D and 4,
keeping the porosity constant, with varying permeability
{Table II, Figure 4.7). In Section IV.A.3, the 4/D ratio is
varied so that permeability is constant and porosity is

changing (Table III, Figure 4.8).
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1. Effects of the d/D Ratio

In this section the effects of porosity and permeability
on system behavior were investigated. Varying the carbon
diameter, all other parameters fixed, results in changes to
both the porosity and the permeability. Table I shows the
three values selected for the carbon diameter and the
resulting values of porosity and permeability. The results
of this investigation are shown in Figures 4.1-4.6. In all
investigations in this section a heat flux of 500 Btu/ftz-hr
was applied for 30 minutes and then turned off. Figures 4.1
and 4.2 show the temperature and oxygen concentration profile
with d/D = 1.0. Figures 4.3 and 4.4 show the temperature and
oxygen concentration with 4/D = 0.75. Figure 4.5 compares
the carbon temperature and oxygen concentration as a function
of time, at the position r/rO = 0.5 and z/zo = 0.0, for the
three sets of d/D ratios. Figure 4.6 shows how the carbon
temperature varies with the z-coordinate axis and time, at
r/ro = 0.5.

As shown in Figures 4.1-4.4, the 4d/D ratio affects the
carbon temperature and oxygen concentration. These figures
show that these variables are essentially independent of the
radial direction, as they should be for the boundary condi- t_:gf

tions of these problems. Figures 4.1 and 4.2 show that at 12.2

minutes and z/zO = 0.0, the carbon temperature is 480 degrees
Fahrenheit, and the oxygen concentration has not changed

hecause the temperature is too low. However, we note that the

32




B R

REPRODUCED AT GOVEFRNMENT EXPENSE
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............

shape

Unit Cell
Dimension
(ft)

Particle
Diameter
(ft)

Porosity

Pore
Diameter
(£t)

Specific
Internal
Area
(1/ft)

Permea-
bility
(£t2)

POROSITY AND PERMEABILITY

a/D

............

1.0

0.000417

0.000417

0.476

5.059 x10 2

3766.9

6.464 ~ 10 10

TABLE I

\

d/D = 0.875

0.000417

0.000365

0.649

9.005 x10 2

2884.0

2.797 x 1072
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da/D = 0.75

0.000417

0.000313

0.779

1.471 x 10 °

2118.9

8.959 x 10
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PROBLEM TIME IS 5.10 MIN.
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20= 100 FT.

TMAX = §€20. DEQ. P.

RO = 100 FT.

Z0= 100 FT.

TMAX = 1091. DEQ. F.
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arbon Temperature Profile with 4/
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02 CONCENTRATION SURFACE

PROBLEM TIME IS 520 MIN.

HEAT RUX AT 2/70 = B500. BUT/FT2-HR.
RO = 100 FT.

02 CONCENTRATION SURFACE

PROBLEM TIME IS 5.10 MIN.

HEAT RUX AT Z/ZO0 = 1000. BUT/FT2-HR
RO = 100 FT.

20 = 100 FT.
02 CONC, MiN = 172

Z0= 100 FT. )
02 CONC, MIN = 172, o

02 CONRC .\* \0E+4 LBW . IFX2)
Q2 CONWNC .A® \0E44 LBW.I¥12)

02 CONCENTRATION SURFACE CENTRATION T
PROBLEM TME IS 5.00 MIN. gn?o%?gw TIME IS 42$cl>J 'liﬁ."
HEAT ALUX AT Z/20 = 16500. BUT/FT2-HR. HEAT ALUX AT Z/Z0 = 200C. BUT/FT2-HR
RO = 100 FT. RO = 100 FT.
Z0= 100 FT. 20 = 100 FT. Se

02 CONC, MiN = 118,

02 CONC, MiN = Q.

REPRODUCED AT GOVERNMENT EXPENSE

-
-]
L3
A

-
L-3
A

Q2 CONC A" \QOE4A \BW ¥
Q2 CORNC \® \OE+4 LBW jFX2)

Oxyzen Concentration Profile with 2/7 = 1.0
and constant porosity (p = 0.476)
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temperature gradient is very large over a small region in

the vicinity of the imposed heat flux. The region of tempera-
ture activity does not extend beyond z/zO = 0.1. Figures

4.3 and 4.4, with 4/D = 0.75, show the carbon temperature and
oxygen concentration. At z/zo = 0.0 and 12.2 minutes, the
carbon temperature is 1200 degrees Fahrenheit and the oxygen
concentration becomes almost zero. The results show that
combustion activity increases with decreasing d/D. This can
be attributed to an increase in the air flow velocity.

Figure 4.5 shows the effect of 4/D ratios on combustion
activity at r/ro = 0.5 and z/zO = 0.0. As shown in Figure 4.5,
with 4/D = 1.0, combustion activity is the least and the oxygen
remains almost constant. With d/D = 0.875, combustion activity
increases so that the oxygen is depleted at z/zO = 0.0 in
about 30 minutes. With d/D = 0.75, combustion activity becomes
very strong resulting in a depletion of oxygen at z/zO = 0.0
in about 10 minutes. The reason being that as the 4/D ratio
decreases, there is an increase in void space, which allows
more oxygen to be supplied to the combustion region. Also,
with a smaller d/D, the carbon mass per unit cell is smaller
and therefore the heat flux per carbon mass increases. This
results in an increase of the carbon temperature. 1In the case
of d/D = 0.75, there was no opportunity to monitor behavior
beyond 10 minutes because the program terminated due to numeri-
cal difficulties. For the other two cases of d/D = 0.875

and 1.0, the heat flux was removed after 30 minutes to observe
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whether the system would continue to combustion Orgo to extinc-
tion. The carbon temperatures dropped sharply and the porous
carbon medium returned to its initial temperature while the
oxygen concentration returned to its original concentration
somewhat less sharply.

Figure 4.6 illustrates the behavior of carbon tempera-
f ture versus z/zo at r/ro = 0.5 as time is varied for each of

the d/D ratios. These figures show that the carbon tempera-

A ture is greatest at z/zo = 0.0, and the carbon temperature
approaches the constant ambient temperature as z/zo increases.
Thus in all cases we observe that combustion occurs in a local

o region near the base of the system where oxygen is entering

into the medium.

™y y, 0
' . '.. ‘_a ’.. K

2. Effects of Permeability

Figure 4.7 shows the carbon temperature and oxygen
concentration as a function of time, at r/ro = 0.5 and z/z0
= 0.0, for various permeabilities with porosity fixed. The

boundary conditions are the same as Section V.A.l except that

the heat flux was changed from 500 Btu/ftz-hr to 1000 Btu/ftz— j}}‘

hr. The description of the porous medium used in this inves-
tigation is shown in Table II. Porosities and d4/D ratios are RN

the same for cases A, B, C, and D. Case A has the smallest aﬁf

P S
’

unit cell (D = 0.0002085 ft), the smallest particle size, and
the smallest permeability (6.993 XIO_loftZ); case D has the
largest unit cell (D = 0.000834 ft), the largest particle size,

and the largest permeability (1.119 ><10-8 ft2). Unfortunately
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4 TABLE II R

8 i

2 POROSITY AND PERMEABILITY FOR FIGURE 4.7 e

[ e

h P’E}ﬁw’
e

Unit Cell Particle Ratio Porosity Permeability A,
Dimension Diameter (££2) e
(ft) (ft)
A .0002085 .0001824 .875 0.6492 6.993 x 10”10

N B .000417 .0003649 .875 0.6492 2.797 x 1072

= C  .0006255 .0005473  .875 0.6492 6.29 x107°

i D .000834 .0007298 .875 0.6492 1.119 x10”°

o2




it was not possible to obtain analysis beyond t = 5 minutes
because the program has difficulty running when the oxygen
concentration gets very small. The results show that as
permeability increases, the carbon temperature slightly
increases, while the oxygen concentration increases. This
shows that an increase in permeability provides additional
oxygen for a small enhancement of combustion.

3. Effects of Porosity

In this section the effects of porosity on system
behaviors are investigated. Figure 4.8 shows the carbon
temperature and the oxygen concentration, at r/rO = 0.5 and
z/zo = 0.0, as a function of time. The description of the
porous medium used in this investigation is shown in Table
ITI. Here porosity is the same for cases A and B, and cases
C and D, while permeability is the same for cases A and C, and
cases B and D. Figure 4.8 shows that for the same porosity
(cases A and B, and cases C and D) carbon temperature and
oxygen concentration are the same., For the same permeability,
the carbon temperature and oxygen concentration have different
values. It appears from these results that the carbon tempera-
ture and oxygen concentration are strongly affected by porosity
and are not affected by permeability. This result is diffi-

cult to explain and may indicate an error in the program.

B. EFFECTS OF HEAT FLUX
Figures 4.9 and 4.10 show the changes in carbon tempera-

ture and oxygen concentration as the heat flux is varied.
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;_:1 TABLE III
P

'.:\: POROSITY AND PERMEABILITY FOR FIGURE 4.8
b Unit Cell Particle The d4/D Porosity =~ Permeability e
:” Dimension Diameter Ratio (£t2) -:'.:-:Z:-j
(ft) (ft) it
- RS
Eﬁ‘ .-_'f‘-_"'

F A .000866 .000866 1.0 0.4764 2.797 x10~ .-'_'.:,}

- B .001733 .001733 1.0 0.4764 1.119 ><10-8

a C .000417 .000365 0.875 0.6492 2.797 %10

D .000834 .000730 0.875 0.6492 1.119 x10 e
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Heat flux was varied 4 times (500, 1000, 1500, and 2000 2o

The relationship between the carbon temperature and the
heat flux, after exposing the system to about 5 minutes of

heat flux, was observed as follows:

Heat Flux Heated Time Carbon Temperature
(Btu/ft<-hr) (minutes) (degrees F)

500 5.2 363

1000 5.1 620

1500 5.0 885

2000 4.2 1091

Heat fluxes beyond 2000 Btu/ftz-hr cause the oxygen concen-
tration to be depleted before 5 minutes, making the data
unusable for any valid comparisons.

The relationship between the oxygen concentration and

heat flux, after exposing the system to approximately 5

minutes of heat flux, was observed as follows:

ANy
Heat Flux Heated Time Oxygen Concen;ration :%}:{
(Btu/ft2~hr) (minutes) (lbm 0,/ft") RS
500 5.2 172 x107¢ ‘
1000 : 5.1 172 x 1074
1500 5.0 119 x10~* -
2000 4.2 0 .
RO
C. EFFECTS OF BOUNDARY CONDITIONS NOSRE
N
Figure 4.11 shows the results of the temperature and Y
oxygen concentration with the same initial conditions and jf{f
::':?-:'.:-‘_‘.
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boundary conditions as before, with a single exception. 1In

D ok &
v o Sy e

P
‘I

case B, the boundary condition for the oxygen concentration

Al

equation at z/zo = 0.0 was changed from a Cauchy boundary
condition to a constant oxygen concentration boundary condi-
tion. As seen in Figure 4.11, carbon temperature and oxygen
concentration depend on the boundary condition. The results
show that whereas the case B boundary condition provides a
constant supply of oxygen at z/zO = 0.0, the case A boundary
condition leads to a decrease in oxygen, starting about

t = 4.5 minutes, at that boundary. For both cases (A and B),
the carbon temperature remains the same until the carbon
temperature reaches 860 degrees Fahrenheit which occurs at

t = 12.0 minutes. Thereafter, the carbon temperature for case
B increases faster than the carbon temperature for case A.
This may be attributed to the additional oxygen at the boundary

associated with case B.

D. EFFECTS OF GEOMETRY

Figure 4.12 shows the carbon temperature and oxygen concen-

tration at z/zo = 0.0 and r/ro = 0.5, for three cylinders of
different axial lengths. The heat flux for each case is 1000
Btu/ftz-hr. Varying the axial length of the cylinder, the
carbon temperature and oxygen concentration yields different
results. As shown in Figure 4.12, the carbon temperature in-
creases with increasing axial length, while the oxygen concen-

tration decreases with increasing axial legnth. These results
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are difficult to understand, and may indicate that the program

is not performing correctly.

E. CONCLUSIONS AND RECOMMENDATIONS

This analysis shows that the behavior of combustion and
heat transfer in a porous carbon medium is a complex process.
The behavior of the system depends upon porosity, permeability,
boundary conditions, initial conditions, and geometry. Some
of the results of this investigation could be satisfactorily
expected (the effects of the d/D ratios, and the boundary con-
ditions), while others could not (the effects of permeability,
and the effects of the geometry). The computer program developed
by Lt. Martinez was used. This computer program was initially
confirmed by Lt. Martinez by the model validation tests on
cylinder problems with known solutions. However during this,
investigation, two difficulties with the computer program were

encountered. First, the computer program terminates when a

carbon temperature is higher than 1300°F and an oxygen concen-
tration is less than lO-7 lbm/ft3. This indicates that the

integration algorithm was not able to perform satisfactorily

when severe gradients occurred. Secondly, some results, such

as the effects of permeability change and geometry change, o
are unexpected and infer that the program may have some errors :ﬁ
in it.
re
Y
Improvements may be realized by extending the porous §y§
L\::"I
carbon medium model to include: ﬁﬁ:
LIES] \
»
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development of an integration algorithm which is
capable of performing satisfactorily over a larger
range of temperatures;

(2) a detailed investigation of the program to determine ,
whether there are errors associated with permeability
and geometric effects.

-rers

A
LA

)

.

"l'
.
.
"
Y

54 s
¢

M

L)
L
a

R R
VAt Cyd w

%




)
.l.

L5, h

AN
PR )

» Y

LRI S}
A

X b ¥ ¢ Sy ” 8. - aWN s alih) Sgh - 9 ~ .
APPENDIX
BOUNDARY CONDITIONS
Boundary conditions employed were as follows for the
carbon,
aTc
ﬁ— r _ 0 = 0 (A. l)
=
o
9T = .
(l—p)(ke) 3% = dg (A.2)
Z =0
=
o
where dg is the starting heat flux.
9T - _ ~4 _ 4
(1-p)(ke) 3z = oe(Tc T ) (A.3)
Z =1
=
o
0 (1L-D problems)
3T _
(1-p) (k) =% . = (A.4)
— =1 ~4 4
ry hr(Tc -T ) + oe(Tc -T.)
(2-D problems)
For air,
QTa
__a = = 0 ( A.5 )
IR SR,
r
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P ka 5z = P o, Ca v (T -T)) . (A.6) s

S
T
o

(A.7) . R

e
=
[}
/]
e

- T
a
P ka T ] = = p pa Ca v (Ta -Too) (A.8)
=1
25
£ 0 (1-D problems)

T

a ar = (A.9)

| e e

”
2

'
fele s

- r
. —— =1 ~4 "4
- r '\hr(Ta T, + oe(Ta ~T_)
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¥
Y

s
Pl
A

o
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(2-D problems)

0

LR |
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For pressure,
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9B = 0 (A.13) '
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