
RD-A164 487 DEVELOPMENT OF A TESTSED FOR MULTISENSOR DISTRIBUTED ±1'±
DECISION ALGORITHMS(U) NAVAL POSTGRADUATE SCHOOL
NONTEREY CR M A SCHON DEC 65

UNCLASSIFIED F/ 9/2 NL

mhlhihhhhhhhhl
I fllfllfllflflfflfflf
II ffilllflf ll
IIIEIIIIIhIhhE
IIIIIIflllllll
I IIi

jw Im L

11111-25 ~ 12

MICROCOPY RESOLUTION TEST CH-ART
Q, m ml -1LAD 1963 A

, %7

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
FEB2 6 1

THESIS L

DEVELOPMENT OF A TESTBED
FOR MULTISENSOR

DISTRIBUTED DECISION ALGORITHMS

By
go-II Mark A. Schon
CL
0)

C.-O)December 1985

LAJ

Thesis Advisor: Charles W. Therrien

LA-
* Approved for public release; distribution is unlimited.

86 2 ?v n3r

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2 a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT Approve for ".

_____________________________,public release; distribution is
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate (4s~kbo Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City; State, and ZIP Code)

Monterey, CA 93943-5100 Monterey, CA 93943-5100

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
*ORGANIZATION (if applikabile)

* 8C ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK WORK UNIT
ELEMENT NO. NO, NO. ACCESSION NO

STITLE (include Security Cassification)
DEVELOPMENT OF A TES TBED FOR MULTISENSOR DISTRIBUTED
DECISION ALGORITHMS

PERSONAL AUTHOR(S)
Schon, Mark A.

3a ryPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
* Master's Thesis FROM___ TO ___ 1985 Decema 85

SUPPLEMENTARY NOTATIONI

* .,COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identi fy by block number)

FIELD GROUP SUB-GROUP Distr- uted Decision Processing; Computer Network;
Microcomputer Clusters; Process Synchronization;-
Network Communicationo

'9 ABSTRACT (Continue on reverse if necessary and identify by block number) -

Distributed decision problems arise when two or more sensors viewing
the same phenomenon must work cooperatively to draw inferences about the
observed situation. Typical examples are in target detection and target
classification. Such problems are characterized by distributed processing
of information and communication between processors over a limited
bandwidth data link. This thesis presents some statistical distributed
decision algorithms and describes the implementation of one of them on a
set of loosely coupled multiprocessor clusters which simulate the
distributed environment characterizing multisensor decision problems.

'0 DS'IBUTION /AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION
CUCLASIFIED/UNLIMITED C3 SAME AS APT 0 DTIC USERS UNCLASS IF IED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c 0 FICE S*'MBOL
C. W. Therrien 40 362160 (32T

00 FOR 1473BAMAR83 APR edition may beused untilexmausted IECRI% CLS:C t'C)g -- S PACE _00 FORM 1473,84 MAR ~All other editions are obsolete EiRTCLS1C,

SECUmITY CLASSIFICAIOW OF THIS PAGIR (Uhan DWO B~4gft

The purpose of the implementation was to investigate problemsI
of communication and process synchronization in a pair of
processor clusters performing a statistical distributed
decision algorithm. This thesis describes how these
communication and synchronization problems were addressed and
solved. J

N 1~02- LF- n014- 660 1

SECURITY CLASSIPICATIOW OF THIS PAOW(Wbef Data Entered)

Approv ed for F ut-ii rpi(ca.4s 1;-Tr;u 1,jt in;

- - Development of a Testbed
for 6

Multisensor Distributed Decision Algorithms

by

Mark Alan Schon
Captain. United States Marine Corp-

B. S.. University of Utah. 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

\AVAL POSTGRADU ATE SCHOOL
December 1q85~

Mark A. Schon

(harles NN' Therrien. Thesis Advisor

I n(, R 1xidr" :,ecnd Rf-ad"-

D-prl-ont Lwi ital and (*rrpiir Iri---rilW

I)e an f l -p , n '1tv r -~iA

tin .~s .r~r .i

. W. ; -..--. -

ABSTRACT

Distributed decision problems arise when two or more sensors viewing the

same phenomenon must work cooperatively to draw inferences about the

observed situation. Typical examples are in target detection and target

classification. Such problems are characterized by distributed processing of

information and communication between processors over a limited bandwidth

data link. This thesis presents some statistical distributed decision algorithms and

describes the implementation of one of them on a set of loosely coupled

multiprocessor clusters which simulate the distributed environment characterizing

multisensor decision problems. The purpose of the implementation was to

investigate problems of communication and process synchronization in a pair of

processor clusters performing a statistical distributed decision algorithm. This

thesis describes how these communication and synchronization problems were

addressed and solved.

4-. .2

I. . '

4 °•

.'I,- :

DISCLAIMER

Some terms used in this thesis are registered trademarks of commercial

products. Rather than attempt to cite each occurrence of a trademark, all

trademarks appearing in this thesis are listed below following the name of the

firm holding the trademark:

1. INTEL Corporation, Santa Clara, California

8086 MULTIBUS

2. Digital Research, Pacific Grove, California

PL/I-86 LINK86 -.

3. XEROX Corporation, Stamford, Connecticut

Ethernet Local Area Network

4. InterLAN Corporation, Westford, Massachusetts

N13010 Ethernet Communication Controller Board :...

Accesion For
So C

' _ - -- - I,_
NTIS CRA&I
DTIC TAB 0.

UrIannou:iced .

J t if i c , t o , l- -l. . , -

(. •By

D t ib. tio.

A.o-

Avaiib,,ity Codes -"-''

•ii /of ° %

DOt :,.;J

5
°%-.

L ~ ~ ~ ~ ~-. rS, 1w T, v -a ?J, -J& ,.qSI>L, 'Xpr. NT. VWI- w.u 47as. S7IJ.fawr.."Rrs-

TABLE OF CONTENTS

INTRODUCTION...

A. PROBLEM DESCRIPTION.. 9

B. HARD WA RE/S OFTWARE CONFIGURATION 10

C. STRUCTURE OF THE THESIS.. 11

I. DISTRIBUTED DECISION ALGORITHMS.............................. 13

A. SUMMARY OF ALGORITHMS 13

1. Tenney - Sandell Algorithm... 13

2. Relaxation Algorithms... 13

3. The Generalized Likelihood Ratio Test 14

4. Decision Based on the Nearest Neighbor Rule..................... 16

B. GENERALIZED LIKELIHOOD RATIO TEST 17

111. THE TEST ENVIRONMIENT _ 21

A. HARDWARE DESCRIPTION .. 21

1. The Cluster ... 21

2. Real-Time Cluster Star (RTC 21

B. THE OPERATING SYSTEM4 ENVIRONMENT..................... 22

1. The Synchronization Model... 23

2. Eventcount Distribution .. 24

3. Data Distribution.. 24

C. ALGORITHMI IMPLEMENTATION 25

1. Process Distributivity/ Parallel Processing 25

2. Process Synchronization .. 26

D. RESULTS OF THE SIMULATION.................................... 28

IV. CONCLUSIONS ... 29

APPENDIX A: Quadratic Classifiers .. 30

APPENDIX B: LINK86 Input Option Files....................................... 33

APPENDIX C: Device Driver and Packet Processor Source Code............ 36

APPENDIX D: Distributed Decision Algorithm Source Code................. 59

LIST OF REFERENCES.. 80

-INITIAL DISTRIBUTION LIST... 82

7- -

I LIST OF FIGURES

1. Distributed Decision Scenario.. 9

2. Cluster Architecture .. 21

3. Real-Time Cluster Star (RTC*) Architecture 22

4. Computations of Reduced Statistics ... 26

5. Synchronization Diagram.. 27

I. INTRODUCTION

A. PROBLEM DESCRIPTION

Modern military battle systems increasingly rely on the coordinated use of

information from multiple sources to assess the battlefield situation. Two or more

remotely located sensors may observe the same object with the purpose of "w.-w=:

drawing inferences about the observation. A common example is in the use of

radars to detect and eventually classify objects for purposes of an appropriate

response. In this type of scenario it is important to process the acquired

information jointly to arrive at the optimum or near optimum decision.

A simple example to demonstrate the distributed decision scenario is

illustrated in Fig. 1 and explained below.

OBSERVATION OBSERVATION
VECTOR x0 VECTR .Y 0

PROC COMMUNICATION PROCESSORPROESORPROCESSOR"-"
'
-

Figure 1 - Distributed Decision Scenario

Two sensors, labeled A and B, observe the same area in space to jointly make a

binary decision based on the statistical properties of the observations: either a

target is detected or there is no target detected. In certain situations the optimal

decision made by each sensor acting individually would result in each deciding"-

that a target exists when an optimal joint decision would decide that a target

does not exist. This dichotomy points out that in order for a higher level process

_M

9 -- 5 .- *.

to make a correct decision about the object, the distributive nature of the
problem must be built into the front end statistical decision procedure.

The problem of distributed processing of the observation data to achieve

optimal or near optimal decisions is discussed herein. The sensors are configured

to perform computations to reduce the observation data and to communicate

among themselves over a limited bandwidth channel. Algorithms which operate

in this environment are called distributed decision algorithms. Algorithms which

" perform computations on all the observation data collected and gathered at one

central location are called centralized algorithms.

This thesis deals specifically with modeling a particular class of distributed

decision algorithms in a multiprocessor environment, and with related issues of

process synchronization. Although centralized algorithms are not of concern

here. a companion thesis [11 deals with non real-time simulation and evaluation of

distributed decision algorithms and comparison with centralized algorithms. .

Although the thesis deals with a particular class of distributed decision

algorithms, the implementation problems presented by the algorithm would be

typical of most distributed algorithms. Thus the work can be regarded as

developing a test facility in which distributed decision algorithms can be tested in

a realistic computational environment.

The problem is to model the processing environment of two sensors which

collect data on a common object. The sensors and their associated processors =_

then perform parallel processing to partially reduce the data and the partial

results are exchanged via a local area network. A final decision about the

observed object is then made at each sensor, based on the locally processed data

and the exchanged information.

B. HARDWARE/SOFTWARE CONF[IGURATION

The hardware/software configuration used for the modeling of the distributed

decision network was the REAL-TIME CLUSTER STAR (RTC *) system. This

.,y-tern was developed by thesis students under the AEGIS Project Group at the

Naval Postgraduate School. RTC was deigried to handle algorithms of the type

t
• -.

tOI

.....

incorporated here with the appropriate synchronization and control primitives.

The hardware consists of two clusters of single board computers (SBC's) sharing

a common backplane with an Ethernet local area network(LAN) serving as the

communications link. The operating system is a distributed multicomputer real-

time executive that permits asynchronous parallel operation of processes resident

on SBC's of the same cluster and in separate clusters linked by the LAN. User

processes. such as the distributed decision algorithms, are resident in the local

memory of each SBC. They can share data and control variables using the

common memory in each cluster, as well as the backplane and the LAN data

paths.

A detailed description of the hardware system and the software operating

system is provided in [2]. The distributed decision algorithms are organized as a

number of separate processes on various single board microcomputers in the two

cluster arrangement. Process synchronization is achieved through certain await.

advance, and read primitives to control the orderly multiple/parallel process

execution as well as a sequencer to control the allocation of the LAN shared

resource. Each cluster simulates the operations that would be performed by the

sensor processors. Data read from disk storage simulates the input sensor

observations. Each processor then performs the necessary computations to reduce

the data to the statistics required for the joint decision. One set of statistics are

then exchanged between clusters while another set is retained locally and

computation is continued to produce a combined statistic based on the joint

data. This combined statistic is then compared with a predetermined threshold to

O wake the detection decision. Computations continue while data is available for

input and the decision results are displayed on a local console of each cluster.

C. S-TRUCTURE OF THE THESIS

* In the remainder of this thesis the distributed decision problem is defined and

various distributed decision algorithms and their characteristics are discussed.

The implementation of one algorithm in a distributed multiprocessor test

environment is introduced and discussed in detail. Emphasis is placed on

.

'".=. ,., -

.. ,. -... . .._- .. - r '.. -. .c:dc* - ;, '. .,. ..Lc-" ,r t " .2." .. , C •'.'.°•' -.. . .t _' •

~~.°.

obtaining solutions to -the problems of communication and synchronization for Zn
processes operating in two remote computer systems. The specific contents of

each chapter is as follows.

Chapter II presents the distributed decision problem with a discussion of a

specific distributed decision algorithm. Simple examples illustrate the detection

problem with a binary decision rule.

Chapter III presents the implementation of a specific detection distributed

decision algorithm in the RTC* multicomputer system and discusses important

issues relevant to the implementation of this type of algorithm.

Chapter IV is a summary of the findings and summarizes the results of the

implementation in the RTC* multicomputer system. -

*71Z

12 '.

p.. ~ .*P ~....-..*-* ~A .h ~ A - * - ~~S ~A ~ ~ A -. p P,4 4 ,,

7. r." 7%7 7.q
- -" " - •

II. DISTRIBUTED DECISION ALGORITHMS

A. SUMMARY OF ALGORITHMS ..

Alternative approaches to a simple binary (two hypothesis) decision problem _,_"

are presented in this chapter. The various algorithms have overall similar

characteristics in that local computations are performed by each sensor, reduced .'..

data is exchanged over a limited capacity communications channel, and final

decisions are made based on the joint observations of the sensors.

The discussion here assumes that there are only two sensors involved (A and

B) and that the task is to make a binary decision (H,: target is present., or H2: no

target is present). Generalization of most of these methods to multiple sensors

and/or multiple hypotheses is possible.

1. Tenney - Sandell Algorithm

Tenney and Sandell [3] seem to have been the first to look at distributed

decision algorithms of the type described here. In their work, the observations of

the two sensors are assumed to be independent when conditioned on the decision

hypotheses. Such independence of observations could arise if the sensors

measured different physical properties of the target (e.g. radar cross section and

infrared radiation). The sensors each make a binary decision based on their own 71

observations and send the result (a single bit) to a fusion center for arbitration.

A cost criterion was devised that depends on the decisions made by each sensor

and on the two hypotheses. Tenney and Sandell showed that the procedure that

minimized the expected value of the cost is a likelihood ratio test at each sensor.

However the thresholds used by the two sensors are coupled through some

integral equations.

2. Relaxation Algorithms

Relaxation algorithms [4.5] are another way to execute distributed

decisions. These algorithms are less well-founded in a theoretical sense, but seem

. :

to work well in practice. In the relaxation algorithm each sensor makes an initial
decision based on its own observations. The decisions are exchanged and each

sensor may then revise its decision based on the new information. The procedure

works best when there are multiple decision makers involved and may require

more than a single iteration to converge.

3. The Generalized Likelihood Ratio Test Y

If the information exchanged between sensors is more than a single bit, -.-

but limited to, say, a single floating point number, then a whole new class of

procedures can be suggested. In particular, if the observations are independent

as in the Tenney-Sandell analysis, then the likelihood ratio for the joint

observations factors into two parts, each depending only on the observations of a

single sensor. Thus each sensor can compute the likelihood ratio (or log

likelihood ratio) statistic for its own observations and send it to the other sensor.

Each sensor then has the complete information required for making a decision to

minimize probability of error based on the joint observations.

A more interesting problem occurs if the observations are correlated. In

this case the joint likelihood ratio does not factor in such a convenient way.

However, a procedure can be suggested that leads to a relatively simple decision

algorithm. Let the observations acquired by sensors A and B be represented by

x0 and yo respectively. The optimal centralized test to minimize the probability of

error has the form

In PI(xoY1) ,n + In P1(Yo Xo) > mT
p 2(xo,yo) p-2-() P2(YO x <1

where the subscript i on each probability density function p indicates that the

density function is for hypothesis H,. A distributed form of this test can be

developed by allowing sensor A to compute the first term in (1) and allowing

sensor B to compute an approximation to the second term (the conditional log

likelihood ratio) by using some estimate for the observations x0. This procedure is

14

. .- .*2 .t . ..

-.-. .I.
-. - - - '-

-
-

. -.

known as a generalized likelihood ratio teat 161. In essence, when the density

function, involves an unknown parameter (in our case x0 in the second term in

* - (1)) estimates are made based on each hypothesis (x, for H, and x, for H,) and

used in the corresponding density function. The form of the second term then

becomes
P~ 1(2)*i Inp t y (2)

P 2(yo i,)

If sensor B sends the result of this computation to sensor A, then the test (1).

can be evaluated to make a decision. A symmetric computation can be made with

the roles of A and B reversed, where the the estimates for yo are t, and 92 at -

sensor A.

The decision rule just described has a number of essential differences

from the corresponding centralized algorithm. First. since the likelihood ratio

evaluated by one sensor uses an estimate for the other sensor's observations, the

performance of the algorithm will in general be different and suboptimal when

compared to the centralized test. Second, since the two sensors perform

symmetric computations with the roles of x0 and Y, reversed, there will, in general

be a region of the combined observation space where the decisions of the two

sensors do not agree. The properties of this class of distributed decision

algorithms is dependent on the various methods of estimating the unknown

observations x0 . If the sensors are allowed to exchange only a single statistic then

the estimate for x0 must be derived entirely from Yo (e.g. using .MAP estimation)

and the resulting decision rule is of the form .

H1

A A (X D) - A B (y ,) > n T (3) " . -

This limits the degree to which the distributed test can approximate the 6: x.

centralized test since in many cases the centralized test will not be separable.

The log likelihood ratios in (3) are computed at their respective sensors

and once the primed statistic is received, it is added to the unprimed locally

15

:--- --

4-

2 7 z - z

computed statistic and the result -is compared to the known threshold, In T. For .

the case of Gaussian observations, the densities, p, and P2 of (1), are of the form

= N - 1, - IK('))-' Ix - i (')] i 1,2 (4)
(2,) 2 KM) "

and the points where the sum of the statistics in (3) is equal to In T establish a

decision boundary for this particular decision rule. If observations x0 and Yo

result in a point with value greater than the boundary value, the decision is H,

and if the value is less than the boundary value the decision is H2 . Decision

boundaries for Gaussian density functions are generally elliptical, parabolic, or

hyperbolic and define two (not necessarily connected) regions, one for each

hypothesis. .'

4. Decision Based on the Nearest Neighbor Rule

A Final form of distributed decision algorithm is based on the k-nearest

neighbor rule of pattern recognition [7.I In this nonparametric decision rule, a set

of observations to be tested is represented as a point in a multidimensional

observation space. Also existing in this space are previously given sets of points

(training data) corresponding to each of the two hypotheses. The distance of the

measured observations to each of the other points is computed to determine its k

nearest neighbors. If most of the neighbors correspond to H, then the given

observations are also associated with H,, otherwise the given observations are

classified according to H,

A distributed form of this decision rule can be developed by letting each

sensor determine a small number of nearest neighbors in the x or y subspace. If

the labels of these points and their distances from the observation data are

interchanged, one can compute the distances in the xy observation space and

classify the observation data. This policy does not guarantee that the true

nearest neighbors will always be found but allows a decision to be made without

further iterations and exchange of information.

16-

7,!

I w-.---~.---~1---:.:-:.- i--

B. GENERALIZED LIKELIHOOD RATIO TEST

The algorithm based on the generalized likelihood ratio test was chosen for

implementation on the distributed system. It has requirements for

communication and process synchronization that are representative of distributed

decision algorithms in general. The performance characteristics of the generalized

likelihood ratio test are investigated in [1]. If the joint density function for vector.

observations x and y is Gaussian, then a quadratic decision boundary results.

This is known as a quadratic classifier [8]. The joint density function for

observations x and y has the form

P. Zexp z m () "K'I 1 z'-' 1,
, N -71zm(]rK('L-z-m(i)j z=1,2 (5)

(2r)2 K(')lI 2

where z is the observation vector with elements x and y and mWn) is the mean

vector
o -.. .-.

M. i=1.2 (6)[:(-1
and K is the covariance matrix partitioned as follows -,-

K (,)r W =1,2 (7).,

Note that K is the covariance matrix for x, KWd is the covariance matrix for y,

and B! is the cross covariance matrix between x and y. The marginal and

conditional densities are Gaussian [9] and are given by

PXexp 2 X X~, KMP> x- n

(2 ,)- e -'1 2-

i= 1,2 (8)

17

. . . .

Z.-.-L'-:

. exp - 0 K' M1
p, (y x)j N _, 2 ~ ~ ;l y mj',) -

1 - 2, I ! y - , ' L , ,3 (2,,)) , K,(' 1 2 t lz

P, (Y) , , [y -m(')lr 1K)i[y -4)1

(2) K , ' - -.

S,2(

l(} T 1):1exp I mv(' r __K , x mz)

p,(x Y)= N p- 1 - , L.']

(2)2
(2, r) K '

i1,2 (10)

i ---. 1 2

P.- x, ep. -MM-.x ,()

.- ':.:

where the conditional covariances and means have the form ." "

Y(K (" BI r K('I- B . i=,2 (12)

'l :m -B(') :K(')I-l lx - m ('O) , i 1,2 (13)

,.- ~.:.;

Since the x term of (13) is not available at the given sensor, an estimate of the

form

, M. B (): Kp' I- :I - iny) i 1.2 (14)

is used. The estimate is the value of x that maximizes the density p, (x y).

Symmetric forms of (12), (13), and (14) are used for K, m, . and y, at the

other sensor.

The natural logarithm of (8) is given by

18

.-S:..

- .,,. -I

In P. (X) (1 [1(2.r)N In K,(KPJ'I -m) i= 1,2 (15)

and the natural logarithms of (9), (10), and (11) are similarly obtained. The .

logarithms of the conditional likelihood ratios are then used to obtain the terms

on the right side of (1). The term given by

AA (Xe) I p(XO)
A X)In- In p1 (xo)-In P2(xo) (16)

then becomes

1 in, K(2)1 + !x -m,(2))T KS2)1~ I X M'2) (17)

Expanding (17) and collecting terms leads to the form

AA (XO) XT A x b T X- (18)

where

is an NxN matrix.

b = F J)'T K ()-' - M,(2),I K ' 2)i' - (20)

is a lxN vector, and

UJ1 T4 ~ (~2 - (2) -m' r K(''-f') In K ~~ (21)

is a scaler.

The coefficients of the conditional log likelihood ratio. A' (xc) are called A', b',

and and are derived in the same way with (12). (13). and (14) substituted for

the corresponding variables. Similar coefficients are calculated for AB (Ye) and

As(Yo) and are listed in Appendix A along with the coefficients for AA (Xe) and -

A. (x0). The computations of A, b, c, A', b', and e' are performed prior to their

use in a real-time application and are input at the start of each process as the

parameters for each of the quadratic classifiers.

• .% .k-

.6-

2.

I°

- . , . ~ -°

III. THE TEST ENVIRONMENT

A. HARDWARE DESCRIPTION

The test environment "for the distributed decision algorithms, designated

Real-Time Cluster Star (RTC *), consists of a highly modular hardware base and

a highly flexible operating system. The hardware consists of two clusters of

single board computers (SBC's), each sharing a common backplane and an

Ethernet local area network (LAN) serving as the communication link. Thus

each cluster can be thought of as a node of a network and each node has multiple

processors on a common bus.

1. The Cluster

The cluster configuration is diagramed in Figure 2. Each cluster consists

of three SBC's physically connected by the MULTIBUS. Each SBC has 64K

RAM of local memory and can access an additional 64K RAM board of shared

memory and a 32K RAM board of common memory on the MULTIBUS. Also

connected to the MIULTIBUS are hard and floppy disk drives used for bootup

and input/output operations.

SHARED COMMONDISK
MEMORY MEMORY

MULTIBUS CLUSTER 1

SBC I SBC 2 SBC 3. '

Figure 2 - Cluster Architecture

2. Real-Time Clu.ter Star (RTC +)

Figure 3 illustrates the RTC' architecture. It consists of two clusters

connected by the Ethernet LAN. The Ethernet LAN/.MULTIBUS interface is

21

,I-v.InterLAN %linjO Fthf#-ipt Communication, Board (ECCB). This

prw?, ides each cluster wiih its connection to the ln iurk. Fuirther information on

operating characteristics ot the Ethernet LAN and RTC *use of the Ethernet

LAN is available in [2,10].

SHARED COMMON 1
DISKMEMORY [MEMORY

MULTIBUS CLUSTER 1

SBC1SBC 2 SB3ECOB

ETHERNET LAN

SBC 1 SBC 2 SBC 3 ECCB

MULTIBUS CLUSTER 2

SHARED COMMON -

DISKMEMORY MEMORY

Figure 3 - Real-Time Cluster Star (RTC') Architecture

B. THE OPERATING SN*STEM%, ENVIRONMIENT

M\CORTEX, the operating system. is a distributed multicompiter real-time

executive. It allows for anynchronous operation of processes resident on SBC*-- in

the same cluster and in separate clusters which are linked via the Ethernet LAIN.

Sv~tem synchronization of computations in various distributed processes is

accomplished using the synchronization model of Reed and Kanodia. [111. This

-ection describes the \ICORTEX system distribution of control variables. known

22

as eventcounts and sequencers. The modifications to the operating system, .- -

necessary to distribute user data throughout the system, are also discussed in this

section.

1. The Synchronization Model

The MCORTEX operating system is based upon a synchronization model

which is event oriented. Processes coordinate various activities by signaling and

observing events using synchronization variables known as eventeounts and

sequencers. An eventcount is a variable created by the user to signal the

occurrence of an associated event. Eventcounts are initialized with the value

zero and incremented by one each time the associated event occurs. The

mechanism used to signal this occurrence is a call to a system primitive, the

advance, which causes the eventcount to be incremented by one. A call to

another system primitive, the await. causes a process to wait until the

designated eventcount has reached a designated threshold. Once the

eventcount value is equal to or greater than the threshold value the process

may continue its execution. Therefore. processing at distributed locations may be

controlled using eventcounts which are signaled and observed with the

advance and the await primitives.

A sequencer is a variable provided by the system to control the

allocation of a system shared resource. The sequencer is a positive integer

number generator which starts with zero, It increments by one after providing

its current value to any process which requests its associated shared resource.

The ticket operation is the mechanism used to obtain a number from the

sequencer. The number obtained is used as a threshold value in the await call

to a system eventcount which is also associated with the shared resource. As

users of the shared resource relinquish it. they increment the associated

eventeount with the advance. This allows the user with the ticket value

which matches the eventeount to gain access. An example of a shared resource

controlled by a sequencer is the Ethernet LAN.

23

.-.IL.
-A7

2. Eventcount Distribution

The kernel of MCORTEX is resident on each SBC and schedules

processes for execution. A process runs until it invokes one of the system

primitives, the advance or the await, which results in the actions described in

, Section B.1. The advance of an eventcount, which is used only within one

cluster, causes an update of that clusters eventcount value. Processes in the

same cluster, which are awaiting the eventcount, may then continue to execute.

Update of eventcounts required for intercluster synchronization are packetized

for transfer, via the Ethernet LAN, to the other cluster. The operating system

procedure which accomplishes the transfer is located on SBC 1 of each cluster

and is referred to in this thesis as the driver. The driver is the system software

modified to allow for user data transfer between clusters.

3. Data Distribution

Data which must be shared between processes of the same cluster is .-

made accessible through the use of pointers to access the local cluster shared

memory locations. In the RTC' system. buffering of data must be done explicitly

by user processes since no means of dynamic allocation presently exists. In this

thesis. the real-time application requires the immediate use of the data generated,

which precludes the need for buffering. Static storage locations, which are

overwritten, are used for transfer of data throughout the system.

Data transfer from one cluster to another is accomplished by first

establishing an absolute address in the local cluster shared memory to receive

the data to be transferred. A pointer is used to access the absolute address in

shared memory and the data value based at the pointer is updated. The sywtem

driver is then notified that a data value is ready for transfer. The Ethernet

LAN sequencer provides the ticket to the user process for this data transfer.

Once the ticket for this data value matches the eventcount associated with the

Ethernet LAN. the data value is transferred to the driver's transmit data block in

the appropriate data field in local cluster shared memory. The driver then causes

the necessary calls to system subroutines to allow packetization and tran-fer over

the Ethernet.

24

-I

At the receiving end the message is processed by the local ECGB and the

data is placed in the receive data block. The driver then stores the data value at

the absolute address designated in the receiving clusters shared memory.

Another pointer is then used in the receiving process to access the absolute

address in shared memory. The data value based at the pointer is then avaiki4ble

for further computations in this cluster. When the eventcount associated with

this data transfer is updated via a similar procedure, the remaining computations

are performed. User process eventcounts prevent the generation of additional

data until the remaining computations in the present iteration are complete.

Appendix B provides an explanation of the steps necessary to create the

system driver and user command files. The driver modifications required to

transmit and receive data values for the distributed decision algorithms are

shown in upper case lettering in the system procedure SYSDEV.PLI in Appendix

C. User defined pointers and variable basing are shown and described further in

the user procedures PA2. PA3, PB2, and PB3 in Appendix D.

C. ALGORITHM IMIPLEMENTATION

Each cluster can be viewed as representing the set of local processors of a

particular sensor which obtains large volumes of raw observation data from a

target for initial processing. Decision rule parameters and raw observation data

are read from local disk storage to the processes of two SBC's in a cluster. Two

identical data sets are processed in parallel to generate a different reduced

statistic in each processor. One statistic is to be used locally (at the same sensor)

in further computation while the other is to be sent to the remote sensor for use

in further computations. The local sensor then receives a reduced statistic from

the remote sensor to combine with its locally retained statistic. The final result

of the combined statistics is then compared to a decision threshold and the

decision is displayed at a local sensor terminal.

1. Process Dist ribut ivity/ Parallel Processing

The implementation of the decision rule described by (I) is accomplished

with the following organization. The sensors associated with the two system

25

." °. -.

.,

JP

clusters, as well as the clusters themselves, are referred to as SENSOR A and

SENSOR B. As illustrated in Figure 4, each sensor. uses two processes labeled

PA2(PB2) and PA3(PB3). Process computations take place in time order from

left to right and computations shown above/below one another are performed in

parallel.

SENSOR A

PA2: Compute AA (X 0) Compute A A (X 0) + AB (Y 0)

PA3: Compute AA (X 0)

SENSOR B

PB3: Compute AA (Y 0) >'

PB2: Compute AB(Yo) Compute AB(Yo) + AA(X 0)

Figure 4 - Computations of Reduced Statistics

Processes PA2(PB2) and PA3(PB3) are resident on SBC 2 and SBC 3.

respectively, at each sensor. Computations are performed as shown, with ae.

primed statistics exchanged between sensors to allow further computations in IN
processes PA2 and PB2. The detailed computations discussed in Chapter II are

shown in user processes PA2, PA3, PB2, and PB3 of Appendix D.

2. Process Synchronization

Synchronization of events during the decision rule computations is crucial

for accurate and meaningful results. As illustrated in Figure 5. the careful -

synchronization of time critical events is coordinated with the use of two

distributed eventcounts at each sensor. The AiEVC eventcount of Sensor A is

advanced to signal the availability of the statistic A4 (xO) for use in PB2 of

Sensor B and the B1EVC eventcount of Sensor B signals PA2 of Sensor A that

AB (YO) is available. The A2EVC and B2EVC eventcounts control the timing of

the next input operation at both sensors to ensure correct correspondence of the

26

7.,. .'w

. 4-

...................... P:~&.. h-b.

observation data. In distributed processing multicomputer systems, it is essential
. o

that all threshold values used in the calls to the await primitives for comparison

to the eventcounts, be initialized properly to ensure continued operation of the

real-time system.

SENSOR A

GET COMPUTE AWAIT COMPUTE & COMgARE GET

A (Xo) BIEVC AA (XO) - AB(Y 0 <In T 0

PA2 ---------- ---

ADVANCE A2EVC

GET COMPUTE SEND AWAIT GET

PA3 AA (xO) TO B A2EVC X 0.P A 3 :]----- I .--- ---- --- --- -"---- --- -- -- --

i__ADVANCE AIEVC -----

SENSOR B

GET COMPUTE AWAIT COMPUTE & COMARE GET
Y0 AB (Yo) AIEVC AB (Yo) AA (Xo) < In T Yo -5

ADVANCE B2EVC

GET COMPUTE SEND AWAIT GET
Yo A (Yo) TO A B2EVC Yo.

*__ADVANCE BIEVC

Figure 5 - Synchronization Diagram

As one might expect, there is a need to ensure that the required statistic,

\.A (x0) or A B(y0), is available for use prior to advancing the A1EVC or BIEVC

eventcounts. This is insured by the forced synchronization of events inherent in

the sensor to sensor transfer of user data and eventcount updates. The statistic

to be transferred is stored in shared memory and transferred as described earlier.

Once the Ethernet LAN sequencer ticket value is obtained for the data transfer

and the request is placed in the ERB queue, the appropriate A1EVC or BIEVC

27

..........--

---- t ,.. - .. .,." wI 'U_ 6 -- -"

eventcount is-advanced causing a system request for a ticket value from the same

sequencer. This places the eventcount transfer request, which will signal the

availability of data, behind the data transfer request in the same ERB queue.

Therefore, when the eventcount is finally updated at the remote sensor the

statistic required will be in place and available.

In the final stage of computation the reduced statistic retained locally

and the statistic received from the remote sensor are added in processes PA2 and

PB2 of each sensor and compared to a threshold (see Figure 2). The reduced

statistics AA (x0) and A,9 (y0) are added and compared to the threshold at sensor

A. Similarly, AB (Yo) and AA (x0) are added and compared to the threshold at

Sensor B. Results of the threshold decision are tabulated on the local consoles of

each sensor and the loop begins again with the next observation vector read from

disk. The processing of input observation vectors continues, simulating real-time

operation until the vector files are depleted.

D. RESULTS OF THE SIMULATION

In the development and use of the test environment it was verified that it is

important to distribute computation among processors to better utilize the

available computational ability and minimize interprocess communication.

Processes at each sensor were broken up and distributed among the available

processors to gain increased computational advantages. Since processes at remote

sensors had to be carefully synchronized. specific semaphore-like mechanisms

were made available to provide this synchronization over the network. The

specific mechanisms used in this implementation are the await and the

advance. Correct operation of these synchronization mechanisms over the

network depends on the prompt and orderly communication of protected

variables used by the synchronization mechanisms. This orderly communication

is achieved by the ticket operation. Successful implementation of a distributed ...

decision algorithm requires the availability of all of these control mechanisms.

28

..

I ", '. ,-" -, •-- . ' -•" - *. , ' •, .d - - -- - a -' -

tV

IV. CONCLUSIONS

The process of distributed decision making by two cooperating sensors

observing a common phenomenon was introduced in this thesis. Decisions reached

in this cooperative way produce more reliable results than those of sensors acting

alone. Such decision procedures are characterized by the need to perform local

computations at each sensor and to communicate partial results to the other

sensor. Although several types of algorithms were cited to accomplish the desired

distributed decision procedures. all have similar computation, communication,

and process synchronization requirements.

A particular distributed decision algorithm based on the generalized likelihood

ratio test was implemented to explore the computation, communication, and

synchronization problems. The implementation was accomplished on a two node

network connected via an Ethernet local area network. Each node of the network

contained the required number of identical microprocessors sharing a common

bus. shared memory, and network interfacing.

Problems of interclustei as well as intracluster synchronization of events
between processes to ensure the timely input of observation data and the

coordinated computation using the shared data from the opposite cluster were

tested and resolved. Initial results using the generalized likelihood ratio test

algorithm demonstrated the feasibility of performing the computations involved

in the distributed decision algorithms in a realistic environment. The

requirement for carefully designed, network-wide process control mechanisms was

also found to be essential. The specific procedures used were discussed in the

body of the thesis.

20

. .-.

-- 7-7- - .- -.- , V

APPENDIX A
Quadratic Classifiers

Specific formulas for the quadratic classifiers, AA (x0), AA~ (x0), AB (yo), and

AB(y 0) described in Chapter II are provided in this appendix. Each quadratic

classifier was derived similar to AA (x0), in Chapter HI, Section B. The

coefficients, A, bT, c, A, bT , and c the necessary expanding equations for

variables K (') I M w' K (')Z and m () and the estimates, 9, and i, , are
zI z Yf y 1 Y

given as functions of the known terms, K (')~, m ('), K ('), m(C'), and B ~

The coefficients computed for

AA (XO) X xA x + b~x

are .

A- [K~2]'-[~)-
2

b r('T M I T r(I) T[r()- T [K (21

rM (2)m] [T (2)]' 1M(2) njk (I 2 j T [K n01 () + InIK I

The coefficients computed for

A '(xO)=x TAx + b Tx+C'

are

A'= .. [K I [K'~]]
bT - [M (1)y jT rK (')Y]- IM [i(2)y T [K (2)y I1

30

[M(1) 2 IK~~ 1
2 I '[m ''II [K () 1_ m) - [m2 1) [K (')]-l m 1) + In KI')

M y + B([K$(')]-' [y - (

(2) -1 B (2)TK (+)- [()K 2 1)m])
in= m + B(1) [K 1 -' [-

Y2 - m (2) + B (2) [K (2)]1 M(2

The coefficients computed for

A8 (Yo) YTA y +b r y + b
are

[T ,M r (1)]T [K (1)]"- M"2).T (2)1-1

-- !mJ")JT IK(")p-' m () - [mT)TrK()J- m(1) + In 1--I]
The coefficients computed for

A (yo) y TA y + bT'y + c "

are E

A ' - K [([2),. -1 J

31

• ..:... ..

r 1

1 1 ()T K 2 1 r c() 1-1 [K1Kz-
r(1)iT.I [__I,.___

yy L y l l + In'~

- K (2) B() T [K (2)] - 1 2

m m~1 + B1)T [g)'~

mJ2
- + y z) [K2 1 x m (0)]

- (2) + ~~~(2) 1 [y~r&2

32

*.~.7 ~ #~~ .. p' W 4.~? ri- 7-- - 7 L-V ' . -Kq X- .k -Mr J -

APPENDIX B
LINK86 Input Option Files

When linking files to create a command file for use on each SBC, the .' :

following command is invoked with the appropriate user filename: LINK86

filename [I]. The "I" in square brackets invokes the input file option which directs

LINK86 to obtain further command line input from the designated input file. As

an example, the modules listed in CA.INP are linked with the command: LINK86

CA[I], where the "I" indicates that CA.INP contains the names of the files to be

linked. The name preceding the equal sign is the filename assigned to the

command file. LINK86 CA[II produces the command file CA.CMD, which is the

system driver for Sensor A (cluster A). All files listed in the input file must be on

the logon disk and must be of type object (.obj). Object files are generated by

compiling files of type PLI (.pli) or A86 (.a86). The above steps also apply for

linking the system driver files for Sensor B as well as the user files, processes %7

PA2. PA3, PB2, and PB3, to create the respective command files CB.CMD,

NUM12.CMD, NUM13.CMD, NUM22.CMD, and NUM23.CMD.

33

:):I:

~~~~~~~~~.........................



777-777 - -77

** CA.INP input option file *

CA - '

SYSINITA F%'ODErABC4Z9I],DATPEAB(0],MWO,AD[821],M?.P[ALLJ1.
S fSDEV ,
ASMROUT.6
GAT EMO D

NUM112.INP input option file

N (:,112
SBC2IIT [CDE[A3[439]1 ,DT[BS0 M0 AD [22111 , MA?[ALL]J
PA2,.

p GATSMOD

NUM13.TNP input option file 4
* * * * 444 ** 444 * 4*4444444444*~.4 It * *44*:4 44 *444 44*~4

S?33D1T [CtE[A3439] IrATA [A3 EZ?0J ,Mfj[0AD[-?21] ,MA?[ALL]]
?.-314- 9r(r:[ 3

G ATE0OD

3A



** CB.INP Input option file *

CE
SYSINITEB [cons[AB3[439)] ,fATA[A3S[80] ,m[e] AD [82]11.,MAP [ALL]]. I

SYSOSY,
ASMROUT,
GATEMOD

'4UM22.IN? input option file * .-.-

SBnC2INIT [CO-DE[AB[4391] ,DATA[AB[8-03] ,KS] 3,AD [82]] ,M4P[ALL]],
P32,
G;.T EAO D

** ~UM23.INP input option fileIke

?33,
SIATEMOD

35



I. * - - * ...-, .S,

N

APPENDIX C
Device Drivier and Packet Processor

Source Code

This code consists of PL/I-86 and 8086 assembly language modules. When

linked as described in Appendix A and loaded in local memory of SBC #1 of each

cluster, the driver handles the systemwide distribution of user data and

eventcounts via the local area network.

Initialization modules (SYSINITA & SYSINITB), each for their own cluster,

define cluster addresses, create user eventcounts, establish eventcount

distribution, and create the procedure space, under operating system control, for

the driver. SYSDEV. The system definitions file, SYSDEF and the file

N13010.DCL are required when compiling SYSDEV. Any user eventcounts.

sequencers, or shared variable pointers which are defined in SYSDEF must be

updated when these items change with new synchronization and control schemes.

SYSINITA and SYSINITB must also be updated whenever changes are made -

to user eventcounts or their distribution. Recompilation and relinking are also

necessary to produce the updated command files CA.CMD and CB.CMD.

necesarytorod36



** CLUSTER A INrTIALIZATION MODULE SYSINITA.?LI *

SYSINITA: proc options (main);

%include 'sysdef pli';

%replace

EVC _TYPE ty 'W~b4;

/* main *

call dlef ine_ :luste r ('0301 Vb4f / mis t be cal1led
prior to creatirie
evc 's /

CALL CREATE EVC (A FVC)

CALL CtFEkTF rV C ( k2FVC)

CALL CRFATF _rVC (SiEVC);

call create evr p~ E-);
call create evc (ERPWRITF);
c all create sea (2_WRITE ' FJU'STf

/~distrib). -'aD called afte eventrcour.ts 'nave
been createl

/local arA remnte ccpy of' A1FVC '.eedel.*

call 1i st ribut:c _nmat k(?VC _TYP?, 1'VC, '00.3 '24)

call creat--proc ('fc'b4, '90'b4,

7?941'b4, '-P;0'b4, '23053'b4,

call await ( fe'b4. 'Cl'b4);

EI;Z SYSI NITA

37



i ~~** ,'"-"

" CLUSTER B INITIALIZATION MODULE SYSINITB.PLI

C ***
***************************** ********* ************2~*~****** ************** S-'--

SYSINITB: proc options (main);

%include 'sysdef.pli';

%replace

FVO _TYPF by '-00b4;

/* -ain ,/

call lefine_ cluster (",3,(2'b4); /- mist be called
prior to creatinZ
evc "s ,/

/*** C USE. ***.

CALL CREATE _VC (AiFVC);

CALL CREATF_ £VC I2lEVC);

CALL CPEATF _VC (B2PVC);

I*** SYSTEM ***/

call create -vn ,Fil READ);
call createevc E -.R _EITE);

call create_ sea 3?- WRITF _RFQUFST);

/" distrib. map called after e,.er.tcc-ints 'nave
been created 4/

/: local ani remote copy of BIEVC needed "I/

call distributionmap (FVC TYE. lF"VC, "

call create _proc ('cD-4, "%'b-,
"'94V'b4, '8?0'b4, '05"3'b4,"76139"b,4, " r-111 'b- , "OF,10'b-)" '>..

call await %'feb4, '01'b4);

END SYSINITB;

...-.. ... .. .. ....'o' ." . . .. "%-° "." q...'. * * .'.' ",." '. '-.",,' .°2. °-.'



I.. 077= 7,

FILE SYSDEF.PLI MARK A. SC.CN 24 JUL 85j / ,1 -* /

/** This section of code is Riven as a PLI file to be
/ * %INCLUDE'd with SYSDEV.PLI. ENTRY declarations are -/
/ ,ade for all available MCOPTEX functions. /

-" /********* :* '*- *, .,:**

DECLARE

advance 7NTRY (BIT (8)),
/: advance (event _count _id) J'/

await FNTRY (31T (8), RIT (16)),
/* await event count _id, awaited value) "/

createevc 3NTRY (BIT (@)),
/* create _evc (event _count _id) :/

createproc FNTY (BIT 9) , -IT e),

BIT (16). BIT (16), 3IT (16),
BIT (16), BIT '16), ?IT (1C)),

/, create proc (processor id, processor Driinit ,
stack_pointer hiohest, stack i .-/.-

/* code seg, lata seR, ext.a _sea)

create sea ENTRY (IT (8)),
/* cr-eate seo (sequence Id) *1

preempt 1TY ?IT (S)),
/* preempt (processor id) :/

read FNTRY (PIT (8)) RETURNS (.IT '16)),
read (evert _count id) ' /

R, .ETURNJS currert _event _count .

tickcet ENTRY ZTIT (8)) FLFTURNS I1T (16),
/* ticket (sequence _i,) /.
/* IR7ETUR S ' unioue ticket value I:"/

-efine cluster ENT-"Y "bit '16)),

/* define cluster al-rinster address /

d istribution _map FNITRY 'bit bi?), Dt (2), bit i1'-

/* distributionmap (distribution _type. id, cluster _addr) : /

adA2titl6 '\T.Y 'FIT(1F) , I T(16) ) RTURNS ('TT I ;
/* add2bitl6 (a_ l6bit s. arother 16bit ,
/* R : T U RNS a_16bit- anoth"- 1ebit_#

39

. . . . "- . . .- . . .-.... 'fl°." " .". .. .".. ** " . ..- ..° : -"•"-" ," , . j -. .



%replace

/*-----------------------------------------------.

**EVCSID)'s *

(1) USER

A 1!V C BY '01'34,

A2EVC By qJ2'P4,

B1EVC BY '03;4

B2EVC 'BY ",34'B4,

/* (2) SYSTEM

ERB READ by 'fc'b4,
ER.B-WRITE by 'fd'b4.

/*------------------------------------------------

SSEQUENJCER NAMES

(1) USER

USEP PROCESSES USE FRR WRITE RFQ UFST OVLY.

(2) SYSTEM *

ER3_WRITE _REQUPST by yffrb4,

SHARED VARIABLE7 POINTERS**

(1) USE?.

P3 BY '2CC("B4,
PC B2Y 'SDD9, B4,

',2) SYSTE-1*

blockDtr _value by '80'b4.

rnxit _Dtr value by 'BF0C2't4,

ptr val i e by '9666"b4

END RESERVE by 'FEFF'b41;

4(7. - .



*N1301O.DCL FILE

%replace _

/* I/O port addresses

These values are specific to the use of the I4TELA.
NI3010 MULTIBUS to ETSHEENET interface board. Any change
to the I/O port address of 'ObO' hex (done so with a LIP

switch) will require a change to these addresses to reflect
that chanze. /.

commandregister by 'bZ 'b4.
command status register by bl'b4"
transmit data re-ister by b2'b4.
interrupt statusreR by "b5"b4,
interrupt enable_register by "bg'b4.
high byte count reg by 'b-'b4,
low_byte countreg by 'bdi'b4,

/' end of I/O port addresses '/

/ InterruDt enable status register values ,"
disabla ni3010interrupts by "I'b4,
ni3010 intrvts disabled by "O'b4,
receivebloc,. available by " 4"b4,
transmit dma done by '"'b4, .'."

re-eive dma_ ore by ',17 b.,

/,* end register values */

/ Command Function Codes */

moduleinterface-looptack by ", 1" t4,
internal loopback by '12"b4,
e-lear loonback by '.."b3 ,..

go _offline by '08'b4,
go _online by "-9'b4,

onboard diaonost b a'b,.
clr insert source y b4,
load transri t data by '22"b4, -
load and send by "2Z'b4,
load zrouD addresses by "2a'b4,
reset by '3f'b4;
/* end Commard Function Codes

41

-7-.. . ....

. . . . . . . . . . . . . . . . . . . . . .~~ .. .* *..* .. *** *, *



71 
*:1 

"w

. " '

** CLUSTER A - ADDRESS.DAT FILE - USED BY SYSDEV.PLI *
- 1ST THREE VALUES USED IN SUBROUTINE *.-r.

** program group addresses **
* - LAST TWO USED IN MAIN PROGRAM SYSDEV 'L -

** TO IDENTIFY THE LOCAL CLUSTER ADDRESS. "

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -; * * >,

'0000 'b, '00000001 'b,

• - °*

** CLUSTER B - ADDRESS.DAT FILE - USED BY SYSDEV.?Li "-
* - 1ST TFREE VALUFS USED IN SUBROUTINE
** proeram grcupaddresses
**- LAST TWO USED IN MAIN PRCjRAM SYSLEV
** TO IDENTIFY THE LOCAL CLUSTER ADDESS. "

. .%

**-

"3000S000'b, 0Z1P,0 010b

SYSDEV: PROCErURE;

/* Date: 24 JULY 1985

Prograrner: MARK A SCwON (MODIFIED COE FRO M.%',
PREVI OUS TEFSI [2])

Module Function: To serve as the Ethernet Comm-,nication
Controller Boarl, ECCE :NI3010) device
han. ler. This process is schedul-l
" nder MCO:TFX and consumes Eth-net -

Reouests Packets (FRP) enratei 1-y
the SYSTEMSIC located in LEVEL2.S-C &

by USE? PE.OGPAM5.
It also processes a n nbo-ind
pacKets by aralyzing thr:  jar et
contents arl making the approoriate
,CORT "X calls. /.

42

-. .. .. .. . .. .. .. .



* - - .. -. - ~ * * i n . '.. -2.
"..~ -: ..

%replace

!vc type by '10'b4,
erb-block len by 20,
erb-block len ml by 19,
infinity by 32767;

%include 'sysdef Dli'

DECLARE

erb(O:erb block len ml) based (block ptr),
2 command bit (8),
2 type_name bit (8),
2 name value bit (16),
2 remote_addr bit (16),

1 transmit data _block based (xmitptr),

2 destination address a
bit (8)

2 destination address b
bit (8).

2 destiration address_c
bit (8),

2 destination aidress d
bit (8), -'

2 destination address e
bit (8)

2 destination address f
bit (8)

2 source adlress a
bit -(S)

2 source allress _b
bit (C),

2 source alress r
bit-(F),
2 source address d
bit (P),

2 source address e
bit-(2)

2 source address f ,
bit (G)
2 type field a

bit (C)
2 type_ field t

bit (9),
2 data (4) bit S),

4-3

• .e . : .W'i'. ._,r .'_-_._.-_._. .' . *-_. .. '. ... "_, " . _.. *, "_ .. . .. . . ."*:" - "" """""" - -'"" "---".". . ". . " - -" """"""



2 USER-DATA (12) FLOAT,

(TX DATA PTR,XMIT_PTR) PCISJTE1,

/*' HIGH tMEMORT ADDESSYS OF TXDATA MT; AND XMITPTF *

ASSIGNEL IN SYSDEV

DATA TO SE'4D FLOAT DBASED(TX_0AT5_PTf-.),'

1 receive data block basei 'rcv_ ptr),

2 frame _status bit (3).
2 null _byte b it C-)
2 frame length_ lsb bit S)
2 f rame length _r'sb b it (6)
2 destination addrezss _a bit ~
2 destinatior._adidzss _b bit i
2 destination address c bit )
2 destination _adiress d bitl8
2 destination-adiress _e b4it
2 destination _address f' b it (8)
2 source _address a b it ' P
2 source _adhress _b b it )

2 source addr'ess r bit (-3
2 source adAlress 1 tit {
2 source _address e b it *P
2 source address f~ b it(3
2 type fiell _a Cit
2 type _field-b b it 3
2 data(4) tit()
2 USER DT '12) FLCAT,
2 crc -nst b It 3
2 crc upper _middle_ byte b it H
2 crc _lower _ middle _byte bit SI
2 crc _lso bit B

(:X DATA PT?,?.-CV ?Ttc,3LOCK PT7) ?OINJTF'

P" !7I'z mFmC'Y ADD)RFSSES OF RX _DATA _P1TR RV _?TR,&
,1* BLOCKPTI F ASSIGNr~n I% FELE gySr71

DA TA _ARRIVrD FLOAT BASKB' RX D AT; ?T;)

index fixed bin (15),
(alir _e, addr _f) bit %)
address file,

copy_le _ register bit ()
'clu:ster-addr,erb write vallip,i) bit 116'.

j,)fixed bin l)
r-g value bit(),
write lo _port entryv (bit (R',, bit (K

44



readio_port entry (bit (8), bit (E)),

initialize cpu_interrupts entry, 1. 21
enablecpu interrupts entry,
disablecpu interrupts entry,
write bar entry (bit(16)); . 4

/* end module listing */

%replace

/* codes specific to the Intel 8259a Programmable
Interrupt Controller (PIC)

icwl_port address by 'c"'b4,
icw2_port address by 'c2'b4,
icw4_port address by "c2'b4,
ocwport _address by 'c2'b4,

/P note: icw :=> initialization control word

ccw--, operational c: rnmand woni

icwl by '13'b4,

/* single PIC confiauration. edge t nziered input -.

icw2 y '4'b4.

/* most signiftcant bits of vectorinR byte; for an
interrupt 5,the effective address will ce
(icw2 * interrupt .) * 4 which will be
(40 hex 4 -) * 4=114 hex

icw4 by 'if b4

/* autor'atic end of interrupt and buffered molpe/master /

ocw1 by "?f c4;

/* unmask interrupt 4 (bit 4),
/ interruot 5 (Uit 5) an"

/* interrunt 6 (bit 6) mask all cthprs ;"

/* end c259a cides I/

/* include constarts specific to the N1331C' board
tinclile "ni3?1.dcl";

45.

" ° ""-



7 . - Z v- '.7 j; -

1* Main Body *

call write _ioport(interruptenableregister,
calldisable _ni3elO ifterrAvts);

calinitialize pic;
call initialize cpu inlterrupts;
call read 10_port (nommand status reeister,reg value);
call perform command (reset);

call program_group_ addresses;
/* assi~nments to t'h'e source and destiratlon address

fields that will not change *

call perform command (clr insert source);
1*I3010 performance Is erhanced in tis mode *

/* ASSIGN POINTi VALUFS, P FVIOUSLY DEFINED -FILE S?3E Y.;
1* TX DATA _PTR <-- P10 = CCO A FLOAT "'LOCK OF I-PYTES '
1* RXDrATA-PT <- P afDD A FLOAT :BLOCK OF 4-BYTIES'

/*' ?LOCK PTR <-- PLOCKPTF. VAT UE Q0 THE ECB 120-BYT;S '
/* RCv PT? <-- RCV PYR VALUE = 866 THE RI)3 6E-3YTTS 3

1XMITPTR <-- XMIT _PTB _VALTIE = BOCS TYE TDB5 74-BYTES ~

UNSEC TX _DATA _?TR) =
UNSPFC(TXDATI _PTE) = PC;

unS Dec(blocl DTr) =block pt- valie;
unspec(rcvjir) rcvptF_ valuP
unsPec(xrnitnDtr) =xmlt _ptr _value;

/* miake one time assignments to transmit lata cock '

transmit _data _block.destination _address a= 0b4
trans-nit _lata _block.destination address _b =
t rar. smi t _iata _block.destir.atior atdrrss c_ c' 0 b4;
t ransmi t 1 a ta block .destinat ion _adiress-d '02 'b4;
transmit !ata _ tock.sourie-alddress _a= 0b:
transmit _data blcck.sour,,e _aldrpss b ='30'b4;
transmnit _data hlock.sourre address- =
transmrit 'lata _block .source address d =',37 'b4;

/* get the local clisler address - file was
ovened in Dror prozram _group _Aidresses *

get file (adress) list faddr e, a, dr f);
transmit _data blor'k.sour-e-e _adlyress a add' P;
t ran smi t1 ata -bl ockso: adrs 4 lrf



cluster aldr = addr e addr f;
put skip (2) edit ("*** CLUSTIR ',cluster addr,

" Initialization Complete ***"
(col(15),a,b4(4) ,a);

i = '0001'b4;
call perform command (go online);

/* at this point copyie reg = RRA , but
ie-reg on N13010 is actually disabled */

call disable-cpu-interrupts;

do k = 1 to infinity;
1* note: interrupt not allowed durine a

call to mCCRTEX primitive ..

erb write value = read(EF WFITE);
/* In the MXTACE version of-the RTOS .

all primitive calls clear and
set interrupts (diagnostic message.
routines), so the NI3010 interrupts
-rust be isabled on entry to MXTRACE /-

lo while 'erb writevalue , i);
/* busy waiting*/

erb write value = read(rtBWTITE);
copye _register=receive block available;
call write_ioport(inter upt_enable_ register,

recPive _blockavailable);
call enable cpu interrupts;

/' if a packet has been received,this
is when an interrupt may occur - -ar
see that outbound packets are always
favored. .-

do i = 1 to I"0;
/* interrupt window for packets received I.

end; /* do .1 /
call lisable cu _interrupts;
if (copy ie_reeister = receive dma _done) the,-"

P" receive DMA oderation starts4, so lt
finish. -/

call enable_ pa_irterrupts;
do while (copy le_ rezister = receive_ .-a done);
end;
call disable _cpu _irterrupts;

end; /* ift /-

copy _ie register = lisable_ni3,010 interruots;
call writei _portlirterrupt rable-.repister"

dlsabl ni3013 intus " ,

end; /* busy */..

47



- ..

/* ERB has an ERP in it, so process it */ ,., .

/* no external interrupts (RBA) until -
the ERP is consumed and the packet
gets sent /-
index = mod((fixed(i) - 1), erb block len);

/* 32k limit on parameter to fixed fcn. */

transmit data block.data(i) = erbfindex).corrand;
transmitmdata block.data(2) = erb',index).typename;

transmitdata block.data(3) =
substr(erb(index).name value,9.8);

transmit _ata block.,ata(4)
substr(erb(index). namevalue,l,8);

IF (ERB(INDTX).COMMAND = 1) T7ERN DO;

TRANSMIT DAT.A BLOCK.USER DATA(1) rATA TO SEND;

END;

transmI t _ata bl ock.destination _address e=
substr(erb(index).remotead r. I. -);

transmit _ata block.destination address f=
substr(erb(index).remote_ addr, 9,3);

call advance (-Rp FE.D); /* caution here !!I'
an ADVANCE will result in a
call to VP$SCFEDULFR, which
will set CPU interrupts on exit.
It's the reason N13010 interrupts
are disabled first in the
Do While loop above. /-

/* packet ready to go, so send it */

call trarsmit packet;

/4 copyieregister = 3RA , but not actual regzister '/

call disable_cpu_interruDts;

/* setting up for next ERP consumption :/

i add2bitl6(i, 'H?1'b4);

end; /* do forever */

/* end main body /"

48

. . . . . . . . .. . . . . . . .SS. . . . . . . . .. . - S. . . . .... 4

-~~:c ~ >~.:: 2 ~,~..5K~ Q . -°.



initialize pic: procedure;

DECLIMR

write..io-port entry (bit (8) ,bit(8));

call write to port (icw1_portaddress,Icw1);
call write to port ('icw2_port _address,icw2);
call write lo Dort (icw4 potaddress ,icw4);
call write to port (cv port~address,ocw1);

end initialize pic;

perform command: procedure (command);

DECLARE 4

commanI bit (8)
reg _vallue bit (8)
srf bit (8)
write to port entry (bit (E) ,bit (81 )
read ic ot entry (bit (8) ,bi' (P))

/* end declarations *

srf ='0'b4;

call write io port (command relister,command);
do while (Ts rf & '01i'b4) = "'e W4

call real _io_port (interrupt status _re,srf);
end; 1* do while *

call read to_ port
(command status _register,rev valnue);

if (reR value )'O1'b4) then
do;

/* not (SUCCESS or SUCCESS with Fetries) *

put skip edit ( ~~ETEERNET BoardI Failure ~)

1* when this occurs, run the dia~nostic 6

routine T3010/Cx, where x is the
current clister number ~

stop;
end; /* iii *

end perform commard;

49



, -.

transmit packet: procedure external; 7.-

- e- ,.'e

DECLARE
srf bit (9) ,
reg-value bit (8)
write io port entry (bit (B) ,bit (8)),
readioport entry (bit (8) ,bit (F)),
enable cpu interru pts entry,
disable cpu interrupts entry,
write bar entry (bit(16));

I* begin *"

srf = "O'b4;

call write bar (xmit ptr valuie);
call write-ioport(hfgh byte countreg,'Oe'b4);
call write ioport(lowbyte co'nt req,'3cb4);
copy_ie_register = transmit _dma done;
call write ioport(irterruptenable_r,-gister,

transmit _ema done%;;
call enable cpu interrupts;
do while (cDy_ieregister = transmit _dma-done);
end; /* loop until *he interrupt hanl:ler

takes care of the TDD interrupt -

it sets copy ie re ister = R'A ;A/
call perform command (Ioad and send);

end transmit_packet;

HL interrupthandler: procedure external;

/* This routine is called from tqe low level

096 assembly language interrupt routine '

DEC L APE
write lo port entry 'bit '9) ,bit :6 ),

read io port entry (bit (S) ,bit (8' ), bit
enable _cpu_ interrupts entry,
disable _ rpiinterrupts entry,
writebar entry (bit(16)):

4- "

5 .:-,'-V -



1* begin *

call write io portlinterrupt enable registerp disable nl3eio interrupts 3;
if (copy-ie-register = receive bi ock available)
then lo;

call write-_bar (rcv ptr value);
call write io pot-h yt on reg, '05 'b4);
call write io portilow-byte_ count-reg,'f'b4); -

1* initiate receive DMA /

copy_le_register = receive _dma done;
call write _io _port(interruD-t enable _rezister,

rere ive dmnad _3-.e

end; /* do *
else

if (coDy_ ie-reeister =receive _ima _done) then
p do;

call proress packet;
CODY _je register = receive _bloc-k available;
call write _io port(interrupt _enable re gistpr,

rereive block available);
end; 1* if then do *
else

if (cony ie register =transmit dma _done)
then 10;

copyjie_ register = receivp _block _available:
/* NI301Z irterrupts 4isablpd on entry 1;/

end; /* if then do *

e:rA H i rterrupt _handler;

process _pac~et: prnce dure;

DATA _ARRIVED FOPT BFASED "?,XDATA PTR)

')X rATA PT;, DCJNI T

local evc valile bit (16)
data Btr -p,)i it er,
remote evc val'ie bit '16e) basei ',ata p pt r



if (receive data block.lata(l) =evc type) then
do;

data_ptr = addr(receivedata block.data(3));

/* remoteevcvalue now has a value */

local _evc value read(receive data blozk.!ata.2));

do while (localevc value < remote evc value);

call advance (receive data block.data(2));
local evc value add2bitl(lo-al evcvalue,.. .. " ,£~- 01 "b4)""'"+"

erd;
call disable cpu interrupts;
/* this must be ione due to setting of

cpu interrupts by calls to MCOTEX's
VPSSCHFDULER via ADVANCE */

end; /* itd */

/* IF DPT IS IN THIS FDB THN TT.ANSFE? IT TO -USE- H *,"--
1*~ M7VOR:'

ELSE Dc;

UNSPFC(RX DATA PT?) =PC;
DATA _ARRIVED =-RvCFIV i_D TA _LOK ,U SIR DPT . ();

END; - - "

end processpacket;

prograv_ group_addresses: proced ure;

DECLAF

1 erouDaddr(4-0) based grouDp tr),

2 c _groupfie' da '"'"
bit f8),

2 mc _rouj field b
bit (e),

2 mc ;! r ou p_ f i e _ d
bit 't),2 mc roup fielt ""-'-

£bit ,'. ), _ -_

52

S... .



r

2 mc grou pfield e
bit ()

2 mc _group field-f
bit N8;

.J. DECLARE

(R-roupptr,p) pointer,
(field-e, fieli f) bit (F),
bit_8_groups bit (8) based (p),
(i,num-groups,arouvs _times 6) fixed bin ()

unspec(g-roupptr) Y mit Dtr _value;
open file (address) stream input;
get file (address) list (num _eroups);
di i = 1 to num _groups;

group aIdr i).rc- group_ field a= 3'4
grouD-addri).mc _i-roup-field-b=10-;
Rroup addrJi).mc _!rOUD field C ='0b4
group -addr,'i).mc _group -field -1 = '?O0b4;
get file (address) list (field _e,fieldf);
group-adir'i).rnc _group fOield _e =field _ ;
group adidr'i).rnc_proup -fieldf. = fiellf;

end; /'* do i

call disable cpu_ interrupts;
call write-bar (xmit _Dtr-value);
call write io port(hieh _byte _cout _reg, 0b)
groups-times 6 =6 * rum groups;

D= addr (ezroips- times 6);
call write io poit lowbyte_count _reg. t _P rouosl;
copy-ie reeister =transmit -dma _ done;
call write _ 1 _pr~rtrutt _enablP register.

transmit _dma done);
call tenable r-pu interrupts;
do while (ropy _ e _register =tran~smit _d-a _done);
end; /* loop until the interrunt handler

takes care of the TPD irterru t
it sets COPY _IF5FE_ F&

Call perform commanr load _Rroup-addresses);

end program group adI resses;

end; /'* sys ter device handler and packet :;rocesscr ~



:3+~. -- ".%-7-

I\-.

-, ************ ********* *************************************** 4-:

** ASMROUT.A86 FILE *

extrn hl interrupt handler :far .'

vublic write to_port
public read -o port
public write bar
public initialize rpu interrupts
public enable_cpu-interrupts
public disable cpu interrupts

writetio port:

Parameter Passing Specification:

en tr y eX t

parameter 1 <port address> <unchanz ed>

parameter 2 <val'e to be outputted> <unchanged'/

dseg

port-address rb 1I^.

cs e,

push bx! push si! push ,x! push ax
mov si, [b x
mov al, [si]
mov port address, al
-nov si, 2[bxl
mov al, [si]
mov dl, port _edress
mov ih, ?Oh
out dx, al

pop ax! pop Ix! pop 51! pnp bx-
ret

54

a:'-:-



I. .. k .. h ."*. - . .,*

read_io_port:

; Parameter PassinR Specification

entry exit

; parameter 1 <port address) <unchanged"
parameter 2 <meaningless'> <register value>

cseg
push br! push sil! ush dx! push ax

mov si, [bx-

mov port address, al
mov si, 2[bx]
mov dl, port _address

may dh, 00h
in al, dx s.
mov [sil . al.

pop axI pop dx! DoD si! pop bxl
ret

write bar:

Para"'eter ?assir Specification

parameter 1 'ar. only): the address of the data bl~c--

tc be trarsmitted or rtceivei.

dse.

e_bar_pcrt equ 0b9h
h bar_port eau ?bah ""
lbar_port eau bbh
temp_e _byte rb 1

te'Des rw 1

csez

; This module computes a 24 bit address f"cm a 32 bit N
; address - actually a combination of the ES reister
; and the 1P passed via a parameter list.

push bx! push ax! DlUs c x push es ! ish d- ! ish si

-ov dx, OP1 ; shared me-ory sznent

55

*..... ... . . . . *.** * *% ....



mov es, dx
mov tempes, es
mov dx, es

mov si, [bx]
mov ax, [sil
mov cl, 12
shr dx, c1
mov temp_e byte, i1

Vmay dx, tempes
mov cl, 4
shl dx, cl
add ax, dx
jnc no adl

aid 1: inc temp_e_byte
no aid: out 1 bar_ ort, al

mov al, ah
out h bar port, al
mov al, teM e byte
out e barport, al
pop si! pop dx! pop es! pop cx! pop axl pop bx

ret

initialize cpu interrupts:

Module Interface Specification:

Caller: Ethertest(PL/I) Procedure

Parameters: NONE

i iterodule cseg common
or 114n
int5 offspt rw 1
int5-sezmant rw 1

cse'
push bx

PUi sh ax
mov bx, offset interrupthandler
mov ax, ,
push Is
mOr 0 is, ax

5. °-.4 *,

.- 4 4 4 . . .- 4 4 4 44.



mov ds:int5 offset, bx
mov bx, cs
mov ds:int5-segment, bz
pop ds

pop ax

pop bsti

ret

enablecpu interrupts:

Module Interface Specification:

Caller: Ethertest(PL/I) Procedure

Parameters: NONE

sti
ret

disablezpu interrupts:

Module Irterface Specification:

Caller: Tthertest(?L/I) Procedure
Parameters: none

cli
ret

interrupt handler:

; IP, CS, and flags are already on stack
; save all other rezisters

.ush ax
push bx

* push cx
push dx

57

mm mm *" "-% ...... . .... ......



push di
push bp
push ds
push es

call hlilnterrupt hantiler ;high lvlsource
routine .restore registers

pop es
pop Is
pop bp
POD i
pop si
pop dx

pop bx
pop ax

st i
iret

end

52



.*....'.:

APPENDIX D
Distributed Decision Algorithm

Source Code

PA2, PA3, PB2, and PB3, the distributed user processes which implement

the distributed decision algorithm described in Chapter III, are documented

herein. Note that the systems file SYSDEF, described in Appendix B, must also

be available for compilation of each user process.

Processes PA2 and PA3 are linked as described in Appendix A. Their

associated command files NUM12.CMD and NUM13.CMD are loaded into local

memory of SBC #2 and SBC #3 respectively in cluster A at runtime. PB2 and

PB3 produce NUM22.CMD and NUM23.CMD which are loaded into the

memories of cluster B in the same way.

Processes are loaded when requested under MCORTEX control and

execution begins and continues until an await state is encountered. Once all

processes have been loaded, the various await states will be satisfied by advances

of eventcounts in other processes and operation will continue until all input data

vectors are processed.

"o .,Oe

-a .. . .•



i,., 
,,-. "i

/*******2/*******"***"*

/* PA2 is resident in local memory of SBC 2, CLUSTER A. ,I

/* This procedure performs the following operations: %-

1 . Loads aualratic eauation parameters A•3,C•D. ,"
/* 2. Reals sensor A observation vectors from disk. /
/* 3. Computes LJF ( LAMBD A X ) for local use.
/* 4. Computes ( LAMPDAA X + LkMBDA_'PP_ ) the
/* sum of the local and remote sensor LLR s.
1* 5. Compares the result to the decision threshold ,/

and disolays the final result ani decision.
6. Performs steps 2-5 for each input vector.

/ Xc ' ; : X X~~cX ;, X X i ° ............ ,-....-...,......... "-'.- .$"

PA2: PROC'DtJR;.

INCLUME 'SYSDF.PLI ;
%REPLr.CE

PC BY "°OD(7'B4, /* P3 IS SET TO THIS VALUF I"

F S BY 13,
Y 0S1 BY jON? BY "'.8 "4; ,-'.

DTCLARE '.

/'. CONTAI.NS TH. FOLLOWIN; pA- 3aMFT7-S

/"" I1. M T IX/VECTC DIMFNSIC'1. :,7",,"

2. D DIAGONAL FL34FNTS CF TH' M1AT;.IX-t.
3. CCL FY COL EUENTS BZLCW IAGCiAL 0F ::/

II . D FLTMENTS OF VCTOR- ?
5 SC LA .- C. '

6. TY'SFOLD.

;DATFILF CONTAINS TEE FOLLOIWI' VLJ"FS

P* 1. D-AF LEMNT -'ITOL S. /

(PARFIL?•DTFILE) FIL?,

A 2E) 5 ( 32 CT 4 X '2), .A S L.1DA a X F;o ,-T"
K PIT'16) STATIC INIT ' B4)

~ *..*.** .. *. V-.. - -.. .



a' -L-. . . . .. . . . . .R.7.PC

/* P3 SET TO PC TO BE ADDED TO SEGMENT ADDF 0900 * -

P3 POINTER,

/1**
/ i

/* BASE LAMBDABPY AT P3 : PC (OFFSET ADD TO DATt'.
/1-* SEGMENT 0800 ) "-

LAMBDA _P Y FLOAT BASED(P3);

/* SET POINTEFS TO VALUFS INDICATED IN EEPLACE .OYE */-

UNSPEC(P3) : PC;

/1* INPUT PAR.METERS FROM DISK FILE I-

MATRIX VECTOR DIMENSION (D = INTEGER)

CALCULATE OF M1ATRIX ELIMFNT S TC IlPUT

/ATRIX-A "SYMMETRIC:) ".-.'.--

VECTOR-B (P EEMrNTS)

SCP LtZ,-C (1 NUBER)

/__ TH?;ESHCLD (1 NUMBER)
P--I

CPPJI FILE'PAFFILT) ST?2EAM. IN PUT; "¢¢

,' FT FILVt?-.?IEL ) LIST (D);

l'O 1 =1 Tc 4;,.-. .

61 ""-'

*~1 U 1~ Li. J ..:..:,

'E: YIL"F(>kRFILE) LIST %!(I));
F. N 21

-.S . .- . , -. . . . . . . .. ... . . . . .. .. . .., . .' , , ... • .- -, ., , .- , .-... ., . ? _

• " "".-.''''._.-.'''" ''''._._'' ._; ¢:J,'."".'!._. _J , '_ ''., ."_._.'''.t''-¢., .-- _''-'"_.'-¢ .''-'._'_'.-' '.'_. '-._;6_1 ,''z -



DO I=i TO D;
GET FILE(PARFILE) LIST (B(kI));

EN D;

ITT FIL?(PARFIIE) LIST fC,THqRESH); w

PUT SKIP LIST ('DIMENSION =',D,'TFRESHOLD =',THRE-);

p.-

1* INPUT AND PROCESS X-VECTCRS

ON ENDFILF(DITFILF) EBOF T2UFE

OPFN ?ILE(DATFILE) STREAM INPUT;

DO HILEFCF F ~ALSE);

K =ADD2BIT16(K,ONB);

PUT SKI?,'2);
DC I=l TC r;

GET FILE(D&.TILE) LIST (X(I));
PUT SKIP LIST( 'X ',I,') ='.X'I));

/~C LC LAMB DA X =(X-T? ANS)*(4 AIX*Y

LA"71BDA_ _X 0;
DC J=l TO c.-l;

DO I=J-,1 TO D;
L.AMBDA _A X =LPMEDA _AX _ 'AI+J1 4X' 1)*X:Ju;

T2 = 3
Dc I=1. TC ~

T2 = T2

Lk!'MBD-A _A _X = 2"LA!M2tA-k-.X ) T2;

11 p) IMD.- y 70 TO(-VFCTO27(x) & s3To F

LV M3DA _A _X L LABD A _A X 3 1 X~l I

/' DD A?__ TO C &STORE I ' LD7) X

LAMB DA _ P. _ X=LMDAAX

62



/* AWAIT LAM7EA _BPY CALCULATED IN THE OTHER CLUSTER '

CALL AWAIT(B31EVC,K);

PUT SKIP(2) LIST('LAMBDA_ 4 X=,:D X)
PUT SKIP LIST (#LAMBDABP45Y =', :MA T'P Y);

Anl T HE LAM3DA_3PY VALU7 RECEIVED FROM
.* THE CTHFT, CLUSTE;FR VIA THE ETHE.FNFT TO

TrF LAMBDA_ A _X VALUE CALCULPTYD IN THIS
1* CLUSTPR, AND CCM?&RE TO TEE TE ESHCLD.

T2 =LAM'OrA AX + LAMBrABP Y;

IF (T2 ", Tlz'. 7 S T H E\ n D0

PUT SKIP LISTV'RESULT ,T2.1 'IS -~scL

!jS'SE DO;

?UT SKI? LIST('"SULT T2,T.'IS < TYj,,7s=CLr )

END;

DO I=e TO 1017;
Do J=. TO 50C;1 DFLAY LOCOP'
7ND;

7N D

- /~NCTIFY FOARD .3 TO CONTI',UT W17 NT-XT INDUT ', CT-~

C417. ADVANCF(A2EVC);

9ND OF~ n' -C ' FIL7 'rCF =FALS7) LCCD <

PUT SvI?(.3) LIST'"T ') CF 7-1NP UT D.T

DP 2~;

I4



. . . . . . . . .. . .*.. . . . .

P- PA3 is resident in local memory of SC 3, CLUSTE? A. A.

I This procelure perfcrms the following operations: I.

p, 1. Loads auairatic eauation parameters A,B,C,D. I -
/* 2. Reads sensor ; observation vectors from disk. ,
/* 3. Computes the Conditional LLR ' LAMDA AP_ X ) */

to send to sensor B for further computatinn. '/
I 4. Submits a reouest into the FR. Queue to send I.

the CLLR statistic to sensor E.
5. Advances eventcount AIFVC to signal sensor B I/

that its awaited statistic is available.
I**/

/.. o.., . ,., .: €¢t., *,5***,**,,., ,-C,., , **#,.. . ,***. ***:, : ....... . . -I ; : €..,..'

?A3: ??ccDukE;

.IC'ICUD F "SYSDEF.PLI

PA Y '000'B4, / ?1 IS STT TO THIS VALUE --
PB PY 9CC?-4, / P2 IS SET TO TUIS VA /-UF -
'£' _ LCCK _T.,' ~ 4  "Y 2'//USED TO CCNT7CL /

F i? 1OCK_ L7NGTH M11 ?Y 19, /t ,_ ,3 SIZE I

I,, I'D 
,,

ONE E Y 'Fool '4;
DECL,. ' "."~--

PARAFILT CONTAINS THT ?OLLOWIN, P.RAMP'T7RS /

/':"~ l. s TRIX/IFCTO 7 DI I O .'Ai "L-[1-
2. I, IAGC'4AL -LEV'FN'TS CF TEE MAT-.IX-AP.
.3. COL BY COL FLFNIFINTS 7EO19 DI GC L OF '.

.T. IX-AP.

4. D , ELENTS CF VFCTC':-B?.
/: 5. SC4L5.-CD. :,"-.""

IATtFIL ' C ';T A. IS THE FOLLCWI' VALUES / ..-.
/ ,~): / ,I.'.

IF . D-L 1T11T X-VFCTO11S.
/ :v /: !'-. .

*r,~~~~.. -.,. )PCi..*X z)C~ sssss~zsscss,~*s~ssss..- .. ...-

PrR aFI SD TAPI I-, F1 :  .- '-'-

O'F IT(l) STATIC I' ITFALS".

64 .IL'>



(A~52 2 BP(32);CP,Tl,X(32)) FLOAT,

1* INDEX VARItELEL. AND CONSTANTS USED FOP

1*INDEXING IN THE ERB (FRB INDEX)X/
SEQUENCING & CONTROL( II,JJ,K )*

1* VPENFTIFYI4G DATA TRANSFER(DATA TYPE) '
IDEN!TIFYING OPPOSITE CLUSTER_ ADDRhESS

EP.B INDEX FIXED,
( I I,_JJ PIT(16).
K 3IT(16) STATIC 111 T( '00 34)
T) .T: TYPE BIT (8) STATIC INIIT("l1B4),
CLUSTER_ ADDRESS ?IT(1F) STATIC INIV'002B4..

'-P ?I NT 7 PS A F USEDo IN Tal FOLO0WING MANNE?

_P1 SET TO P!~ TO 3E ADDED TO SEG~ENT ADD; ?8v ~
P2 SFT TO P? TO 'BE ADDED TO SEGMENT ADDR Z000 /

/*/

TF72 T'IF?N'FT_ PIEQ[UST ?LOCK (FPB)

ErTFENFT :FOUTST PACKET (E"2) STRUCTU77

IS USED,"L IN T7T FC2.lOWIN7 ' 'JNEF'

p/ COtMN"NID = 1 FOV DATA T-.? NSFE t Vr~ r-l'-T
TY P (NOT USFD PY ""-IS ?7r:CCEDUrF.!
VALU7 ''1OT TSEr '7Y THiIS P?.CCE1) 'V

BEMTEeDU LUS TEF .7DFSS OF DZSTI!.ATT_

1 ~(:EF. _ IOC*K LENGTH MI) "aSED (P1),
2 C ~m A !D lIT(E)

2 V L JF BIT(lF).

53



/* BASE LAMBDA AD X AT P2 PB (OFFSET ADD TO DATA */ __--

/1* - - SEGMENT = 080 ) eO/

LAMBDAAPX FLOAT BASED(P2);

/C SET POINTES TO VALUES INDICATED IN REPLACE ABCVF ),/

UNSPEC(PI) = PA;

UNSPC(P2) P3;

/C INPUT ?nATMETERS FROM DISK FILE

1 A MATRIX & VFCTOR DIMENSION (D = INTEGE?.)

P, CALCUL.TE N - OF rATRIX ELEMENTS TO IP TJ T/ .' ,,. / . .'

A T . IX-AP ( SYMvETRIC )

.- DIAgONaL ELEMENTS FI.7 ST ( = J)
COLUMNS TrLCW rIAGON.AL "7ZYT ( =-)

/4 VF'CTOR-FP (- n FrM'NTS) -

SC!L.%--CP (1 .UMBE ) NI /" "
/ ..... ............

CPF," FILF -P FILE) ST;:rY IkUPUT;

.TT FIl! (P' .*-.TILF) LIST D'

DO 1=1 TO N:VT VI 117'? AR AFI Lr F I A) I S."P
ENr;

DO 1=1 TO T);
F -T FIL A FIL LF IST P'I)

'?T F7. (mPAFILF) LIST C?):"

?TTT S/IP LST "DI MNSi ON ,Z'

-V..

" ' " - 1 - -- v _ : , _. - _. _._' ' ':_ . _.' _. _.- . _.." ..-.. . . . . ... _..._ . .. ... . i . _ .__. . . _ .," , , _ '. '' " 2 , -Z



INPUT AND PROCESS X-VECTCRS *

ON ENDFILE(DATAFILE) EOF =TFUE:

OPEN FI7E(DATAFILE) STREAM INPUT;

DO 'i.'ILEEOF =F&LSE);

CtLL AWAIT(P2EVC,K);

PUT SKIP(2);

TO 1=1 TO D;

GET FILE(DATA.FILE) LIST (X(I)):

PUr SKIP LIST/% 'X V I.' ='XI)

?FND;

/~STORE J-TPANTS)*(AP-mATRIX)*(X) IN LAME2!A ? _X

LAMBQDA A? X

DO J=i 'O D-1;
DC I=J-1 TC D;
L 1)D PX L A M ED A AP X P ?I J 1):X I xX(J,)

DO I=1 TO D;
Ti =T1 +

11 ~A p? X = 2~L~D _ '? X) -- Ti;

/'* ArD LAM?1A kDA X PC (?~~T~~X .STCD? A

D 0 1=1 TO D;
T LA'v1BtA _A? _X = L ' A r A ? _P X p T? J X I );

/* 3r T AMFDA P X TO OP '"CTRY IN '-AM FD .?

T ll '-r A P X = LA? P AP~ X + '11;

r7



OrET A TICKET TO ENABL A. WRITE TO THE E' B

II =TICKET(FRB9 WRITE PEQUEST);

/~II NOW HAS TFE VALUE OF THE TICKET RETURNED/
JJ = RFAD(ERP WRITF);

1* JJ NOW HAS THE VALUE OF ERBWRIT?

DO WHILEWJ < II);

JJ READ(?RB _WRITE);

/* IF ETHE NT rET PLOCK (ER-9) IS FULL-BUSY WLIT,'

J J READ(ERBREAD);

DO WHILE((II -JJ) >= EiB BLOCK_:F! LNT T

JJ RFAD(FRB _REAL);

/ /

/* WPITT TO E7B WHFN' A SLOT IS OPEN
/ COMrAND: = 1 FOR DATk TO BE TRPANSF? L=
/' 7~MOiTE ADD:; TESTI'VATIC'1 CLUETTE) ADRESS

IR IN rF -~o MPI T -1.? _LOCK LENGTH);

EPB( T_-rB INDFX).COttrANID DATA TYPF;

TERp'T_QI\DFX).REyCTE_ArD!R V CUSTER ADDK 7SS;

NOTITY mCO'7TFX THAT EPP W4RITF IS CMPLET7E

CaLL 'DV6NCF(E?_ WETE);



[i ~ - - ~ ~ ~ -7777' - - 1 7-

1* AN ETHERNET 'REQUEST PACKET (ERP) IS NOW SETUP *
1* IN TRE ETHERNIT REQUEST BLOCK 'ERB). THIS WILL - V
/* SIGNAL THE DFIVER PR~OCEDURE CN BOARD 1 TO FETCH
/* THE DATA STO;rF'D IN COMMON MEMORY (LAMBDA A?_ X) AT * .

/* ADDRFSS ~0800CCO-0601:SCC3 & MOVE IT TO
/* ADDRESS O00:90PA-000:80DD (TRANSMIT D ATA _3LOCK) '/

/* LSO IN COTmMON VEMORY TO BE P.ACKETIZEl AND SENT TO /

/* THE RTCEI yE DATABLOCK (RDB) OF THE OTHER CLUSTER *
/~ADrRESS OS 0:967C-Oe00:867F WEFRE IT IS MOVED TC *
/~ADDFFSS 0e 1:6DDV-0800-SDD3 IN TEE OTHER CLUSTERS /

/COMIMON MTMORY (%LANIDAAPX).

NOTIFY O'THE'TF CLUSTER THPT DATA IS 242Y .
"~LL aDVANCE(AlEVC);

4ADD2BIT16(K',ON7);I

F/N17 END CF DO WHILE (ECF FALSE) LOC? 0

PU'T sI:IP( ) r"I3ST VEND OF INPUT DAT 4');

ENI ?A3;

/;C* *3 ,.

/'1 P2 is r.eside-nt in local rremcry cf SIBC 2, CLIUSTIER 3. 1'~/

This prnce4'iire Performs the followinz operations:

*1. T oads cu-adr-rtic eouation pd-ameters A, B.C,D.
2. Reais 5ensor? otservation vectors frim is.~
7 . Crmpites 'L-- L.M?DA' -Y 'I for local use.
4 . 'T-np'tes LA-*1DA _B _Y -L.BlDA AD X ) the

swm of th- local arA remrote sensor LL -'s.
5 . Compare:s the result to the decision thrpsholl ~

*anl di,-olav5 the final result an! decision. 4
F. ?'Clrforris steps 2-5 fnr ecach Input vector.



T-77- -17777 7.% - - 2T -LW% *Wr ,A-

?B2: PEOCEDURE;

%INCLUDE 'SYSDFF.PLI';
%REPLACE

PC 'BY 'BDD?'B4. /* P3 IS SET TO THIS VALUE *
TRUE By 'I/B
FALSE BY '0'B,
ONE BY 'eoo1'B4;1i

DECLARE

1* PAP.FILE CONTAINS THE FOLLCWING PARAMETERS

1. MAT IX/VECTCR DIM~ENSION.
1* 2. D DIAGONAL ELEMENTS OF THE MATRIX-A.. *
Pe3. COI, FY COL FLEMENTS FELOW DIAGONAL OF *

MATRIX-&. *
1* 4. D ELEfMENTS OF YFCTOR-B.
1* ~ .SCALAR-C.

/4 6. T1ERESHOLD. 4

1* DATFIL! CONTAINS TTHE FOLLOWING VALUES

1. D-FLEM'FNT Y-VECTOS.

(?PIEILF,DATFILE) FILE,
TOP ?IT(1) STATIC INIT(FALISF),
(I,J,D,NJ) FIXED,

(AM52e3) ,B(32),C,T2.Y(32) ,THBF SE,LPM'BDP _BY) FLCET,
K PIT(16) STATIC II(?)

/.* 4'/

1 ?3SET TO PC TO ?T ADDFD TO SEGMENT ADD:-- 0 *

P3 ?.OI.NTf2,

E~ ASE IlAMBDA AP ?X AT P3 =PC 'CFFSFT ADD TO DtT V
/4 STGM7NT 720~) 4

LAMBDlA A.? X FLOAT B3ASE:P3);

3~* F" P OINTIPS 70 VALUES IN7DICATETD IN PEFPLACE A OVF *

7.-



- -- +.- .- .- "

UNSPEC(P3) = PC;

/C 1* INPUT PARAMETERS FROM DISK FILE */ -

/* MATRIX & VECTOP DIMENSION (D = INTEGER) */

CALCULATE N = # OF MATRIX ELEMENTS TO INPUT / ____

MATRIX-A (SYMMETRIC) -/

I* DIAGONAL ELEMENTS FIRST ( ) = )
COLUMNS T FLOW DIAGONAL NFXT (# = N-D)

/! VECTORP (D ELEMTFNTS) 4
/4c

/* SCALAR-C (I NUMBER)

/4 THRESHOLD (1 NUMBER)/4 .'"-"/

. " /."...- .• .

OP!_N FILErP.RFILE) STREAM INPUT;

,'T FIL ( (AILE) LIST );
N = (D D) D)/2;

DO I=1 TO N;
lET FILE(PARFILE) LIST (I)); .

EN D;

DO 1=1 TO D;
l'ET FIL!(PARFILE) LIST 'S (I));

E'4D;

FT FILVIDARFIL_) LIST (CTFRTSE': F

PUT SKI LIST ''DIMTNSICN =',t,'TESHOLD =',T-ESiH);
/4 4/....- %-

/PIUT PND PFOCESS Y-VECTCRS ' /

ON ENDFILE(DATFILE) EOF = TUE..

OP;\ FILEDXTFIL-) STR.AM INPUT;

D0 WHILIYDOF FALS-);

71 ,..

____ *.**K~ ~<.*...-.**



22 7_17

.1*K =ADD2IT16(K,ONE);

PUT SKIP(2);

GET FILE(DATFILE) LIST (Y(I));
PUT SKI? LIST(' '1' -'Y(I))

END;

/* CALC LAM'PDABY (Y-TRANS)*(A -MATRIX)*(T) *

LAMBDIA BY
DO =J T D1
Do IJ=1 TO r;i

L~~MBDAY = ABAB _y +( A(I+J+1)*-Y(I)*Y(J));
L A M D ?D L M B A

END;

T2 =
DO I=1 TO D;

T2 = T2 + A(I)*YI)*Y(I));

LAm?-DA PY = 2*LA%'IDA _y Y + T2; 1

/* ADD LAMBDAB _! TO (B-VECTCTa) '(Y) & STORE

ZO I=1 TO D;
LAM3DA _B Y =LAMBDA _BY + "BI) * Yl));

END;

/* ADD LAMBDA_ _Y TO C &STORE IN LAMBPDA B Y 4

LAMBDAFY =LAMBDA _BY + C;

/* dWAIT LAMPDA S?_)X CPljCUL TTD IN THE CTBE CLUSTE-. !

CILL AWAIT(AlEVC,K);
PUJT SKIP(2) LIST('L~t',D9 B Y =',LAMBDA ? Y )
PUT SKIP LIST V'LAMBDAABX =',LAM'3DA _A? _K);

ADn THE LAMBDAAPX VALUE RECEIVED FROM ~
THF OTHE? CLUSTFR VI i THE FTEE:-NEr TO />

'F L~DA P Y VAL UE CaLCUL .ED IN TiIS ~
CLUSq!'*? AND COMPkRF THE PESULT TO THE ~
TFFSI{OLD V.t~

72

V ~ '~' ***- *-* ~ '** -*-777

-24.* -............. . . . . .. *. **~



T2 = LAMPDA B Y + LAMBDA AP X;

IF (T2 THRESH) THEN DC;
PUT SKIP LIST('RESULT =',T2o'IS > TH ESHOLD ');

EN 1);
ELSE DO;
PUT SKI? LIST('RSULT =',T2,'IS < THESHOLD )
END;

DO I=e. TO ioev;
DO J=O TO 500; /* DELAY LOOP */
END;

END;

I** C * * * ** * * * * * ** * * * * * * * I .-_*,*.

1* NOTIFY 3OARD 3 TO CONTINUE WITH NEXT INUT VECTCO P/

C?.LL ADVANCF(B2EVC);

END; /* END OF DO WFIL! (WOF = FALSE) LOOP */ .''"

PUT SKIP(3) LIST('NED OF INPUT DATA');

END PB2;

/ '< PB3 is resident in local memory of SPC 3, CLUSTEB '. /

/' This pricelure parforms the following opprations:
/ p --

1. Loads ouadratic eouation parameters A,B,C,D. */
2. Feals sensor ? otservation vectors from disK. '/
3. Cormpites t ne Corditioral LL" LAMBDA_ Y ) */ Y

/* to senrI to sensor A for further computat on -
4. 3:bnits a reauest into the FR3 oueue to seni :;..

/* the CLLR statistic to sensor A. "I
5. AOivances ev-rtcount ?lEVC to signal sensor A :/

/1*- t'at its awaited statistic is available. ',

%Il CLTD "SYSDF.?LI";

F,?L C".".

• ~~~~~~~~~~~~.-........- ..-. .... .... :........+........... +..... -.. .... ..........-...-...-.. .......... ,.- .- . . .-. ,.-- ... ---



. -.--'.,-- . . -- -- - - . r- -,, -. - . - - D

PA BY "8Q1*"14• /* PI IS SET TO THIS VALUE
PB BY '8CC034, /* P2 IS SET TO THIS VALUE */

ERB BLOCKLENGTH BY 2P,/* USED TO CONTROL */
ERP BLOCK LENGTH Ml BY l9,/* ERB SIZE / n

TRUE BY "1'B-
F ALSE BY "'B,

ONE BY "'00134;

DFCLAFE

/* PARAFILE CONTAINS THE FOLLOWING PARAMETERS

/1* 1. MATRIX/VECTOR DIMENSION. */
/1,* 2. D DIAGONAL ELEMENTS OF THE MATRIX-A?. */

3. COL BY COL ELEMENTS BELOW DIAGON:TL OF /-
MATRIX-AP. /

4. D ELEMENTS OF VECTCR-5P. */
5. SCALWAP-Cp.

DATAFILE CONTAINS THE FOLLOWING VALUFS -

".1. D-FLM"NT Y-V-CTORS./ *- , /,

(PA,RAFITL,DATkFI!L) FILE,
£CF BIT(l) STATIC INIT(FALSE).
(I,J,D.N) FIXED.
.A .(52 ),?P(32),CP,T1.Y(32)) FLOAT,

I1* / o...

/4. INDEX VARIA2LTS AND CONSTANTS USED FSF '/

INDEXING IN THE ERl (F"rB INDEX) ',-
Pp.: SFCUENCINIG F CONTROL( II.JJ.. )

IDENTIFYING DATA TRANSFEk.(DATA TYPE)
I)FNTIFYING OPPOSITE CLUST "v: ADDE'SS

FRB INDEX FIXED,
( IIJJ) IT(16), .

B9IT(16) STATIC INIT(', 4.
DAT _TYPY BIT(8) STPTIC INIT('21'B4),
CLIST RAD DRYSS PIT(16) STPTIC I NIT ('lI'2 1

74

* . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . -. .



1* POINT!-RS ARE USED IN THE POLLOIING MANNER *14

P1 SET TO PA TO BE ADDED TO SEGMENT ADDR 78VO % %

P2 SET TO PT TO BE ADDED TO SEGMENT ADDF 0S 0 1

(Pl,P2) POINTER,

1* T2 FTHERN3T aEQUEST FLOCK (ERB) *

ET.Er7NFT ?EQUEST PACKET (ERP) STRUCTURE

1* IS USED IN THE FOLLOWING MANNER

COMMAND =1 FOP DATA TFANSFE? OVER F-NETm
/ TYPE (ICT USED BY THIS PROCEnURE)

VPLUE. (NOT USED BY THIS PROCEDJUF- *
1* RIMOTF ADDR CLUSTER ADDRESS OF DESTINATION

1~~' ER('ERLOC'KLENGTHMl) ,,AsErD l),
2 COt'MPND BIT(8)t
2 TYPE I
2 VALUE BITt1C-),
2 TEMOTE ADDR BIT(16).

/~BASE !,Am'?T'A _PPY AT P2 =P? 'OFFSET AD'L TO DIT4 ~
SEGMNT o -ST ) 0

LAMBDA BP Y FLCA.T BASED(.P2);

/* 3 FT POINTET-S TO VALUFS INDICATED IN ---PLACE' OVE

UNSEC1(p1) = k

U'4SPFC(P2) = ?B;

75%



1* INPUT PARAMETERS FROM DISK FILE

MATRIX & VECTOR DIMENSION (D = INTEGER)

CALCULATE N = OF MATRIX ELEMENTS TO INPUT *

1* MATRIX-A? (SYMMETRIC)

1*DIAGONAL ELEMENTS FIRST (#=D)
COLUMNS BELOW flIAGONAL NEXT (#=N-fl *

* VECTOR-1P CD ELEMFNTS) *

5 /* SCALAR-CP (1 NUMBER)
1Ac

OPEN FILE(P 1 AFILE) STRZIAM INPUT;

17ET FILF(P RAFILF) LIST 'D);
N ' *4+)2 -

1.0 1=1 To N;
T-T FILF(PkRAFILE LS(A(I)

~)O 1=1 TO 71;
GET FI.LE(PARAFILT) LIST (3 P(I));

END;

IT T FILF(PARAFILE) LIST (C?);

PUT SrIP LIST ('DiIMENSION =',D);

INPUT AND PROCESS Y-VECTORS

O N FN DFI LE(DATA YI LF) 'TOF =TRUE;

OP--i' FILF(DATAFILI) ST--AM IIPUT;

7?O WHILF(EOT = FALSE');

CALL kdAIT(E2EVC,K);

OUT SKIP"2);

..................................... ..*.



DO 1=1 TO D;
GET FILE(DATAPILE) LIST (Y(I));
PUT SKIP LIST('Y (I)=,Y(I));

END;

/* STORE (Y-T1lANS)*(AP-MATRIX)*(Y) IN LAtM3DABPY *

LANDA BP Y = 0
DC J=1 TO Dl-i;
DO I=J+i TO D;
LAMBDA 3PY T LABA? +AIIJ1-()YJ)
END;

'END;

Ti = 0

U DO I=1 TO D; 7'
Ti = Ti + (PI*()YI)

END;

LT V3DlA p ? Y (2*LAM!MPABPY) +TI;

/ADD LAMFDABPT TO (?P-VECTOR) (Y) &STORE

DO I=1 TO Di;
LAMEDA B? Y =LAMBDkB?_Y +(?(I Y I)

'*ADLkt'D9' B? Y TO C? & STOPF IN LAMBDt B?_ Y1

LAMEDA _? Y =L AMDk PP Y + CP;

GT-T A TICKET TO F4ABLE A WRITE TO THE- ER?

II =TICYET ER3 WRITE REQUEST);

1*II NOW FAS TliEF VALUE OF TH1 TICKET PRETURNED

JJ = YAD(ER3 WRITF);

/~JJ NOW HAS THE VA~lUE OF E7P WA-ITE

DO WEFILF(JJ < 11);

Ji R EAD (ERB _WRI TE);

ENJD;

r7



/* IF ETHERNET REQUEST BLOCK (ERB) IS FULL-BUSY WAIT *

JJ = READ(ERB-READ);

DO WHILE((II -JJ) >= ERTBLC LEGT)

JJ =READ(ERB_READ);

END;

1* WRITE TO ERS WHEN A. SLOT IS OPENJ4
/* COMMAND =1 FO'O DATA TO BE TRANSF!-!ED
/* bIE!OTEADDR DESTINATION CLUSTFE .ADDPESS

EB-3 INDEX =-.or(ii,ERB _?LOCKLENGTH);
EPRY ERY INDFX) .COMMAND = DATA TYPE;

ES(BIqDEX).REMOTEADrR CLUSTERArl)ESS;

/4 NO'IrY MCOR'IEX TPAT ERP WRITE IS COMPLETE

C'LL _ADVANCF(ERB _WRITE);

/A N ET:IENEm * tVU'ST PACKET (ER?) IS NCW SETUP 4
/ IN THEr 'ETY'RNET REQU7ST BLOCK (ER?) THTI S WI LL '

sillSGNAL THT DRIVP P?CCEDURY ON 2O&lr 1 TO F7TCH
* .I' LiEDATA STORED IN COMMON MEt'OPY (LPmDA_'0_ Y) PT

I"-_I ADDR FSS OE):CP-E2: C & MOVE IT TO '
A" rDRESS : 0080rA-~0r:S0DD (T- ,ANS"IT _ ATA _ LCK '

/' LOI OMNMEMvOPY TO BPCKETIZED PNJD SENT TO '

/4THE RFCvIV7E_DATA _ LOCK 'RD2) OP THE OTHER CLUTSTER. '
/* ADDaESS 000!:E67C-080QJ:867F wIE.R3 IT IS MCV;ED TO '

/ D ADD FS S 28, :lD0-08ff-'DD3 IN THUE OTHEh. CLUSTF:-S4
/~COMMON MEMORY (Lk'BDAP? _Y) .

/4 NOTIFY OTHEFF CLUSTE2 THSA DATA IS EADY *



CALL ADVANCE(B1EVC);

K k DD2BIT16(K,ONE);

END; /* END OF DO WHILE CEOF FALSE) LOOP *

PUT SKIP(3) LIST('END OF INPUT DATA');A

END P33;

791



LIST OF REFERENCES

1. Hahn, S.C., Analysis of a Distributed Decision Algorithm, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1985.

2. Brewer, D.J., A Real- Time Executive for Multiple- Computer
Clusters, M.S. Thesis, Naval Postgraduate School, Monterey, California,
December 1984.

3. Tenney, R.R. and Sandell, N.R., "Detection with Distributed Sensors,"
IEEE Trans. Aerospace and Electronic Systems, Vol. AES-17, No.4,
July 1981.

4. Rosenfeld, A., Hummel, R.A. and Zucker, S.W., "Scene Labeling by
Relaxation Operations", IEEE Trans. Systems, Man, and Cybernetics,
Vol. 6, 1976 pp 420-433.

5. Haralick, R.M., "Decision Making in Context",
IEEE Trans. Pattern Anal. Machine Intelligence, Vol. PAMI-5, No.4,
July 1983.

6. Van Trees, H.L., Detection Estimation and Modulation Theory, Part
I, John Wiley & Sons, New York, 1968.

7. Duda, R.O. and Hart, P.E., Pattern Classification and Scene Analysis,
John Wiley & Sons, New York, 1973.

8. Fukunaga, K., Introduction to Statistical Pattern Recognition,
Academic Press, New York, 1972.

9. Helstrom, C.W., Probability and Stochastic Processes for Engineers,
Macmillan Publishing Company, New York, 1984.

80

%. .. ( kf'f f~.-.



- 10. Xerox Corporation, The Ethernet - A Local Area Network: Data
Link Layer and Physical Layer Specifications, Version 1.0, September
1980.

11. Reed, D.P. and Kanodia, R.J., "Synchronization with Eventcounts and
*' Sequencers", Communication of the ACM, Volume 22, pp. 115-123,

February 1979.

I'.:

7

- . .*81



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Department Chairman, Code 62 1
Electrical and Computer Engineering Dept.
Naval Postgraduate School
Monterey, California 93943-5100

4. Professor Charles W. Therrien, Code 62Ti 3
Electrical and Computer Engineering Dept.
Naval Postgraduate School
Monterey, California 93943-5100

5. Professor Uno R. Kodres, Code 52Kr 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

6. Professor M. L. Cotton, Code 62Cc 1
Electrical and Computer Engineering Dept.
Naval Postgraduate School
Monterey, California 93943-5100

7. Professor R. Panholzer, Code 62Pz 1
Electrical and Computer Engineering Dept.
Naval Postgraduate School
Monterey, California 93943-5100

8. Capt. Mark A. Schon 3
1801 Artillery Ridge Road
Fredericksburg, Virginia 22401

82..-. --.. . . . ..- --. ~.--- - .... . . . . . . . . . .

.. A .5 a~ .5 * p p*.5 . - .° - - ... "SL



9. Daniel Green, Code 20E1
Naval Surface Weapons Center

Dahigren, Virginia 22449 .*

10. Capt. J. Donegan, USN1
PMS 400B5
Naval Sea System Commxand

Laurelon Marlan 20707

Dana Small2732
Coes8242, NewJrsy085

Sa Diegor, Calfoni 921-52

4582l Muaroo WayosCne
VirnBe, Virginia 2462

16. Susa M. Schon 1

BLaufr, Nrthlaroin 28516

17. Ott obi W. chonhod1c
* ~59 Staod Avenu

16.~~~V Sua . co

17.~~ Ott W.Sc

509~ ~ ~ StfodAeu



18. Kevin and Michael Schon 2
1914 Nelson Avenue
Memphis, Tennessee 38104

19. Capt. "Wild Bill" Johnson 1
2708 Pine Manor Lane
Albany, Georgia 31707 aZ.J

-

20. Professor P. Moose, Code 62Me 1 i.-

Electrical and Computer Engineering Dept.
Naval Postgraduate School
Monterey, California 93943-5100 -

21. Mr. D. Cowan 1
NWC China Lake, Code 31507
China Lake, California 93555

22. Dr. P. Krueger
AIR 320H
Naval Air Systems Command
Washington, D.C. 20361

844

V .



* ~.

* 

*

r.
*4t- -

4-

'4 

-4--.

"4 J.,* ~

FILMED V)

I

,.

4.

* .4

- 444~

4=44~
-4

'.4DI'IC
-~ 

4,.

-~ 4%

w *4~ - ~ ~ ~* * - - -

....................

4 . 4 - 4 4 4 
. . . 4


