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1.0 INTRODUCTION

We examine in this report the problem of wideband detection of a spread spectrum

signal from an interceptor's viewpoint; our aim is to derive, evaluate and compare various

detector structures whose purpose is to intercept a spread-spectrum communication

transmitter. The transmitter under surveillance employs a variety of modulation/

spreading/transmission techniques which are invariably assumed to emit the message-

bearing signal in deep background noise or interference. Thus, the challenging task of the

intercepting detector is to reveal as best as possible any transmission of the unknown --

spread waveform in the presence of an obscuring noisy environment ..

Naturally, the degree of success achieved by the interceptor when detecting the

presence of the communicator's spread signal depends on the amount of information -"

available to him regarding the structure of that signal. At one extreme, the interceptor's

most fortunate situation would be to acquire the spreading code itself ("crack" the code). If

this is too demanding, he must settle for less, such as approximate knowledge of the --

signal's carrier center frequency, code rate, code epoch, spreading bandwidth, etc., or a

subset thereof. At the other extreme, he might know almost nothing, 1 in which case, he

could resort to a simple energy discriminator device (i.e.,"radiometef) since it is, on many -

occasions, a low-SNR asymptotically optimal detector [1,2]. In this report our main

interest is to investigate the possibility that the interceptor could do better by optimally

processing whatever information is available to him between the two extremes cited above ,.

The detctability of the primary candidates for low-probability-of-intercept (LPI)

waveforms, such as direct-sequence (DS), frequency-hopping (FH), time-hopping (TH)

and their hybrids, is customarily related to two factors: (1) performance level of the
I

interceptor's detector whose only function is to monitor the communicated messages a

(2) amount of signal processing (i.e., complexity) associated with such performance.

1Approximate spectral band location is a minimum prerequisite for any interceptor.

'I:?i::



In subsequent sections, it will be shown that the detectability (exploitability) of a

spread signal is greatly dependent on the interceptor's knowledge regarding the form of

both the waveform and the interference. In other words, one should know not only the

spreading format used (plus, possibly, some other parameters), but it is also very helpful to

be able to identify the kind of background noise or interference involved. Although most

of this report deals with white Gaussian noise as the dominant form of (omni-present)

interference, a case is made in section 5.5. about the impact of nonwhite interference

(random tones, in particular). It will be shown in Sections 3 through 5 that, when white

noise is the only deterrent, the gains achieved by intelligent processing of the received

waveform can vary from modest to significant (always as compared to the performance of a

radiometer), depending on the scenario at hand. However, when random interfering tones

are present and a DS or a hybrid FH/DS is detected, those gains could become impressive

(many tens of decibels, for example). For details, see Section 5.5.

In searching for those structures which perform the aforementioned tasks, we start

from the optimal solutions, as derived from applying the optimal likelihood-ratio, rule. The t

results assume a good deal of knowledge about the signal parameters (although never the

spreading code itself) and could thus become rather academic in most practical situations.

Furthermore, they typically suffer from the common symptom of prohibitive

implementational complexity. Thus, it is important to consider suboptimal structures and

evaluate their relative loss with respect to the (unattainable) optimal performance ;this has

irdeed been the spirit which permeated the present topic. L

The report is organized as follows: In the remaining part of this section we classify the

various receivers and briefly lay the theoretical groundwork for evaluating the forthcoming

detector structures. In Section 3, 4 and 5, we develop the theory for DS, TH and FH .

signals, respectively.

There exists a wide variety of interceptor receiver structures, a rough classification of

which is attempted below and is also depicted in Figure 1. The various factors

2
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incorporated in the classsification include the spread spectrum signal whose interception .

(detection) is sought, the optimality or suboptimality of the interceptor's decision

algorithm, the degree of knowledge of different system parameters, etc. Wideband .

detectors can first be classified as optimal or subo,,Iima1. We term "optimal" those

structures which result from a straightforward application of the generalized likelihood ratio

theory to this problem and invoke a number of assumptions regarding the signal structure. P. 4

For instance, optimal solutions typically assume knowledge of certain parameters (code rate

or hopping rate, SNR, carrier frequencies, etc.) and average over the unknown ones

(timing epochs, time hopping or code sequences, etc.). Since, however, optimal

structures are often hard to implement, one resorts to "suboptimal" solutions whereby

either one (or more) assumptions are removed or certain "atypical" nonlinearities such as

the In cosh (.) function, are substituted by simpler ones as, for instance, a square--law .

device.

A second classification results from the nature of the spread-spectrum signal for which

the intercepting device is designed, so it can be a DS, FH, TH or hybrid detector. Also, |.

DS and TH detectors can be coherent or noncoherent. depending on whether or not the .

carrier phase is known. FH detectors are assumed to be noncoherent from hop to hop due

to the nature of the communicating channel and the transmitter wideband FH synthesizers.

The presence or absence of timing (epoch) information about the spreading code

distinguishes detectors as synchronous or asynchronous. It is clear that timing is initially

unavailable since the intercept detector does not even know if the signal is there; hence, S .

asynchronous structures naturally attract more practical interest. However, synchronous

and/or coherent detectors will also be considered -- not only because they provide useful

upper bounds in performance -- but also because of the conceptual possibility of -

improved detector structure aided by the recursive estimation of pertinent parameters 19).

Furthermore, by quantizing the continuous-epoch uncertainty region into an adequate finite

number of points, matched-detector structures can be devised that are synchronized to each

3

- -. ~ - .. o.,



0 Im

r. c uQ) *-

0Lr.E T3
E- 0* (4

* ca

a 0

.0 0 00. J4

>cz

M) z

E- 0. "a-



of those levels and whose outputs are combined to yield the final decision variable. Thus,

since the maximum code-epoch uncertainty equals a chip or hop time,2 one concludes that

good nonsynchronous detectors can be constructed from combinations of a few ,

synchronous ones. More discussion on this topic is provided in later sections.

Finally, we classify the detectors according to whether they expect to operate in the "[ !

presence of white (and typically Gaussian, such as thermal noise) or nonwhite interference.

The maximum-likelihood approach renders itself to the first case most easily, while its

formulation is cumbersome for the second. Accordingly, the theory is fairly mature for

AWGN interference, while it is still at the exploratory level for scenarios which involve

more complicated interference forms. It is, nonetheless, a fact that most of the challenging

practical problems reside in the "dense-interference-environment" area, where one or more

wideband signals are to be intercepted amidst a large number of irrelevant, narrowband and

wideband users, jammers, etc. Such interference should be excised to the best possible

degree before the remaining detection and estimation tasks on the sought signal can be

performed successfully. We shall not deal extensively with the excision problem in this

report (a special case will be discussed in Section 5; rather, we shall assume that tie

remaining interference after excision consists of wideband Gaussian noise and focus on the

performance of associated wideband detection algorithms. In terms of the block diagram in

Figure 2, which shows the simplified flow of operations in a standard LPI receiver, the

theory herein pertains to the "wideband signal detection" box, while interference excision,

noise-level estimation, etc. are performed in the first box ('data collection and

processing"), possibly aided by a continuously updated "signal history file". The ultimate

goal of the LPI receiver is indicated in the last box ("signal analysis and modulation ...

recognition"), wherefrom the information is made available to other interfaces. L i

2This clearly assumes a purely random code sequence for which a full chip (or hop) time-
shift corresponds to another realization of the same stochastic process.
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We shall typically refer to the communicator's signals under interception threat as .'

LPI signals. For the sake or clarity we should define here what we mean by such an LPI-

signal: it is a spread-spectrum waveform whose code is never identifiable (decipherable)

from an interceptor's viewpoint; the latter is then forced to wideband processing throughout

(as opposed to the communicator's narrowband processing after despreading). The

.deeacJhiit of such an LPI signal is a function of both scenario-dependent factors

(topology, distances, power budgets, etc.) as well as scenario-independent quality factors.

namely the structure of the interceptor's signal-processing algorithms (detection rule). The

first five sections address the algorithmic aspects of the overall detectability/covertness

issue and establish associated figures of merit parameterized by the spreading format,

existing SNR and model dimensionality (time-bandwidth product). The ultimate quantity

of interest, to be extracted from the analysis of these detection algorithms, is the required ! .

carrier-to-noise-ratio CNR = (S/NO)re q at the input to the detector in order to achieve a

certain performance level (see Section 2). Then, any value of (S/N0)M can be linked to the

aforementioned scenario-dependent factors for a global, LPI vulnerability assessment. It is

clear, however, that the two aspects of detectability can be treated separately. Furthermore,

different detection algorithms can be compared on the basis of their associated (S/N0)mq,

their relative merit increasing as (S/N 0)m4 decreases; conversely, from the communicator's

viewpoint, spreading waveforms with lower (S/N 0)mq are more vulnerable to interception.

7
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2.0. LIKELIHOOD RATIOS AND PERFORMANCE MEASURES

It is well known [3] that, under the common detection-performance criteria (most

notably, the Neyman-Pearson philosophy), likelihood ratios yield optimal hypothesis-

testing solutions, and performance is measured by the resulting pair of detection and false-

alarm probabilities (TD, PFA). Furthermore it will be shown later that, in many models the

overall likelihood ratio (LR) is expressible as the product of individual LR's due to the

statistical independence of successive code chips (random DS code) or hopping slots CH

or FH). When the true model of the problem does not allow for such independence

assumptions (as in the case of a random, but fixed, carrier phase), the resulting LR is too

complicated for either exact analysis or implementation3 . In this case, the performance of

those (complicated) optimal decision schemes is assessed by upper and lower bounding

arguments (see the following sections); in conclusion, the pmduct LR can always be

thought of as the analytical cornerstone. Since the log-likelihood ratio (LLR) is not only

theoretically equivalent, but also more convenient to implement than an LR (it turns

products into sums), it will serve as our point of departure.

The number of terms entering the summation of the LLR hops is typically large -- it

equals the number of chips (DS), or time frames (TH) or frequency (FH) observed. . -:.

Therefore, it is customary to model, via a central-limit-theorem (CLT)-type argument, the

distribution of the resulting LLR as approximately Gaussian under either hypothesis. This

constitutes a basic assumption upon which performance is derived in this report.

However, the fact that no such LLR possesses an e0a=t Gaussian distribution brings about

certain ramifications, as explained below.

31n addition, it can be argued that the superposition of random data on DS or TH, such as
PSK modulation, invalidates the modeling assumption of a fixed value of the signal phase
over a multi-bit observation interval.

K 8 '.D 4
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Furthermore, it should be pointed out here that the ensuing discussion, which is

perfectly suited for DS waveforms, is also applicable to FH or TH 2WX if the overall LR

includes a large number of independent hops (FH) or frames (TH), so that the product-LR "

and some-LLR forms are valid and useful. As a suboptimal alternative to such optimal FH

or TH detection procedures, it is possible (and many times preferable, from an

implementation viewpoint) to perform individual LR decisions per hop (FH) or frame (TH)

and combine afterwards these "tentative" LR-decisions over many hops or frames (post

detection combing). In such cases, they one should address the quantitative properties of

the LR directly; this will be further elaborated upon later.

Let us now return to the sum-LLR framework. To be specific, assume N

independent, identically distributed (i.i.d.) measurements rj, j = 1,2,...,N and let A(r)

indicate the individual LR associated with any one of them. The corresponding individual

LLR is denoted by

t(r) = In A(r) (2.1) _

The overall LR and LLR A and t respectively, are

A- It A(r) (2.2a)

and

N

S l)(2.2b)

due to the i.i.d. assumption. -

9
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Let X(r) denote any "well-behaved" transformation 4 of r. Although it is convenient, in

this context, to think of X(r) as an approximation to (or simplification of) I(r) as per (2.1), -

it need not be so. Clearly,

N
2: my(2.3)

j=l

constitutes another (typically suboptimal) decision statistic for the hypothesis testing at

hand. Furthermore, the CLT approximation will be applicable to bothLand L, as long as

N is sufficiently large. With the resulting "Gaussian" performance or (2.2) or (2.3) in

mind, consider the following model: Let X denote a Gaussian decision statistic under both

hypotheses Hi; i = 0.1. The performance pair (PD, PFA), associated with the test

H1

X < threshold (2.4)
H0  ,.

is simply

~1-. - .

Q-- [PFA ] + mx, 1 (2.5)P D = Q  X ,0_ Q e , 2 5 . ; ..

where Q(x) is the Gaussian integral function

Q(x) = exp {-}dz (2.6) * i

4For our purposes, this means that the transformation possesses finite first and second - -

moments under either hypothesis. __

10
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with Q71 [x] its inverse, and rx,i, a2 ,i; i 0,1 are the means and variances of X under

either hypothesis. In many cases where the inclusion of a weak signal does not alter the

variance a2xo significantly, i.e. a2 ,0 - a 2 ,, .equation (2.5) simplifies to

In X -in
Q_ ~ ~ , [P0 1 Qld-=d

Q-IFA .Q[pDI =_ =dx (2.7)

where the deflection (or distan dx has been appropriately defined in (2.7). Thus under

the equal-variance Gaussian assumption, dx quantifies performance uniquely. In other

words, any desired performance level (PD, PFA) equivalently translates to a specific

"desired" distance dx via (2.7); the converse, however is not true.

The above discussion applies equally well to X representing a "Gaussian" L or any

other X. Noting that, by definition,

(n -r ) 2

do A 1,1 d,0 (2.8 a)

and similarly

2 2
d= Nd (2.8 b)

where the distances dl and d). pertain to the individual statistics of land X, respectively,

we conclude that (2.5) - (2.8) provide a set of approximate performance estimates, reliable

to the degree that the Gaussian assumption is itself sufficiently accurate. Simulation

results, to be discussed later, confirm a very satisfactory accuracy for large values of N.

Use of the aforementioned distance measure hinges upon the evaluation of the

appropriate moments. That is no particular problem for certain standard forms of X (r); in

fact, d2 can be identified as an output-SNR measure for familar quadratic detectors (see,
a

for instance, [41-[81.,.,,-,.

. . .° *. .
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On the other hand, the exact calculation of d2 can be a formidable task indeed.

Fortunately, this situation is remedied within the Gaussian framework due to results by

Peterson, Birdsall and Fox [3]. For the sake of continuity and compaclness, the main

result is summarized below without substantation; however, the analytical reader is urged ... '

to go through Appendix A of this report. Therein, the tool of generating functions is .

employed to provide an independent proof of the aforementioned result, Chemoff bounds

on detector performanceetc.

Theorem (P.B.F., 1954): Consider an LLR t which is Gaussian under Ho. Then

(a) t will be Gaussian under H -

2

(b) -m,.o =m, =.

(c) a2 = a2 d
L,0 d .

where d2 is given by5

2
dG = n( + var{ A H) In {A 21 H0 (2.9)

G0

and A is the LR associated with 1. Interestingly the moments A of are sometimes much

easier to obtain than those of 1, hence the usefulness of (2.9). The quantity dG will be 7
referred to as the "Gaussian" distance.

Corll: With N i.i.d. measurements, performance is uniquely quantified by .

d, 2=Nln (I +var{AIH 0 )) (2.10)

It is interesting that the Gaussianess of I under H0 suffices to specify everything else in

terms of the single number d2. Furthermore, (2.10) has been the basis of analytical

evaluations for detectors employing optimal nonlinearities, whenever N is thought to be

sufficiently large to support an approximate Gaussian assumption. We shall follow the

SHere SH.} and var(.} stand for the mean variance, respectively.

12
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same approach here, quickly cautioning however against two possible sources of

inaccuracy and discrepancy, namely (I) different variances v% --,

2 2 2'
U 2=N and o 2  N

'. t' and CY ,I l,

under two hypotheses, which would negate conclusion (c) of the theorem, and (I)

intermediate values of N, coupled with low PFA and/or high PD, which would simply put

the accuracy of the Gaussian approximation into question. It is clear that, for case (I)

above, (2.5) would provide a more reliable answer; nonetheless, the difficulty in

analytically evaluating m, .2; i = 0.1 remains. As for (II), it might be desirable to

proceed with a numerical calculation of (PD, PFA) by computer via the analytical evaluation

of characteristic functions, or resort to bounds. Again, the nontrivial aspect of this

approach is the closed-form evaluation of the characteristic functions for the kinds of

optimal nonlinearities encountered here.

In contrast to the above, suboptimal rules involve d2 , which is typically

straightforward to calculate. It is also quite useful for the purpose of comparing different

suboptimal decision rules, applied to the same hypothesis testing model (see Section 3.3).
Finally we shall use d2 (or (2.5), whenever appropriate) to compare with d2 = Nd 2 in -

order to assess the cost of suboptimality, keeping always in mind our aforementioned

reservations 6 . Note again that di cannot be derived from the PBF theorem, since , is no"

an LLR.

Finally, for the FH and TH cases mentioned above, where the appropriate tests come

from individual LR's and not from LLR's, it is clear that distance measures based directly

on A should be evaluated. A good such distance candidate is

6By this we refer to the appropriateness of (2.10) as a sound measure of "optimal
performance; besides sources (I) and (I) mentioned above, we should not forget that, in
this report, L is never exalyx Gaussian as the PBF Theorem requires.

13
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Of AIH 1 } O{AIHL1 2.1
A a 1/2 JAI H0

var 01

provided, of course, that A is now the statistic which is approximately Gaussian and

var {AIH 1}I - var {AIH 0}. Indeed, this is the case in certain scenarios to be explored later,

* making the evaluation of dA in (2.11) a necesssary step.

Using properties of LR's, expression (2.11) can be simplified to

dA Vvart[A Il H = 481 TI I 1- (2.12)m

which will be of use in section 5.

The theoretical groundwork laid out in this section will now be applied to a variety of

LPI scenarios.

14



3.0 DIRECT-SEQUENCE WAVEL-ORMS

In this section, we consider and analyze wideband detectors for DS waveforms. It %%

will be assumed throughout that the receiver has knowledge of the carrier frequency and V

code rate and that the code is biphase modulating the carrier. For the carrier phase, the two

possibilities of it being known (coherent detection) and unknown (noncoherent detection) ,.-.'7

are examined separately in Sectior 3.1 and 3.2, respectively. A common assumption in

both of these sections is that the detectors are synchronous, i.e., the code chip-timing

epoch is known. In most practical situations this is rather unrealistic; the synchronous

results can then be thought of as upper bounds on the performance of any asynchronous

detector. Furthermore, by quantizing the coninous-epoch uncertainty region into an

adequate finite number of points, matched-detector structures can be devised which are

synchronized to each of these points and whose outputs are combined to yield the final

decision variable. The amount of quantization required depends upon the chip envelope; in

this report we shall restrict attention to the constant-envelope case. Since the maximum

code epoch-uncertainty for a random code equals a chip time, one concludes that good

asynchronous detectors could be constructed from combinations of a few synchronous

ones. More discussion on the cost of asynchronism is given in Section 3.3. Section 3.4

discusses some gains derived from correlation-combining of two independent receptions,

ranks the performance of the aforementioned detectors, and compares them to that of the

radiometer.

In order to introduce some notation, let the high-rate ±l-valued random spreading code

c(t) be represented by

c(t) n C P(tnTc" -Tc) (3.1)

. . . . . ..- "



where p(t) is a unit pulse of duration seconds and {r I. is a sequence of i.i.d.

random variable (rv's) with Pr{c. = +11 = Pr{cn = -11 = 0.5. Note that the random

sequence {c.}, as modeled, does not distinguish between a pure random code and a code
which is additionally modulated (in a synchronous fashion) by random binary data.

Furthermore, the chip epoch is modeled by the rv e, uniformly distributed over (0, 1). The ., .

waveform observed by the detector is therefore given by

=Sc(t) cos (w t + )+ n(t) (I) .

r(t)= (o t, T)n(t) (H:ii:
( 0 )

(3.2)

where S, ca and are the average signal power, carrier radian frequency and carrier phase,

respectively and n(t) is bandpass AWGN with one-sided power spectral density (PSD) of

No W/Hz. The observation time is T seconds, which we assume to be an integer multiple

of the chip time, i.e., T = NTc ; N a positive integer. Such an assumption is the least

restrictive since, in practice, N is generally a large number (of the order of hundreds or

higher). However, a somewhat stronger restriction is embedded in (3.2)., namely the

assumption that under hypothesis H1, the signal is present during the whole observation

interval. That excludes the possibility of the signal either starting or ending at any random

time in (0,T). Still, such a formulation is important because it provides meaningful and

fairly simple comparative conclusions which (a) would otherwise be obscured by

mathematical complexities and, (b) can be argued to extend to more general models.

In terms of the above notation, a synchronous detector implies that E is identically

zero, while a coherent one means that 0 is known. The detector for which is unknown

but constant over the observation interval duration is well within the coherence time of the

spread-spectrum channel. For computational purposes, we also consider the fictitious

chip-noncoherent detector, where phase is assumed to be totally random (uniform in ."

16 I
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(0,2nr) and independent from chip to chip. Although this is not realistic for a biphase-

system, it is discussed here because its readily derived performance serves as a useful

lower bound to the performance of the carrier-noncoherent receiver. In addition, the

random phase model becomes increasingly realistic if the DS modulation has four or more

phase states. '
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3.1 Synchronous Coherent Detectors

When both the random phase 4 and random chip epoch C are assumed known, the

detector is asked to perform the following composite hypothesis testing problem: Decide

0 between the alternative H0 and HI, where VM

,-

c(t) + n (t) ail )r(t) = .(Ht ) (0 5t < NTC) (3.3)
n(t) (H

Hypothesis H1 is composite because it contains all possible patterns that the code can

assume in NT, seconds. Although we consider only random codes (in which case there are

t exactly 2N such patterns), some of the steps below would also be valid for deterministic

codes. The subscript I in n1(t) indicates that only the inphase component of the noise

contributes with a flat two-sided PSD of N0/2 W/Hz.

Well-known results about optimal detectors (see, for instance [12]) can be applied here

to yield the composite likelihood ratio test:

=e r(t) 'm dt"

N N
1=1 0

expr 1 A

2N 1=1 0 ci xyR-Jul0
(3.4)

where

ST
WO (3.5)

18

....

. C -



_7V~.- Vv..*/ W

is the predetection (or chip) SNR, ci(t); i 1 ,...,2N is the ith' code pattern, cij is the jth chip

of the it pattern, and r3 is given by

r i~ ret) dt 4

C (3.6)

It is shown in Appendix B that an expression equivalent to (3.4) can be derived in terns of

the cosh ()function, where cosh (x) =el + e-x )/2. It is given by

N ~ ~ J HI ,..-

A~rt))= 1F csh(gi- ~ 0 (3.7a)

which yields to opa LLR te)s0

N/
In WO~t) -N-C + I in cash 0r) £0 (37b

1*0 (3.7b)

* as shown in Figure 3, we note that (3.7) could have been derived directly,based on the

* i.i.d. and AWGN assumptions, as per (2.2) (see also [5],[6],[8] for similar results). The

method preferred here can be generalized to models with statistically dependent chips (c.f. q

Section 3.2) or nonrandom code

It can be shown that, the conditional mean of the random argument of the In cosh()

function in (3.7b), assuming cj I under H1, is equal to 2y~, which is also its variance

19
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under H0. Therefore, for typical predetection SNR values below -10 dB or so, the

approximation In cosh (x) - x2/2 is well applicable, in which case (3.7b) reduces to the___

approximate (suboptimal) rule

N H4

N 2 H1
~= >

0= (3.8)

depicted in Figure 3. Since the aforementioned approximation of the In cosh(x) function

becomes increasingly tight as x-+0, it follows that (3.8) is asymptotically optimal as y'-..0

Within the theoretical framework of Section.2, the performance of (3.8) is easily

* derived. The mean and variance of X are given by (Appendix C)

*j IHk N(NOTC)(1~ + -y (k0,1) (9

and

var{A IHd N(NOTC)2 (1~ + 2 yCkl

(3.9b)

respectively, where 8k, is the Kronecker delta

1I k-1 (3.9c)
6k1 k .

(. 21



Therefore, PD and PFA are related, as per (2.5) by

Q- [PFA]- a X :"

PD -1 [ b ] (3.10a)

with

a = 2" b =4 (synchronous coherent detector). (3. 10b)

Since by, is typically much less than one, (3.10) can be combined with (2.7) to yield

d -F4 N c (3.11)

We note that performance is dictated by the product NR y, which is typical of schemes

employing post-detection integration. In contrast, detection of a known waveform would

involve the factor NY; the losses in performance, due to the composite test (since the

signal pattern is unknown) for low values of SNR, are evident by comparison. Note also

that rule (3.8) coud have been analyzed exactly, but this issue is deferred until noncoherent

detectors are discussed in the following section.

In terms of the overall observation time T and the null-to-null spread spectrum

bandwidth W. = 2T (Hz), (3.11) can be rewritten to establish the required (S/N0)'

- in order to achieve the performance level d;. as

S dZ (I.,:.,:

(3.12)

The above refers to the suboptimal rule (3.8). The Gaussian distance d.of (2.7) for :

the optimal rule (3.7b) can also be derived. Let

22
M

.-. .................~~~~~~~~~~~.............-..... . ...... .-.. ,..-.#. •.,. ... '.._7_.. ... _A_,r.. ,,



C .I.I. '-

2 WT

NO

with rj as per (3.6). Under H0, y1 is a zero-mean Gaussian rv with variance C2  2yc.

Using the fact that 9{cosh(yj)} = exp{ 2 / 2 ) in conjunction with (3.7a) results in

di= 4/N In cosh(2y.) (3.13) %

For small x, In cosh(x) - x2/2, which, upon substitution in (3.13), verifies that d1 --+ d;. of .

(3.11) as y.-O. In conclusion, the approximate rule is well suited for the low prediction

SNR range of interest

The performance (PD, PFA - 10-2) of the optimal and suboptimal decision rules (3.7b)

and (3.8); respectively, as predicted by (3.13) and (3.11), is shown in Figure 4. The two

values of N chosen, a high (1000) and a low (50), are meant to illustrate the qualities and

limitations of the Gaussian assumption. The PFA = 10-2 value, used here for exemplary

purposes, was fixed both in theory and simulation. Although this PFA, if considered by

itself, would correspond to unacceptable false-alarm rates7 , it is typically true that multiple

tests are employed before a final decision is reached, thus lowering the overall PFA to the

desired levels.

The simulation results for both rules, also included in Figure 4, confirm the expected ..- .

trend of the CLT-Gaussian approximation to improve as N and ID increase, for fixed PFA.

This improvement is manifested in the increased quality of both performance estimates, i.e.

eqns. (3.11) and (3.13), each pertaining to its own test.8 Interestingly, the approximate

estimate (3.11) seems satisfactory for both optimal and suboptimal tests. This should be

7For a 10 Mchips/sec code and N = 1000, the number PFA = .01 corresponds to an average

false-alarm rate of 100 FA/second.
8This is certainly true for increasing N; for small values of N, the applicability of (3.13)

becomes more questionable as PD increases

23
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attributed to the low chip-SNR y,, which renders rules (3.7b) and (3.8) almost equivalent,

* as attested also by the closeness of the respective simulation results. In different ~

environments however, (eg.,FH or TM), corresponding to higher hop-SNR's, the cost of

suboptimality should be more pronounced (see Section 4 and 5).

26



3.2 Synchronous Noncoherent Detectors

Let us now relax the assumption that the carrier phase of the DS waveform is known

by the interceptor, but still retain the assumption of a known code epoch. We shall state the

optimal decision rule for a carrier-noncoherent system, whose eact analysis, however,

appears unattainable. Instead, a chip-noncoherent detector will be derived and analyzed,

whose performance can serve as an asymptotically tight (as y,--* 0 ) lower bound for the

carrier-noncoherent system.9 Thus, the performance of the latter can be nicely bracketed

between that of the former and the upper bounding performance of the synchronous

coherent detector 0 in the previous Section 3.1.

Consider first the carrier-noncoherent system. Under the usual narrowband '.

assumption co >> 2 /T, the resulting decision rule is

°,,1- 2 N N}
2x~ y N 02'

121 o 1 H0 (3.14)

where I0(.) is the zeroth-order modified Bessel function and Ri is the ith correlation

envelope

e 2 e i=, 2 ,.. 2 N (3.15a)

In (3.15a); the two components are given by

N
ea I r -C=,a JI aj ci  ra-i (3.15b)

9Since a chip-noncoherent detector utilizes less statistical information than a carrier-
noncoherent detector, it is inferior to the latter for all SNR values.
10In fact, it was argued in [4] that the coherent upper bound is asymptotically achieved, for
large distance d, by an approximate version of the carrier-noncoherent detector, because the
(unknown) constant phase can be estimated reliably at high SNR.
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The optimal rule (3.14) - (3.15) is hard to mechanize. Instead, suppose that the received

waveform r(t) is represented under H, by

r(t) ci P (tJTc)cOS(wot + #j + n(t) (3.16) i

where {j} is a sequence of i.i.d. uniform phases, thus modeling the aforementioned chip-

noncoherent system. It is then straightforward to show the independence of chips, using a -

procedure analogous to Section 3.1 or directly (see also [4], [8]), that the optimal decision

rule is

=-Ny In I
C 0 -R--r H 0

(3.17) --

where rj is the envelope of the j chip

r lj 4F 777
(3.18) 3

with r1 , rQ as per (3.15b). Again, under the small-argument approximation

in Io(x - x2/4, it follows that (3.17) reduces to the suboptimal rule

N 1
2 H (3.19)
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Rule (3.19) is formally identical to (3.8), the difference being that rj here

corresponds to a noncoherent-chip integration. Furthermore, it is shown that as y,-40

(namely for small arguments of the I0 (.) function), the optimal carrier-noncoherent rule- .

(3.14), which involves averaging over all possible 2N N-tuples of the code, reduces to the

simple suboptimal decision rule (3.19) for the chip-noncoherent system. It can thus be,"

concluded that the performance associated with (3.19) is asymptotically close to that of-.

(3.14) on the low-SNR side; however, this probably occurs at an unacceptably poor overall

performance level.

Although the distance d for the exact rule (3.17) can be derived (see Section 4.0 for a

closely related case), we shall be content with d. of (3.11) in view of the low-SNR

conclusions of the previous section. The random envelope rj in (3.18) possesses a

Rayleigh Pdf under H0

rj rj " : : : [ :

f(rjl H) - exp - r
0 2 2 (3.20a)

and a Rician under H1

SF(rj I HI) - exp - - + 2Y 0  ; r>O

(3.20b)

with a2 = NoTc/2. Then, the statistics of the r.v. ( Ja2) in (3.19) are known exactly [19]:

under H0, (X/(y 2) is a central chi-square r.v. with 2N degrees freedom while, under H1,

()dc2 ) is a noncentral chi-square with 2N degrees of freedom and noncentrality parameter

0 2Ny . Following Marcum's expressions [15] for the performance analysis of pulsed

radar, which involves an analogous detection model, we conclude that the probabilities of

interest are - .

1 / ... - ..

FA XN - 1 e-x dx - 1-i .- , N- " .*
(N-1 I f (3.21a)
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where I(u,p) is the incomplete Gamma function and

PD a (3.21b)

where QN( a ,P) is the Nth order generalized Q function [15, 16]

Although the above results are exact, they are cumbersome to use from a

computational viewpoint, especially for large N. In addition, the Gaussian approximation

yields satisfactory results in the range of N of interest and thus becomes our alternative 5.

simpler route.

It is shown in Appendix D that

S~rJ~Hk = (Q~cI~i ~c6k](3.22a)

and

* var r2Hk (NOTC) F1+ 2yc k (3.22b)

Combining (3.19) and (3.22) and employing Gaussian assumption results in (3.10a) where

now

a= 1; b = 2 (Syncrochronous chip-noncoherent detector). (3.23)

Equivalently, . , .

N,, -. d I, (3.24)
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which reveals a loss factor of 42, or 1.5 dB, with respect to the coherent detectors. This is

the penalty paid for the lack of coherency. Furthermore, since the performance of the

carrier-noncoherent system is bracketed between the coherent (upper bound) and the chip-

noncoherent (lower bound) ones that differ by only 1.5 dB, it is concluded that any

implementational complexity beyond that of rule (3.19) is not justified from a practical

standpoint. ,:.
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3.3 Asynchronous Detectors

In the most natural problem formulation, the code timing (epoch) c is a random

variable uniformly distributed within a chip interval. We shall first show in this section

* how a cascade of analog devices and nonlinearities can be configured, in principle, to

optimally average the likelihood ratio over the epoch uncertainty. The derivation follows

the basic steps illustrated by Krasner [8] in a somewhat simplified and expanded manner.

Then, practical suboptimal detectors of reduced complexity will be derived, analyzed and

compared with the optimal one. The main purpose here, besides obtaining useful

quantitative performance estimates, is to establish a certain performance-bounding

philosophy; although attention is confined to constant-envelope DS signals, the line of

thought is also applicable to nonconstant envelope waveforms, for which the effect of

epoch mismatch could be much more pronounced.

* For the sake of simplicity, the coherent case is analyzed herein. Most of the ensuing

steps, however, carry without change to the noncoherent rule. The starting point is the

coherent likelihood ratio (3.7a), which is now interpreted as a conditional LR, given the

value of the random offset E. In other words, we can write -- '"4..

NN
Ct)Ie I exp-y • cosh 2 SS rj)) '::7

1-Ytl J ~ No Crj=e)

(3.25a)

where the coherent integration (3.6) is adjusted to reflect the knowledge of E.

rj(, f - JTc+ c
-" r(r) dt (3.25b)

(j-I)Tc+e -
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Furthermore, the unconditional LR results from (3.25) by averaging with respect to the rv e

in the following manner:

A Or(t)) " ̂ :(ClI- .f Tce
0 o f JTc +e

f c { NC~If exp NYc In cosh r () d"
0 =1 f T+ d,::,,

I) f

(3.26)

Complicated as it may seem, rule (3.26) can indeed be implemented exactly by the

means shown below. First, we define the waveform y(t) as

y(t) = r(T) d

tc (3.27)
This process y(t) is easily mechanized as the output, due to an input r(t), of a linear filter

matched to the chip-envelope pulse 1 p(t) = u(t) - u(t - Tc), since

r() dT =r() p(t- ) d' ''-:Z

t -Tc  (3.28)

Note from (3.27) that the argument of the In cosh(.) function in (3.26) is just y(jT c + c). -

N
Thus, the next step involves creating the sum of samples I In cosh [y(jTc + e)] of the

Jul
new, transformed process In cosh [y(t)]. To do that, consider that the convolution

of In cosh [y(t)] with the impulse response.

h(t) 6 (t mT-
M 0 (3.29)

I Here, u(t) stands for the unit-step function.
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namely,

'N-1
g h(t)E In coshCy(t)) J/m=O Ifcosh&(t-t))d-r

-m .. :..

N-1
=O In cosh Ct - mT T)I

= (3.30)

which , sampled at t kT,+ E yields

N-1 - "-

9 (kN+Ei~ n cosh~y((k-m)T+c))1
M=O

k
In cosh[Y(jTc+c)] (.1jk.N+l .(" j~~k-N~l (3.31) I...

where the change of variables j = k-m has been used. At k = N, i.e. when g(t)is sampled at
N

ts= NT, + c, the desired sum I In cosh[yjT c + E)] is formed. Since 0 : 5 Tc, the
j=1

sampling times ti belongs to the interval NTc _ t, (N+1) Tc. Therefore, the above sum

(or its exponent, according to (3.26)) can be averaged with respect to e by simply

integrating g(t) (or exp{g(t)}) over the interval NTc < t- (N+I)Tc. Again, such an

integration with a uniform "weight" function can be directly interpreted and performed as a

convolution with the square chip-pulse p(t) similar to (3.28). (A possible analog

implementation of this convolutor with a square-pulse impulse response, also called a

"moving average" filter, is shown in Figure 5. It should be emphasized here, however,

that the use of the same pulse shape for the two convolutions is coincidental, owing to the

square-pulse, biphase-modulated pseudo-random code considered. Arbitrary code pulse-

shapes would require general, matched-filter structures for y(t) in (3.25) - (3.28), while the

averaging with respect to the "uniform" r v c can always be performed via the

aforementioned square-pulse convolution. The general case is treated in depth by Krasner

34



~-ir ~ ~d ~ 7JW~qyWAXYU~~2INTEGRATING ~ -.

FILTER.

INTEGRATING
I FILTER

Fiur in. Mvn-vrg Fitrwt asqaepleip se epoutpte

- -- - l



- . rrrwr

'.p %.-

The coherent optimal LR detector structure for the continuous-epoch uncertainty case

is shown in Figure 6, explicitly indicating the series of linear filtering and nonlinear

operations required to implement it. Note that the impulse response h(t) of (3.29) and the

subsequent convolution (3.30) are associated with the tapped-delay-line box in Figure 6,

which calls for (N-1) delay elements, T, seconds apart Figure 7(a). Such an

implementation, however, is not recursive and would require more delay elements for ..

higher N. As an alternative, the feedback structure of Figure 7(b) can be employed, which

only needs a single delay element in the feedback path. Ideally, the impulse response of the

latter structure would be an infinite-length delta train; thus, N need not be specified a priori. .

However, stability considerations, due to component noise, parasitics, etc. typically require

the insertion of a gain a < 1 (dotted lines in Figure 7(b)), which practically limits the
"effective" length NTc of the resulting impulse response.

As witnessed from Figure 6, a number of (possibly costly) linear and nonlinear

devices are involved in the optimal asynchronous processor. One step towards reducing

the complexity is to quantize the epoch uncertainty region of T. seconds into a (small) finite

number of alternatives, i.e., points. This is equivalent to pretending that the epoch r v can

take on only those values and accordingly develop the optimal or near-optimal detector for

the resulting finite hypothesis problem. The quality (as well as complexity) of such an

approximation will obviously increase with the number of points considered. It will soon

be clear, however that, for constant-envelope waveforms, the simplest case of only a two-

point quantization, which will be the one we analyze herein, provides quite adequate

performance with respect to the ideal (synchronous) detector; thus, higher level

quantization and complexity might even be undesirable from a practical standpoint. In

addition, a suitable interpretation of this analysis can simultaneously serve as a bounding

technique (upper and lower) for the optimal, continuous-epoch uncertainty detector whose

exact analysis is intractable.
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Let us assume that the two points comprising the epoch uncertainty 12 are e and E1 12, 01

corresponding to the offsets E = 0 and E 1/2 in (3.1); that is to say, the incoming code

chips are likely to arrive either in perfect synchronization ( E = 0) or half a chip

off ( c= 1/2) with respect to the local chip-timing reference, and they are both equally

probable to occur. A variation of the optimal-likelihood ratio (3.7a) for the coherent case,

adapted for the above scenario, would imply that the decision rule should be

1 NNA [ Iexp( In cosh cosh
2 N~- r i(cc,)) + exp() In cs -r())
2 0 j1NO 1  2

H1  (3.32) 1 ._ -
* exp(-N -f A-

C 0

where

A fj T r ( T )d T ; ( f1 T c  T¢  r (. )d r ( 3 .3 3 )
(i-1I)T 6- 1 IT©Tc/2"

Clearly, the chip-noncoherent detector would form the envelopes rj in place of the coherent

integrations (3.33) and would proceed in an analogous way from equation (3.17). We

should note here that the two NTC-second observation intervals for the two corresponding

exponential terms of (3.32) are slightly off by half a chip. For large N, such "edge effects"

are insignificant and will be neglected in the following.'13

Equation (3.32) can be simplified by employing the small-argument approximation to

the In cosh (.) function as in Section (3.1), resulting in the (non-LR) test

* S 14N
L ()[xP(!_ r! rc,)) exp(Lj I r! c,)] LO

' -i 0 i' No (3.34) -

12So, at this pont, the epoch uncertainty is assumed to be discrete by nature, not by
quantization.
13For that purpose, small adjustments will be made for convenience without explicit
acknowledgment
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In view of the findings of Section (3.1) it could be argued that the test (3.34) albeit

suboptimal, should perform close to the LR test (3.32). Nevertheless, it is shown below

that the former can be outperformed by another suboptimal test, at least under certain ... ,.'

circumstances, which is in fact a further simplification to (3.34). In other words, one -.

should not automatically conclude that, in the realm of suboptimal tests, a "simpler" rule %.:-:<.*.:-

necessarily implies a deterioration in performance. Towards that end, let rjj and rj2 indicate

the coherent integrations during the first and second halves of the jth chip interval,

respectively, i.e.

rp A (i-1I/2)Tc rlr)dT; rj2 A f(i-1/2)T, r(r)dr (3.35)

and define

2S- N 2 2S N

2S...

A1 A N 2)i 2S N (,rA( /2) " W2 rj j~ .) (3.36b) '.'.:

0j 0 j-"

and

A 0  A1
/2  WA A0 - A1 2  (3.37)

2 2 - -

Then, (3.34) can be written as

L a xPA0} xp. 1 / - oxp(Z) cosh(W) >  .0
No (3.38) L
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or, through the transformation , A in L,

X, Z + Incosh(W) threshold (3.39)H0  ..-. ,.*..% .

which is thus equivalent to (3.34) k.
An approximation (3.39) is obtained by simply omitting the second term,

Z > L threshold (3.40)

Ho

which, by substituting (3.36) into (3.37) expanding terms and absorbing constants into the

threshold, reduces to

" 1l j 2  *rj 2 (rl + rj+1 ,1 ) L1 threshold
j1 H0 (3.41)

An examination of the decision rule (3.41) reveals the source of inferiority of the

asynchronous coherent detector in comparison with its synchronous counterpart, namely,

rule (3.8). The latter rule can be obtained from (3.41) if the factor rj+,11 in the last term is

substituted by rjj, because the resulting expression is then the perfect

square (rjl + rj2)2 = rj2 of (3.8). Since rjj and rj+e.1 a independent r.v.'s (they belong

to different random chips) regardless of the true epoch value, it follows after some thought

that such a substitution would increase the mean of the decision statistic A,2 under H, and

slightly reduce the variance--the effect of which is a net improvement in performance for

synchronous detector.

We now turn to evaluating and comparing (3.39) and (3.41). Let us first look at X2

and return to X., later. Without any loss in generality, we can assume that the true epoch
C'...' d%*~

is E = 0. The symmetry of the problem suggests that the results to be derived under such
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conditioning also represent the unconditional (average) performance in this two-possible-

value case. Using the familiar type of Gaussian analysis, it can be shown that

d T (3.42)dX21 o ",... .,
which, when compared with its synchronous counterpart (3.11) reveals a loss factor of

,1--3,or 0.63 dB, as the SNR penalty (in y,) associated with the aforementioned

asynchronous detector.

The above estimated loss can also be viewed as a lower bound on the performance

losses of the continuous-epoch-uncertainty detector illustrated in Figure 6. This is because

the two-point uncertainty coherent detector discussed so far assumes a random epoch that

can take on only two values; thus, it faces less uncertainty than any other multipoint or

continuous type of epoch-randomness. Therefore, it is bound to outperform any other

asynchronous detector, including the aforementioned continuous-uncertainty one. I .

It is also possible to derive an upper bound on the performance losses of the

continuous-uncertainty detector. This can be done by assuming a truly continuous epoch

and viewing the two-point detector as a suboptimal quantized implementation of the optimal t.

continuous-uncertainty one. The performance losses of the suboptimal detector under a

worst-case choice of the unquantized epoch will then clearly upper-bound the losses of any

other, higher complexity, multipoint or continuous detector. L

Some reflection could persuade us that the worst epoch for the two-point quantized

detector is the one straddling between e= 0 and =l/2, namely, E=1/4 (or, equivalently,

£=3/4, whose performance, however, is identical). This is because, under H1, rl will

then have the lowest possible mean (namely, zero) half of the time, while rj2 remains

unaffected. Any other offset will yield a higher overall average for rjl, thus improving

performance. The steps of this worst-case analysis are summarized in Appendix E, - - _.

wherein it is shown that

d AW y (3.43)
&2 Ca V'T. C

4
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Thus, the upper-bounding loss is (4 )3), or 1.42 dB, with respect to the synchronous

structure. In summary, lack of synchronism in the coherent case costs anywhere from

0.63 dB (lower-bound) to 1.42 dB (upper bound) Tighter bounds can be obtained by

reiterating the above arguments for epoch-quantized detectors with more than two

quantization points. As the number of points increases, one asymptotically converges to

the actual performance of the continuous-epoch detector. In any case, a rough figure of an

average 1 dB loss due to asynchronism should not be far from exact. Similar conclusions

can be drawn for noncoherent detectors.

Finally, let us briefly return to the test (3.39). In order to assess the impact of

the In cosh(W) term, consider the rv W as defined in (3.36), (3.37), and assume a worst-

case offset (e = 1/4). It is clear from the symmetry of the problem that the rv's A0 and A/ L

have identical first and second moments under either hypothesis.

Furthermore, for large N, the summations in (3.36) will make them approximately

jointly Gaussian, correlated rv's. It is then well known that the transformations defined by

(3.37) render Z and W approximately Gaussian and independent rv's. Thus, Z

and In cosh(W) are also approximately independent. The mean of W is zero and its .- -,

variance O2wH is essentially the same under either hypothesis Hk. Since, for zero-mean

W, the expected value c{In cosh(W)iHk} is only a function of O2W1H it follows that the
k

second term in (3.39) does not contribute to the difference of the means of X, under H0

and H1 while it does contribute to the variance. The net result is that dX1 < d 2 , i.e. the

detector is better off by neglecting In cosh(W). This conclusion, is true for the worst offset

E = 1/4; although other offsets will require somewhat more complicated arguments, the

same supremacy of X2 over X is likely to hold.

Some asynchronous simulation results are presented in Figure 8 for (a) N = 50 and

(b) N = 1000, along with the synchronous (suboptimal detector) simulation points from

Figure 4 are used here for reference. The simulation model was coherent, worst-case

offset for both rules (3.39) and (3.41). As seen, the agreement with the theory is quite

satisfactory.
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3.4 Radiometric and Correlation Detectors

Thus far we have explored structures which result from likelihood-ratio

considerations and variations thereof. We shall now take a look at some other detector

structures widely used in practice. Those are (a) the energy detectr or radiometer. (b) the

produc or crosscorrelation detector from two independent receptions and (c) the single-log

autocorrelation or chip-rate detecto.

Although all three are basedband detectors, with respect to the carrier harmonics, they

differ in that the first two utilize the DC compont of the output as a decision statistic while

the third filters and detects at the chip rate. Another grouping yet results from the fact that,

although all three rely upon a good measurement of the noise level for precise threshold

setting, the last two avoid a total-noise-power factor in the output mean thus being more

robust to noise fluctnations than the first. These facts are all borne out in the ensuing

analysis. We should clarify here that the term "correlation" above is not to be intepreted in

the statistical sense; rather, it signifies a product-and-filtering (averaging) mechanism in the

time domain. Such correlation operations comprise standard suboptimal' 4 timing-

* recovery methods in Pulse-Analog (PAM) and Digital Modulation schemes (see[ 17]; also,

the section bit synchronizers in [18]). Furthermore, the correlation detectors presented

herein may be viewed as a single-point ("single-lag") special case of the general multi-lag

correlation algorithms to be analyzed in Section 5. Nonetheless, because of their popularity

and implementational simplicity, they will be treated here separately. Let us note that the

analyses and conclusions herein, although described in terms of DS waveforms, basically

carry over to TH and FH waveforms with only notational changes.1 5

14Suboptimality results from the fact that the received noisy waveform is not correlated
against a local replica of the useful signal or an estimated version, thereof, but rather
against itself after a proper delay.
15This statement neglects second-order effects (for low input-SNR) created from signal IL
self-noise and signal-cross-noise contributions.
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Detection based on an energy measurement is an optimal LR procedure, when both

signal and noise are independent Gaussian processes [12]; it is, therefore, suboptimal in ~

principle, when the sought signal is not Gaussian, but rather a BPSK (or any other type of

digitally modulated) waveform. The performance of the radiometric detector, shown in

Figure 9, has been analyzed. It can be shown that

"'~ k) (NTC)(t02 S6k1 NOWBP) (3.44a)

and

CZ.

24
varj)LI HO} (NTC)(NOWBp 2oI pSNOk) (3-44b)

0where the attnnanfaJ ak2 is defined as

j ~()1 2S()G W 2\ WB /2 /iUBP~~B a sin xI i)~)
*fB d x0 tdt//.. -

(3.44c)

and is a measure of the energy loss due to filtering. In (3.44c), HL(f) stands for the low

pass equivalent of the BP filter H8 p(f) and Sj(f) is the power spectral density of the code

sequence c(t). Again, assuming that WBp-TCI and that the time-bandwidth product ---

W~p (NTe) SN is large, (3.44) can be combined with the "Gaussian" performance of

(2.5). The result is (3.l1Oa), with
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C/2OBP
-aT ; b - 2a2 (Radiometer) (3.45)

The radio a =aBpI)BpTc can be plotted versus (WBpTc), and the optimal choice can be

shown to be approximately WBpTc - 1, from which it follows that amx- 0.77. This

corresponds to a minimum loss of- .1 dB with respect to the chip noncoherent detector

(3.23). Since the above conclusions are based strictly on energy considerations and

interchip-interference effects, due to filtering, which have not been taken into account, the

actual losses are somewhat higher. In the following comparisons, we select a nominal loss

figure of - 1.5 dB. We note that the above losses pertain to a rectangular BPF; other filter

ships will result in different loss figures, typically of the same order. For the effect of

filtering on a baseband rectangular pulse (in terms of output-SNR losses) with respect to a

matched filter, the interested reader is referred to [12]. .

We now turn to examine whether benefits can be extracted from utilizing two.

independent receptions of the same signal, resulting from two RF circuits with independent

thermal noises. Although only the synchronous coherent case is covered here, similar

conclusions are expected from the other models.

Let

ri(t) n )h(t); 0<tjT

... _r2(t) -' 0g (t-A)6kl n2(t) k-O,l (3.46)"-"-'-

represent the two receptions. Here, the two noise processes nm(t); m = 1,2 are Gaussian

and independent, while the signal componeik is the same in both waveforms.

Furthermore, the second signal has a delay of A seconds with respect to the first. If A

were exactly known, the two receptions could be adjusted to align in time and be coherently

combined with a resultant 3 dB gain in SNR. In many cases, A is unknown and its

estimation is of interest as it relates to path differentials and, therefrom, to direction finding.
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A simple cross correlation receiver which performs this estimation/detection problem is

shown in Figure lOa. The corresponding decision rule is

H0
1.- JNTO r (t)r2()d >;t0 2 t It 0 (3.47)

To simplify, let us assume that detection occurs only when A 0; then, (3.47) can be

analyzed exactly by evaluating the second-order statistics of the product

waveform g12(t) = rl(t)r2(t) under either hypothesis. Such a procedure will be applied I.

below in analyzing the chip-rate detector. Here, for the sake of brevity, let us just consider

the alternative structure of Figure (10b) which can be thought of as an approximation to

* Figure (10a). Obviously, the constraint of individual chip-synchronism per channel has .

* been imposed on the second structure, in addition to the delay-sync between the two

channels. The rule corresponding to Figure (10b) is

NN
i--C >10 (3.48) "-'"

where

f- rMt) dt( J-1 TO  (3.49) [-.:

are synchronous, chip-by-chip integrations.

(1) (2)
Equation (3.48) is analogous to (3.8) once rj is substituted rj rj. Clearly, in the

2
absence of thermal noise, both (3.8) and (3.48) produce the same quantity NSTC;

however, performance is different in noise. Indeed, from (3.48), it easily follows that

SP.IHk} = N(NoTc )y€kl (3.50) ,-
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and

varl).Rk) N(NOT,,)2 [1/4 + yck](3.51)

The resulting performance is again described by (3.1Oa), where now .-" -

a =2; b =4 (Two independent coherent receptions). (3.52)

Thus, a comparison with the corresponding performance parameters (3. lOb) for the (one-

reception) synchronous coherent detector reveals a gain factor of N2, or 1.5 dB in SNR for

the present system. However, this gain is clearly attained at the cost of higher complexity.

Similar conclusions are true for noncoherent reception detectors.

Finally, we consider the chip-rate detector, a noncoherent BP version which is

shown in Figure 11. This is an one-antenna system (like the radiometer) which, however,

detects power at the first harmonic of the "signal x signal" term. Clearly, this structure

could also detect power at DC and serve as a "generalized" radiometer where the A = 0

"- case would correspond to the familiar square-law energy detector (Figure 9). This

possibility is explored below, where it is shown that, aside from sensitivity considerations,

SNR performance increases monotonically as A-4O. Thus, the standard radiometer is

probably the most meritorious device to consider at DC; contrary to that, detection at the

first harmonic is worth exploring.

We note, however, that the robustness gains to be shown below are predicated

upon the knowledge of the sought signal rate, a requirement not present in the radiometric

analysis. We can, therefore, conclude that the chip-rate detector trades increased parametric

knowledge with a certain robustness to noise fluctuations, something that an energy

detector is not equipped to do.

Under HI, the filtered input is r(t), given by
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r(t) T BP c(t) cos((%t + *)+ n(t) (3.53)

where the BP nature of the noise process is reflected in its PSD S,,(f) =(NW/2) IHBp(f01 2  
.

and the standard modeling for the filtered signal via the factor aBp has been assumed.

0 The product output y(t) =r(t)r(t-A) has a correlation function

=y'C R51 4'%) + RS x N( + RNX N(0~ 3.4

where the "signal x signal" correlation is

4 cos 2wo
Rsxs(T) = BPS(0 2  )Rg(i) (3.55a)

2

In (3.55a), Rg(r) signifies the coi-rlation of the code-product process g(t) =c(t) c(t-A).

Furthermore, the "noise x noise" correlation is

*RNxN(Tr) - JntntAntjnta.~

- R2 (A) +R 2 (T) * A.R.(c A) (3.55b)
n n

while the "signal x noise"' term RsxN(CE) includes all other remaining terms. For low input-

SNR, the signal x noise term will be neglected in comparison to the noise x noise term;

thus, the PSD Sy(f) of y(t) can be approximately written as

S~() OPS~o ~ 9(fQsg) +~ 1/ 4 (Sg(f-to) 3 S(f*2fi1)) ..

* R2 (A)6(f) S~()0~r
n

+tSn(f)eij21tA3 I Sn fO~'~ (3.56)
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where S(f) is the PSD of g(t).

In order to pursue any further and derive the second-order statistics of the

narrowband output X, one has to specify S,(f), S,(f) and the output-filter characteristic.

For a purely random code, S,(f) was derived to be

Sg(t) (6-((uf) +n )(

62

+ - "S2 (,A)
To  a (3.57)

where the offset A is restricted to 0 J AI < T.. Note, the presence of the "signal self-noise"'

term, the third in (3.57). Because of the weak input-SNR assumption, this term will be

neglected in terms of its contribution to the total noise level. However, for high input-SNR

environments (as, for instance, in certain FH scenarios), this term will be the major limiting

factor and deserves due attention. To prove further, let us evaluate the

contribution SNXN (f) for a standard "brick-wall" noise PSD

Sn(f) 2 2
r(3.58) i;i:i:

0 ... otherwise

which can be shown to be

SNXN(f) - (NOWBP)2 S2(WW8pA)oos2woA6(f)+

N2

°(iBp- IlK? 0 Coi(2 aO6) Sa(2wA(WBP- VM,
2

for VI'I.WBP (3.59)
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We shall restrict attention to the two baseband possibilities: (a) DC filtering by

HDC(f and (b) chip-rate filtering by H I(f), the latter corresponding to the m - ±1 terms in '

(3.57). In both cases, the postdetection filter will be assumed to be very narrow with y~

respect to Rc ; for instance, if H1DC(f) corresponds to an NTc integrator, this implies that

N>> 1. Note that Figure I1I refers to case (b) only. Furthermore, the terms around 2f0 will

be filtered out from (3.56) (they have already been excluded from (3.59)). .

For a narrowband integrator-LPF(case(a)), the output SNR

d (jJA I) - *[. I oI)2 /varlx Po-

is easily derived from (3.56) - (3.59) to be

*4
BPS2 0oS2 (wa6A)(1- 1)2

A 6 (N2 WBP/2)[1 003(2m0A) S.(2vWBph))

(3.60)

since the "noise x noise!' DC contribution cancels out in the different 4(74H1} - d .4)

Certain interesting observations can be made from (3.60), especially in connection with the
2

radiometric output-SNR dk from (3.44); if we form the ratio

~; ~ AO 2 cos (a 0 A)(1- ITC 1)2
d2 I eos(2wO0 A) Sa(2'tWBPA)

)L- ad

- (- j 2 [ 1 *O3(2w 0 A) 1

OOS(2w0 a) SA(2IWBpAJL

(3.61)
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then it is immediately clear that the ratio tends to 1 as A-+O, as it should. Furthermore, if

A << (2WBp)'1 so that the S,(.) function in the denominator of (3.61) is approximately

one, the ratio is roughly equal to (1 - IJAIc) 2, independent of the signal carrier frequency

f0. Thus, in this range of A, the ratio is maximized by choosing A = 0, i.e., square-law

energy detection yields the highest output SNR. The same conclusion holds far higher

values of A, say, A > 1/2V1,% the S.(,) function diminishes and the ratio tends to

2(1-IATCI) 2 cos2( 0 A)

However, since, typical values for the filter BW are WBp>Rc, it follows that A > T/2,

which implies that the ratio is upperbounded by (1/2) cos 2 o0A 5 1/2 or a 3 dB loss of the

correlator versus the radiometer. In addition, one has to worry in the latter case about the

exact relationship between f0 and A. If f0A * k/2, k an integer, servere loss of "signal"

power can occur due to the cosine term. Clearly, in an LPI environment where the signal

parameters are hardly at the disposal of the interceptor, such limitation is of concern. On

the other hand, the mean "noise x noise" contribution at DC (the first term in (3.59)) also
diminishes with increasing values of (WBPA), a factor which, although not directly

reflected in the SNR computations, could affect the sensitivity of the system in an actual

implementation with imperfect AGC's.

Let us now turn to the chip-rate filter (case(b)). Evaluating the S x S and N x N L

narrowband terms at f = R€, we get the following SNR expression.

dZI p(' S 3 (0 + 00 2woh)[ RTo) Sa(T)
d+ 2~ 0  P]W (1-P)Et~oos(2".&)Sa(2,wBp(1-p))

(chip-rate detector) (3.62)
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whereW 1 is the BW of the narrrowband filter H (f) and the ratio p = RCWBP is assumed

to be in the range 0 <p< 1. Note that if W, - (NTc)-', then the first bracketed term

corresponds to the radiometric SNR; thus, the fraction in the second brackets represents an

SNR-ratio similar to (3.61). It is further shown that the numerator of this ratio (i.e.,

the S x S portion) is maximized for A =Tc/2, assuming that the condition f0A = k/2; ,

k = integer, is satisfied. For that "optimal" choice of the offset, the resulting SNR is

X d. ,a2) (I-p) + SaX(l-p)/P]

(chip-rate detector)

- T 0/2; f0 A - k/a) (3.63)

Note that the SNR of the chip-rate detector increases as p-+1, i.e., as Wp--4Rc; in fact,

for WBP =1.25 Rc, the two detectors (chip-rate and radiometric) are roughly equivalent.

Since much smaller values of WBp are rather inappropriate to consider in view of Doppler

uncertainties, signal filtering, etc., such equivalence can be considered a practical fact.

Again, the aforementioned tradeoffs between robustness to noise fluctuations, knowledge L__.

of chip-rate and adjustment of carrier frequency should be kept in mind for a true

comparative assessment of the various detectors.

As mentioned, a complete analysis for all values of the input SNR should

incorporate the signal self-noise contribution from (3.57), as well as the signal x noise

terms.

Furthermore, the dependence on the carrier frequency can be totally eliminated by *

using the alternative structure; the penalty there, of course, will be a somewhat lower

output SNR. Finally, let us note that variations of the schemes herein are also possible,
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involving different intermediate frequencies for the uuu~i~y~u and versions,

respectively. We shall not pursue the topic here any further.
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3.5 Comparisons and Discussion

The performance of any of the schemes discussed, so far, will always be upper-

bounded by that of a perfectly code-matched system (i.e., one where the code is totally

i" * known) and lower-bounded by the performance of the radiometer. The distance duB

corresponding to the (unattainable from an LPI viewpoint) upper bound is easily shown to

be

dUB = N (3.64)

where a coherent system has been assumed. Comparing (3.64) with (3.11) implies

that the lack of code knowledge amounts to an SNR loss of q between two synchronous '|I

coherent detectors, one equipped with the code and the other not; in dB, this means that

knowledge of the code reduces in half the input SNR (dB) required to achieve a certain
17

- performance level. This is depicted in Figure 12 (compare curves (and o ) along with

the performance of the other alternative schemes. We observe that the difference between

,[ @and is roughly 1.5 dB, which is also the difference betweenaand()as well as""

* • and GD. It follows that, under fairly ideal conditions, i.e., two independent synchronous

coherent receptions, one could utilize up to 4.5 dB gain above the radiometer; each of the

added features (i.e., two receptions, synchronism and; ioherence) can be thought of as .-..

contributing 1.5 dB to the gain. We note that, in arriving at these gain figures, system

imperfections and noncalibrated parameters such as Doppler frequency offset have not been

*. accounted for.

It is, therefore, seen that certain gains are plausible with respect to the radiometer if

careful designs are employed, but they are certainly not overwhelming--at least in the SNR

17 For example, if the unknown-code detector requires -15 dB for certain performance level,
3 the known-code system will achieve the same level at - 30 dB

61 ..

.. .i
-.- "."."-%--.--'' ." ."-' . * ."' -"- ."........."*-,...".. .**.-."..-*% .*" :,. -**- ".":":,.i... .. . . .



0.999a

0.998-

0.995-

0.99 y

0.98

*0.95 E = 000

0.90 '.

0.8
4J

0.00

0.60 2 -

0.60 3

* 4 -0.40

0.305

0.20

0.10

0.5
0.2 F

0.1

-40 -30 -20 -10 -5

= EC/No -dB

1. Completely known waveformL
2. Two independent receptions, synchronous coherent detector
3. Synchronous coherent energy detector
4. Synchronous chip-noncoherent energy detector
5. Radiometer

*Figure 12. Performance Comparisons for the Detection of DS Waveforms

62



'a-~~ -1-:

range of interest and for constant-envelope signals. This is because a high-rate DS

waveform is not very distinguishable from the background thermal AWG noise in which it

is detected and, as is well known, the radiometer then becomes an asymptotically optimal

detector. This is also in accordance with Krasner's approximate result regarding

biorthogonal waveforms [8], which establishes the DS signals as uniformly good LPI

choices almost independent of the prevailing system parameters (SNR and N). However,

if one removes the biorthogonality of the signal set and/or the AWG nature of the noise, the

results can differ substantially. An illustration of the former can be found in the following

sections which pertain to time-hopping and frequency-hopping waveforms. As for the a

latter, it is clear that the white-noise theory as developed herein can be grossly inadequate

in a dense environment, loaded with a mixture of wideband and narrowband waveforms.

As mentioned in the introduction, the presence of narrowband interference prediction and

excision algorithms will then become crucial to the success of any detection scheme. The

example of section 5.5 is meant to illustrate the dramatic difference between a somewhat

"intelligent" algorithm and the "naive" radiometer in such a narrowband environment

which, of course, comes as no surprise. We note that a general theory of LPI performance ".'. -

in an unpredictable-interference scenario has not yet matured (at least in the open literature)

* and thus constitutes an area of significant interest.

We conclude by noting that the implicit assumption of "message-synch" (i.e.,

signal occupying exactly the observation interval) should and could be removed in a

realistic evaluation of an LPI detecting system.. However, the rlatzive rankin in terms of

merit of the various detectors discussed herein is not expected to change under such

alteration of the underlying scenario.
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4.0 TIME-HOPPING WAVEFORMS

We now focus on the wideband detection of a particular type of .orthogonal

signalling, namely TH waveforms, where the code dictating the hopping is again random.

We shall consider only synchronous detectors (i.e., the timing or epoch of the hopping slot

will be assumed known); asynchronism can be treated with methods similar to those used

in Section 3.3. Furthermore, both carrier-coherent and carrier-noncoherent systems will be

examined. In particular, the former will assume a known carrier phase combined with a .L.

pulse-position-modulation (PPM) form.at while, for the latter, any modulation that

randomizes the phase form frame to frame (e.g., BPSK) is well suited. We term such

cases "pulse noncoherent". Of course, one could hypothesize a noncoherent PPM system

with an unknown, but constant carrier phase, and derive the optimal detection rule.

However, the resulting receiver and pertinent analysis are again complicated (for a similar

* situation, refer to section 3.2 for DS); therefore, only pulse-noncoherent systems will be

discussed here. Again, the lower-bounding performance of the radiometer will indicate that f.

little is lost by using this simplification.

For our purposes, the received waveforms (TH signal plus noise) can be written as

r~t)= /~ k=- pt - ~rF PkTH)cos(wOt + ek) + n(t) (4)k=-,-: :::

where TF is the frame length, TH is the hop length (width of each time slot), and Pk, Ok are

random variables which are independent from frame to frame18and of each ot her, denoting

the slot location and carrier phase, respectively, during the kth frame. Here, pk can take

on any one of the equiprobable values Pk = 0,..., NF -1, where NF = T/TH is the total

number of slots per frame and Ok summarizes both the unmodulated carrier phase plus

18 The independence of Ok is within the aforementioned spirit of a "pulse-noncoherent"

system.
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any superimposed PSK modulation. For coherent systems, Ok is assumed known for

every k. Finally, p(t) is a unit pulse of duration TH seconds, while n(t) is the usual

bandpass AWON. A noiseless sample waveform (realization) of the TH signal is shown in

Figure 13. We shall assume that the total observation interval consists of Q frames,

ie., T =QTF =QNFTH. Note that the average signal power in (4. 1) is Say, S/IIF.

L ,

L
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4.1 Synchronous Coherent Detectors

Under the coherent assumption, NrI-cos (coot + 0ek) in (4. 1) is substituted by one.

Then, a straightforward application of the composite likelihood ratio yields

ACr(t)) = T exp r AO (4.2)

where

~ STH(4.3)
YH

is the SNR r time ho. (slot) and

r. km r(t) p~t -kTH)dt (4.4)

is the integral of r(t) in the kth slot of the mth frame. If y is a small number so that

expixi I + x,(4.2) can be simplified to the approximate rule

H1

U'0 0

i.e., just the coherent integral of r(t). However, since yH is typically above 0 dB (much

larger than 'yc), such approximations are not as successful as in the DS case -- a fact to

which the comparisons in Section 4.3 will attest.

The Gaussian distance dtcoh associated with the optimal coherent rule (4.2) can be

derived based on (2.9) and the following steps:

d~,coh 2n{2~~ J n~A 2 HO) (4.6)
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where AF is the likelihood ratio per frame. But

N -

In & 2 JHJ = n + vr expJ24
S AH H 0 1 NF k=O0

exp 2-y. -I
In + N H km . t.

In[ + exp (exp {4Y-y exp{ 2Yi (4.7) I

Since rk. is a zero-mean Gaussian random variable (rv) under HO. Combing (4.6) and

(4.7) results in

ka..
dch -eI tE+,L(H-i] (4.8)

The distance d ,Wh for approximate rule (4.6) is derived much easier since

&P, IHO) =0, C(X JH.) - QTH and var~k IN0) -(NFQTH)NO/2.

Therefore,

X.CIH 0  = FIY (4.9)
d~ch It~ 01) 1/2 q

It is clear from (4.8) and (4.9) that dt ,eo asymptotically approaches d > .ch as yH4o

an expected result Furthermore, we can compare the approximate coherent rules ( 3.8)

for DS versus (4.6) for TH and note that the first involves a nonlinear operation on the data

prior to integration, while the second does not. This has a reflection on their corresponding

distances, as (3.11) is directly proportional to yc while (4.9) is proportional to (H. Thus,

for the very-low-SNR case, the latter would outperform the former.
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4.2 Synchronous-Noncoherent Detectors-*. .

Starting from (4.1) and invoking the independent phase assumption results in the

decision rule

A~ ~ 0 x~y4k1I(~R) AO (4.10)
M=1 F k1 Vf

where R. is the kth slot, mth frame envelope

Rkm i Y Q
(4.11a)

and

[L mf (M-1)T +kT.. R os 4J
= 2 J'~~~1r(t) [Cos j d

9 ; m=,...,Q(4.11lb) I.

The distance dtnoncoh associated with (4. 10)is derived by steps identical to (4.7) as

dtnoncoh Q.j Ini (10(2Y -(.2

Since J0(x < expix) for every x > 0, it follows from the comparison of (4.8) and (4.12)

that dlcoh > di,noncoh for every yH, as expected. We note further that, unlike the coherent

distance (4.8) or its approximate counterpart (4.9). d,,,o.ohof (4.12) is proportional to mH
at low SNR.

Instead of analyzing the noncoherent rule which approximates (4. 10) for low SNP, let

us just consider the performance of the radiometer which operates on the time-hopped
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waveform (4.1) for T seconds. Following the steps outlined in Section 3.4 it can be

be shown that

6d
d'jFr Krad YF H

(4.13)

where the constant Krad = 
4/(WBpTH) again measures the loss due to filtering. As was

done in Section 3.4, Krad can be set at its optimal value Krad = (0.77)2 - 0.6. We should

note here that (4.13) is actually an optimistic prediction (i.e., an upper bound) of the

radiometric performance since it is based on the assumption that the variance of the test

statistic under H1 is approximately the same as under Ho. For medium to high input SNR,

this is not true; although a more meaningful performance description can easily be derived,

we shall be content with (4.13) for comparison purposes.

t.
-?L i.'

:. I "-

.............................- . .. •



4.3 Comparisons and Discussion

2- m

First, we are interested in comparing the relative loss of the approximate coherent

rule (4.5) versus the exact (4.2), since the former can be implemented easily (a simple

integrator) in contrast to the significant complexity of the latter. The comparison is in terms

of the relative SNR values YH (in dB) required by each in order to achieve the same

performance level (d2) for the same fixed values of Q and NF. It is based on (4.8) and

(4.9) and is shown in Figure 14 (NF 10). As expected, the difference diminishes at low

SNR, but is rather pronounced at medium to high SNR. So, 7cOh,OPt = 0 dB corresponds :" -
'H

to "fOh' aPPr = 3.9 dB -- a gap that increases rapidly as Ycoh,oPt increases.
H H

Second we look at the gains brought about by the coherent assumption versus the

noncoherent by comparing the Gaussian distances in (4.8) and (4.12). The result, again

in terms of the required SNR's for the same performance level, is shown in Figure 15.

(Note that this comparison is independent of NIF). The difference here diminishes as SNR

increases, while it can be substantial at low SNR. The final comparison is between the

noncoherent optimal performance (4.12) (or its equivalent log-likelihood sum) versus the

radiometer performance estimate (4.13). It is shown in Figure 16 for Kr, = 0.6 and

NF = 10. The irreducible distance of 1.1 dB, as the SNR goes to zero, is due to the,/'~r-

'9factor . Again, we should keep in mind that the actual SNR losses of the radiometer are

higher than those shown in Figure 16 by an amount that increases with SNR due to

previously discussed reasons. Furthermore, a common trend is evident from Figures 14

and 16, namely, that the simplifying deviations from the optimal decision rules incur

comparative losses that increase fairly rapidly with the available hop SNR for values of

yH above 2 - 3 dB. Since this is the dominant range of importance in TH applications,

optimal devices (albeit complex) should attract due attention.

19
However, this margin will probably disappear if the loss due to asynchronism is

accounted for in an asynchronous, noncoherent, optimal detector.
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Coherent Time-Hopping Rules in Terms of Slot SNR's
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So far a multitude of optimal and suboptimal receiver structures for the wideband

detection of DS and TH waveforms in AWGN were derived and evaluated in this report.

The starting points were those receivers resulting from the assumed knowledge of many

pertinent parameters (except the codes themselves); upon gradual removal of these

assumptions, a family of suboptimal structures emerge whose associated losses furthered

them from the globally optimal performance towards the simple lower-bounding

performance of the radiometer. It is generally concluded that the higher degree of

sophistication and complexity for such detectors is more justifiable in the TH case than in

DS, both because of the prevailing SNR values and the signal structure of TH versus DS.

(P
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5.0 FREQUENCY-HOPPING SIGNALS

For FH systems, the main challenge in implementing optimal receivers is the large .

number of hopping frequencies (as many as available by the FH system) that must be

simultaneously observed and measured per hop before an optimal decision is reached.

Contrary to that, the two systems considered previously utilize a single carrier frequency;

stated differently, the instantaneous bandwidth 2° of those waveforms effectively comprises

I the overall spread-spectrum bandwidth. The implication is that any additional benefit

(always with respect to the radiometer) brought about by the optimal detectors in the DS

and TH cases must be extracted from the intelligent time-domain processing of the received

waveform, rather than from increasing hardware complexity. In FH/LPI, however, we

shall see that detection performance improves as the channelized width of the spectral .

observables decreases towards the optimal hopping-rate width which, of course, implies

more filters.

The FHI-LPI problems are mathematically formulated as detection of a complex

sinusoid of unknown frequency in additive white Gaussian noise (AWGN). This is a

problem common to diverse fields such as Doppler radar and sonar [22-26], spread .

spectrum communications [27-33], robust detection in the presence of signal perturbations

("slewing")[34], unknown colored noise [35], unknown signal spectrum [36-37],

unknown bandwidth due to digital modulation [38] (see also [39] for some simulation

results), etc. Unfortunately, the wide diversity of the underlying models precludes the

extraction of fin, universal conclusions about the relative merit of the different techniques,

either among themselves or with respect to the simplest hypothesis-discriminating device,

namely the energy detector (radiometer). Here, we shall address the problem from a basic .

20By this, we mean the bandwidth associated with the single chip pulse of the spreading
code.
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r ~ ~communications viewpoint, cautiously establishing the discrete-space detection model, and d

* we shall subsequently explore a variety of possible approaches to its solution.

S7



-, - % -. , . 1 V ,0 . W W

5.1 Waveform-Processing Alternatives

Let s(t) be the FH signal to be detected solely in AWGN within a total spread
bandwidth of W S Hz. If RH A TH-1 is the hopping rate and hopping frequencies are

0 contiguous and equispaced by the minimum noncoherent orthogonal separation of f - RH,

it follows that the total number M of possible hopping locations is M = W, I RH =W TH

-- typically, a very large number. Let the total observation time T be NT hops, i.e.,

ST =NTTH.
j

We restrict attention here to the broadband, AWGN case, which is the only

observable waveform under hypothesis H0:

r(t) =n(t); 0 _. t < T (Ho) (5.la)

If, under the alternative hypothesis H1,

* r(t) = s(t) + n(t); 0 _5 t _< T (H1 ) (5.1b)

the signal s(t) is itself broadband ('white") and Gaussian, the energy detector is tantamount

to the optimal likelihood ratio (LR) test

f(r(t)1H1) NJ
A (r(t)) - ___>threshold (5.2)Af(r(t) ll))~o <

H0

When, however, the signal of interest is inherently narrowband, as is the case of interest

here, it possesses sufficient structure so that parametric approaches warrant attention,

whether optimal and theoretically justifiable or not.

Implementation of (5.2), or any variant thereof, over the total RF bandwidth W,

might result in unacceptable complexity. One way to alleviate the problem is shown in

Figure 17 wherein the total bandwidth W. is subdivided into large contiguous segments of
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B Hz, each being much larger than the optimal bandwidth of RH Hz. Appropriate

processing produces a per-band decision which is then fed into an overall accumulator

(e.g., a majority-logic combiner) for a final decision (HI versus H0). Let us note that IL

alternate reduced configurations have also appeared in the literature (40,41], such as the %

partial-band filter-bank combiner. There, only a fraction of the total number M of the

hopping slots is being observed, but the observation bandwidth per slot is optimal (B=RH). .-

The focus of the following sections is on the waveform-processing (WP) aspect

on a per-band basis. Clearly, algorithms that improve performance on that level will also

increase the overall system performance. We shall assume throughout this development It.

that the hop time-bandwidth product

G = B TH = B/RH >> 1 (5.3)

is very large, i.e., of the order of hundreds or more. The factor G also measures the order ..

of the reduction in complexity when implementing the suboptimal structure of Figure 17

instead of the optimal. As a consequence, the input SNR per band 'yin , defined as

No (5.4)

- is typically very small compared to unity (in, << 1).

Now, two questions arise immediately:

(a) Into how many bands should the spectrum be divided?

(b) What kinds of WP alternatives are available or could be used?

With respect to (a), it is intuitively clear that one should use as many bands as the number

i of devices which can be afforded since, by decreasing B and thus increasing -fin from

(5.4), more reliable decisions on a per-band bases can be achieved; an elaborate cost-

versus-payoff study is of significant interest in this area, but will not be pursued here. As 4

for the second question, we note that the device which immediately comes to mind is the K' :--

familiar radiometer, designed to measure energy in the band of B Hz. Under the Gaussian

8 0

I.'.

:2-."'."."...-.. ".-........................ ...... ............. *.."..
-. . . t. • . .'- * ° * ° . .. . .,' .°, . .-. ." . ° . . .. ° •° . , -" .. . - . *- . . - . • - , •° •.° . - " o- ° o °



K-- p

assumption for the output-decision statistic (which is well justified for very large G via a , ,

central-limit-type argument), its performance is easily derived to be (see Sections 3.4, 4.3)

d,rad= Q 1 I PFA] - Q71 [PD] - 'wout (5.5a)

SNRout = SNRI = (NT) rid (NTG)' 72H (5.5b)

(PD,PFA) are the detection and false alarm probabilities, respectively, and Q'1 (x) is the

inverse of the Gaussian integral function, and

ASTH
(5.5c)N0

p

is the hop SNR. Note, that the second equality in (5.5b) signifies the small-signal

suppression effect of square-law detectors [42, page 267]. We emphasize again the (PD,

t PFA) pertain to the per-band decision, not the overall scheme.

The radiometer solution is implementationally simple, but otherwise unacceptable in

most cases from a performance viewpoint; we shall soon have a chance to establish this

latter fact. Alternatively, more sophisticated approaches must be sought, and that is what the

following sections are about, namely to establish and analyze families of advanced

detection rules (waveform-processing schemes).

A major aspect of this detection problem is to choose the domain in which the decision

algorithm is to operate, namely the spectral versus the correlation domain. Of course, by

virtue of the Wiener-Kinchine theorem the two domains contain, in principle, the same

amount of second-order information. However, how this information can be best exploited

from a detection viewpoint, when a finite length data record is available and certain

parameters in the signal and/or noise models are not completely known (in either a

statistical or a deterministic sense), remains still a challenging question. It has prompted

researchers to look beyond the traditional spectral approach (which is motivated mostly

81. .
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from likelihood ratio considerations) into the correlation domain (43,44, 26, 30-38]; the
V *~.

results reported exhibited a vaiying degree of success, depending on the assumptions made

I and the nature of the adopted decision rule. An added degree of motivation for the -

?- *~j.

correlation domain comes from the recent advances in the technology of real-time, large .

- time-bandwidth-product autocorrelation devices (see (45] and refs, therein).
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5.2 Single-Ho. Spectral-Domain Algorithms

Now we shall explore singehgR algorithms (NT =1); in other words, the data record "s; %

consists of single-hop 0:5 t:5 TH of a perfectly epoch-synchronized.signal. The results

should give an indication of the relative merit of the different algorithms, their capabilities,

complexity limitations, etc. Futhermore, we shall assume throughout this section a

noncoherent environment, which is mostly dictated by practical considerations of the FH

."

modulation.

Let us first consider algorithms in the spectral-domain. In order to motivate them, let

Sonus assume that the signal (under H) is just a sinusoid of known power S but unknown

frequency f. and phase 0; frequency f. lies in an RF bandwidth of B Hz, centered at the

known frequency f. i.e.

r(t) =ES cos (co~t + 0) + n(t) (HI) (5.6)

where Ifn-ft B/2 and TH >> B-1 i.e. G BTH I -1T his situation is depicted in Figure 18.

The one-sided noise power spectral density (PSD) No WIHz is also known. Under

the broadband asssumption for the noise and modeling the unknown frequency fs as a

random variable, uniformly distributed in (f-Bn2, fi + B/2), leads to the optimal LR test

A(r(t)) o (Crt)(t +.))

ST

exp H-.-)

N0  # +9/2 'I2/S
f 101- R(f) dl, > threshold (5.7a)

where o(-) is the zeroth -order Bessel function, 9{*1 stands for expectation and R(f) is the

real envelope at frequency f.,
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Figure 18 A pictorial representation of the RF spectrum

around center frequency f under H, (signal present).
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R(fs) -4R1
2 (4s) + RQ2(f5 ) (5.7b)

*withe

RQ(fs) = 42 1. r(t) sin 2nfst dt (5.7d)

the inphase and quadrature components, respectively. This optimal rule(5.7a) averages the g

nonlinear transformations of the envelopes at all frequencies in the band. This being overly

demanding to implement, one discretizes the frequency uncertainty region in G =BI(T-
1)

candidates fm; mn 0 ,...,G - 1, spaced T1
1 Hz apart, and approximates (5.7a) as -

expi-YHI G-1 2i 1

A ------ 10 RQt) threshold

H0  (5.8)

with R(fm) as per (5.7). The set of 2G =2BTH orthogonal function {sin COMt,coS COMtl 0"1
M-0

* can be approximately interpreted as a predominant set of eigenfunctions of the broadband "

noise with a rectangular spectrum [12]. Note, that if the candidate hopping frequencies -

were known exactly a vriori. rule (5.8) could be derived directly from rule (4.9), (with

Q 1) by exploiting the duality between TH and FH. In fact, both spreading techniques

ft belong to a larger class of orthogonal signal sets.

From a theoretical standpoint, any mechanism which provides reliable envelope

* estimates 21 IR.mI = R(fm) or, equivalently, spectral estimates Sm = jRm12; m = 0,...,G- I can

21 Since both real and complex quantities will be encountered in the sequel, the symbol "n"'
will denote a complex number, while 1-1 will stand for the complex norm: Plain letters refer f

* to the real counterparts.
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be coupled with the aforementioned LR-type test or any other approximations thereof.

Possible choices include the aforementioned quadrature analog implementation (5.7b)-

(5.7d) a bank of narrowband filters, chirp-transform (SAWD) devices [45] or a complex

FFT operating on the baseband complex envelopef(t) of the real bandpass observation r(t):

"t)= r(t) exp(- J ir e t) (5.9a)

rk = F(kB-'); k-O...G-1 (5.9b)

{m10-1 - T( (5.9c)
k-6

m Im 2; m=O,...,G-1 (5.9d)

As indicated, this requires sampling the baseband complex signal7l(t) at the Nyquist rate of

B complex samples/sec, and is based on the fact that r(t) and7(t) possess identical spectral

envelopes, as per (5.9d). The information loss incurred in the sampling operation (5.9b) is

* negligible for large G; furthermore, denser spectral sampling can be obtained by padding

{rk} with an appropriate number of zeros, although such is not required for implementing

(5.8). Issues associated with the standard generation of the "periodogram" (5.9d) such as

data windowing, segmentation (Welch method), etc. have been studied extensively in the

context of spectral estimation (see, for instance, [46] and refs therein) and will not be

discussed here any further.

Let us now return to the performance of rule (5.8). It is clear from the above problem

*formulation that, for G large, the LR statistic) A of (5.8) should be modeled as

Gaussian (under a central-limit-theorem type of argument) which, in turn, negates the
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modeling assumption of a Gaussian LLR 2. As a result, the more traditional measure d, is

not applicable; instead a "Gaussian" measure dA must be derived and employed.

Let us define dA via the standard expression (2.7)

A[AIH1)"(AHo) Z -

A var(AIHoI

Where {AJ Hi} is the expectation of A under hypothesis H; i = 0,1 and var {AI H0} is

its variance under H0 . Let us further note that, under H0 , all G observables "Rm)G-1 are

just noisy envelopes, while under H 1 there is one "signal-plus-noise" envelope and (G- 1)

noisy ones (recall the orthogonality assumption). Thus, for large G, it is reasonable to
2

assume that var{AjH 1} var{AIH 0}, which reinforces the utility of dA as a reliable

distance measure between the two (approximately Gaussian) distributions of A under either

hypothesis.

It is straightforward to show that (see also Appendix H)

2/S (e ;nioise only
R)

N 0  e 0 (2 yH ) ;signal -plus-noise (5.1Oa)
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10 No A e "Io(2YH) ;noise only (5.lOb)\No

so that
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-- .-

varf - - R)IH0 } " *2YHl0(2yH)-I)
0 (5.10c)

where YH is the hop-SNR as per (5.5c). Thus,

({AIHI} - (G-1) e YM + o (5.11a) "

i41P {~AIH} =GeY
(5.11b)•[IO G- .M(. b

Combining the above and the independence assumption between observables we conclude

that

L.

dA " G-I[Io( 2 YH)- ]

(5.12)

S LI

Equation (5.12) will be used for evaluating the performance of decision rule (5.8) under the

assumption that the signal does indeed come on one of the candidate frequencies (no
S

frequency offset); we term this C . Clearly, the same rule can be employed, neglecting L

the fact that there can be an offset. Use of (5.3) under the assumption of a worst-case

frequency offset Af = RH/ 2 , i.e. the signal arriving amidst two candidates is termed Cas 1..

Two more cases arise from the possibility of adjusting the power factor S in (5.8) by a

coefficient a < 1, which accounts for the power loss on the signal measurement due to

- worst-case offset:

(Sin w(Af,)Tn si i 2

(5.13a)

or
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a , (2)2 " -3.9 d3
(5.13b) .

Thus, Casei refers to the pwer-adjusted rule (5.14)

1 0 0 R > threshold -.
M0 ,NO H :::: -

(5.14)

when there actuallyjisan offset Af= RH/2 , while Case IV refers to the adjusted rule(5.13)

when there actually inoLan offset (Af= 0). All four cases are summarized in Table 1,

along with their defining features (first four columns). The last column lists the associated

distances, in analogy to (5.12). To illustrate the steps involved, Case II is analyzed more I.

thoroughly in Appendix I; the other two involve similar calculations.

Let us note here that the amplitude adjustment in (5.13) is only a partial, ad-hoc

remedy towards the frequency-misalignment problem: an exact approach should account

for the fact that, whenever Af = RH/ 2 , two adjacent spectral slots simultaneously receive

significant signal power (albeit reduced a ) and should proceed to construct the LR from

there. However, the resulting "optimal rule" is overly complex and not measurably better

than the alternatives examined herein.

The optimal rule (5.8) might be overly demanding to implement. An alternative and

popular rule is the spectral-maximum detector, which selects the maximum from the

envelope observables R. = I., I and compares it to a threshold [25, 26, 34, 39,etc.]

89

I

. . . . . . . . . . . . . . . . . . . . . . . . . . . ..":".-": -:': -:'" " -:":,',:-,.".. .. . -' . . ..-..."-. .-. . .. . . . ..:" -" " : :-"."." - '- . ... ..""' .- " ." " ."- - ':. . " . . " . . : :



ui%

C o .or4 04 V

.4~

u r. 0 41

0d 4.1 0- 0 0

o 0) s 
41-r

4.1

0)0)
C3I ;

so)

U0 0 030@



max Rjy threshold; M-O.G-i 5.5

Rule (5.15) affords a generalized-likelihood-ratio tests [12] interpretation: If the

narrowband (hop) SNR yH = STH/NO is large, the spectral observable corresponding to the

signal location can be expected to rise well above the noise floor and be the maximum with

high probability; thus, it can serve both as a frequency estimator, as well as a detection

statistic for a now narrowband (matched filter) hypothesis testing. The performance

associated with (5.15) can be determined exactly (i.e., no distance need be evaluated) by

noting that rule (5. 15) is exactly equivalent to the rule

(if allF.,<T,. , decideH10~

* if atleast one R. 2!T. ,decide H, (5.16)

which involves the comparison of each R m; m 0,O...,G-1I with the same threshold Tm~.. .

Let Pfa denote the MoLalse aar probability

p98  P r" > m. in sloten ~ (5.17a)

and Pd denote the slo detctioni probability

Pd Prob*{R,>Tma1 signal *,(.1b
In slot

The slot probabilities (Pd, Pf,) are then related to the DOC (system) probabilities (PD, PFA)

via

PFA 1-01 .PUP (5.18)
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PD '-( d(1 -dal-r 1 (no offset) (5. I9a)

where it is assumed that only one slot contains the signal under H1 (no frequency offset).

If, on the other hand, a worst-case offset is assumed, (5.19a ) is modified to

PD =  1-(-pd; )2(lpfa)G-2 (worst offset) (5.19b)

where the notation Pda is adopted to indicate the signal-power loss by a (i.e., a hop SNR

of aYH). A,

The slot probabilities of eq. (5.17) are related through the standard Marcum's Q

function [15, 161

r202
Q(a,P)- re- 2 lo( r)dr .

p (5.20) -

as

(5.21)

Equations (5.18)-(5.21) can be used to relate PFA and PD directly: from (5.18) it follows

that

Pfa = 1(1 - PFA)I/G  (5.22a) "

wherefrom
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since G >> 1. Thus, substituting (5.21), (5.22) into (5.19a) yields
P~~~~q "P 2yg/2I[- ()

FA ( (PA I~
(no offset) (5.23)

for no offset; the expression for worst-case offset induces minor changes as per (5. 19b).

A satisfactory approximation to (5.23) can be derived when G'IPFA << 1 (the typical .-

case of interest), since then

(PFA)I/'G 1- F.

which, upon substitution to (5.23 yields)

PO 1-(-PFA) 1/ -Q -Sy;I

(no offset)FF (5.24) .:----.

Finally, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ° 
if -.'<1°s htI- F ,a ih owrbudto52)i

PDPFA". 
- -°

(5.25)
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C

Approximation (5.25) is identical to the performance of a narrowband (known frequency)

noncoherent detector, whose slot false alarm probability Pfa is G-1 times the overall system

(broadband) false alarm probability PFA.(compare with (5.21)). In other words, if yH is

sufficiently high so that the overall detection probability is primarily due to the slot

containing the signal (i.e. Pd PD) and G is, say, 103, then in order to have the overall

PFA = 10 -3 we must have Pf. I 10 6 per slot.

As mentioned, all detection schemes can be compared to the lower-bounding

performance of the radiometer
..- .

T() dt > threshold

0 (5.26a) L -.-

or in a discrete-time version,

G-I 1 R thresholdI r - [ I -....
k-O n-O0 '""I. koO n0 (5.26b)

Whose lower-bounding performance is given by (5.5) with NT = 1. For the wideband

case of interest, radiometric methods become progressively more inadequate as G

increases. Note, that as the slot SNR yH-+ 0 , then 10(x) - 1 + 23 and the decision rule
4

(5.8) becomes the radiometer (5.26b).

The svectral detection problem presented so far can be summarized as follows: Given

the complex baseband envelope r(t); 0 S t < T, of an unknown-frequency sinusoid in L

complex additive Gaussian noise, approximately white, bandwidth B T> ,
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r(t) +- / (/S n,(t) + jf 0(t) l&4i A -I_-w1 < S2..
0 < t < T.,.,.-,,.

(5.27a) ..

or its sampled version

AW
" /i (aS ( + n,(-) Ino(-l k0O,...,G-1

(5.27b)

under H1, and noise only under H0, create a set of spectral estimates IRm 12; m = 1,...,G

and use them in conjunction with any one of the rules (5.8), (5.15) or (5.26) to obtain a

binary decision (Ho vs. H1 ). These spectral estimates can be created by any judicious

mechanism. A particularly attractive class nf such novel spectral estimators is based on a.
autoregressive (AR) models [461. Those could be employed to produce the desired spectral

observables in an efficient manner, according to the formula22

1, n - 1,...,G -'

I F

1 + E aM, m eiJ - 21f nM-,1

(5.28)

Here, M is the order of the adopted AR model and Sm; m = 1,...,M are the estimated

coefficients derived from a nonlinear operation on the raw data ?k of (5.9b) and/or a

weighted (filtered) version of the linear prediction residuals [47]. Note, that for the AR -

spectrum, it is the area under a peak which actually reflects the power of the corresponding ....

harmonic component.

2M2 his is the AR spectrum normalized by the estimated variance of the linear prediction
errors. *-
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The question of identifying good spectral generators from a detection viewpoint, of
-.'b . "

which the FFT and AR models of (5.9c) and (2.28) are two examples, is indeed quite

open and therefore exciting in its own merit. This is particularly so, because most of the

efforts in the literature address the improvement of spectral esimatm (in terms of bias,

resolution, smoothness, line-splitting, sidelobe behavior, etc.), which says nothing of their ,

detection capability. Here, however, we leave that question aside and proceed to examine

decision rules which do not explicitly utilize spectral information; instead, these rules

operate directly on data from the correlation domain, thus constituting the field of

correlation detection.

., '...:

* -.% . ¢.

a.
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5.3 Single Eo0. Correlation Domain Algorithms in AWGN

Let the finite-record sample correlation function 23 be

y@)= JT (t)r(t-,r)dt; 0:5,r:5.TH (5.29)

where r(t) is as per (5. 1) or, more specifically, (5.6). Since r(t) is a BP process, so is y(r)

Combining (5.6), (5.29) and rejecting double-frequency terms leads to the complex

envelope 3Y(? of y(T) as

(5.30)

where ""means "complex conjugate." Sampled every B-I sec, (5.30) yields

y(kB) - f jK r(t)r' (t-k- 1 )dt k0O.0-1 (5.3 1a)2 /

Furthermore, if the integral in (5.3 1) is approximated by a finite sum in terms of samples rik

of-it), we arrive at the biased estimates of the correlation sequence

- - 1 G-I

which could have also been derived by direct quadrature demodulation of r(t) and complex

sampling of the resulting 7?(t); whether this approach is preferable to the sequence (5.29)-

23Fromn now on, the term "sample" will be omitted; "correlation" will always pertain to time
averaging, not ensemble averaging.
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(5.31) is a matter of implementational convenience. From a constant-false-alarm-rate

(CFAR) viewpoint, it is typically advantageous to use the normalized correlation

observables

1-k

Sk 1 k-O,....G- 1
G-ik-.-

Y 0 1 o

(5.32)

It is well known that, within a constant, the sequence and the periodogram

4Plk{I m2G-1 are Discrete Fourier Transform (DFT) pairs. Thus, given (5.31), a DFT

operation would allow the application of the spectral algorithms discussed in Section 5.2.

However, it is possible to find meaningful detection statistics in terms of the 'k's without

an explicit evaluation of the spectrum. In other words, we can state the following (single- L

hop) correlation-detection problem: Based on the sequence {Yk} G 1 of (5.31) or

equivalently, on the set (O,{'} J- 1] of (5.32), formulate a detection statistic without

*P explicit evaluation of the spectrum {IR,, 21- 0 "

Simple examples of ad-hoc detector choices proposed in the past are the "Semicoherent

" Detection Statistical Test"

[ykl < threshold. (for some k) (5.33)

in a radar environment (see [26]), the RF correlation statistic.

Sdk threshold(

of [32], with 0 < %.5 1 and {akin - an appropriate set of coefficients, the statistic I 2 of-
k=I

1341, etc. Some more advanced choices will be discussed later in this section. For the time
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being let us concentrate on the analysis of (5.34), whereupon it will be shown that

significant gains can result with respect to the radiometer. Let us note that the zero th term

y-o2 , which is in fact the radiometric output, could have been included in (3.54) with a

marginal improvement in the detector's discriminatory power; on the other hand, this .

would make the detector much more sensitive to the (possibly fluctuating) noise variance
and is, therefore, omitted.

Decision rule (5.34) can be rephrased in terms of the continuous-argument correlation* function y(r) of (5.29) as

X H1

kFI ak Wk < threshold
Ho  (5.35a)

where -i

W . 2.

k~~. Y'. -lo s k. k

by virtue of the fact that y2(T)ILp jy(t)12/2 . In other words, the complex baseband rule

(5.34) can be reconfigured in terms of power measurements (around Tk) on the real-time

correlation output at an RF or IF frequency as shown in Figure 19. Again, whether the

rule is actually implemented at RF or baseband in discrete continuous time,etc.,is a matter

of practical convenience.

The set of coefficients { ak) G- I can be chosen according to any particular philosophy

and is subject to optimization. It can be shown that performance of the summation (5.35)

is insensitive to the exact value of ak's and a number of reasonable choices would work, as

long as the upper limit of the summation is properly truncated at a level S = XG, which is
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less than G (i.e., X < 1). This is because the last samples possess such an increased

variance that their inclusion in the summation is detrimental. Analytically, this is equivalent

to letting ak = 0 for k = S + 1,...,G. Thus, a proper choice of X is rather crucial, while

that of {ak})G is not. For reasons that will soon be clear, it is mathematically convenient
kt1

to let ...

ak = _
0 "kXG+I ,G

(5.36) .

in the following calculations. We note, that this set of ak,'s, corresponding to the inverse of

a triangular window on the correlation samples Yk of (5.3 1), is such that the latter samples .

become ubiased estimates of the true (ensemble) correlation function of the underlying

discrete-time process24 [46,48].

To pursue the analysis of (5.35), with y(r) as per (5.29), let us assume that, uncer L .

Hj, the input to the correlator r(t) consists of a sinusoid 4 cos(coct + 0), whose

frequency coincides with the center frequency of the observed band, plus bandpass

Gaussian noise with the standard quadrature expansion,

r(t) = r2 cos(oct + 0)+I" [nl(t) cos(c),t +0) - nQ(t) sin &zt + 01

0 : t -TH  (5.37)

In (5.37), n1(t) and nQ(t) are the inphase and quadrature lowpass noise processes,

respectively, which are i.i.d., zero-mean, with a flat PSD of N0/2 W/Hz and two-sided I

24Such unbiased correlation estimates lead to power-spectral-density estimates which are .
not warranted to be non-negative, an undesirable feature in spectral estimation [46]. Yet,
they are quite appropriate for our detection procedure (5.35), which further illuminates the
aforementioned distinction between the detection and estimation goals. -
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bandwidth of B Hz each (tta power per component =N 0B/2). Ile assumption about the

signal's frequency is just mathematically convenient; it will be shown later that it does not

alter the results in any way.(see the baseband complex formulation in Appendix K as well

as the results of Section 5.4.

Filtering out double frequencies, the autocorrelator output y(tr) around the center

frequency is

fTH

y(0 f Jr(t)r(t-'C*dt =YSS() + YSN (E) + YNS(@) + YNN(@)

(5.38)4

with

YSS(@) =S(rH-' O 0cW'T (5.39a)

YSN(t) NrS (NI@) cos wj + NQ(,) sin owj) (5.39b)

YNS@) = J (NI(T) cos c,, - NQ (,r) sin coct) (5.39c)

YNN(r) =(NI1(T) + NQQ(T)) cos coj + (NIQCT)-NQI(t)) sin eve (5 .39d)

* ~where the correlation-domain noise processes have been introduced, i. e., -..

Nr1,(T) n nr(t T)dt

LQJLQ (5.40a)

N~1 t THntd (5.40b)

N n (t) n (t-ltdt(.4c
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NQQ(t) H nQ(t) -T)dt
(5.40d)

NIQ( ) = JTH nl(t) nQ(t-T)dt
(5.40e).- -

"T

: N Q I (T) f n. Q M. .t-
"- . ~(5.40f)..-.--

Much of the following analysis deals with the statistical characterization of the above noise

processes. For instance, it is clear that the first four processes in (5.40a) and (5.40b) are

zero mean and Gaussian, while the remaining are not Gaussian. However, they will be

approximately treated as such in the analysis, particularly for 0 <T << TH , by virtue of the

following central-limit-type argument: The bandwidth B of n1(t) and nQ (t) is much larger

than TH ;thus, each integral in (5.40c) through (5.400 can be approximated by a large

sum of noise-product samples, each sample taken B-1 seconds apart. Since we shall be

interested in values of -r that are multiples of B-1  it can be shown that those samples are

mutually uncorrelated. Although this does not imply statistical independence (which is a

prerequisite for a rigorous application of the central-limit theorem), it nonetheless reinforces

the argument. This will permit us to calculate higher moments using Gaussian identities

whose exact evaluation would otherwise be unwieldy. We furthermore note that simulation

has confirmed the validity of the approximation (see Section 5.4)

The first point of interest is the mean value of y(T) in (5.38). We shall assume that the

input BP filter in Figure 19 has a perfectly rectangular transfer function ("brick wall"),

which implies that the autocorrelation function Rn( ) for both n1(t) and nQ(t) is given by

R () 'nl(t)nl(t-') = =nQ(t)nQ(t- ) 0 B

103

... .... 7
*.*.%;.;.



.M %1.."

* where S,(x) 4 (sin x)/x. Using the fact that

SeNl = 9N d = dJ e = { = {NQ1 =O (5.42a)

and

9{N(T)} = {N ()1 = (TH-'n)(, (5.42b)

we conclude from (5.38) through (5.40 ) that

= [S + (NOB) S,(nBT)](TH-t) cos coct (5.43)

Certain interesting observations can be made on (5.43). First, although the quadrature

component (sin cowj) has been eliminated, the mean {y(@)}still includes an unknown

oscillation 2; that is why noncoherent (power) sampling must be performed at the signal-

processing unit. Second, we note that the mean value at zero offset

g{y(O)} = (S + No B)TH is just the average energy measured by the radiometer at the end of

TH second, as it should be. Since we have assumed that y,<<, implying that S << NoB, .

it follows that the radiometer output is dominated by the noise contribution. Third, if the

output y(r) is power sampled at multiples of B-1, i.e., k = kB-1 ; k an integer, the

contribution of the mean noise wil be eliminated due to the nulls of the Sn(x) function.

This fact will be exploited in th,- following.

Let us return to (5.38) for a moment. Since we shall be interested in low-SNR case,

we make the simplifying assumption that the "signal times noise" terms ySN(z) and yNs()

are negligible compared to the "noise times noise" term YNN(t). For Yin below -15 dB, or

so, such a simplification is quite justified. Then, y(r) can be expressed as

y(E) = C(c) cos (Ocr +9'( cos QOCT + N4q(t)sin co¢' (5.44)

25Recall that the signal's carrier frequency is truly unknown, randomly placed in the B-Hz ".
band. It was modeled here to coincide with the known center frequency of the band just for _

analytical convenience.
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where
c )-- S(TH-T) CHI1)

C(.r) = I di :0'--0 -'~r

(5.45a) ~

is the envelope of the signal component and the equivalent noises are defined by

ql() A Ni(t) + NQ ) (5.45b)

and

Nq(') e N1Q(,) - NQI('T) (5.45c) P 4

As mentioned, y(r) will be power sampled at Tk = kB-1; at which points,

flt1eqCTk)1 =Nq T0 0 (5.46) 1

According to our previous discussion, N eqand Neq will be treated as Gaussian noises.
I eq 

-
eq.Furthermore, it is shown in Appendix J that Nl(ck) and NQ (tj) are uncorrelated for every

k,j = l,...,G; similarly, the pairs(NIqCrkL),Ne"CIk 2))and (NeqCrkl), NeqC'tkz))

are uncorrelated as long as Tk* 'k2 .Coupling this result wih the approximate Gaussian
eik2 G eq G "

assumption, it follows that the sequences of noise samples NiQCk)ikland INQ Ck k1

contain 2G Gaussian rv's which are zero mean and approximately independent. Thus, to

* complete their statistical description, the second moments (or variances, for this case) are

required. Those are obtained in Appendix J, wherein it is shown that

2 N No)'(TH )2 (F1 (k) + F2 (k)) (5.47a) -

* and

S{(N~qC~k)) 2  = JNB)?(rH'k)2 (FI(k)" F2 (k) (5.47b)
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where

(' Sa2(GCI -k)P]d- ...

0 (5.48a)

,2(k) J (1-,')SaL G(C1- C d k s, S (-k"P ,,.j..-
0

(5.48b)

and the normalized parameter k is defined as

TkI

H H .• .A' e~k T- =' k " k~ l.. Ik --

(5.48c)

so that 0 < < 1. Some meditation on the functional form of F2(k) reveals that it has a . .

negligible contribution compared to F1(k), so it will henceforth be dropped. From (5.47),

we then have that

k) A . _,

0No8)2 CTH-tk) " F1(k) 8NoBTH) (I - ;k)' r(k) (5.49)

which is a fairly simple expression, but also fundamental for the following. In deriving the

above, it was assumed that (a) timing epoch is known, e.g., under H1 , the signal occupies . - -

exactly the observation period and, (b) the input BP filter is a rectangular one with

bandwidth B. The first assumption can be removed with some SNR loss, while the -

10-.,1
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second is only analytically convenient; the results can easily be modified to account for any

actual filter shape.

Let us now return to the noncoherent sampling indicated by (3.35b). Such sampling ...

can be implemented via a square-law device, followed by a wideband lowpass filter; its

bandwidth should be several times B, but still much narrower than twice the carrier

frequency. Again, neglecting "signal x noise terms"26 , we have from (5.44) and (5.45a)

that

WkM C1-g + + (ttk)) +) q
k (N~,i (11o Q Cz);s..Q_

(5.50)

By virtue of the approximate statistical independence of the second and third noise terms in C..'.

(22), {Vk "G l is a sequence of approximately independent noisy samples, upon which

the decision is based. As mentioned, this valuable property of independence gradually

P diminishes as k -+G- 1 because the fundamental assumption in assessing it (i.e., Gaussian
L

equivalent noise) weakens toward the end; this is also why those latest samples should be

ignored. Nonetheless, such a property is the key factor in the anticipated superiority of the

correlator versus the radiometer -- namely, the fact that additional data can be exploited by * - -

incorporating all these new samples in the decision. Their approximate independence

prevents these samples from being statistically useless.

In order to proceed with the evaluation of rule (3.35), we need the mean and variance

of the Wk's. From (5.47) and (5.50), we have that the difference of the means under the

two hypotheses, AI{Wk}, is given by

A4{Wk) [fWkIH 1 ) -JfWOIHO} = (STH) 2(-k) 2  (5.51)

26A more exact analysis is provided in the discrete-time model of Section 5.4 without any
significant deviation in the results.
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Furthermore, using the independence between N1'(.) and NQ' qCEO along with the :

Gaussian assumption yields the variance as

var 1Wkj -Zvar Ne2Pj(q

211C3 k)) 0
a [ 0 " k ,.4 k 2 .~ ) -(5.52)

with a 2 as per (5.49).
0N

As seen in (5.51), (5.52) and (5.49), the quantities of interest for Wk include a

multiplicative factor (1- k).a reflection of the fact that the integration time reduces

proportionally to 'rk as 'T k-4+TH. Insertion of the coefficients ak in (5.36) purported to

remove this factor without essentially altering the results. Thus, if we define

* ~* &k 2 k
k CTH- k) 2 TH C'Ck)

(5.53)

* it follows from (5.51) and (5.52) that

A 9{W'k) S2 (5.54a)

and

va~k~-4CNOB))4 F12(k) (5.54b)

while the decision rule (5.35a )reads:

k-

(5.55)

* If we now define the output SNR for the correlator in the familiar way
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(elY~~-1 xH1-cY~o)

SXReorr d2=
out yvarfY P~O)

(5.56)

then, using the uncorrelatedness of each Wk, we conclude that

~2 2
SNR corr - (,GS 2) x G____ 4

out 4 G 2 XG 2 Yi
4CN 0B) I F, (k) 4 X F, (k)

k=1 k=1 (5.57a)

or, using the fact that yH =G y*.

SNR ot A(X,G) G H

(5.57b)

*where the coefficient A(%, G) is defined as IL

A(x,G) ____ __

Eqaton (.S)4G I~ F, 2(k)

Equaion (55b)and (5.7b) can be combined into a ratio
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-.Cr -T

corr

,- rad 'TH (5.58)
out

The interpretation of (5.58) is that, within the framework of performance established .,.>-'

herein, the correlator will outperform the radiometer if the product A(X,G) •yH2 is above - --.

unity and vice versa. We note that this product signifies some kind of utility factor and is

separated into two components: (a) A(;.,G), depends on features of the device used (G)

and the signal-processing algorithm employed (X), and (b) YH = STH/NO, depends on

scenario parameters (signal and noise strength, hopping duradon).

Exact evaluation of A(XG) requires numerical integration by computer. However, we

shall develop a lower bound and an approximation, which are quite useful for a wide range

of X. This minimum value (or lower bound) can be used in conjunction with (5.58) to

guarantee a minimum gain for the correlator versus the radiometer. The argument is based

on the observation that the quantity F1(k) in (5.48a) is a monotonically increasing function

of the argument ;k; thus, '" "

FI(k) 4 FI()) f (1.0, Sa 2  ku1,.

(5.59)

since .o = X, from (5.48c). The inequality in (5.59) can be strengthened by the following

steps:

/I(1.P,) Sa2[wG(1.A)P~dp '  i

0

< Sa eG(1-.X),]d' 3 G'f((1.)"  Sa2[,xdx

G'(I,) "I  Sa2 Elrx]dx -
00

. 1 ......-.. t...,.

G -,"1lZ (5.60)"-.--

110.%",



Thus, from (5.59) and (5.60), ~ .

F F1 (k) < XG F 2 (kG) <
k= 11 4G(I1-)

which, when combined with (5.57c), yields

A(X,G) > Anli(X,G) =Amin (X) =X(l-X)2 (5.61)

We note that the lower bound A depends only or. .,while the exact gain A(X,G) also -

depends on G. This is just a fortunate coincidence, and indicates that A,i,, can be used for

every G, as long as G >>. Thus, we arrive at the following inequaility

SNRCr2 2out2
raa YSNR out (5.62)

which, as mentioned, should be tight for small ~

In addition to this general bound, we can create a good approximate formula for the

above ratio when G(l - X) > 1, as follows: since the steps used to derive (5.50) are, in

fact, tight successive approximations, we conclude that F (k) -1 (I-kG-l)-l(1l/2), which -

leads to

AG G
F F(k): 1  1  -
k1k-1 (G.-k) M-G(1 -X) MJ



The last summation can be well approximated by the integral

G 1yX 1 G dx I,L..- 
-iwi=G(1-x) m f 72~l~

provided~~ ~~ thtGl-X 1 (1 -)

provided that G(1 - X) >> I. Substitution into (5.57c) leads to

SNR~
"out 2_ rad Z W-(1-0 YH "'

I, SNR~ 'H
out (5.63)

which differs from the bound (5.62) in the exponent of (I - X). For low X, (5.62) and

(5.63) agree closely. In any case, those two equations indicate that the relative merit of the

correlator increases proportionally to the square of the hop SNR and could, therefore, reach

significant levels, depending on the application (coded or uncoded systems, slow or fast

hopping, etc.)

The RF algorithm (5.34) - (5.35) analyzed above is but one attempt to exploit the

information imbedded in the correlation coefficient {Il}?" In fact, it can be viewed as a

nonparametric algorithm, in that no particular model for the underlying process has been

assumed in formulating it; the algorithm simply measures the total "power" of the

correlation lags. As an attempt at a more structured approach, consider modeling the time

domain process {rk1p-1
0as an autoregressive (AR) process of order M, i.e.

k= - L M.mr k-rn k" kM1...GI".-

ki ofn k -- Mm .-
(5.64)

In (5.64), {'k} represents the zero mean i.i.d. ("white") driving noise process with

estimated variance o2. and aM = [aMj,...,aZM,M]T is the estimated AR parameter vector;
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the normalized AR spectrum (by o2) resulting from (5.64) is expressed in (5.28). The

fact that (5.64) can spectrally model arbitrarily closely any second-order ergodic process

of finite variance as G-,o (and possibly as M-**-) serves as a motivation for this .

approach. Furthermore, since the estimation of parameters for an AR model results in

linear equations, it has a computational advantage over moving-average (MA) or ARMA

formulations. S ..

From the detection viewpoint, the postulation of (5.64) poses the interesting problem

of determining decision statistics associated with it. One such approach was outlined in

Section 5.2; furthermore, Kay [34] showed that, for a one-pole (M = 1) modeling, the

spectral-maximum rule (5.15) is equivalent to the threshold comparison of the estimated

(single) pole magnitude

- 2 :

.' 2 < threshold

Y o "o(5.65)
S0

which is a normalized variant to rule (5.33). This fact of exact equivalence, which

constitutes an interesting conceptual bridge between the spectral and correlation detection

domains, is hard to generalize to higher M. Unfortunately, the parametric performance of .

the one-pole spectral model is inferior to the nonparametric FF/spectral-maximum

combination for the narrowband signal case [34]. Similarly discouraging simulation results

were obtained in [38, 39] for higher order M : 1. In the case of [38], a straightforward

extension of the statistic (5.65) was attempted in the form

jaM.J< threshold *
o (5.66)

wherein it was found that for a small time-bandwidth product performance somewhat

worsens for increasing M; on the other hand, when the signal spectrum broadened, due to q
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random phase modulation, performance of (5.66) was superior to the periodogram. The

conclusion from the above should not necessarily be that AR modeling is inappropriate;

rather, that a search for more meaningful detection statistics is in order. For more detailed - .

information see Appendix K.

Let us, also, note that AR modeling of either the colored alone [35] or ARMA

modeling of a Gaussian signal plus noise [36] has been recently employed as a tool for

signal detection under modeling uncertainties. In the latter case, the classification of the

algorithm in the context of this report is not clear, since the periodogram is used as an

intermediate step in a spectral matching procedure for the estimation of the ARMA

parameters. In both cases, however, a LR is formed, either in its GLRT form or as a

whitening matched filter (asymptotically equal to an SNR measure). When the signal is

Gaussian and broadband (but not exactly white), Kay [37] suggests the use of a GRLT,

based again on estimating aM.

We conclude this part by suggesting an alternative modeling approach which has been

shown to be promising in the very broadband case. (See Appendix K). The approach

consists of modeling the correlation sequence Yk as an AR process itself

* M "

n1 (5.67)

and creating decision statistics associated with this model. For instance, an M 1 model .

could give rise to a decision rule similar to (5.65)

- threshold< he~t (5.68) i; li
R (0) H0'-"-'

YL -
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CI , .LJI, I . ~ - - - .

where now [R~)X pertains to the correlation of the sequence {5kl. In this correlation-

of-the-correlation domain (M2 ), the aforementioned rule (5.34) can be interpreted as

Y R (0) threshold (.9

H 0(569

with ak =1. We note that (5.68), or any other similar rule in the C2D domain involves

nonlinear operations on the data yk~ in contrast with the linear operation of the FF1',

required to produce the spectrum S. - R.12. The tradeoff between the merit resulting from I

such nonlinear operations versus the computational burden implicit in them is examined

further in Appendix K.
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5.4 Comparative Results .

In order to substantiate the value of the different approaches discussed so far, we

* compare the performance of certain algorithms in detecting a sinusoid in a wideband

scenario (large G). The comparison here is by no means exhaustive; rather, its purpose is

to give a preliminary flavor of the differences in performance between approaches. A more .... -

comprehensive comparison is offered in Appendix K, along with a discussion of the

associated computational load of each algorithm, both for low and high TB products. We

note that the large-TB case fits well the spread-spectrum frequency hopping detection

model described without, of course, being confined to that.

We first look at the performance of rule (5.34), an order to assess the accuracy of

* our analysis.

The algorithm has been simulated on a digital computer. In the simulation, the

autocorrelation function y(,r) of (5.38) has been carried out by its discrete-time equivalent in

terms of noise samples of n1(t) and nQ(t). Since the input process is bandlimited to B, the

analog operation of (5.38) can be simulated by its equivalent discrete-time system with

sampling intervals equaling B-'.

In terms of discrete-time samples, the radiometer output in (5.26) is modeled as

-G

~RAD I ?k1 + 2vT nl(.!) 2 n k)).4

(5.69)

where G = BTH is an integer and n(k/B), nQ(k/B) are quadrature noise samples. Equation

(5.69) is easily seen to be proportional to the time average of the squared envelope of r(t)

over the hop time TH.
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Similarly, the discrete-time simulation equation for the autocorrelation detector can

be expressed as follows:

k2R ((G - +0 (++k) ak

kCORR I (5.70) .

where j = 4T, 1.12 is complex magnitude squared, and 4(k), Ti(k) are contributions from the

SxN and NxN terms given in (5.39),

k(Jjn() ,IAk1) + nQ(Wr) nQ(L1- + 

(5.71a)

and

4(k) n ! -k . / I (-k+l fk+
f.'kL.. B T)~I~J ~ -.Q'rQ- "j

(5.71b) L

which are zero-mean noise processes for the assumed filter characteristics of Figure 19.

4P Note that this discrete-time model incorporates all possible terms without any

simplification.

For the discrete-time models (5.69) - (5.71), we have analytically evaluated the

means and variances of the decision variable y under either hypothesis H; i = 0,1. This

not only allows for a step-by-step comparison with the corresponding simulation

outcomes, but also permits a more precise performance description in terms of (PD, PFA)"

The theoretical results appear on Table 2. The simulation results, along with their

theoretical (numerical) counterparts from Table 2, appear in Tables 3 and 4 for the

radiometer and the autocorrelator, respectively. The last entry of Tables 3 and 4, SNROU4,

is calculated on the basis of (5.56), which evidently neglects var{yl HIJ. The close
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Table 2. Moments of Detector-Output Variables Evaluated from
* the Discrete-Time Model Equations (5.69) and (5.70).

Moments of "
Detector-Output Radiometer Autocorrelator*

Variables ._.-_.-

gCY HO) 2N B 0NQ) k1Gk (T In _0k=l 1::::

XS+ [2 S ".-+ COB-2j k.-.-
9CYIHD) 2CS + NoB) k-S -.-.;.

XGSs+ [2 SNOB + (NUj in

XG 2

varCYHiD ( B L+ 2 4 4  (T-' 4-'B

_____ ,?4B)CNB CNoB)~

.+ 2, CNoB) + 1 ( 4 """

Autocorrelator variance under H given here is an approximation

which consists of only the significant terms in its computation.

II
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Tdble 3. Comparison of Radiometer Simulation Results to Theory (200 Trials)

BT - 1000

Input SNR -20 dB -15 dB -10 dB

o Siuain Theory Simulation Theoy Smlto Theory Simulation

S I A)4.00 4.003 4.00 4.003 4.00 14.003

e(Y 111) 4.04 4.044 4.126 4.132 4.40 4.407

var (ItH) 16.00 16.14 16.00 16.14 16.00 16.14

*var (Y IH 1) 16.3 16.20 17.0 16.69 19.2 181.57

Raimtr -10.00 -9.73 0.00 0.14 10.0 10.06
SNR0 (dB)
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Table 4. Comparison of Autocorrelation Detector Simulation Results
to Approximate Analysis

BT 1000;;L 0.1H

* _ _ _ __ _ _ _ __ _ _ _ __ _ _ _ _ __ _ _ _ __ _ _ _ __ _ _ _ __ _ _ _ _

'in (dB) -20 dB -15 dB -10 dB

Theory
orSmlain Theory Simulation Theory Simulation Theory Simulation

8(Y IH() 0.417 0.419 0.417 0.419 0.417 0.42

S (Y H 1) 0.47 0.472 0.84 0.863 4.46 4.57 ,4

var(I) l.76xl103  2.61xl10-3l.76xl10 3 2. 1 3  1 .76x fO - 2.61x10-3

*var (Y IH 1) 3.37x10-3  4.97x10-3 4 .58x10-2 5.34x 0-2  1.322 1.41

* tcreain 1.16 0.17 20.06 18.76 39.7 38.2 L
SNR0 (dB)
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numerical agreement between theory and simulation, over a wide range of yin values, can . ,

be observed from the tables. '" *.
\"

It is further interesting to note that the difference in variance of y under the two

hypotheses is virtually negligible for the radiometer, while it becomes quite pronounced for

the correlator as yin, increases. The implication is that SNRo.t is well suited as a -' :.

performance measure for the former, but not so much for the latter. A comparison between

theory and simulation, in terms of the SNRo,,t dL'ference

-d (sNout )dB "( SMout)dB

-rr,,l),)]dS + 2[[yijnd dB : O"":]:
(5.72)

as derived in (5.63), is provided in Table 5. Certain parameters were chosen so that the . .

theoretical assumptions involved in the analysis would be well justified: (1) large time-

bandwidth product (G = 1000 or 30 dB), (2) small input SNR (yi -10dB), (3) small ,

X = 0. 1) and, (3) large number of trials (200), so as to assume statistical confidence.

Since those numbers were in accordance with the assumptions made, any deviations of the

simulation from the theory would indicate an error in the modeling process (Gaussianness,

etc.). Fortunately, that was not the case, as evidenced by the closeness of the theoretical

and simulation results in Table 5. It is, also, clear that significant gains can be attained

over the radiometer, particularly as yi. increases.

Next, we look at the sensitivity of the decision rule (5.55) with respect to the choice -

of X. This is illustrated in Figure 20, where the detection probability PD is plotted versus

X (0 < X ! 1) for two values of yin while G = 100 is constant; for each set of

three curves associated with a value of y1., the corresponding values of PFA are 10-2, 10--

and 10-6, from top to bottom, respectively. In all cases examined, the trend is clear:

performance is insensitive to change of X over a very wide range, as long as X is neither
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Table 5. Theoretical and Simulation Values for (&SNR),dB * MCOX ~ rd

For Various Values of (B

(v dB) -10 -15 -20
in

ASNR (dB) I
theoretical 29 19 9
(lower bound)

ASNR (0B) 2851
Simulation 2 851

I. ___ ______ __122
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too small nor too large. So, any X in the range (0.1, 0.8) would be a suitable choice.

Although the curves illustrated in Figure 5 are for a particular choice of ak'S from (5.36);

an identical kind of behavior was, also, found for other choices. This is a rather P..

convenient conclusion since one does not have to be concerned about optimizing X

whenever the constants are changed. Furthermore, it was found as a more general ,"

conclusion that the overall performance (PD, PFA) was insensitive to the particular choice of

ak's. Thus, one can set ak 1, k 1,2,...,XG, which would simplify the decision rule to

a mere accumulation of the power samples Wk and a threshold comparison.

A suitable set of design curves for both the radiometer and the correlator are

provided in Figures 21 and 22. In these figures, the input SNR's (i) required to achieve

certain detector operating characteristics are shown for both algorithms. The probabilities

of false alarm (PFA) and detection (PD) are computed directly from the first two moments of

the detector-output variables under either hypothesis (Tables 3 and 4). Gaussian

approximation is used, which is justifiable since in either algorithm the detector output

consists of the sum of a large number of random variables. With this assumption, PD is

given in terms of PFA and the moments of y as

P= [ {Y10OE-l(Y i+var(Y IHQ}-1 EP .FA)]PD Q-"""

(5.73)

From Figures 21 and 22, the relative gains of the correlator over the radiometer in terms of

can be assessed. These results are plotted in Figures 23, 24 and, also, summarized

in Table 6. Note, that the performance improvement of the correlator over the radiometer is

significant in the (PD, PFA) range of interest. For example, for BTH = 1000, PD = 0.9, PFA

= 10-, the correlator will require 6.8 dB less yin than the radiometer. This performance
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Table 6. Relative Improvement of the Autocorrelation Technique Over the - .

Radiometer Approach in terms of Required Input SNR y i.n
For Desired PD and PFA Performance level. ..

Improvement of Autocorrelation, Technique
Over Radimater (dB)

BT P J

H-A D 0.9 PD 0. PD 0 7  PD 0 6  Pin, 4.

10~ 5.4 5.5 5.5 5.6 5.7

100 10-3 3.8 4.0 4.4 4.6 4.8

10 ~ 2.6 2.7 2.8 2.9 3.0

10 ~ 8.3 8.3 8.4- 8.4 8.5

i0o o 68707 7.3 7.5

10~ 5.2 5.3 5.4 5.4 5.I
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improvement will be 8.3 dB for the operating characteristic PD 0.9, PFA i0-5 (which

requires a higher yim than PD = 0.9, PFA = 10-3).

Finally, the RF correlation and radiometric results are compared with the various

spectral algorithms of section (5.2) in Figures 25 a,b,c (BTH = 100) and 26 ab,c

(BTH=1000) for various PFA levels. In particular, the curves on these figure designate 9 '

the following cases:

Curve 1: Optimal LR algorithm with Af 0 (Case I of Table 1)
Curve 2: Power Adjusted Rule with Af = 0 (Case IV of Table 1)

Curve 3: Power Adjusted Rule with Af RH/2 (Case MI of Table 1)

Curve 4: Optimal LR Algorithm withAf = RH/ 2 (Case R1 of Table 1)
Curve 5: Spectral-Maximum Detector with A =0 (eqn. 5.16)
Curve 6: Spectral-Maximum Detector with Af = RH/2 (eqn. 5.16)

Curve 7: The Autocorrelator (which is basically not affected by Al)

Curve 8: The Radiometer(which is not affected by Af).

TIn-c performance of the LR algorithm, as illustrated in these figures, is optimal if

Af =0 only. With the worst-case frequency offset (Af = RH/ 2) a degradation close to 5 dB

will be suffered. With the power-adjusted rule this degradation can be somewhat

minimized: resulting in degradations (from optimal) of approximately 0.7 dB and 3.5 dB,

respectively, for Af = 0 and RH/2.

The performance of the spectral-maximum detector, also, suffers a significant

(approximately 3 dB) degradation when Af - RH/ 2 .

The LR algorithm exhibits a pronounced threshold behavior: when the hop SNR YH

is above a threshold value (which depends on the BTH and PFA setting), the probability of

signal detection PD approaches unity rapidly. On the other hand, if YH is below this

threshold value, PD diminishes to zero. .

13 0.
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The other algorithms' (i.e., the spectral-maximum, the autocorrelator, and the

radiometer) performances are more robust, they do not exhibit pronounced threshold

behavior like the LR detector. In fact, for large BTH (BTH = 1000), moderate yH (yH < 10 dB)

and acceptable PFA(S 103), the performance of the spectral-maximum detector and the

autocorrelator both exceed that of the LR detector, when worst-case Af is considered.

Since the cases of interest in a LPI detection environment actually correspond to

* large BTH, moderate yH, and PFA < l03, and since Af cannot be expected to be zero, it

appears that spectral-maximum detector and the autocorrelator are "better" LPI detectors

than the LR detector, due to their robustness, though the LR detector is "optimal" in the

theoretical sense, assuming perfect frequency and power alignments.

The most interesting observation to be made on these figures is that in the region of a .-'i -:.

interest, described above, the autocorrelator appears to be the best choice, since it is not

affected by Af and, thus, performs better than the spectral-maximum detector when the

worst-case Af = RH/2 is considered.

For a numerical discussion and simulation comparisons involving the b,.

aforementioned novel AR schemes, the interested reader is referred to Appendix K. '"
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5.5 Narrowband Interference a

Thus far, the interference model has consistently been additive broadband Gaussian

noise. As mentioned in the Introduction, this is hardly expected to be the case in a dense

environment where the sought signal coexists with a variety of narrowband and wideband !

waveforms, some of which vary quite unpredictably with time. Interference excision can

work well whenever sufficient discrimination exists between the wanted and unwanted

signals. Such discrimination results from distinctive features, be those long-term

(multihop) spectral information, directional information, different rates, etc. In this

section, we shall assume that everything possible (from an excision viewpoint) has been

done, and what is left is some random, unpredictable narrowband interference. Our

purpose is to show that, even in such an environment, intelligent processing can provide

good detection capability while brute-force radiometric detection could fail miserably. For

illustrative purposes we shall assume that the thermal noise level is negligible compared to

the narrowband interference power. Furthermore, the sought signal will have a DS

modulation on it, either by itself or in a hybrid DS/FH form. In the latter case, the spectral

segments of Figure 17 must have enough bandwidth to accommodate the DS modulation.

Since we are interested here in single-hop, per-band waveform processing, it follows that

the FH part of the modulation does not explicitly enter in the mathematical model, except

through the center frequency of the observed band. In that sense, both pure DS and per-

band DS/FH (single-hop) in narrowband interference result in the same mathematical

model. Let us remark that the present model (wideband signal in narrowband noise) is, in

a sense, the inverse to the problem tackled in Section 5.2 - 5.4, therein, having a

narrowband signal (FH) in wideband Gaussian noise. In view of the encouraging results,

in these previous sections, it is to be expected that a good algorithm could also exploit the

difference between signal and "noise" in the present case, too. In fact, it will then be

shown that for observation data with a large time-bandwidth-product G, a very simple
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algorithm operating on the output of a real-time autocorrelation device can achieve almost

perfect performance--in stark contrast with the poor performance of the radiometer.

Hybrid modulation schemes have become increasingly popular spread-spectrum

communication choices, due to the enhanced antijam margin which they offer. Adding DS

modulation to FH, also, improves the anti-intercept capability because the "noiselike"

appearance of DS makes detection more difficult. On the other hand, multiple tones

constitute a common model of nonwhite interference and can emerge in a number of

scenarios, i.e., it can be intentional (jamming of the band) or unintentional (multiple users

in a broadcast environment, adjacent radar sources, etc.). It is, also, conceivable that the

tone interference has been deliberately inserted by the communicator in a pseudorandom

manner, so as to impede the interceptor's task, while it can be pseudorandomly avoided by

the intended receiver.

Let the FH/DS hybrid signal to be detected be represented by s(t)=N2' c(t) cos coot,

where co0 is an unknown frequency within the observed spectral band, c(t) is the DS code

of rate R, = TC1 and S is the signal power. The unknown interference consists of M tones

(M is a random variable in each observation interval, which is equal to the hop time

TH = RjH), with I,,, wk and Ok denoting, respectively, the power, radian frequency and

phase of the kth tone. The total received signal in (0, TH), under hypothesis H, (signal .

present), is given by

r W) V2T c(t) cos wot + Mk .~hCOSCWKt + 40 5.4

Note, the absence of thermal noise in (5.74), as previously discussed. The code c(t) can be

modeled as either a random sequence of independent, identically distributed ±l's with

Pr[c(t) = 1] = 0.5, or a PN code with a full period equal to TH. As the ratio
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N 4 THITc Rc/RH increases (N denotes the number of code chips per hop), the

*-,, .- -. .performance difference becomes insignificant, a fact also verified by simulation.

Let B denote the input observation bandwidth. The presence of the DS code implies

that B should be at least equal to R, or higher, but definitely much larger than RH.

* Equivalently, the time-bandwidth product G 4 BTH > 1. Furthermore, for simplicity,

we shall assume that all tones have equal power Tk L/M, k 1 ,...,M, where I is the total

interference power, and they are equi-spaced within the bandwidth B. In other words, the

frequency separation Ifk - fk+,11 between adjacent tones equals B/CM + 1), which is much

greater than TH, i.e., Ifk - fkd1e TH. None of the above assumptions are critical in the

forthcoming conclusions; they simply ease the analytical burden.

The real-time autocorrelation operation produces the output o- -

y( jTH r(t) r(t - )dt ;0 < Tr < T

(5.75) f

Substituting (5.74) into (5.75) and rearranging redefines y( mru as

S ~~y(r[) SY CrosW T ()T~l) o

(5.76)

where Yt) is the code partial-correlation function (a random variable)

Y ~C(t) C(t -T)dt
T (5.77)

and nas(t), k tha,...,M are approximately Gaussian (via a central limit theorem-type
0 k -

argument), bandpass noise processes (signal x interference terms) defined by
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n (-r T) COS Wj C- ?(r) sinlwk

(5.78a) 1

n (T) (T() COS(rW)T + (k1 (T)) si

(5.78b)

* where

f c &0[ --k)t -k] dt

r r
(5.79a)

= JT~c(t) sin[COik -kdt

T (5.79b)L

VT
(T)C~t - J COSJ(AiCJkt kI

r L . . L(5.79c)

and

I~~~i W WfT si~w~kt dt

(5.79d)

Before discussing the statistical characterization of the above noise processes ,let us

examine the noiseless (mean) part of y(r) in (5.76), as shown in Figure 27. Of particular

interest here are the envelopes of the useful signal (small shaded triangle) and theL
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interference (large triangle), respectively, since the actual components, e.g., the first two

terms in (5.76), are modulated by the unknown frequencies. The structural difference

between the two correlations is evident: the DS code superimposed on each hop creates a

narrow mean autocorrelation function, since the expected value of the function yc() in i7-1

(5.77) is zero for IJl > T. Contrary to that, the interfering tones correlate for the whole .

interval [0,TH]. Clearly, then, a power (noncoherent) sample r1 = T, would measure "

interference only27 this sample could be subtracted from the corresponding one at r0 = 0,

' so that under H1, contains the full signal power plus interference. This subtraction would
0 -approximately cancel the interference contribution at o = 0 so that, under H1, only the .

signal would emerge while, under H0, the statistic would be almost zero. Thus, the

adopted decision rule is (see Figure 28)

1
2  2 H-IL I 'H+:

LP LP HO " "(5.80)

where AO0 is a fixed threshold. In the absence of thermal noise A0 can be set at a very small

* (positive) level in order to maximize the detection probability

We shall now investigate the performance of rule (5.80). Let us first address the

statistics of nk(T) and n0(T), defined in (5.78) and (5.79). Let ){.} and var{,} indicate the

mean and variance, respectively. It is then easily shown that

. ,.IBI(r} .,0 j.,.0
(5.81) "'.. '.

and that

27Any +1 Tc would, also, do especially in the face of some uncertainty about Tc. ,-
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var {ca(TI * var)B atI
(5.82)

In the following, we shall concentrate on offsets r = mT; m = 0,1,2,...,N. In fact, only

," = 0 andr = T, are of interest (see (5.80)). Then, lengthy manipulations can establish the

following facts: -

(a) The variance of (5.82) is given by

* ~~ = (N~k c 2  SaJjf-f)T] (.3(5.83) .

where Sa(x) = sin x/x is the sampling function.

(b) The components ak(mTC) and P3 mT); j = I,Q; I- I,Q; are mutually uncorrelated

which, by the Gaussian assumption, renders them independent; then the noises nk(mT,)

and n(mTc) are also independent.

(c) Each noise porcess has mutually uncorrelated inphase and quadrature components

(therefore, by the Gaussian assumption, independent).

(d) Noises corresponding to different frequencies (e.g., n (r) and n -(T) with k o z)

are approximately uncorrelated

(e) Processes nk() and n0Cr), however, have different properties, i.e., n(c) is a

highly correlated process (as a function of r ), while no('C) generally is not; in fact, samples

of noc) taken Tc apart could be uncorrelated.

Of the above conclusions, (e) is probably the most interesting from a performance

viewpoint: If the noise n0(c) had been as highly correlated as nu(t), the decision rule

(5.44) performance would have been perfect, since the same2s random noise sample would

be obtained at t = 0 and r = Tc; thus, they would cancel out. This not being true, a slight

degradation in performance is expected, as was, also, observed in the simulation.

nSame within a totally insignificant change.

145

.=.~, *.* ... %

"-- ' ' ---- --'' - - - ,-" -q, -. . Lu- * . ' -% .- " "." . " .. " . . . .." - - - - - - - - - . . . . ..-*



LIX . -Z

Nonetheless, since the mean part of the interference (second term in (5.26)) does cancel

out, the performance of this scheme is far superior to that of the radiometer, which is

oblivious to that term. In fact, the radiometer output is merely the value y(O), which is

dominated by the power of the random interference (Figure 27). Without further

assistance, it is impossible to determine if there is any signal in the total observed power _-__

since the interference contribution is random and, hence, unknown.
J .

As mentioned above, the high correlation of ak('r) implies that 0ti(O) - ak(Tc); j = I,Q.

On the other hand, the degree of correlation between P3k(O) and Pk(Tc) varies with the

frequency difference Afk = f0" fk" For the special case, wherein one of the interfering

frequencies fk, coincides with f0, it is easily seen that 1340) - 13(Tc); j = I,Q. Those

facts are used in the subsequent analysis.

We can now turn to the decision rule (5.80): upon squaring, taking the difference,

lowpass filtering (e.g., rejecting double-frequency terms), assuming that fk f0 for one

frequency29 and using the above conclusions, it follows that

S2
- 2 2, (c(0 ) nc2 )
2 TH 2 -Yc 0) + 4)()2(o1--" LP

i M M...

+ Sl I (0) + k (0) TH - (,zCTc) + k cTc)YcCTj

0
k:I II .cCc11(184° .-

+ ()TH ( (0) - + STH(M.) (TH- YcCrc))(5.84)

0 r"

where

29For the case of a single interferer, it can be shown that worst-case signal detectability

happens when the interferer's frequency coincides with the signal frequency.
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n T = n (T) + n8-r= n n¢0(...,.

(5.85) ,-."

is the total BP equivalent noise. Let us note that, at least for the case of a full PN code

period per hop, y,(T,) is approximately zero, which considerably simplifies (5.84).

0 Furthermore, even for the random-code model, a comparison between analysis and k

simulation for the one-tone case (see next section) has indicated that the impact of the rv

yc(T,) is unnoticeable; hence, setting y,(Tc) f0 seems to be a reasonable approximation for

ID
the general case. Still, a full analysis of (5.84) without further simplifying assumptions is

extremely complicated. In order to gain some insight here, we shall focus on the one-tone

random interference (M = 1), with the reasonable conjecture that the multi-tone case should

provide analogous conclusions.

Since, in this case, J301(T.) P1(O) = a(O) - al(T,) a, and 112(0) =112(Tc), it

follows from (5.84) that

-= (ST.1.~) + 2Y 1 (1 + 2 fJ alnorm "-"(5-86)
2 :-;-:-72

(5.86) " "-

0 where we have defined the signal-to-interference ratio Y = S/I and the normalized random

variable

l,norm T Cos Cn (
(5.87) .

In (5.87), c.; n 1,...,N are the code chips and 4 is the random phase of the interference.

Clearly, under HO, A f 0 with probability 1. Under H1, it can be shown that
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k'- ) (,I + 2 y ~ "2 (5.88a)

and

var{,aIH I  -

(5.88b)

Based on (5.88) and the Gaussian assumption about A, the performance of this decision

scheme is predicted by the detection probability

°corr NY
D Q y

(5.89)

where Ao* = Ao/(STH) 2 is a normalized threshold and Q(x) is the Gaussian integral

*" function. In the absence of thermal noise, Ao* can be set arbitrarily close to zero; thus, it

always yields the zero false-alarm rate PFA = 0. In practice, 40 " would be set according to " '

the thermal noise level and the degree of uncertainty about the power S of the detected

signal.3 0

The performance predicted by (5.89) is indeed excellent.. We note that increasing the

interference power (hence, increasing yj -1) actually hzI= detection instead of deterring it,

while it has no effect on false alarm. For instance, it can be shown that, if N > 60, then
PForr > 99% independently of y¥, as long as A0 < 0.4, i.e., one can tolerate 40%

uncertainty about the signal power and still expect excellent detection capabilities,

regardless of the interference power. The above conclusion is rather insensitive to N in

that, for N = 10, the corresponding minimum P ris 90%.

30Alternatively, this can be expressed in terms of the uncertainty regarding the
transmitter/intercept receiver's true distance.
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The radiometer performance is easier to analyze for an arbitrary M and is based on the .*

fact that its output ym = y(O) can be written as

Yrd STH + IT + 2 S a (0)Ifat H its Ro uk k (5.90)

Let Mm be the maximum number of tones which can be expected in any hop. Here, for .-. .

simplicity, we consider only the case M,, x = 1, where Prob[one interfering tone] = Pr[no

0 interfering tone] = 1/2 for each hop. Assuming that the threshold y0 is set at Yo = IITH, SO h.

that 31 P FA =0, it can then be shown that

1~~ Q ifY

~rad IT -T Y , "I > I"-.,4'

(5 .91) '' " "

Thus, the obtainable performance decreases with decreasing signal-to-interference ratio y.

and in the limit

nim Prad 1 (Mm  =-+ "0 D T (M ax_- .,

(5.92)

which is certainly poor compared to PrT It can also be shown that the radiometer

performance is a decreasing function of M.., so that the above results constitute an upper

bound for the general case. Finally, we note that the question of threshold setting is much

more crucial for the radiometer than the correlator, since the performance of the latter is

effectively independent of the jamming power.

31This is selected so as to match the zero PFA of the correlator: another choice of Y0 would

lead to PFA =0.5.
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The correlator with one tone interference was simulated by computer; the results

shown in Figure 29 are based on 10,000 independent trials. Also, shown in this figure are .,..,-
L41L

the analytical predictions (dotted lines) whose agreement with the simulation is quite

striking, even for such low values of N as N =3 and N = 10. Since detection probability

is monotonically increasing with N (see (5.89)), those values represent worst-case designs

which nonetheless yield excellent performance results. It was somewhat surprising to find

that the Gaussian model provides such an accurate analytical prediction, even for N = 3;

furthermore, setting yc(Tc) equal to zero proved to be a well-justified simplification. Note,

that no false alarm was observed (PFA =0) and that performance is practically insensitive

to the amount of interference inserted. In contrast, the radiometer performance (as

evidenced by (5.91)) deteriorates rapidly with decreasing S/I, as expected. Finally, let us

mention that the performance shown in Figure 29 is for a nonoptimized (arbitrarily chosen)

threshold Ao* = S2T2H/N. In the absence of thermal noise, further improvement can be

attained for the correlator by decreasing AO* to a very small (but positive) value.

Although analysis and simulation are not yet available for the multitone case, it is

anticipated that the gap between the radiometer and the correlator performance will increase

as the interference-to-noise ratio increases, independently of M.. That gain is due to the

relative insensitivity of the correlator to the interference nuisance parameters.

As mentioned, the theory of this section does not include thermal noise. The

determination, analytical evaluation and simulation of algcrithms which operate

satisfactorily in a mixed environment (i.e., both thermal noise and random interference),

will be the topic of future research.
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APPENDIX A

ON MOMENT- GENERATING FUNCTIONS AND LIKELIHOOD RATIOS

A lot of powerful results in statistical decision theory rely upon the judicious use of

transform-domain techniques and, in particular, on characteristic functions (CF) or

moment-generating functions (MGF). Given the CF 0 (co) of a rv X,

(o,(o)= 8{e (A. 1)

assuming it exists, threshold-exceedance probabilities for X can be evaluated via the

formula [10]

1 o Im(fx(v )e-JwxO.
PrEX>xo] = + di -- -.-- d

(A.2)

where x0 is the fixed threshold and Im{.} denotes the imaginary part of the enclosed '

quantity. Expressions(A. 1) and(A.2) are particularly amenable to numerical evaluation by

appropriate algorithms (c.f.[ 11]). For the purpose of proving the BFT results of Section 2

and deriving certain Chernoff bounds, we shall find it convenient to deal with the moment-

generating functions

Let

Mx(s)A ,{e 'x} (Dx(-js) (A.3) L

denote the MGF of X, where s is a real variable; in fact, it is typically adequate to restrict

attention to the s 2!0 range.

When the averaging in (A.3) is over the pdf f1lXIHi (x) under hypothesis Hi; i = 0,1,

it will be explicitly indicated as a subindex. Furthermore,

let

lx(s) In Mx(s) (A.4)
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denote the second moment-generating function of X A
and ~~

ds M(S)

(A.5)

its derivative. 1 Whether one works with I.±js) (see, for instance, [121) or gx(s), as we

shall do here, is a matter of notational preference. From (A.4), (A.5) it follows that

'S -

Mi(s) =exp { 'd' + CgI (A.6)
0

Since, however Mx(O) =1, the constant Cg =0 in (A.6), so that

Mx(s) exp{ f g(s') ds'} (A.7)
0

which is used extensively below.

Functions g±x(s) and gx(s) possess some interesting properties. For instance, the

Taylor series expansion of px,(s) around s =0 has the form

3M

g.t(s)= C (X) (A.8)

where CQCMis the mth cumamhnt of X (see ref.[1O]). Furthermore, it is easily shown thatL
m

IThe dot indicates differentiation with respect to S.
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gx(O) = gpx

vW~{X}(A.9)

ix(s) aO

i.e. the function gx(s) is monotonically increasing.

Let X be some decision statistic for thie binary test

I. X0
(A. 10)

(not necessarily an LR or LLR), with the corresponding pdf s fpi,(x) as shown in Figure .

A. 1. Then the performance quantities

PFA -Pr{Xx xO 0 '**O f !x 60(x) dx
(A.11a)

PD Pr[~xo I(x) dx

(A.1 ib)

can be bounded as follows (Chemoff bound): If the r.v. W is defined as

0, Oif X! X0

W={1, if X> X (A. 12)

then ,for every s 0,

Lexp(-s(X -x0)) W5 exp(s(X -x0)) (A. 13)

as it is evident from Figure A. 1. furthermore, from (A. 11), (A. 12),

PpA=-9{W1Ho (A.14a) 1
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and

PD =--{WIH1} (A. 14b)

From (A. 13), (A. 14. a) we conclude that

PFA - 9{es(x - x0 ) IHo} Cesx 0 MXIHJS)

or using (A.7),

PFA 5 exp[sxo +fgo(s)ds'l (A.15)

0

where go(s) -gxlf(s). Because of the monotonicity of the exp(.) function, the extremum

of (A. 15) occurs at the extremum of the exponent E(s)

E-(s) Ad a +fo(5'".-.

ds o
W or at s s, where

L

g0(s) = x0  (A.16)

Furthermore, since K(s) g(s) > 0 from (A.9), it follows that the extremum is actually a

minimum, yielding the tightest (or lowest) upper bound on PFA of (A. 15),

PFA_ (PFA)uB - exp(E*) exp(fso0(')d3'-S gO(s*))'

g0(s,) -xo (A.17)

A lower bound on PD in terms of of gxp4 (s) can also be derived following similar

steps; however, its most utility is for the particular case of interest, whereby X stands for

some LLR. Then, all the previous conclusions (which of course still hold) can be

enriched with some additional ones, owing to the fact that the MGF MLIH 0(s) oft under H0

is.
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ML ki0 (3)A.6{est i1 6'(A 5 P(o)) ~

(A.18)

which links the properties Of M111 (s) to those of a LR h. We conclude that

*M, 6j1 (s) G 'e~l Oil- j{A3 Pi11 g JA 1 '3 0 01

or

NJ i(s) M (+

(A. 19)

which implies that all the statistical proprties of any LLR under H1 can be determined.

once its distribution under HO~ (equivalently.1 Mh ) is =Q)d This interesting aspect of

LLR's is, also, manifested in the statement of the PEF theorem (Section 2) for the special

Gaussian case. Since M CHI(S) is just a "shifted' replica Of M 1H0 (S), the latter contains all

the necessary information through (A.7), it suffices to know go(s) Q ~H 0(s). An

immediate corollary of (A. 19) is that

I MI(I) M ()ML0 =1 (A.20)

which, in turn, yields from (A.7)

J =0(A.2 1)
10

The monotonic increase of go(s) (recall (A.9)) along with the fact (A.2 1) implies that g O(s)

should look something like the curve of Figure A.2, since, from (A.9), (A. 19),

go00) =Sj)H$ (0) IS{ I (HI) etc. In particular, any LL-R I must satisfy.
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4{iIHO) S0 581LIHIl (A.22)

as a result of Figure A.2. Equalities in (A.22) apply only to the trivial case where A =I

* almost everywhere. An alternative proof of (A.22) can be found in ref [ 13] where

* 5{11HI1; i = 0, are termed directed divergences and the difference J =~ ,{LHj}1-6{LIHoII

is called J-iegne

Another byproduct of (A. 19) is a lower bound for PD in (A. I Ib) in a form dual to

S (A. 17). Indeed, from (A. 14.b),

PD off W j > e(-3S(X -XO0~ l

-3x~o MX 6i1(-3) *e-sx 0  MxIH(1

or, changing the variable s into (1-s) without loss.2

PD .e(I3)xo MxIHs) .ep( sx
0(s exjI.~og('d' (A.23)

0

* Again, by differentiation of the exponent, the extremum (which is easily shown to be

*a maximum) occurs at s =s* where go(s*) =x 0, resulting in the tightest (highest, lower

* bound)

PD, exp{(i-s*) go(.s*) fgo(s)iaw}
0

(A.24a)

or

02 Si ewe are restricting attention to the 0 : SS 1 range and 0 :5 1 - 5 1, the substitution
is legitimate
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( PD .(PD)LB -elo(PFA)UB

with (PFA) UBas per (A. 17). __

Equipped with this brief expose on the useful properties of the LLR moment-

* generating functions, we can now prove the BPF theorem in a rather compact fashion.

* Indeed, assume that I is Gaussian under H0, with & f 1H I = mo and vart ig = (y2 its __

second-order statistics. Since the MGF of a Gaussian r.v. is well-known to be,

M HO (3 exp{m0 3 -)

2

(A.25)

it follows that the associated go(s) is simply

ds

(A.26)

In other words, go(s) is a straight line as shown in Figure A.2 with a constant slope

g0 1(s) 0 2 -varit -0 var( I)

0 0

(A.27)

From (A.20), (A.25) we have that

u2
M I Di0 () exp~m I - I*

2

or
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m a-2
(A.28)

i.e. the mean and variance of t under HO cannot be arbitrary within the Gaussian model,

but rather related as per (A.28). Inserting (A.28) into (A.25) results in

02
M - *j ,s xp 1- (3-1)si

2 (A.29)

We can now use (A. 19) to assess that

M Lk ()- exp +- - 3 2)

2 2 (A.30)

But this is exactly the MGF of a Gaussian I under H1, with var( i IH H1  02a (in accordance 7

with (A.27)) and

elt JHI) - - ei PO){ ~~
2

(A.31)

as shown in Figure A.2. We conclude from (A.27), (A.3 1) that the variance vari. JH0 ] ca2
0

describes fully the Gaussian pdfs of 1 under either hypothesis. In order to complete the

statement of the PBF theorem, let us note that, for axLLR 1 ,

M'A IH(2 0 C A2 PO)- var 2A PO

so that the "Gaussian"' distance dG, defined as
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d2i "' (2 (A.32)

However, for the particular Gaussian model, (A.29) yields

M4 t1H( 2 ) - exp (0')

(A.33)

which, when compared with (A.32) results in

02 d2 - mO vartA POc)) (.4

*Note that the LR A- e i (A.34) is obviously not Gaussian.

The content of this Appendix could provide the basis for exploring the properties of

* LLR's beyond what is presented here.

162



.' .~ -

APPENDIX B

PROOF OF EQUATION (3.7)

Let us start from (3.4), i.e.,

A~rt) H
2  22e- N r H0A (r(t)) = N Il exp r c K

(B. 1)

with y, as per (3.5), cij denoting the j h chip of the it code pattern and rj as per (3.6).

Consider the N-dimensional linear space consisting of all binary patterns i; i=1,...,2N of

length N. Now observe that this space can be divided into two disjoint complementary

subsets, each of cardinality 2NI, by the rule that, for each possible vector Ci belonging to

one of the subsets, -ci belongs to the other subset. Exactly which vectors ci are included in

which subset is immaterial as long as the above rule holds. We can now perform the

summation in (B. 1) over one of the two complementary subsets instead of the whole linear

* space, with the equivalent rule.

iN-1 , H
2 I

Scash ><r~.
i1 1 /~ H(B.2)

4 where I = (r ,... ,rN), ( is one of the aforementioned disjoint subsets and any resulting

scale factors are absorbed into the threshold A'0 . In (B.2), cosh(x) is the hyperbolic

cosine function

cosh(x) ex + e'x

(B.3)
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* Since cosh(x) is an even function of x, the summation in (B.2) can be extended over the

* whole linear space

2V N

csh r-c >A
11 H 0

0 O(B .4) L -

In order to proceed, we first need to introduce the superscripts r"N and £,(N), which will

indicate the length of the corresponding vectors, and then prove the following:

Lemma 1. It is true that:

2 N
~ ah(p(). (N)) = 2N iTcs~~

i~l1=j

90 (B.5)

ErwL The proof is by induction. First, let N =1. Then,

i1 cosh ~~) =cosn~rlJ 4-cash (-r,) *2cosh(rl)

(B.6)

since cosh (x) is even function. Thus, (B.5) is satisfied for N =1. Next, assume that it is

true for N =k, i.e.,

cah((k)(k)) ~ cs

*1.1 jul(B.7)

and prove it forN -k+ 1. Indeed,
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C -+

(B.8)

-a ut +b -a -b + a-b + -a+b

cosh(a+b) +CoSh(a-b) e + e +

lb bb i -bb
a b) +e- a aa~ ~ ) (e a e

2 cosh(a)cosbb),6.
(B.9)

which, upon substitution in (B.8), yields

k+1 k
2> c hr(k+). (k+1)) coshr ck) cosh rk+l)

Cos 2rohr~~I ~~)~

k+I

cos r ~ oh~~ =+ Jul1 Jl~r~

where the truth of (B.8) has been used. ]Equation (B.1O) Completes the proof of Lemma 1

If Lemma I is applied to (B.4), it renders it equivalent to

2N N csh(2oT r R)~
Jol 0

(B.11)

which is (3.7a).
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APPENDIX C

PROOF OF EQUATIONS (3.9) - (3.10) - -

Let us rewrite the decision rule (3.8) as

*H

N H1
j Ho  -:0-

H0 t
0

"(C. 1)
61%

where the independent, identically distributed random variables (iid rv's) yj rj2 assume

the form

nj2 c under Ho

cj + np2  under H, (C.2)

In (C.2), nj represents the Gaussian rv

tc ( t) 
..nj -i) t t(j-1)Tc  .:' .-

(C.3)

whose statistics are independent of j.

A precise analysis should account for the exact distribution of yj under either

hypothesis. So, for instance, under Ho yj is chi-squared Nv with N degrees of freedom.

For large N (of the order of hundreds or more, that is the practical case), very satisfactory

approximate results can be obtained which circumvent the difficulties of an exact, but

enormously complicated, analysis. This is done by invoking a central-limit-type argument:

The decision statistic X being the sum of a large number of iid rv's yj, is approximately

Gaussian distributed, with mean

ajjk NSllyfl~ki k-O,1

(C.4a)
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and variance

varj4Hk N varjyj I~kj u,

(C.4b)

under either hypothesis. Thus, having the second-order statistics of the individual rv's Yj

and, subsequently, of). from (C.A) enables us to determine performance immediately.

Let

M VS TI CSkI (C.5)

so that

yj =(m+nj) 2  m2 + nj2 + 2mn1  (C.6)

Furthermore, the Gaussian r iV has zero mean and variance

2 NOTC2

n2 (C.7)

Thus, from (C.6),

M+G ST 2  N0 T

U(NO TC) ( to k1) U(No TC) (.+ YIk1)

(C.8)

Finally,

varlyi) var {m2+n12+2mnj1 varmnj 2+2mnj1 varjnj 2} 4M2 varinjI) (C.9)

since the random variables nj2 and njare uncorrelated (S{n 3 } 0). Thus,
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varlyjl(3, - cr,)42yn22a.2[(; n2 + 2m2] (NoTc) 2[1/2 + 2,yc~ki (C.10)

494

Equation (3.9)results from combining (C.8) and (C.10) with (C.4).
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APPENDIX D

6 PERFORMANCE OF RULE (3.19)-

A Gaussian-approximation-based analysis of the low-SNR, chip-noncoherent detector

* (3.19) can be performed following guidelines similar to those in Appendix C, as follows:

Let the bandpass AWGN n(t) be represented by

0) n(t) -T2 nj (t) cos coot - flQ (t) sin coot (D. 1)

where n, (t) and nQ (t) are baseband, independent, Gaussian processes with a flat one-sided

PSD of No W/Hz each. Conditioned on the unknown phase 4 , and the ±1 -chip cj of the

interval 6j-1) Tc ?_ t !jT, the inphase and quadrature variables r, and rQof (3.15c) are

Gaussian with means

1P T 6k Cosa

k=O,1

* ~~jyj A7v Tc c~ in

(D.2)

* and common variance C;2

I2

an varb a var+Q4 z .

* (D.3)

Thus, averaging the phase' Oj, it follows that each of the independent envelope rv's r1 of

(3.18) has, under HI, a Rician distribution

L'Again it is easily seen that the value of cj becomes irrelevant due to the squaring.
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6 frj~l = -epr (r 2  1F. r, v(.o j~,,.,

6~ fLr j ep 2 a 2Y c)j 0

(DA4)

where yc is the predetection SNR while, under HO (i.e., signal absent, -f, 0), D.4)

reduces to a Rayleigh distribution

f (rjH' = xpir 3 ]i

HO Lx ( r3  0)P[ r.2

(D.5)

Therefore, the statistics of the decision rv A. in (3.19), being the sum of N iid rv's, can be

precisely found (see (3.21 ab) in text).

Although those results are exact, they are cumbersome to use from a computational

viewpoint, especially for large N (N > 100). Besides, the Gaussian approximation about ~

becomes suffficiently tight in that region and, thus, emerges as an attractive and simple

tool.

Let us start from the fact that

(D.6a)

0 and

r Q S' c .i k 1fin + flQj

6D6b

In (D.9), the Gaussian rv's n1. and flQj are defined by
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fc

3 (j-1)T~(D.7a) .

and

n Q f flQ(t) dt

(j-l)T~

(D.7b)
2

and are, therefore, mutually independent, each with zero mean and variance rN-

o~ 2.
Then, the squared envelope rj is

2 2

(D.8)

It immediately follows that

e =j2 SrC 2 6k + 2a2 ST2 Skl + N0T J (N0TC) (1 7+ ' k1)

(D.9)

which is (3.22d)

In order to calculate the variance of rj in (D.8), we note that the first term is a constant

(thus, it can be neglected), while the second, third and fourth terms are pairwise

uncorrelated. This is because: (a) n, and nQ 2 are functions of independent rv's and, (b)
J

the fourth term includes both cj and Oj , which are independent of the noise and zero mean.

As a conclusion,
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4a 22 2 2

r .

+4Tvar {jjcos +~ =~ asinf

Eqain(~O siet c k eqaio 3.2

4 an4 + 4 TC2 n ., 2 T C N0 k

(NT)( +2S61

(D10

172



where noises nj2 and nj+, 1,, are mutally independent, as are cj and cjj.,

Thus, Jr 2 r+ } () 2 6 #~~~ 1 +~ 1  ,. 1

In an analogous way,

*~~~ S' i~)~kl+ni

(E.5)

which, combined with (E.3) yields

S2  S 2

J~n f~ 4c(E.6)

by virtue of independence between nfl and nj2. Finally, substituting the above into (3.41)

*yields k - I=0 Nf[2 {rj1 2 + rjrJ2

(Nr) T 2  1N + -Y +-S.. 6k

LN T0- N(. 2~[+Y (3 + k

* =N(.~.[ + () 6ki] (E.7) -

Before we proceed with var {X.21 HO), let us for a minute turn to the worst-case

mean of (3.41) as explained in the report. However, the picture now is changed to

Figure E.2, under the assumption of a worst epoch e 1/4. Then, we can write that

J2 C1 8k n2"W_
(E.8)
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and
r + j

* Note that rj2 is identical to (E.3); thus, trrp1Hk; E 1/4} is the same as above.

* Futhermore

12 IN

(E.10)

where the conditioning events A same and Adiff refer to cj1and cj having the same or a
4-

different sign. Clearly, L .

Pr{Asame1 Pr {Adjffl 1/2 (E. 11)

* a fact used in (E. 10). Let us now note that, under Adiff, the mean of rji is zero while, under

* Asame, it is equal to TI2. Thus,

(E.12)

* In exactly the same way,

J1 Ik;czl/4 aS8 .41C~ cj))5k rin{j, njz,

( ST-\( (T NOTc\
K-- N/8)k 1 ViN-4?)kI

(E. 13)

which is identical to 49 {rj2r,ii Hk;e c l/4}.
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r
Put together, the above result in

8 X2 Hk; E 1/4) N(INTC)[ + A E.164)

In both cases, var {)X2[HIo is the same. A straight-forward calculation can show it
to be

* ~varfkIHOI=i N NT)

(E. 15)

Combining (E.7) and (E.14) with (E.15) results in (3.42) and (3.43), respectively.
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APPENDIX F

ANALYSIS OF THE RADIOMETRIC DETECTOR I

* Here we briefly develop the LPI performance of the radiometer, as shown in

Figure 9, when the input r(t) is as per (3.2). The output rlp(t) of the rectangular BP

* filter is

S~ ~ WB~ V= 'C(t) cos~wot + f)+ n8p(t) (l

where nlap(t) is filtered AGN with the typical BP representation

nBP(t) V2[n,(t) cos wot + flQ(t) sin.2)

0 In (F.2), nl(t) and nQ(t) are independent zero-mean jointly Gaussian low-pass noise

processes, each with a flat PSD of No W/Hz (one-sided) and bandwidth of WBp/2 Hz (one-

sided). The code signal, filtered by the BPF, is designated c(t) in (F. 1). The zonal LPF
0 (shown for analytical purposes only) rejects the 2f0 components of the square-law output

* z(t) and has an output given by

zLP~t M(~) + n1
2 t + fQ(t) + 2V'TEFt) n l(t)

(F.3)

In order to maintain analytical tractability, we approximate and model F(t) as an

* attenuated, but undistorted, version of c(t), namely,

e(t) =ac(t) (F.4)
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C ~ 5L

where the "attenuation factor" W2 measures the (normalized) poe reduction due to

filtering

2 h~H~f I S(f)df =()/ BpTc/2 (i) 2 d

S (f)df 0 d

(P.5)

since, for a ±1--valued code, the denominator of (F.5) equals c2 (t) =1. In the previous

expression, SJ) is the PSD of the random code signal c(t) and HL(f) is the low-pass
equivalent of the BPF HBp(f), i.e.,

HL(f) If 8 <, /
(P.6) t

By suitably adjusting HL (f), (P.5) can be generalized to filters other than the perfectly

rectangular one considered above.

From the above definitions, it follows that (E(t)) 2 = 2

Thus,

LPL

(P.7)

under H1. Under the alternative H10, zLp(t) is given by the above expression with S =0. It

* follows that

JIZP(' I k CL k + N 0W BP k-0,1

(PF.8)



with Bkj as per (3.9c). Thus, the expected value of Ej)L.Hk} of test statistic )at the

output of the integrator in Figure 9 can be calculated under either hypotheses Hk; k =0,1,

* as
fNT TFA. kOl
J J'LPWtI~kjdt +~[O.

(F.9) 1,

The next step is to obtain the second-order statistics of z~p(t) and I. The typical

approach, based on the assumption WBpNTC 1, is to model ZLp(t) as a very wide-band

("delta-correlated") process with respect to the approximate bandwidth cNT)-o the

integrator. Thus, one needs to evaluate only the PSD of ZLp(t) at the origin f =0,

distinguishing between the average (constant) contribution and the random contribution.

Using the fact that nl(t) and nQ(t) are Gaussian, the autocorrelation function of z~y(t) can beL

* obtained directly, from which its PSD under H, is given by

SzLP~f 2 =QS + NOWP 6(f) + 4Snj(f) ®SnQMf + 42 SScf M ~()-

(F. 10)

where 0means "convolved with." The coefficient of the Dirac delta function 6(f) agrees

with the first-order statistics of z~p (t) obtained directly in (P.7). The two-sided PSD of

zLp(t) at f = 0 measures its random contribution and is obtained by evaluating the last two

terms Sz (f) in (P.9) with f =0, resulting in
LP

S~ ~ 4f 2

Z LP 0= B P 2  S 0  ; ,1(.)

0 I=

The delta-correlated random part of zLp(t) contributes to the variance of X as

var{ H} - NT)S (0) * NTc) (NOB + 2o' N0 61

(F. 12)
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The mean and variance of X in (F.8) and (F. 1) suffice to characterize performance under

the Gaussian assumption which binges on the fact that W31,NT N > 1. The result is

(3.l10a) with

a w 4  ;b 2a2

(F. 13)

Clearly, the choice of WBp has an impact on ax through (F. 12) and W2 in (F.5). The

quantityJrWPf=

2 i. (r sx) dx

cB~

(F. 14)

has been plotted in Figure F. 1 as a function of the product W~pT. The maximum

ocx0.77 (or -1.l1 dB) is attained at WBpTC 1.
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APPENDIX G

DERIVATION OF EQUAT1ON (3.50)-(3.52) p

N H1
*Let Yj>

0

(G.1)

* be the decision rule (3.48), where

Y r (1) r-(2) (G.2)

and rj(i) ;i= 1,2 is given by (3.49). Then,

*rj() =4 ST, cj 8k1+ n(i) (G..3)

* where ni(l) and nj(2) are zero mean, mutually independent Gaussian rv's with common

* variance C; 2 =NOTcl2. From (G.2) and (G.3), it follows that

Yj S T 2  + TTC6 2 2
yj= c k1 + /ST j k1 + j( .(2+)) + n(1 n(

* (G.4)
L

Thus,

,11yj S T 2 C k (N0TC)yc 8

(G.5)

which justifies (3.50). Futhermore
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6varj~ S T 2 var n~' + nlj ()+var n (2

2 2 2 4 41. ST
-S T c 6k1 c n + a 4anL 4-) 2oc 6kl

I

0 (t C)2[. +c 6kil

as per (3.5 1). F rom (3.50), (3.51), equation (3.52) follows immediately.

0L
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APPENDIX H

DERIVATION OF (4.13)

Let R =Rkm in (4.10) and (4.11). Then, following steps identical to (4.7) yields

* (4.10)

NFN 0

0 (H.l1)

where the density of R under H, is the Rician

,R f 1 2  (R I

2 q.2) No0

(H.2a)

with

N-7j

2

(H.2b)

* and yH = TH/NO. We note further that

A(R) -r exp -H)I FS t

* (H-.3)

is an LR. Thus, from the known properties of LR's

(H-.4)

and
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Substituting (01.2), (H.3) into (H.5) and letting x =R/;f, yields

'.2..2

(R.6)

From [21, pp. 718, 6.633.2].

fe"'Ij,(a)J,(px)xdx

(H1.7)

*Letting p2 
=1/2, a = (3 y/-H, p =0 (here j vr-'I) and using the fact that k0(x) =J0(jx) in

* (H.6) and (H.7) results in

(H1.8) _

* Combining (H.1), (11.4) and (11.8) provides (4.12). As a byproduct, we note from -

(113),(H.),and (H.8) that

(H.9)
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APPENDIX I

EVALUATION OF dA FOR CASE i i-_

We consider here the Case H, where no power adjustment takes place in the decision

* rule (i.e., (5.8) is used), but the actual frequency offset of the incoming signal with respect

to the observed spectral points is the worst, namely Af = RH /2. The case is depicted in

Figure 1. 1. Note that, in principle, a residual signal power can be measured in frequencies

o beyond the two adjacent ones (fi, fi.1 ), but that amount is insignificant and can be

neglected. On the other hand, each of the adjacent spectral slots observes a tone of power

aS ( a as per (5.13))in noise, so that the the probability density function (pdf) of the

envelope R in each adjacent slot is the Rician pdf

It2

pr e \2 NO ...(RR

where YH is the hop SNR and a2 = NoTH/2 is the noise variance in each quadrature

* component of the bandpass additive Gaussian noise. Since, in the absence of the signal,

the mean and variance of I0(2JS R/N0) remain as per (5.11 a,b), we only need to evaluate

- ~ ~Io2~R~j ignal, } IOQ.2... R)tR(Ij B--gn y" d
resent 0 present)

(1.2)

with the pdf as in (I. 1). Setting R--R/. in (1.2) yields -

- Rsga TNo I )ig tsa - • f r e  O0,-..
( 0 /presen 0 IO/yr 10r "'-'-'-"

(1.3)
18
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The latter integral can be evaluated by proper modification of the expression in [21, p.7 18],

yielding *_k ,bi

.F "O 2rS RI s~ignal -2A H

~ N0

(1.4)

Fianily, noting from Figure (1. 1) that the expression (1.4) pertains to 2 slots (under HII),

while the remaining (G-2) are only noise, yields

(4 H1 ;Case II r 2e IO(2/ IN) (G-2)e

(1.5)

instead of (5.11 la). Putting (1.5), (5.1b), (5.10c) and d2 together results in

d2 .4G- 1 ""AA

(1.6)

as per Table I in Section 5.2. -

A final note is in regard to the notation in (I.I)-(I.4): we condition on "signal

present", as opposed to "H1 ", because the above expectations pertain to the slots which

* ~~truly contain a signal component, while "HI" simply means "signal in some slots in the - .-

bandwidth B".
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APPENDIX J

STATISTICAL CHARACTERIZATION OF NOISE PROCESSES
e qq

eq e Q
We define N, (z) and N4,r) as per (5.45) and (5.40). It then follows from (5.41),

*eq eq
(5.42) and (5.43) that Nl,ck), NQ(,k); Irl = KB'1 are zero-mean random variables, i.e.,

(5.46). Furthermore, by virtue of a central-limit-type argument (summations of a large

number of Nv's), they are assumed to be approximately Gaussian.
Wesal irst shwtat % n Q, are uncorrelated for every k and j; in

which case, they are also approximately independent (due to the Gaussian assumption).

Indeed, from (5.45a).

-j~~ k{II k NQCT))-%{QQrrj N 1(j)
(Ti

U-. -)

Let us consider the first term on the right-hand side of (J. 1); a similar line of argument -

applies to the next three terms. By definition,

-jI SN CTkJ NIQC.rj)l M *fH H e{fl(tl)nCtl-Tk)nCtZ)nQCt2zTj)}dt dt2
Tk Tk

(1.2)

However, flQ(t) is independent of n 1(t), which implies that the inte grand of (J.2) contains

the factor Ff{nQ(t2-Tj)l, which is zero. Thus,

g(NlIITk) NIQC.!j) 0 13
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Along with (J.l) and the above remarks, (J.3) establishes the uncorrelatedness of .
eq eq

NI(k) and NQ(cj)
eq eq

Let us now consider N, (k 1) and NI(2) for rk1 # k2 . We have that k..

Neq. ('k)eq'~k) -+ j jNj~2 +9 QCk)QCk

+ kjl Tkj)NQQ(Tk2 ) + 4 QQC.kl )tICTk2 )

(1.4)

But,

fTHfTH d'{nI~tI)nICti , k)It)I - - )dt dt2
k 1 Ik2  T1 I2 ,I 2-,1

(.5)

We shall approximate the integral (J.5) as the double sum

I'JNjCTkl)Nj1 ($rk2)} AT 2 x I G~fn Ikni~k-kj)nj(m)njCm-k2)}
k1fk2  k=k' m~k2  %-'.

(J.6)

where AT = = B- . We note that ni(k) and n,(k) and nl(k-k1) are independent rv's since

k, + 0, as are nl(m) and nl(m-k 2). Furthermore,due to the independence of the rv's

involved, the expectation in (J.6) will be zero whenever all four sampling times k, k-k1 ,

m , m-k2 are pairwise different, as shown in Figure J.l(a). If we assume that kl<k2, we

then observe that the three remaining cases depicted in Figure J.1 are (b) k-k1 = m-k2; in

which case, k4m, or (c)k = m;in which case, k-klm-k2, or (d) k=m-k2; in which case,

k-k#m. In all those cases, the common conclusion is that at least two rv's exist which do

not coincide with the others. The net result is that the expectation in (.6) will always be

zero, establishing the approximate uncorrelatedness of NI1(kl) and Nj1 (Tk2). The same

exact argument establishes that&{NQQ(Tk1 ) Njj(Tk 2 )} 10 , while it is even easier to
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Figure 3.1. Some Possible Combinations of Sampling Times in (1.6)
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show that SINII(rki) NqQ(Tk2) Z OlKQQC~kl)IICk2)s 0. Thus all of the above can
eq

be combined in (1.4) to illustrate that different samples ( 0'k1  %) of the same process N, are

approximately uncorrelated. It can similarly be demonstrated that the same is true for
eq

N(),defined in (5.45c).
eq eq

Finally, we are concerned with the variance of N1I (,rk) and NQ(,rk). Clearly, since

the respective means are zero, those variances coincide with the second moments.

Furthermore,

,1= C ~ N 2Ik) 2SJQ~t) N 2 C-(rk)

(J.7)

But,

-, N J f THenICt1nItl--rk)nI(t2)n ~2rJdt dt2
T k Tk

(J.)

Applyin a 9 silcnto f (J8)results n s (for n erfomd eshlo seafmla
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- foj tfl+c nICT

TH- 'r+f jjta ~jt+rj JnCtD rn(t~fdtdt .

*0
o

TH-r 
" %

+ffenj (t'i+tr)njCtD)Iinj~tD n1(tj+-r)j dt',dtj
0

T -TR2(T 2 R2 -Ddt.tRnn(r) CTH-) f R nt'-t0 dt dtff I,,

Th-T 0

+ RnnCtj-tj+.) Rnn(tj-t -r) dtjdt2 '

where R,,(t) = I {n1(t)n1(t+t)l is the correlation function of ni(t).

Equation (J.10) can be further simplified. First, we note that, for 'r = rkL = B-',

R,, (k) = 0, so the first term drops out. Furthermore, one can employ the even symmetry .

of Rnn('), i.e., the fact that R.,() = R,,(-c), in order to reduce the two-dimensional

integrals to one-dimensional ones (see [49, page 325] for details). The result is then

ATH- k... (NOB 2(L .

+ 2HkCTH r- - SaEB(P+Tk)] SaL"rBCP -o)IdD

0

With the change of variables

P TH - Tk  ,' .

(J.12)

and defining the normalized parameter k as

195 B..:_:::-
:-.-: :.:.--..-,- . .... ....... .- . . ..... .. ..,-. .. . ..... ,.. -.. -.......-.- ... ... .. ... .. . ...-.. .":-

.. . . .. -p -. . .. .-.- "- --- -: ;- . .'3 ', 'k _;:'L . - ,-, --' li.-. -•.--.--.',-.-...'...- .. ..



C"1k " k k ._

C (JI.13)

we can rewrite (J. 11) as

2N . C~ 2 2 P.,Z

SIN kI ( 2 kC T (HI-P' ) 2 EBo CTH '-d1 ] do

+ f ( 1 -p ' ) S ,,, B p ' - k B p - d
J~aTu-Il ) SSEB(PICTN-Trk)-T[k'IP

0

DO)2 2
C ~ o B ) C T H -  T O 2

..,_,,
2 I(F(k) + F2(k))

(J.14)

where -

F(k) = (1-p)Sa EBTH - TTp]dp' = (1-p')Sa 2 GC1-kk)P dp'

0 
(J.15)

and

, (k) = f i- ')f ' Cl-r ) + -k) S,",G(p_1,k) ..dp

(J. 16)

Combining (J. 14) with (J.7) yields (5.47a).

Quite similarily, it follows from (5.45c).

.Nq.)2 21{" (T) - 2.1N Q(T)NQI(T)-

(J. 17)

But,
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TH TH- L :

fif

TH

nntH-t2Rt I dt 2 nnt-t Tdtidtj .
0

which) is identical to the third term in (J.1), c correspond to the F I(k) term in1)

CombiningFutherabovewt J 7 nt h iu ino h eodtr)rslsi

*T

0J20

4P

k 2
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APPENDIX K

DETECTION OF FREQUENCY-HOPPING SIGNALS
VIA

AUTOREGRESSIVE MODELING

0 %, -. ,

KI. INTRODUCTION

The purpose of this Appendix is to present a number of methodologies that can be

used for the detection of frequency-hopping signals in AWGN. These methods operate in

the autocorrelation-domain (ACD) and are based on autoregressive (AR) power spectrum

e- estimation concepts. They are simple to implement and have low computational

complexity, i.e., they have properties that make them very suitable for real-time

implementations. Specifically, four different methods will be discussed and their

*O performance demonstrated and compared with that of the conventional radiometer and the

Correlator-Detector [see section 5.4].

The organization of the Appendix is as follows. Section KII establishes the
problem formulation and its imposed constraints. Section KIII presents the four different

detection methods,which are all based on AR models. The discussion emphasizes the

methods mathematical description, performance evaluation and computational complexity.

Concluding remarks and recommendations for future research are given in Section KIV.

KII. PROBLEM FORMULATION

Assume that the output of the correlator y(ct) can be expressed as in equation (5.44), V -

where now we allow the signal frequency f0=co 0/2t to be arbitrary (i.e., different from the

center frequency f,)

eq ey(r) C() cos co0' + NI (T) cos cOol + NQ(T) sin woTr (K. 1)
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C

r'W. .e-.*j

if we mix y(t) down to baseband by

yc,@,) 2 cos oWr y@M~Lp

Iys(t) 2 sin o) 3T y(t)Lp

then

=C(T C('r) Cos Acay + QN r)
eq

ys(tr) = c(,r) sin Aon+ NQ(C)

*where A oc - wo, IAWI5 2,rBI2, B is the observation bandwidth. By sampling the signals k

yj(t), ys(T) (2) at Tk k B-1 points, the data records become

4PSACO eq,yj(k) = -. (B TH-k) cots-k + N, (k) (HI)
eq

yc(k) N, (k) ( 0  K3
~Q~) - ~eq

(k- (B TH-k) sin-k+NQk)HI*~~ B QO) ()
= (HO) (K.4)

k=0,1,2 ,..G BTH
whee eq eq 0fo
whre&{N I(k)} = e{NQ (k)} =0frk 1 ,2...,G and

va I eq ea( 1(~)2 12p~)
IN (k))= var{NQ (TH T' P1(k).

Defining
W0(k) yc(k)I(TH -TO

W3(k) YAXkITH- k), (K.5)

k ~then from (K.3), (K.4) and (K.5) we can get the following analytic signal .

W(k) = Wc(k)+j Ws(k) (K.6)
or

W(k) = S expoi-1k) + n(k) (Hi)

W(k) n(k) (HO) (K.7)
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where

.1 n(k) =nj (k) +. jflQ(k)

nl(*), flQ(-) - Gaussian distributed, i~id

0 9{ndk)]Y=SfnQ(k)l 0 fork =1,2,..., G

var{n1 (k)1 =_ var~nQ(k)lz (NO)3) 2 F1(k) for k 1,,.,

and

9'{nj(0)j NOB, &fNQ(0)) =0

* Note, that the Gaussianess assumption for {n(k)) weakens as k-4 G. Therefore, we

will concentrate on the observation interval k 0 ,1,2,...,?LG where X 0.1-0.5. Under

* these assumptions, (G(1 - X) >A) a good approximate formula for F, (k) can be obtained,

FI~k)(K.8)

Problem: Given {W,(k)), (W,(k)1 k=0,1,.., X G, G 1, decide between H, (signalL

* plus noise) and HO (noise).

A simple autocorrelation-domain (ACD) algorithm is desired that can be of low

complexity and very suitable for real-time implementation.

Important Observation: The SNR in the ACD, is generally higher than that in the time

domain. For example, take the case where Q =0. Given the input SNR per band

(N B)

* ~which typically is very small ('y = 10-1 0) we observe that the local SNR in the ACD

Baseband yB is given by

YB (k) -____

2 (NO) 2 p1 (k)
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or equivalently

(k) Y 2  (c-k)

k=0,1,2,...,XG.

if yin 10 " (=-OdB), G = 103,) = 0.1, then

9.54 dB :5TB (k) : 10OdB

which indicates a significant increase in SNR.

The yB(k) decreases as k increases. So, the problem here is how to employ the first ' .

X.G samples of {W(k)) so that significant gains can be obtained. For example, the

radiometer uses the first sample W(O), and the method of Kay [34] uses the first two

samples, W(O), W(l) to form a detection parameter.

KIII. DETECTION METHODS BASED ON AR MODELING

Three different methods have been investigated and their performance evaluated via

Monte-Carlo simulations. The first one is based on complex data ({W(k)}),whereas the

other two are on real data ({Wc(k)}). All methods employ an autoregressive (AR) model

in which AR coefficients are used to form a detection parameter in the ACD without

forming an AR spectrum estimate. An important result obtained during our research is that

the first method, which is based on complex data, does not exhibit any sensitivity to angle,

whereas the other two methods do.

KIll A: METHOD I; COMPLEX DATA

Suppose we are given the following set of data samples, fR(0), R(I ),...,

R(m)) that have the properties of an autocorrelation sequence. Note that R(C) = R*(-?).
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An equivalent unique representation of this set of samples can be obtained in terms of 0

reflection coefficient {ki}, i.e., {R(0), k1, k2,..., k.1 where 1ki[ < 1, i = 1,2,..,M [46].

This is achieved by fitting an Mth-order AR model to the data {R(O),..., R(M)1 in the MSE

sense, and solving the resulting linear system of equations via the Levinson-Durbin

* algorithm. The steps are as follows:

i.1) Normal Equations

R(O) R(-1) R(-2) ... R(-M) ;

R(1) R(O) R(-1) ... R(l-m) a(M) 0

LR(M) R(M-1) R(M-2)... R(O) a(M) 0 j,.

(K.9)

The unknowns are the AR coefficients {a l(M),...,aM(M)} and the variance PM of the linear

prediction error. Once the above linear system of equations is solved, then the resulting

SAR spectrum of the data is

S AR(W) H (M) 2
~~+L a~ expj(-OWL

(K.10)

i.2) Levinson-Durbin Algorithm [50], [51].

There is an elegant, recursive and fast procedure for solving the normal equations in

(K.9), the so-called Levinson-Durbin algorithm. The method requires -M7 operations only

comparing to more general methods that require -M3 operations. Note that the R matrix in

(K.9) is Toeplitz and Hermitian. The algorithm proceeds as follows:
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Pi- Vi-I)

kj

a + , .

L- Pi 1 .- (K .11

Note that

k

and aK) =0 for X>i. So, in obtaining the solution for an AR model of order M, one

actually computes the solutions for all AR models of orders less than M, i.e., i-l,2,...M-1

M. The quantities {kj} 1 :5 i !5 M are known as reflection coefficients or partial correlation

coefficients. A necessary and sufficient condition for the stability of the resulting Mth-

order AR model is that [511, [521.

P.>0, 1 -iM

or equivalently 4

kPi 1 1 i (K.<) 1,1 !

It can be shown that 1ff Em> 0 in (K.9), then (K.12) is satisfied [51]. It can also be

shown that -

0 ( PI 1., i )= 1,2,...,M (K.13)

i.3) Detection Parameter

The detection parameter that will be adopted corresponds to the geometric over the

arithmetic mean of the Mth-order AR spectrum given by (K1O). It is described by [52]1.-

am exp(1/21rrnSARIJ) dw

AM 1/21rl + sA ()() dw

(K.14)
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It is, therefore, clear the VM depends completely on the shape of the AR model spectrum.

Since GM < AM, it follows that

O 5 VM 5 1 (K.15)

It is easy to see that when SARM) (co) is flat, i.e., white noise, then VM= 1 (FigureK. 1(a)).

On the other hand, if the spectral data spread is large, such as the pattern shown below in

Figure K. I (b), S (M) (M).-
ARW

S ( _ H ..... ,.

f 0 (a) 0 (b)

Figure K.1. Spectral spread: (a) white noise, (b) sinusoid in noise

then VM -0. So, another way of looking at VM is in terms of the flatness of the spectrum

[52).

It can be shown that VM can be easily expressed in terms of the reflection coefficent

of an Mth-order AR model as follows [52].

M

(K.16)

However, a closer examination of (K. 16) and (K. 1 I) reveals that

R() (K. 17)
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which is the normalized by the signal energy variance of the linear prediction error

associated with the Mth-order AR model. Since P0 = R(O), it is apparent that from (K.17)

and (K. 13), equation (K. 15) follows.

The detection schemes described in this section will be based on comparison of VM

to a specified threshold value, i.e.,

< y (HI)
VM

> Y (HO)
g. (K. 18)

where y is a number between zero and one.

i.4) M = I AR CASE: Equivalent Detection Parameters

If we are given the two first samples only {R(0), R(I)) JR(l) I SR(0), R(0) > 0,

then a Ist-order (M = 1) AR model can be obtained with the detection parameter

V,= [1-1k, 12]

or
!. P 1

V 1  - U-

R(O)
(K. 19)

However, 1k1
2 can also be used as an equivalent detection parameter as follows

> 0 6 ( H I )
1k112  

:.-(H.)

-6 (ono
(K.20)

This is the scheme suggested by Kay [34] (note t.' a l r,) and shown to be equivalent

to a comparison of a normaliz spectral peak with a threshold v, i.e.
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(_ (1)

i. Pi < v (HO ) K.21)

Another equivalent interpretation of the detection parameter V1 in (K. 19) can be established

using the determinant of the matrix

[R(0) " 1)

- R(I) R(O)
,;*......,

normalized by R2(0). Specifically, the detection parameter is

det[R1J 0oE
R(o )2 Rt2 (0 :"':

or

H,= [1 - 1k12] = V, (K.22)

It is important to note that in the case where {R(0), R(l)} are autocorrelation samples of a

Gaussian weakly stationary random process then H, corresponds to a normalized entropy

measure. Under H0 (white noise) the entropy is higher than that H, (signal+noise). This,

in the case of a Gaussian signal, in Gaussian white noise, the detection scheme in (K.22)

compares a normalized entropy measure of the process to a threshold.

We, therefore, conclude that VI(i.e., GM/AM of the spectrum or normalized

variance of the linear prediction error), 1a142, maX[SAR(C)/Pl] and H, (i.e., normalized

determinant of the covariance matrix) are all equivalent detection parameters for a 1st-order

AR model and complex data {R(0), R(I)). Their generalization to higher-order AR

models- however, does not generally provide equivalent detection schemes.

i.5) Mth-order AR case: Generalizations

If we are given the first M + 1 samples {R(0), R(l),...,R(M)}, then the following

detection parameters can be obtained from the Mth-order AR model:
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U - 17 (1 jkj (GM/AM) -
R(0) i-i 2

(K.23a)

AM 14)i2u k (Magnitude or the poles) %

(K.23b)

M

FM -I 1[38],

(K.23c)

CM - I kj F.*

(K.23d) I

PEAKtj -:max SR(1 PM
(K.23e)

M
17 P- M

H i 0 1 M 7
RM( R(0) R(0) RCO)

R (0)(K.23f)

The detection parameters RM, FM, and CM may be seen as generalizations of lk 1 2 shown in

(K.20). However, they are not generally equivalent with each other nor with (K.23e),

(K.23f) and (K.23a). For finite length data N and order M > 1, each one of the detectionL

parameters given by (K.23 a - K.23f) is expected to have different performance. Some

asymptotic results (N-4..) related with (K.23a), (K.23c) and (K23e) are given in

Addendum I.
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The method employs VM as a detection parameter ((K.16), (K.17)) and compares

that to a specific threshold value as shown in (K.18). However the VM is estimated by

Rerforming AR modeling in the autocorrelation of autocorrelation domain AACD. This is

because the the AR coefficients of an Mth-order model are computed using (K.9) or (K.11)

with "data" {R(O),...,R(M)} generated as follows:

1 kG-r *
R(.t) - W(n) W(n*-t)

XG n-i

SM
(K.24)

where W(n) is given by (K.7). Since W(n) is the output of the correlator, {R('r))

represents an estimate of the autocorrelation of the autocorrelation of the original time

sequence (i.e., the input to the correlator). Equation (K.24) corresponds to the biased

autocorrelation formula, which has been shown to guarantee a stable Mth-order AR model

fi.e. ]kil < 1, i = 1,2,...,M) [51]. It is for stability reasons that the biased estimates are

used here instead of the unbiased ones.

In summary the method proceeds as follows: a) Given the data in (K.7), compute

R (), T = 0,1,...,M from (K.24). b) Use the Levinson-Durbin algorithm in (K. 11) to

compute PM c). The detection parameter is VM = PM/R(O). Note that the first sample W(0)

in (K.7) is notlaken into account when computing {R(T)} in (K.24).

(iii) ermanc

The detection performance of Method I has been tested via Monte Carlo simulations

for G 1000, X = 0.1-0.5, and input SNR in = 0 dB down to -25 dB. The probability of

detection PD was computed for PFA= 10-1. To assume statistical confidence, a very large

number of trials (1000) was performed. These results are illustrated in Figure K2. Several ,

features can be noted from Figure K2:

208

..................................... ........ ............ :,. ...... ,........-.........~ .,. ..-. ...... -"...
"s. ,.,, . , , . xJ j .'a'.*, , . ". ' : . -_.. ,-.. , . -. . ".' . . 5~ * •5 -. , *.. - - .



-p %

OF I )~~= 0.5 oiq

ii (7

(33

M 2

5?p = S
S SA

LnL

Figure K.2 Monte Carlo Simulation results on

34.. ?'Method I with G=1000-

40 C4

-25 -20 -15 -10
Yn
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a) For a constant order M, the performance of the AR detector I improves as X

increases.

b) For a constant X, the performance also improves as the model order M

increases. _

c) For M=2 and ,=-0.5, Method I outperforms the radiometer detector (®) when

Yi: < -23.4 dB and the correlator detector (©) when yi- < -21.4

d) For G = 1000, PD= 0.95, PFA= 0.1, M=I, . = 0.5, the AR detector I will

require 3.6 dB and 8.2 dB less than the correlator ® and radiometer ( detectors,

respectively.

e) There is approximately 0.4 dB improvement if M changes from M=1 to M=2.

Furthermore, an additional improvement of -0.4 dB is achieved by changing the

order from M=2 to M=7.

Figure K3 illustrates similar improvements but for the case where G =. 100. For

example, if M = 1, X = 0.5 then Method I outperforms the correlator-detector ( ®)) for

Yin:_ - 14dB. Furthermore,Table K.I summarizes the effect of X (length of the data), model

order M and input SNR yj on the distance d =Imo - mil between the two means and on the

variances a02 , 12 of the detection parameter VM. From Table KI, it is apparent that:

a) if M=const, yj,=const and XT then dl-, a +, 2*-
0 1

b) if0-const, Yin=constandMT thend" 2, d 20 1
c) if M=const, X=const and ydthen d,, a0 eon t, u2*

The AR detector is therefore independent of the noise variance (Yi.) for a given order M

and length of data XG. It is, thus, unnecessary to estimate the noise variance in order to set

a threshold at the receiver.
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(iv) Comnutational Complexity

The computational complexity of the AR detector I is compared with that of the

Periodogram (FFT based), using as a figure of merit the number of complex multiplications ...

(which are the most expensive). Note that a complex multiplication is equivalent to 4 real

multiplications and 2 real additions. The results are summarized in Table KII. From this

table several important features can be noted:

a) If the length of the data is XG = 2a, then the Periodogram detector requires

Mu = (a + 1) •G, whereas the AR detector requires Mu - (M + 1) XG.

b) The AR detector requires less multiplications than the Periodogram for M < a.

Note that a rectanglar window on the data has been assumed for the Periodogram in Table KI.

If any other window is used, which is usually the case, then Mu (Periodogram) =

(a + 1) XG complex muiltiplications p]u 2XG real multiplications.

KIl. B METHOD 11: REAL DATA IN AR MODEL

This method employs real data to form a detection parameter using a second-order

AR model. The sequence of samples is given by (K.3) and (K.5), i.e.,

W,(k)= S cos ik + n(k) (H-)

k =0, 1,...,G Jilfl[ 5 n .

- W,(k) = n1(k) (Ho) (K.25)

with the statistics of {n1(k)j given in (K.7) and (K.8). The approach taken here models

{W,(k)} XG as a 2nd-order AR process of which the parameters are estimated using the

least-squares (LS) method for spectral estimation [46]. The detection parameter is the

213

• .-. ... c--: ..



CC

161

0N LO 0D 0

C-,

Ln

* L 0 cN

o_ o~ II 0 +r-

Ike L

5-5 C) cc 00 XO

a - 0O m4 4
L. -4 Nn +A 0L

-L r_

-~~ +

*C (a~

*~ M- Cm0 O

K~~~L - 0'4NL

0L 0 4L C

Li~i -CD214



'r' w"

" . .:..

coefficient of the AR model, which corresponds to the product of the poles' magnitude. It . .

is given by

P11.1. V(

2 R1  R2 2 -R 2  ,

(K.26)

where -.-.-

AG-2 XG-2
* ~R11  W2 (k~i) ,R 2 2 - W2(k) - ~-'

k=1 k- C-

AG- 2 AG- 2
R 1 2 = w0 (k)W(k+1) , rl " E WO(kel) WO(k.2)

k-1 k-1.

,G-2
r2 - W 0 (k ) W C(k +2 ) -.-.

k=-I ~(K.27).-.--

It is important to note that for the signal only case, Pn = 1 exactly. Furthermore, for )G ""

- large (%G > 100) the Burg technique [53] and the Yule-Walker (YW) method [54] for

spectrum estimate, both give estimates very close, if not identical to those of LS[46]. This

is because as XG -4oo the LS, Burg and YW methods become the same.

The detection scheme compares Pll to a threshold value y ,i.e.,

> y )

P11 <y (Ho) (K.28)

We have tested the performance of this scheme for y =0 dB down to -20 dB,

G 1000, X = 0.1, 0.5, and signal angles Qft 11.25" g, p = 1,2,...,10. The sample

mean of the detection parameter P11 was computed from 1000 sample trials under H 1 . The 7

key result obtained from this group of simulations was that P11 is very sensitive to the

values of the signal angle fl(i.e., g). This high dependence of P11 (HI) on Q may cause

P11 (HI) 0 not only using the LS method but also the Burg or YW techniques. The
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results are illustrated in Figure K.4(a,b) for the LS and Burg techniques, respectively. A

theoretical justification of this phenomenon can be established using asymptotic (XG-+oo)

results. As ILG--, the detection parameter P11 in (K.26) becomes (LS or Burg or YW

* method)

R21-R(O) R(2) N

~~ii -
2 (O)-R 2 (1)

* (K.29)

*with R(O) 1/2 + QB, R(1) 1/2 cos Q~, R(2) cos 2

Thus .

N =1 -cos 2Q~ - 4 QB COS 20, and

D D 2- Cos 2Q + 8Q 2B + QBI

where QB is the "average" variance of the additive WGN. Note that if Q.8= 0, then N =D

and therefore P11 =1. However, when QB 0 then N 0 if

cos 2Q~ (K.30)
1 + B

* So, for those values of Q~ for which (K.30) is satisfied, %'1 (H,) =0. Table KMl illustrates

* the cases where N =0 for various yi. using (K.30) and Figure K.4 Apparently the

simulation results (Figure K.4) are in good agreement with the asymptotic results (K.30).
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Table KIII. Values of Q =1 1.25 Ig for which PH -0 under various ',.
- '. -.. J

'in(dB) Q(theory) p (theory) 9j(simulatlon,Fig. K.41

0 5x10 4  1.810 0.16

40 -5 5xlO- 3  5.680 0.5 ,,.J 0

-10 5x10- 16.77 °  1.49 .,1.5

-15 5xl10 1  35.260 3.1343

-20 5 43.630 3.87 _4m__ ___ __
20 q

Due to the high dependence on the signal angle Q, Method U was not pursued any

further. It is important to note, however, that while Methods I and I are equivalent from

the spectrum estimation viewpoint, they have diverse performance as far as the detection

scheme in (K.28) is concerned.

III.c METHOD III; REAL DATA IN ARMA MODEL

This method is a modification of the LS approach and employs the same real data I- ."

record {W,(k)}$Y. It models the data as an ARMA (2,2) process from which the

magnitude of the second AR coefficient serves as the detection parameter, i.e.,

a~ " z21 ti -z I t;2"'""

zi I z22 - z i 
2 z2 1

(K.31)

where
K-2 N-2

Zl I 1: Wc(k+l) W0 (ic+3) z2 2 - I Ve(k) We(k+I4).. .

M-2 M-2
12 WC(k) We(k+3) , Z21 m We(k*1) We(kl)

kal k-l

K- 2 N- 2
a I We(k*1) WO(k*3) , t 2 - I ge(k+2) W(k+4)

k-l k I
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C

In the "signal only" case, ja21 = 1 exactly. Futhermoe under H, (signal plus noise), as the

length of the data record M-- then
L q

z11 = 1/2 cos 211, Z22 = 1/2 cos 20, z12 = 1/2 cos 11, %

z2I = 1/2 cos 3Q, t= 1/2 cos 3- and t2 = 1/2 cos 40.

Thus,

Ia2 1= -
1/8[i-0os29 -

i.e,
asymptotically (M-+-), the parameter la2 l is free of the AWGN. However, the price paid

is that under H0 equation (K.31) becomes a very bad estimator of ja2l which as M-4oo
0

becomes undefined (ja21 = - ). To remedy this problem, we sacrifice a part of the

method's good performance under H, by using as detection parameter

=Pz 2 1  t1  - I t2

Z1I Z2 2 - Z1 2 z2 1  Q

(K.32)

where Q = The detection scheme is the same as that shown in (K.28).
-;G

We have tested the performance of this approach for yin = -10 dB down to -20 dB,

G = 1000, X=0.1, 0.5 and signal angles Q = 11.25* p, p = 1,2,...,10. The PD was

computed for PFA f 101 and the results are illustrated in Figure K5. From this figure, it is

apparent that the performance of Method I is determined by the angle signal Q, having as

a lower bound curve the AR (min) and an upper bound curve the AR (max). Thus, while

the angle dependence of Method I is much less than that of Method II, it is still large

enough to degrade the performance of the detector. We, therefore, did not pursue any

further Method I.
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IV. CONNECTION WITH OTHER DETECTION SCHEMES

Given the data r(k), k 0,1,2,..,L in the tm=-donain where

r(k) = exp (jfk) + E(k) (H1)

r(k) = e(k) (Ho) (K.33) |- .,

various detection schemes have been developed to decide between H0 and H1.

1) Radiometer The detection statistic is

I L "

W(O) = - IIk) j2 (K.34)
L k-O 

which is the frt lag of the autocorrelation of {(k)}.

2) AR(1 Method of Kay [341: The detection statistic here is the magnitude of the

parameter of a Ist-order AR model, as explained in section III.A (i.4). The method

estimates the first two autocorrelation lags K---

L
W(o) I . V k(k) 12

kc-0

L- 1
W(1) - /L . r(k) r*(k1)

k-O (K.35)

and forms the parameter
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IWO)
W 0'

w ( o)(K.36)

which is compared to a threshold.

3) Adaptive AR Detection Scheme r551: Considering the binary detection problem '
r~k) -- sO<) + e(k) (H1I)

r(k)= e(k) (H0) (K,37)

the method models the unknown signal as an AR process

s(k) + ai s(k - i) =u(k)i= 1 '-:i"

and uses as detection parameter the

2
?ASNR = ,- (K.38)
2

The method estimates from the observations {r(k)} the {ai3, 6.2 using a nonlinear

optimization technique,

4) Broadband Detection of Signals r371.

Considering the binary detection problem

r(k)= s(k) + n(k) (HI)

r(k)= n(k) (Ho)

where {s(k)) is assumed to be stationary Gaussian random process with a broadband.
unknown PSD, the method models {r(k)) as an AR process of order P, i.e.,

pr(k) + a ar~k - i) --u(k) -:2::

and uses as detection parameter
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which actually is the GMIAM of the signal spectum.

5) RF Correlator-Detector [Section 5.31

This is a detection scheme that employs AUl autocorrelation samples of {r(k)} i.e.,

1 L-T
w(c)=- r(k) r*(k + 2)

L K-0

by forming the following detection parameter.

XG
R(O) - W(T) W*(T)

which is actually the first lag of the autocorrelation of the autocorrelation sequence. Thus,

the Correlator Detector may be seen as the radiometer operating in a different domain

(AACD).
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ADDENDUM I

In the asymptotic case (XG the "data" generated by (K.24) becomes.

*H 0 : {R(0)=Q, R(1)=...=R(M)= 01

H1 : {R(0)=1I+Q, R(l)=e-jQ ,.,R(M)=e-jmfl} (1. 1)

The AR parameters generated via the Levinson recursion take the values: (Mth-order

Model)

HO: ax(m) 0 ,i= 1,2,...,M

ki 0, i=1,2,...,M

*P 1 = Q, i=-0,1,...,M (1.2)

H1 : - e l, .. M
x(Q +M)

(Q +. 1)

(Q+1+1 )
Pi- .2 Q , 11 .... '

(Q~j)

(1.3)

Therefore, the detection parameter rM (Ketchum, [38]) (K.23c) becomes

H10: rM 0

Hl: rM
(Q+M) 2

(1.4)

and thus the distance 'YM= IFM(Hj)-TMaIk)I is given by
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(Q+t4) 2

On the other hand, VM becomes

H0 : VM= I~

Q(Q + M4 1)
HI: VM=

(Q+1 ) Q+M)

and therefore, the distance vM=IVM(Hl)-VM(HO)I takes the value

MI
VMM

VM (Q+ I (Q+M) (1.5)

Comparing vM with YM, it is apparent that vM> YM for M>l1 and vM Y M for M=L.

For the asymptotic case (XG4. c), we can also find equivalent detection parameters

to a normalized AR spectrum peak. If we define as

SAR (J) A

(1.6)

where D(co) is obtained from (1. 3) and (K.10) as

M I
D (W) =1-e(~~l

-i(Q+M)

then

J(&I - JDW~) 12 (W Q A

(Q +M) A-I (Q + M) A

1M M

(Q + M) Ai '=

By differentiating and forcing -=0, we obtain
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1 1.4 P1 BJ (14)A e (4 )

(1.7)

After some algebra, we find that the solution of (1.7) which corresponds to

minimum J(wj) is
0 'A, + al -o

* and, thus, the spectrum peak is given by

12 1

We conclude that equivalent detection parameters to (1.8) can be

M (C

- ~ ~ Ior rm or m (M
+ M ii(Q + M4)2 M * 1

For example, when M=2 equation (1.7) becomes :

* or

sinrt + al)[4 cos(W + 0) 1 Q 2

* Therefore a, 0 Z.

_ 
(~ )2

(Q + 2)2

and - 2

(QQ

where r>2.

227



-. . . . . . S... ":"" - "° " "-. ° .1 " -"t- " wT 
-y 

.. ... .. - : -:K-:'- -- . .

REFERENCES

[1] H. Urkowitz, "Energy detection of unknown deterministic signals," P IEEE.
Vol. 55, pp. 523-531, April 1967.

[2) R. A. Dillard, "Detectability of spread spectrum signals," IEEE Trans. Aerosp.
*Electron. Systems. Vol. AES-15, pp. 526-537, July 1979. -""-

[3] W.W. Peterson, T.G. Birdsall and W.C. Fox, "The theory of signal detectability,"
IRE Trans.. PGIT-1954.

[4] S. L. Berstein, "Optimum detectors of pseudonoise waveforms," MIT Lincoln
o Laboratory Technical Note No. 1974-37, June 1984.

[5] J.D. Edell, "Wideband, noncoherent, frequency-hopped waveforms and their
hybrids in low-probability-of-intercept communications," NRL Report, Code
8025, November 1976.

[6] D. Woodring and J. Edell, "Detectability calculation techniques," NRL Report,
Code 5480, September 1977. L

[71 A. Polydoros and C.L. Weber, "Optimal detection considerations for low
probability of intercept," MILCOM '82 Proceedings. pp. 2.1.1-2.15, October
1982.

S [8] N. F. Krasner, "Optimal detection of digitally modulated signals," ] "-"."
Comm.. Vol. Com-30, No. 5, pp. 885-895, May 1982.

[9] N.F. Krasner, "Maximum likelihood parameter estimation for LPI signals,"
MILCOM '82 Proceedings. pp. 2.3-1 to 2.3-4, October 1982.

[10] M.G. Kendall and A. Stuart, "The Advanced Theory of Statistics" , Vol. 1, Third
Edition, Hafner Publishing Co., N.Y. 1969.

[11] A.H. Nuttall, "Accurate efficient evaluation of cumulative or exceedance probability
distributions directly from characteristic functions," NUSC Technical Report No.
7023, October 1, 1983.

[12) H.L. Van Trees, Detection. Estimation and Modulation Theory. Part I, J. Wiley,
1968.

[13] S. Kullback, "Information Theory and Statistics". Dover, New York, 1968.

[14] R. Hogg and A. Craig, "Introduction to Mathematical Statistics". Second Edition,McMillan, New York, 1965.

[15] J. I. Marcum, "A Statistical theory of target detection by pulsed radar:
mathematical appendix", The Rand Corp., July 1948, also reprinted in Trans IRE-
IL April 1960.

[16] J. Di Franco and W. Rubin, RadarL cion. Artech House, 1980.

228

,~~~~. .. ....-,. °., .. o'.°...o....-. .... '.- ... -°,.. .. . ,.% .. .- . .. .. , . , - -. °. .-.



[17] Special Issue on Synchronization, IEEE Trans. on Communications. Vol. COM-28,
August 1980. ...- :.,

[18] J.K. Holmes, Coherent Spread Spectrum Systems. John Wiley, 1982.

[19] M. Schwartz, Information. Transmission. Modulation and Noise. Mc-Graw Hill,
Second Edition, 1970.

[20] P. Wong, "Delay chip-rate detector analysis", GTE-Governments Systems,
Western Division, Report No. PRE-1242, June 1985. 1.

[21] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals. Series and Products, New .-
York, Acdemic Press, 1980.

0 [22] E. J. Kelly, I.S. Reed and W.L. Root, "The detection of radar echoes in
noise," J. SIAM. Vol. 8, pp. 309-341, June 1960.

* [231 I. S. Reed, "On a moment theorem for complex Gaussian processes," IRE Trans. %
Inform. Theory Vol. IT-8, pp. 194-195, April 1962.

[24] I. Selin, "Detection of coherent radar returns of unknown Doppler shift," EE.
Trans. Inform. Theory. Vol. IT- 1I, pp. 396-400, July 1965.

[25] L.E. Brennan, I.S. Reed and W. Sollfrey, "A comparison of average-likelihood
and maximum-likelihood ratio tests for detecting radar targets of unknown Doppler
frequency," IEEE Trans. Inform. Theory, Vol. 1T-14, pp. 104-110, January

* •1968.

[261 G.W. Lank, I.S. Reed and G.E. Pollon, "A semicoherent detection and Doppler
estimation statistic," IEEE Trans. Aerosp. Electron. Systems. Vol. AES-9, No. 2,
pp. 151-165, March 1973.

* [27] J.D. Edell, "Wideband, noncoherent, frequency-hopped waveforms and their
hybrids in low-probability-of-intercept communications," NRL Report, Code
8025, November 1976.

[28] R.A. Dillard, "Detectability of spread spectrum signals," IEEE Trans. Aeroin.
Electron. Systems. Vol. AES-15, pp. 526-537, July 1979.

[29] N.F. Krasner, "Optimal detection of digitally modulated signals," IEEITans
Comm.. Vol. Com-30, No. 5, pp. 885-895, May 1982.

[30] A. Polydoros and J.K. Holmes, "Autocorrelation techniques for wideband
detection of FH waveforms in white noise," MILCOM '83 Proceedings. pp. 776-
780, October 1983.

[31] A. Polydoros and J.K. Holmes, "Autocorrelation techniques for wideband
detection of FH/DS waveforms in random tone interference," MILC.OM. 8
roceedings.- pp. 781-785, October 1983.

[32] A. Polydoros and K.T. Woo, "LPI detection of frequency-hopping signals using
autocorrelation techniques," IEEE Trans. Commun.. Special Issue on Spread
Spectrum Communications. October 1985.

1*6*

229

... . . ..A
• .. - .. . .. ., . •.-. ..- =. . . . .. . . ..' - . • . . . -. .-. .. . . . - .. . .. '.. .~ .. . .v . . . . . . ..- .-.



[33] A. Polydoros and K.T. Woo, "Wideband spectral detection of unknown frequency
signals," presented at the Intern. Symposium on Information Theory, Brighton,
England, June 1985

[34] S.M. Kay, "Robust detection of autoregressive spectrum analysis," IEEE.
Trans.Acoust.. Speech and Signal Processing. Vol. ASSP-30, No.2, pp. 256-
269, April 1982.

[35] S.M. Kay, "Asymptotically optimal detection in unknown colored noise via
autoregressive modeling," IEEE Trans. Acoust.. Speech and Signal Processing.
Vol. ASSP-31, No. 4, pp. 927-940, August 1983.

[36] B. Porat and B. Friedlander, "Parametric techniques for adaptive detection of :::."
Gaussian signals," IEEE Trans. Acoust. Speech and Signal Processing. Vol.
ASSP-32, No. 4, pp. 780-790, August 1984.-

[37] S. Kay "Broadband detection of signals with unknown spectra," _ntem. Ca.
ASSP Proceedings- Tampa, Florida, pp. 331.1-33.1.3, April 1985.

[38] J.W. Ketchum and D. Herrick, "Signal detection using autoregressive parameters,"
Intern. Conf. ASSP Proceedings. Tampa, Florida, pp. 9.8.1-9.8.4,.April 1985.

[39] E.K.L. Hung and R.W. Herring, "Simulation experiments to compare the signal
detection properties of DFT and MEM spectra," IEEE Trans. Acoust.. Spech and
Signal Processing- Vol. ASSP-29, No. 5, pp. 1084-1089, October 1981.

[40] "System tradeoffs for LPI communications", Axiomatix Final Report R7911-1,
November 5, 1979.

[41] M.K. Simon, J.K. Omura, R.A. Scholtz and B.K. Levitt, Spread Spectrum
Communication. Vol. III, Computer Science Press, 1985.

[42] W.B. Davenport and W.L. Root, An Introduction to the Theor of Random Signals
in Noise. N.Y. McGraw Hill, 1958.

[43] L. Kleinrock, "Detection of the peak of an arbitrary spectrum," IEEE .rn
Inform. Theory. July 1964.

[44] D. McGinn and D.H. Johnson, "Reduction of all-pole parameter estimation bias by
successive autocorrelation," Proc. ICASSP'83. pp. 1088-1091, Boston, MA,
April 1983.

[45] L.B Milstein and P.K. Das, "Spread spectrum receiver using surface acoustic wave

technology," IEEE Trans. Commun.. Vol. COM-25, pp. 841-847, August 1977.

[46] S. Kay and L. Marple, "Spectrum analysis - A modem perspective, "Pr I IEE
Vol. 69, No. 11, pp. 1380-1419, November 1981.

(471 B.I. Helme and C.L. Nikias, "Improved spectrum performance via a data-adaptive
weighted Burg technique," IEEE Trans. Acoust.. Sp=ech and Signal Processing.Vol. ASSP-33, No. 4, August 1985.

230 "
..-. ' ..



(48] A.V. Oppenheim and R.W. Schafer, "Digital Signal Processing, Prentice-Hall,
New Jersey, 1975.

6[49] A. Papoulis, Probability, Random Variables and Stochastic Processes. McGraw-
Hill, New York, 1965.

[50] S. Haykin (ed.), Nonlinear Methods of Spctral Anals. Vol. 34, Springer-
Verlag, New York, 1979.

* ~~[51] S. Orphomides, Optimum Signal Processing McMillan Publishing, Co., New .- '''

York, 1985. I

[52] J. Makhoul, "Linear prediction: A tutorial review", Proc. EE~ Vol. 63, pp. 56 1-
580, April 1975.

*[53] J.P. Burg, "Maximum entropy spectral analysis", PhD Thesis, Stanford Univ.,
1975.

[54] T. Ulrych and T. Bishop, "Maximum entropy spectral analysis and AR
decomposition",. Rev. Geophysics and Space Phys., Vol. 13, pp. 1983-200, Feb.

1985

[55] B. Porata and B. Friedlander, " Parametric techniques for adaptive detection of ,
Gaussian signals" IEEE Trans. ASSP, Vol. 32, pp. 780-790, August 1984.

LI

* '.-

231


