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1.0 INTRODUCTION (Rl
Y S 'L:.':-:
We examine in this report the problem of wideband detection of a spread spectrum LN

signal from an interceptor's viewpoint; our aim is to derive, evaluate and compare various
detector structures whose purpose is to intercept a spread-spectrum communication
transmitter. The transmitter under surveillance employs a variety of modulation/
spreading/transmission techniques which are invariably assumed to emit the message-
bearing signal in deep background noise or interference. Thus, the challenging task of the
intercepting detector is to reveal as best as possible any transmission of the unknown
spread waveform in the presence of an obscuring noisy environment. D

" Naturally, the degree of success achieved by the intcrccptoxi when detecting the
presence of the communicator's spread signal depends on the amount of information
available to him regarding the structure of that signal. At one extreme, the interceptor's
most fortunate situation would be to acquire the spreading code itself (crack” the code). If
this is too demanding, he must settle for less, such as approximate knowledge of the
signal's carrier center frequency, code rate, code epoch, spreading banc}width, etc., or a

subset thereof. At the other extreme, he might know almost nothing, 1 m which case, he

could resort to a simple energy discriminator device (i.e.,"radiometer”) since it is, on many
c.
occasions, a low-SNR asymptotically optimal detector [1,2]. In this report our main

interest is to investigate the possibility that the interceptor could do better by optimally

processing whatever information is available to him between the two extremes cited above , , A

The detectability of the primary candidates for low-probability-of-intercept (LPI)
waveforms, such as direct-sequence (DS), frequency-hopping (FH), time-hopping (TH)
and their hybrids, is customarily related to two factors: (1) performance level of the
interceptor's detector whose only function is to monitor the communicated messages and,

(2) amount of signal processing (i.c., complexity) associated with such performance.

1 Approximate spectral band location is a minimum prerequisite for any interceptor. Sl -
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In subsequent sections, it will be shown that the detectability (exploitability) of a
spread signal is greatly dependent on the interceptor’s knowledge regarding the form of
both the waveform angd the interference. In other words, one should know not only the
spreading format used (plus, possibly, some other parameters), but it is also very helpful to
be able to identify the kind of background noise or interference involved. Although most
of this report deals with white Gaussian noise as the dominant form of (omni-present)
interference, a case is made in section 5.5. about the impact of nonwhite interference
(random tones, in particular). It will be shown in Sections 3 through 5 that, when white
noise is the only deterrent, the gains achieved by intelligent processing of the received
waveform can vary from modest to significant (always as compared to the performance of a
radiometer), depending on the scenario at hand. However, when random interfering tones
are present and a DS or a hybrid FH/DS is detected, those gains could become impressive
(many tens of decibels, for example). For details, see Section 5.5.

In searching for those structures which perform the aforementioned tasks, we start
from the optimal solutions, as derived from applying the optimal likelihood-ratio rule. The
results assume a good deal of knowledge about the signal parameters (although never the
spreading code itself) and could thus become rather academic in most practical situations.
Furthermore, they typically suffer from the common symptom of prohibitive
implementational complexity. Thus, it is important to consider suboptimal structures and
evaluate their relative loss with respect to the (unattainable) optimal performance ;this has
irdeed been the spirit which permeated the present topic.

The report is organized as follows: In the remaining part of this section we classify the
various receivers and briefly lay the theoretical groundwork for evaluating the forthcoming
detector structures. In Section 3, 4 and 5, we develop the theory for DS, TH and FH
signals, respectively.

There exists a wide variety of interceptor receiver structures, a rough classification of

which is attempted below and is also depicted in Figure 1. The various factors

M T N i o e b s




incorporated in the classsification include the spread spectrum signal whose interception
(detection) is sought, the optimality or suboptimality of the interceptor's decision
algorithm, the degree of knowledge of different system parameters, etc. Wideband
1 detectors can first be classified as optimal or suboptimal. We term "optimal" those
structures which result from a straightforward application of the generalized likelihood ratio

theory to this problem and invoke a number of assumptions regarding the signal structure.
For instance, optimal solutions typically assume knowledge of certain parameters (code rate
or hopping rate, SNR, carrier frequencies, etc.) and average over the unknown ones
(timing epochs, time hopping or code sequences, etc.). Since, however, optimal
structures are often hard to implement, one resorts to "suboptimal” solutions whereby
either one (or more) assumptions are removed or certain "atypical" nonlinearities such as
the In cosh (¢) function, are substituted by simpler ones as, for instance, a square--law
device.

A second classification results from the nature of the spread-spectrum signal for which
the intercepting device is designed, so it can be a DS, FH, TH or hybrid detector. Also,
DS and TH detectors can be coherent or nponcoherent, depending on whether or not the

carrier phase is known. FH detectors are assumed to be noncoherent from hop to hop due

to the nature of the communicating channel and the transmitter wideband FH synthesizers.

The presence or absence of timing (epoch) information about the spreading code

distinguishes detectors as synchronous or asynchronous. It is clear that timing is initially

unavailable since the intercept detector does not even know if the signal is there; hence, LSS
asynchronous structures naturally attract more practical interest. However, synchronous
and/or coherent detectors will also be considered -- not only because they provide useful . :
upper bounds in performance -- but also because of the conceptual possibility of L_-__'
improved detector structure aided by the recursive estimation of pertinent parameters [9). s
Furthermore, by quantizing the continuous-epoch uncertainty region into an adequate finite
number of points, matched-detector structures can be devised that are synchronized to each L-'—-J
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of those levels and whose outputs are combined to yield the final decision variable. Thus,
since the maximum code-epoch uncertainty equals a chip or hop time,2 one concludes that
good nonsynchronous detectors can be constructed from combinations of a few

synchronous ones. More discussion on this topic is provided in later sections.

P TS

Finally, we classify the detectors according to whether they expect to operate in the
presence of white (and typically Gaussian, such as thermal noise) or nonwhite interference.
The maximum-likelihood approach renders itself to the first case most easily, while its
formulation is cumbersome for the second. Accordingly, the theory is fairly mature for
AWGN interference, while it is still at the exploratory level for scenarios which involve

more complicated interference forms. It is, nonetheless, a fact that most of the challenging

« practical problems reside in the "dense-interference-environment" area, where one or more
wideband signals are to be intercepted amidst a large number of irrelevant, narrowband and
wideband users, jammers, etc. Such interference should be excised to the best possible
degree before the remaining detection and estimation tasks on the sought signal can be
performed successfully. We shall not deal extensively with the excision problem in this
report (a special case will be discussed in Section 5; rather, we shall assume that t:e

remaining interference after excision consists of wideband Gaussian noise and focus on the

performance of associated wideband detection algorithms. In terms of the block diagram in
Figure 2, which shows the simplified flow of operations in a standard LPI receiver, the
theory herein pertains to the "wideband signal detection” box, while interference excision,
noise-level estimation, etc. are performed in the first box (“data collection and
processing"), possibly aided by a continuously updated "signal history file". The ultimate

- goal of the LPI receiver is indicated in the last box ("signal analysis and modulation

recognition"), wherefrom the information is made available to other interfaces.

“This clearly assumes a purely random code sequence for which a full chip (or hop) time-
shift corresponds to another realization of the same stochastic process.
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We shall typically refer to the communicator's signals under interception threat as
LPI signals. For the sake or clarity we should define here what we mean by such an LPI
signal: it is a spread-spectrum waveform whose code is never identifiable (decipherable)
from an interceptor’s viewpoint; the latter is then forced to wideband processing throughout
(as opposed to the communicator's narrowband processing after despreading). The
detectability of such an LPI signal is a function of both scenario-dependent factors
(topology, distances, power budgets, etc.) as well as scenario-independent quality factors,

namely the structure of the interceptor’s signal-processing algorithms (detection rule). The
first five sections address the algorithmic aspects of the overall detectability/covertness
issue and establish associated figures of merit parameterized by the spreading format,
existing SNR and model dimensionality (time-bandwidth product). The ultimate quantity

of interest, to be extracted from the analysis of these detection algorithms, is the required

carrier-to-noise-ratio CNR = (S/No)req at the input to the detector in order to achieve a

certain performance level (see Section 2). Then, any value of (S/Ng)yeq Can be linked to the

aforementioned scenario-dependent factors for a global, LPI vulnerability assessment. It is
clear, however, that the two aspects of detectability can be treated separately. Furthermore,
different detection algorithms can be compared on the basis of their associated (S/Ng)peq,
their relative merit increasing as (S/N¢),eq decreases; conversely, from the communicator's

viewpoint, spreading waveforms with lower (S/Ng)., are more vulnerable to interception.
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2.0. LIKELIHOOD RATIOS AND PERFORMANCE MEASURES

It is well known [3] that, under the common detection-performance criteria (most
notably, the Neyman-Pearson philosophy), likelihood ratios yield optimal hypothesis-
testing solutions, and performance is measured by the resulting pair of detection and false-
alarm probabilities (Pp, Pgy). Furthermore it will be shown later that, in many models the
overall likelihood ratio (LR) is expressible as the product of individual LR's due to the
statistical independence of successive code chips (random DS code) or hopping slots (TH
or FH). When the true model of the problem does not allow for such independence
assumptions (as in the case of a random, but fixed, carrier phase), the resulting LR is too
complicated for either exact analysis or implementation3. In this case, the performance of
those (complicated) optimal decision schemes is assessed by upper and lower bounding
arguments (see the following sections); in conclusion, the product IR can always be
thought of as the analytical cornerstone. Since the log-likelihood ratio (LLR) is not only
theoretically equivalent, but also more convenient to implement than an LR (it turns
products into sums), it will serve as our point of departure.

The number of terms entering the summation of the LLR hops is typically large -- it
equals the number of chips (DS), or time frames (TH) or frequency (FH) observed.
Therefore, it is customary to model, via a central-limit-theorem (CL.T)-type argument, the
distribution of the resulting LLR as approximately Gaussian under either hypothesis. This
constitutes a basic assumption upon which performance is derived in this report.
However, the fact that no such LLR possesses an gxact Gaussian distribution brings about

certain ramifications, as explained below.

3In addition, it can be argued that the superposition of random data on DS or TH, such as
PSK modulation, invalidates the modeling assumption of a fixed value of the signal phase
over a multi-bit observation interval.
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Furthermore, it should be pointed out here that the ensuing discussion, which is
perfectly suited for DS waveforms, is also applicable to FH or TH only if the overall LR
includes a large number of independent hops (FH) or frames (TH), so that the product-LR
and some-LLR forms are valid and useful. As a suboptimal alternative to such optimal FH
or TH detection procedures, it is possible (and many times preferable, from an
implementation viewpoint) to perform individual LR decisions per hop (FH) or frame (TH)
and combine afterwards these "tentative” LR-decisions over many hops or frames (post
detection combing). In such cases, they one should address the quantitative properties of
the LR directly; this will be further elaborated upon later.

Let us now return to the sum-LLR framework. To be specific, assume N
independent, identically distributed (i.i.d.) measurements 1;, j = 1,2,...,N and let A(r)
indicate the individual LR associated with any one of them. The corresponding individual
LLR is denoted by

) = In Afr) 2.1

The overall LR and LLR A and & respectively, are

N
A= T Ar) (2.22)
Fid
and
N
L - i§‘ L) (2.2b)

due to the i.i.d. assumption.




Cala oAt R Sebole et St B B g Jhgt

a a

T Y T

Let A(r) denote any "well-behaved" transformation? of r. Although it is convenient, in
this context, to think of A(r) as an approximation to (or simplification of) &(r) as per (2.1),

it need not be so. Clearly,

AN
A= JE] A() 2.3)

constitutes another (typically suboptimal) decision statistic for the hypothesis testing at
hand. Furthermore, the CLT approximation will be applicable to both&and A, as long as
N is sufficiently large. With the resulting "Gaussian" performance or (2.2) or (2.3) in

mind, consider the following model: Let X denote a Gaussian decision statistic under both

hypotheses H;; i = 0.1. The performance pair (Pp, Pg,), associated with the test

H;
X > threshold 2.4)
Ho
is simply
-1 -
%0 Q [Fea) + meo - Mxi (2.5)
P =Q S
D x,1

where Q(x) is the Gaussian integral function

Qx) = f,

2
-z
exp {—2——} dz (2.6)

| -

2r

?For our purposes, this means that the transformation possesses finite first and second
moments under either hypothesis.

10
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with Q! [x] its inverse, and m, ;, sz.i; i = 0,1 are the means and variances of X under

either hypothesis. In many cases where the inclusion of a weak signal does not alter the

variance 02, g significantly, i.e. 62 o= 062, , equation (2.5) simplifies to

1" ™0 a

c5)(,0

-1 1
QIE]-QIF)= dsx @.7)

where the deflection (or distance) d, has been appropriately defined in (2.7). Thus under
the equal-variance Gaussian assumption, d, quantifies performance uniquely. In other
words, any desired performance level (Pp, Pga) equivalently translates to a specific
"desired" distance d, via (2.7); the converse, however is not true.

The above discussion applies equally well to X representing a "Gaussian” £ or any

other A. Noting that, by definition,

2
g 4 (ml,l mz,o) Na 2
g = > = Nd, (2.8 a)
%.0
and similarly
2 2
dl= Nd A (2.8 b)

where the distances d, and d pertain to the individual statistics of £and A, respectively,

we conclude that (2.5) - (2.8) provide a set of approximate performance estimates, reliable

to the degree that the Gaussian assumption is itself sufficiently accurate. Simulation

results, to be discussed later, confirm a very satisfactory accuracy for large values of N.
Use of the aforementioned distance measure hinges upon the evaluation of the

appropriate moments. That is no particular problem for certain standard forms of A (r); in

fact, dz). can be identified as an output-SNR measure for familar quadratic detectors (see,

for instance, (4]-(8].
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On the other hand, the exact calculation of di can be a formidable task indeed.
Fortunately, this situation is remedied within the Gaussian framework due to results by
Peterson, Birdsall and Fox [3]. For the sake of continuity and compactness, the main
result is summarized below without substantation; however, the analytical reader is urged
to go through Appendix A of this report. Therein, the tool of generating functions is
employed to provide an independent proof of the aforementioned result, Chernoff bounds
on detector performance,etc.

Theorem (P.B.F., 1954): Consider an LLR £ which is Gaussian under Hy. Then
(a) % will be Gaussian under H,
4
(b) Mo=my, = -

2 =42 4 &
(4 (-] = d
() 0’1'0 %1 G

where déis given by3

dé= In(t+var{AlH}) = In&{A2Ho) 2.9)

and A is the LR associated with £. Interestingly the moments A of are sometimes much

easier to obtain than those of £, hence the usefulness of (2.9). The quantity dg will be

referred to as the "Gaussian” distance.

Corollary: With N i.i.d. measurements, performance is uniquely quantified by

di =NIn (1 + var{A| H0 )] (2.10)

It is interesting that the Gaussianess of ¢ under Hy, suffices to specify everything else in
terms of the single number dé Furthermore, (2.10) has been the basis of analytical
evaluations for detectors employing optimal nonlinearities, whenever N is thought to be

sufficiently large to support an approximate Gaussian assumption. We shall follow the

SHere &{+} and var{+} stand for the mean variance, respectively.
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same approach here, quickly cautioning however against two possible sources of ;.EE:EE
. inaccuracy and discrepancy, namely (I) different variances A _:‘.:2: ‘
» AR
under two hypotheses, which would negate conclusion (c) of the theorem, and (II)
intermediate values of N, coupled with low Pg5 and/or high Pp, which would simply put
v the accuracy of the Gaussian approximation into question. It is clear that, for case (I)
above, (2.5) would provide a more reliable answer; nonetheless, the difficulty in
analytically evaluating m,;, 63..1 i i = 0.1 remains. As for (I), it might be desirable to
& proceed with a numerical calculation of (Pp, Pga) by computer via the analytical evaluation
of characteristic functions, or resort to bounds. Again, the nontrivial aspect of this
approach is the closed-form evaluation of the characteristic functions for the kinds of
® optimal nonlinearities encountered here.
In contrast to the above, suboptimal rules involve di , which is typically
straightforward to calculate. It is also quite useful for the purpose of comparing different
o suboptimal decision rules, applied to the same hypothesis testing model (see Section 3.3).
Finally we shall use di (or (2.5), whenever appropriate) to compare with d%_ = Ndé, in
order to assess the cost of suboptimality, keeping always in mind our aforementioned
-~ reservationsS . Note again that d cannot be derived from the PBF theorem, since A is pot RPN
anLLR.
Finally, for the FH and TH cases mentioned above, where the appropriate tests come
: from individual LR's and not from LLR's, it is clear that distance measures based directly
on A should be evaluated. A good such distance candidate is o
- 6By this we refer to the appropriateness of (2.10) as a sound measure of "optimal ‘-’ o
performance; besides sources (I) and (II) mentioned above, we should not forget that, in
this report, ¢ is never exactly Gaussian as the PBF Theorem requires.
L 13 el
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; &{AH,}- #{AHy} (2.11)
A varl2 {AlH;}

provided, of course, that A is now the statistic which is approximately Gaussian and

var {A|H,} = var {A|Hg}. Indeed, this is the case in certain scenarios to be explored later,

[ ] making the evaluation of d, in (2.11) a necesssary step.

Using properties of LR's, expression (2.11) can be simplified to

n d, - Afvar {AIH} = ‘\/J{Aleo}-l 2.12)

which will be of use in section 5.
The theoretical groundwork laid out in this section will now be applied to a variety of

LPI scenarios.

-
-
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3.0 DIRECT-SEQUENCE WAVE. ORMS

In this section, we consider and analyze wideband detectors for DS waveforms. It
will be assumed throughout that the receiver has knowledge of the carrier frequency and
® code rate and that the code is biphase modulating the carrier. For the carrier phase, the two
possibilities of it being known (coherent detection) and unknown (noncoherent detection)
are examined separately in Sectior 3.1 and 3.2, respectively. A common assumption in
o both of these sections is that the detectors are synchronous, i.c., the code chip-timing
epoch is known. In most practical situations this is rather unrealistic; the synchronous
results can then be thought of as upper bounds on the performance of any asynchronous
¢ detector. Furthermore, by quantizing the continous-epoch uncertainty region into an
adequate finite number of points, matched-detector structures can be devised which are
synchronized to each of these points and whose outputs are combined to yield the final
o decision variable. The amount of quantization required depends upon the chip envelope; in
this report we shall restrict attention to the constant-envelope case. Since the maximum
code epoch-uncertainty for a random code equals a chip time, one concludes that good
bd asynchronous detectors could be constructed from combinations of a few synchronous
ones. More discussion on the cost of asynchronism is given in Section 3.3. Section 3.4
discusses some gains derived from correlation-combining of two independent receptions,
ranks the performance of the aforementioned detectors, and compares them to that of the
radiometer.

In order to introduce some notation, let the high-rate +1-valued random spreading code

c(t) be represented by

c(t) = n_Z_I“ c,P(t-nT, -¢T,) @B.1)
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where p(t) is a unit pulse of duration ’l; seconds and {c, }%. is a sequence of i.i.d.

random variable (rv's) with Pr{c, = +1} = Pr{c, = -1} = 0.5. Note that the random
sequence {c,}, as modeled, does not distinguish between a pure random code and a code
which is additionally modulated (in a synchronous fashion) by random binary data.
Furthermore, the chip epoch is modeled by the rv €, uniformly distributed over (0,1). The

waveform observed by the detector is therefore given by

{25 c(t) cos (0)0 t+9¢)+ n) (Hl)

() = 0<t>T)
n(t) Hy)

(3.2)
where S, wy and ¢ are the average signal power, carrier radian frequency and carrier phase,
respectively and n(t) is bandpass AWGN with one-sided power spectral density (PSD) of
Ny W/Hz. The observation time is T seconds, which we assume to be an integer multiple
of the chip time, i.e., T = NT, ; N a positive integer. Such an assumption is the least
restrictive since, in practice, N is generally a large number (of the order of hundreds or
higher). However, a somewhat stronger restriction is embedded in (3.2)., namely the
assumption that under hypothesis Hj, the signal is present during the whole observation
interval. That excludes the possibility of the signal either starting or ending at any random
time in (O,T). Still, such a formulation is important because it provides meaningful and
fairly simple comparative conclusions which (a) would otherwise be obscured by
mathematical complexities and, (b) can be argued to extend to more general models.

In terms of the above notation, a synchronous detector implies that € is identically
zero, while a coherent one means that ¢ is known. The detector for which ¢ is unknown
but constant over the observation interval duration is well within the coherence time of the
spread-spectrum channel. For computational purposes, we also consider the fictitious

chip-noncoherent detector, where phase is assumed to be totally random (uniform in
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‘ (0,2x) and independent from chip to chip. Although this is not realistic for a biphase-

¢ system, it is discussed here because its readily derived performance serves as a useful

lower bound to the performance of the carrier-noncoherent receiver. In addition, the

»
>
»
3
]

random phase model becomes increasingly realistic if the DS modulation has four or more

phase states.
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Yo
3.1 Synchronous Coherent Detectors T
When both the random phase ¢ and random chip epoch € are assumed known, the !'_-:--.::-.j
e
detector is asked to perform the following composite hypothesis testing problem: Decide .:\,_
(9 SN
between the alternative Hy and H,, where N
VS c® + n_ () M, ) o
) = : I 1 (st sNT) G SO
{ n, ® (Hy) ¢ A
'
Hypothesis H, is composite because it contains all possible patterns that the code can D :
assume in NT_ seconds. Although we consider only random codes (in which case there are
exactly 2N such patterns), some of the steps below would also be valid for deterministic i s
codes. The subscript I in nj(t) indicates that only the inphase component of the noise Ll
contributes with a flat two-sided PSD of Ny/2 W/Hz.
Well-known results about optimal detectors (see, for instance [12]) can be applied here L

to yield the composite likelihood ratio test:

- N NT
ACF(E)) ﬂ’_{z_:i}_ 21 exp;%—f / € r(t) cy(t) dt§
= )

i-

N H
_ exp{-NYc} 2 2/§ N >1 R
T —_— = exp 2 r. C.. A Pt el
N2 ) Mo i O R -
(3.4 Lo

where .

b
ST A
e T W, (3.3) L
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[

is the predetection (or chip) SNR, ¢;(t); i = 1,...,2N is the ith code pattern, cjjis the jt chip

of the ih pattern, and r; is given by

iT
r 4 fJ € r(t) dt
(3-17, (.6)

It is shown in Appendix B that an expression equivalent to (3.4) can be derived in tems of

the cosh (*) function, where cosh (x) = eX + e*)/2. Itis given by

N
A(r(t)) = '11:]; exp{-vc} cosh (zn",-: r5> 4o (3.7a)

STV

which yields to optimal LLR test

H
N
2/3 3
InA (1)) = Ny_+ In cosh r. Ina
¢ 121 (To_ J) Ho & 70

(3.7b)
as shown in Figure 3, we note that (3.7) could have been derived directly,based on the
i.i.d. and AWGN assumptions, as per (2.2) (see also [5],(6],[8] for similar results). The
method preferred here can be generalized to models with statistically dependent chips (c.f.
Section 3.2) or nonrandom code

It can be shown that, the conditional mean of the random argument of the In cosh (+)

function in (3.7b), assuming c; = 1 under H;, is equal to 2y, which is also its variance
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under Hy. Therefore, for typical predetection SNR values below -10 dB or so, the R
approximation In cosh (x) = x%/2 is well applicable, in which case (3.7b) reduces to the s ',;

approximate (suboptimal) rule o~

N
A= jg s 2 A 3.8)

depicted in Figure 3. Since the aforementioned approximation of the In cosh(x) function
becomes increasingly tight as x—0, it follows that (3.8) is asymptotically optimal as Y. —0
o Within the theoretical framework of Section.2, the performance of (3.8) is easily

derived. The mean and variance of A are given by (Appendix C)

e ing = MgT)(Z * ve 8a) k=010 on 2

and

varla e = N(NTE)? (2 + 2 ve &) 3.9) L—-—

respectively, where 8y is the Kronecker delta R

» ' 1, k=l (3.9¢)
1 *




c
Therefore, Pp and Py, are related, as per (2.5) by
| ©
bz Q Qd["”ﬂ' a Ny,
' & ) By (3.10a)
c
} with
‘ ® a=v2; b=4 (synchronous coherent detector). (3.10b)
Since by, is typically much less than one, (3.10) can be combined with (2.7) to yield
:ﬁ dp=v2 W 7, (3.11)
We note that performance is dictated by the product VN Y. » which is typical of schemes
" . employing post-detection integration. In contrast, detection of a known waveform would
‘ involve the factor \JNYC; the losses in performance, due to the composite test (since the
signal pattern is unknown) for low values of SNR, are evident by comparison. Note also
. that rule (3.8) could have been analyzed exactly, but this issue is deferred until noncoherent

detectors are discussed in the following section.

In terms of the overall observation time T and the null-to-null spread spectrum wo
bandwidth W, = 2T-! (Hz), (3.11) can be rewritten to establish the required (S/Ng)yeq

in order to achieve the performance level d, as L—-,—

req (3.12)

; @) - W% b

The above refers to the suboptimal rule (3.8). The Gaussian distance d, of (2.7) for

the optimal rule (3.7b) can also be derived. Let




2/8
No

yJ é PJ
with 1; as per (3.6). Under Hy, y;is a zero-mean Gaussian rv with variance 03 = 2Y,.

Using the fact that &{cosh(y;)} = exp{czy /2} in conjunction with (3.7a) results in
dy= WN1n cosh(2y,) (3.13)

For small x, In cosh(x) = x2/2, which, upon substitution in (3.13), verifies that dy = d; of
(3.11) as ¥.—0. In conclusion, the approximate rule is well suited for the low prediction
SNR range of interest.

The performance (Pp, Pg, = 10-2) of the optimal and suboptimal decision rules (3.7b)
and (3.8); respectively, as predicted by (3.13) and (3.11), is shown in Figure 4. The two

values of N chosen, a high (1000) and a low (50), are meant to illustrate the qualities and

limitations of the Gaussian assumption. The Pg, = 10-2 value, used here for exemplary
purposes, was fixed both in theory and simulation. Although this Pg,, if considered by
itself, would correspond to unacceptable false-alarm rates?, it is typically true that multiple
tests are employed before a final decision is reached, thus lowering the overall Pg, to the
desired levels.

The simulation results for both rules, also included in Figure 4, confirm the expected
trend of the CLT-Gaussian approximation to improve as N and Py, increase, for fixed Pg,.
This improvement is manifested in the increased quality of both performance estimates, i.e.
eqns. (3.11) and (3.13), each pertaining to its own test.® Interestingly, the approximate

estimate (3.11) seems satisfactory for both optimal and suboptimal tests. This should be

’For a 10 Mchips/sec code and N = 1000, the number Pg, = .01 corresponds to an average

false-alarm rate of 100 FA/second.
8This is certainly true for increasing N; for small values of N, the applicability of (3.13)
becomes more questionable as Py increases

23
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attributed to the low chip-SNR ¥, which renders rules (3.7b) and (3.8) almost equivalent,

Lty by by S 2

v
s
v

as attested also by the closeness of the respective simulation results. In different
environments however, (eg.,FH or TH), corresponding to higher hop-SNR's, the cost of
suboptimality should be more pronounced (see Section 4 and 5).
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3.2 Synchronous Noncoherent Detectors

Let us now relax the assumption that the carrier phase of the DS waveform is known
by the interceptor, but still retain the assumption of a known code epoch. We shall state the
. optimal decision rule for a carrier-noncoherent system, whose gxact analysis, however,
appears unattainable. Instead, a chip-noncoherent detector will be derived and analyzed,
whose performance can serve as an asymptotically tight (as y,—0) lower bound for the
L carrier-noncoherent system.® Thus, the performance of the latter can be nicely bracketed
between that of the former and the upper bounding performance of the synchronous
coherent detector!? in the previous Section 3.1.

8 Consider first the carrier-noncoherent system. Under the usual narrowband

assumption @y, >> 2 =/T, the resulting decision rule is

N H
- 2 1
. .. exp M) S Io(ﬂ ) 2 0

N 1= No "if Hg
(.14)

where Iy() is the zeroth-order modified Bessel function and R; is the ith correlation

o envelope

R, = qfe; Z+e, 23 4e1,2,....2 (3.152) S
! oY R

In (3.15a); the two components are given by

8
- C.. - . . =
TR ~ L VIR L R I (3.15b)

9Since a chip-noncoherent detector utilizes less statistical information than a carrier-
noncoherent detector, it is inferior to the latter for all SNR values.

10In fact, it was argued in [4] that the coherent upper bound is asymptotically achieved, for
large distance d, by an approximate version of the carrier-noncoherent detector, because the

(unknown) constant phase can be estimated reliably at high SNR.

27

.......................................
........................................................

...........................................................




et

s

Ty 3T €OS wat
e 5 € r(t) 0

rQ' (J‘I)Tc sin Uot

dt ; j=1,...,N (31.5¢)

The optimal rule (3.14) - (3.15) is hard to mechanize. Instead, suppose that the received

waveform r(t) is represented under H, by

Mt) = /B S ¢

e d p(t -iTc)cos(wgt + ¢;) + n(t) (3.16)

where {¢;} is a sequence of i.i.d. uniform phases, thus modeling the aforementioned chip-

noncoherent system. It is then straightforward to show the independence of chips, using a

procedure analogous to Section 3.1 or directly (see also [4], [8]), that the optimal decision

rule is
H
N
2/% 3
(3.17)
where 1 is the envelope of the jt chip
r. = r +r
J I. Q.
J J (3.18)

with r, ,1q as per (3.15b). Again, under the small-argument approximation
i

in Ip(x = x2/4, it follows that (3.17) reduces to the suboptimal rule

B SKALCRERTN
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Rule (3.19) is formally identical to (3.8), the difference being that r; here

corresponds to a noncoherent-chip integration. Furthermore, it is shown that as y.—0

® (namely for small arguments of the I, (¢) function), the optimal carrier-noncoherent rule
(3.14), which involves averaging over all possible 2N N-tuples of the code, reduces to the
simple suboptimal decision rule (3.19) for the chip-noncoherent system. It can thus be
’ concluded that the performance associated with (3.19) is asymptotically close to that of
(3.14) on the low-SNR side; however, this probably occurs at an unacceptably poor overall
performance level.
? Although the distance d,‘ for the exact rule (3.17) can be derived (see Section 4.0 for a
closely related case), we shall be content with d, of (3.11) in view of the low-SNR
conclusions of the previous section. The random envelope 1; in (3.18) possesses a
‘ Rayleigh Pdf under Hy
v f(ry Ho) = r; exp{- "32}; r0
o 2q (3.20a)
and a Rician under H,;
3 rj rJ
° F("'jlﬂ"l) =32 exp{-‘4<77-+ ZYQ)} 10(:3‘ /'2'7;). r>0

(3.20b)
with 62=NyT/2. Then, the statistics of the r.v. (A/62) in (3.19) are known exactly [19]:

under Hy, (A/02) is a central chi-square r.v, with 2N degrees freedom while, under Hj,
(AMo?) is a noncentral chi-square with 2N degrees of freedom and noncentrality parameter

© = 2N7v,. Following Marcum's expressions [15] for the performance analysis of pulsed

radar, which involves an analogous detection model, we conclude that the probabilities of

interest are
1 e
Ppa = (N.I)!.[ xN-1 eX dx « 1-1 (J;_., N-1)
- s 202 206/W  / (321a)
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where I(u,p) is the incomplete Gamma function and

vz
Pp = Qy (fﬁ'c : ) (3.21b)
where Qn( @ ,B) is the Nth order generalized Q function (15, 16]

Although the above results are exact, they are cumbersome to use from a
computational viewpoint, especially for large N. In addition, the Gaussian approximation
yields satisfactory results in the range of N of interest and thus becomes our alternative
simpler route.

It is shown in Appendix D that

i - o]
and

2 - 2
® var{rj lHk} = (NOTC) E+27C skﬂ

Combining (3.19) and (3.22) and employing Gaussian assumption results in (3.10a) where

(3.22b)

now
a=1; b=2 (Syncrochronous chip-noncoherent detector). 3.23)

Equivalently,

S 1 ws d

®) =¥t 4 (3.2

0 72

req
30




which reveals a loss factor of V2, or 1.5 dB, with respect to the coherent detectors. This is
; e the penalty paid for the lack of coherency. Furthermore, since the performance of the
. carrier-noncoherent system is bracketed between the coherent (upper bound) and the chip-
: noncoherent (lower bound) ones that differ by only 1.5 dB, it is concluded that any
i v implementational complexity beyond that of rule (3.19) is not justified from a practical
: standpoint.
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3.3 Asynchronous Detectors

In the most natural problem formulation, the code timing (epoch) € is a random
variable uniformly distributed within a chip interval. We shall first show in this section
how a cascade of analog devices and nonlinearities can be configured, in principle, to
optimally average the likelihood ratio over the epoch uncertainty. The derivation follows
the basic steps illustrated by Krasner [8] in a somewhat simplified and expanded manner.
Then, practical suboptimal detectors of reduced complexity will be derived, analyzed and
compared with the optimal one. The main purpose here, besides obtaining useful
quantitative performance estimates, is to establish a certain performance-bounding
philosophy; although attention is confined to constant-envelope DS signals, the line of
thought is also applicable to nonconstant envelope waveforms, for which the effect of
epoch mismatch could be much more pronounced.

For the sake of simplicity, the coherent case is analyzed herein. Most of the ensuing
steps, however, carry without change to the noncoherent rule. The starting point is the
coherent likelihood ratio (3.7a), which is now interpreted as a conditional LR, given the

value of the random offset €. In other words, we can write

N
- s
A (r( t) I E) = JLll exp {-yc} « cosh _—o. er(e))

(3.25a)

where the coherent integration (3.6) is adjusted to reflect the knowledge of €.

/‘ch+e
rj(e) = r(r) dt (3.25b)
(3-1)T +e
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Furthermore, the unconditional LR results from (3.25) by averaging with respectto therv e

in the following manner:
ACr(t)) = WAL
= & {a(r(t)]|e))= T exps In A r(t)'e)} de
0 -
= exp { -Ny.+ In cosh :
2 c jgl n r(t)dz| Pqe
(J-1)T te

(3.26)
Complicated as it may seem, rule (3.26) can indeed be implemented exactly by the

means shown below. First, we define the waveform y(t) as

t
y(t) = f r(t) dr

t-T, (3.27)
This process y(t) is easily mechanized as the output, due to an input r(t), of a linear filter

matched to the chip-envelope pulse!! p(t) = u(t) - u(t - T,), since

ft r(t) dr = /“ r(t) p(t-1) dt

t- -
TC (3.28)

Note from (3.27) that the argument of the In cosh() function in (3.26) is just y(T + €).

N
Thus, the next step involves creating the sum of samples Y In cosh [y(jT, + €)] of the b
J=1 RIS
new, transformed process In cosh [y(t)]. To do that, consider that the convolution T

of In cosh [y(t)] with the impulse response.

N-1 )

h(t) = 2 5(t - MTC
m=0 (3.29)

11Here, u(t) stands for the unit-step function.
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namely,

=/ N-1
g(t) 4n(t)® In cosh(y(t)) = f <m2=0 6Ct-mTc)> In cosh (y(t-1))ds
N-1 -
= 2 Incosh [y(t -mT c)]

: m=0
® (3.30)

which , sampled at t = kT + € yields

© 8(kTC+e) = Nz-l In cosh(y((k-m)Tc*-e))]

m=0

k

* 2 lncosh[ iT + ]
Q jok=N+1 i) (331)

where the change of variables j : k-m has been used. Atk =N, i.e. when g(t)is sampled at

te= NT, + €, the desired sum Z In cosh[y(jT, + €)] is formed. Since 0 <€ < T the
sampling times t; belongs to thg=ir}tcrval NT < t; < (N+1) T, Therefore, the above sum L-,-,g
(or its exponent, according to (3.26)) can be averaged with respect to € by simply
integrating g(t) (or exp{g(t)}) over the interval NT <t< (N+1)T. Again, such an
integration with a uniform "weight" function can be directly interpreted and performed as a

convolution with the square chip-pulse p(t) similar to (3.28). (A possible analog

implementation of this convolutor with a square-pulse impulse response, also called a :1'-‘.;'.‘_:
"moving average" filter, is shown in Figure 5 . It should be emphasized here, however,

that the use of the same pulse shape for the two convolutions is coincidental, owing to the

square-pulse, biphase-modulated pseudo-random code considered. Arbitrary code pulse- -::'::".:.?
shapes would require general, matched-filter structures for y(t) in (3.25) - (3.28), while the
averaging with respect to the "uniform" rv € can always be performed via the
aforementioned square-pulse convolution. The general case is treated in depth by Krasner

(8].
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The coherent optimal LR detector structure for the continuous-epoch uncertainty case
is shown in Figure 6, explicitly indicating the series of linear filtering and nonlinear
operations required to implement it. Note that the impulse response h(t) of (3.29) and the
subsequent convolution (3.30) are associated with the tapped-delay-line box in Figure 6,
which calls for (N-1) delay elements, T, seconds apart Figure 7(a). Such an
implementation, however, is not recursive and would require more delay elements for
higher N. As an alternative, the feedback structure of Figure 7(b) can be employed, which
only needs a single delay element in the feedback path. Ideally, the impulse response of the
latter structure would be an infinite-length delta train; thus, N need not be specified a priori.
However, stability considerations, due to component noise, parasitics, etc. typically require
the insertion of a gain a < 1 (dotted lines in Figure 7(b)), which practically limits the
"effective” length NT, of the resulting impulse response.

As witnessed from Figure 6, a number of (possibly costly) linear and nonlinear
devices are involved in the optimal asynchronous processor. One step towards reducing
the complexity is to quantize the epoch uncertainty region of T, seconds into a (small) finite
number of alternatives, i.c., points; This is equivalent to pretending that the epochr v can
take on only those values and accordingly develop the optimal or near-optimal detector for
the resulting finite hypothesis problem. The quality (as well as complexity) of such an
approximation will obviously increase with the number of points considered. It will soon
be clear, however that, for constant-envelope waveforms, the simplest case of only a two-
point quantization, which will be the one we analyze herein, provides quite adequate
performance with respect to the ideal (synchronous) detector; thus, higher level
quantization and complexity might even be undesirable from a practical standpoint. In
addition, a suitable interpretation of this analysis can simultaneously serve as a bounding
technique (upper and lower) for the optimal, continuous-epoch uncertainty detector whose

exact analysis is intractable.
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Let us assume that the two points comprising the epoch uncertainty 12 are €, and €5,
corresponding to the offsets € = 0 and € = 1/2 in (3.1); that is to say, the incoming code

chips are likely to arrive either in perfect synchronization ( € = 0) or half a chip

v v

off ( €= 1/2) with respect to the local chip-timing reference, and they are both equally
probable to occur. A variation of the optimal-likelihood ratio (3.7a) for the coherent case,

adapted for the above scenario, would imply that the decision rule should be

4
b
t
y

L

1 N 2/s N /S
gl 2/5 2/§
3 [exp{i.z’ In cosh ( N, r(eg))} + oxp(j-z‘ In cosh (—N-o— r‘.(e,,z))}]
“ (3.32)
* exp{-Ny.} Z A,
Ho
where

e Te? eyt (3.33)

iT .
ri€o) 4 e r(tidt; r(e,,,) 4 G-NT 5T /2

=T,

Clearly, the chip-noncoherent detector would form the envelopes 1 in place of the coherent
i ® integrations (3.33) and would proceed in an analogous way from equation (3.17). We
should note here that the two NT -second observation intervals for the two corresponding
exponential terms of (3.32) are slightly off by half a chip. For large N, such "edge effects”
are insignificant and will be neglected in the following.!3
Equation (3.32) can be simplified by employing the small-argument approximation to

the In cosh (*) function as in Section (3.1), resulting in the (non-LR) test

o V"'-VYY-v*

] s ¥ , 28 ¥ 2 ]:‘
L= et 1 e« el 1 ] X b
0 0 M (3.34)

1280, at this pont, the epoch uncertainty is assumed to be discrete by nature, not by
quantization.

13For that purpose, small adjustments will be made for convenience without explicit
acknowledgment
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In view of the findings of Section (3.1) it could be argued that the test (3.34) albeit
suboptimal, should perform close to the LR test (3.32). Nevertheless, it is shown below
: that the former can be outperformed by another suboptimal test, at least under certain
®
! circumstances, which is in fact a further simplification to (3.34). In other words, one
y should not automatically conclude that, in the realm of suboptimal tests, a "simpler” rule
. necessarily implies a deterioration in performance. Towards that end, let r;; and 1;, indicate
| @
! the coherent integrations during the first and second halves of the j'h chip interval,
' respectively, i.e.
¢ Gi-1/27 Y WU r(t)dt
! fi1 A Iu-mc ¢ fudw T Iu-uzn'c 1) (3.35)
: and define
:
i 2s N, 2s N
‘ A, 4 = r.(e,) = — r, + r,)? 3.36
'I ®
. 2s N 2s N
. A A i 2 - - 2
V2N izl "i(&172) N2 5-):1 iz * fpora) (3.36b)
» and
- A, + A -
: 24 172 . wi Ay - Ay (3.37)
o 2 2
’
Then, (3.34) can be written as
. 1 M,
. L = (E)["‘p(‘\o} + oxp{A,,} | = exp{Z} cosh(w) 2
: Hy  (3.38)
)¢ 40
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..
or, through the transformation A, Aint r
- .
A V\“h‘.‘-'
H, A
A, = Z + Incosh(W) 2 threshold (3.39) ' s ,.i
Ho .:__;.._:.:‘
[
which is thus equivalent to (3.34)
An approximation (3.39) is obtained by simply omitting the second term,
® H ]
Z 7 L, threshoid (3.40) L B
Ho .
which, by substituting (3.36) into (3.37) expanding terms and absorbing constants into the
(&)
threshold, reduces to
H
N 1
- 2 2
. L jzl rs1 Yl t Ty (‘31 + "j+1,1> HE L, threshold
¢ (3.41)
An examination of the decision rule (3.41) reveals the source of inferiority of the
asynchronous coherent detector in comparison with its synchronous counterpart, namely,
o
rule (3.8). The latter rule can be obtained from (3.41) if the factor r;,, ; in the last term is N
substituted by Tj1 because the resulting expression is then the perfect ;E\\

square (rj; + Tj)2 = ;2 of (3.8). Sincer;, and 1y, are independent r.v.'s (they belong

to different random chips) regardless of the true epoch value, it follows after some thought L _

that such a substitution would increase the mean of the decision statistic A, under H; and

slightly reduce the variance--the effect of which is a net improvement in performance for

synchronous detector.
We now turn to evaluating and comparing (3.39) and (3.41). Let us first look at A,

and return to A, later. Without any loss in generality, we can assume that the true epoch

is €=0. The symmetry of the problem suggests that the results to be derived under such
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conditioning also represent the unconditional (average) performance in this two-possible-
‘ value case. Using the familiar type of Gaussian analysis, it can be shown that
E dle - .[_3—/577‘: (3.42)
2
which, when compared with its synchronous counterpart (3.11) reveals a loss factor of
V473, or 0.63 dB, as the SNR penalty (in y.) associated with the aforementioned
asynchronous detector.

The above estimated loss can also be viewed as a lower bound on the performance

losses of the continuous-epoch-uncertainty detector illustrated in Figure 6. This is because
the two-point uncertainty coherent detector discussed so far assumes a random epoch that
can take on only two values; thus, it faces less uncertainty than any other multipoint or
continuous type of epoch-randomness. Therefore, it is bound to outperform any other
asynchronous detector, including the aforementioned continuous-uncertainty one.

It is also possible to derive an upper bound on the performance losses of the
continuous-uncertainty detector. This can be done by assuming a truly continuous epoch
and viewing the two-point detector as a suboptimal quantized implementation of the optimal
continuous-uncertainty one. The performance losses of the suboptimal detector under a

worst-case choice of the unquantized epoch will then clearly upper-bound the losses of any
other, higher complexity, multipoint or continuous detector.

Some reflection could persuade us that the worst epoch for the two-point quantized
detector is the one straddling between €= 0 and €=1/2, namely, €=1/4 (or, equivalently,
€=3/4, whose performance, however, is identical). This is because, under H,, r will
then have the lowest possible mean (namely, zero) half of the time, while 5] remains

unaffected. Any other offset will yielda higher overall average for r;, thus improving

performance. The steps of this worst-case analysis are summarized in Appendix E,

wherein it is shown that

d - 25
A2 1 " 5 Ny (3.43)
4
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Thus, the upper-bounding loss is (4 V3/5), or 1.42 dB, with respect tc the synchronous
structure. In summary, lack of synchronism in the coherent case costs anywhere from
0.63 dB (lower-bound) to 1.42 dB (upper bound) Tighter bounds can be obtained by
reiterating the above arguments for epoch-quantized detectors with more than two
quantization points. As the number of points increases, one asymptotically converges to
the actual performance of the continuous-epoch detector. In any case, a rough figure of an
average 1 dB loss due to asynchronism should not be far from exact. Similar conclusions
can be drawn for noncoherent detectors.

Finally, let us briefly return to the test (3.39). In order to assess the impact of
the In cosh(W) term, consider the rv W as defined in (3.36), (3.37), and assume a worst-
case offset (€ = 1/4). It is clear from the symmetry of the problem that the rv's Agand A, »
have identical first and second moments under either hypothesis.

Furthermore, for large N, the summations in (3.36) will make them approximately
jointly Gaussian, correlated rv's. It is then well known that the transformations defined by
(3.37) render Z and W approximately Gaussian and independent rv's. Thus, Z

and In cosh(W) are also approximately independent. The mean of W is zero and its

hd variance G2y I‘is essentially the same under either hypothesis Hy. Since, for zero-mean
W, the expected value €{In cosh(W)|H, } is only a function of sz;nkit follows that the
second term in (3.39) does not contribute to the difference of the means of A; under H,

¢ and H,; while it does contribute to the variance. The net resultis thatd,; < d,, , i.e. the

detector is better off by neglecting In cosh(W). This conclusion, is true for the worst offset
€ = 1/4; although other offsets will require somewhat more complicated arguments, the
same supremacy of A, over A, is likely to hold.

Some asynchronous simulation results are presented in Figure 8 for (a) N = 50 and
(b) N = 1000, along with the synchronous (suboptimal detector) simulation points from
Figure 4 are used here for reference. The simulation model was coherent, worst-case
offset for both rules (3.39) and (3.41). As seen, the agreement with the theory is quite

satisfactory.
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3.4 Radiometric and Correlation Detectors

Thus far we have explored structures which result from likelihood-ratio
considerations and variations thereof. We shall now take a look at some other detector
structures widely used in practice. Those are (a) the energy detector or radiometer, (b) the
product or crosscorrelation detector from two independent receptions and (c) the single-log
autocorrelation or chip-rate detector.

Although all three are basedband detectors, with respect to the carrier harmonics, they
differ in that the first two utilize the DC compont of the output as a decision statistic while
the third filters and detects at the chip rate. Another grouping yet results from the fact that,
although all three rely upon a good measurement of the noise level for precise threshold
setting, the last two avoid a total-noise-power factor in the output mean thus being more
robust to noise fluctnations than the first. These facts are all borne out in the ensuing
analysis. We should clarify here that the term "correlation” above is not to be intepreted in
the statistical sense; rather, it signifies a product-and-filtering (averaging) mechanism in the
time domain. Such correlation operations comprise standard suboptimall4 timing-
recovery methods in Pulse-Analog (PAM) and Digital Modulation schemes (see[17); also,
the section bit synchronizers in [18]). Furthermore, the correlation detectors presented
herein may be viewed as a single-point ("single-lag") special case of the general multi-lag
correlation algorithms to be analyzed in Section 5. Nonetheless, because of their popularity
and implementational simplicity, they will be treated here separately. Let us note that the
analyses and conclusions herein, although described in terms of DS waveforms, basically

carry over to TH and FH waveforms with only notational changes.!5

l4Suboptimality results from the fact that the received noisy waveform is not correlated
against a local replica of the useful signal or an estimated version, thereof, but rather

against itself after a proper delay.
15This statement neglects second-order effects (for low input-SNR) created from signal
self-noise and signal-cross-noise contributions.
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Detection based on an energy measurement is an optimal LR procedure, when both
signal and noise are independent Gaussian processes [12]; it is, therefore, suboptimal in
principle, when the sought signal is not Gaussian, but rather a BPSK (or any other type of
digitally modulated) waveform. The performance of the radiometric detector, shown in

Figure 9, has been analyzed. It can be shown that

. 2
@A) Hy} (NTc)(aBPSGK? + NgWgp) (3.44a)
and
var{p| Hk} = (NTC)(NngP + 2a§psnock1) (3.44b)
where the attennation factor a%l, is defined as

. ,[w Hio(e) Psalr)er <2 fwsprc/z sin x \%
BP = -+
j‘”sc(r)dr T) o x ) o

(3.44¢)

and is a measure of the energy loss due to filtering. In (3.44c), H (f) stands for the low
pass equivalent of the BP filter Hgp(f) and S (f) is the power spectral density of the code
sequence c(t). Again, assuming that Wgp = T1 and that the time-bandwidth product

Wgp (NT,) = N is large, (3.44) can be combined with the "Gaussian" performance of

(2.5). The result is (3.10a), with

R T S L SEL I SRS SR




T e 5, b
i3, 4 a4y Pty e
P et

‘-

la s A

Yy

‘mtal

?wamso_.va 40329330 Abuaujl ‘6 a4anbL 4

0 0 0,.
v S RE P

Iy T R — - 1 1 %
uos Jedwo) LT ROEY peuoz 4 (3)Z SatAa (3)9% dg, dfy )4

) | t Me-aJdenbg 8
pLoysaayy beead (3)9%

(4dg) 483113 ssedpueg




TLw v v

. - !'."‘.Y_ LA Al i . w o - - P v —r‘v’
..... AR A A A S A E A S i S A it ot T A Nl Salth £ dath A A A i na T A il Sl *al i vt a o Bt on 8 N 2 few aea £ - A TFYX™Y
e’

2
a = —Q—B—P—- ; b = 2a2 (Radiometer) (3.45)
JugpTo

The radio a = a%,/NWp, T, can be plotted versus (W g, T,), and the optimal choice can be
shown to be approximately WgpT. = 1, from which it follows that ag,, = 0.77. This
corresponds to a minimum loss of -1.1 dB with respect to the chip noncoherent detector
(3.23). Since the above conclusions are based strictly on energy considerations and
interchip-interference effects, due to filtering, which have not been taken into account, the
actual losses are somewhat higher. In the following comparisons, we select a nominal loss
figure of - 1.5 dB. We note that the above losses pertain to a rectangular BPF; other filter
ships will result in different loss figures, typically of the same order. For the effect of
filtering on a baseband rectangular pulse (in terms of output-SNR losses) with respect to a
matched filter, the interested reader is referred to [12].

We now turn to examine whether benefits can be extracted from utilizing fwo
independent receptions of the same signal, resulting from two RF circuits with independent
thermal noises. Although only the synchronous coherent case is covered here, similar

conclusions are expected from the other models.

Let

ri(t) = /T e(t)dgr + ni(t); 0<tgT
ra(t) = /S c(t=8)8k1+ ny(th k=0, (3.46)

represent the two receptions. Here, the two noise processes ny(t); m = 1,2 are Gaussian

and independent, while the signal componerk is the same in both waveforms.

Furthermore, the second signal has a delay of A seconds with respect to the first. If A

were exactly known, the two receptions could be adjusted to align in time and be coherently

combined with a resultant 3 dB gain in SNR. In many cases, A is unknown and its

estimation is of interest as it relates to path differentials and, therefrom, to direction finding.
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A simple cross correlation receiver which performs this estimation/detection problem is

shown in Figure 10a. The corresponding decision rule is

A - Igrc r (8) ry(t) at g' A, 547
Ho

To simplify, let us assume that detection occurs only when A = 0; then, (3.47) can be

analyzed exactly by evaluating the second-order statistics of the product
waveform g;,(t) = r;(t)ro(t) under either hypothesis. Such a procedure will be applied
below in analyzing the chip-rate detector. Here, for the sake of brevity, let us just consider
the alternative structure of Figure (10b) which can be thought of as an approximation to
Figure (10a). Obviously, the constraint of individual chip-synchronism per channe] has

been imposed on the second structure, in addition to the delay-sync between the two

channels. The rule corresponding to Figure (10b) is

O o
2 g g T A, (3.48)
i N :
where
IT,
r:m, - Fm (t ) dt
(J"'l)'l'¢ (3.49)

are synchronous, chip-by-chip integrations.

(n
Equation (3.48) is analogous to (3.8) once T is substituted T rj(.z) . Clearly, in the
absence of thermal noise, both (3.8) and (3.48) produce the same quantity NSTCZ;

however, performance is different in noise. Indeed, from (3.48), it easily follows that

&{AH,} = N(NgT.)v3y, (3.50)
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var{A[H,} = N(NT.)2 [1/4 + ¥.8y) (3.51)

The resulting performance is again described by (3.10a), where now

a =2; b=4 (Two independent coherent receptions). (3.52)

Thus, a comparison with the corresponding performance parameters (3.10b) for the (one-
reception) synchronous coherent detector reveals a gain factor of V2, or 1.5 dB in SNR for
the present system. However, this gain is clearly attained at the cost of higher complexity.
Similar conclusions are true for noncoherent reception detectors .

Finally, we consider the chip-rate detector, a noncoherent BP version which is
shown in Figure 11. This is an one-antenna system (like the radiometer) which, however,
detects power at the first harmonic of the "signal x signal” term. Clearly, this structure
could also detect power at DC and serve as a "generalized” radiometer where the A =0
case would correspon.d to the familiar square-law energy detector (Figure 9). This
possibility is explored below, where it is shown that, aside from sensitivity considerations,
SNR performance increases monotonically as A~0. Thus, the standard radiometer is
probably the most meritorious device to consider at DC; contrary to that, detection at the
first harmonic is worth exploring.

We note, however, that the robustness gains to be shown below are predicated
upon the knowledge of the sought signal rate, a requirement not present in the radiometric
analysis. We can, therefore, conclude that the chip-rate detector trades increased parametric
knowledge with a certain robustness to noise fluctuations, something that an energy

detector is not equipped to do.
Under H,, the filtered input is r(t), given by
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c
=V aZpS c(t) cos(agt + ) + n(t) (3.53)
¢
where the BP nature of the noise process is reflected in its PSD S (f) = (Ny/2) [Hgp(f)I2
and the standard modeling for the filtered signal via the factor oigp has been assumed.
d The product output y(t) = r(t)r(t-A) has a correlation function
o R,(t) = Ry, J1) + Rg () + Ry x N(D) (3.54)
where the "signal x signal” correlation is
¢
y cos 2uwoT
Rgxs(t) = aBpsz(coazqu + = JRg(1) (3.55a)
2
d In (3.552), Ry(7) signifies the corrlation of the code-product process g(t) = c(t) c(t-4).
Furthermore, the "noise x noise" correlation is
® RNxn ¢
NxN(T) = &n(t)n(t-a)n(t-v)n(t-4~1)}
- Rﬁ(A) . nim ¢ Rplt + 8).Rp(x - &) (3.55b)
“ while the "signal x noise" term Rg, (1) includes all other remaining terms. For low input-
SNR, the signal x noise term will be neglected in comparison to the noise x noise term;
thus, the PSD S,(f) of y(t) can be approximately written as
. |
Sy(f) ® apps?[ coaz(wob)sg(r) + 174 (SB(t-Zto ) + Sgl(re2fg »
+ n:umr) + Sp(2) ®s,(e)
" +[Sp(£)e”32778] © [5,(1)ed2vrd] (3.56)
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where Ss(f) is the PSD of g(t).

In order to pursue any further and derive the second-order statistics of the
narrowband output A, one has to specify Sy(f), Sy(f) and the output-filter characteristic.

For a purely random code, S(f) was derived to be

A A - ToA n
Sg(f) = Q- F— 1) s(t) « (— 2 2 si( 6(f +
Tc Te [ L i Tc Tc

m«0
Al
¢ — 82('rA)
T, @ (3.57)

where the offset A is restricted to 0 S |A| < T.. Note, the presence of the "signal self-noise"
term, the third in (3.57). Because of the weak input-SNR assumption, this term will be
neglected in terms of its contribution to the total noise level. However, for high input-SNR
environments (as, for instance, in certain FH scenarios), this term will be the major limiting
factor and deserves due attention. To prove further, let us evaluate the

contribution Sy, (f) for a standard "brick-wall" noise PSD

N W
= [l ro |~

Sn(r) - 2

(3.58)
0 eeee Otherwise

which can be shown to be

SxN(f) = (NgWgp)?2 Sf(w“gpd)coszuod6(f)’

N2
-;g(wap- [FPL1 + cos(2uya) Sa(2watwgp- £]))3

for |ff<wpp (3.59)
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We shall restrict attention to the two baseband possibilities: (a) DC filtering by
Hpc(f) and (b) chip-rate filtering by H;(f), the latter corresponding to the m = %1 terms in
(3.57). In both cases, the postdetection filter will be assumed to be very narrow with
® respect to R, ; for instance, if Hpc(f) corresponds to an NT, integrator, this implies that
N>>1. Note that Figure 11 refers to case (b) only. Furthermore, the terms around 2fj will
be filtered out from (3.56) (they have already been excluded from (3.59)).
®
For a narrowband integrator-LPF(case(a)), the output SNR
df ¢ ena H1} - @{a Hp))2/var{a Ho}
«©
is easily derived from (3.56) - (3.59) to be
y A
app S2 cosz(qu)(l- |— D2
Y T Te
* d2 = (NTo)
2 be (NOZWBP/Z)[1 + cos(2uys) S,(2xWgpa)]
(3.60)
@

since the "noise x noise” DC contribution cancels out in the different &{Z|H, } - &{Z/H,}.

Certain interesting observations can be made from (3.60), especially in connection with the

radiometric output-SNR dimd from (3.44); if we form the ratio

a2 A SRS

A 420 2 cosz(uoﬂ)("' | Te l)z NP
= a ','."'.--'-

a2 1 + cos(2wya) * Sa(2nWppd)

A-rad '

(a=0)

- (- ks |)2 [ '+ cos(2ugt) )]

1 + cos(2wga) S,(2wxWppa

(3.61)
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then it is immediately clear that the ratio tends to 1 as A—0, as it should. Furthermore, if
A << (2Wpgp)! so that the S,(*) function in the denominator of (3.61) is approximately
one, the ratio is roughly equal to (1 - |A/T,|)2, independent of the signal carrier frequency
fo. Thus, in this range of A, the ratio is maximized by choosing A = 0, i.e., square-law
energy detection yields the highest output SNR. The same conclusion holds far higher
values of A, say, A 2 1/2“&1,, the S,(*) function diminishes and the ratio tends to
2(1-JA/T,))2 cos2(wgA)
g However, since, typical values for the filter BW are Wgp>R,, it follows that A 2 T./2,
’ ¢ which implies that the ratio is upperbounded by (1/2) cos2wyA < /2 or a 3 dB loss of the
: correlator versus the radiometer. In addition, one has to worry in the latter case about the
exact relationship between fy and A. If foA # k/2, k an integer, servere loss of "signal”
power can occur due to the cosine term. Clearly, in an LPI environment where the signal
parameters are hardly at the disposal of the interceptor, such limitation is of concern. On
the other hand, the mean "noise x noise" contribution at DC (the first term in (3.59)) also
diminishes with increasing values of (WgpA), a factor which, although not directly
reflected in the SNR computations, could affect the sensitivity of the system in an actual
implementation with imperfect AGC's.
) Let us now turn to the chip-rate filter (case(b)). Evaluatingthe Sx Sand Nx N

narrowband terms at f = R, we get the following SNR expression.

3 g [0 B e 2uon) [ 522
P.

1 W1 u§ Wg (1-p){1+c08(2uga)Sy(2%aWpgp(1-p))]

(chip-rate detector) (3.62)
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where W, is the BW of the narrrowband filter H (f) and the ratio p = R/Wpp is assumed

to be in the range 0 <p< 1. Note that if W, = (NT,)-1, then the first bracketed term

corresponds to the radiometric SNR; thus, the fraction in the second brackets represents an

SNR-ratio similar to (3.61). It is further shown that the numerator of this ratio (i.e.,

the S x S portion) is maximized for A =T,/2, assuming that the condition fpA = k/2;

k = integer, is satisfied. For that "optimal" choice of the offset, the resulting SNR is

a2 - (a2 : :
A A,rad w2 ] (1-p)[1 < Sa ®(1-p)/p]

(chip-rate detector)

(A = To/2; fob = K/R) (3.63)

Note that the SNR of the chip-rate detector increases as p—1, i.e., as Wgp—R_; in fact,
for Wpp =1.25 R, the two detectors (chip-rate and radiometric) are roughly equivalent.
Since much smaller values of Wgp are rather inappropriate to consider in view of Doppler
uncertainties, signal filtering, etc., such equivalence can be considered a practical fact.
Again, the aforementioned tradeoffs between robustness to noise fluctuations, knowledge
of chip-rate and adjustment of carrier frequency should be kept in mind for a true
comparative assessment of the various detectors.

As mentioned, a complete analysis for all values of the input SNR should
incorporate the signal self-noise contribution from (3.57), as well as the signal x noise
terms.

Furthermore, the dependence on the carrier frequency can be totally eliminated by
using the alternative structure; the penalty there, of course, will be a somewhat lower

output SNR. Finally, let us note that variations of the schemes herein are also possible,
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involving different intermediate frequencies (IF) for the undelayed and delayed versions,

respectively. We shall not pursue the topic here any further.
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3.5 Comparisons and Discussion

.

—

.

The performance of any of the schemes discussed, so far, will always be upper-

bounded by that of a perfectly code-matched system (i.c., one where the code is totally

known) and lower-bounded by the performance of the radiometer. The distance dyp

¢

corresponding to the (unattainable from an LPI viewpoint) upper bound is easily shown to

be
dyg = V2Ny, (3.64)

9

»
»
K
-
v
h
»
%
=
i
g
‘: .

'

where a coherent system has been assumed. Comparing (3.64) with (3.11) implies

that the lack of code knowledge amounts to an SNR loss of \F{: between two synchronous

coherent detectors, one equipped with the code and the other not; in dB, this means that

knowledge of the code reduces in half the input SNR (dB) required to achieve a certain

performance level.1 ? This is depicted in Figure 12 (compare curves@ and@) along with

the performance of the other alternative schemes. We observe that the difference between
@and@is roughly 1.5 dB, which is also the difference bctwcen@and@ as well as@

and@. It follows that, under fairly ideal conditions, i.e., two independent synchronous

coherent receptions, one could utilize up to 4.5 dB gain above the radiometer; each of the

added features (i.e., two receptions, synchronism anc <oherence) can be thought of as

B

contributing 1.5 dB to the gain. We note that, in arriving at these gain figures, system

imperfections and noncalibrated parameters such as Doppler frequency offset have not been

S RainT Y B At s

accounted for.

1t is, therefore, seen that certain gains are plausible with respect to the radiometer if

Y R I
—~

careful designs are employed, but they are certainly not overwhelming--at least in the SNR

Y 17 For example, if the unknown-code detector requires -15 dB for certain performance level,
the known-code system will achieve the same level at - 30 dB
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Figure 12. Performance Comparisons for the Detection of DS Waveforms
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range of interest and for constant-envelope signals. This is because a high-rate DS

waveform is not very distinguishable from the background thermal AWG noise in which it

A
INPNES
NG

is detected and, as is well known, the radiometer then becomes an asymptotically optimal
detector. This is also in accordance with Krasner's approximate result regarding
biorthogonal waveforms [8], which establishes the DS signals as uniformly good LP!
choices almost independent of the prevailing system parameters (SNR and N). However,
if one removes the biorthogonality of the signal set and/or the AWG nature of the noise, the
results can differ substantially. An illustration of the former can be found in the following
sections which pertain to time-hopping and frequency-hopping waveforms. As for the
Iatter, it is clear that the white-noise theory as developed herein can be grossly inadequate
in a dense environment, loaded with a mixture of wideband and narrowband waveforms.
As mentioned in the introduction, the presence of narrowband interference prediction and
excision algorithms will then become crucial to the success of any detection scheme. The
example of section 5.5 is meant to illustrate the dramatic difference between a somewhat
"intelligent” algorithm and the "naive” radiometer in such a narrowband environment
which, of course, comes as no surprise. We note that a general theory of LPI performance
in an unpredictable-interference scenario has not yet matured (at least in the open literature)
and thus constitutes an area of significant interest.

We conclude by noting that the implicit assumption of "message-synch" (i.e.,
signal occupying exactly the observation interval) should and could be removed in a
realistic evaluation of an LPI detecting system.. However, the relative ranking, in terms of
merit of the various detectors discussed herein is not expected to change under such

alteration of the underlying scenario.

63




DAL A Mt R Tl PN AT e R I e A Sy T A R T Y R P T Ty T

40 TIME-HOPPING WAVEFORMS

We now focus on the wideband detection of a particular type of .orthogonal
signalling, namely TH waveforms, where the code dictating the hopping is again random.
We shall consider only synchronous detectors (i.e., the timing or epoch of the hopping slot
will be assumed known); asynchronism can be treated with methods similar to those used
in Section 3.3. Furthermore, both carrier-coherent and carrier-noncoherent systems will be
examined. In particular, the former will assume a known carrier phase combined with a
pulse-position-modulation (PPM) format while, for the latter, any modulation that
randomizes the phase form frame to frame (e.g., BPSK) is well suited. We term such
cases "pulse noncoherent”. Of course, one could hypothesize a noncoherent PPM system
with an unknown, but constant carrier phase, and derive the optimal detection rule.
However, the resulting receiver and pertinent analysis are again complicated (for a similar
situation, refer to section 3.2 for DS); therefore, only pulse-noncoherent systems will be
discussed here. Again, the lower-bounding performance of the radiometer will indicate that
little is lost by using this simplification.

For our purposes, the received waveforms (TH signal plus noise) can be written as

r(t) = /2§ ki p(t - KTp - kaH)cos(mot + °k) + n(t) 4.1)

where T is the frame length, Ty, is the hop length (width of each time slot), and p,, 6, are L‘"’”*'
random variables which are independent from frame to framenand of each other, denoting
the slot location and carrier phase, respectively, during the kth frame. Here, p, can take

on any one of the equiprobable values py = 0,..., Ng -1, where Ng = T/Ty is the total

L A S

number of slots per frame and 6, summarizes both the unmodulated carrier phase ¢ plus

18 The independence of 6y is within the aforementioned spirit of a "pulse-noncoherent" R
system, PO

.........................

..................
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any superimposed PSK modulation. For coherent systems, 6, is assumed known for
every k. Finally, p(t) is a unit pulse of duration Ty seconds, while n(t) is the usual
bandpass AWGN. A noiseless sample waveform (realization) of the Ty signal is shown in

Figure 13. We shall assume that the total observtation interval consists of Q frames,
ie., T = QTg = QNgTy. Note that the average signal power in (4.1) is S,, = S/Ng.

..-',.-,._A'_._,_, P
IR LA ARSI

SR Mo due s R ey




4:: :
" *“1

>
»

. 3%

ot
AT

PRI
P
4 4 & a2 v &

Y r . .
. L)
et a LA A

sweJd4 03 3Bweuad

L

2

Wo4j 3IStyd 4y wopuey pue ol = uz ya3im (eubirg Bburddop-awry vy €1 34nbi4g
.:».
——f PQ——
P 8
N\ N 4 (1- -
ﬁ SUL) W M 1(1-%) :
- / { W \ .
N D

T

ULV

o~

LWL

N

¢

L g
je
[

oo

-1---T %




N ¢
!
4.1 Synchronous Coherent Detectors

i 3

N Under the coherent assumption, V2 cos (ot + 6,) in (4.1) is substituted by one.

Then, a straightforward application of the composite likelihood ratio yields

| @

' N H

v eXp =Yy F 2/5 }

: A(r(t)) = ‘[Qr > exp{ r 4.2)

; DT N TR & R (ot

¢

l ] where

: ST

: 4 " H 4.

; T4 L “4.3)

i

g is the SNR _per time hop (slot) and

S
s (m-1)Tg+kT, S
; @ "o r(t) p(t - kTy)dt 4.4) R
g (m-1)Tp+(k-1)T, N
. .'
i o is the integral of r(t) in the kth slot of the mth frame. If y is a small number so that RN
. exp{x} = 1 + x,(4.2) can be simplified to the approximate rule i
L S
- T Hy S
£ . Ar(t)) = r(t)dt £ a 4. DAMSR
X ) ’FO 0 4.5) .

' i.e., just the coherent integral of r(t). However, since Yy is typically above 0 dB (much

:i ‘- larger than ¥,.), such approximations are not as successful as in the DS case -- a fact to

rl

'.: which the comparisons in Section 4.3 will attest.

o

" The Gaussian distance d,coh associated with the optimal coherent rule (4.2) can be

; ¢ derived based on (2.9)and the following steps:

2 2 2 2y}

by dy,con® In c{l\ ‘HO} = Qln J{ Ap ‘HO 4.6)
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ie
: where Ay is the likelihood ratio per frame. But,
\
N exp{-v -
: an{AzFlHO} = In|l + var‘H ——{—ﬂ} % exp{-N—— km %
° ! "
N exp -ZyH 25 ;
. = In|l + var, <exps—— r
F HO* {NO km
: ] exp{-2 }
jo - __i'__”H 4.7
I Inj1 + - <exp{4yﬂ} - exp{ZyH}> 4.7

Since 1y, is a zero-mean Gaussian random variable (rv) under Hy. Combining (4.6) and

(4.7) results in

= ﬁ ln[l + NIE (ezYH - 1)] 4.8)

The distance dy, cop for approximate rule (4.6) is derived much easier since

Z(M|H) = 0. B(A|Hy} = /SOTy and var(h [Hg)} = (NeQTy )Ng/2.

&\|H.Y - BlH)
g . 1 o . | a
A.coh 75 2( Ne ) Yy 4.9

(var{ﬂ}lo}

Therefore,

¢

R AR 1\ AL SN

It is clear from (4.8) and (4.9) that d,' coh asymptotically approaches d ) con 8 Y40

-

an expected result. Furthermore, we can compare the approximate coherent rules ( 3.8)
. for DS versus (4.6) for TH and note that the first involves a nonlinear operation on the data
't prior to integration, while the second does not. This has a reflection on their corresponding
. ‘ . 3 .
- distances, as (3.11) is directly proportional to ¥, while (4.9) is proportional to Yy Thus,
." for the very-low-SNR case, the latter would outperform the former.
%
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4.2 Synchronous-Noncoherent Detectors.

Starting from (4.1) and invoking the independent phase assumption results in the

C AL )

m=1

decision rule
H

,% A (4.10)

where Ry, is the kth slot, m, frame envelope

ra 2
R = e +e
km \/ I.km * €Q,km @113)

and ;'_'J;.;.':'L

e -1)T+kT
El,knj - f(m )Tp*kT, Ht) [Ec.)s wof]dt
Q,km sin mot
(m-l)TF+(k-1)TH
k=l,...,Ne 5 m=l,....Q (4.11b)

The distance dg poncon associated with (4.10)is derived by steps identical to (4.7) as

dg.noncon * \[Q ln[l - -'—J? ('Q(ZYH) - 1]] (4.12)

Since I(x) < exp{x} for every x > 0, it follows from the comparison of (4.8) and (4.12)

that dy con > dy noncon for every Yy, as expected. We note further that, unlike the coherent
distance (4.8) or its approximate counterpart (4.9). dy noncon®f (4.12) is proportional to ¥y

at Jow SNR.

Instead of analyzing the noncoherent rule which approximates (4.10) for low SNR, let

us just consider the performance of the radiometer which operates on the time-hopped
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waveform(4.1) for T seconds. Following the steps outlined in Section 3.4 it can be
be shown that
3
drad * vKradi N ;YH
L (4.13)
where the constant K4 = a4/(WgpTy) again measures the loss due to filtering. As was
done in Section 3.4, K 54 can be set at its optimal value K,y = (0.77)2 = 0.6. We should
6 note here that (4.13) is actually an optimistic prediction (i.c., an upper bound) of the
radiometric performance since it is based on the assumption that the variance of the test
statistic under H is approximately the same as under Hy. For medium to high input SNR,
¢ this is not true; although a more meaningful performance description can easily be derived ,
we shall be content with (4.13) for comparison purposes.
¢
o
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43  Comparisons and Discussion

First, we are interested in comparing the relative loss of the approximate coherent
rule (4.5) versus the exact (4.2), since the former can be implemented easily (a simple

integrator) in contrast to the significant complexity of the latter. The comparison is in terms

of the relative SNR values Yy (in dB) required by each in order to achieve the same
performance level (d,2) for the same fixed values of Q and Ng. It is based on (4.8) and
(4.9) and is shown in Figure 14 (Ng = 10). As expected, the difference diminishes at low
SNR, but is rather pronounced at medium to high SNR. So, 'Yl°i°h-°P' = 0 dB corresponds
to ‘y§°h’3PP' = 3.9 dB -- a gap that increases rapidly as Y }‘;oh-opt increases.

Second we look at the gains brought about by the coherent assumption versus the
noncoherent by comparing the Gaussian distances in (4.8) and (4.12) . The result, again
in terms of the required SNR's for the same performance level, is shown in Figure 15,
(Note that this comparison is independent of Np,. The difference here diminishes as SNR
increases, while it can be substantial at low SNR. The final comparison is between the

noncoherent optimal performance (4.12)(or its equivalent log-likelihood sum) versus the

radiometer performance estimate (4.13). It is shown in Figure 16 for K 4 = 0.6 and

Ng = 10. The irreducible distance of 1.1 dB, as the SNR goes to zero, is due to the /K 4

19
factor . Again, we should keep in mind that the actual SNR losses of the radiometer are
higher than those shown in Figure 16 by an amount that increases with SNR due to
previously discussed reasons. Furthermore, a common trend is evident from Figures 14

and 16, namely, that the simplifying deviations from the optimal decision rules incur

comparative losses that increase fairly rapidly with the available hop SNR for values of

Yy above 2 - 3 dB. Since this is the dominant range of importance in TH applications,

optimal devices (albeit complex) should attract due attention.

19
However, this margin will probably disappear if the loss due to asynchronism is
accounted for in an asynchronous, noncoherent, optimal detector.
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So far a multitude of optimal and suboptimal receiver structm;cs for the wideband

. detection of DS and TH waveforms in AWGN were derived and evaluated in this report.
The starting points were those receivers resulting from the assumed knowledge of many
pertinent parameters (except the codes themselves); upon gradual removal of these

° assumptions, a family of suboptimal structures emerge whose associated losses furthered
them from the globally optimal performance towards the simple lower-bounding
performance of the radiometer. It is generally concluded that the higher degree of

» sophistication and complexity for such detectors is more justifiable in the TH case than in
DS, both because of the prevailing SNR values and the signal structure of TH versus DS.
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5.0 FREQUENCY-HOPPING SIGNALS

For FH systems, the main challenge in implementing optimal receivers is the large
number of hopping frequencies (as many as available by the FH system) that must be
simultaneously observed and measured per hop before an optimal decision is reached.
Contrary to that, the two systems considered previously utilize a single carrier frequency;
stated differently, the instantaneous bandwidth20 of those waveforms effectively comprises
the overall spread-spectrum bandwidth. The implication is that any additional benefit
(always with respect to the radiometer) brought about by the optimal detectors in the DS
and TH cases must be extracted from the intelligent time-domain processing of the received
waveform, rather than from increasing hardware complexity. In FH/LPI, however, we
shall see that detection performance improves as the channelized width of the spectral
observables decreases towards the optimal hopping-rate width which, of course, implies
more filters.

The FH/LPI problems are mathematically formulated as detection of a complex
sinusoid of unknown frequency in additive white Gaussian noise (AWGN). This is a
problem common to diverse fields such as Doppler radar and sonar [22-26], spread
spectrum communications [27-33], robust detection in the presence of signal perturbations
("slewing")[34], unknown colored noise [35], unknown signal spectrum [36-37],
unknown bandwidth due to digital modulation [38] (see also [39] for some simulation
results), etc. Unfortunately, the wide diversity of the underlying models precludes the
extraction of firm, universal conclusions about the relative merit of the different techniques,
either among themselves or with respect to the simplest hypothesis-discriminating device,

namely the energy detector (radiometer). Here, we shall address the problem from a basic

20By this, we mean the bandwidth associated with the single chip pulse of the spreading
code.
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communications viewpoint, cautiously establishing the discrete-space detection model, and

we shall subsequently explore a variety of possible approaches to its solution.
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5.1 Waveform-Processing Alternatives

Let s(t) be the FH signal to be detected solely in AWGN within a total spread
bandwidth of W, Hz. If Ry 4 Ty! is the hopping rate and hopping frequencies are

® contiguous and equispaced by the minimum noncoherent orthogonal separation of f =Ry,

it follows that the total number M of possible hopping locations is M = W,/ Ry =W, Ty

-- typically, a very large number. Let the total observation time T be Ny hops, i.e.,
' o T=NTy, o

We restrict attention here to the broadband, AWGN case, which is the only

observable waveform under hypothesis Hy:

rt)=nt); 0<t <T (Hyp) (5.1a)
If, under the alternative hypothesis H;,

r=st)+nt); 0 t<T (H)) (5.1b)
the signal s(t) is itself broadband ("white") and Gaussian, the energy detector is tantamount

to the optimal likelihood ratio (LR) test

Hr(tH,)

— >
Hr(tHy) <
Ho

A(r(t)) = threshold (5.2)
When, however, the signal of interest is inherently narrowband, as is the case of interest
here, it possesses sufficient structure so that parametric approaches warrant attention,
whether optimal and theoretically justifiable or not.

Implementation of (5.2), or any variant thereof, over the total RF bandwidth W, .

might result in unacceptable complexity. One way to alleviate the problem is shown in

Figure 17 wherein the total bandwidth W is subdivided into large contiguous segments of
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B Hz, each being much larger than the optimal bandwidth of Ry Hz. Appropriate
processing produces a per-band decision which is then fed into an overall accumulator ,_w
(e.g., 2 majority-logic combiner) for a final decision (H; versus Hy). Let us note that i:h:
alternate reduced configurations have also appeared in the literature [{40,41], such as the ’ N ‘\\ié
partial-band filter-bank combiner. There, only a fraction of the total number M of the S\f&ﬁ
hopping slots is being observed, but the observation bandwidth per slot is optimal (B=Ry). %.‘,.,‘,\,.;

The focus of the following sections is on the waveform-processing (WP) aspect

on a per-band basis. Clearly, algorithms that improve performance on that level will also

increase the overall system performance. We shall assume throughout this development \,1
that the hop time-bandwidth product :
G =BTy = BRg>>1 (5.3

is very large, i.e., of the order of hundreds or more. The factor G also measures the order

of the reduction in complexity when implementing the suboptimal structure of Figure 17

instead of the optimal. As a consequence, the input SNR per band ;, , defined as

A S

Tin = NgB

cy r
."'

4
(IS

()

D

(5.4)

is typically very small compared to unity (¥, << 1).

M 2 B Bt
IR o ok |
* . .

A
.

Now, two questions arise immediately:

(a) Into how many bands should the spectrum be divided?

(b) What kinds of WP alternatives are available or could be used?
With respect to (a), it-is intuitively clear that one should use as many bands as the number l—-——{
of devices which can be afforded since, by decreasing B and thus increasing v, from . 4
(5.4), more reliable decisions on a per-band bases can be achieved; an elaborate cost- ]

versus-payoff study is of significant interest in this area, but will not be pursued here. As

v TIEeY T T

for the second question, we note that the device which immediately comes to mind is the

familiar radiometer, designed to measure energy in the band of B Hz. Under the Gaussian

80
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assumption for the output-decision statistic (which is well justified for very large G via a AR
. central-limit-type argument), its performance is easily derived to be (see Sections 3.4, 4.3) N e
: dana =Q1[Pgal - Q! [Pp) £ VSNR,,, (5.52) ;:1"-
. rad 2 12
SNRoul = SNRout = (NT) Yoin = (NTG) Y°H (SSb)
i (Pp,Pga) are the detection and false alarm probabilities, respectively, and Q!(x) is the
‘ - inverse of the Gaussian integral function, and
)
8 STu o
¢ R
| | 3
S

is the hop SNR. Note, that the second equality in (5.5b) signifies the small-signal
suppression effect of square-law detectors [42, page 267]. We emphasize again the (Pp,
Pra) pertain to the per-band decision, not the overall scheme.

The radiometer solution is implementationally simple, but otherwise unacceptable in

most cases from a performance viewpoint; we shall soon have a chance to establish this

latter fact. Alternatively, more sophisticated approaches must be sought, and that is what the
following sections are about, namely to establish and analyze families of advanced
detection rules (waveform-processing schemes).

A major aspect of this detection problem is to choose the domain in which the decision

algorithm is to operate, namely the spectral versus the correlation domain. Of course, by

T TP T P T ———_—_re———m——
7 ¢ ¢
' *
P °
lt 4
¥

virtue of the Wiener-Kinchine theorem the two domains contain, in principle, the same

amount of second-order information. However, how this information can be best exploited

b
E_ from a detection viewpoint, when a finite length data record is available and certain
parameters in the signal and/or noise models are not completely known (in either a

r statistical or a deterministic sense), remains still a challenging question. It has prompted

researchers to look beyond the traditional spectral approach (which is motivated mostly

-
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; Rk
{ results reported exhibited a varying degree of success, depending on the assumptions made e
< ANGEX
! and the nature of the adopted decision rule. An added degree of motivation for the : L
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g correlation domain comes from the recent advances in the technology of real-time, large :;'
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N 5.2 Single-Hop, Spectral-Domain Algorithms

- Now we shall explore single-hop algorithms (N = 1); in other words, the data record
i @ consists of single-hop 0 <t < Ty of a perfectly epoch-synchronized.signal. The results
;I- should give an indication of the relative merit of the different algorithms, their capabilities,
ﬁ complexity limitations, etc. Futhermore, we shall assume throughout this section a
i ® noncoherent environment, which is mostly dictated by practical considerations of the FH

modulation.
Let us first consider algorithms in the spectral-domain. In order to motivate them, let
us assume that the signal (under H,) is just a sinusoid of known power S but unknown

frequency f and phase 0; frequency f; lies in an RF bandwidth of B Hz, centered at the

known frequency f,, i.e.

r(t) =25 cos (gt + 6) + n(t) (H,) (5.6)

The one-sided noise power spectral density (PSD) Ny W/Hz is also known. Under
the broadband asssumption for the noise and modeling the unknown frequency f;as a

random variable, uniformly distributed in (f.-B/2, f. + B/2), leads to the optimal LR test

Ac) = & LA}
L

exp {- §1-F}
No t_+B/2 2/s :‘
- —— If:-n/z lo To- R(f,)) df, 2 threshold (5.7a)

Hy
where Iy() is the zeroth -order Bessel function, #{+} stands for expectation and R(f,) is the

real envelope at frequency f,,

83
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where [f-f| < B/2 and Ty >> B! i.e. G =BTy >> 1. This situation is depicted in Figure 18.
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Figure 18 A pictorial representation of the RF spectrum

around center frequency fc under H1 (signal present) .
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h " R(f) = VR (f) + Rg(f,) (5.7b)

: with
N Ry(f.) = VZ Jor(t) cos 2nft dt (5.7¢)

Ro(f) = VZ [g r(t) sin 2xfit dt (5.7d)

the inphase and quadrature components, respectively. This optimal rule(5.7a) averages the
nonlinear transformations of the envelopes at all frequencies in the band. This being overly

demanding to implement, one discretizes the frequency uncertainty region in G = B/(T-!)

candidates f,; m =0,...,G - 1, spaced Tﬁl Hz apart, and approximates (5.7a) as

exp{-vyy} 61 2/5 :1
Ao ——— mzo lo N, R(;“)> > threshoid
Mo (5.8)

with R(fy,) as per (5.7). The set of 2G = 2BT}; orthogonal function {sin wyt,cos comt}(;j)
can be approximately interpreted as a predominant set of eigenfunctions of the broadband
noise with a rectangular spectrum [12]. Note, that if the candidate hopping frequencies
were known exactly apriori, rule (5.8) could be derived directly from rule (4.9), (with

Q = 1) by exploiting the duality between TH and FH. In fact, both spreading techniques
belong to a larger class of orthogonal signal sets.

From a theoretical standpoint, any mechanism which provides reliable envelope

estimates?! [R | = R(fy) or, equivalently, spectral estimates S, = |[Rp|%; m = 0,...,G-1 can

21Since both real and complex quantities will be encountered in the sequel, the symbol "n"
will denote a complex number, while [+| will stand for the complex norm: Plain letters refer

to the real counterparts.
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be coupled with the aforementioned LR-type test or any other approximations thereof.
Possible choices include the aforementioned quadrature analog implementation (5.7b)-
(5.7d) a bank of narrowband filters, chirp-transform (SAWD) devices [45] or a complex

FFT operating on the baseband complex envelope T(t) of the real bandpass observation r(t):

T =x(t) exp(-J2re ty) , (5.92)

~ A ~ -1

rg = r(kB7'); k-O....,G-1 (5.9b)

{(Kp}CG~1 o FFT(F,}0-! (5.9¢)
m=0 : k=0

Sw = [Rn Bs B=0,) eee y G=1 (5.9d)

As indicated, this requires sampling the baseband complex signal T(t) at the Nyquist rate of
B complex samples/sec, and is based on the fact that r(t) and T(t) possess identical spectral
envelopes, as per (5.9d). The information loss incurred in the sampling operation (5.9b) is
negligible for large G; furthermore, denser spectral sampling can be obtained by padding
{r,} with an appropriate number of zeros, although such is not required for implementing
(5.8). Issues associated with the standard generation of the "periodogram" (5.9d) such as
data windowing, segmentation (Welch method), etc. have been studied extensively in the
context of spectral estimation (see, for instance, [46] and refs therein) and will not be

discussed here any further.

Let us now return to the performance of rule (5.8). It is clear from the above problem

formulation that, for G large, the LR statistic, A of (5.8) should be modeled as

Gaussian (under a central-limit-theorem type of argument) which, in turn, negates the

Lans S oo
<




modeling assumption of a Gaussian LLR £. As a result, the more traditional measure d, is
not applicable; instead a "Gaussian” measure d A must be derived and employed.

Let us define d, via the standard expression (2.7) : ’
[8{AH, }- B{AH )12 . S
dy 4 e
A var{A{Hy} ;\i’%
X
Where &{A] H;} is the expectation of A under hypothesis Hy; i = 0,1 and var {A| Hg} is »

its variance under Hy,. Let us further note that, under Hy, all G observables {Rm}g;‘) are

just noisy envelopes, while under H, there is one "signal-plus-noise” envelope and (G-1)

noisy ones (recall the orthogonality assumption). Thus, for large G, it is reasonable to ® B
assume that var{A|H;} = var{A[Hg}, which reinforces the utility of di as a reliable L

distance measure between the two (approximately Gaussian) distributions of A under either
hypothesis. l. '
It is straightforward to show that (see also Appendix H)

2/5 e ;noise only o
g0 — &)!- { vy R
No e 1g(2vy) ;signal-plus-noise (5.10a) o
N

>

2 2/§ 27 .
&41g o R) - e Hig(2yy) ; noise only (5.10b) .
0 P

so that »
v
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var{ly (= RJIHg} = e¥Wully(2y,)-1)
0 (5.10c)
where vy is the hop-SNR as per (5.5¢). Thus,
Yu YH
E{AIH} = (G-1) e " + e Tlg(2yy) (5.11a)
EMHg} = Gee™ (5.11b)

Combining the above and the independence assumption between observables we conclude

that

d2 = ¢ '[1g(2vy)-1]
(5.12)

Equation (5.12) will be used for evaluating the performance of decision rule (5.8) under the
assumption that the signal does indeed come on one of the candidate frequencies (no
frequency offset); we term this Case I. Clearly, the same rule can be employed, neglecting
the fact that there can be an offset. Use of (5.3) under the assumption of a worst-case

frequency offset Af = Ryy/2, i.e. the signal arriving amidst two candidates is termed Case II.

Two more cases arise from the possibility of adjusting the power factor S in (5.8) by a

coefficient o < 1, which accounts for the power loss on the signal measurement due to

worst-case offset:
w(RHT57)2
2

'RHTH
_] (5.13a)

sin w(Af)TH\2 | sin
Q = =
ﬂ(Af)TH )

or
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(5.13b)
Thus, Case III refers to the power-adjusted rule (5.14)
- ~2 Hy
621 1 2/as R 2 threshoid
m=0 0 No m H
° (5.14)

when there actually js an offset Af = Ryy/2, while Case IV refers to the adjusted rule(5.13)
when there actually is not an offset (Af = 0). All four cases are summarized in Table 1,
along with their defining features (first four columns). The last column lists the associated
distances, in analogy to (5.12). To illustrate the steps involved, Case II is analyzed more
thoroughly in Appendix I; the other two involve similar calculations.

Let us note here that the amplitude adjustment in (5.13) is only a partial, ad-hoc

remedy towards the frequency-misalignment problem: an exact approach should account

for the fact that, whenever Af = Ry/2, two adjacent spectral slots simultaneously receive
significant signal power (albeit reduced & ) and should proceed to construct the LR from
there. However, the resulting "optimal rule” is overly complex and not measurably better
than the altematives examined herein.

The optimal rule (5.8) might be overly demanding to implement. An alternative and

popular rule is the spectral-maximum detector, which selects the maximum from the
envelope observables Rm = rﬁm | and compares it to a threshold [25, 26, 34, 39;0(0.]
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max R > threshold; .-
m ™ :o reshold; m=0....G-1 (5.15)

Rule (5.15) affords a generalized-likelihood-ratio tests [12] interpretation: If the
narrowband (hop) SNR 1y = STy/Ny is large, the spectral observable corresponding to the
signal location can be expected to rise well above the noise floor and be the maximum with
high probability; thus, it can serve both as a frequency estimator, as well as a detection
statistic for a now narrowband (matched filter) hypothesis testing. The performance
associated with (5.15) can be determined exactly (i.e., no distance need be evaluated) by
noting that rule (5.15) is exactly equivalent to the rule

(if all Ry < Tpae decide H,
| if atleast one Ry 2 Tey - decide H, (5.16)
whi\ch involves the comparison of each R;; m = 0,...,G-1 with the same threshold Tp,,.

Let Py, denote the slot false alagn probability

Ph A pmb{Rm > Tmuli':u'n:l'ol':.m}

(5.17a)
and P, denote the slot detection probability
A - )
Pd - PrOD Rﬂ)rmaﬂ signal
in slot m (5.17b)

The slot probabilities (P4, Pg,) are then related to the DOC (system) probabilities (Pp, Pg,)

via

7/
il 3B
XN

T
&




Pp=1-(1 - Py)(1-Pg,)G! (o offset) (5.19a)

where it is assumed that only one slot contains the signal under H; ( no frequency offset).

If, on the other hand, a worst-case offset is assumed, ( 5.19a ) is modified to

Pp = 1-(1-Py; o )3(1-P, )02 (worst offset) (5.19b)

where the notation Py, is adopted to indicate the signal-power loss by a (i.e., a hop SNR
of ayy).

The slot probabilities of eq. (5.17) are related through the standard Marcum's Q
function [15, 16]

. p2.42
Qa,B8)= %re" —2  Ig(ar)ar
(5.20)
as
Pd = Q ['ZYH ’ V2 In Ph.']
(5.21)

Equations (5.18)-(5.21) can be used to relate Pg, and Pp directly: from (5.18) it follows

that
Pf‘ = l-(l - PFA)NG (5223)

wherefrom
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G

(1-P )0 = (1P & = 1-Pg, (5.22b)

since G >> 1. Thus, substituting (5.21), (5.22) into (5.19a) yields

Py = 1-(1—9,9 1-Q fz’ﬂ.dﬁ lh[‘l-ﬂ-PFA)"G]-'

(no offset) (5.23)

for no offset; the expression for worst-case offset induces minor changes as per (5.19b).

A satisfactory approximation to (5.23) can be derived when G-1Pg, << 1 (the typical

case of interest), since then

Pra
- /G -
(1-P V6 & 1~ o~

which, upon substitution to ( 5.23 yields)

Pp ® 1-(1-"») [‘*Q (fz—"_" 2 ei_.))]

(5.24)
Finally, if Pp, << 1, so that 1 - Pg4 < 1, a tight lower bound to ( 5.24) is
PD>~Q /2y, ‘/2 in G
’ Pra
(5.25)
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Approximation (5.25) is identical to the performance of a narrowband (known frequency)
noncoherent detector, whose slot false alarm probability Py, is G-! times the overall system

(broadband) false alarm probability Pg,.(compare with (5.21)). In other words, if ¥y is

sufficiently high so that the overall detection probability is primarily due to the slot
containing the signal (i.e. P4 = Pp) and G is, say, 103, then in order to have the overall

Pg, = 103 we must have Py, = 106 per slot.

As mentioned, all detection schemes can be compared to the lower-bounding

performance of the radiometer
i L jinlte 3 threshold
fo rdt = ) fo (| a7 thresho
Ho
(5.26a)
or in a discrete-time version,
G-1 _
-~ 1 G - H
.20 Irif? = G ) IR,,IZ :' threshold
"0 ) (5.26b)
0

Whose lower-bounding performance is given by (5.5) with Ny = 1. For the wideband

case of interest, radiometric methods become progressively more inadequate as G

increases. Note, that as the slot SNR y43—0, then [y(x) = 1 + '%‘ and the decision rule
(5.8) becomes the radiometer (5.26b).

The spectral detection problem presented so far can be summarized as follows: Given

the complex baseband envelope r(t); 0 St< T, of an unknown-frequency sinusoid in

complex additive Gaussian noise, approximately white, bandwidth B >> T,
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FM) = /7 /S &d9t + gy + ingtl 1w & lw-w] < B2,
0<ts T

(5.27a)

or its sampled version

w
- — k K
o= /218 & 5" o niy + ingQl ke0...G-1

(5.27b)

under H;, and noise only under Hy, create a set of spectral estimates lﬁm R;m=1,.,G

and use them in conjunction with any one of the rules (5.8), (5.15) or (5.26) to obtain a
binary decision (Hy vs. H;). These spectral estimates can be created by any judicious
mechanism. A particularly attractive class of such novel spectral estimators is based on
autoregressive (AR) models [46]. Those could be employed to produce the desired spectral

observables in an efficient manner, according to the formula?2

m=1

(5.28)

Here, M is the order of the adopted AR model and ﬁm; m = 1,...M are the estimated
coefficients derived from a nonlinear operation on the raw data T, of (5.9b) and/or a
weighted (filtered) version of the linear prediction residuals {47]. Note, that for the AR
spectrum, it is the area under a peak which actually reflects the power of the corresponding

harmonic component.

Z2This is the AR spectrum normalized by the estimated variance of the linear prediction
errors.
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The question of identifying good spectral generators from a detection viewpoint, of ;:_I’Z:fo:_'
which the FFT and AR models of (5.9¢c) and (2.28) are two examples, is indeed quite -\_.
B SR

open and therefore exciting in its own merit. This is particularly so, because most of the

efforts in the literature address the improvement of spectral _estimators (in terms of bias,

resolution, smoothness, line-splitting, sidelobe behavior, etc.), which says nothing of their

[ ]
detection capability. Here, however, we leave that question aside and proceed to examine
decision rules which do not explicitly utilize spectral information; instead, these rules
operate directly on data from the correlation domain, thus constituting the field of
®
rrelation d .
[&
|
L
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5.3 Single Hop, Comrelation Domain Algorithms in AWGN

Let the finite-record sample correlation function 2 be
y@ = [P rra-0dt 0TS Ty (5.29)
where r(t) is as per (5.1) or, more specifically, (5.6). Since r(t) is a BP process, so is y(T ).
Combining (5.6), (5.29) and rejecting double-frequency terms leads to the complex

envelope ¥(t ) of y(T) as

- 1 -~
v = 3 J’TT f(t)r* (t-1)dt

(5.30)
where "*" means "complex conjugate.” Sampled every B-1 sec, (5.30) yields
o A o -1 I Tu P o1
Vi & v(BT) = o [Jy ritr* (t-kE)dt k=0...G-1 (5.31a)

Furthermore, if the integral in (5.31) is approximated by a finite sum in terms of samples T}

of T(t), we arrive at the biased estimates of the correlation sequence

V-k = (_) 2 ?"F. : k=0,...,G-1
Rex Rk (5.31b)

which could have also been derived by direct quadrature demodulation of r(t) and complex

sampling of the resulting T(t); whether this approach is preferable to the sequence (5.29)-

Z3From now on, the term "sample” will be omitted; "correlation” will always pertain to time
averaging, not ensemble averaging.

97

e
RO
P s
% Tt

"’ "-'A "- :.-_".'
+

LA N

| B )
XA
)

Al
'
A
A

el
'y
s

¥ 2 I 4
2080

" I
).f v'. A
s 418 0

LN
NN

O
P
o
[N
L




-
(5.31) is a matter of impiementational convenience. From a constant-false-alarm-rate X l':_.:
(CFAR) viewpoint, it is typically advantageous to use the normalized correlation L
' * observables
: G |,
: ~ I rorga
- - A vk R:‘k
. Py & T~ * o7 k=0..G-1
.b Yo N nlz
L=0
(5.32)
- . . G- .
: It is well known that, within a constant, the sequence {¥,} FL and the periodogram
l g {lﬁmlz}g;zarc Discrete Fourier Transform (DFT) pairs. Thus, given (5.31), a DFT
operation would allow the application of the spectral algorithms discussed in Section 5.2.
However, it is possible to find meaningful detection statistics in terms of the y,'s without
" ‘ an explicit evaluation of the spectrum. In other words, we can state the following (single-
hop) correlation-detection problem: Based on the sequence {yk}g'l of (5.31) or
equivalently, on the set [Yo,{'ﬁk}g'l] of (5.32), formulate a detection statistic without
i g explicit evaluation of the spectrum {[R;2}S:1).
Simple examples of ad-hoc detector choices proposed in the past are the "Semicoherent
Detection Statistical Test"
.' .
y Hy
¥ > threshold, (for some k) (5.33)
Ho
§ ’ in a radar environment (see [26]), the RF correlation statistic. ‘-—" IR
AG .M
Y = ka d. ivi? 2 threshoid RS
» Mo (5.34) SR 4
"r*j

of [32), withO <A S 1and {ak};ci 1an appropriate set of coefficients, the statistic | P12 of

[34), etc. Some more advanced choices will be discussed later in this section. For the time

.- I A
L T R A
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being let us concentrate on the analysis of (5.34), whereupon it will be shown that
significant gains can result with respect to the radiometer. Let us note that the zeroth term
[¥ol2, which is in fact the radiometric output, could have been included in (3.54) with a
marginal improvement in the detector's discriminatory power; on the other hand, this
would make the detector much more sensitive to the (possibly fluctuating) noise variance
and is, therefore, omitted.

Decision rule (5.34) can be rephrased in terms of the continuous-argument correlation

function y(t) of (5.29) as

AG H,y
Y=Za,‘w

L « 2 threshold

Ho (5.35a)

where

a 2 -
W, y “k“Lowous T,=x B

(k=1...AG) (5.35b)

by virtue of the fact that y2(T)|; p = ly(t)|2/2. In other words, the complex baseband rule
(5.34) can be reconfigured in terms of power measurements (around T;) on the real-time
correlation output at an RF or IF frequency as shown in Figure 19. Again, whether the
rule is actually implemented at RF or baseband in discrete continuous time,etc.,is a matter
of practical convenience.

The set of coefficients {a,}{-! can be chosen according to any particular philosophy

and is subject to optimization. It can be shown that performance of the summation (5.35)

is insensitive to the exact value of a,'s and a number of reasonable choices would work, as

long as the upper limit of the summation is properly truncated at a level S = AG, which is
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less than G (i.e., A < 1). This is because the last samples possess such an increased

variance that their inclusion in the summation is detrimental. Analytically, this is equivalent

to letting a, =0 fork =S + 1,...,G . Thus, a proper choice of A is rather crucial, while

that of {ak}:g’ is not. For reasons that will soon be clear, it is mathematically convenient

to let

2 - (Ty - Tk)-z s k=1,...,26

0 i k=AG+1,....6
(5.36)

in the following calculations. We note, that this set of a,'s, corresponding to the inverse of
a triangular window on the correlation samples y, of (5.31), is such that the latter samples
become unbiased estimates of the true (ensemble) correlation function of the underlying
discrete-time process? [46,48].

To pursue the analysis of (5.35), with y(t) as per (5.29), let us assume that, under
H,, the input to the correlator r(t) consists of a sinusoid V2§ cos(w.t + @), whose
frequency coincides with the center frequency of the observed band, plus bandpass

Gaussian noise with the standard quadrature expansion,

1(t) = V28 cos(e t + ONVZ [ny(t) cos(eat +0) - nQ(t) sin &t +6)
0St<Ty (.37

In (5.37), ny(t) and nQ(t) are the inphase and quadrature lowpass noise processes,

respectively, which are i.i.d., zero-mean, with a flat PSD of Ny/2 W/Hz and two-sided

24Such unbiased correlation estimates lead to power-spectral-density estimates which are
not warranted to be non-negative, an undesirable feature in spectral estimation [46). Yet,
they are quite appropriate for our detection procedure (5.35), which further illuminates the
aforementioned distinction between the detection and estimation goals.
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bandwidth of B Hz each (total power per component = NgB/2). The assumption about the

signal's frequency is just mathematically convenient; it will be shown later that it does not

alter the results in any way.(see the baseband complex formulation in Appendix K as well

as the results of Section 5.4.

Filtering out double frequencies, the autocorrelator output y(T) around the center

frequency is

T
y(®) = [ r}(it)r(t-‘t)dt = yss(t) + YsN () + YNs(T) + YNN(T)

(5.38) '
with

Yss(T) = S(Ty-7) cos @ T

ysn(® = VS (N7) cos gt + NS (¢ ) sin o0c®)

yns(®) = VS (N|(T) cos ot - N (T) sin 1)

YNN) = (Npi(7) + Noo()) cos 00T + (Ng(T)-Ni(1)) sin T

where the correlation-domain noise processes have been introduced, i. €.,

Ned(t) = fT“ nra(t-t)dt
rI = i -
Lo] ¥ [q]
Ty
Neq (1) = / n[gft)dt
Q] T
T
N”(r) = / nl(t) nI(t-'r)dt

T
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(5.39a)

(5.39b)

(5.39¢)

(5.39d)

(5.40a)

(5.40b)

(5.40c)

v G e




............

S
L‘N:"‘"
- wy
Ty | .
NQQ(T) = / nQ(t) nQ(t-‘t)dt .:_.:’:
’ (5.40d) o
. Nm(r) = f H nI(t) nQ(t-r)dt !jf_:_f_::
-. v (5.40¢) S
- BASES
o ':-.':.":
: SR
[ J T, L
NQI('l’) = / nQ(t) nI(t-r)dt "*"
% (5.400) SR
Much of the following analysis deals with the statistical characterization of the above noise L.,
processes. For instance, it is clear that the first four processes in (5.40a) and (5.40b) are
zero mean and Gaussian, while the remaining are not Gaussian. However, they will be .i.
- ¢
approximately treated as such in the analysis, particularly for 0 <t << Ty , by virtue of the
following central-limit-type argument: The bandwidth B of n (t) and ng (1) is much larger
. than T;,l- ; thus, each integral in (5.40c) through (5.40f) can be approximated by a large
L
2 sum of noise-product samples, each sample taken B-1 seconds apart. Since we shall be
interested in values of T that are multiples of B-1 it can be shown that those samples are
mutually uncorrelated. Although this does not imply statistical independence (which is a
o RN
, prerequisite for a rigorous application of the central-limit theorem), it nonetheless reinforces b
the argument. This will permit us to calculate higher moments using Gaussian identities ?-
- whose exact evaluation would otherwise be unwieldy. We furthermore note that simulation 5
has confirmed the validity of the approximation (see Section 5.4) v
The first point of interest is the mean value of y(t) in (5.38). We shall assume that the : \
: input BP filter in Figure 19 has a perfectly rectangular transfer function ("brick wall"),
ot which implies that the autocorrelation function Ry,(t) for both ny(t) and ng(t) is given by v -
Ron(®) & &fnj(thny(tn)} (N RS
> nn { 1(tInp(t-1) £{nQ(t)nQ(t-1)} -\ Sa(wBt) (5.41) [
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where S,(x) 4 (sin x)/x. Using the fact that
ofif = e} - efng) - o{nd) - #{ng) = #{ng )0 G420
and

&{Ny(0} = {Ngo(0)} = (T1)Rp(1), (5.42b)

we conclude from (5.38) through ( 5.40 ) that
&{y(1)} =[S + NgB) S,(xBT)}(Ty-1) cos ©T (5.43)

Certain interesting observations can be made on (5.43). First, although the quadrature
component (sin @.T) has been eliminated, the mean &{y(t)}still includes an unknown
oscillation 25; that is why noncoherent (power) sampling must be performed at the signal-

processing unit. Second, we note that the mean value at zero offset

&{y(0)} = (S + Ny B)Ty is just the average energy measured by the radiometer at the end of
Ty second, as it should be. Since we have assumed that ¥j,<<1, implying that S << NgB,
it follows that the radiometer output is dominated by the noise contribution. Third, if the
output y(t) is power sampled at multiples of B-l, i.e., T, = kB-1;k an integer, the
contribution of the mean noise wi'l be eliminated due to the nulls of the S,(x) function.
This fact will be exploited in thz: following.

Let us return to (5.38) for a moment. Since we shall be interested in low-SNR case,
we make the simplifying assumption that the "signal times noise" terms y gn(T) and yyns(T)
are negligible compared to the "noise times noise” term yyn(t). For ¥, below -15 dB, or

so, such a simplification is quite justified. Then, y(t) can be expressed as

y(T) = C(T) cos wcT +n‘xq(1:) cos T + Naq(t)sin 0T (5.44)

DRecall that the signal's carrier frequency is truly unknown, randomly placed in the B-Hz
band. It was modeled here to coincide with the known center frequency of the band just for

analytical convenience.

> lal



where
S(Th-+ Hy i
C(r) = { (T (") R
0 (o) Lot
,"' [ n‘\J
(5.453) ,.;::}t%.
%Y ‘-:
is the envelope of the signal component and the equivalent noises are defined by '*t \,&-
S
NIe) & Npp(e) + Nggle) (5.45b)
and
NP () & Npgle) - Ngg(®) (5.45¢)
As mentioned, y(t) will be power sampled at T, = kB-1; at which points,
e - e _
According to our previous discussion, chaq and NSQ will be treated as Gaussian noises. .
eq SN
Furthermore, it is shown in Appendix J that N(t) and Ngq(tj) are uncorrelated for every l-f«

kj = 1,...,G; similarly, the pairs (N]%(tx ;) NT(rip))and (v k1) N3Cx2)

are uncorrelated as long as Tkl* TkZ' Coupling this result with the approximate Gaussian

6 _ .
assumption, it follows that the sequences of noise samples {N?QCT k)ﬁ-lmd 1N8q (‘tk)% k=1 L_.,..
contain 2G Gaussian rv's which are zero mean and approximately indépendent. Thus, to '

complete their statistical description, the second moments (or variances, for this case) are

required. Those are obtained in Appendix J, wherein it is shown that L_,._
» :
c{(ﬁq@k)) } = () (T (Frto + Fpti) 47
and
c{(N"'"G ))2} = (Ng8) 2 S
otk (M®)" (usi)? (Fy00 - Falk) (5.47b) Lo
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where

Fl('k) = _/‘1 (1-0') SaZEGG - ‘k)ojd"'

0 (5.48a)
Folk) = fl (1-0")5a[36(1 - £10" + ¢y)] s E'G(0°‘k)°‘-‘k):\d°'
0

(5.48b)
and the normalized parameter C; is defined as 2
& Ty k K Tl
Ck = T; = ET;; t T H ksl’...'s-l :"'::
(5.48¢) T

so that 0 < {; < 1. Some meditation on the functional form of F,(k) reveals that it has a

negligible contribution compared to F, (k), so it will henceforth be dropped. From (5.47),

we then have that

o2(x) @ e{(n?"(r 0)2} . g{(usqcxk))z}

& M) (Tu-r)? Fiik) = (NgBTi? (- 6)? FllK) (5.49)

which is a fairly simple expression, but also fundamental for the following. In deriving the
above, it was assumed that (a) timing epoch is known, e.g., under H, , the signal occupies
exactly the observation period and, (b) the input BP filter is a rectangular one with

bandwidth B. The first assumption can be removed with some SNR loss, while the
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second is only analytically convenient; the results can easily be modified to account for any
actual filter shape.
Let us now return to the noncoherent sampling indicated by (3.35b). Such sampling
can be implemented via a square-law device, followed by a wideband lowpass filter; its
: bandwidth should be several times B, but still much narrower than twice the carrier
! i frequency. Again, neglecting "signal x noise terms'"26 , we have from (5.44) and (5.45a)

that

o We = ST -50% + (ufq(zk))z + (M=) Ll L

(5.50)

By virtue of the approximate statistical independence of the second and third noise terms in
(22), {Wk}(li'll is a sequence of approximately independent noisy samples, upon which

the decision is based. As mentioned, this valuable property of independence gradually
h v diminishes as k —=G-1 because the fundamental assumption in assessing it (i.e., Gaussian
: equivalent noise) weakens toward the end; this is also why those latest samples should be
ignored. Nonetheless, such a property is the key factor in the anticipated superiority of the

correlator versus the radiometer -- namely, the fact that additional data can be exploited by

T e

incorporating all these new samples in the decision. Their approximate independence
prevents these samples from being statistically useless.

In order to proceed with the evaluation of rule (3.35), we need the mean and variance

of the Wy's. From (5.47) and (5.50), we have that the difference of the means under the

N "'. | I .‘ "» .-l e

two hypotheses, A&{W,}, is given by

AB(W,} & £{W H,} - #{W,Ho} = (STy)2(1-L? (5.51)

:, 26A more exact analysis is provided in the discrete-time model of Section 5.4 without any
® significant deviation in the results.
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Furthermore, using the independence between qu(tx) and qu (t,) along with the

[ 5
Gaussian assumption yields the variance as
varfu,t = eq 2 4 2
td = zar {0d%0R} = 2fef(vioc)’) - #?fugicof]
® 4
= 2ot -qt] = (2020)? (5.52)
with °N2 as per (5.49).
0
' As seen in (5.51), (5.52) and (5.49), the quantities of interest for W, include a
multiplicative factor (1- {,)2, a reflection of the fact that the integration time reduces
proportionally to T, as T ,—Ty. Insertion of the coefficients a, in (5.36) purported to
l(
! remove this factor without essentially altering the results. Thus, if we define
| oot
| J 2
i KO- b W-w)
(5.53)
‘ it follows from (5.51) and (5.52) that
|®
A&{W'} =82 (5.54a)
, and R
' varfi b = ang®* 2000 (5.54b) C e
. while the decision rule (5.35a ) reads: .
)
- 7%5 L.
: Y = W'
: (5.55)
d If we now define the output SNR for the correlator in the familiar way o-. ‘

') " 'I .-l
B A "v;‘- S
PO
AN ANIE
g o L

ORI
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- 2
supeorr & g2 . LSl - (Y Hol)
g out Y var{Y Hp}

(5.56)

b then, using the uncorrelatedness of each Wy, we conclude that )

2
corr _ (2652) ) 2262 4
AG Yi n

4 SNR

out 4 AG 2
4NgB) " 3 FyT(k) 4 > Flz(k)
k=1 k=1 (5.57a)
¢ or, using the fact that Yy =G * ¥y’ i e
o

9 SNRSS{" = A(x,G) G-I.YH4
| 8

g where the coefficient A(A, G) is defined as IO

2

A(x,G) & AGX

4G 2 Flz(k) . K
Ke1
(5.57¢) s
Equations (5.5b) and (5.7b) can be combined into a ratio ;
o _:.
—"~ , 'f\,-.-"::-. '''''''''' "__-., R O A : . .--.::..



SNRCOL" A .2 f_:;:-'? .
sNR[ 39 =T (5.58) ST
‘ —
The interpretation of (5.58) is that, within the framework of performance established E,‘-{\
herein, the correlator will outperform the radiometer if the product A(A,G) « 2 is above :__:Z: *:‘-\
» unity and vice versa. We note that this product signifies some kind of utility factor and is :"t?" >
separated into two components: (a) A(A,G), depends on features of the device used (G) ‘1
and the signal-processing algorithm employed (L), and (b) Yy = STy/Ng, depends on
o scenario parameters (signal and noise strength, hopping duradon). ; j S
Exact evaluation of A(A,G) requires numerical integration by computer. However, we s
shall develop a lower bound and an approximation, which are quite useful for a wide range .
¢ of A. This minimum value (or lower bound) can be used in conjunction with (5.58) to i "‘ )
guarantee a minimum gain for the correlator versus the radiometer. The argument is based
on the observation that the quantity Fy(k) in (5.48a) is a monotonically increasing function :
® of the argument {;; thus, g
1
NORIN R Rt [ratt-2)e Jdot 5 ko1, g
° /] (5.59) ';

el

since {) g = A from (5.48c). The inequality in (5.59) can be strengthened by the following

steps: L

1
(1-9')5a2 7G(1-A)p’{dp’
[ st
. 1
< f SaZEG(I-A)p']dp' = G-l(l-x)-l jG(l-X) SaZ[ﬂX]dX

0 0

< 5-1(1'1)-1 f Saz[ﬁx]dx
0

= ¢ }1-0Y1/2) (5.60)

.................................
................

R I




Thus, from (5.59) and (5.60),

9
AG L
2 2 A e
F k) < 26 Fi°006) < wmmm=ey
o
b
which, when combined with (5.57¢), yields
'y AN
AAG) > Apin(MG) = Agy (A) = A(1-1)2 (5.61) L.
. We note that the lower bound A ;, depends only or. 7., while the exact gain A(A,G) also
depends on G. This is just a fortunate coincidence, and indicates that A,;, can be used for l
every G, as long as G >> 1. Thus, we arrive at the following inequaility
L
SNRCO"T'
Ut > ai1-n)? gl
SNR
out (5.62)

which, as mentioned, should be tight for small A,

In addition to this general bound, we can create a good approximate formula for the
above ratio when G(1 - A) >> 1, as follows: since the steps used to derive (5.50) are, in
fact, tight successive approximations, we conclude that F(k) = G-1(1-kG-1)-1(1/2), which
leads to
G

G
1 -1 1
(G--k)2 4 m=GZI:-A)[;2]

G .
S F2( =l
k=1 1 45

s




| €

The last summation can be well approximated by the integral

G
> Loof% ¢ 111
sl of 2 ,,T; - v -1 - o
-A

provided that G(1 - A) >> 1. Substitution into (5.57c) leads to

enpSorr
SNR] ¢

garad A1) Y
out (5.63)

which differs from the bound (5.62) in the exponent of (1 - ). For low A, (5.62) and
(5.63) agree closely. In any case, those two equations indicate that the relative merit of the
correlator increases proportionally to the square of the hop SNR and could, therefore, reach
significant levels, depending on the application (coded or uncoded systems, slow or fast
hopping, etc.)

The RF algorithm (5.34) - (5.35) analyzed above is but one attempt to exploit the
information imbedded in the correlation coefficient {?k}({' . In fact, it can be viewed as a
nonparametric algorithm, in that no particular model for the underlying process has been
assumed in formulating it; the algorithm simply measures the total "power" of the

correlation lags. As an attempt at a more structured approach, consider modeling the time

domain process {rk}gjoas an autoregressive (AR) process of order M, i.e.

b d “ -~ -~
v, - Z" EMm -m * Ep i k=Mel G-1
m (5.64)

In (5.64), {E'k} represents the zero mean i.i.d. ("white”) driving noise process with

estimated variance 02 and &ty =[Oy 1,...,0\ m]T is the estimated AR parameter vector;

112

'
-
l:’.-
.
.

. ®

-,
S5
' ‘_-. \.&‘

»
[N ]
XX Ane

. * (P

Ly




T YN T T I LT T G e v e ”
L E

the normalized AR spectrum (by ©2) resulting from (5.64) is expressed in (5.28). The
fact that (5.64) can spectrally model arbitrarily closely any second-order ergodic process
of finite variance as G—oo (and possibly as M-—3e0) serves as a motivation for this
approach. Furthermore, since the estimation of parameters for an AR model results in
linear equations, it has a computational advantage over moving-average (MA) or ARMA
formulations.

From the detection viewpoint, the postulation of (5.64) poses the interesting problem
of determining decision statistics associated with it. One such approach was outlined in
Section 5.2; furthermore, Kay [34] showed that, for a one-pole (M = 1) modeling, the
spectral-maximum rule (5.15) is equivalent to the threshold comparison of the estimated

(single) pole magnitude
-~ 2 Hy
AL .
LSRN bl lpsl © 2 threshotd

Yo My (5.65)

which is a normalized variant to rule (5.33). This fact of exact equivalence, which
constitutes an interesting conceptual bridge between the spectral and correlation detection
domains, is hard to generalize to higher M. Unfortunately, the parametric performance of
the one-pole spectral model is inferior to the nonparametric FF/spectral-maximum
combination for the narrowband signal case [34]. Similarly discouraging simulation results
were obtained in [38, 39] for higher order M 2 1. In the case of [38], a straightforward

extension of the statistic (S .65) was attempted in the form

"M M
1 low? 2 threshold
k1

Ho (5.66)

wherein it was found that for a small time-bandwidth product performance somewhat

worsens for increasing M; on the other hand, when the signal spectrum broadened, due to

Lo




random phase modulation, performance of (5.66) was superior to the periodogram. The
conclusion from the above should not necessarily be that AR modeling is inappropriate;
rather, that a search for more meaningful detection statistics is in order. For more detailed
information see Appendix K.

Let us, also, note that AR modeling of either the colored alone {35] or ARMA

modeling of a Gaussian signal plus noise [36] has been recently employed as a tool for 0

signal detection under modeling uncertainties. In the latter case, the classification of the

algorithm in the context of this report is not clear, since the periodogram is used as an
intermediate step in a spectral matching procedure for the estimation of the ARMA L.
parameters. In both cases, however, a LR is formed, either in its GLRT form or as a ’
whitening matched filter (asymptotically equal to an SNR measure). When the signal is
Gaussian and broadband (but not exactly white), Kay [37] suggests the use of a GRLT, v

based again on estimating a,.

We conclude this part by suggesting an alternative modeling approach which has been
shown to be promising in the very broadband case. (See Appendix K). The approach ! ’
consists of modeling the correlation sequence ‘;;k as an AR process itself s

- M ~ - e
Ve ® L BuaYin * N KeM1.G-1 b
ne1 . -

(5.67)
and creating decision statistics associated with this model. For instance, an M = 1 model l '-
could give rise to a decision rule similar to (5.65)
R | " b
— > threshold .
v 0 .:. - -t

114




where now {fi,(k)}}?o pertains to the correlation of the sequence {y,}. In this correlation-

of-the-correlation domain (C2D), the aforementioned rule (5.34) can be interpreted as

Hy

- R >
Y = RY(O) < threshold
H

. (5.69)

with a, = 1. We note that (5.68), or any other similar rule in the C2D domain involves
nonlinear operations on the data Yy, in contrast with the linear operation of the FFT,
required to produce the spectrum S, = |[R,[2. The tradeoff between the merit resulting from

such nonlinear operations versus the computational burden implicit in them is examined

further in Appendix K.
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5.4  Comparative Results

In order to substantiate the value of the different approaches discussed so far, we
compare the performance of certain algorithms in detecting a sinusoid in a wideband
scenario (large G). The comparison here is by no means exhaustive; rather, its purpose is
to give a preliminary flavor of the differences in performance between approaches. A more
comprehensive comparison is offered in Appendix K, along with a discussion of the
associated computational load of each algorithm, both for low and high TB products. We
note that the large-TB case fits well the spread-spectrum frequency hopping detection
model described without, of course, being confined to th.aL

We first look at the performance of rule (5.34), an order to assess the accuracy of
our analysis.

The algorithm has been simulated on a digital computer. In the simulation, the
autocorrelation function y(t) of (5.38) has been carried out by its discrete-time equivalent in
terms of noise samples of n(t) and np(t). Since the input process is bandlimited to B, the
analog operation of (5.38) can be simulated by its equivalent discrete-time system with
sampling intervals equaling B-1.

In terms of discrete-time samples, the radiometer output in (5.26) is modeled as

o = & % (S + 2/5 ny(g) + n2 (3) + "2(k)]
(5.69)

where G = BTy is an integer and ny(k/B), nQ(k/B) are quadrature noise samples. Equation

(5.69) is easily seen to be proportional to the time average of the squared envelope of r(t)
over the hop time Ty
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Similarly, the discrete-time simulation equation for the autocorrelation detector can

be expressed as follows:

YCORR 2 |m [(G k+1)S + &(k) + 3 'I(k)}l
(5.70)

where j = VT, o2 is complex magnitude squared, and E(k), (k) are contributions from the
SxN and NxN terms given in (5.39),

g(k) = M{ 5) (55 + ngfg) mgltp) + "5[1(1 =) “1().”

(5.71a)
and
9+ H D - 5B 52
(5.71b)

which are zero-mean noise processes for the assumed filter characteristics of Figure 19.
Note that this discrete-time model incorporates all possible terms without any
simplification.

For the discrete-time models (5.69) - (5.71), we have analytically evaluated the

means and variances of the decision variable ¥ under either hypothesis H;; i = 0,1. This

not only allows for a step-by-step comparison with the corresponding simulation
outcomes, but also permits a more precise performance description in terms of (Pp, Pg,).
The theoretical results appear on Table 2. The simulation results, along with their

theoretical (numerical) counterparts from Table 2, appear in Tables 3 and 4 for the

radiometer and the autocorrelator, respectively. The last entry of Tables 3 and 4, SNR ¢

is calculated on the basis of (5.56), which evidently neglects var{y] H;}. The close




Table 2. Moments of Detector-Output Variables Evaluated from
the Discrete-Time Model Equations (5.69) and (5.70).

Moments of
Detector-Output Radiometer Autocorrelator*
Variables
2 ¢ 2 1
vt (NB® 2 7= (8B In (15
E(ViHY 2N B 00" 2 &« (Mo (=)
A6
2 ~2 1
i AGS® + ESNB+CN BJ] S =
&(Y|HD 2(S + NgB) 0% 7T k51 5K
2 1
= AGS +[:25N08+ (Nosﬂ m(_—i-;;)
var(Y|H 1,y 52 (N B)A \8 (_1_)2 = _l.(_L) gy
r{¥IHg) z (@%8) 0 k§='1 5-x/ = & 15/ (No®)
4
1 /2 2 4 3
2 3 (Do) + % oty (2
(2NgB) S 0
var(Y|H)) 5 142 N—OE

(s s
+ 2 (NoB) (N—O-B-) ('l +4 NEB—)

*
. Autocorrelator variance under Hy given here is an approximation
which consists of only the significant terms in its computation.
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Table 3. Comparison of Radiometer Simulation Results to Theory (200 Trials) b

s
.’\:’k N

o
) hd
I N

L]

A B

B 1 0 0 0 ~ ‘:..‘:
'l' = P
H

Input SNR -20 dB ~15 dB -10 dB
Tl’s\e'ory , Theory Simulation{ Theory |Simulation| Theory Simulation
or Simulation
8(“‘“0) 4.00 4.003 4.00 4.003 4.00 4.003
g(Y {Hl) 4,04 4.044 4.126 4.132 4.40 4,407
var(‘:’l}lo) 16.00 16.14 16.00 16.14 16.00 16.14
var(YlHl) 16.3 16.20 17.0 16.69 19.2 18.57
Padiometer
SNRg (dB) -10.00 . -9.73 0.00 0.14 10.0 10.06
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Table 4.

A o204 & v 2 v A an iRt e e e R A

Comparison of Autocorrelation Detector Simulation Results
to Approximate Analysis

BT

H

= 1000;a = 0.1

Yin (dB) -20 dB -15 dB -10 dB
Theory . . . :
or Simulation Theory Simulation| Theory Simulation| Theory Simulation
5(Y;a0) 0.417 0.419 0.417 0.419 0.417 0.42
g(?‘ﬂl) 0.47 0.472 0.84 0.863 4.46 4.57
var(YlHo) 1.76x107> | 2.61x107> |1.76x1073{2.6x10™3  |1.76xf0o™3 |2.61x10-3
-3 -3 -2 -2
var YlHl 3.37x10 4.97x10 4.58x10 5.34x%10 1.322 1.41
RButocorrelation
Detector 1.16 0.17 20.06 18.76 39.7 38.2
SNR, (dB)




. SR
R

numerical agreement between theory and simulation, over a wide range of v;, values, can _,
be observed from the tables. t\\

¢ It is further interesting to note that the difference in variance of y under the two " Lr_{__
hypotheses is virtually negligible for the radiometer, while it becomes quite pronounced for "”\
the correlator as v;, increases. The implication is that SNR,, is well suited as a 'ﬁ;\is,'

| * performance measure for the former, but not so much for the latter. A comparison between l fé
theory and simulation, in terms of the SNR,,, di‘ference X \

° (aSNR) 45 = (SNREOTT) 1o - ( SNRTE) -

. out’ds
t T [0-0]gg + 2Ly, gp * Gyp) 57 '
o
_ R

as derived in (5.63), is provided in Table 5. Certain parameters were chosen so that the \f-

. theoretical assumptions involved in the analysis would be well justified: (1) large time- “’

i bandwidth product (G = 1000 or 30 dB), (2) smalil input SNR (¥, < -10 dB), (3) small

A(A = 0.1) and, (3) large number of trials (200), so as to assume statistical confidence. '

Since those numbers were in accordance with the assumptions made, any deviations of the
' ¢ simulation from the theory would indicate an error in the modeling process (Gaussianness, g

etc.). Fortunately, that was not the case, as evidenced by the closeness of the theoretical
'y and simulation results in Table 5. It is, also, clear that significant gains can be attained
? t over the radiometer, particularly as ¥, increases. o
Next, we look at the sensitivity of the decision rule (5.55) with respect to the choice o
\ of A. This is illustrated in Figure 20, where the detection probability Py, is plotted versus :“{_~
f A (0 <A < 1) for two values of ¥,, while G =100 isconstant; for each st of . ’ |
. three curves associated with a value of ;,, the corresponding values of Pg, are 10-2, 104 R
) and 106, from top to bottom, respectively. In all cases examined, the trend is clear:
? performance is insensitive to change of A over a very wide range, as long as A is neither
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Figure 20. Simulation Results: Effects of )
. on Detector Performance; BTy= 100, (Curves shown are for
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too small nor too large. So, any A in the range (0.1, 0.8) would be a suitable choice.

Although the curves illustrated in Figure 5 are for a particular choice of a,'s from (5.36);

e
an identical kind of behavior was, also, found for other choices. This is a rather
convenient conclusion since one does not have to be concerned about optimizing A
» whenever the constants are changed. Furthermore, it was found as a more general

conclusion that the overall performance (Pp, Pps) Was insensitive to the particular choice of
a,'s . Thus, one can set 3, = 1, k = 1,2,...,AG, which would simplify the decision rule to
a mere accumulation of the power samples W, and a threshold comparison.

A suitable set of design curves for both the radiometer and the correlator are
provided in Figures 21 and 22. In these figures, the input SNR's (Y;,) required to achieve
certain detector operating characteristics are shown for both algorithms. The probabilities
of false alarm (Pg,) and detection (Pp) are computed directly from the first two moments of
the detector-output variables under either hypothesis (Tables 3 and 4). Gaussian

approximation is used, which is justifiable since in either algorithm the detector output

consists of the sum of a large number of random variables. With this assumption, Pp, is

given in terms of Pg, and the moments of y as

P =g G{YIHO}-é:{Y[H] )+/var(ylu'°").q“[p”]
0 Jvar(YlH]} ‘

(5.73)

From Figures 21 and 22, the relative gains of the correlator over the radiometer in terms of
Yin €an be assessed. These results are plotted in Figures 23, 24 and, also, summarized ffr
in Table 6. Note, that the performance improvement of the correlator over the radiometer is
significant in the (Pp, Pg,) range of interest. For example, for BTy = 1000, Pp = 0.9, Pg, ;:‘

= 10-3, the correlator will require 6.8 dB less ¥, than the radiometer. This performance
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------
................................
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Table 6. Relative Improvement of the Autocorrelation Technique Over the :'.:":-:.r'.
Radiometer Approach in terms of Required Input SNR Yy . -';\::\::'-j
For Desired Pp and Pp, Performance level. n RN SN
I
..“-":"v'fi""
NN
Improvement of Autocorrelation Technique 0 —'::-‘::-‘:
Over Radimecter (dB) ARy
NS
BTy Pra ISR
= 0.9 P, = 0.8 Pp = 0.7 Pp = 0.6 Pp = 0.5 R
RN
5 A
107 5.4 5.5 5.5 5.6 5.7 Y
AR
100 | 1073 3.8 4.0 4.4 4.6 4.8 Y
107! 2.6 2.7 2.8 2.9 3.0
107 8.3 8.3 8.4 8.4 8.5
-3
1000 10 6.8 7.0 7.1 7.3 7.5
-1 .
10 5.2 5.3 5.4 5.4 S.5
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improvement will be 8.3 dB for the operating characteristic Pp, = 0.9, Pg, = 105 (which
requires a higher ¥, than Pp = 0.9, Pgy = 103) .

Finally, the RF correlation and radiometric results are compared with the various
spectral algorithms of section (5.2) in Figures 25 a,b,c (BTy= 100) and 26 a,b,c
(BTy{=1000) for varibus Pp4 levels. In particular, the curves on these figure designate

the following cases:

Curve 1: Optimal LR algorithm with Af = 0 (Case I of Table 1)
Curve 2: Power Adjusted Rule with Af = 0 (Case IV of Table 1)
Curve 3: Power Adjusted Rule with Af = Ry/2 (Case III of Table 1)
Curve 4: Optimal LR Algorithm with Af = Ry/2 (Case II of Table 1)
Curve 5: Spectral-Maximum Detector with Af = O (eqn. 5.16)
Curve 6:  Spectral-Maximum Detector with Af = Ry/2 (eqn. 5.16)
Curve 7:  The Autocorrelator (which is basically not affected by Af)
Curve 8:  The Radiometer(which is not affected by Af).

Tt performance of the LR algorithm, as illustrated in these figures, is optimal if

Af = Q only. With the worst-case frequency offset (Af = Ryy/2) a degradation close to 5 dB
will be suffered. With the power-adjusted rule this degradation can be somewhat
minimized: resulting in degradations (from optimal) of approximately 0.7 dB and 3.5 dB, ‘
respectively, for Af = 0 and Ry/2. l'”*—'
The performance of the spectral-maximum detector, also, suffers a significant .
(approximately 3 dB) degradation when Af = Ry/2. S
The LR algorithm exhibits a pronounced threshold behavior: when the hop SNR vy ) !M
is above a threshold value (which depends on the BTy and Pg,, setting), the probability of 2

signal detection Pp approaches unity rapidly. On the other hand, if yy is below this
threshold value, Pp, diminishes to zero. -
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The other algorithms' (i.e., the spectral-maximum, the autocorrelator, and the

radiometer) performances are more robust, they do not exhibit pronounced threshold
behavior like the LR detector. In fact, for large BTy (BTy = 1000), moderate ¥y (Yy < 10 dB)

and acceptable Pga(< 10-3), the performance of the spectral-maximum detector and the
autocorrelator both exceed that of the LR detector, when worst-case Af is considered.

Since the cases of interest in a LPI detection environment actually correspond to
large BTy, moderate ¥y, and Py < 103, and since Af cannot be expected to be zero, it
appears that spectral-maximum detector and the autocorrelator are “better” LPI detectors
than the LR detector, due to their robustness, though the LR detector is "optimal" in the
theoretical sense, assuming perfect frequency and power alignments.

The most interesting observation to be made on these figures is that in the region of
interest, described above, the autocorrelator appears to e the best choice, since it is not
affected by Af and, thus, performs better than the spectral-maximum detector when the
worst-case Af = Ry/2 is considered.

For a numerical discussion and simulation comparisons involving the

aforementioned novel AR schemes, the interested reader is referred to Appendix K.
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5.5 Namrowband Interference

Thus far, the interference model has consistently been additive broadband Gaussian
noise. As mentioned in the Introduction, this is hardly expected to be the case in a dense
environment where the sought signal coexists with a variety of narrowband and wideband
waveforms, some of which vary quite unpredictably with time. Interference excision can
work well whenever sufficient discrimination exists between the wanted and unwanted
signals. Such discrimination results from distinctive features, be those long-term
(multihop) spectral information, directional information, different rates, etc. In this
section, we shall assume that everything possible (from an excision viewpoint) has been
done, and what is left is some random, unpredictable narrowband interference. Our
purpose is to show that, even in such an environment, intelligent processing can provide
good detection capability while brute-force radiometric detection could fail miserably. For
illustrative purposes we shall assume that the thermal noise level is negligible compared to
the narrowband interference power. Furthermore, the sought signal will have a DS
modulation on it, either by itself or in a hybrid DS/FH form. In the latter case, the spectral
segments of Figure 17 must have enough bandwidth to accommodate the DS modulation.
Since we are interested here in single-hop, per-band waveform processing, it follows that
the FH part of the modulation does not explicitly enter in the mathematical model, except
through the center frequency of the observed band. In that sense, both pure DS and per-
band DS/FH (single-hop) in narrowband interference result in the same mathematical
model. Let us remark that the present model (wideband signal in narrowband noise) is, in
a sense, the inverse to the problem tackled in Section 5.2 - 5.4, therein, having a
narrowband signal (FH) in wideband Gaussian noise. In view of the encouraging resulits,
in these previous sections, it is to be expected that a good algorithm could also exploit the
difference between signal and "noise" in the present case, too. In fact, it will then be

shown that for observation data with a large time-bandwidth-product G, a very simple
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algorithm operating on the output of a real-time autocorrelation device can achieve almost
perfect performance--in stark contrast with the poor performance of the radiometer.

Hybrid modulation schemes have become increasingly popular spread-spectrum
communication choices, due to the enhanced antijam margin which they offer. Adding DS
modulation to FH, also, improves the anti-intercept capability because the "noiselike"
appearance of DS makes detection more difficult. On the other hand, multiple tones
constitute a common model of nonwhite interference and can emerge in a number of
scenarios, i.e., it can be intentional (jamming of the band) or unintentional (multiple users
in a broadcast environment, adjacent radar sources, etc.). It is, also, conceivable that the
tone interference has been deliberately inserted by the communicator in a pseudorandom
manner, so as to impede the interceptor's task, while it can be pseudorandomly avoided by

the intended receiver.
Let the FH/DS hybrid signal to be detected be represented by s()=V2S c(t) cos Wot,

where 0, is an unknown frequency within the observed spectral band, c(t) is the DS code

of rate R, = T ! and § is the signal power. The unknown interference consists of M tones

(M is a random variable in each observation interval, which is equal to the hop time
Ty = R}i ), with I}, &, and ¢, denoting, respectively, the power, radian frequency and

phase of the kth tone. The total received signal in (0, Ty), under hypothesis H, (signal

present), is given by

M

r{(t) = /25 c(t) cos wyt + cos(w t + ¢
ot * & VT o5t * 40 (5.74)

Note, the absence of thermal noise in (5.74), as previously discussed. The code c(t) can be
modeled as either a random sequence of independent, identically distributed *1's with

Prlc(t) = 1] = 0.5, or a PN code with a full period equal to Ty;. As the ratio
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N A Ty/T. = R/Ry increases (N denotes the number of code chips per hop), the

& performance difference becomes insignificant, a fact also verified by simulation.

Let B denote the input observation bandwidth. The presence of the DS code implies
that B should be at least equal to R, or higher, but definitely much larger than Ry.

Equivalently, the time-bandwidth product G @ BTy >> 1. Furthermore, for simplicity,
we shall assume that all tones have equal power Iy = I/'M, k = 1,...,.M, where I is the total

interference power, and they are equi-spaced within the bandwidth B. In other words, the
frequency separation |fy - fy, | between adjacent tones equals B/(M + 1), which is much

greater than Ty, i.e., Ify - fy,1| >> Ty. None of the above assumptions are critical in the

forthcoming conclusions; they simply ease the analytical burden.

The real-time autocorrelation operation produces the output

T
y(r) = er(t) r(t-t)}dt 0<T<TH

T
(5.75)
Substituting (5.74) into (5.75) and rearranging redefines y( 1) as
y(r) = S-Yc‘t) cos Wat "‘('I')(T -1) g cOS w T+ 'a % ﬂ‘(‘t) 4.'(1)
N H m=] n " k=1 k 0

(5.76)

where y (1) is the code partial-correlation function (a random variable)

TH
y =) = f c(t) c(t-t)dt

T 6.7

and ng(x),ni; k = 1,...,M are approximately Gaussian (via a central limit theorem-type

argument), bandpass noise processes (signal x interference terms) defined by
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: n:(r) = ai(r) cosuT - GE (t) sin W, { |
- ,
‘ (5.782a)
r
I ° and
5 Mo Mg
ngl) = kg_l 8.(1)] cosw,T + Z B (1)) sinwyT
= k=1
(5.78b)
je
" where
Ty
ai(‘r) = / C(t) COS[CwO'wk)t - ¢Jdt 'Y
T
(5.79a)
9 Th :
(!k(-t) = f C(t) sm[(uso-mk)t-ﬁf]dt ’
N (5.79b)
1 gt
B (1) = f c(t-r1) cos[(mo -aJt- ¢Jdt
! (5.79)
and
aQ TH
B (1) = / c(t-1) sin[(wo -0 Jt - ¢k:ldt
T
';- (5.79d)
.
Before discussing the statistical characterization of the above noise processes , let us
‘,l: . examine the noiseless (mean) part of y(7) in (5.76), as shown in Figure 27. Of particular
.
: interest here are the envelopes of the useful signal (small shaded triangle) and the Se T
3 "“ L
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- interference (large triangle), respectively, since the actual components, e.g., the first two ;:{T:-:Ljv
’- }." -.-:.. »
" terms in (5.76), are modulated by the unknown frequencies. The structural difference ;I"::-{:\.j
I* -
: between the two correlations is evident: the DS code superimposed on each hop creates a —_—
Sy
Ny narrow mean autocorrelation function, since the expected value of the function y(t) in AT
< (5.77) is zero for |t] 2 T,. Contrary to that, the interfering tones correlate for the whole ::::.;
i
" ® interval [0,Ty]. Clearly, then, a power (noncoherent) sample T, = T, would measure - ’
: interference only2” this sample could be subtracted from the corresponding one at Ty = 0,
so that under H,, contains the full signal power plus interference. This subtraction would \ J
wlasy
° approximately cancel the interference contribution at Ty = 0 so that, under H,, only the b4
signal would emerge while, under Hy, the statistic would be almost zero. Thus, the .'inzi-i.j.i
o
adopted decision rule is (see Figure 28) : i‘
(d St T
S ) » Fl1
3 A=y(0)l -Y O 2 4
. LP Lp I-I0
(5.80)
¢ where A is a fixed threshold. In the absence of thermal noise A can be set at a very small
(positive) level in order to maximize the detection probability
5 We shall now investigate the performance of rule (5.80). Let us first address the
L

statistics of ng'(t) and nE(t), defined in (5.78) and (5.79). Let &{+} and var{+} indicate the

mean and variance, respectively. It is then easily shown that

I R I

and that

27Any 1y = T, would, also, do especially in the face of some uncertainty about T,.
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(o = varfelio) - ed(ola)’
var‘{uk T} var 8, ( )} ‘{(“k(‘)) # (5.82)

In the following, we shall concentrate on offsets T = mT_; m = 0,1,2,...N. In fact, only

T = 0 and t =T, are of interest (see (5.80)). Then, lengthy manipulations can establish the

following facts:

(a) The variance of (5.82) is given by

(7 2 (N-m)Tcz
e |a (mT, 2 —C a2 *(f. -
1) } z [ (o f")Tc] (5.83)

where S (x) = sin x/x is the sampling function.

(b) The components afj(m’l‘c) and B,';(mTc); j = 1,Q; 2= 1,Q; are mutually uncorrelated
which, by the Gaussian assumption, renders them independent; then the noises ng(mT,)
and ng(mTc) are also independent.

(c) Each noise porcess has mutually uncorelated inphase and quadrature components
(therefore, by the Gaussian assumption, independent).

(d) Noises corresponding to different frequencies (e.g., nﬁ(‘t) and n‘;-(‘t) withk#2)
are approximately uncorrelated

(e) Processes n§(t) and ng(t), however, have different properties, i.e., n§(t) is a
highly correlated process (as a function of 1 ), while ng(t) generally is not; in fact, samples
of ng(t) taken T, apart could be uncorrelated.

Of the above conclusions, () is probably the most interesting from a performance
viewpoint: If the noise ng(t) had been as highly correlated as nf(t), the decision rule
(5.44) performance would have been perfect, since the same28 random noise sample would

be obtained at T = 0 and T = T_; thus, they would cancel out. This not being true, a slight

degradation in performance is expected, as was, also, observed in the simulation.

28Same within a totally insignificant change.
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Nonetheless, since the mean part of the interference (second term in (5.26)) does cancel
out, the performance of this scheme is far superior to that of the radiometer, which is
oblivious to that term. In fact, the radiometer output is merely the value y(0), which is
dominated by the power of the random interference (Figure 27). Without further
assistance, it is impossible to determine if there is any signal in the total observed power

since the interference contribution is random and, hence, unknown.

As mentioned above, the high correlation of ¢ (t) implies that az(O) ~ ag(Tc); i=1Q.

On the other hand, the degree of correlation between B, (0) and B,(T,) varies with the
frequency difference Afy = fy- fy. For the special case, wherein one of the interfering
frequencies fy, coincides with fy, it is easily seen that B‘ZO(O) ~ B{o(’l'c); j=1,Q. Those
facts are used in the subsequent analysis.

We can now turn to the decision rule (5.80): upon squaring, taking the difference,

lowpass filtering (e.g., rejecting double-frequency terms), assuming that f, = f, for one
frequency?® and using the above conclusions, it follows that

N

ST ! S .
+ S‘WK{O(O) + kgl 3:(0)) Ty - (alI(CTc) * kz'l BIE(TC))yc(Tc):l

(B 3, (400 - o)) + s1f2) (1 - n0) €9

where

29For the case of a single interferer, it can be shown that worst-case signal detectability
happens when the interferer's frequency coincides with the signal frequency.
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(5.85)

is the total BP equivalent noise. Let us note that, at least for the case of a full PN code
period per hop, y.(T.) is approximately zero, which considerably simplifies (5.84).
Furthermore, even for the random-code model, a comparison between analysis and
simulation for the one-tone case (see next section) has indicated that the impact of the rv
y.(T.) is unnoticeable; hence, setting y (T.) = 0 seems to be a reasonable approximation for
the general case. Still, a full analysis of (5.84) without further simplifying assumptions is
extremely complicated. In order to gain some insight here, we shall focus on the one-tone
random interference (M = 1), with the reasonable conjecture that the multi-tone case should
provide analogous conclusions.

Since, in this case, BY(T,) = BL(0) = a}(0) ~ al(T.) £, and n2(0) =n(T), it

follows from (5.84 ) that

. CTw)’
2

)

-1
1+ 2YI (1+2 VT al,normﬂ

(5.86)

where we have defined the signal-to-interference ratio ¥; 2 S/1 and the normalized random

variable

44 Tc N
Liorm 7 T, T (T;,' cos & n'%-l Cn
(5.87)

In (5.87), ¢5; n = 1,...,N are the code chips and ¢, is the random phase of the interference.

Clearly, under Hg, A = O with probability 1. Under H,, it can be shown that
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TR
and QS
. 4y ~-1
varfali = 20sT)tv))
(5.88b)

Based on (5.88) and the Gaussian assumption about A, the performance of this decision

scheme is predicted by the detection probability

Ny
corr _ - I/ -1
D ! Q[ T(E N 'AO*H

where Ap* = Ap/(STy)? is a normalized threshold and Q(x) is the Gaussian integral

(5.89)

function. In the absence of thermal noise, Ay* can be set arbitrarily close to zero; thus, it
always yields the zero false-alarm rate Pg, = 0. In practice, Ag* would be set according to
the thermal noise level and the degree of uncertainty about the power S of the detected

signal 30

The performance predicted by (5.89) is indeed excellent.. We note that increasing the
interference power (hence, increasing ¥;-!) actually helps detection instead of deterring it,

while it has no effect on false alarm. For instance, it can be shown that, if N > 60, then 1;;{:
P5°" > 99% independently of ¥;, as long as A,y* < 0.4, i.e., one can tolerate 40% L.__J
uncertainty about the signal power and still expect excellent detection capabilities,
regardless of the interference power. The above conclusion is rather insensitive to N in S

that, for N = 10, the corresponding minimum P& ™ is 90%. , |

30Alternatively, this can be expressed in terms of the uncertainty regarding the
transmitter/intercept receiver's true distance.
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The radiometer performance is easier to analyze for an arbitrary M and is based on the

fact that its output ¥4 = y(0) can be written as

M
Y = ST, + IT ,,2‘/51 ( al(o))
rad H H N kzl k (5.90)

Let M,,,, be the maximum number of tones which can be expected in any hop. Here, for
simplicity, we consider only the case Mp,,, = 1, where Prob[one interfering tone] = Pr{no
interfering tone] = 1/2 for each hop. Assuming that the threshold yj is set at yg = I; Ty, so

that 31 Pg, = 0, it can then be shown that

1_10[4*1] if v, > 1
rad z 2 4 1
pprd -
1 l-Q I .
2'( [‘T f Y < 1
(5.91)

Thus, the obtainable performance decreases with decreasing signal-to-interference ratio ¥;

and in the limit

lim prad . 1 M =1
v +0 D L3 (max )
(5.92)

which is certainly poor compared to Pﬁ"". It can also be shown that the radiometer

performance is a decreasing function of Mp,,, so that the above results constitute an upper
bound for the general case. Finally, we note that the question of threshold setting is much
more crucial for the radiometer than the correlator, since the performance of the latter is

effectively independent of the jamming power.

31This is selected so as to match the zero Pg, of the correlator: another choice of Yo would
lead to Pg, = 0.5.
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The correlator with one tone interference was simulated by computer; the results
shown in Figure 29 are based on 10,000 independent trials. Also, shown in this figure are
the analytical predictions (dotted lines) whose agreement with the simulation is quite
striking, even for such low values of N as N =3 and N = 10. Since detection probability
is monotonically increasing with N (see (5.89)), those values represent worst-case designs
which nonetheless yield excellent performance results. It was somewhat surprising to find

that the Gaussian model provides such an accurate analytical prediction, even for N = 3;

furthermore, setting y.(T,) equal to zero proved to be a well-justified simplification. Note,
that no false alarm was observed (P, = 0 ) and that performance is practically insensitive
to the amount of interference inserted. In contrast, the radiometer performance (as
evidenced by (5.91)) deteriorates rapidly with decreasing S/1, as expected. Finally, let us

mention that the performance shown in Figure 29 is for a nonoptimized (arbitrarily chosen)

threshold Ag* = S2T2y/N. In the absence of thermal noise, further improvement can be
attained for the correlator by decreasing Ag* to a very small (but positive) value.

Although analysis and simulation are not yet available for the multitone case, it is
anticipated that the gap between the radiometer and the correlator performance will increase
as the interference-to-noise ratio increases, independently of Mp,,. That gain is due to the
relative insensitivity of the correlator to the interference nuisance parameters.

As mentioned, the theory of this section does not include thermal noise. The
determination, analytical evaluation and simulation of algcrithms which operate
satisfactorily in a mixed environment (i.c., both thermal noise and random interference),

will be the topic of future research.
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APPENDIX A

b
ON MOMENT- GENERATING FUNCTIONS AND LIKELIHOOD RATIOS
» A lot of powerful results in statistical decision theory rely upon the judicious use of
transform-domain techniques and, in particular, on characteristic functions (CF) or ."53?_2_3
moment-generating functions (MGF). Given the CF ®,(w) of arv X, \\L
6 D,(0) = E{eio) (A1) ;**‘ :
assuming it exists, threshold-exceedance probabilities for X can be evaluated via the 7'?{
formula [10] \ ~
¢ _ 1 f“:m(ox<m>e-1wx°} o
Prix>xgl = Y% + duw
® Y w
(A2) :
o where x,is the fixed threshold and Im{+} denotes the imaginary part of the enclosed i:':::';::'
quantity. Expressions(A.1) and(A.2) are particularly amenable to numerical evaluation by G
appropriate algorithms (c.f.[11]). For the purpose of proving the BFT results of Section 2
o and deriving certain Chernoff bounds, we shall find it convenient to deal with the moment-
generating functions
Let T
" M, 92 #{e%} = @, (js) (A3 O

denote the MGF of X, where s is a real variable; in fact, it is typically adequate to restrict
attention to the s 2 0 range.

When the averaging in (A.3) is over the pdf ﬂx|H,~ (x) under hypothesis H;; i = 0,1,
it will be explicitly indicated as a subindex. Furthermore,

Jet

e(s) € In M, (s)

........

......
.....
« .




denote the second moment-generating function of X

and

d My(s)
UX(S) -
ds M(s)

gx(S) é

(A.5)

its derivative.! Whether one works with 1 (s) (see, for instance, [12]) or g,(s), as we

shall do here, is a matter of notational preference. From (A.4), (A.S) it follows that
-
M, (s) = exp { J gx(s)ds' + Cg} (A.6)
o
Since, however M, (0) = 1, the constant Cg = 01in (A.6), so that
]
M,(s) = CXP{I g (s) ds'} (A.7)
o
which is used extensively below.

Functions p,(s) and g,(s) possess some interesting properties. For instance, the

Taylor series expansion of j1,(s) around s =0 has the form

- all
ux(s)= ,20 '—m: C!(nX) (A.8)

where C(t’n‘)is the mth cumulant of X (see ref.[10]). Furthermore, it is easily shown that

The dot indicates differentiation with respect to s.
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gx(0) = &{X}
£x(0) = var{X}
£,(8)20

i.e. the function g,(s) is monotonically increasing.

Let X be some decision statistic for the binary test

(A9)

(A.10)

(not necessarily an LR or LLR), with the corresponding pdf's flei(") as shown in Figure

A.1. Then the performance quantities

X0

L)
Pp = Pri{XxX>xp My} .j x i, (x) dx
X0

can be bounded as follows (Chernoff bound): If the r.v. W is defined as
0, if X<
a X9
1, if X> Xo

then , for every s 20,

exp(-s(X -xq)) S W < exp(s(X -xq))

as it is evident from Figure A.1. Furthermore, from (A.11), (A.12),

Pea =&{WiHg}
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and
Pp = &{WHH, } (A.14b)

From (A.13), (A.14.a) we conclude that

Pep < &{eX-%g) [Hy} = e5% My ()

or using (A.7),
S
Pppa < exp{-sxg + f go(s)ds'} (A.15)
0

where gq(s) 4 gx(H,(S)~ Because of the monotonicity of the exp(+) function, the extremum

of (A.15) occurs at the extremum of the exponent E(s)

. d
E(s) 2

s
[-sxq t[ 80(s')ds'] «p
ds 0

or at s = S» where

8o(s+) = Xp (A.16)

Furthermore, since ié(s) = é(s) 2 0 from (A.9), it follows that the extremum is actually a

minimum, yielding the tightest (or lowest) upper bound on Pg, of (A.15),

Pra < (PFadup = explEx} = eXP[f go(s')ds’'-s,80(s,)]}
0

go(sx) = xp

(A.17)

A lower bound on Pp in terms of of gxmx(s) can also be derived following similar

steps; however, its most utility is for the particular case of interest, whereby X stands for

some LLR. Then, all the previous conclusions (which of course still hold) can be

enriched with some additional ones, owing to the fact that the MGF Mo o(s) of 2 under H,,

is.
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My lig(s)A8le3t Ho) = £(43 hg)
(A.18)

which links the properties of My, (5) to those of a LR A. We conclude that

My h (o) @ plest Hile @UA% Hil = &(41* Ho)

or
Mo b (8) = Myl (3+1)
(A.19)

which implies that a1l the statistical properties of any LLR under H;_can be determined.
once its distribution under Hy (equivalently, My (s) is provided. This interesting aspect of
LLR's is, also, manifested in the statement of the PBF theorem (Section 2) for the special
Gaussian case. Since Mgy 1(s) is just a "shifted" replica of Mgy o(s), the latter contains all

the necessary information through (A.7), it suffices to know gy(s) = gllﬂo(s). An

immediate corollary of (A.19) is that
M “HO(I) =M “H1(0) = MQIHO(O) =1 (A20)
which, in turn, yields from (A.7)

.
jo 8(sYds' =0 (A21)

The monotonic increase of gy(s) (recall (A.9)) along with the fact (A.21) implies that gq(s)

should look something like the curve of Figure A.2, since, from (A.9), (A.19),
go(1) = g, (0) =&{ £[H,}, etc. In particular, any LLR £ must satisfy.
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&{1Ho} S0<#{2H,;} (A.22)

as a result of Figure A.2. Equalities in (A.22) apply only to the trivial case where A =1
almost everywhere. An alternative proof of (A.22) can be found in ref [13] where

o &{L/H,}; i = 0, are termed directed divergences and the difference J = #{1[H, }}-&{¢/Ho}} s
is called J-divergence. b
Another byproduct of (A.19) is a lower bound for Pp in (A.11b) in a form dual to
' 0 (A.17). Indeed, from (A.14.b), A
b
Pp = &(W H1}> gle™s(X = x4) hy,} i
: = e73% My i, (-3) « e”3%, Myin, (1-5)
¢ >
or, changing the variable s into (1-s) without loss.2
.. .
' P (1-3)x s
- D 2 e’ 0 MXIHO(S) - exp[(1-s)x0 0[ 80(3')d3') (A.23) '_‘:.
0 2
" e Again, by differentiation of the exponent, the extremum (which is easily shown to be :,:,
a maximum) occurs at s = s, where go(s+) = xq, resulting in the tightest (highest, lower N
bound)
. s
3 Pp> exp{{(1-sa) Bo(ss) *‘[80(3')618'} —_—
0 oo
_ (A.24a)
- or K
d

2 Since we are restricting attentionto the 0 < sS 1 rangeand 0< 1 - § < 1, the substitution -~
is legitimate o
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Pp2(Pp)Lp = eX0(Ppplyp

(A.24b)
with (Pga) yp as per (A.17).

Equipped with this brief expose on the useful properties of the LLR moment-
generating functions, we can now prove the BPF theorem in a rather compact fashion.
Indeed, assume that £ is Gaussian under Hy, with £{2/H } = m, and var{g[Hy} = 02 its

second-order statistics. Since the MGF of a Gaussian r.v. is well-known to be,

0232
M zno(s) = exp{mgs + ——— }

2

(A.25)
it follows that the associated go(s) is simply
A d
8o (s) =3 (1n M “.;o(s)) = mp *+ o2s

(A.26)

In other words, gy(s) is a straight line as shown in Figure A.2 with a constant slope

Bo(s) = 0% = var{s Ho} = var{t Hil

(A.27)
From (A.20), (A.25) we have that

%
M.'.IHO('.') = exp{mg + =——— } a 3
2

or
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2 (A.28)

i.e. the mean and variance of % under H; cannot be arbitrary within the Gaussian model,

but rather related as per (A.28). Inserting (A.28) into (A.25) results in

¢l
ngo(s) - expl{ (s-1)s}
2 (A29)
We can now use (A.19) to assess that
02 02
Hlm1 (s) = exp {_ 8 + ema 32}
2 2

(A.30)

But this is exactly the MGF of a Gaussian £ under H,, with var{t [H,} 4 og (in accordance

with (A.27)) and

£t [H) = — o -&(1 Hpl
2
(A.31)

as shown in Figure A.2. We conclude from (A.27), (A.31) that the variance var{s [Hg} 7] oé

describes fully the Gaussian pdf's of ¢ under either hypothesis. In order to complete the

statement of the PBF theorem, let us note that, for any LIR £,
M“H(?) = &(A2 Hg} = 1 + var{A Ho!

so that the "Gaussian" distance dg, defined as
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a2 & in(1 « var{a Hol) = In ¥ thiy, (2) (A.32)
However, for the particular Gaussian model, (A.29) yields

M gmo(Z) = exp {02}
(A.33)

which, when compared with (A.32) results in

62 = d2 = 1n(1 + var{A Hol) (A.34)

Note that the LR A= e in (A.34) is obviously not Gaussian.
The content of this Appendix could provide the basis for exploring the properties of

LLR's beyond what is presented here.
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APPENDIX B

PROOF OF EQUATION (3.7)
Let us start from (3.4), i.e.,
(r( ) eng'Nch 2; 25 N % 21
Ar(t)) = exp r.c..t £ A
oN =1 E'NB_ jzl i\ Hy 0

B.1)

with ¥, as per (3.5), ¢;ydenoting the j¥ chip of the ith code pattern and 1; as per (3.6).
Consider the N-dimensional linear space consisting of all binary patterns ¢; ; i=1,...,2N of
length N. Now observe that this space can be divided into two disjoint complementary
subsets, each of cardinality 2N-1, by the rule that, for each possible vector ¢; belonging to
one of the subsets, -¢; belongs to the other subset. Exactly which vectors g; are included in
which subset is immaterial as long as the above rule holds. We can now perform the
summation in (B.1) over one of the two complementary subsets instead of the whole linear

space, with the equivalent rule.

2N'1 H

S h (2/‘:7) 21 A"
cos N rec

i=] 0 H 0

(B.2)

where 1 = (r,,...,rN), % is one of the aforementioned disjoint subsets and any resulting
scale factors are absorbed into the threshold A'o. In (B.2), cosh(x) is the hyperbolic

cosine function

cosh(x) = i;_e_._x
(B.3)
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Since cosh(x) is an even function of x, the summation in (B.2) can be extended over the

>
—~— v~

i <
! whole linear space
N
2 H
2N 1
» 2 cosh ('n— '."Ei) 2 4
I ) i=] 0 H 0
L (B4)
In order to proceed, we first need to introduce the superscripts 1™ and ¢, which will
| @
I indicate the length of the corresponding vectors, and then prove the following:
. Lemma 1. Itis true that:
o
5 2N N
> cosh (r.'(N)- ggN)) = N TT cosh ("3)
i=1 i=j J
.
-
: (®.5)
Proof: The proof is by induction. First, let N = 1. Then,
.
o :
" (1), (1)) _
igl Cosh (E <, ) = cosh (rl) +cosh (-rl) = zcosh(rl‘,
: (B.6)
' ‘ since cosh (x) is even function. Thus, (B.5) is satisfied for N = 1. Next, assume that it is
true for N =k, i.e.,
o 2 - k
: 5 cosh ( L(k),s({k)) « 2XTT coshfr ;)
- i=1 3= (B.7)
! and prove it for N - k + 1. Indeed,
5 s
" -
- -
- )
: 164 3
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i o

T

k+l 3
2 2
(k+1) (m)) (k) (k) (_(k) () _
igl cosh (5 -cy = 21 cosh(g g +rk+l) + coshir ‘eg; rr+l
(B.3)
But,
a+b , -a-b, .a-b, -atb
cosh(a+b)+cosh(a-b) =& te ;e te
b, -b n, =b b, ~b
=ea(e +e )+e-a (e +e )___ (ea+e-a)(e ‘e )
= 2 cosh{a)jcosh(b)
(B.9)
which, upon substitution in (B.8), yiclds
ok*1 2%
2 cosh(_r_(kﬂ). ggkﬂ)) = 32 cosh([_(k). g_gk)) cosh(ry41)
i=1 k=1
A (k) ()
= 2 cosh ("kﬂ) ?é1 cosh(i C; \)
K k K+l k+1
= 2 ) = cosh
2 cosh(rkﬂ) ;Ul'cosh(rJ) 2 ;Ul- os (rjﬂ)
(B.10)

..................

where the truth of (B.8) has been used. Equation (B.10) completes the proof of Lemma 1.

If Lemma 1 is applied to (B.4), it renders it equivalent to

N H

N 2K ]

2 || cosh r N

j=1 (“o ‘) &% 0
(B.11)

which is (3.7a).
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APPENDIX C
PROOF OF EQUATIONS (3.9) - (3.10)

Let us rewrite the decision rule (3.8) as

(C.1)

where the independent, identically distributed random variables (iid rv's) y i= rjz assume

the form
y n;? under Hy
j =
(ST, c; +n)? under H; (C.2)
In (C.2), n; represents the Gaussian rv
JT
n. = € nlt) dt
(j-l)Tc

(C.3)

whose statistics are independent of j.

A precise analysis should account for the exact distribution of y; under either

hypothesis. So, for instance, under Hy y; is chi-squared rv with N degrees of freedom.

For large N (of the order of hundreds or more, that is the practical case), very satisfactory
approximate results can be obtained which circumvent the difficulties of an exact, but

enormously complicated, analysis . This is done by invoking a central-limit-type argument:

The decision statistic A being the sum of a large number of iid rv's Yj» is approximately

Gaussian distributed, with mean

dpind = velpylnf ¢ v
(C.4a)
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and variance

var;LlHki = Nvariyﬂﬂd s k=0,1

(C.4b)
under cither hypothesis. Thus, having the second-order statistics of the individual rv's y;

and, subsequently, of A from (C.1) enables us to determine performance immediately.

Let
m=+§ T,c;§, (C.5)
so that
yj= (mn)? = m2+n? + 2mn; (C.6)
Furthermore, the Gaussian rv n; has zero mean and variance
N.T
2 _ 2) _ 0¢c
% = gt = 55 €.7)
Thus, from (C.6),
N, T
= ml 2 2 0 ¢
J{y 2 m +0C ST 'skl +
( y ST .
* \Ng Tc) 71 % (NO Te) (‘ ty skl)
(C.8)
Finally,
var{y;} = var {m2+n;2+2mn;} = var{n2+2mnj} = var{n;?2} +4m?2 var{n;} (C.9)

since the random variables njz and n; are uncorrelated (J{nf} =0). Thus,

167

Sl et e, Cte P P R e e a0
P . At e e e e e CAaT
. wl T, AT T R AT

____________
-----




var{y;} = (36,* - 6,%+4m?6,2 = 26,[0, + 2Zm?] = NoTo)2[172 + 2Yc8;) (C.10)

Equation (3.9)results from combining (C.8) and (C.10) with (C.4).
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APPENDIX D
PERFORMANCE OF RULE (3.19)

A Gaussian-approximation-based analysis of the low-SNR, chip-noncoherent detector
(3.19) can be performed following guidelines similar to those in Appendix C, as follows:
Let the bandpass AWGN n(t) be represented by

n(t) = V2 3n, (t) cos wyt - ng (t) sin oyt & {D.1)
where n; (t) and ng (t) are baseband, independent, Gaussian processes with a flat one-sided
PSD of Ny W/Hz each. Conditioned on the unknown phase ¢; and the *1-chip c; of the
interval (j-1) T, 2 t2 jT_ the inphase and quadrature variables r,jand Q jof (3.15¢) are

Gaussian with means

J =
J\rlj“j’cj} ST ¢, §1 COs ¢

#lroglepegt = 5 Toeg g sin g

D.2)
and common variance 6,2
g2 & NoT
n Var{"lj} = Var{roj} = _?i
D.3)

Thus, averaging the phase ! ®;, it follows that each of the independent envelope rv's 1; of

(3.18) has, under H,, a Rician distribution

1Again it is easily seen that the value of ¢; becomes irrelevant due to the squaring.

o

L




2
Y. r. 7.
f(rj‘Hl) = ;—%exp[— %(_32- + 27C> 10(-‘} \[ﬁ:) (rj>0) 3=1,2,...,N

[+

D4
where 7, is the predetection SNR while, under Hy (i.e., signal absent, ¥, = 0), (D.4)

reduces to a Rayleigh distribution

FlroH) = o il
il o Z &xp|- 57] (r;209)

D.5)
Therefore, the statistics of the decision rv A in (3.19), being the sum of N iid rv's, can be
precisely found (see (3.21 a,b) in text).
Although those results are exact, they are cumbersome to use from a computational

viewpoint, especially for large N (N > 100). Besides, the Gaussian approximation about A

becomes suffficiently tight in that region and, thus, emerges as an attractive and simple

tool.
Let us start from the fact that
r = T c,
1 /ST ey cose; + ny
(D.6a)
and
roj = /'Schjakl sin¢j + an
(D.6b)

In (D.9), the Gaussian rv's "lj and an are defined by
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c (D.7a) R
c e el -
and
3T,
) "Qj " . nglt) dt
(3-1)7,
(D.7b)
and are, therefore, mutually independent, each with zero mean and variance ONZ.
/] AR A
Then, the squared envelope rjz is (S
2 _ 2 2 _ 2 2 2 .
rJ. rIj + rQj = STc 6k1 + an + an + 2/5 Tc c:j le(nlj $j +an sin ’j)
¢
D.8)
It immediately follows that
@ 2y . 2 2 _ 2 -
' efr Bt = st ey g’ = ST g T (V7)1 + 7 8y)
D.9)
which is (3.22d)
@

In order to calculate the variance of r in (D.8), we note that the first term is a constant

(thus, it can be neglected), while the second, third and fourth terms are pairwise

uncorrelated. This is because: (a) n,jz and ng 2 are functions of independent rv's and, (b) o
i B

the fourth term includes both ¢; and ¢; , which are independent of the noise and zero mean.

As a conclusion,
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since

1}

2 NG ( :
6 (7‘. - 6 . = 2 ‘ Zl
{ J {rJ }) ; varlnlj }+ Varlnoj {
+ 4572 & var{n cosé, + ny. si
c kil Ij § QJ' S1n¢j}

4 2 2
40 "+ 4 = 2 3
n ST.7 6% 8y (NOTC) + 28T Ny 6,4

(NoTc)z(l + ZYCle)
(D.10)

wrfas o)« wrfonn = }

Equation (D.10) is identical to equation (3.22b).
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where noises n;; and n;,; 1, are mutally independent, as are c; and ¢;,;.

Thus, . 2

b - o) s x
V52 rj+1.1} = S\7/ % ‘{Cj Cjﬂ}*"{"jz "j+1.1}

In an analogous way,

T
. ¢

i1 @(T)°36k1+"31

(E.5) IR

rooo- A

which, combined with (E.3) yields R

ey - —4 S * €\ Nz T = ,4

(E.6) R

by virtue of independence between n;; and n;,. Finally, substituting the above into (3.41)

yields &iAs Hy 3 €=0}= NEG{!‘jlz} * é~{rjl rjzﬂ

2
(K,T) ST
= c .
NS &) < s
4
- S
N.T ) F'
= 8¢ § Te ‘
"('2‘ 14 %t = GkZl
.
o c 3 . -
= "(—r) 1+ (3) v 6 ] -
¢ u E7) S
Before we proceed with var {A,| Hp}, let us for a minute turn to the worst-case
mean of (3.41) as explained in the report. However, the picture now is changed to ---‘l;:"-}:
{
Figure E.2, under the assumption of a worst epoch € = 1/4. Then, we can write that TN

(E.B) ;f‘.:-:: g
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(E9)
Note that rj, is identical to (E.3); thus, a{rj22ll—lk; € = 1/4} is the same as above.

,
L}
N
FLATERINTWN Y

|
Futhermore lrn.. TR
o

ef s IMoetre) = (3) E{'nz b eetsa ;A“,,,,} + 6{'312‘“.“."1" 3‘mf}]

(E.10)

where the conditioning events Agype and Ay refer to ¢;y and c; having the same or a

different sign. Clearly,

P{Agame} =P {Agigr} = 172 (E.11)

a fact used in (E.10). Let us now note that, under Ay, the mean of r;; is zero while, under

Agame, it is equal to VS T/2. Thus,

‘{rjllek;“l/Q} . (’12 (—9,&) (14 v, 8,,) (!9:4) . (Bﬂ;ﬁ)[i s1v cu] ;};5;1_:;23.:
(E.12) —t

In exactly the same way,
! \ (lf)
i "jzl"k‘e’l/“; = S\ ‘{Cj(cj-l * cj)}6k1 +"{"j1v"j2}
ST \(N.T N.T
. |—S)0c = (O c)Y RN
(No)( 8 )5k1 ( 4c)(’2g)6k1 T
' (E.13) RN

which is identical to & {rjor;,1 ) | Hys€ = 1/4}, ——
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Put together, the above result in

e —nfNqgT,
8\ H, e = 1/4} = N«—-’f)[l + 2 ‘lcsu]

(E.14)

In both cases, var {A,[Hg} is the same. A straight-forward calculation can show it
to be

Var{MIHo}=<-3-) N (T2
s 2
(E.15)

Combining (E.7) and (E.14) with (E.15) results in (3.42) and (3.43), respectively.
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APPENDIX F

L
ANALYSIS OF THE RADIOMETRIC DETECTOR
& Here we briefly develop the LPI performance of the radiometer, as shown in
\ Figure 9, when the input r(t) is as per (3.2). The output rgp(t) of the rectangular BP
X filter is
o rgplt) = V25 ¢(t) cos(ugt + ¢) + ngplt) E.1)
: where ngp(t) is filtered AGN with the typical BP representation
i
' ngplt) = /fnl(t) cos wyt + nQ(t) sin “’0{[ F2)
g e In(F.2), ny(t) and nq(t) are independent zero-mean jointly Gaussian low-pass noise
processes, each with a flat PSD of Ny W/Hz (one-sided) and bandwidth of Wgp/2 Hz (one-
y sided). The code signal, filtered by the BPF, is designated c(t) in (F.1). The zonal LPF
@ (shown for analytical purposes only) rejects the 2f; components of the square-law output

A z(t) and has an output given by

g . sz(t) = S(E(t))z + nIZ(t) + noz(t) + VS T(t) nI(t)
(F.3)

In order to maintain analytical tractability, we approximate and model €(t) as an

attenuated, but undistorted, version of c(t), namely,

&) £ acq) (F.4)
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where the "attenuation factor" &2 measures the (normalized) power reduction due to
N 2
ol 8 ,/,, ‘HL(f” Sc(fidf (2) /"NBPTC/Z sinx)° i
J= s _(f)df v/ g ( X ) dx e
. = S
ES5) bz
since, for a +1-valued code, the denominator of (F.5) equals c2(t) = 1. In the previous -
. o expression, S(f) is the PSD of the random code signal c(t) and Hy (f) is the low-pass s g
' equivalent of the BPF Hgp(f), i.e., Lo
. 1 fl €W
‘ H(F) = MY »
! 0 , otherwise 0 e
*. (F.6) o
i - By suitably adjusting H; (f), (F.5) can be generalized to filters other than the perfectly
N rectangular one considered above.
% From the above definitions, it follows that (E(t))2 = a?
g Thus
i® ’
' 2,5(t) = ofs +n2(t) +no(t) + 2/5ac(t) n(t)
_ LP a I i aC I'\I
. - E7
under H; Under the alternative Hy, z; p(t) is given by the above expression with S =0. It .
' : follows that |
| 2
slrp(t) M = oS 5y + Ng Hgps k=0,
;- (F.8)
-| ¢ 180
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S ST R,

with 8, as per (3.9c) . Thus, the expected value of E{AJH, } of test statistic A at the
output of the integrator in Figure 9 can be calculated under either hypotheses Hy; k = 0,1,

as
NT
= C
g;A!Hki = / g{zLP(t)[Hkidt = NTCE{ONBP +azsck;I; k=0,1
0

(F.9)
The next step is to obtain the second-order statistics of z; p(t) and A. The typical

approach, based on the assumption WgpNT, >> 1, is to model z; p(t) as a very wide-band
("delta-correlated") process with respect to the approximate bandwidth (NT,)-! of the
integrator. Thus, one needs to evaluate only the PSD of z; p(t) at the origin f = 0,
distinguishing between the average (constant) contribution and the random contribution.
Using the fact that n(t) and nq(t) are Gaussian, the autocorrelation function of z; p(t) can be
obtained directly, from which its PSD under H; is given by

2

_ (2 '
Sz p(f) = (a S+ NOWBP) §(F) + 4Sny(f) @ Spq(f) + 4u2$Sc(f) @ Sny(f)

(F.10)
where ® means "convolved with." The coefficient of the Dirac delta function O(f) agrees
with the first-order statistics of z; p (t) obtained directly in (F.7). The two-sided PSD of
zy p(t) at f = O measures its random contribution and is obtained by evaluating the last two

terms Sz L(Pﬂ in (F.9) with f = 0, resulting in

s, (f) = N2 4 ke
ZLp ’f=0 0 Mgp * 257 SNg gy 3 k=0.1

(F.11)
The delta-correlated random part of z; p(t) contributes to the variance of A as

var{z{Hk} . (NTC)SZLP(O) . (NTC)(NOZHBP + 2t %) le)
(F.12)




[P I I

ﬁe

@ L e L

The mean and variance of A in (F.8)and (F.11) suffice to characterize performance under
the Gaussian assumption which hinges on the fact that WppNT, = N>> 1. The result is

(3.10a) with
a4 2
a = " b = 2a
NBP c
(F.13)
Clearly, the choice of Wgp has an impact on a through (F.12) and a2 in (F.5). The
quantity
WopoT X 2
2 5P c/2 (smx)
o2 (?) Of X dx
a = =
Wgp Tc BP Ic

(F.14)
has been plotted in Figure F.1 as a function of the product WypT, The maximum

Oy = 0.77 (or -1.1 dB) is attained at WgpT = 1.
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APPENDIX G

DERIVATION OF EQUATION (3.50)-(3.52)

Let y H
A= D y. 2
j=1 9 N

1.
Ao
0

(G.1)

be the decision rule (3.48), where

y;=r 5@ (G.2)
and 1 ;i = 1,2 is given by (3.49). Then,

1 = VST, ¢; 8+ n;® (G..3)

where (1) and n;® are zero mean, mutually independent Gaussian rv's with common

variance 6,2 = NgT./2. From (G.2) and (G.3), it follows that

2
ST 8 * ST ey 8 (n.(l) . nj(z)) . "3(1) nj(Z)

.YJ' j

(G.4)

Thus,

a{yi} = STcz 6k1 * (NOTC)YC 6kl
(G.5)

which justifies (3.50). Futhermore
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var{yj} S Tc2 81 vargnj(l) + n:i(Z)z + var{nju) nj(Z)}

2 2. 4 al(l STCZ
S Tc 81 2°n to, = 4°n (3‘)«# ;..2. 81
n

("oTc)ZEF t e ‘5k1__l

as per (3.51). From (3.50), (3.51), equation (3.52) follows immediately.
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< APPENDIX H
& DERIVATION OF (4.13) -
LetR =R, in (4.10) and (4.11). Then, following steps identical to (4.7) yields
| ® (4.10) “
. ’.
exp ( ~2v,) 25
R T.,")}] E
9 (1) L
L.
where the density of R under Hj is the Rician
R 1 R* (2/5
: f(R‘Hx)-E“P{‘?H}“P{‘E?}IO(TR). :
3 (H.2a)
- with
= ®
olm NOTH ..
2 -
- (H.2b)
® and Yy = STy/N,. We note further that
/5
A(R) =exp{— Yu}ly ‘_R)
No
(H.3)
is an LR. Thus, from the known properties of LR's
2/§
& (AlH,) =1 -&{10(——&) H,} cem
N,
(H.4)
and
E(N\H,) = g(MH,) = [“A(R)/(RIH,) dR.
¢ (H.5)
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Substituting (H.2), (H.3) into (H.5) and letting x = R/0,, yields

) 2
&X't} = (~21a) [“remp( - T} 2] B x] .
(EL6)
From [21, pp. 718, 6.633.2].

f.e-.l.y'(u),['(px)xdx
()
1 al + B3 af
|- T {37
H.7)

Letting p2 = 1/2, & = B = V2¥y, p = O (here j = V-1) and using the fact that I(x) = Jo(jx) in

(H.6) and (H.7) results in

25 :
¢ {’0(7‘,“””0} = €xp (2vy }o(274)
(H.8)
Combining (H.1), (H.4) and (H.8) provides (4.12). As a byproduct, we note from
(H.3), (H.5), and (H.8) that

& { lo(%k)\ﬂl} = exp (Yu }Jo(27x)
(H.9)
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APPENDIX 1
EVALUATION OFd, FOR CASEII

We consider here the Case II, where no power adjustment takes place in the decision

rule (i.e., (5.8) is used), but the actual frequency offset of the incoming signal with respect
to the observed spectral points is the worst, namely Af = Ry /2, The case is depicted in

Figure 1.1, Note that, in principle, a residual signal power can be measured in frequencies

beyond the two adjacent ones (f;, f;,;), but that amount is insignificant and can be

neglected. On the other hand, each of the adjacent spectral slots observes a tone of power
aS (o as per (5.13))in noise, so that the the probability density function (pdf) of the

envelope R in each adjacent slot is the Rician pdf

fﬂ(a
11

where Yy is the hop SNR and c: = NyTy/2 is the noise variance in each quadrature

R2

. mavy g @ [2/a
signal ) -5 e e L £ R
t

presen -]

n No

component of the bandpass additive Gaussian noise. Since, in the absence of the signal,

the mean and variance of IO(ZJ-S— R/Ng) remain as per (5.11a,b), we only need to evaluate

signal }- j.xo(ig-g.— n)rR(n{ signal )an
present 0 0 present

(12)
with the pdf as in (1.1). Setting RAR/o, in (1.2) yields
2/3 e?
&{tg(—— p)lstgnar | _ JOVH," 72
0( No )present} ¢ Ig" Io{v/2Vyr 9 v/'ZuYHr)dr
(1.3)
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The latter integral can be evaluated by proper modification of the expression in [21, p.718],
yielding

2/s signal -a¥ (1+a)Y
&{1g{~——=— R| present)( = e Ig(2/a Yy)e

No
YH
- e 10(2/3 Yﬂ)
d.4)

Fianlly, noting from Figure (I.1) that the expression (1.4) pertains to 2 slots (under H,)),

while the remaining (G-2) are only noise, yields

¢ , YH YH
’ &N Hy;Case II] = 2e Ig(2/a Yy) + (G-2)e

(L5)

instead of (5.11a). Putting (1.5), (5.1b), (5.10c) and di together results in
(Ig(2/a Yy)-1)2
df =461
Ip (2 YH ) -1
(1.6)

as per Table 1 in Section 5.2.
A final note is in regard to the notation in (1.1)-(1.4): we condition on "signal
present”, as opposed to "H,", because the above expectations pertain to the slots which

truly contain a signal component, while "H," simply means "signal in some slots in the

bandwidth B".




APPENDIX J
STATISTICAL CHARACTERIZATION OF NOISE PROCESSES
eq e
N '

eq eq
We define N; (1) and NQ(t) as per (5.45) and (5.40). It then follows from (5.41),
eq eq
(5.42) and (5.43) that Ni(Ty), Nq(1y); % = KB-! are zero-mean random variables, i.c.,
(5.46). Furthermore, by virtue of a central-limit-type argument (summations of a large

number of rv's), they are assumed to be approximately Gaussian.

e
We shall first show that I*ﬁ?tk) and Ng(tj) are uncorrelated for every k and j; in
which case, they are also approximately independent (due to the Gaussian assumption).

Indeed, from (5.45a).

G{Niqﬁk) “quTj)} =& {NII("k) N1e(T; )} te {"QQ@O N J)}

- o0 M) - Mgl Morlepd)
d.1)
Let us consider the first term on the right-hand side of (J.1); a similar line of argument

applies to the next three terms. By definition,

T, AT
&{My1(r) NG} = f " f H‘{“101)"101“@“xC"z)"oCtz"j)}“x“z
Tk T

(J.2)
However, no(t) is independent of ny(t), which implies that the integrand of (J.2)contains

the factor &{ng(t2- 1)}, which is zero. Thus,

{10 NigGrd} = o
(1.3)
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c
Along with (J.1) and the above remarks, (J.3) establishes the uncorrelatedness of
eq e
Ny(t,) and Nolt,)
¢ eq eq
Let us now consider Ny (t“l) and N,(tkz) for t“l * Tk, We have that
eq. eq -
"{ NP VT (k) &N Vg (‘kz)} + & { N TV qq(‘kz)}
| ®
+ "{"u(‘kl)“qq(‘kz)} * ‘{NQQ('kl)NII('kz)}
J.4)
| o
But,
T T
& - H H
{Nn("kl)nn ()} = / / JICVHCEEN MO O wpdt it
T, 7t T T
¢ SHLY) k1 kg
; as)
We shall approximate the integral (J.5) as the double sum
j® sy &8
! J{lecrkl)Nll(Tkz)} = (ar) 2 2 J{"I(k)n1(k-k1)n1(m)nICm-kz)}
. ktkl makz
: J.6)
I . where AT = 1, = B-1. We note that nl(k) and nl(k) and n(k-k,) are independent rv's since
k; #0, as are nl(m) and nj(m-k,). Furthermore,due to the independence of the rv's
involved, the expectation in (J.6) will be zero whenever all four sampling times k, k-k;,
g
) m , m-k, are pairwise different, as shown in Figure J.1(a). If we assume that k, <k, we
then observe that the three remaining cases depicted in Figure J.1 are (b) k-k; = m-ky; in
which case, k#m, or (c)k = m;in which case, k-k;#m-k,, or (d) k=m-k,; in which case,
> k-k;#m. In all those cases, the common conclusion is that at least two rv's exist which do
not coincide with the others. The net result is that the expectation in (J.6) will always be
zero, establishing the approximate uncorrelatedness of Ny (tk,) and Ny (tky). The same
s
) exact argument establishes that 8{N qq(tky) Nyi(tkz)} % 0, while it is even easier to
) ¢ 192
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kK, k m —t
(a) A1l sampling times different
¢ —t —
k-k1 = m-k2 k m
(5) k- k1 =m- k2
. 5 4 - t
Cm-kp) (k-k k=m
(¢) k=m
y - -+ -t
k - kl k =m -kz m
(d) k Zm- kz

Figure J.1. Some Possible Combinations of Sampling Times in (J.6)
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show that ‘%Nu(‘tk]) NQQCTkz)in ‘* NQQ(TKI)NII(tkz)! 0. Thus all of the above can
be combined in (J.4) to illustrate that different samples (% g #%k;) of the same process N, are

approximately uncorrelated. It can similarly be demonstrated that the same is true for

c eq
Nq(t), defined in (5.45c).
eq eq
Finally, we are concerned with the variance of Ny (1) and Ng(ty). Clearly, since
° the respective means are zero, those variances coincide with the second moments.
Furthermore,
(NS )2 = &{n? 2¢ THeh
o 1 (70 ACi} + a{NQQ(rk)} = 28N (™)
3.7
But,
¢ shiZeaal = [ ™ glace
) Ilctka) = éiny( anctl“k)"l(tz)“lct?‘k);dtldtz
‘l’ T

T~k

. f f (B (2)mg (Er )y ()}t ety

.8)

° where a simple change of variables has been performed. We shall now use a familiar
property of four jointly Gaussian rv's {xi}?,l, namely,

= alxygf olug) + olxyxsfetong )« o{xpglelns)

3.9

4
&l x4
j=1

Applying (J.9) into (J.8) results in (for any 1):
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TH'T

TH-t

+ffc{nlcti*T)nl(t'z‘*‘r)}d{nlct'l) nl(ta}dtidtuz
g
+ [ f 5{"1 (t'1+1)n1(t'z7} d{nI(tD nICt'z-n)} dt'ldt.z
20 9 Tyt )
= Rnn(t) (TH-t) + Rnnctll't.z) dt'ldt:,_
f

Ty-1
+ ] f Ran(t1-t2*9) Ry (t]-ty-1) dtjde,’
0

RO A Yl vl I,I~l. i B Al a4

where R (1) = & {n)(t)n;(t+1)} is the correlation function of ny(t).

Ryn (Ty) = 0, so the first term drops out. Furthermore, one can employ the even symmetry
of Ry,(%), i.e., the fact that R, (T) = R,,(-7), in order to reduce the two-dimensional

integrals to one-dimensional ones (see {49, page 325] for details). The result is then

Equation (J.10) can be further simplified. First, we note that, for t = 1, = kB-],

2

T,,-T N.B
e{uﬁcto}= 2 f H "(TH-Tk-p)<—2—) Sa2(xBp ) dp
0

-T N.B 2 r
oy o o] e

0

With the change of variables

p"ﬁ

and defining the normalized parameter {, as

CR A T P )
P R N AL

L ARR AR A B L Gl Srh st oy g w \1-_1“mmm
-
B, e

(J.10)

(3.11)

J.12)

.....




| o 8 ;& . E“l(" . E

f X H H (.13)
; we can rewrite (J.11) as

|

2
N.B

i e i} - M (Th f (1-5")8,2[s80" (Ty-1) |

.

1

: ' 5[ (1935, [5B(o " (Tye ) Su[s8(o" (v vy )|
|o - 2

. -1

: LoD CZT” 2 (Fy(K) + Fy(k))
: 0.14)
ll‘

where
1 T 1
i ’ °
| (.15)
’ and
g 1
je Fp(k) = f (1-0") SaErG(p'CI-Ck) + ck):lSaEG(p'(l-l,k) - ckndo'
: 0
: (1.16)
. Combining (J.14) with (J.7) yields (5.47a).
o Quite similarily, it follows from (5.45c).
2

, NSt = 28 {NE («N - 28 {N ()N, (1)

- q 10 Q' Mar

' J.17)
’ But,

X 196

...........................................................
.........................................




c
TH
2
. “'{"m“’} - / / slny(tmCt1-In (td gt et oty
1 T
- TH ) TH-t »
, SR [ RanCeieth) exers
; T : 0
¥
* . (J.18)
since n(t) and n(T) are independent, with the same correlation function. The integral in

(J.18) is identical to the second term in (J.10), which corresponds to the F,(k) term in

(J.14). Furthermore,

TH
N 1(e) Moy (=)} = [ /:S'{nI(tl)nQ(tl-r)nQ(tz) nq(tp-t)} dt,dt,
TH-T

S Fonlti - ¢ Pt -3 - oy
0

3.19)
which is identical to the third term in (J.10) corresponding to the F,(k) term in (J.14).

Combining the above with (J.17) (note the minus sign of the second term) results in

g{ngq(T)ZE - (NOB)Z(TH - 1k)2 (Fy (k) - Fp(K)

J.20)
as per (5.47b)
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APPENDIX K

DETECTION OF FREQUENCY-HOPPING SIGNALS
VIA
AUTOREGRESSIVE MODELING

KI. INTRODUCTION

The purpose of this Appendix is to present a number of methodologies that can be
used for the detection of frequency-hopping signals in AWGN. These methods operate in
the autocorrelation-domain (ACD) and are based on autoregressive (AR) power spectrum

estimation concepts. They are simple to implement and have low computational

[f:_ complexity, i.e., they have properties that make them very suitable for real-time

r implementations. Specifically, four different methods will be discussed and their

k ® performance demonstrated and compared with that of the conventional radiometer and the
Correlator-Detector [see section 5.4].

The organization of the Appendix is as follows. Section KII establishes the
% ° problem formulation and its imposed constraints. Section KIII presents the four different

detection methods,which are all based on AR models. The discussion emphasizes the
methods mathematical description, performance evaluation and computational complexity.

Concluding remarks and recommendations for future research are given in Section KIV,

e
KII. PROBLEM FORMULATION

@

f Assume that the output of the correlator y(t) can be expressed as in equation (5.44),

} where now we allow the signal frequency fy=wy/2m to be arbitrary (i.e., different from the

;Zi center frequency f.)

° 8 %

y(7) = C(7) cos wyT + N (1) cos wyT + Nq(7) sin wyt (K.1)
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where

S(Ty - ), H,
CQt) =

0 Hy

if we mix y(t) down to baseband by

¥ (T) = 2 cos WyT y(T)lp
¥s(T) = 2 sin T y(DlLp
then
¥c(T) = c(T) cos AT + Ne,?t)
ys(T) = c(7) sin Awrt+ Ncg(‘t)
where Aw £ . - Wy , |AW| < 2rnB/2, B is the observation bandwidth. By sampling the signals

¥c(1), y5(T) (2) at T, = k B-! points, the data records become

eq
Ye®)= —3— (B Tyrk) cosk + N, (&) (H,)
e
ye(k) = qu(k) . (Hyp) (K.3)
$0= £ BTk sind2Ng@ @y
eq
¥s(K) = Ng(k) (Ho) (K.4)

k=0,12,.G = BTy
where &{N (k)} = £{Ng(K)} = O for k = 1,2,...,G and
eq
var {N| (i)}= var{Ng ()} a(NgB)? (T - )2 F; k).

Defining A
Wok) = yk)/(Ty - 7)

- W,(k) £ y,(0NTy-1,), (X.5)
F then from (K.3), (K.4) and (K.5) we can get the following analytic signal
‘s .
:: W(k) = W (k)+j Wy(k) (K.6)
2 or
¢’ W(k) = S exp(j€k) + n(k) (Hy)
: W(k) = n(k) (Ho) (K.7)
. : 199
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.(._ T
ey
& Q =-B—(|Q| <x) AN
n(k) = ny (k) + jng(k) b
. ny(*), ng(*) ~ Gaussian distributed, i.i.d ‘
o &{n))¥8{ng)} =0 fork=12,.,G L
var{n)(k)} = var{ng(k)}= (NgB)? F (k) fork = 1,2,...,.G b s
and
i @ &{n(0)} = N¢B, &{Nq(0)} =0
] Note, that the Gaussianess assumption for {n(k)} weakens as k— G. Therefore, we
will concentrate on the observation interval k = 0,1,2,...,AG where A = 0.1~0.5. Under
these assumptions, (G(1 - A) >>1) a good approximate formula for F; (k) can be obtained,
ie.,
1
Fik) = : K8)
g 2G[{1 - —
. . G
: Problem: Given {W.(k)}, (W4(k)} k=0,1,.., A G, G>>1, decide between H; (signal
plus noise) and Hy, (noise).
Y ® A simple autocorrelation-domain (ACD) algorithm is desired that can be of low

complexity and very suitable for real-time implementation.
Important Observation: The SNR in the ACD, is generally higher than that in the time
domain. For example, take the case where Q = 0. Given the input SNR per band

. 4 _S_
Yo (NOB)

which typically is very small (¥;, = 10', 102), we observe that the local SNR in the ACD-

Baseband vy , is given by
g2 \
Y (k) * —————— S

B 2‘“0‘)2 P, (®) —
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or equivalently

¥y = Y3, (6-K)

k=0,1,2,...AG.

if Y,g = 101 (=-10dB), G = 103,A = 0.1, then
9.54 dB < yg (k) < 10dB
which indicates a significant increase in SNR.
The (k) decreases as k increases. So, the problem here is how to employ the first
LG samples of {W(k)} so that significant gains can be obtained. For example, the
radiometer uses the first sample W(0), and the method of Kay [34] uses the first two

samples, W(0), W(1) to form a detection parameter.
KIII. DETECTION METHODS BASED ON AR MODELING

Three different methods have been investigated and their performance evaluated via
Monte-Carlo simulations. The first one is based on complex data ({ W(k)}),whereas the
other two are on real data ({W,(k)}). All methods employ an autoregressive (AR) model
in which AR coefficients are used to form a detection parameter in the ACD without
forming an AR spectrum estimate. An important result obtained during our research is that
the first method, which is based on complex data, does not exhibit any sensitivity to angle,

whereas the other two methods do.

KII A: METHOD I; COMPLEX DATA
() Preliminari
Suppose we are given the following set of data samples, {R(0), R(1),...,

R(m)} that have the properties of an autocorrelation sequence. Note that R(t) = R*(-1).
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An equivalent unique representation of this set of samples can be obtained in terms of j.;;ﬁjg
reflection coefficient {k;}, i.e., {R(0), ky, kj,..., kp} where k| < 1,i=1,2,. .M [46]. \:‘1:

PRy
This is achieved by fitting an Mth-order AR model to the data {R(0),..., R(M)} in the MSE b
sense, and solving the resulting linear system of equations via the Levinson-Durbin :;_-‘.::::::

Al
algorithm. The steps are as follows: ::,v:_.{

i.1)  Normal Equations

l.v. v

(R(0) R(-1) RG-2) RG] 1 (o]

R(1) R(0) R(-1) ... R(1-M) a(“l‘) 0

| R(M) R(M-1) R(M-2)... R(0) | Lam) Lo

(X.9)
The unknowns are the AR coefficients {a;(M),...,a (M)} and the variance Py of the linear QTEI‘_ :;'\‘:;
OO
prediction error. Once the above linear system of equations is solved, then the resulting l;--—-i
AR spectrum of the data is ‘f.:
S
Py e
S,, (W) = e’
AR 1+ B aM™eps (un)? ~
i=1 SN0
(K.10) o
i.2)  Levinson-Durbin Algorithm [50), [51]. b
There is an elegant, recursive and fast procedure for solving the normal equations in
(K.9), the so-called Levinson-Durbin algorithm. The method requires ~M?2 operations only
comparing to more general methods that require ~M3 operations. Note that the R matrix in L.___..

(K.9) is Toeplitz and Hermitian. The algorithm proceeds as follows:

NP INAR RS ANT RO AT




LTS LT (W UL e . A - N A A8 v - W W W N ]
a . - L pfal4 .
A iy

v o« .
PN
R,
e
AR

.
L
RS

- e i=12,..M e
_ i=L 121 (1-1) 1 )
-[R( ) +m§1 ap R(i-m) L\";":":
Ot
ki - - u\'\ ..._":
: Pi-1 :%.3:-'2
¢ [3-0.1,...,1-1 ;" ‘
: 1) - i-1* RN
. éj = aj + ki éi"’j ES:-':.::
'«{j§:l~3
.. o 0
. Py = Py (1= K, B) (K.11) N
: Note that !,'-'7_’."':;
. a((Zi). 1 ) i=1,2,...,M NN
‘ i),
. ag ki
o - a—ata
and aﬁ) = 0 for A>i. So, in obtaining the solution for an AR model of order M, one b

actually computes the solutions for all AR models of orders less than M, i.e., i-1,2,...M7],

M. The quantities {k;} 1 <i <M are known as reflection coefficients or partial correlation
coefficients. A necessary and sufficient condition for the stability of the resulting Mth- L J.

order AR model is that [51], [52].

P,>0,1<i<M
v or equivalently .
: ki<1,1Si<M (K.12)
. It can be shown that iff R_ > 0 in (K.9), then (K.12) is satisfied [51). It can also be
' ° shown that L
0<P;<P,,,i=12..M (K.13)
1.3) Detection Parameter !:.;..'

The detection parameter that will be adopted corresponds to the geometric over the

arithmetic mean of the Mth-order AR spectrum given by (K10). It is described by [52]

”
GM exp{l/?.ﬂ]:’r nszglw) dw

172m]* M5 @ dw
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It is, therefore, clear the V) depends completely on the shape of the AR model spectrum.
. - Since GM < AM,, it follows that
0<sVys1 (K.15)
" . It is easy to see that when Sp,g™) (w) is flat, i.e., white noise, then vyy= 1 (FigureK.1(a)).
On the other hand, if the spectral data spread is large, such as the pattern shown below in
Figure K.1(b), M)
igu (b) S,x’ S::)(w)
o Vo=
M V~0
- M
1
i
[ ]
[]
: 4
¢ ° a) ” 0 ) w
: Figure K.1. Spectral spread: (a) white noise , (b) sinusoid in noise
2 . then Vy=0. So, another way of looking at V) is in terms of the flatness of the spectrum
3 (52).
It can be shown that V) can be easily expressed in terms of the reflection coefficent
- . of an Mth-order AR model as follows [52].
M
s i=st
However, a closer examination of (K.16) and (K.11) reveals that
Py
Vy = —
R(0)
-
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which is the normalized by the signal energy variance of the linear prediction error

associated with the Mth-order AR model. Since Py = R(0), it is apparent that from (K.17)

and (K.13), equation (K.15) follows.
The detection schemes described in this section will be based on comparison of V

to a specified threshold value, i.e.,

< ¥ (H])
VM

> ¥ (Ho)
(K.18)

where 7 is a number between zero and one.

i.4) M=1 AR CASE: Equivalent Detection Parameters

If we are given the two first samples only {R(0), R(1)}» [R(1) | ¢ R(0), R(0) > 0,
then a 1st-order (M = 1) AR model can be obtained with the detection parameter

Vi=[1-k P
or
Pq
Vi = —
R(O)
(K.19)
However, [k;[2 can also be used as an equivalent detection parameter as follows
>5 (Hy)
Ik,
<§ (ng.
(K.20)

This is the scheme suggested by Kay [34] (note t .. ap) = k.) and shown to be equivalent

to a comparison of a normalized spectral peak with a threshold v, i.e.

Rl I auil v 3 e Mabie 1 o el Ty
$ ¥ e
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(1)

nax [s,m (d‘)] > v (Hy)
lwke Py < v (Hg) (X.21)

Another equivalent interpretation of the detection parameter V; in (K.19) can be established
using the determinant of the matrix

o[ ]

normalized by R2(0). Specifically, the detection parameter is

R(Y)
R(O)

R(0O)
R(1)

_ det[Rq] R(1) P
H1 W —————— gy - ———
R(0)2 RZ2(0)

or

H =[1-kR=V, (K.22)
It is important to note that in the case where {R(0), R(1)} are autocorrelation samples of a
Gaussian weakly stationary random process then H, corresponds to a normalized entropy
measure. Under Hy (white noise) the entropy is higher than that H, (signal+noise). This,

in the case of a Gaussian signal, in Gaussian white noise, the detection scheme in (K.22)

compares a normalized entropy measure of the process to a threshold.
We, therefore, conclude that V,(i.e., GM/AM of the spectrum or normalized

variance of the linear prediction error), la‘ll)lz, max[S,(‘E(m)lPl] and ﬁl (i.e., normalized
determinant of the covariance matrix) are all equivalent detection parameters for a 1st-order

AR model and complex data {R(0), R(1)}. Their generalization to higher-order AR
fels. | l 1 id ivalent d . |

i.5)  Mth-order AR case: Generalizations

If we are given the first M + 1 samples {R(0), R(1),...,R(M)}, then the following

detection parameters can be obtained from the Mth-order AR model:

.......................................
.....................

......................
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Py M
Vy = — « T (- |k, B, (GM/AM)
R(0) ie1

(K.23a)

Ry = hé") [ | (Magnitude of the poles)

(K.23b)
T
=X M PR; 38,
i=1
(K.23c)
L]
cy = I |k P,
1=1
(K.23d)
M
S:R)(U‘) \
PEAKy = max
wmt M
(K.23e)
M
nme; M
Bo=i0 = Fo  h P - Ny
(o) R(O) RO  R(O) 7O
(K.23f)

The detection parameters Ry, [ m» and Cy may be seen as generalizations of |k {2 shown in
(K.20). However, they are not generally equivalent with each other nor with (K.23e),
(K.23f) and (K.23a). For finite length data N and order M > 1, each one of the detection

parameters given by (K.23 a - K.23f) is expected to have different performance. Some
asymptotic results (N—oo) related with (K.23a), (K.23c) and (K23e) are given in

Addendum 1.
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(i) The Mcthod

The method employs V) as a detection parameter ((K.16), (K.17)) and compares

that to a specific threshold value as shown in (K.18). However the V), is estimated by

because the the AR coefficients of an Mth-order model are computed using (K.9) or (K.11)

» with "data” {R(0),...,R(M)} generated as follows:

1 AG-1 .
R(1) = — ¥ W(n) W (neq)
AG ns=1

T =0,1,...M
(K.29)

where W(n) is given by (K.7). Since W(n) is the output of the correlator, {R(1)}
represents an estimate of the autocorrelation of the autocorrelation of the original time
sequence (i.c., the input to the correlator). Equation (K.24) corresponds to the biased

autocorrelation formula, which has been shown o guarantee a stable Mth-order AR model

(.e k| <1,i=12,..,M)[51]. Itis for stability reasons that the biased estimates are

used here instead of the unbiased ones.

In summary the method proceeds as follows: a) Given the data in (K.7), compute
R(1), T=0,1,...M from (K.24). b) Use the Levinson-Durbin algorithm in (K.11) to
compute Py ¢). The detection parameter is V) = Py/R(0). Note that the first sample W(0)
in (K.7) is not taken into account when computing {R(1)} in (K.24).

(iii)  Performance

The detection performance of Method I has been tested via Monte Carlo simulations
for G = 1000, A = 0.1-0.5, and input SNR ¥;, = 0 dB down to -25 dB. The probability of

detection Pp, was computed for Pp,= 10-1. To assume statistical confidence, a very large

number of trials (1000) was performed. These results are illustrated in Figure K2. Several

features can be noted from Figure K2:
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a) For a constant order M, the performance of the AR detector I improves as A

¢ increases.

b) For a constant A, the performance also improves as the model order M

® increases.

¢) For M=2 and A=0.5, Method I outperforms the radiometer detector ((®)) when
o Yin < -23.4 dB and the correlator detector (D) when ¥, <-21.4

d) For G = 1000, Pp= 0.95, Ppps= 0.1, M=1, A = 0.5, the AR detector I will
¢ require 3.6 dB and 8.2 dB less than the correlator (7) and radiometer ®) detectors,
respectively.
¢) There is approximately 0.4 dB improvement if M changes from M=1 to M=2.
@ Furthermore, an additional improvement of ~0.4 dB is achieved by changing the
order from M=2 to M=7.

Figure K3 illustrates similar improvements but for the case where G =.100. For
example, if M = 1, A = 0.5 then Method I outperforms the correlator-detector ( @ ) for
Yin € -14dB. Furthermore, Table K.I summarizes the effect of A (length of the data), model
order M and input SNR ¥, on the distance d = Img - m,| between the two means and on the

variances 0,2 , 0,2 of the detection parameter V),. From Table K1, it is apparent that:

a) if M=const, y,=constand AT then di, Og +, UE \

b) if A=const, v,,=const and MT  thend? qg ., 012 *

c) if M=const, A=constand  ¥y,fthen d{, c%- const, o% ¢+
The AR detector is therefore independent of the noise variance (y,;) for a given order M
and length of data AG. It is, thus, unnecessary to estimate the noise variance in order to set

a threshold at the receiver.
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Figure K.3 Monte-Carlo Simulation Results on
Method 1 with G=100.

Y

I T T S R . . . . L. . . .- ) . . R . PR

@ e T T T AT A T . A AUt e Tt et TR . . . . e e
E P TN I I AT TR SN - e I T T S S PR S} ete e L . Y -
AR SV SN PR S ACTL IR for B S A LTl e . . e et e ey e \
W Tl . B TS, P i A I NS LS b S BT Y AP P T Y o

- Tt e NN . R P P P R A P
PAAS A aial ol ook . — A I MRS NP SV R Sy L S S A A M L




A

WL

7-

Ay

At A

T

[l St

. LA YA

A M

rainliond

s e

TN e e

T

- -
vwﬁxvmm.m%ﬁxmmm.mm enonHow.mqmﬁxmmo.ﬁmewﬁxmﬂx.m @Hx\.ow.wm Nﬁb
wmﬁxwmo 1 m:xmm.m voﬁxﬂwm.o voﬁxomN.N eoﬁxmmo.o eoﬁxmmm.o Hob ap91-
6L1°0 §¥922°0 8v1°0 G61°0 1/60°0 ¢e1’0 T - Oy
: : . : 1o
vnﬁxmom £ ¢©mev 61 m:xONw ann:xoom mﬁvﬁu:xmmo I vm:xmmm L z
o1xee0 1 voﬁxﬂm.m 0IX166°0 [, 0TX1GL"¢ vﬂ:xmmo.o coﬂxmmm.o ob apP81-
- - - - - - b
¢£s0°0 0€40°0 £0v0°0 9¢.60°0 ¥£20°0 2EE0°0 Ty Oy
vuoﬁxmo.a v-oﬁxo.w va.ﬁxmwm.ﬁ @axmmo.m ¢o~xmmm 0],01X¥60°¢ Nﬂb
OIXEE0 1| OTXLL € |, OTX686°0| oTx152°2 |, 0IX6€0°0 | OTXLEE™D 0o .
¢| v- v v_ - é
4p0¢-
L110°0 310°0 £800°0 G210°0 GEYOO°0 1190070 Tw-Oy
0= X 1°0=YX G 0= 1°0=¢ § 0=X 1°0=Y 0001=3
utLgQ
€ =W 2 = W I =W
{d=W) Wy 30 A~IV Nﬁo pue ( Oy 2 0y saouetuen ajdwes *( Ev H
sapun ueow oldues ¢ (Oy)O0H 4soun ueaw didues * (W) 43p40 |3PON :1 ¥0113130 dv
® ¢ el [

'3 3

212

PP S S W 3

P Y




. A il Sl 4 i o e W R LA . R ~ - o
- DR - . M s Tt . B PR AN SN DA e e s AT TE T et o i e v T Wy ey LA S
CEE N

L

. i
- @(v) Computational Complexity S
- R
The computational complexity of the AR detector I is compared with that of the L-"‘
: S
N Periodogram (FFT based), using as a figure of merit the number of complex multiplications -‘_:;-ig».:
. "f - ,5_";{'
= ° (which are the most expensive). Note that a complex multiplication is equivalent to 4 real $50T
multiplications and 2 real additions. The results are summarized in Table KII. From this tv-.—vv*’
table several important features can be noted: \ :
a) If the length of the data is AG = 23, then the Periodogram detector requires ’:‘__7.-_:,-_%
. Mu = (a + 1) * AG, whereas the AR detector requires Mu ~ (M + 1) AG. oy
: ¢ b) The AR detector requires less multiplications than the Periodogram forM < a. ,.-_‘.h
.'.. % E'}[—::{:
S Note that a rectanglar window on the data has been assumed for the Periodogram in Table KII. j::t:“_li:-l
:’ :h* ~ J'.
. If any other window is used, which is usually the case, then Mu (Periodogram) = :‘;'.:'%.‘?
3 (a + 1) AG complex muiltiplications plus 2AG real multiplications. Lr.,\J
: N
o KII. B METHOD II: REAL DATA IN AR MODEL ORI
:L This method employs real data to form a detection parameter using a second-order "'-*—*"
AR model. The sequence of samples is given by (K.3) and (K.5), i.e., "

W, (k) = S cos k + ny(k) H) et

k=01,.G ;lQIsn Ll

W= nK) Ho) (K.25) S

e

with the statistics of {n;(k)} given in (K.7) and (K.8). The approach taken here models
_, . {wc(k)}’iG as a 2nd-order AR process of which the parameters are estimated using the
(

least-squares (LS) method for spectral estimation {46]). The detection parameter is the RN
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coefficient of the AR model, which corresponds to the product of the poles' magnitude. It

is given by
Ryor=Rysr
Py h§2)|. ‘ ‘21.”22 ‘
Ri1 R22-RT,
(K.26)
where
R 12-22 16-2,
11 = We(k+t - We(k
k=t € MR R22 k§1 c( )
AG-2 AG-2
Ri2 = kl1 Wol(k)Wel(k+1) , 1 = k}:’ Wolkel) Wo(ke2)
AG-2
T, = L Wolk) Wol(ke+2)
k=1 X.27)

It is important to note that for the signal only case, Py = 1 exactly. Furthermore, for AG
large (AG 2 100) the Burg technique [53] and the Yule-Walker (YW) method [54] for
spectrum estimate, both give estimates very close, if not identical to those of LS[46). This
is because as AG —ee the LS, Burg and YW methods become the same.
The detection scheme compares Py; to a threshold value ¥y ,i.e.,
>y (Hy
Py
<y (Hp (K.28)
We have tested the performance of this scheme for ¥, = 0 dB down to -20 dB,
G = 1000, A = 0.1, 0.5, and signal angles Q = 11.25° y, p = 1,2,...,10. The sample
mean of the detection parameter P;; was computed from 1000 sample trials under H,. The
key result obtained from this group of simulations was that Py is very sensitive to the
values of the signal angle Q(i.e., p). This high dependence of Pj; (H,) on Q may cause
P;; (H;)) = 0 not only using the LS method but also the Burg or YW techniques. The
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results are illustrated in Figure K.4(a,b) for the LS and Burg techniques, respectively. A
theoretical justification of this phenomenon can be established using asymptotic (AG— <o)

results. As AG— oo, the detection parameter Py in (K.26) becomes (LS or Burg or YW
method)

R2(1)-R(0) R(2)

P - -
11 R2(0)-R2(1)

o=

(K.29)
with  R(0) =1/2 + Qg, R(1) = 1/2 cos Q, R(2) = cos 2Q

Thus

N =1-cos 2Q - 4 Qg cos 22, and
D=2'C0529+8[Q23+QB]_

where Qg is the "average" variance of the additive WGN. Note thatif Qg = 0, then N = D
and therefore P;;= 1. However, when Qg # 0 then N = 0 if
1

€05 2Q) = ~— (K.30)
1 +« u4Qp

So, for those values of Q for which (K.30) is satisfied, ﬁn(}{,) = 0. Table KIN illustrates
the cases where N = O for various ¥y;, using (K.30) and Figure K.4, Apparently the

simulation results (Figure K.4) are in good agreement with the asymptotic results (K.30).
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Table KIII. Values of Q =11.25° p for which Py = 0 under various ¥;,.

¥in(dB) Qg 2(theory) u (theory) |pu(simulationFig. K.4)
0 5x10” 4 1.81° 0.16 ~ 0
-5 5x10-3 5.68° 0.5 ~ 0
-10 5x10” ¢ 16.77° 1.49 ~1.5
-15 5x10° 1 35.26° 3.134 ~3
-20 5 43.63° 3.87 ~4g

Due to the high dependence on the signal angle £2, Method 1I was not pursued any
further. It is important to note, however, that while Methods I and II are equivalent from
the spectrum estimation viewpoint, they have diverse performance as far as the detection

scheme in (K.28) is concerned.

IlI.c METHOD II; REALDATA IN ARMA MODEL

This method is a modification of the LS approach and employs the same real data
record {W.(k)}YS. It models the data as an ARMA (2,2) process from which the

magnitude of the second AR coefficient serves as the detection parameter, i.c.,

Q221 t1-24402

hz'l"ri},zzz-zaz=z1
(K.31)
where
M-2 M-2
Zyy = kt' Wolk+1) Wolke3) , 232 = X MWo(k) Wolked)
- k"
M-2 M-2
212 = k21 Wolk) Wo(ke3) y 227 = T Wolkel) Wolked)
- k"

ty = I Hc(k’1) Hc(k’3) ’ tz - z 'c(k’Z) 'Q(k’n)
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In the "signal only" case, |a;| = 1 exactly. Furthermore under H, (signal plus noise), as the
length of the data record M—ee then

zy; = 1/2 cos 2Q, 7y = 1/2 cos 2Q, 235 = 1/2 cos Q,
23 = 1/2cos 3Q, t; = 1/2 cos 3Q2 and t; = 1/2 cos 4Q.

Thus,

l1/8[1-coszn]
faz | = 1,

I 1/8(1-cos2qn

ie,
asymptotically (M—ee), the parameter |a,] is free of the AWGN. However, the price paid

is that under Hy equation (K.31) becomes a very bad estimator of |a,| which as M—oo
becomes undefined (jay| = —%- ). To remedy this problem, we sacrifice a part of the

method's good performance under H; by using as detection parameter

221 ty - 249 ¢

”N
Priy =
Z11 222 - z12 z21 * Q

(X.32)
Wol(0)
where Q = . The detection scheme is the same as that shown in (K.28).

2

We have tested the performance of this approach for ¥;, = -10 dB down to -20 dB,
G = 1000, A=0.1, 0.5 and signal angles Q = 11.25¢ pu, p = 1,2,...,,10. The Pp was
computed for Pg, = 10! and the results are illustrated in Figure KS. From this figure, it is

apparent that the performance of Method III is determined by the angle signal £2, having as
a lower bound curve the AR (min) and an upper bound curve the AR (max). Thus, while
the angle dependence of Method III is much less than that of Method I, it is still large
enough to degrade the performance of the detector. We, therefore, did not pursue any

further Method IT1.
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IV. CONNECTION WITH OTHER DETECTION SCHEMES

Given the data r(k), k = 0,1,2,..,.L in the time-domain where
r(k) = exp (k) + e(k) H,)

k) = (k) (Ho)

various detection schemes have been developed to decide between Hy and H;.

1) Radiometer: The detection statistic is

1L
W) = - ¥ (k)P

L k=0

which is the first lag of the autocorrelation of {(k)}.

(K.33)

(K.34)

2) AR(1) Method of Kay [34]: The detection statistic here is the magnitude of the

parameter of a 1st-order AR model, as explained in section IIL.A (i.4). The method

estimates the first two autacorrelation lags

L
W(o) = 1/L X F(x) |2
: k=0

L-1

W(1) = 1/L I rlk) r"(k+1)
k=0

and forms the parameter

(K.35)
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W(1) ’2

which is compared to a threshold.

3) Adaptive AR Detection Scheme [55]: Considering the binary detection problem
k) =s®) +ek)  (H)

rk)= e(k) (Ho) (K.37)
the method models the unknown signal as an AR process

P
s(k) + IlaiS(k-i)=U(k)
i=

and uses as detection parameter the

2
Ou
SNR = e (K.38)
Py
€
The method estimates from the observations {r(k)} the {ﬁi}f . 63 63 using a ponlinear

imizati hni

4) Broadband Detection of Signals [37].

Considering the binary detection problem
1(k) = s(k) + n(k) H))
(k) = n(k) Hyp)
where {s(k)} is assumed to be stationary Gaussian random process with a broadband
unknown PSD, the method models {r(k)} as an AR process of order P, i.e.,

P
M)+ % ark - = u)

and uses as detection parameter
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which actually is the GM/AM of the signal spectrum.

[
5) RECorrelator-Detector [Section 5.3]
e
This is a detection scheme that employs all autocorrelation samples of {r(k)}i.e.,
1 L-
W) =-— 3 1) r*(k+2)
o L K=0
©=0,1,.AG
by forming the following detection parameter:
o 1 AG
R(0)=—— I W(T) W¥(1)
AG r -1
which is actually the first lag of the autocorrelation of the autocorrelation sequence. Thus,
o
the Correlator Detector may be seen as the radiometer operating in a different domain
(AACD).
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ADDENDUM I

In }l1e asymptotic case (AG —e0), the "data" generated by (K.24) becomes.

® Hy  {R0)=Q, R(l)=..=RM)= 0}
H;: {R(0)=1+Q, R(1)=e-j& , ..., R(M)=e-iMQ }. amn
_‘ i The AR parameters generated via the Levinson recursion take the values: (Mth-order
Model)
¢
Hy: a(li“) =0,i=12,..M
: k;=0,i=1,2,..M
e ® P, = Q, i=0,1,...M a2)
'E HI: a(M)' - e—JﬂA. A=1,2,.. M
' A (Q + M) : i
4
. 1 -
kis-—'_—-e-Jni, 131'2’....M
(Q + 1) :
(Qei+
Pym + Q@ — 2, i=1,2,...,M
(Q+1) : -

a3
Therefore, the detection parameter TI'y; (Ketchum, [38]) (K.23c) becomes

}'Ioi FM=0

. Hy: l"M=
"'.: 1 (Q+M)2

and thus the distance Y= [Iy(H,)-T (Hp)! is given by
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M =

On the other hand, V), becomes

Ho: VM=1

Q(Q + M + 1)

Hl:

<
g
]

(Q+1) (Q+M)

and therefore, the distance vy=|V\(H,)-V(Hp)| takes the value

M

VM =
' (Q+1) (Q+M) as)

Comparing vy with Yy, it is apparent that vyy> %4 for M>1 and vjy = ¥ for M=L.

For the asymptotic case (AG-e), we can also find equivalent detection parameters

to a normalized AR spectrum peak. If we define as

(M
Shplw) & 1

Py IDfu) L

cn
(99

(L6)

where D(e) is obtained from (L.3) and (K.10) as S
M 1

DW) =1 - F —— e-jlwrall :

A=1 (Q+M) b

then

1 M 1 M
JW) = PW) P =1 - —— S QI WaL) - ——— > edlwa)lu o
(Q + M) 1am1 (Q «+ M) = -
\- \"
! M M ARG
M — > J(We2) (u-1) S
e L] .
(Q + H)g A=1 u§1 ,::_g\._\
N
3J (W) . R
By differentiating and forcing =0, we obtain —
226 R
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After some algebra, we find that the solution of (1.7) which corresponds to
minimum J(®) is

w'+n..o

and, thus, the spectrum peak is given by

1 1

b(w*) 2 M
1 - 2
( Q + M) (1.8)

We conclude that equivalent detection parameters to (1.8) can be

5 M M M 1

q Q+ M i=t (Q + M)2 Q + M
5

: ©

- For example, when M=2 equation (I.7) becomes

. 1
- 2 sin2(W + Q) + [1 - ——-] sin(W+ q) =0

.o Q+ 2
.. or
S 1
- sin(w+ Q)| cos(w+ Q) + 1 - : )
N Q2
: Theref 1 1
erefore * X
W + 8 = 0 » -
b w*) P 2\,
(s73)
(Q + 2)2
- and Q2
- 1 Q4 1 (@ + 2)2
,': cos(u' + Q) - -—( ).. -
> b\Q+2/ W R (a+r?2

where 2,
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