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Abstract

/ In some spread spectrum environments, the low energy of the transmitted

signals, in conjuction with the existence of channel noise, do not allow

the distinction between collisions and lack of transmissions. For such

environments, and for the Poisson user model, wepropose and analyze stable

full feedback sensing and limited feedback sensing synchronous transmission

algorithms. W assume binary SNS (success versus nonsuccess) feedback per

slot, and the possibility of transmission of phony data by a central node.

The highest throughput attained by both the full feedback sensing and the

limited feedback sensing algorithms is 0.322, while the latter induces some-

what higher delays. This is compensated by the robustness of the limited

feedback sensing algorithm in the presence of feedback errors (in contrast

to the full feedback sensing algorithm), and its modest requirements on the

fJ

sensed feedback history. , , ,. . *,
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1. Introduction

We consider multi user spread spectrum systems, for data transmission. In

such systems, low energy data packets are transmitted to a central node, which

has broadcasting capabilities. Let us require that the time of the transmission

channel be slotted, where each slot accommodates a single packet. The users of

the system act independently; thus, simultaneous transmissions within a single

*slot may occur, resulting in collisions. In addition, due to the low energy

of the data packets, in conjunction with the presence of noise in the transmission

channel, make collision slots indistinguishable from empty slots (slots unoccupied

by transmissions). That is, the central node can distinguish only between success-

ful slots (slots occupied by a single packet) and nonsuccessful slots. The result-

ing broadcast feedback per slot is then binary SNS (success versus nonsuccess).

We consider two classes of multi user spread spectrum systems, whose common

characteristics are as described in the above paragraph:

(i) Systems consisting of a number of well identified static users.

(ii) Systems consisting of mobile users. In the first class, the users have the ca-

pability to maintain in memory the overall broadcast feedback history. In the

second class, and due to their mobility, the users are exposed to the broadcast

feedback only while they are active; that is,from the time they generate a data

packet, to the time that this packet is successfully transmitted. Therefore,

full feedback sensing transmission algorithms are applicable in the first class,

while only limited sensing such algorithms may be considered for the second

class. For both classes, we will initially adopt the Poisson user model (in-

finitely large number of independent Bernoulli users), since this model represents

a limit, and since algorithms designed for it are robust in the presence of

changing user structures. For this user model, we will propose and analyze

both full feedback sensing and limited feedback sensing transmission algorithms,
I
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in the presence of binary SNS feedback.

Given some transmission algorithm, its throughput is defined as the maximum

expected traffic that the algorithm maintains, with finite expected delays. For

the Poisson user model, the throughput is some intensity, X packets Islot, of the
,

Poisson traffic process. The algorithm is called stable, if its throughput, e , is

larger than zero, and the interval (0,0) is then the stability region of the

algorithm. The delay induced by the algorithm is a random variable, and it is

defined as the time interval between the instant when a packet is generated, to

the instant when it is successfully transmitted. The expected value of this

variable is the expected per packet delay induced by the algorithm. In packet

* networks, the algorithm is called synchronous, if the channel time is divided

into slots, each of length equal to a single packet, and packet transmissions can

only start at the beginning of some slot.

Let us consider the class of synchronous stable algorithms, for the Poisson

user model. Then, among the existing full feedback sensing algorithms within

this class, Gallager's algorithm [1] provides the highest throughput, 0.487, and

it requires ternary (success versus collision versus empty) feedback per slot.

The limited feedback sensing algorithms within the above class were first introduced

by Tsybakov and Vvedenskaya [2]. In [3], higher throughput (0.42) such algorithms

were proposed and analyzed, for both ternary and CNC (collision versus noncollision)

binary feedbacks. In [5], the highest throughput known limited feedback sensing

4algorithms were proposed and analyzed, for both CNC binaryand ternary feedbacks;
the throughput for CNC binary feedback is 0.45, and the throughput for ternary

feedback is 0.487. In contrast to the algorithm in [1], the algorithms in [6] are

robust in the presence of channel errors, and they induce uniformly good delay

characteristics. In [4], a unified methodology for the delay analysis of

*i random multiple access algorithms is presented. This methodology has been used

for the delay analysis of the algorithms in [3] and [5], as well as for the same

analysis of Gallager's algorithm and the controlled ALOHA algorithm. The SNS

.-. *0A' - N -. N I.. N N.,. - "'Ii *'%**. , % .'
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binary feedback in the full feedback sensing environment was first considered

by Berger et al [6].

2. The Model- A Common Algorithmic Rule

The transmissions from the users are assumed synchronous. That is, each user

may attempt the transmission of a packet, starting only at the beginning of some

slot. Time is measured is slot units, and slot T occupies the time interval [T,T+l).

When no packet is transmitted in slot T, the slot is empty. When a single packet

is instead transmitted in the interval [T,T+l), it is assumed that it is received

correctly by the central node, and slot T is then a success slot. Finally, if

at least two packets are simultaneously transmitted in [T,T+l), a collision event

occurs, it is then assumed that the information in the involved packets is lost,

and retransmission is then necessary.

It is assumed that the central node can distinguish between success versus

nonsuccess (emptiness or collision) events per slot, and that it broadcast this

SNS binary outcome at the end of each slot. It is assumed that the latter broad-

cast is received by the users correctly, and without delay. Finally, it is assumed

that the central node can transmit phony-noninformation including-packets, whenever

necessary. Such transmissions are necessary to help users distinguish between

collision versus emptiness events, with some delay. Without such distinction,

no stable transmission algorithms exist, for the Poisson user model. This latter

model consists of an overall Poisson traffic process, with intensity, A packets Islot.

In the sequel, we will denote by XT, the broadcasted by the central node

outcome of slot T. We will denote by XT= S, the success event, and we will

denote by XT=NS, the nonsuccess event. Also, we will assume that the central
mT

node transmits its phony packets synchronously (whenever it does). Whenever such

a transmission does not overlap with some transmission from a user, a success

event occurs, and the corresponding outcome, S, is then broadcasted. Otherwise,

a collision event occurs, and the outcome NS is then broadcasted. Whenever the

transmission of a phony packet by the central node is required by the operations
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of an algorithm, the corresponding algorithmic rule will appear as, TRANSMIT P.

The main problem in the presence of the SNS binary feedback is asynchronicity

in channel history information, among the active users. In particular, let

xt -S;t<T-l, and xT =NS. Then, at time T+l, the active users are divided into two

groups, I and II. Group I, if nonempty, contains those users who transmitted

in slot T. Group II contains the remaining active users. At T+l, the users in

group I know that T is a collision slot; the users in group II, on the other hand,

can only deduce that T is either an empty or a collision slot. This asynchronicity

is resolved by all the algorithms in this paper, via the followimg common actions

in slot T+l.

(i) Each user who transmitted in slot T, transmits again.

(ii) Each user who did not transmit in slot T, withholds transmissions.

(iii) TRANSMIT P.

Due to the above actions, it is clear that x T+iNS, if T is a collision slot, and

x T+I=S, if T is an empty slot. Therefore, at time T+2, all the active users have

the same information about the outcome of slot T, at the expense of one lost slot.

In particular,

1. If x TNS and x T+INS, then at T+2 all the active users know that T is

a collision slot (termed xT=C).

2. If xT=NS and xT+liS, then at T+2 all the active users know that T is

an empty slot (termed xT=E).

If T'>T+2 is the first slot after slot T+l, such that xT,-NS, then the actions

(i), (ii),and (iii) are repeated. Thus, the following, common to all our algorithms,

algorithmic rule clearly evolves:

Rule A If x TiJNS, for all j such that O<j<2k, where k>O, and xT_2kl=S,then:

(I) In slot T+l:

(a) Each user who transmitted in slot T, transmits again.

(b) Each active user who did not transmit in slot T, withholds
transmission.

(c) TRANSMIT P.
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(11) At time T+2:

(a) If xT+3lNS, then XTC is deduced.

(b) If XT+IlS, then xT=E is deduced.

(c) Upon deduction of the outcome x T, the outcome xT+1 is

eliminated from the memory of each active user. The

algorithm operates then on the deduced outcome xT*

Due to rule A, the algorithms in this paper basically operate with ternaryp

feedback, at the expense of some slots wasted for synchronization among all the

active users. Such waste clearly results in throughput reduction and delay increase,

as compared to the corresponding algorithms which operate directly with ternary

feedback.

0_ 3. Full Feedback Sensing Algorithms- The Poisson User Model

The full feedback sensing algorithms require that each user know the channel

feedback history at every point in time. Due to that, and in conjuction with

rule A, the independent users can then act synchronously, to resolve collisions.

In this section, we will consider two algorithms, for the model in section 2.

The first algorithm, called FFS1, is Gallager's algorithm, as explained in [7],

in conjuction with rule A. The second algorithm, called FFS2, is Capetanakis'

dynamic algorithm [8], in conjuction with rule A. Both algorithms use some optimal

arrival interval A, and in their analysis we will denote by X the intensity of the

Poisson traffic process.

3.1 The FFSI Algorithm

This algorithm (as explained in [7])utilizes absorptions on the arrival

axis. We thus define the parameters LN and WN as follows.

WN : The portion of the initial arrival interval, A, that is resolved by the
algorithm before absorption, given that the multiplicity of the initial

collision in A is N.

LN: The expected number of slots needed by the algorithm to resolve the

collision in the portion WN of the initial arri'.al interval A, before

*the initial collision is observed.
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From Gallager's algorithm in [7], in conjuction with rule A, in section 2,

we easily conclude that the following recursions hold.

L - 2 , L - I

L2 =4 ; w.p. 0.5

2 + L2 ; w.p. 0.5
(1)

2 + LN  w.p. 2-N

L N =3 + LN I  w.p. N2
-N

wNp2 (N)2 -N ,l

W0  W 1 =

wo ~N- ff I f)

W N =1t-

;N>2{2 W i ; v.p. (N) 2  , io,l (2

From (1) and (2), we respectively obtain,
N

LN i 1 [21 (3)

6 ; N-2

N-1

*WN 2-1 [1- +N- [N-N (+ ~ (4)

;N>2 i-0

Let us define,

x = XA
k -x

L(x) = . e L
kfO (5)

k! k

k=O

4
-00.

,fq , . . % 4" • • , ,.: . . % % "%4'%. - . .k%
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Then, the stability requirement on the algorithm clearly imposes the condition,

L(x) < X- xW(x), and the throughput, X , is then computed as,*!--
* * -sup[xW(x)L- (x)J (6)

If x is the value that attains the supremum in (6), then, the optimal initial
* *(t,)-1. * *

arrival interval, A , equals x (X*) In appendix A, we compute X and A . We find,

X = 0.321946 (7)

A 3.944

We will perform the delay analysis of the algorithm in section 5, together with

the same analysis for the remaining algorithms in this paper.

3.2 The FFS2 Algorithm

* As in [8], this algorithm also utilizes an initial optimal interval, A, on the

arrival axis. Let us define,

L k The expected number of slots needed by the algorithm to resolve an initial collision
of multiplicity k, before this collision is observed.

Then, the operations of the algorithm in [81, in conjuction with rule A, in section

2, clearly induce the following recursions.

L0  2 , L 1 = 1

L k2

Lk 2{ZkZ w.p.( )2Lk- 0 (8)k 2 + L ; .wp. 2- k

k>2 k ~~

From (8), we obtain,

2 ; k-O

Lk -; k=l k-i (9)

[1-2-k+l - 1 [2(1+2-k + k)2-k L11 k >2

Let us define,

L(x) - e xLJ L , x=A (10)
k=Ok! k

* Then, the inequality, L(x) < X- I x, represents the stability condition for the
,

algorithm, and induces the following expressions for the throughput, X , and the optimal
,

initial arrival interval, A

I1
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i #* L-1x * Lx* * * *-
) sup Ix ) = L ) L (x ) (11)

x

In appendix A, we exhibit the computation of the parameters X and A . We

found,

, 0.30062' - (12)

A* = 4.158

The delay analysis of the algorithm will be performed in section 5.

4. A Limited Feedback Sensing Algorithm - The Poisson User Model

The limited feedback sensing algorithms require that each user follow the

channel feedback history only from the time he generates a packet, to the time that

this packet is successfully transmitted. That is, each user follows the feedback

* only while he is active. In this section, we consider an algorithm, named LFS, which

is basically an adaptation of the LSTFA algorithm in [51, for the SNS binary feedback.

This adaptation is not as straightforward as with the algorithms in section 3. The

simple superposition of rule A, in section 2, on the LSTFA, applies only when the

latter is in class 2 (see [5]). We thus present here the full description of the

LFS algorithm.

4.1 The Description of the LFS Algorithm

The algorithm is performed by each user independently, and at each point in time,

it distributes the newly arrived and the nontransmitted packets across two classes,

A and B. Transitions in time within and across the classes are controlled by the ope-

rations of the algorithm. Class A contains those packets which can not yet decide if

the system is empty, while class B contains those packets which know that the system is

empty. All packets in class B can thus act synchronously, while the packets in class

A can not.

Each nontransmitted packet follows the rules of the algorithm, utilizing a set of

parameters, RA,LA,TI,T ,t, and G . Among those, parameters R and A are system para-
'. A

meters, and they are subject to optimization, for the satisfaction of the desired through-

put versus expected delay tradeoff. Parameters LATTi , and GA are recursively
'g
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updated, as dictated by the algorithmic rules. The above parameters can be inter-

preted as follows.

A : An initial arrival interval.

R : An upper bound to the number of consecutive empty slots allowed during a
collision resolution interval, where R > 1. When a packet observes R + 1
consecutive empty slots, it knows that there is no collision resolution in
process. The pattern corresponding to R + I empty slots is here represented
by R + 1 consecutive slot pairs, each with outcomes (NS,S).

GA: The number of consecutive empty slots observed by the packet, after it moves
to class B. The consecutive empty slot patterns are as in the interpretation
of the parameter R.

L A: The number of slots containing packets from class A, from the time when theA packet was generated, to the current time. If the slot within which the

packet was generated contains packets from class A, then it is included in
the number LA.

T : The time elapsed from the time instant when the packet was generated, to the
g current time, minus the examined after the above time instant interval.

The total length of the arrival interval, which is transmitted in the
current slot.

T I The time length between the instant when the packet was generated, and the
ending point of the most recent arrival interval currently chosen for trans-
mission (see figure 1). All the packets in the interval that corresponds to
the length T1 belong to class B.

We also define the parameter T, as follows.

T : The time elapsed from the time instant when the packet was generated, to the
current time.

Upon arrival, each packet initiates the algorithm independently, following the

rules below. Simultaneously, step (I) (c) of rule A is followed by the central node.

a. Initialization

Let a packet arrive at the time instant t, t c[T'-l,T'). The packet observes
a'

then the feedback XT,_l, and continuously observes all the feedbacks from this point on,

until it is successfully transmitted. At V, the packet moves to class A below, with

initial values T=T'-t L =0 , and G =0.

0
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b. Class A:

Each user has a register with 2(R+l) spaces. Each user with a packet for transmiss-

ion, who belongs to class A, observes the feedback time sequence and,
1. If the feedback sequence S,S,S appears,then he sets LA-2, and he moves to class

2. If the feedback sequence S,S,NS,S appears,then he sets L A-3, and he moves to class B.

3. If the feedback sequence S,NS,NS,S,S appears, then he sets LA-4 , and he moves to class B.

4. If R+l consecutive feedback pairs (NS,S) appear, then he sets LA-2R+l, and moves to class B.

c. Class B:

All packets in class 8 act as follows:

Start with Tg-T, GA70 , and,

2. t - A, T1 - T-LA

Then,

2.1 If Tg-(T-T1)<

2.1.(a) Set T 4T +1, set T+T+l, set GA - 0 and TRANSMIT

2.1.1 If XTi-S, the packet is successfully transmitted.

2.1.2 If XT-NS, then set LA LA+2,

2.1.2.(a) Set t-,t/2, and,

2.1.2.1 If T -(T-TI)< t, move to step 2.1(a)

2.1.2.2 If T -(TI))-, set T -T. +1, set T-*T+l, and,

2.1.2.2.1 If X-S, set T 4T -t, set LA L +1, and move to step 2.1.(a)
g g A A~

2.1.2.2.2 If XT!NS, set T +T +1, set T-oT+I, set LA -L A+1, and,g g AA

2.1.2.2.2.1 If Y'NS, set LA tA+1 , and move to step 2.2.1.2.
2.1.2.2.2.2 If X=S, set LA-A, set Tg

set GA-GA+2, and,
If GA<2R, move to step 2.1.2.(a)

If GA<2R, move to step 2.1.(a)

2.2 If T -(T-T1)>f, set T ET +1, T-T+1, and,

2.2.1 If XT-NS, set T 9-T 9+1, T-T+2, L A -LA +1.
2s g2.2.1 If XT=S set T -g -,Gan

2..1I f =S st g g C 2
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update LA as follows: L A-LA +1. Then,

If L-4, then L A-3

If LA76 , then LA73

If LA72R+3 , then LA-2R+l

and move to step 2.

2.2.1.2 If -NS, set LA+LA +1, set GA-0, and,

2.2.1.2.(a) Set t'/2

2.2.1.2.(b) Set T -0T +1, set T+T+1, and,g g

2.2.1.2.1 If XT-S, set T -0T -t, set LA+Le+g g

set T9 -T +1, set T4T+1, set GA-0, and,

I 2.2.1.2.1.1 If X. S, set T +T -, set LA-4, and move to step 2.g g

2.2.1.2.1.2 if Y-S, set T -T +1, T'T+l, LA-LA.

2.2.1.2.1.3 Move to step 2.2.1.2

2.2.1.2.2 If XNS, set T T +1, TT+l, L ALi+1

2.2.1.2.2.1 If XT-NS, set LA-iLA+l, and move to step 2.2.1.2.(a)

2.2.1.2.2.2 If XyS, set T 1T -t-, set LA-eLA+l, set GAGA+2 and,
2.2.1.2.2.2.1 If GA<2R, move to 2.2.1.2.(a)

2.2.1.2.2.2.2 If GA72R, move to 2.2.1.2.(b)

2.2.2 If XT-S, set T9 -T g-C, and update LA as follows:

If LA7 3 , then LA-4 .

If LA-2R+l, then LA-2R+2.

Otherwise, set L A-2.

Set t-A, T-oT-L A and,

2.2.2.1 If T -(T-T )<Z, move to 2.1.(a)

2.2.2.2 If T -(T-T)>C, set T -.T +1, T.T+. and,
9g g

2.2.2.2.1 If XT=S, set LA=2, and move to step 2.

2.2.2.2.2 If XT-NS, set LAL A+1, T 9-T +1, T-*.T+I.
Ag g

2.2.2.2.2.1 If XT=NS, set LA-LA+I , and move to step 2.2.1.2.

2.2.2.2.2.2 If XT=S, set LAm=3 , and move to step 2.
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In figure 2, we include the flowchart of the LFS algorithm. We point out that the

algorithm is a modification of the FFS1 algorithm. The core element in the modification

is the initial observation that in the FFS1, a collision resolution interval ends with

two consecutive successful transmissions. Based on this observation, a packet operating

with the LFS, recognizes that the system is empty, if one of the following feedback

I sequences occurs: (i) S,S,S (ii) S,S,NS,S (iii) S,NS,NS,S,S. The first sequence corresponds

to two consecutive successes. The second sequence corresponds to two consecutive successes,

followed by an empty slot. The third sequence provides the information that two consecutive

successes occured.

4.2 System Stability

Let us consider the evolution of the LFS algorithm, as seen by an outside observer.

Let the time T be measured in slot units, and let the operation of the algorithm start at

T=0. At T=2R+2, there will be then 2R+l slots containing packets from class A, and one

slot containing packets from class S. Let us define the variables Tn, Dn, Ln(A), and In ,

as follows.

T -2R+2

Tn : The first time after T n_, such that the distribution of the packets in the

;n>l unexamined interval is Poisson.

D : The total length of arrival intervals containing packets from class 8, at timen

;n>0 T , where DO=I.

L (A): The number of slots containing packets from class A, at time T nn n

;n>O

1 ;if X T =So XT =S
n-18  n-2

2 ; if XT n_=NS, XT n-2=S XT n-3=sII
n

3 ; if XT S, X NS, X =S
n-l n-2 n-3

4 ; if XT =S, XT =NS, XT  NS, X =S

n-I n-2 n-3 n-4
6
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The triple S n (Dn ,L n(A),I n) describes the state of the system at time T, as induced

by the operation of the algorithm, and the sequence {S I is a Markov chain. In addition,
n

2 <Ln(A) < 2R ; Vn> 0

D >0 ; Vn>0

and the values of Dn are denumerable. Given n, given a state value Sna (d nn (A),I n), then,

if dn > A, an arrival interval of length A is chosen by the algorithm for transmission.

If, on the other hand, d n < A, then no packet knows the value d, and each packet in class B

selects t - A. Let us define,

H - Tn+1 -T (13)
nThen, the set {Hn}I includes i.i.d, algorithmic sessions, and as in section 5, reference

[5], it can be shown that,

E{HnId n < A) < E{HnIdn - A) - E{Hnjd n > A)< ;V A < c

Consider the time Tn, let the value of the system state be then sn - (d ,tn (A),In),

and let us denote An a min(dn,A). At time T,+l, the algorithm examines then a subset,

"An" of An, for transmission. For Hn as in (13), and following the same procedure as in

section 5 of reference (5], we conclude that for stability of the Markov chain {Sn 1, it

is necessary and sufficient that,

E16 0 1s0 - (At(A),I)1 > E{H0 js0 - (At(A),)) (14)

Given the parameters R and A, the throughput X (A,R) of the LFS algorithm is then

the maximum intensity of the Poisson input traffic, that maintains the condition in

(14). Optimizing then with respect to A, we conclude that given R, the throughput,

'v X ) (R), of the algorithm is as follows, where A R denotes the optimal initial arrival

interval.

A (R) - sup X (AR) = X*(A* R(1

A

In appendix A, we exhibit the method for the computation of the throughput X (R).

In table 1 below, we include the values A *(R), and the corresponding values A RP for

various values of the parameter R. As R increases, the throughput increases as well.

The increase of the value R may result in increase of the expected per packet delays,

however. This last issue will be further discussed in section 5, where the delay
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analysis of the LFS will be included. The throughput A (6) is the same with the throughput

)(c).

R )(R) AR

1 0.293376 4.05623

2 0.315648 3.960099

3 0.32043 3.90099

4 0.32158 3.9803028

5 0.321871 3.976739

6 0.321943 3.97585

Table 1

The Throughput of the LFS Algorithm

5. Delay Analysis - The Poisson User Model

In this section, we study the expected per packet delays induced by all the three

algorithms in sections 3 and 4. The delay analyses for all the three algorithms are

based on the following powerful regeneration theorem. The same theorem was used in [41,

for the delay analysis of the Gallager and the controlled ALOHA algorithms, and was also

used in (3] and [5], for the delay analysis of the corresponding algorithms.

Theorem A

Let the discrete time process {X n} n> be regenerative with respect to the renewal

process {Ri} i>1  Let C, - R i+-R i , i>l, denote the length of the ith regeneration cycle,

and let f(.) be some nonnegative real valued measurable function. Then,
1°If C E{C 1I } < mand S b E~ij f(Xi)} < -', we also have,

1I niE -l(
t im n Zl f(X ) imf ( X i) } -SC , .p. l

n-io i n-Jf )

If in addition to the finiteness of C and S, the distribution of C1 is also aperiodic,

then Xi converges in distribution to X.., and,
iI

E{ f(X0,)l - SC-

We point out that the process (X n n> is called regenerative with respect to the

renewal process {R ii>1, iff for every positive integer M and every sequence ti ... tM, such

that 0 < tI < < tM, the joint distribution of Xt +R X tM+R i is independent of i.4 t---+R - tM-Ri
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The random variables Ri,>l, and Ci =Ri+i-Ri, i >, are then respectively called

regeneration points and regeneration cycles. Under the conditions in theorem A, the

limiting average and the mean of the limiting distribution of f(Xn)}n>1 exist, coincide,

and are finite. In addition, their common value is then given in terms of the per cycle

quantities, S and C.

Referring now to the three algorithms in this paper, we will define as {Xn>n n>l

in theorem A, the delay process induced by the corresponding algorithm. In each case,

we will show that this process is regenerative with respect to a renewal process {Ri}i>1 ,

with easily identified regeneration points R . Then, we will use theorem A, to establish

the existence of steady state delays, and to compute the first order steady state moments

(expected delays), by appropriately selecting the function f(-). For each one of the three

algorithms, we will replace the process {Xn}n 1 in theorem A, by the process {Dnl}n>l

where,

D n The delay experienced by the nth arrived packet. That is, the time between

n its arrival and its successful transmission.

B uE{V} D alim D (16)
n n n4* n

5.1 The Delays of the FFSI Algorithm

Consider the operation of the FFSI algorithm. Let T be a time instant that corresponds

to the beginning of slot T, and it is such that all packets that arrived in (0, tT ), where

tT is some time instant such that tT<T, have been successfully transmitted, and there is

no information about the arrivals in ftT,T). Then, T is called a collision resolution in-

stant (CRI), and dT=T-tT is called the "lag at T." At every CRI, the algorithm restarts

itself by selecting an initial arrival interval UT 
= min(A,dT). Let us define the sequence

(T i}  of time points,as with the "0.487" algorithm in [4]. Specifically, let TC1 , dl=2,
i>l

and let T i+ be the first instant (corresponding to the beginning of some slot) after T.,
ii

such that d Ti+l-2. Let Ri , i>l, denote the number of packets successfully transmitted

in the interval (0,T i+l]. Then, C =Ri+I-Ri, i>l, is the number of packets successfully

transmitted in the interval (TT i+lJ, and the sequence (R I i 1 is a renewal process,

i' i4- i6i,
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since (ci} > is a sequence of nonnegative i.i.d. random variables. In addition, the

delay process, {Pnn>l, of the algorithm is regenerative with respect to the process

R I> . Thus, applying theorem A, with function f(-) the identity function, we have that,

if, C 1

C E(C i <- and S E( i1) <. , then,

i-i

D S C-1 , w.p.l. (17)

;where D is as in (16). It thus suffices to compute the expected values in (17), and

prove that they are finite, where we also have,

C-XH , H U E{T -T} (18)

We call the expected value H in (18), mean cycle length, and we call the expected

0 value S in (17), mean cumulative delay. In appendix B, we exhibit a method for the

computation of upper and lower bounds on the mean cycle length and the mean cumulative

delay. Those bounds are then used for the derivation of upper and lower bounds-respectively

denoted Du and D - on the mean packet delay, D, in (16). The latter bounds are exhibited

in table 2 below, for various Poisson intensities, within the stability region of the

algorithm. We point out that using the same method, tighter bounds can be devised, with

additional computational effort.

XD Du

0.01 2.06868 2.082206

0.05 2.44738 2.52379

0.09 2.815948 3.120604

0.13 3.244687 4.02865

0.21 5.28434 7.34515

0.25 10.03156 14.98144

0.29 22.57134 48.518118

0.32 289.41968 599.96109

Table 2

Mean Packet Delays for the FFSI Algorithm

1 , '
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5.2 The Delays of the FFS2 Algorithm

For this algorithm, the CRIs, and the sequences fT ii>l, (R i and (C ii> 1 ,

are defined exactly as with the FFS1 algorithm in section 5.1, and so are then the

quantities, C, S, D, and H, in (17) and (18), and the function f(-). Again, theorem

A applies,if the mean cycle length, H, and the mean cumulative delay, S, are both bounded.

Then, the mean packet delay, D, equals X-H -1S, where X is the intensity of the Poisson

traffic process. In appendix B, we derive upper and lover bounds on the quantities H and

S. Through them, we derive the upper and lower bounds, Du and D , on the mean packet

delay D, for various values of the Poisson intensity X, within the stability region of

the algorithm. We include those bounds in table 3 below. Again, tighter bounds can be

* Q found, via the same method, and with additional computational effort.

DL Du

X D D

0.01 2.0885448 2.0885665

0.05 2.5160811 2.5241058

0.09 3.0976268 3.1320109

0.13 3.935235 4.0316111

0.21 7.7381153 8.296022

0.25 14.049199 15.641169

0.29 67.385942 79.315479

Table 3

Mean Packet Delays for the FFS2 Algorithm

. 5.3 The Delays of the LFS Algorithm

The sequences, (T i~il , R Jl~ and {C} iil' the function f(.), and the quantities

. ". D, H, and S, are again defined as in section 5.1. The delay process {Dnn>i is again

\-' regenerative with respect to the renewal process (R i}1,> and Cheorem A applies. The

mean cycle length, H, and the mean cumulative delay, S, are of course computed differently

i here, and if bounded, the mean packet delay, D, equals X- IH-I S. In appendix B, we exhibit

the method for computing upper and lower bounds, DU(R) and D (R), on the mean packet

delay D, for every value of the algorithmic parameter R. In table 4 below, we include
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computed values of the bounds DU(1) and D (1) - that correspond to algorithmic parameter

R equal to one - for various values of the intensity, X, of the Poisson input traffic.

The computation of the bounds Du (R) and D (R), for R > 2 requires increasing computational

effort.

D(1) Du(1)

0.01 3.05538 3.2257

0.05 3.38136 4.4241

0.10 3.9288 6.6706

0.15 4.81452 10.5137

0.20 6.6218 18.4668

0.25 12.7931 45.4634

0.27 23.8604 94.0532

0.28 46.3069 192.844

Table 4

Mean Packet Delays for the LFS
Algorithm with R-l.

As the value of the algorithmic parameter R increases, the mean packet delays for

small Poisson intensities, X, increase as well. Given R, and R such that R, > R
2 2'

there exists some Poisson intensity, Xo however, such that for Poisson intensities above X

the mean packet delays induced when the logarithmic parameter is R2, exceed those induced

by the parameter value R . This is shown in figure 3, where the upper bounds DU(1) and

D DU(2) - respectively corresponding to R-l and R-2 - are plotted against X. The crossing

point is then approximately equal to 0.2. That is, for Poisson rates in (0,0.2), the LFS

with R-1 is superior, while for such rates in (0.2, 0.315), the LFS with R=2 is recommended.

5.4 Comparative Discussion

In figure 4, we plot the lower bound, D , on the mean packet delay, against the

Poisson traffic intensity A, for the FFSl, FFS2, and LFS with R-1 algorithms. The

upper bounds in tables 3,4, and 5 exhibit similar behavior. The FFSI algorithm induces

the lowest mean packet delays, for every A value within its stability region. It is

4



19

sensitive to channel errors (leading to deadlocks), however, and it requires full

feedback sensing. The LFS algorithm, on the other hand, is robust in the presence of

channel errors (as the algorithm in [5]), and only requires limited feedback sensing,

at the expense of somewhat increased mean packet delays. Since full feedback sensing

is impossible in mobile spread spectrum environments, the latter algorithm is then

indispensible.

I
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Appendix A

A.1 The Throughput of the FFS1 Algorithm

We use the following lemma, for the set {L kin (1) and (3).

Lemma Al

The inequality Lk < 6k holds, for every k > 1.

*t Proof

We prove the lemma by induction. We clearly have Lk < 6k, for k-l, 2. Accepting

* then that Lt:C 6t ; 1 < t < k, and using (3), we easily find that L,+ - 6(k+l). The

* proof is now complete.

Let now k be some positive integer, and let us then adopt the following simple

.: bounds.

1 < Lk < 6k ; Vk> kk: ,- - 0 o(A.l)

O<Wk< ; Vk>k

Using (A.1) and (5), we then obtain,

ko k W k

eXx) x E , k W k < xE k! Uk -e x xW(x) <
k=O k=0

o--c kk

k- k k - k'
0

k 0 k

k k x + exBu(x) (A.2)

k-0

kk k

6xe + L + E x -k! (Lk-6k) = e Lu(x) (A.3)
0 k=1

-Then.

B Bt(x) < xW(x) < B (x) (A.4)

LU(x) L(x) L (x)
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We selected k 0-20, we computed precisely from (3) the values L k ; k < 20. and we

then found numerically the suprema of the ratios, B z(x)/L u(x) and B u(x)/L It(x). Those

suprema. were both attained at x -1.266, and were identical to each other to the fifth

decimal point, and equal to A in (7).

A.2 The Throughput of the FFS2 Algorithm

It is easily proven that lemma Al holds. Then, for some positive integer k 0  and

using (10), we conclude that expression (A.3) holds here as well, for the set (Lk

in (9). We selected k 0-20, and we computed the values L k; k < 20 precisely from (9).

Then, we found numerically the suprema of the expressions, x/Lu(x) and x/L I-(x), where

xILu(x) <S x/L(x) <S xIL t(x). The latter suprema. are both attained at x -1.25, and they

* are identical to the fifth decimal point, and equal to X in (12).

A.3 The Throughput of the LFS Algorithm

Let us define,

0

Lk E{H0  D D0 A, k packets in A) A5

W k E{n D- A, k packets inA)

AkA k -k
p= (i)2

Then, from the operation of the algorithm, we deduce the following recursions.

L 0 M2, L1I

k t k2+2t~ + 1 + L kl ; W j.(PO P , 0< Z < R-1

Lk 2+2Z + Li ; v-P. (k)lik < t < R-1, k > i > 2 (A.6)

;k>2 2+2R + Lk ; v.p. ( k) R

0 1O

2' + A2 1  + 2- kl ; v.p. (PO)p~ 0P Ii -

Wk 1 2'+ 2 1 W1  ; w.p. ( 0 tp~ 0 < t < R-1,k > i > 2

;k>2
~2' 2 + 2 -R k v.p. (p k R (A.7)

J.1k

MOM-~
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From (A.6) and (A.7), we respectively find, where x xi0, if k<t,

L k ;k-1

11-Po -Po 2 -(p 2 P L + pi Li (A.8)
0 1 k-P k L-Po k 0 1 k-

00

1 ;k=-O,1
-R(P k R k -i [1- - R k k R ke-Ik -1 -R k R (A.9)

Wk -2-p 0J (-2 (p) 0 [2-P] (1-2 (p) ].

k-i kIPk +Pk k W E P i k W2
" 1P +P +P k-1i=

i-,2

Let us define,
-x

k

ex xk=O

W(X) E- e- X

k=O 1-

where 0 < Wk <1; V k, and where lemma A. is found to hold on the sequence

(L } Then, the inequalities in (A.2) and (A.3) hold here as well, and so does (A.4),

where again,

=sup x . 1

x
For all the R values in table 1, and for k 020 in (A.2) and (A.3), the suprema

of the bounds in (A.4) where indentical to each other to the fifth decimal, and equal

to the corresponding values A (R) in table 1. The values A were found as,

A R  x R ( (R))71

Ia
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Appendix B

Consider the CRIs, T, the instants tTo' and the intervals U Pin section 5.1.

Then, in slot T, some arrival interval [t.tTT is transmitted, where after some

*random number, Z, of slots, another CR1, T' is reached, with a corresponding, tT1 >t T

Let us define the following quantities.

d The number of slots needed to resolve an arrival interval between two
dsubsequent CRIs, given that the initial length of this interval is d.

Vd :The length of the actually "examined" interval before absorption, given that
the length of the initiAl interval is d.

P(Lt,wld) :The probability that, given an initial length d interval between two
subsequent CRIs, the actually "examined" before absorption interval has

* length w, and I slots are needed for its resolution.

Hd:The expected number of slots needed to reach lag equal to 2, starting from
lag equal to d.

The operations of the algorithm induce then the following recursions.

2 w.p. P(2,dld)
H d = I U d ) + H d w t; w p ,-w d f o r d < A ( B . )

Hd - rzA )+Hd-viL w.p. P(L,w(A), for d > A

Taking expectations in (B.1), we obtain,

(E(d)+ E Hd.-vt P(t,wId) ;d< A

H - ( 14
d +2(B .2)

EU ) E H dw1P (/-,VIA) d>A

The expected value, H, in (18) Qual to H 2*where Hdis Riven bv (B.2). We

thu ned t fid bund onH 2 Fllowing the same procedure as with the "0.487"

algorithm in (4), on the linear system in (B.2), we find the following bounds.

H' E- E{ 2 ) +Ar2-2P(2,)I', -Pf.122  E~ -t2) + c fl-P(2,212) -P(1,212)I

" P(1,212)(B +C (1-P(2,111))] < H 2  H < Eft 2 +

" A12-2P(2,212) -P(1,212) -E~ 2-t 21 +cu(l-P(2 2 1 2 ) -P 1 ,212)] +

" P(l,212)(B +cu(l-P(2,1jl)IJ0 Hu (B.3)

MMMLNIIIOMOWr rM
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where,

A -EftA [E{wA,} - E {.C,}1]

p(d) P'1(2,dld) IE( d I + A(E(Ld) -E(vdl] -2AP(2,dld) I

c inf p(d) (B.4)
1<d<A

cuAmax (-A, sup< p(d))
A ~<

13 0E~tI +A(E{t 11} E(wv1) 1-2P(2,111)]

From (B.3) and (B.4), we computed the upper and lover bounds, Hu and Ht, on H,

S shown in table B.1 below.

H A H U

0.01 2.01435 2.01731

0.05 2.12193 2.14923

0.09 2.30954 2.364348

0.13 2.514186 2.671167

0.21 3.109886 3.98608

0.25 4.852168 6.60396

0.29 8.09345 10.923344

0.32 111.98070 161.02000

Table B.1

Bounds on H for the FFS1 Algorithm

Let us define the following quantities, referrin~g to the beginning of this appendix.

N :The number of packets in (t To tT' )

S:The sum of the delays of the above N packets, after the CRIT.

z :The sum of the delays of the above N packets, until the instant t T+U T*

Z k E{zjNmk,U T.11 - dlE{zlN-kU T d} ; 1 < d < A

*k E{*$IN-k,U -o11 - E(fI'N-k,U Tod} 1 I d < A

S d The expected sum of delays of all packets transmitted, when starting from
dlag d, the algorithm reaches lag 2.
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The algorithm induces then the following recursions.

S d a 0 d ,for d < A

E{sId) + E{zld) + S dw+t ; w.p. P(t,wIA) t d 0 2 (B.5)

Sd w {fId} + E(zld} + (d-A)N + Sd-w+t w.p. P(t,wIA) , for d > A

From (B.5), we obtain,

E{*d} + E(zd} + Z S (L ,wid) ; d <A
Sd - t.w (B.6)

E{OlAI+ E{zlA} + (d-A)E{NlA} + E S dw+p(t,wlA) ; d > A
tw

; where for S as in (17), we have, S - S Following the same procedure as with the

bounds H and H on H, we find,

St < S 2 n S < Su  (B.7)

where,

S U, G+ u [1-P(2,212)] + P(1,212) (s- -M 2-c t

S .G + ct [1-P(2,212)] + P(1,212)[s t-Ml-M 2-c
u ]

G - E{if2j + Efzl2} + 2(M1+2M2) [1-P(2,212)] + M2Ef(w 2-t-2)
2 } - (4M2+M1)E{w 2-I2}

SE{zjl + M + L 1 j + 1 - 11 - i -

-4P(2,111) ) + M, (1 - E{w 11 + E(I11 2P(2,111) ) C- a [1-P(2,111)] ; a-u~t

K2  E(Nl} 2
-1 [Ew.l -E{tAII-

+ + 2 E' 2  
-Min [E{w, - EIt,fI €,Pl,,) +} , .+ M --{,I + A..}l - ,E.,,, I

ELAJ~ Z 2 +A A LA

' AE{NIA) (B.8)

p(d) -P(2,dld) (E{;PId + M 2E{(wd -t d) 21 - (2M2d+M!) E(wd-td }

- (4M2+2M1) P(2,dld))

cu = sup p(d)
1<d<A

c - inf p(d)
l<d<A

From (B.8), we computed the bounds S and Su , that we include, for various values

of X, in table B.2 below.

10
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A S SU

0.01 0.04173 0.04194

0.05 0.26299 0.26776

0.09 0.59920 0.64864

0.13 1.12672 1.31674

0.21 4.42339 4.79694

0.25 16.5620 18.17311

0.29 71.5080 113.8769

0.32 14912.7540 21498.9000

Table B.2

Bounds on S for the FFS1 Algorithm

From (17) and (18), we conclude that the bounds Du and D , on the mean packet delay,

* D, are computed from tables B.1 and B.2, as follows:

DU A- Su (Hi) - 1  Dt X - S (Hu) -  (B.9)

B.2 Delays for the FFS2 Algorithm

Let us define the following quantities.

d : The number of slots needed to resolve an initial arrival interval of
d'length d, where I < d < A.

P(L-1d) :The probability that Z d L

Hd  : The expected number of slots needed to reach lag 2, starting from lag d,
subject to successful transmission of every packet in the arrival interval

of length min(d,A).

Sd  : The expected sum of delays of all packets transmitted, when starting from
lag d, the algorithm reaches lag 2, and all the packets in the arrival
interval of length min(d,A) are successfully transmitted.

Let the quantities N, 4l, and z be as in section B.1. Then, the algorithm induces

the following recursions.

H m 1 2  ; w.p. P(21d) for d < A
d IE(Z d  } + H t ; w.p. P(tLd) , t 0 2 (B.0)

H d d + Hd-A+ ; w.p. P(IjA) , for d > A

- 'W %

IA
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1 E{*IN=0} + E{zIN-O ; w.p. P(21d)
Sd" E{*d} + Ezd} + St ; w.p. P(oid) ;2- (.11)

Sdu E('IA} + EtzIA} + (d-A) EINIA} + SdA+t w.p. P(A) , for d > A

From (B.1O) and (B.11), we respectively obtain,
E{t } d+ E Ht P(tLd) ; d < A

1 0 (B.12)

d E{t A + Z Hd-A+t P(LIA) ; d > A
t

E{Id} + E(zjd} + E St P(tjLd) ; d < A

Sd - * (B.13)d E{ A1 + E{zjAI + (d-A) E(NiA} + E SdA+t P(LIA) ; d > A

t

Considering the quantities H and S, in section 5.2, we have, H - H2 and S S 2-

We are thus seeking upper and lower bounds on the quantities H2 and S2' given respectively

y by (B.12) and (B.13). We note that here,

P(LI-d) - E P(I-1k) P(kld)
k

where, k

P(kld) - e k!
" " k-IP(tlk) 2-k P(t-2k) + P(t-41k)] + E 2 E P(tlk-)P(tk2 k-i)

i=l t 1 +t2=t-2

1't 2 1
(B.14)

To compute bounds on H and S w e use iterations. Let H i) and Si) denote the

corresponding ith iterations. Then, we easily conclude,
M Mi - ( 0_()
d M K M - H 0 I P(tld) ; d < A

d.H d + E< d:O) _ d I (B.1)

i-h

with,

Md +c t< H( <Md + cu (B.16)
-d
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where,

M- (A - E{.e.,t - E{t I

c - sup f(d) , c , inf f(d) (B.17)
1<d<A l<d<A

f(d) - P'-1(21d) (E~tdJ + M[E{tdl-A] - 2MP(21d)

Using K-40, 100 iterations, and via (B.15), (B.16), and (B.17), we found the lower

and upper bounds, Ht and Hu , on H2 (and thus on H), shown in table B.3 below.

H u

0.01 2.02178 2.02178

0.05 2.14534 2.14534

0.09 2.33792 2.33793

0.13 2.63508 2.63520

0* 0.21 4.04580 4.05625

0.25 6.40808 6.47551

0.29 26.37999 27.20669

Table B.3

Bounds on H for the FFS2 Algorithm

For the quantities Sd, we started with,

e + Mid + < S <d + Md + eu (B.18)
1 2 -d -2 1

; where,

M2 - 2-1 (A - E{ZA] -1 E{NIA)

1 - -ECtA}] - 1 (EOPJA} + ELz[A} + M2[A2 + A- 2)E(} I-

~u
e - inf f (d) e - sup fo(d) (B.19)

l<d<A l<d<A

f (d) = p-1(21d) (E(uId} + E{zld} + M2[E{t - 4P(21d)] +

+ M1 [E{d} - d - 2P(2)d)])

and where,

E(NIdJ - Ad ; l<d<A , E{zld 2-d ; 1<d<A

E{iI$Id } - Z E{bPk}P(kld)
k

1 k-I k-Efik} - k 1 2k + E () 2 k [2E{ pi}+ (k-i)EftdrlJ)]

1-2-k+ .n ,



.D.1 E{*0o -o 0, E{$Jll}- 1

ERC - ZEf~dkJ P(kld)k

E(L- 2kI - [1-2 k+J )-1 (4 + 1 2.2-k + 12.2-k E{Ld~k) + 2 k-I (k)2 k[E tdlm +

+ 4E{LdIm} + E{tdIm} E{Idlk-m}]) (B.20)

The iterations for Sd evolve as those in (B.15). After 100 iterations, we found

u z
the upper and lower bounds, Su and S , on S 2 (and thus on S), that are included in

table B.4 below.

0.01 0.04222 0.04222

0.05 0.26989 0.27075

0.09 0.65178 0.65901

0.13 1.34811 1.38107

0.21 6.59143 7.04845

0.25 22.74395 25.05749

0.29 531.67114 606.77905

Table B.4

Bounds on S for the FFS2 Algorithm

The bounds Du and D are computed from tables B.3 and B.4, and from the expressions

in (B.9).

B.3 Delays for the LFS Algorithm

Here, we will derive bounds on the mean packet delay, D, when the algorithmic

-: parameter R equals one. The methodology for R>2 is similar. Let the quantities Hd and

Sd be defined as in section B.1. Let 60 and d be as in section 4.2, and let td be

defined as in section B.I. Let us also define, where T is some CRI,

N : The number of packets in 60 *

NO: The number of packets in A - 60.

P(,wld) : The probability that Ld t, and that given d=min(doA), then 60=w.
t : The sum of the delays of the N packets, after T.

z : The sum of the delays of the N packets, before T-1.
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Then, the algorithm induces the following recursions.

Ed } + HdE , P ; 1 <d < A

Hdw (B.21)

Ef A(I + F, P(tvwA) Hd-w+ ; d > A

(E{z d} + E{*jd} + E{Nld} + E[NO60 1d) + i P(t,wld)Sd-w+t ; 1 < d < A
S d =(B. 22)

d E{zlA} + E{0IAI + E{NJA} + )(d-A) E{6(B2I + 2{No)o1A} +

+ 1 P(t,W[A)S dw+1 ; d > A

fL,v

N The expressions (B.21) and (B.22) both determine infinite dimensionality linear

. systems. Using the methodology for the delay analysis of the algorithm in [5], we

conclude that the systems in (B.21) and (B.22) have both unique solutions, within the

class of quadratically bounded sequences, if E{6o1do-bl > EU.J. The latter inequality

K determines the stability region of the algorithm. In addition, we have again that H=H 2

and S=S 2, where H and S are the quantities in section 5.3. We derive upper and lower bounds

j on S2 and H2 (and thus on S and H), as follows.
2 H2 = <H

H' <H 2  H<Hu (B.23)

Sf-< S2 = H <S

; where,

2E{.21 + MCE{t2  -E{{6121 + 2[1-P(2,2J2)11 + cu[1-P(2,212)]

H H - [cu -c z ](1-P(2,212)]

0 . (E{S 0 A) - E{LAIM-I E(tA

c = max (-M0 , sup h(d)) , c inf h(d)
<d<A l<d<A

h(d) - P-1(2,djd)jE[{Ld} + MoE(e.d } - E{(S0d}1 - 2MoP(2,djd)j

S u = E(zJ2I + E{012 } + E(N12} + E{N06012} + M2 [4-4e- 2X+ E{(O-t 2 ) 2 12) -

- 4 E{6 0-L 2 12)] + Ml[2-2e- 2X E{6 0-e212] + eU(l.
e- 2X)

.6q-
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S Su - e-e ] (le - 2 )

H2 - [E{6 0 1) -E{tA}J-lX E{6OIA}

H. - [E{6 0 A} - E{ZA}1IE{zIA} + E({iA} + E{NIA} + E{NO601A-

-X A E{6o1A} + 2 E{(6o-tA) 2 1A }

e . sup f(d) , e = inf f(d)
1<d<A l<d A

f(d) = P-1 (2,dld)IE{zld} + E{pJd} + E{Ndl + E{N 060 1d} +

+ M2 [E{(60-td) 2jd} - 2d E{60-tdld} - 4P(2,did)]

- Ml[E{60-tdIdl + 2 P(2,djd)]j (B.24)

As compared to the computations in sections B.1 and B.2, the difficulty here is
6

* the computation on the expectations included in the expressions in (B.24). Let us define,

E A fXld,k} The conditional expectation of the random variable X, given that
A equals A, given d, where d < A, and given that there are k packets
in d.

Then,
CO -Xd (Xd) k

EA Xld} = EA{Xd,k} e- k (B.25), k=0

Let us define the subset V of (0,1], as follows,

V = (v : v=l, or v 2
" il + 2-(jl+J2)+..+ 2 -(j l +..+i M positive

integersI. Then, the expectations EA{Xld,k}, for k > 0, can be as closely

', approximated as desired, by selecting dfA values in V, in conjuction with the corresponding

recursive expressions. We do not include the latter expressions in this paper, due to

lack of space. The interested reader may seek reference [9]. Using the above methodology,

-t  Su
- for M=6 in the subset V, we computed the values of the bounds Hu, H s , S in (B.23),

which are included in table B.5 below. The bounds in table 4 were computed from the

values in the latter table, in conjuction with the expressions in (B.9).

.4

4

4
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H HH leS

0.01 1.9984 2.0577 0.06287 0.06446

0.05 1.9244 2.2128 0.374114 0.425699

0.10 1.96223 2.5658 1.00807 1.30892

0.15 2.17837 3.22266 2.32733 3.4354

0.20 2.78712 4.6554 6.16544 10.2939

0.25 5.1692 9.7539 31.1957 58.7521

0.27 9.55336 19.0408 122.667 242.601

0.28 18.4793 37.9514 492.076 997.815

Table B.5

Bounds on S and H for the LFS Algorithm

J.W
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