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COLLISION RESOLUTION ALGORIThMS FOR SPREAD SPECTRUM ENVIRONMENTS

by

Michael Paterakis and P. Papantoni-Kazakos

The University of Connecticut
U-157
Storrs, Connecticut 06268

Abstract

/ In some spread spectrum environments, the low energy of the transmitted
signals, in conjuction with the existence of channel noise, do not allow
the distinction between collisions and lack of transmissions. For such
environments, and for the Poisson user model, :eﬁggggz;e and analyze stable
full feedback.sensing and limited feedback sensing synchronous transmission
algorithms. ‘:;f{assume binary SNS (success versus nonsuccess) feedback per
slot, and the possibility of transmission of phony data by a central node.
The highest throughput attained by both the full feedback sensing and the
limited feedback sensing algorithms is 0.322, while the latter induces some-
what higher delays. This is compensated by the robustness of the limited

feedback sensing algorithm in the presence of feedback errors (in contrast

to the full feedback sensing algorithm), and its modest requirements on the
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1. Introduction

e We consider multi user spread spectrum systems, for data transmission. In
such systems, low energy data packets are transmitted to a central node, which
has broadcasting capabilities. Let us require that the time of the transmission
N channel be slotted, where each slot accommodates a single packet. The users of

the system act independently; thus, simultaneous transmissions within a single

}% slot may occur, resulting in collisions. In addition, due to the low energy

§$ of the data packets, in conjunction with the presence of noise in the transmission
;3 channel, make collision slots indistinguishable from empty slots (slots unoccupied
5’ by transmissions). That is, the central node can distinguish only between success-
én ful slots (slots occupied by a single packet) and nonsuccessful slots. The result-
s: ing broadcast feedback per slot is then binary SNS (success versus nonsuccess).

ﬁ' ) We consider two classes of multi user spread spectrum systems, whose common

?’ characteristics are as described in the above paragraph:

;ﬁ (i) Systems consisting of a number of well identified static users.

" (ii) Systems consisting of mobile users. In the first class, the users have the ca-
é, pability to maintain in memory the overall broadcast feedback history. In the

3¢ second class, and due to their mobility, the users are exposed to the broadcast
(} feedback only while they are active; that is,from the time they generate a data

§ packet, to the time that this packet is successfully transmitted. Therefore,

', full feedback sensing transmission algorithms are applicable in the first class,

™

- while only limited sensing such algorithms may be considered for the second
class. For both classes, we will initially adopt the Poisson user model (in-

finitely large number of independent Bernoulli users), since this model represents

= YRR

a limit, and since algorithms designed for it are robust in the presence of

e

-
>

?' changing user structures. For this user model, we will propose and analyze

1

' both full feedback sensing and limited feedback sensing transmission algorithms,
q
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in the éresence of binary SNS feedback.

Given some transmission algorithm, its throughput is defined as the maximum
expected traffic that the algorithm maintains, with finite expected delays. For
the Poisson user model, the throughput is some intensity, A* packets Islot, of the

. Poisson traffic process. The algorithm is called stable, if its throughput, 6*, is
larger than zero, and the interval (0,6*) is then the stability region of the
algorithm. The delay induced by the algorithm is a random variable, and it is
defined as the time interval between the instant when a packet is generated, to
the instant when it is successfully transmitted. The expected value of this

variable is the expected per packet delay induced by the algorithm. In packet

° networks, the algorithm is called synchronous, if the channel time is divided

‘Ei into slots, each of length equal to a single packet, and packet transmissions can
s

: - ' only start at the beginning of some slot.

3

Let us consider the class of synchronous stable algorithms, for the Poisson

s
,é?} user model. Then, among the existing full feedback sensing algorithms within

1' 0'

;ﬁ& this class, Gallager's algorithm [1) provides the highest throughput, 0.487, and
)

L;' it requires ternary (success versus collision versus empty) feedback per slot.
..(

The limited feedback sensing algorithms within the above class were first introduced

by Tsybakov and Vvedenskaya [2]. 1In [3], higher throughput (0.42) such algorithms

were proposed and analyzed, for both ternary and CNC (collision versus noncollision)
binary feedbacks. In [5], the highest throughput known limited feedback sensing
algorithms were proposed and analyzed, for both CNC binary and ternary feedbacks;
the throughput for CNC binary feedback is 0.45, and the throughput for ternary
feedback is 0.487. In contrast to the algorithm in [1], the algorithms in [6] are
robust in the presence of channel errors, and they induce uniformly good delay

characteristics. In [4], a unified methodology for the delay analysis of

random multiple access algorithms is presented. This methodology has been used
for the delay analysis of the algorithms in [3] and [5], as well as for the same

analysis of Gallager's algorithm and the controlled ALOHA algorithm. The SNS
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3

binary feedback in the full feedback sensing environment was first considered

by Berger et al [6].

2. The Model- A Common Algorithmic Rule

The transmissions from the users are assumed synchronous. That is, each user
may attempt the transmission of a packet, starting only at the beginning of some
slot. Time is measured is slot units, and slot T occupies the time interval [T,T+l).
When no packet is transmitted in slot T, the slot is empty. When a single packet
is instead transmitted in the interval [T,T+l), it is assumed that it is received
correctly by the central node, and slot T is then a success sloé. Finally, if
at least two packets are simultaneously transmitted in [T,T+l), a collision event
occursg, it 1s then assumed that the information in the involved packets is lost,
and retransmission is then necessary.

It is assumed that the central node can distinguish between success versus
nonsuccess (emptiness or collision) events per slot, and that it broadcast this
SNS binary outcome at the end of each slot. It is assumed that the latter broad-
cast is received by the users correctly, and without delay. Finally, it is assumed
that the central node can transmit phony-noninformation including-packets, whenever
necessary. Such transmissions are necessary to help users distinguish between

collision versus emptiness events, with some delay. Without such distinction,

no stable transmission algorithms exist, for the Poisson user model. This latter

model consists of an overall Poisson traffic process, with intensity, A packets |slot.
In the sequel, we will denote by Xp» the broadcasted by the central node

outcome of slot T. We will denote by Xp= S, the success event, and we will

denote by xT=NS, the nonsuccess evént. Also, we will assume that the central

node transmits its phony packets synchronously (whenever it does). Whenever such

a transmission does not overlap with some transmission from a user, a success

event occurs, and the corresponding outcome, S, is then broadcasted. Otherwise,

a collision event occurs, and the outcome NS is then broadcasted. Whenever the

transmission of a phony packet by the central node is required by the operations
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of an algorithm, the corresponding algorithmic rule will appear as, TRANSMIT P.

P RSB 5

The main problem in the presence of the SNS binary feedback is asynchronicity
in channel history information, among the active users. In particular, let

. x, =§;t<T-1l, and x,, =NS. Then, at time T+l, the active users aré divided into two

T

groups, I and II. Group I, if nonempty, contains those users who transmitted

in slot T. Group II contains the remaining active users. At T+l, the users in
group I know that T is a collision slot; the users in group II, on the other hand,
can only deduce that T is either an empty or a collision slot. This asynchronicity
is resolved by all the algorithms in this paper, via the followimg common actions
in slot T+1.
(i) Each user who transmitted in slot T, transmits again.
(ii) Each user who did hot transmit in slot T, withholds transmissions.
(1ii) TRANSMIT P.

Due to the above actions, it is clear that x =NS, if T is a collision slot, and

T+1

- X.,,=S, if T is an empty slot. Therefore, at time T+2, all the active users have

T+l

the same information about the outcome of slot T, at the expense of one lost slot.
In particular,

1. If xT-NS and x.r =NS, theﬁ at T+2 all the active users know that T is

+1

a collision slot (termed x.=C).

T

2. If xT-NS and x then at T+2 all the active users know that T is

T+ 5>

an empty slot (termed xT=E).

If T'>T+2 is the first slot after slot T+l, such that x.,=NS, then the actions

T'
(i), (ii),and (iii) are repeated. Thus, the following, common to all our algorithms,

algorithmic rule clearly evolves:
Rule A 1f xT_j=NS, for all j such that 0<j<2k, where k>0, and xT_Zk_1=S,then:
(I) In slot T+l:

(a) Each user who transmitted in slot T, transmits again.

(b) Each active user who did not transmit in slot T, withholds
transmission. ’

(c¢) TRANSMIT P.

A g Ty s L N R S D R
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(II) At time T+2:

(a) 1f xT+1=NS, then xT-C is deduced.

(b) If xT+1=S. then xT=E is deduced.

(c) Upon deduction of the outcome Xps the outcome X141 is
eliminated from the memory of each active user. The

algorithm operates then on the deduced outcome x

."' B b T hd
\ -
§§ Due to rule A, the algorithms in this paper basically operate with ternary
sy
ﬁg feedback, at the expense of some slots wasted for synchronization among all the

)
o

\J-

active users. Such waste clearly results in throughput reduction and delay increase,
as compared to the corresponding algorithms which operate directly with ternary

feedback.

3. Full Feedback Sensing Algorithms- The Poisson User Model

The full feedback sensing algorithms require that each user know the channel
feedback history at every point in time. Due to that, and in conjuction with
rule A, the independent users can then act synchronously, to resolve collisions.
In this section, we will consider two algorithms, for the model in section 2.

The first algorithm, called FFS1, is Gallager's algorithm, as explained in [7],

in conjuction with rule A. The second algorithm, called FFS2, is Capetanakis'

dynamic algorithm [8]), in conjuction with rule A. Both algorithms use some optimal
arrival interval A, and in their analysis we will denote by A the intensity of the

Poisson traffic process.

3.1 The FFS1 Algorithm

This algorithm (as explained in [7])utilizes absorptions on the arrival

axis. We thus define the parameters L and W _ as follows.

N N
wN: The portion of the initial arrival interval, A, that is resolved by the
algorithm before absorption, given that the multiplicity of the initial
collision in A is N.
LN: The expected number of slots needed by the algorithm to resolve the

collision in the portion WN of the initial arrival interval A, before

the initial collision is observed.

4
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i From Gallager's algorithm in [7], in conjuction with rule A, in section 2,
i
y" we easily conclude that the following recursions hold.
i'@‘
¥ | Lp=2.1,=1
X
W
; 4 ; w.p. 0.5
3 -
. L2
X 2 + L2 s Ww.p. 0.5
8 (1)
~-N
;} 2 + LN ;3 W.p. 2
4 L, =¢3+L ; w.p. N2V
j N N-1 ° tEe
F sN>2 =N
§ i 2+1L, ; W.p. (E)Z , £40,1
-
Wo Wl =1
*
g
3 -1, -1 (N -N
: 2 "+ 2 wN—i 3 W.p. 1)2 , i=0,1 (2)
3 =
WY N) ,-N
. N2 (27w, ; W.p. (1)2 , 10,1
3
Ay From (1) and (2), we respectively obtain,
5 N
-N+1.-1 -N N\ -N
[1-2 1 7[24N2 L +Z (1_)2 Lpl ; N>2
M L, = ‘ L=1 (3)
N
1 6 ; N=2
( N-1
2 _ -1 -N,-1__ - NY).-
i W= 22T e N+ ) (1)2 N, (4)
A 3 N>2 i=0
.
k Let us define,
4
: x =X
xk -X ;
Y L(x) = Z we L ;
{ k=0 < (5) 'f
(’ ©o k "
1 -
h W(x) = Z {—' e X Wk '
>, k=0 '
by i
%
4
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7
Then, the stability requirement on the algorithm clearly imposes the condition,
L(x) < l-le(x), and the throughput, A*. is then computed as,
A= sup[xw(x)L—l(x)] (6)
If x* is the valu: that attains the supremum in (6), then, the optimal initial

* * - * *
arrival interval, A4 , equals x 0% 1. In appendix A, we compute A and A . We find,

*
A = 0.321946

* (7
A = 3.944

We will perform the delay analysis of the algorithm in section 5, together with

the same analysis for the remaining algorithms in this paper.

3.2 The FFS2 Algorithm

As in [8], this algorithm also utilizes an initial optimal interval, A, on the
arrival axis. Let us define,

Lk: The expected number of slots needed by the algorithm to resolve an initial collision
of multiplicity k, before this collision is observed.
Then, the operations of the algorithm in [8], in conjuction with rule A, in section
2, clearly induce the following recursions.

L.=2,L =1

0 1
ky,=k
+ ; W.p.
. ,{“Lz Leg 3 wr(p)2T L 2F0 (g
k . -k
K>2 2 + Lk ; w.p. 2
From (8), we obtain,
2 ; k=0
L, =41 ; k=1 k-1 9
-2 ey + Z(‘E)z“k L] k22
=1
Let us define, o
k
Lo =™ D0 XL , x =24 (10)
k! k
k=0
Then, the inequality, L(x) < A-lx, represents the stability condition for the

*
algorithm, and induces the following expressions for the throughput, A , and the optimal

*
initfal arrival interval, A .
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MVasup [xL7G0) = x" LGN, AT - R an

x
* *
In appendix A, we exhihit the computatfon of the parameters A and A . We
found,
*
A = 0.30062
. (12)
A = 4.158

The delay analysis of the algorithm will be performed in sectiom 5.

4. A Limited Feedback Sensing Algorithm - The Poisson User Model

The limited feedback sensing algorithms require that each user follow the
channel feedback history only from the time he generates a packet, to the time that
this packet is successfully transmitted. That is, each user follows the feedback
only while he is active. 1In this section, we consider an algorithm, named LFS, which
is basically an adaptation of the LSTFA algorithm in [5]}, for the SNS binary feedback.
This adaptation is not as straightforward as with the algorithms in section 3. The
simple superposition of rule A, in section 2, on the LSTFA, applies only when the
latter is in class 2 (see [5]). We thus present here the full description of the
LFS algorithm. |

4.1 The Description of the LFS Algorithm

The algorithm is performed by each user independently, and at each point in time,
it distributes the newly arrived and the nontransmitted packets across two classes,

A and B. Transitions in time within and across the classes are controlled by the ope-

rations of the algorithm. Class A contains those packets which can not yet decide if
the system is empty, while class B contains those packets which know that the system is
empty. All packets in class B can thus act synchronously, while the packets in class
A can not.

Each nontransmitted packet follows the rules of the algorithm, utilizing a set of
parameters, R,A,LA.TI,Tg,E, and GA’ Among those, parameters R and A are system para-
<2 meters, and they are subject to optimization, for the satisfaction of the desired through-

put versus expected delay tradeoff. Parameters LA'T Tg,l. and GA are recursively

1"
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updated, as dictated by the algorithmic rules. The above parameters can be inter-

preted as follows.

A : An initial arrival interval.

R : An upper bound to the number of consecutive empty slots allowed during a
collision resolution interval, where R > 1. When a packet observes R + 1
consecutive empty slots, it knows that there is no collision resolution in
process. The pattern corresponding to R + 1 empty slots is here represented
by R + 1 consecutive slot pairs, each with outcomes (NS,S).

GA: The number of consecutive empty slots observed by the packet, after it moves

to class B. The consecutive empty slot patterns are as in the interpretation
of the parameter R.

LA: The number of slots containing packets from class A, from the time when the
packet was generated, to the current time. If the slot within which the
packet was generated contains packets from class A, then it is included in
the number L,.

A

T : The time elapsed from the time instant when the packet was generated, to the

current time, minus the examined after the above time imstant interval.

£ : The total length of the arrival interval, which is transmitted in the
current slot.

The time length between the instant when the packet was generated, and the
ending point of the most recent arrival interval currently chosen for trans-
mission (see figure 1). All the packets in the interval that corresponds to
the length Tl belong to class B.

We also define the parameter T, as follows.

T : The time elapsed from the time instant when the packet was generated, to the
current time.

Upon arrival, each packet initiates the algorithm independently, following the
rules below. Simultaneously, step (I) (c) of rule A is followed by the central node.

a. Initialization

Let a packet arrive at the time instant t, tae[T'—l,T'). The packet observes
then the feedback Xpe_1s and continuously observes all the feedbacks from this peint on,

until it is successfully transmitted. At T', the packet moves to class A below, with

initial values T=T'-t , L,=0, and G,=0.
a A A
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b. Class A:

Each user has a register with 2(R+l) spaces. Each user with a packet for transmiss-

ion, who belongs to class A, observes the feedback time sequence and,

1.

If the feedback sequence $,S,NS,S appears,then he sets LA=3, and he moves to class B.
If the feedback sequence S,NS,NS,S,S appears, then he sets LA-A, and he moves to class B.
If R+l consecutive feedback pairs (NS,S) appear, then he sets LA=2R+1. and moves to class B.

Class B:

If the feedback sequence $,5,S appears,then he sets LA-Z, and he moves to class B.

All packets in class B act as follows:
Start with Tg-T, GAfO, and,

2. £ =4, T1 = T—LA

Then,

2.1 1f Tg—(T-TI)S L

2.1.(a) Set Tg*Tg+l, set T-+T+l, set GA'-O and TRANSMIT
2.1.1 1f XT-S, the packet is successfully transmitted.

2.1.2 If XT=NS, then set L

A*LA+2,

2.1.2.(a) Set £+/2, and,
2.1.2.1 1If Tg-(T-Tllg £, move to step 2.1(a)

2.1.2.2 If rg—(rl'rl)u, set Tg+'l‘~g+1, set T»T+l, and,

2.1.2.2.1 1If XT-S, set Tg*Tg-L. set L L +1, and move to step 2.1.(a)

A A
2.1.2.2.2 If XT-NS, set Tg*Tg+1, set T-+T+l, set LAaLA+1, and,
2.1.2.2.2.1 If XT-NS, set LA*LA+1. and move to step 2.2.1.2,
2.1.2.2.2.2 If XT=S’ set LA*LAfl, set Tg*Tg— 2,
set GA=GA+2, and,
If GA<2R, move to step 2.1.2.(a)
1f GA-ZR, move to step 2.1l.(a)
2.2 1f T -(T-T,)>2, set T +T +1, T+T+l, and,
g 1 g 8

2.2.1 If XT'NS, set Tg*Tg+l. T+T+2, LA+LA+1.

2.2.1.1 If XT=S. set Té*Tg—ﬂ, G.=G,+2, and

A A
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update L, as follows: L +'LA+1. Then,

A A

If LAf4. then LA~3

If LA-G’ then LA-3

If LAf2R+3. then LAfZRﬁl

and move to step 2.
2.2.1.2 If XT-NS, set LA?LA +1, set GA-O, and,
2.2.1.2.(a) Set £+£/2
2.2.1.2.(b) Set Tg*Tg+1, set T+T+l, and,

2.2.1.2.1 1f xT-s, set Tg*Tg-L, set L,+L .+l

set T T +1, set T*T+l1l, set G,=0, and,
g 8 A
2.2.1.2.1.1 If XT=S, set Tg*Tg-l , set LAfé, and move to step 2.
2.2.1.2.1.2 1f XT=NS, set Tg*Tg+1, T+, LA*LA+1.
2.2.1.2.1.3 Move to step 2.2.1.2
2.2.1.2.2 1f XT-NS, gset T T 41, T+T+l, L ~L +1
g8 8

A A

2.2.1.2.2.1 1f XT-NS, set LA*LA+1, and move to.step 2.2.1.2.(a)

2.2,1.2.2.2 If XT-S, set Tg*Té—L, set LA+LA+1’ set GA=GA+2 and,
2.2.1.2.2.2.1 I1f GA<2R’ move to 2.2.7.2.(a)
2.2.1.2.2.2.2 1f GA-ZR, move to 2.2.1.2.(b)
2.2.2 1If XT=S, set Tg*Tg-L, and update LA as follows:
If LA=3. then LA-Q.
If LA-2R+1. then LA-2R+2.
Otherwise, set LAfZ.

Set £=A, T -"T-LA and,

1
2.2.2.1 1If Tg-(T-Tl)gﬂ, move to 2.1.(a)

2.2.2.2 If T ~(T-T,)>L, set T +T +1, T+T+l and,
g 1 g8 8

2,2.2.2.1 If X_=8, set LA=2. and move to step 2.

T

2,2.2.2.2 1f XT-NS. set LA+LA+1, Té*Tg+l, T+T+1.

2.2.2.2.2.1 If XT=NS, set LA*LA+1 , and move.to step 2.2.1.2.
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In figure 2, we include the flowchart of the LFS algorithm. We point out that the
algorithm is a modification of the FFS1l algorithm. The core element in the modification
is the initial observation that in the FFS1l, a collision resolution interval ends with
two consecutive successful transmissions. Based on this observation, a packet operating
with the LFS, recognizes that the system is empty, if one of the following feedback
sequences occurs: (i) S,s,S (ii) S,S,Ns,s (iii) S,NS,NS,S,S. The first sequence corresponds
to two consecutive successes. The second sequence corresponds to two consecutive successes,

followed by an empty slot. The third sequence provides the information that two consecutive

successes occured.

4.2 System Stability

Let us consider the evolution of the LFS algorithm, as seen by an outside observer.
Let the time T be measured in slot units, and let the operation of the algorithm start at
T=0. At T=2R+2, there will be then 2R+l slots containing packets from class A, and one

slot containing packets from class B. Let us define the variables Tn’ Dn’ Ln(A), and In’

as follows.

To=2R+2

Tn ¢ The first time after Tn-l' such that the distribution of the packets in the
;n>l unexamined interval is Poisson.

Dn : The total length of arrival intervals containing packets from class B, at time
in>0 Tn' where D, =1.

0
Ln(A): The number of slots containing packets from class A, at time Tn.
;n>0
( 1 ; if X =S, XT =8
n—-. n-2
2 ; if X =NS, X =S, X -
Tn—l Tn-2 Tn--3 S
I =4
n
3 if =5, X =NS, X =S
xTn—l Tn-2 Tn-3
4 ; 1f X =5, X =NS, X NS, X =5
\ Ta-rt T2 -3 Ta-4

- : EOE Y ( * »

- . B . L 0. Jam e !
1 OO IO RS 7 vy vt ‘ 8, i AR A
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The triple Sne(Dn.Ln(A),In) describes the state of the system at time Tn’ as induced
by the operation of the algorithm, and the sequence {Sn} is a Markov chain. In addition,
2_<_Ln(A)_52R ; ¥n >0
D >0 ; ¥n>20
n = 2
and the values of Dn are denumerable. Given n, given a state value sné (dn,Ln(A).In), then,
if dn'i 4, an arrival interval of length A is chosen by the algorithm for transmission.
If, on the other hand, dn < A, then no packet knows the value dn’ and each packet in class B

selects £ = A. Let us define,

Ho=Ta-T, (13)

Then, the set {Hn} includes i.1i.d. algorithmic sessions, and as in section 5, reference

[S], it can be shown that,
E{Hnldn <A} < E{Hnldn =48} = E(H_|d > A}<= ;¥ A<=

Consider the time T,» let the value of the system state be then s = (dn,ln(A),In),

and let us denote An 4 min(dn,A). At time Tn+l’ the algorithm examines then a subset,

'Gn, of An’ for transmission. For H as in (13), and following the same procedure as in

section 5 of reference (5], we conclude that for stability of the Markov chain {Sn}. it

is necessary and sufficient that,
E{6°|so = (4,2(A), D} > E{Holso = (A,2(A),1)} (14)
Given the parameters R and A, the throughput X*(A,R) of the LFS algorithm is then
the maximum intensity of the Poisson input traffic, that maintains the condition in
(14). Optimizing then with respect to A, we conclude that given R, the throughput,

* *
A (R), of the algorithm is as follows, where A R denotes the optimal initial arrival
interval.

A*(R) = sup A%(8,R) = A*(A*R.R) (15)
A

*
In appendix A, we exhibit the method for the computation of the throughput )\ (R).

* *
In table 1 below, we include the values A (R), and the corresponding values A for

R’
various values of the parameter R. As R increases, the throughput increases as well.
The increase of the value R may result in increase of the expected per packet delays,

however.

This last issue will be further discussed in section 5, where the delay




*
analysis of the LFS will be included. The throughput A (6) is the same with the throughput

A ().

e by
0.293376 | 4.05623
0.315648 | 3.960099
0.32043 | 3.90099
0.32158 | 3.9803028
0.321871 | 3.976739
0.321943 | 3.97585

o W S W N o

Table 1
The Throughput of the LFS Algorithm

5. Delay Analysis - The Poisson User Model

In this sectjon, we study the expected per packet delays induced by all the three
~ algorithms in sections 3 and 4. The delay analyses for all the three algorithms are
based on the following powerful regeneration theorem. The same theorem was used in [4],
" for the delay analysis of the Gallager and the controlled ALOHA algorithms, and was also
used in [3] and [5], for the delay analysis of the corresponding algorithms.
Theorem A

Let the discrete time process {xn}n>l be regenerative with respect to the renewal

process {R,} Let C, = R

171>1° 1= R

T i>1, denote the length of the ith regeneration cycle,

and let £(.) be some nonnegative real valued measurable function. Then,
Cy
i c? E{C,} < =, and S g E(,f, £(X)} < =, we also have,
-1 S NS |
Lim n & £(X)) = Lim n E{iglf(xi)} = §C ~, w.p.l
n-+oo n-o 3

If in addition to the finiteness of C and S, the distribution of C, is also aperiodic,

1
" then Xi converges in distribution to X_» and,
E{ £(x)} = sc™t

We point out that the process {xn}n> is called regenerative with respect to the

>1

iff for every positive integer M and every sequence cl,..,tM, such

renewal process {Ri}iil'

that 0 < t, < ... < tM’ the joint distribution of Xt sesay X is independent of f{.

1 - t, R
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5
ﬁﬁ The random variables Ri,izl, and Ci -Ri+1_Ri' i>1, are then respectively called
e regeneration points and regeneration cycles. Under the conditions in theorem A, the
ﬁ% ~ limiting average and the mean of the limiting distribution of {f()(n)]“i1 exist, coincide,
g%% and are finite. In addition, their common value is then given in terms of the per cycle
;¥£ " quantities, S and C.
(3%
%ﬁ? Referring now to the three algorithms in this paper, we will define as {Xn}n>1
éﬁ’ in theorem A, the delay process induced by the corresponding algorithm. 1In each case,
ﬁ:, we will show that this process is regenerative with respect to a renewal process (Ri}izl’
:aé with easily identified regeneration points Ri' Then, we will use theorem A, to establish
Eﬁi the existence of steady state delays, and to compute the first order steady state moments
:4 (expected delays), by appropriately selecting the function f(°). For each one of the three
ﬁ ’ algorithms, we will replace the process {xn}n>1 in theorem A, by the process {Dn}n>1’
E;\’ where, -

KA D : The delay experienced by the nth arrived packet. That is, the time between
% 3| " its arrival and its successful transmission.

N
o p 280} ,pf @D (16)
J n n n* n
#?ﬁ 5.1 The Delays of the FFS1 Algorithm
%23 Consider the operation of the FFS1 algorithm. Let T be a time instant that corresponds
i{# to the beginning of slot T, and it is such that all packets that arrived in (o0, tT), where
?24 tT is some time instant such that tT<T, have been successfully transmitted, and there is
31’ no information about the arrivals in [tT,T). Then, T is called a collision resolution in-

e
-
-

stant (CRI), and dT=T-cT is called the "lag at T." At every CRI, the algorithm restarts

.|.-
{Qf itself by selecting an initial arrival interval UT = min(A,dT). Let us define the sequence
18
% 5 {Ti} of time points,as with the "0.487" algorithm in [4]. Specifically, let Tl=1, d1=2,
IoN 1>1
E and let T1+1 be the first instant (corresponding to the beginning of some slot) after Ti’
y such that dT =2. Let R1 , 1>1, denote the number of packets successfully transmitted
: i+1
;“' in the interval (O’Ti+1]' Then, Ci=Ri+1-Ri’ i>1, is the .number of packets successfully
@ transmitted in the interval (Ti'Ti+1]’ and the sequence {Ri}izl is a renewal process,

-

-

iy G
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since {Ci}1>1 is a sequence of nonnegative i.i.d. random variables. In addition, the
delay process, {vn}n>1’ of the algorithm is regenerative with respect to the process
{R1}1>1. Thus, applying theorem A, with function f(°) the identity function, we have that,
if, C1
A A
C= Efci} <o 'and S = E{:E:Di} <o , then,
i=1
-1
D=SC ", w.p.l. (n

;jwhere D is as in (16). It thus suffices to compute the expected values in (17), and

prove that they are finite, where we also have,

c=x , udE(r, -1} (18)

Ty
We call .the expected value H in (18), mean cycle length, and we call the expected

value S in (17), mean cumulative delay. In appendix B, we exhibit a method for the

computation of upper and lower bounds on the mean cycle length and the mean cumulative
delay. Those bounds are then used for the derivation of upper and lower bounds-respectively

denoted D" and DL - on the mean packet delay, D, in (16). The latter bounds are exhibited

in table 2 below, for various Poisson intensities, within the stability region of the
algorithm. We point out that using the same method, tighter bounds can be devised, with

additional computational effort.

A o° p"
0.01 2.06868 2.082206
0.05 2.44738 2.52379
0.09 2.815948 3.120604
0.13 3.244687 4,02865
0.21 5.28434 7.34515
0.25 10.03156 14.98144
0.29 22.57134 48.518118
0.32 289.41968 599.96109

Table 2

Mean Packet Delays for the FFS1 Algorithm
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5.2 The Delays of the FFS2 Algorithm
For this algorithm, the CRIs, and the sequences {Ti}iil' {Ri}*zl' and {ci}iZl'
are defined exactly as with the FFS1 algorithm in section 5.1, and so are then the
L
?z{: quantities, C, S, D, and H, in (17) and (18), and the function £(°*). Again, theorem
Y . A applies,if the mean cycle length, H, and the mean cumulative delay, S, are both bounded.
ag‘i _ -
%:* Then, the mean packet delay, D, equals A 1H 1S, where A is the intensity of the Poisson
i
k& h traffic process. In appendix B, we derive upper and lower bounds on the quantities H and
\)'I
BAA
S. Through them, we derive the upper and lower bounds, b” and DL, on the mean packet
ey
$&: delay D, for various values of the Poisson intensity A, within the stability region of
‘,.S:“\
@5& the algorithm. We include those bounds in table 3 below. Again, tighter bounds can be
Kt
; - found, via the same method, and with additional computational effort.
[y
w3
S
ﬁ‘ _»‘?; A D[' Du
’l?'
‘.v‘ _ 0.01 2.0885448 2.0885665
A,
o 0.05 2.5160811 2.5241058
LN
e 0.09 3.0976268 3.1320109
A
§§$§ 0.13 3.935235 4.0316111
I ) 0.21 7.7381153 8.296022
Wt
o 0.25 | 14.049199 15.641169
(e
e 0.29 | 67.385942 79.315479
- T\
b’g‘. L)
'S . Table 3
'EQS Mean Packet Delays for the FFS2 Algorithm
b1
1 :;1 5.3 The Delays of the LFS Algorithm

The sequences, {Ti}ill’ {Ri}ill’ and {Ci}ill' the function f(.), and the quantities

-

R
ae

)

ﬁ;é D, H, and S, are again defined as in section 5.1. The delay process {D }n>1 is again
2’3 regenerative with respect to the renewal process {Ri}i>l' and theorem A applies. The

'« ° —
peyy mean cycle length, H, and the mean cumulative delay, S, are of course computed differently
;Eg: here, and if bounded, the mean packet delay, D, equals A-IH-IS. In appendix B, we exhibit
e

) -,: the method for computing upper and lower bounds, DY(R) and DE(R), on the mean packet
O

Py delay D, for every value of the algorithmic parameter R. In table 4 below, we include
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computed values of the bounds D"(1) and Dl(l) - that correspond to algorithmic parameter
R equal to one - for various values of the intensity, A, of the Poisson input traffic.

The computation of the bounds Du(R) and DL(R), for R > 2 requires increasing computational

effort. 1
A oty p'(1) !
i
0.01 3.05538 3.2257
0.05 3.38136 4.42641
0.10 3.9288 6.6706
0.15 4.81452 10.5137
0.20 6.6218 18.4668
0.25 12.7931 45.4634
0.27 23.8604 94.0532
0.28 46.3069 192.844
Table 4

Mean Packet Delays for the LFS
Algorithm with R=1.

As the value of the algorithmic parameter R increases, the mean packet delays for

small Poisson intensities, A, increase as well. Given Rl and R2 such that Rl > RZ'

there exists some Poisson intensity, lo, however, such that for Poisson intensities above Ao.

the mean packet delays induced when the logarithmic parameter is R,, exceed those induced

2

by the parameter value R This is shown in figure 3, where the upper bounds Du(l) and

1
Du(Z) - respectively corresponding to R=1 and R=2 - are plotted against A. The crossing
point is then approximately equal to 0.2. That is, for Poisson rates in (0,0.2), the LFS
with R=1 is superior, while for such rates in (0.2, 0.315), the LFS with R=2 is recommended.

5.4 Comparative Discussion

In figure 4, we plot the lower bound, Dl. on the mean packet delay, against the
Poisson traffic intensity )\, for the FFS1l, FFS2, and LFS with R=1 algorithms. The
upper bounds in tables 3,4, and 5 exhibit similar behavior. The FFS1 algorithm induces

the lowest mean packet delays, for every A value within its stability region. It is

ERSRCR A SRR

Ty, A G L S R 3 N RIAM AN
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o

sensitive to channel errors (leading to deadlocks), however, and it requires full
feedback sensing. The LFS algorithm, on the other hand, is robust in the presence of
channel errors (as the algorithm in [5]), and only requires limited feedback sensing,
at the expense of somewhat increased mean packet delays. Since full feedback sensing
is impossible in mobile spread spectrum enviromments, the latter algorithm is then

indispensible.

"
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;a', ) Appendix A

o, A.1 The Throughput of the FFS1l Algorithm

v We use the following lemma, for the set {Lk}in (1) and (3).
' : Lemma Al

The inequality Lk < 6k holds, for every k > 1.

g& Proof

,.‘ We prove the lemma by induction. We clearly have Lk < 6k, for k=1, 2. Accepting

then that Ly < 6 ; 1 < £ <k, and using (3), we easily find that L, < 6(k+l). The

Ll proof is now complete.

Let now ko be some positive integer, and let us then adopt the following simple

N bounds.

' - kT - (A.1)
G
- o<W <1 ; Vk2>k

{\' Using (A.l1) and (5), we then obtain,
2o K
k

£, . A .
o B () 2x )y Erw <x Y Erw o=t xWx) <
;.)’. k=0 - k=0 .

'c’&': Eo: xk i xk
K\ < x v W + <! -

o

x ko xk A xBu
e +;):_jo-—! (wk—l)) & XgYx) )

s ™
R ]
"
o
=~

k k
S k o ok Lo k
e x L A x x x Z x x
Sa e L (x) = =1l < —_—— L = e L(x) i —— L. + z 6k — =
Las i k! k- Z H '3 k=0 k! Tk Kok +1 k!
i °

k
[ k
S = 6xe® + L+ Z_: X (L -6K) 4 o ) (A.3)
v k=1
.Then,
Bz(x) < xW(x) < Bu(x)
I L%x) = L(x) LZ(x)

(A.4)

&

%
] At N T R ifs e e - N ...’.--¢,- - 1’-~‘ ! *, 3
f‘ . K .I " v‘ " . i ‘\’ O L) ‘ * ‘ ! A l' M) * ‘ Ch i W s ) K3
. 1 B ! ) A L DDl Sl 4 ] = . o
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We selected k°-20. we computed precisely from (3) the values Lk + k <20, and we
then found numerjically the suprema of the ratios, B['(x)/L“(x) and Bu(x)/LL(x). Those
suprema were both attained at x*-1.266. and were identical to each other to the fifth
decimal point, and equal to )\* in (7).

A.2 The Throughput of the FFS2 Algorithm

It {s easily proven that lemma Al holds. Then, for some positive integer ko, and
using (10), we conclude that expression (A.3) holds here as well, for the set (Lk}
in (9). We selected ko =20, and we computed the values Lk ; k < 20 precisely from (9).
Then, we found numerically the suprema of the expressions, x/L%(x) and x/Lz(x), where

*
x/L%(x) < x/L(x) < x/Ll(x). The latter suprema are both attained at x =1.25, and they

. *
® are identical to the fifth decimal point, and equal to A in (12).
AT}
;‘é ] A.3 The Throughput of the LFS Algorithm
>
t ’ Let us define,
K7
' A -1
. Q=4 60
‘. A
X L, = E{H, | Dy = 8, k packets in Al (A.5)
&1 A
, W, = EQ | D, = 4, k packets in A}
B kA ky -k
X
e
‘\:;.’. Then, from the operation of the algorithm, we deduce the following recursions.
Va '
g - -
“ Lo 2, Ll 1
3
o
:: 24-2£+1+Lk_1 ; W.p. (po)£p1,0<£
Wty L = { 2420 41 (")‘k 0<e
- k i 3 w.p. (p, » 0 <L <RI, k>1>2 (A.6)
N ik>2 k R
_, = 2+2R + Lk ; W.p. (po)
\'l-' = =
K 0™ " (1 L
‘ - -£-1 -£-
%, Z:l 3 A2 + 2 t lwk-l 3 w.p. (po)cpl;. 0<{f<R-1
Wt J=
R I P Lk
.‘ e = < jZIlz 27w .wp(po)pi,OSLSR-l.kzizz
3::' 1 k>2 ’ R j R
". 2' + 2" W . k. R (A-?)
.. \ 12:,1 « P wep. ()

------
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L
From (A.6) and (A.7), we respectively find, where z: xixo, if k<&,
1=l
2 ; k=0
Lk - 1 ; k=1
k.,R) -1 k.R
1-(p,) 1-(p)) k-1
(R 07 0 k, k K
{1-(rg) e T } { 2o [2ep o by + 2 g1y } (A.8)
~P 1-p i=1
(4} 0
1 ; k=0,1
-R, kR k,-1 ~R, kR, kj-1 k,~1.. -R, kR (A.9)
W, = - -(2- 1- - 1- .
e = Q12T ep - 12-pg 1 T 12T ) Mg T (200 ) T 1227 (R ) )
k-1
k , k, k k .
- {py Py ey Wy * 12‘2 Py Wb k22
Let us define,
@ k
L(x) 4 z: e X ET Lk
k=0 ¢
a % k
W(x) = 2 e ¥ %r Ly
k=0 :
; where 0 < wk‘g 1; ¥ k, and where lemma A.1l is found to hold on the sequence

(Lk}. Then, the inequalities in (A.2) and (A.3) hold here as well, and so does (A.4),

where again,

A o= sup (3‘-,-;‘{%—)-)
X

For all the R values in table 1, and for ko =20 in (A.2) and (A.3), the suprema

of the bounds in (A.4) where indentical to each other to the fifth decimal, and equal

* . *
to the corresponding values A (R) in table 1. The values AR were found as,

At = x; w7t

R
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Appendix B

B.1 Delays for the FFS1 Algorithm

Consider the CRIs, T, the instants tT’ and the intervals U_, in section 5.1.

T!

Then, in slot T, some arrival interval [tT., tT+UT) is transmitted, where after some

random number, &, of slots, another CRI, T' is reached, with a corresponding, CT' T

Let us define the following quantities.

Ld : The number of slots needed to resolve an arrival interval between two
A subsequent CRIs, given that the initial length of this interval is d.
\ vy ot The length of the actually “examined" interval before absorption, given that

the length of the initiil interval is d.

> P(l.wld) ¢ The probability that, given an initial length d interval between two

! subsequent CRIs, the actually "examined" before absorption interval has
1 length w, and £ slots are needed for its resolution.
2 Hd The expected number of slots needed to reach lag equal to 2, starting from

Y lag equal to d.

The operations of the algorithm induce then the following recursions.

[ 2 y W.p. P(Z'dld)
. Hy = , for d < A
Y
: E{zd} +H, . ; w.p. P(L,w]d) (B.1)
i* Hy = z{LA} +Hy ; w.p. P(L,w|4), for d > A
5 Taking expectations in (B.l), we obtain,
‘ E{L )+ 2 H,_ P(L.u|d) ;d <8
’ H = L,v
{ d t§2 (B.2)
A B(L,) + 2 W PLowla) ;4> 8
% A Low d-wtl * ’
The expected value, H, in (18) . -qual to HZ' where Hd is given bv (B.2). We

r®, ¢ | o

thus need to find bounds on H,. Following the same procedure as with the "0.487"
! algoricthm in {4]), on the linear system in (B.2), we find the following bounds. .
i
W ¢
i H™ = E{L,} + A[2-2P(2,2]|2)] -P(1,2]|2) - s{w2-£2}1 + ¢ [1-P(2,2]2) -P(1,2]2)] E
E + P(1,2]|2)(8 +cL{1—P(2,1|1))] < H, ~H <E(L,) + ;
i + A[2-2P(2,2]2) -P(1,2(2) -E{w,~L,}] +*(1-P(2,2]2) -p(1,2|D)] +
¥

+ P(1,2|2)(B +c“{1—P(2.1|1))1é H* (B.3)

-

, ) Ao A MR NH OO uhn'ﬂ.t Ol ) '. .0,!;!0.‘0",‘0,“; 'a.‘hn“t“
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where,

af Bt} [Ew,} - Ee, 7]

p(@) & ph2,l0) {EL,} + ALELL,) - Elw,} -200(2,4]0) }

cl 4 inf p(d) (B.4)
1<d<d

P é max (<A, sup p(d))
1<d<A

g 8 E{ll} + A[E{zl} - E{wl} + 1-2P(2,1|1)])

From (B.3) and (B.4), we computed the upper and lower bounds, 1" and Ht, on H,
shown in table B.1 below. '

A wt n
0.01 2.01435 2.01731
0.05 2.12193 2.14923

) 0.09 2.30954 2.364348

1
{1 - 0.13 2.514186 2.671167

Y ' 0.21 3.109886 3.98608

o 0.25 4.852168 6.60396
i 0.29 8.09345 10.923344
B 0.32 111.98070 161.02000
K

"
( Table B.1

;{: Bounds on H for the FFS1 Algorithm
X

!gi Let us define the following quantities, refertring to the beginning of this appendix.
‘1..'
oY N : The number of packets in [tT, tT,)
T

;: ¢ : The sum of the delays of the above N packets, after the CRI,T.

-~
‘z z : The sum of the delays of the above N packets, until the instant tT+UT.
O .

N z, & Elz|nek,u =1} = a0 Ez|N=k,Up =} ; 1<d <A

§§ ¥ 4 s{wln-k,uT-l} - E{wlu-k.uT-d} i 1<dc<a

')0

% Sd : The expected sum of delays of all packets transmitted, when starting from
o lag d, the algorithm reaches lag 2.
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The algorithm induces then the following recursions.

0 5 by=2 Jfor d < A

; w.p. P(L,w|d) , L

Sy = |
' E{Y|d} + E{z]d} + s

dowtl q ¥ 2 (B.5)

4 = E{y|d} + E{z|d} + (d-A)N + Sqewtl  YeP- P(L,w|A) , for d > A

From (B.5), we obtain,

E{¢|d} + E{z|d} + £ s
Sq = 2
E{y|A}+ E{z|A} + (d-A)E{N[A} + L sd-u+£P(£’wlA) ;d>A
) 4

gt BLow[d) 5 a <8

(B.6)

; where for S as in (17), we have, S = 82' Following the same procedure as with the

£

bounds Hu and H on H, we find,

; where,

<s,=s<s" (B.7)

s% = 6 + ¥ [1-P(2,2(2)] + P(L,2(2) ("4 -M,-c]
stac+ c"[l—p(z,zlzn + P(l,ZIZ)[sL—Ml-MZ-cu]
G = E{y|2} + E{z|2} + 2(M +24,)) [1-P(2,2]2)] + MZE{(WZ—ZZ)Z} - (auzml)s{wz-zz}
s?= E(y]1} + E{z]1} + Mz(l + E{wi} + E{tf} - 2e{L)w} - 2(E{w;} - E{£}})

- 4p(2.1|1)) + Ml(l - E{w } + E{Ll} - 2P(2,1|1) ) + c*1-P(2,1{1)] ; a=u,t
My~ E(N|a} 270 (Ewy) - B, 17
M, = [E{wA} - E{!.A}l‘l( E{v|a} + E{z|A} + ler:{wz} + Eflz} - ZE(wALA}
- AE{NlA}) (B.8)

-1 2
p(d) = P 1(2,d]d) (s{wld} + MECQuy~L )%} - (2M,844)) Efu -t}
- (4My+2M)) P(Z,dld))
¢’ = sup p(d)
1<d<A
¢

¢ = {inf p(d)
1<d<A

From (B.8), we computed the bounds Se and Su, that we include, for various values

of A, in table B.2 below.
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A st s*

0.01 0.04173 0.04194
0.05 0.26299 0.26776
0.09 0.59920 0.64864
0.13 1.12672 1.31674
0.21 4.42339 4.79694
0.25 16.5620 18.17311
0.29 71.5080 113.8769

0.32 | 14912.7540 21498.9000

Table B.2
Bounds on S for the FFS1 Algorithm
From (17) and (18), we conclude that the bounds p" and DL. on the mean packet delay,
D, are computed from tables B.1 and B.2, as follows:

-1 .u

voalge ght , ot = a1t ! (8.9)

D

B.2 Delays for the FFS2 Algorithm

Let us define the following quantities.

z : The number of slots needed to resolve an initial arrival interval of
length d, where 1 < d < A.

P(Z{d) : The probability that Ld = £,

Hd : The expected number of slots needed to reach lag 2, starting from lag d,

subject to successful transmission of every packet in the arrival interval
of length min(d,4).

Sd : The expected sum of delays of all packets transmitted, when starting from
lag d, the algorithm reaches lag 2, and all the packets in the arrival
interval of length min(d,A) are successfully transmitted.

Let the quantities N, §, and z be as in section B.l. Then, the algorithm induces

the following recursions.

' 2 ; w.p. P(2|d)

H.= | » ford < A
E(ld } o+ Hp ; w.p. P(Lld) , £ # 2

(B.10)

Hy= E(L,} + 0, ., 5 w.p. P(2]8) , for d > A




‘e{wlu-o} + E{z|N=0} ; w.p. P(2|d)

S,=

d , ford < A

'z{wld} + E{z|d} + Sp ; w.p. P(L]|d) ;42 (B.11)

sy= Elp|a} + E{z|a} + (a-8) E(N|A} + Sg-ast G VP P(L|a) , for d > A

From (B.10) and (B.1ll), we respectively obtain,

E{£.} + L H, P(L|d) ;d<A
go= & g2 b

d (B.12)
E{L,} + g Hy asp PEIB) 5 a> 8

?

E{y|d} + E{z|d} + £ Sp P(L|d) ;d<A
{ 2]

S,=

d (B.13)

pCLiaYy ;3 d> A

E{p{a} + E{z|A} + (d-8) E{N|A} + E Sg-ptt

Considering the quantities H and S, in section 5.2, we have, H = H_, and S = §

2 2°
We are thus seeking upper and lower bounds on the quantities HZ and Sz, given respectively

by (B.12) and (B.13). We note that here,

P(L|d) = L P(L|k) P(k|d)
k

; where, K

‘.P _xd (Xd)

o PCk|a) = e 57—
g7 k-1
B pLho = 27 (P22 + P40} + £ (D 7€ IR DR, k1)
"\ i=1 £+ =£-2
J 172
R LI’LZ >1
k{r (B.14)
1

v ,
::t‘:' To compute bounds on Hz and 82. we use iterations. Let H((li) and S‘(li) denote the
.' corresponding ith {teratjions. Then, we easily conclude,
o]
N

‘R a4 z [u(‘) - u$9, P(L|d) ;d<aA
z‘ o d L L -
:' . (1...1) £<K .l"Z

K né{. « (B.15)

(1) (1)  _ (0 .

I He "+ E Maaee ~ Haopee! PLlY) ;4> A

fé ; with,

W™ Md + & < u§°) < Md+c" (B.16)

v‘?o

.3 0

'\,
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; where,
-1
M= [A- E{LA}] E{LA}
= sup £(d) , Lo gt £(d) (B.17)
1<d<A 1<d<A

£(d) = p-1(2]d) (E{Ld} + M[E{£,}-4) - ZMP(Zld))
Using K=40, 100 iterations, and via (B.15), (B.16), and {B.1l7), we found the lower

and upper bounds, Hl and Hu, on HZ (and thus on H), shown in table B.3 below.

A wt )
0.01 2.02178 2.02178
0.05 2.14534 2.14534
0.09 2.33792 2.33793
0.13 2.63508 2.63520
0.21 4.04580 4.05625
0.25 6.40808 6.47551
0.29 26.37999 27.20669

TaBle B.3

Bounds on ﬂ for the FFS2 Algorithm
For the quantities S

L 2 0) 2 u
e” + Md+Md" <57 < MdT+Md e (B.18)

, we started with,

d

3 where,

M, = 271

-1
2 (A - E{LA}] E{N|A}

M = (4= E(g 17 (E{!HA} + E(z[a} + n (a7 + B(E]} - 20E(2,)1- AE{N\A})

£ u
e = {nf f (d) , e = sup f (d)
1<d<A o 1<d<A o (B.19)

£,(d) = P'l(zld) (E(wld} + E{z]d} + MZ[E{ZZ} - 4p(2|d)) +

+ MllE{Zd} -d - 2P(2|d)])

; and where,

ol

E(N|d} = Ad ; 1<d<a ., E{zld} = 27had? 1<d<A

i
)
B
[}

L)

Kk

,‘

)

2z

A

3
v o

E{p|d} = I E{y]k}P(k|d)
k

L '
£ ({2 (2E{yp|i}+ (k-i)E{Edli}])

1
E(Ylk} = —o (Zk +
—k+1 1

1-2
oy

b ’!’v‘ '
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E{pjo} = 0 , E{p|1} =1

2 2
a{td} - i E{Zdlk} P(k|d)

k-1 |
Ky =k o2
mElcm)z (E°{L,|n} +

+ 4E{£dlm} + E{Zdlm} E{Ldlk-m}]) (B.20)

E{Zjlk} - (127Kt (a +12.27% + 12.27% E{L, |k} + 2

The iterations for Sd evolve as those in (B.15). After 100 iterations, we found

the upper and lower bounds, s” and SL, on S2 (and thus on §), that are included in

table B.4 below.

A st s
0.01 0.04222 0.04222
0.05 0.26989 0.27075
0.09 0.65178 0.65901
0.13 1.34811 1.38107
0.21 6.59143 7.04845
0.25 22.74395 25.05749
0.29 531.67114 606.77905

Table B.4
Bounds on S for the FFS2 Algorithm

The bounds D" and DL are computed from tables B.3 and B.4, and from the expressions

in (B.9).

B.3 Delays for the LFS Algorithm

Here, we will derive bounds on the mean packet delay, D, when the algorithmic
parameter R equals one. The methodology for R>2 is simflar. Let the quantities Hd and
Sd be defined as in section B.l. Let 60 and d0 be as in section 4.2, and let Ld be
defined as in section B.l1. Let us also define, where T is some CRI,

N : The number'of packets in 60.

NO: The number of packets in 4 -~ 60.

P(£,w|d) : The probability that £,= £, and that given d=min(d,4), then §;=w.

¢ : The sum of the delays of the N packets, after T.

2z : The sum of the delays of the N packets, before T-1.
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Then, the algorithm induces the following recursions,

B(L,} + 2Z:P(l:.wld) Hy g i1<d<a
12
Hy - (B.21)
E{g,} + Ew PLu[8) By ., 3d>8

E{z|d} + E{p|d} + E{N|d} + E{NyS,|d} + z+: P(l:.x.rld)sd__wC ;1 <d<A
L42
d v (B.22)
E{z[a} + E{v|a} + E{N]A} + X(d-8) E{§ A} + E(N,G,[A} +

+ 2 PLwl|8)S, ., id>8
J AR

The expressions (B.21l) and (B.22) both determine infinite dimensionality linear
systems. Using the methodology for the delay analysis of the algorithm in [5], we
conclude that the systems in (B.21) and (B.22) have both unique solutions, within the
class of quadratically bounded sequences, if E{60|d0-b} > E{LA}. The latter inequality
determines the stability region of the algorithm. In addition, we have again that H=H2
and S=82, where H and S are the quantities in section 5.3. We derive upper and lower bounds
on S2 and HZ (and thus on S and H), as follows.

u’liaz-agn"

st<s

(B.23)

u
2 = H<S
; where,

H = E{e,} + M {E(L,} - E{§,]2} + 2[1-P(2,2|2)]} + c[1-P(2,2]2)]

G -&t-ecz,2) 2]

: -1
My = (E{,[a} - E{€,}17" E(£,}
c" = max (-Mo ., sup h(d)) , cz = inf h(d)
1<d<A 1<d<4
h(d) = P2l {ELL} + M (EQL,} - E( ld}] - 2m(2,a])}

s = E{z|2} + E{p|2} + E{N|2} + E{Ny8ql2} + M2[4-4e”2>‘+ E{(60-£2)2l2) -

2

- 4 E(8,-,]2}] + M [2-2¢"2A- EL8-L,|2)) + ¥ (1-e™)
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M, = [E{8,]A} -E{£,}17'A E{5|a)

M = [(E(8y|a} - E(e,}17 {E(2]a} + E(y[A} + E(N|A} + E{N 8 [A} -

2
- X 8 E(5 |8} + m, E((8,-2,) |8}

e’ = gup £(d) , ef - ine £(a)
1<d<A 1<d<A

£(d) = P‘l(z,dld){s{zld} + E(p|d} + E{N|d} + E{Nosold} +
+ M, [E((5,-2) %]} - 24 E(6,-L,]d} - 4p(2,d]d)]
- M [E{6,-¢,[a} + 2 P(2,d]D)]} (B.24)

As compared to the computations in sections B.l and B.Z; the difficulty here is
the computation on the expectations included in the expressions in (B.24). Let us define,

EA {x|d,k} : The conditional expectation of the random variable X, given that
A equals A, given d, where d < A, and given that there are k packets

in d.
Then,
@ k
E, {x]d} = > EA{xld,k} e M 3%91— (B.25)
k=0 :

Let us define the subset V of (0,1], as follows,

~(i1+i (4. 4]
(31 3D, ., (iy JM) ; M,3p,..0], positive

V={v:v=l, orvs= 2-31 + 2
integers}. Then, the expectations EA{XId,k}, for k > 0, can be as closely
approximated as desired, by selecting dlA values in V, in conjuction with the corresponding

recursive expressions. We do not include the latter expressions in this paper, due to

lack of space. The interested reader may seek reference [9]. Using the above methodology,

L L

for M=6 in the subset V, we computed the values of the bounds Hu, H, Su, S~ in (B.23),

which are included in table B.5 below. The bounds in table 4 were computed from the

values in the latter table, in conjuction with the expressions in (B.9).
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A H H S s
0.01 1.9984 2.0577 0.06287 0.06446
0.05 1.9244 2.2128 0.374114 0.425699
0.10 1.96223 2.5658 1.00807 1.30892
0.15 2.17837 3.22266 2.32733 3.4354
0.20 2.78712 4.6554 6.16544 10.2939
0.25 5.1692 9.7539 ~ 31.1957 58.7521
0.27 |  9.55336 19.0408 122.667 242.601
0.28 18.4793 37.9514 492.076 997.815
Table B.5

Bounds on § and H for the LFS Algorithm
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