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Small-Signal Gain of a Free Electron Laser in a Resonator Gaussian Mode

Ilario Boscolo and Juan Gallardo

Quantum Institute

UCSB, Santa Barbara, California 93106

ABSTRACT

We present an analytical expression f or the small-signal gain of

a Free Electron Laser (FEL) in the presence of a gaussian mode. To

describe the electron beam evolution we use the one-dimensional (1-d)

Vlasov equation. Our perturbative result is valid for small values of

the parameter q (length of the undulator L divided by the Rayleigh

range zR). a
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I. INTRODUCTION

The l-d theory of FEL has been thoroughly studied and by now we have

a good body of theoretical knowledge to be used in the design of

actual experiments. All these papers assumed a plane wave as input field,

as differentiated with the experimental situation where we have gaussian

modes. This is not a trivial approximation considering that the

bunching in the electron beam, and consequently the loss of gain of

energy by it, depends critically on the relative phase between the

electrons and the electromagnetic wave.

Colson and Elleaume2 have published a complete treatment of this

problem for several magnet designs including the varying phase and

amplitude characteristics of a gaussian mode. Also, recently analytical

expressions of the gain have been obtained using the single particle theory

as described by the Lorentz equations.

In this paper we used the Vlasov equation 4 to find the evolution

of the electron beam in the combined fields of a copropagating azimuthal

symmetric gaussian mode and the undulator magnet. The radiation field

is described by the Maxwell equations in the slow amplitude and phase

approximation5 (S.V.P.A.).

The FEL dynamics is properly represented by the coupled system of W44

self-consistent Vlasov and Maxwell equations. We solve it using pertur-

bation theory in powers of the amplitude of the input field.

V-
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II. THEORY

The single particle equations of motion of an electron in the combined

wiggler and co-propagating gaussian radiation field are

mcy W4

y e
mc

so the permanent magnet field determines the electron trajectory and

the phase of the gaussian field the energy exchange.

The magnetic field of the permanent magnet is

B-ceB sin k z(2)
2o0

the fundamental gaussian field is

-r/wp)

E cos(kz-wt+o(r,z) (3)0 a (z)/W0

where

is the beam waist, wis the spot size at half-vay the wiggler; and ZR

'p is the Rayleigh range; the phase 0 is

t(r,z) -- tan- 7 +2()

and
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( )
R(U) (z-L/2) I + L..lJ

is the curvature radius. Proceeding a la Colson 5 we introduce the

electron phase

=(k-9k )z Z-Wt

the dimensionless time

ctL (0 4 r 4l)

and the velocity

- L[(l+k )B k]

We also define the total phase variable as

- + Odr,z) (4)

In terms of these quantities the single particle equations of

motion read

=a(z) cos ji+

(5a)

U P V

where p~ is the generalized velocity and .. ,

.A ~e 2 L 2E z)
a(z) - 220-

(-YoMC 2)
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is the dimensionless field amplitude. To these we append the Vlasov

equation expressed in terms of T, u, and ip variables

30., + -o+ P (5b)lo,

Now we turn to the Maxwell's wave equation, that governs the

evolution of the radiation field in the presence of the electron current

described by Eqs. 5a) and 5b).

Employing the S.V.A.P.-approximation and following Colson's

5,6,7procedure, the resulting wave equation can be written as a pair

of equations for the amplitude a(r,z,t) and the phase 0(r,z,t),

a- -j<cos( + 4)>

a j <sin( + ,)> (6)

The dimensionless current density is

e4B23~ n'.#.n
47 2 3

0 05e

2 3
(Y mc)

where n the particle density in the electron beam. The complete *.'vI

set of equations that describe self-consistently the physics of FELs

is given by Eq. 5 and 6. At this point we restrict ourselves to small

signal, low gain regime where the amplitude and phase of the optical

waves seen by the electrons do not change with time except for the

I -

*%*** 9 *;c~ .-- ~. .
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"intrinsic variation", due to the gaussian nature of the radiation

field. We wish to point out that it is here where we depart from

the plane wave calculation. Therefore, .

a(z) a(z) ('r-l) L + :1+

R R 8 ( R

)(7/
4312 -a(z) 

-",-+ z-L

where we have neglected the transverse r-dependence of the gaussian

field. .

III. PERTURBATIVE SOLUTION OF THE VLASOV EQUATION

We seek a perturbative solution of Eq. 5b in powers of the

amplitude of the input optical wave a(z). In first order we have

P(,u,r) Po (p) + a(T)P (1 *, P,T) (8)

Since the coefficient of the expansion is not constant, this problem

should be more properly treated as a time-dependent perturbation

problem. However, we observe that in the small signal, low-gain

regime, a(r) can be assumed a(T) < 1 and to be a slowly varying function

during the interaction; hence, we are justified to take the average of

the amplitude over the interaction length <a(z)> as the small parameter ;. -.

in the perturbative expansion. Then Eq. 8 can be rewritten as

(4, UT) - Oo(u) + <a(T)> P ( 1 ) ( , U , )

Z.0
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Substituting into (5b) we find for the perturbative term, the equation

aO(i •30(i) 3P° '..
aT + ___V + Cos u 0 (9) "

The solution is .? h

. - d4 !L cos 1v('1:.::°:

Using the second relation in Eq. (5a), we can perform the integral ;"-°-

obtaining ..

-04T -<a> Wi + Ci(PUT) -sin} (10)0 Cs

The electron distribution function in first order in <a(z)>. - , '

IV. SMALL SIGNAL GAIN

By definition the small-signal gain is the relative power variation

P -p a2 dS - f a 2 dS
G out in i0 (

P 2
Pin fai dS

where a and ai are respectively the dimensionless output and input field.

00To calculate the final field a ° we use Eq. (6) obtaining

1

a 0 a-j dT <cosw> (12)

0. .6%
% %

- - - L
U
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We assume the initial electron beam to be monochromatic in energy; therefore

the zero-order distribution function o must be a constant, sharp-defined

function of the generalized velocity u along the interaction region.

We write the initial electron distribution as,

with

q
Uo + > V 0 2 tan (14)

where we have approximated u taking the average value of the time

derivative of the gaussian phase <;'> over the length of the wiggler.

This approximation is consistent with our previous discussion for

handling the time-dependent gaussian amplitude. Since we know the electron

distribution function, it is straightforward to compute the phase

distribution

<cos > =J f d, du cos, p(p,u,T) (15)

The variation in the field amplitude due to the perturbed part of the

electron distribution, is 6a; hence we can write

2 2 '46a a i + 2a 6& (16)

i%

"d ,% ,o
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with

Sa =T W Jt I4tCos U.z -sin 4-(17)

0 0

After performing the integration we get 4.,

15a - j <a> ( 2  2 cosv w~ sin uji, T1 )~~

(18)

where g(p is the usual lineshape function f or the gain. We recall
0

that the variation of the field 6a is defined over the transverse area

Z of the electron beam. Combining (16) with (11), we find for the opticale

gain

2a 6a
C 1e (19)

dSa

Introducing explicitly the electron current I

eEBL X
-0 0

~ e 37I
(Y m)3cl

the averaged amplitude

<a> -2 --E sinh 1 q
q

and the input flux irw /2 - /q. We obtain the final expression for the

small signal gain.

4.%
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2 22 sinh q
G 32'eNK I g(.o ) (20)

2 21 0'
y mc (1+K2) 'i qai LL

We point out the following features in Eq. 20,

a) the functional form of the gain is given by g(po ), the usual lineshape

0

function; the gaussian beam only introduces a shift of the entire curve

towards higher values of the detuning parameter 'j as shown by Eq. 14.

b) the function in square brackets is a slowly varying function of q

(Figure 2) reaching a maximum for q - 3. This value of q will optimize

the design of an FEL resonator. The shift of the gain curve toward

higher values of v is approximately linear with q.
0

We remark that the classical gain formula

/2 -1 2.
S~ -- tan -

1G) d (2 2' (21)
v -TV

tan 2

in Eq. 20 is the result of our approximation of replacing the amplitude

and phase of the radiation field by their averages <a(z)> and <O(z)>

over the length of the undulator.

These results coincide with those of references 2 and 3. In addition

in those papers it was shown that the gain curve is slightly distorted

and that the absorption maximum is larger than the gain maximum.

V. CONCLUSIONS

We have presented an analytical expression for the FEL small-signal

gain in the presence of a gaussian mode. The gain curve is shown to be
.,U



shifted and distorted with respect to the, by now, classical l-d formula.

The maximum gain increases (linearly for q P 0) with q reaches a maximum

and then decreases; q z 3 is the optimum value to be used in the . -
design of FEL resonators. The shift of the gain curve is also linear with

q and changes substantially its rate of change at q 3. All these results
4

are in fairly good agreement with previous works.
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FIGURE CAPTION

Figur e I. si nh ( 2) vs. q. As shown i n Eq. 0, the maximum gai n

N is Xoprtional to this ampl.itude factor.
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