
AD-A164 427	R SEVE POSTOR	N POINT Aduate S 86-003PR	SMOOTH Chool	ING PR Monter	OG ran Ey Ca	FOR N J B	UNES D	ATA(U) JAN 8	NAVA 16	L 1/1
UNCLASSIFIED	Nr 355							F/G 9	9/2	NL
	• , ,									
										END Homen

MICROCOPY RESOLUTION TEST CHART NATIONAL BUP 11 OF STANDARDS-1963-A

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral R. H. Shumaker Superintendent

D. A. Schrady Provost

Reproduction of all or part of this report is authorized.

This report was prepared for Naval Undersea Warfare Engineering Station by:

TYSVER в.

Adjunct Research Professor Department of Operations Research

Reviewed by:

and Wand

CALAN R. WASHBURN Chairman Department of Operations Research

Released by:

KNEALE T. MARSHALL

Dean of Information and Policy Sciences

LINCLASSIFIED	AD-	A1644	27			38
	REPORT DOCUM	MENTATION	PAGE			
a RE-ORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS			3.44
UNCLASSIFIED		3 DISTRIBUTION	AVAILABILITY	OF REPORT		
DECLASSIFICATION / DOWNGRADING SCHEDU		Approved unlimited		release; o	istribution	<u></u>
PERFORMING ORGANIZATION REPORT NUMBER	R(S)	5 MONITORING	ORGANIZATION	REPORT NUMBE	R(S)	
NPS55-86-003PR	60 OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORG	ANIZATION		
Naval Postgraduate School	(if applicable)	Naval Und	lersea Warf	are Enginee	ering Station	
c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit				- 37,5
•			WA 98345	,		
Monterey, CA 93943-5100		Neypuru,	n/1 30343			1.1
Ba. MAME OF FUNDING/SPONSORING ORGANIZATION	BD. OFFICE SYMBOL (If applicable)	9 PROCUREMEN NIF O/H	TINSTRUMENTI		NUMBER	
Bc. ADDRESS (City, State, and ZIP Code)	L	10 SOURCE OF	UNDING NUMB	RS		
		PROGRAM ELEMENT NO.	PROJECT NO	TASK NO.	WORK UNIT ACCESSION NO. MP.700001	
1 TITLE unclude Security Classification)		I	J		<u></u>	
A SEVEN POINT SMOOTHING PROGRA	M FOR NUWES DAT!	1			i	
2 PERSONAL AUTHOR(S)		` <u>`</u>			 •	
Tysver_1_R			<u></u>			
3a. TYPE OF REPORT 13b. TIME CO Project FROM	DVERED TO	14 DATE OF REPO 1986 Janua		n, Day) 15. PAG	SE COUNT	منڈھ میں ا
6 SUPPLEMENTARY NOTATION		1500 04144		•	<u></u>	
					:	
7 COSATI CODES	18. SUBJECT TERMS (Continue on revers	e if necessary ai	nd identify by b	lock number)	
FIELD GROUP SUB-GROUP	Least Square	es, Regressio				
	Polynomials	-		_ .		
3 ABSTRACT (Continue on reverse if necessary	and identify by block r	number)				- 1 -
The BASIC program presented in polynomial of order 1, 2, or 3 an estimate for the actual val and a Figure of Merit to provi	to fit a 7-poin ue of a coordina	nt segment of te at the mi	F NUWES dat dpoint of	a. It esta the data se	ablishes egment	
		21. ABSTRACT SE	CURITY CLASSIF	ICATION		

I. INTRODUCTION

であるというが、

 \sim) The proposed BASIC program for smoothing NUWES data uses the Least-Squares Method to fit a polynomial to a 7-point data segment. It determines the best fitting polynomial of order 1, 2, or 3 and establishes an estimate for the coordinate at the time in the center of the data segment. It also establishes a Figure-of-Merit (FM) for that estimate.

This program is designed specifically for treatment of outliers and missing points but it can also be used for smoothing of other observations. It is intended to be used as the basic smoothing program for NUWES data and to provide a value of FM for each observation time for feedback to the Instrumentation Department. Values of the FM's also provide information for other users of the smoothed data on it's quality (i.e., how well the smoothed values can be expected to represent the actual path of a vehicle;).

This report is intended to supplement the Project Report entitled "A Figure of Merit for NUWES Data". (Ref. 7)

II. DATA PREPARATION

It is assumed that the input data has been listed in the following format

Time, Array, x comp, y comp, z comp.

Each component (x,y,z) is smoothed separately and the Array identification is not used in the smoothing process so a separate file can be constructed for each component with the Array column replaced by a column for identification of Questionable Points (QP), i.e., for identification of Missing Points and Outliers. The identification numbers are specified with Array A(6,5) which is presented in the next section of this report. The proposed input format is

Time, QP, XO

where XO is the observed value of x at the corresponding observation time. Two preliminary steps must be taken before the smoothing can be performed. These are:

A. Treatment of Missing Points. Since the program is designed to treat 7-point data segments containing no missing points, the data must be screened and temporary values provided at each missing point. These temporary values are established by taking a linear average of adjacent observational values. The following formulae are used to supply the temporary values:

ي....

Distribution /

Di t

Availability Codes

1. For a single missing value at time t when there are observed values xo(t-1) and xo(t+1) the temporary value is

 $x_0(t) = (x_0(t-1) + x_0(t+1))/2.$

2. For adjacent missing values xo(t) and xo(t+1) when there are observed values xo(t-1) and xo(t+2) the temporary values are

 $x_0(t) = (2*x_0(t-1) + x_0(t+2))/3,$ $x_0(t+1) = (x_0(t-1) + 2*x_0(t+2))/3.$

3. For three adjacent missing values xo(t-1), xo(t), and xo(t+1) when there are observed values xo(t-2) and xo(t+2) the temporary values are

xo(t-1) = (3*xo(t-2) + xo(t+2))/4,xo(t) = (xo(t-2) + xo(t+2))/2,xo(t+1) = (xo(t-2) + 3*xo(t+2))/4.

4. For four adjacent missing values xo(t-1), xo(t), xo(t+1), and xo(t+2) when there are observations xo(t-2) and xo(t+3) the temporary values are

5. When there are more than four adjacent missing values in a 7point data segment the Least-Squares Method cannot be used to establish an estimate for the midpoint of the segment. (It could still be possible, in some cases, to smooth at other points than the midpoint of the segment. This has not been considered as it would require considerable extension of the smoothing program and its desirability would be questionable.)

B. Identification of Outliers. The procedure for identification of Outliers involves the use of Sequential Differences (Ref.2 and Ref.5). It will not be discussed in detail here. A Fourth Order difference of magnitude 50 or greater is considered an indicator that the corresponding value of xo is a potential outlier. When there are adjacent potential outliers, the one with the greatest magnitude of Fourth Order difference is identified as the actual outlier and assigned the appropriate number in the second column of Array A(4,5). After smoothing this outlier, it might be prudent to recalculate the Sequential Differences with the outlier replaced by its smoothed value xe(t) to give assurance that the adjacent potential outliers will also be identified as outliers are, hopefully, rare and should be flagged for special treatment.

III. THE SMOOTHING PROGRAM

A. ARRAYS

なるようなななななない。「なったい」というです。

The program presented in this section was written in the BASIC Language for use on an IBM PC. It uses 6 Arrays which will be discussed in the order that they appear in the program.

The first Array to be used is A(6,5). It is shown below

ARRAY A(6,5)

i∖j	0 T	1 QP	2 X0	З XM	4 XE	5 RES
0	-3	(0)	xo(-3)	xm(-3)	xe(-3)	r (-3)
1	-2	(-1)	×o(-2)	xm(-2)	×e(-2)	r (-2)
2	-1	(-2)	×0(-1)	×m(-1)	xe(-1)	r(-1)
3	0	(-10)	X0(0)	×m(0)	х е (О)	r(0)
4	+1	(-11)	xa(+1)	xm(+1)	xe(+1)	r(+1)
5	+2	(-12)	xo(+2)	xm(+2)	xe(+2)	r(+2)
6	+3		xa(+3)	xm(+3)	xe(+3)	r (+3)

QUESTIONABLE POINTS (QP)

0 xo is legitimate observed value
-1 xo is unscheduled missing point
-2 xo is scheduled missing point
-10 xo is identified as an outlier
-11 xo is an unscheduled missing point and an outlier
-12 xo is a scheduled missing point and an outlier

Smoothing of a 7-point data segment is performed to establish the estimate and FM for the midpoint of the segment. The times in the first column of Array A is obtained by subtracting the time of this midpoint from the observation times of the data segment so that column 1 of this array will always be the same for all data segments. The second column of Array A provides the identification of the QP's. A separate identification for scheduled missing points may be omitted but is included for potential future use. The XO's (column 3) are the input observed values including the temporary values for the missing points. The other columns of this array will be discussed as they appear in the smoothing program.

Array T(5) provides the table values of the Student-T distribution that are needed to establish the Figure-of-Merit (FM) which accompanies the estimate xe at the midpoint of the data segment. As discussed in Reference 7, the number 'infinity' cannot be used by a computer and hence it is arbitrarily replaced by the number 99.99 for T(0). This value is large enough to produce a large value of FM and hence to indicate low quality of the estimate it accompanies. The argument j in T(j) ranges from 0 to 5 and is the appropriate number of 'degrees-of-freedom' produced in Array B(2,3). This will be discussed later. Array T(5) is shown below.

ARRAY T(5)

j 0 1 2 3 4 5 T(j) 99.99 6.314 2.920 2.353 2.132 2.105

ARRAY B(2.3)

i \ j	0	1	2	3
	к	DFK	SDRK	FMK
0	1	DF1	SDR1	FM1
1	2	DF2	SDR2	FM2
2	3	DF3	SDR3	FM3

In this array K is the order of the polynomial being considered (k=1 for linear, k=2 for quadratic, and k=3 for cubic). DFK is the 'degrees of freedom' available for fitting a polynomial of degree k and is established by first determining the number NS (element C(3) in Array C(8)) and then reducing this number by the number of parameters (k+1) in the polynomial. Thus

NS = N - (number of QP's in column A(1,j)) = C(3) - (number of negative entries in column A(1,j))

with, initially,

C(3) = 7 = number of points in the data segment.

Columns 2 and 3 are

B(i,2) = estimate of the standard deviation of the noise in the observations (the xo's) when a polynomial of order k is fitted to the data segment

and

```
B(i,3) = the Figure-of-Merit for the estimate xe(0).
```

ARRAY S(S)

ز	0	1	2	3	4	5
S(j)	xav	SSX	51x	s2x	s3x	s3x1

The element $S(0) \approx xav$ is the average of the xo's. It is needed to produce the xm's (column 3 in Array A). The other elements of S are used to calculate the values for the SDRK's and the FMK's in Array B. The elements of this array must be zeroed at the start of each smoothing cycle (line 295) of the program) since they contain cumulations of product of the data.

ARRAY D(3)

j O 1 2 3 D(j) bkO bk1 bk2 bk3

This array is for the coefficients of the polynomial with the order k selected to fit the data segment. Its elements must be zeroed before each iteration.

ARRAY C(8)

į	0	1	2	3	4	5	6	7	8
					ITER				

This array provides the final output of the smoothing program. In addition to the time (C(0)) for which the smoothing was performed and the observed or temporary value of xo (C(2)) at that time, it identifies the nature of the QP (C(1)) and the number of legitimate observations in take It reports the number of iterations of the smoothing process data segment. (C(4)) and the order of the polynomial used to fit the data. It contains the smoothed value XE (C(6)) and the accompanying value of FM(C(8)). Finally, it includes the residual error (C(7)) which is the difference between the original value of xo (C(2)) and the estimated value (C(6)). Note that this residual error can differ from the value of the residual error r(0) in cell A(3,5) of Array A when smoothing is iterated. For example, if A(3,1) (and C(1)) has the value -10, then the residual in C(7)is the difference between the outlier value of xo in C(2) and the estimated value xe in C(6) whereas the residual error in A(3,5) is the difference between the estimated value xe(0) in cell A(3,4) after the last iteration and the value of xo(0) in cell A(3,2) which is the value of xe(0) in cell A(3,4) from the preceding iteration.

B. THE PROGRAM

an and all all such show the such as the state of the second second second second second second second second s

A listing of the BASIC smoothing program follows. BASIC PROGRAM LS7T3.DOC 05 REM LS7T3.DOC 17 Feb., 1985 10 DIM A(6,5), B(2,3), C(8), D(3), D(5), T(5) 20 DATA -3, -2, -1, 0, 1, 2, 3 30 FOR i=0 TO 6 40 READ A(1,0) 50 NEXT i 55 REM STUDENT T 60 DATA 99.99, 6.314, 2.920, 2.353, 2.132, 2.105 70 FOR j=0 TO 5 80 READ T(j) 90 NEXT j 100 C(3) = 7105 REM ENTER SMOOTHING TIME 110 C(0) = 2160115 REM ENTER QUESTIONABLE POINTS (QP's) 120 DATA -10, 0, 0, -2, 0, 0, 0 130 FOR i=0 TO 6 140 READ A(1,1) 150 NEXT i 160 C(1) = A(3,1)165 REM ENTER OBSERVED XO 33267.7, 33313.5, 33374.2, 33434.8, 33510.5, 170 DATA 33238.6. 33592.5 180 FOR i=0 TO 6 190 READ A(1,2) 200 NEXT 1 210 C(2) = A(3,2)215 REM DETERMINE NS 220 FOR i=0 TO 6 230 IF A(i,1)<0 THEN C(3)=C(3)-1 ELSE C(3)=C(3) 240 NEXT i 245 REM CHECK IF SMOOTHING POSSIBLE 250 IF C(3)<3 THEN GO TO 260 ELSE GO TO 290 260 C(4) = 0 : C(5) = 0 C(6) = C(2)270 C(7)=0 : C(8)=T(0) 280 GO TO 1050 290 8(4)=0 295 REM START SMOOTHING 'ITERATION 300 C(4)=C(4)+1 305 REM ZERO S AND D CELLS 310 FOR j=0 TO 5 320 S(j)=0 330 NEXT j 340 FOR j=0 TO 3 350 D(j)=0 360 NEXT j 363 REM PRELIMINARY CALCULATIONS 366 REM CALCULATE XAV AND XM's 370 FOR i=0 TO 6

380 S(0)=S(0)+A(i.2) 390 NEXT i 400 \$(0)=\$(0)/7 ' XAV 410 FOR i=0 TO 6 420 A(i,3) = A(i,2) - S(0)' XM 430 NEXT i 435 REM CALCULATE SUMS OF PRODUCTS 440 FOR i=0 TO 6 450 S(1)=S(1)+A(i,3)+A(i,0)'SSX 'S1X 460 S(2) = S(2) + A(i,3) + A(i,0)470 S(3)=S(3)+A(i,3)*(A(i,0)^2) 'S2X 480 $S(4)=S(4)+A(i,3)*(A(i,0)^3)$ 'S3X 490 NEXT i 500 S(5) = (28*S(4) - 196*S(2))/28'S3X1 505 REM CALCULATE FM1 'DF1 510 B(0,1) = C(3) - 2520 SSR1=(28*S(1)-S(2)^2)/28 530 B(0,2) = SQR(SSR1/B(0,1))'SDR1 540 B(0,3)=B(0,2)*T(B(0,1))/SQR(C(3))'FM1 545 REM CHECK QUADRATIC FIT 550 B(1,1)=C(3)-3'DF2 560 IF B(1,1)<1 THEN GO TO 690 ELSE GO TO 570 565 REM CALCULATE FM2 570 SSR2=(84*SSR1-S(3)^2)/84 580 B(1,2) = SQR(SSR2/B(1,1))'SDR2 590 B(1,3)=B(1,2)*T(B(1,1))/SQR(C(3) 'FM2 595 REM CHECK CUBIC FIT 'DF3 600 B(2,1)=C(3)-4610 IF B(2,1)<1 THEN GO TO 620 ELSE GO TO 640 620 B(2,2)=0 : B(2,3)=T(0)630 GO TO 670 635 REM CALCULATE FM3 640 SSR3=(216*SSR2-S(5)^2)/216 650 B(2,2)=SQR(SSR3/B(2,1)) 'SDR3 660 B(2,3)=B(2,2)*T(B(2,1))/SQR(C(3))'FM3 665 REM SELECT POLYNOMIAL 670 IF B(2,3)<B(1,3) AND B(2,3)<B(0,3) THEN GO TO 850 ELSE GO TO 680 680 IF B(1,3)<B(0,3) THEN GD TO 770 ELSE GD TO 690 685 REM FIT LINEAR 690 C(5)=1 : C(8)=B(0,3)'k=1 FM=FM1 695 REM ESTABLISH COEFFICIENTS 700 D(1)=S(2)/28 1621 705 REM DETERMINE XE, RES 710 FOR i=0 TO 6 720 A(i,4)=S(0)+D(1)*A(i,0)'xe 730 A(i,5) = A(i,2) - A(i,4)'res 740 NEXT i 750 C(6) = A(3,4) : C(7) = C(2) - C(6)760 GO TO 930 765 REM FIT QUADRATIC 770 C(5)=2 : C(8)=B(1,3)'k=2 FM=FM2

at and one had not not not not not the tab. The rate

7

.

775 REM ESTABLISH COEFFICIENTS 780 D(2) = S(3)/84 : D(1) = S(2)/28 : D(0) = -4*D(2)785 REM DETERMINE XE, RES 790 FOR i=0 TO 6 800 $A(i,4)=S(0)+D(0)+D(1)*A(i,0)+D(2)*(A(i,0)^2)$ XP 810 A(i,5) = A(i,2) - A(i,4)'rae 820 NEXT i 830 C(6) = A(3,4) : C(7) = C(2) - C(6)840 GO TO 930 845 REM FIT CUBIC 850 C(5)=3 : C(8)=B(2,3) 'k=3 FM=FM3 855 REM ESTABLISH COEFFICIENTS 860 D(3)=S(5)/216 : D(2)=S(3)/84 870 D(1)=(S(2)-196*D(3))/28 : D(0)=-4*D(2) 875 REM DETERMINE XE RES 880 FOR i=0 TO 6 890 $A(i,4) = S(0) + D(0) + D(1) * A(i,0) + D(2) * (A(i,0)^2) + D(3) * (A(i,0)^3)$ 900 A(i,5)=A(i,2)-A(i,4)'røs 910 NEXT i 920 C(6) = A(3,4) : C(7) = C(2) - C(6)925 REM TERMINATE IF NOT QP 930 IF A(3,1)=0 THEN GO TO 1050 ELSE GO TO 940 935 REM CHECK RESIDUALS 940 FOR i=0 TO 6 950 IF A(1,i)<0 AND ABS(A(i,5))>1 THEN GO TO 980 ELSE GO TO 960 960 NEXT i 970 GO TO 1050 980 IF C(4)>9 THEN GD TO 1050 ELSE GD TO 990 990 FOR i≈0 TO 6 1000 IF A(i,1)<0 THEN A(i,2)=A(i,4) ELSE A(i,2)=A(i,2) 1010 NEXT i 1020 GO TO 300 1045 REM TERMINATE 1050 FOR j=0 TO 8 1060 LPRINT C(j); 1070 NEXT j 1080 LPRINT 1090 STOP

as a second a second a second

C. DISCUSSION OF THE PROGRAM

The smoothing program can now be discussed in some detail.

STEP 1. Enter the segment data.

Before starting the smoothing the pertinent information on the data segment must be entered. This includes the time (program line 110), the QP's (line 120), and the observed xo's (line 170).

STEP 2. Determine NS.

This is the number of legitimate observations in the segment. (lines220-240)

STEP 3. Check if smoothing possible.

If NS $\langle 3$, then even linear polynomial cannot be fitted to the data segment by the Least-Squares Method. (lines 250-280) If no fit is possible, then terminate (STEP 15).

STEP 4. Zero iteration counter and cells in Arrays S and D.

S cells cumulate data products and D cells contain parameter coefficients. (lines 290-360)

STEP 5. Calculate xav (S(O)) and xm's (A(i,3).

xav is the average of the xo's and the xm's are the differences xm(j)=xo(j)-xav. This reduces computational round-off error. (lines 370-430)

STEP 6. Calculate other S(j)'s.

These are sums of products of data values. (lines 440-500)

STEP 7. Determine capability of linear fit.

Establish DF1 (B(0,1)), SDR1 (B(0,2)), and FM1 (B(0,3)). (lines 510-540)

STEP 8. Check quadratic fit.

If NS < 4 then DF2 < 1 and no quadratic fit is possible. Otherwise establish SDR2 and FM2. (lines 550-590)

STEP 9. Check cubic fit.

If NS \leq 5 then DF3 \leq 1 and no cubic fit is possible. Otherwise establish SDR3 and FM3. (lines 600-660)

STEP 10. Select polynomial for fitting data segment.

If FM3 < FM2 and FM3 < FM1 then select cubic, set k = C(5) = 3 and fit cubic in STEP 13. Otherwise, if FM2 < FM1 then select quadratic, set k = C(5) = 2 and fit quadratic in STEP 12. Finally, if neither of the above then select linear, set k = C(5) = 1 and fit linear in STEP 11. (lines 670-680).

STEP 11. Fit linear polynomial.

Establish linear coefficients (D(i)'s) and calculate xe(i)'s and r(i)'s, also xe(0) in cell C(6) and res in cell C(7). (lines 690-750)

STEP 12. Fit cubic polynomial.

Establish quadratic coefficients and calculate estimates and residuals. (lines 770-830)

STEP 13. Fit cubic polynomial.

Establish cubic coefficients and calculate estimates and residuals. (lines 850-920)

STEP 14. Check QP's.

If xo(0) is legitimate observation (A(3,1) = 0) then terminate (STEP 15). Otherwise check number of iterations (C(4)). If C(4) = 10 then terminate. Finally, check residuals at times where A(i,1)<0 (at missing points and outliers). If any of these are greater than unity in magnitude then repeat the smoothing (STEP 4). If none of them are then terminate. (lines 930-1020)

STEP 15. Terminate.

Print Array C and STOP. (lines 1050-1090)

IV. APPLICATION

WWWWWWWWWWWWWWWWWW

The example used to illustrate this smoothing program is the sample selected consists of 40 points from times t=2121 to t=2160. Additional points at both ends of the sample are required in order to smooth at these times. Appropriate inputs for this sample are given in the first four columns of Table 1. It is convenient to have the contents of Figure 1 on the monitor when performing the data smoothing. Inputs can then be changed easily by making the appropriate changes in lines 110, 120, and 170. This is particularly convenient when smoothing values other than outliers or missing values. The computer printout of the results of smoothing this sample are shown in Figure 2 and summarized in the last three columns of Table 1.

It is of some interest to compare the results in Table 1, established using the BASIC Program LS7T3.BAS on an IBM PC, with the results given in Table 1 of Reference 7 which were established using a Texas Instruments calculator (TI-59). The differences can be attributed to the differences in the number of places used in the computations.

Operation of the smoothing program can be examined in more detail by revising the program to version LS7T4.BAS. Application of this revised program to the treatment of the missing point at t=2160 is shown in Figure 3a. This figure presents the elements of the other arrays as well as Array C. Several aspects of the smoothing of this missing point are discussed below.

- 1. The initial value value for xo(0) at time t=2160 which is entered in A(3,2) is the temporary value xo(0)=(xo(-1)+xo(+1))/2=33374.2. This value also appears in C(2) of the output. The value shown in A(3,2) in the printout of Array A is the value of xe(0) in A(3,4) from the next to last iteration.
- 2. The initial value of xo(-3) entered in cell A(0,2) is the smoothed value for the outlier at t=2157 which was established when that outlier was smoothed. Again, the value in A(0,2) in the printout of Array A is the value of xe(-3) in A(0,4) from the next to last iteration.
- 3. The residual error r(0)=0.184 in A(3,5) is the difference between the values of xo(0) in A(3,2) and xe(0) in A(3,4) whereas the residual error in C(7) is the difference between the temporary value of xo(0) initially entered in A(3,2) and in C(2) and the smoothed value xe(0) in A(3,4) and in C(6).
- 4. In each iteration of the smoothing process the value of $x_0(0)$ in A(3,2) was replaced by the estimate $x_0(0)$ in A(3,4). The difference r(0) shown in A(3,5) is $r(0)=x_0(0)-x_0(0)$ which is displayed in Array A as A(3,5)=A(3,2)-A(3,4)=0.2. The residual error shown in C(7) is the difference between the origninal value in A(3,2) which is saved in C(2) and the final estimate $x_0(0)$ in C(4) and in A(3,4) so that it is the difference between the initial temporary value and the final smoothed value,

C(7) = C(2) - C(6) = 4.8.

5. In the same way, the residual error in A(-3,5) is the difference

A(-3,5)=A(3,2)-A(3,4)=0.1

whereas the fitting error at t=2157 is the difference between the initial value in A(-3,2) which is the previously smoothed value (and also the input value) and the smoothed value of xe(-3) in A(-3,2) so that

3.3.4 (S.M.S. S. Y. Y.

RES(-3)=33238.6-33234.5=4.1.

The final estimate xe(-3) in A(-3,4) is consistent with the 7-point data segment centered at t=2160 whereas the initial value xo(-3) is consistent with the 7-point data segment centered at t=2157. This brings up the question of whether previously smoothed values should be iteratively smoothed when smoothing other points. This warrants further investigation.

TREATMENT OF MISSING POINT AT T = 2160

INPUT OP'S -10 0 0 -2 0 0 0 INPUT XO'S 33238.6 33267.7 33313.5 33374.2 33434.8 33510.5 33592.5

ARRAY C (OUTPUT) 2160 -2 33374.2 5 3 3 33369.4 4.804688 1.941253

ARRAY A

6321222

-3	~10	33234.56	-154.457	33234.5	.0625
-2	0	33267.7	-121.3203	33267.94	2421875
-1	0	33313.5	-75.51953	33313.25	.25
0	-2	33369.58	-19.44141	33369.4	.1835938
1	0	33434.8	45.78125	33435.35	5507813
2	0	33510.5	121.4805	33510.1	.4023438
3	0	33592.5	203.4805	33592.6	1015625

ARRAY B

Ó.	3	26.00435	27.36421
0	2	1.84462	2.408822
0	1	.687484	1.941253

ARRAY S

1.00

33389.02	102914.5	1680.715	412.1133	11728.02	-36.98438
ARRAY D					
-19.62444	61.2241	4.906111	171224		

TABLE 1 Smoothing Sample NWS2AX1

т	COLL	xo	QP	XE	REŞ	FM
2117	3	33533.2	0	-		-
2118	3	33567.7	ō	-	-	-
2119	3	33603.6	ò	-	_	-
2120	m	(33634.1)	-2	33634.9	(-0.8)	1.51
2121	3	33664.4	ō	33665.3	-0.7	1.53
2122	3	33695.0	0	33693.5	1.5	1.41
2123	3	33718.5	0	33720.9	-2.4	2.41
2124	3	33745.8	0	33744.6	1.2	1.64
2125	3	33767.1	0	33764.6	2.6	3.02
2126	3	33780.7	0	33783.7	-3.0	3.13
2127	3	33798.0	0	33799.7	-1.7	3.47
2128	m	(33810.9)	~2	33816.3	(-5.4)	5.17
2129	3	33823.7	0	33828.1	-4.4	4.73
2130	3	33827.3	0	33821.6	5.7	8.35
2131	3	33794.2	0	33786.6	7.6	11.23
2132	3	33726.1	0	33724.1	2.1	2.46
2133	3	33637.7	0	33640.1	-2.4	2.62
2134	12	33556.5	0	33556.9	-0.4	5.07
2135	12	33486.6	0	33490.0	-3.4	3.45
2136	m	(33466.5)	-12	33452.3	(14.2)	4.61
2137	3	33446.5	0	33451.2	-4.7	5.16
2138	3	33485.1	0	33489.9	-4.8	8.82
2139	3	33559.3	0	33560.9	-1.6	3.44
2140	3	33650.2	0	33649.8	0.4	1.67
2141	3	33738.5	0	33734.5	4.0	5.50
2142	3	33799.0	0	33795.6	3.4	7.38
2143	3	33825.8	0	33823.1	2.7	2.48
2144	m	(33798.7)	-12	33813.0	(-14.3)	2.93
2145	3	33771.6	0	33767.4	4.2	6.62
2146	3	33698.3	0	33696.5	1.8	5.11
2147	3	33607.7	0	33614.6	-6.9	9.35
2148	12	33528.5	0	33530.0	-1.3	3.59
2149	12	33455.2	0	33451.7	3.5	3.84
2150	3	33381.2	0	33383.4	-2.2	2.74
2151	3	33323.5	0	33325.2	-1.7	3.27
2152	m	(33285.1)	-2	33277.9	(7.2)	2.36
2153	3	33246.6	0	33243.5	3.1	3.02 4.60
2154	3	33219.5	0	33222.1	-2.6	4.60
2155	3	33212.5	0	33214.0	-1.5	2.63
2156	2 2	33221.0	0	33218.8	2.2 34.9	2.54
2157	3	33273.5	-10	33238.6		2.51
2158	3	33267.7	0	33269.7	-2.0 0.4	3.27
2159	3	33313.5	0	33313.1 33369.4	(4.8)	1.94
2160	m 7	(33374.2)	-2		(4.8)	4 e 7 4
2161	3	33434.8 33510 5	0	-		
2162	3	33510.5 33592.5	0	-	_	-
2163	-	10 - 11 - 11 - 10 - 10 - 10 - 10 - 10 -	0			

ì

Ū.

FIGURE 1 BASIC SCREEN FOR SMOOTHING DATA

LPRINT

"SAMPLE NWS2AX1"

"OUTLIERS"

LPRINT

LIST 110 110 C(0)=2160 0

LIST 120 120 DATA -10, 0, 0, -2, 0, 0, 0 0 LIST 170 170 DATA 33238.6, 33267.7, 33313.5, 33374.2, 33434.8, 33510.5, 33592.5 0

RUN

LPRINT "MISSING POINTS"

LPRINT "OTHER POINTS"

Ĺ

ļ.

TREATMENT OF SAMPLE NWS2A1X USING LS7T3.BAS

OUTLIERS								
2136	-12	33466.5	6	4	3	33452.28	14.22266	4.610405
2130	-12	33789.7	6	4	3	33812.96	-14.25781	2.9266.79
2157	-10	33273.5	5	4	2	33238.63	34.875	2.541182
2137	-10	332/3.3	5	4	2	33230.03	34.8/3	2.341162
MISSING PO	INTS							
2120	-2	33634.1	6	1	2	33634.88	7734375	1.475461
2128	-2	33810.0	6	3	3	33816.34	-5.4375	5.16895
2152	-2	33285.1	6	3	2	33277.93	7.175782	2.356863
2160	-2	33374.2	5	3	3	33369.4	4.804688	1.941253
OTHER POIN								
2121	0	33664.6	6	1	2	33665.28	6757813	1.526676
2122	0	33695	6	1	2	33693.54	1.460938	1.408332
2123	0	33718.5	6	1	2	33720.87	-2.371094	2.412839
2124	0	33745.8	7	1	2	33744.58	1.226563	1.636923
2125	0	33767.1	6	1	2	33764 .55	2.550781	3.020508
2126	0	33780.7	6	1	2	33783.69	-2.988281	3.133061
2127	0	33798	6	1	2	33799.72	-1.722656	3.467283
2129	0	33823.7	6	1	3	33828.12	-4.421875	3.467283
2130	0	33827.3	6	1	3	33821.64	5.664063	8.346241
2131	ō	33794.2	6	1	2	33786.6	7.605469	11.22599
2132	ō	33726.1	7	1	3	33724.05	2.050781	2.459811
2133	ō	33637.7	6	1	3	33640.13	-2.433594	2.61768
2134	õ	33556.5	6	1	3	33556.91	40625	5.074126
2135	õ	33486.6	6	1	3	33489.96	-3.359375	3.445967
2137	õ	33446.5	6	1	2	33451.15	-4.652344	5.162057
2138	ŏ	33485.1	6	i	Ĵ	33489.95	-4.792969	8.815254
2130	ŏ	33559.3	6	1	3	33560.92	-1.617188	3.443657
2140	ŏ	33650.2	7	1	3	33649.8	.3984375	1.671507
2140	ŏ	33738.5	6	1	3	33734.47	4.0312575	5.498794
2142	ŏ	33799	6	1	3	33795.56	3.445313	7.382694
	0	33825.8	6	1	2			
2143	-				3	33823.13	2.671875	2.47908
2145	0	33771.6	6	1		33767.36	4.242188	6.616293
2146	0	33698.3	6	1	3	33696.5	1.800781	5.109362
2147	0	33607.7	6	1	3	33614.61	-6.910157	9.347524
2148	0	33528.5	7	1	3	33529.77	-1.269531	3.590484
2149	0	33455.2	6	1	2	33451.71	3.492188	3.838284
2150	0	33381.2	6	1	3	33383.39	-2.1875	2.737984
2151	0	33323.5	6	1	2	33325.17	-1.664063	3.271418
2153	0	33246.6	6	1	2	33243.54	3.066406	3.016105
2154	Q	33219.5	5	1	2	33222.07	-2.570313	4.597027
2155	0	33212.5	5	1	2	33214.04	-1.542969	4.636977
2156	0	33221	6	1	2	33218.8	2.199219	2.634624
2158	0	33267.7	5	1	2	33269.67	-1.964844	2.507949
2159	0	33313.5	5	1	3	33313.05	.4492188	3.274325

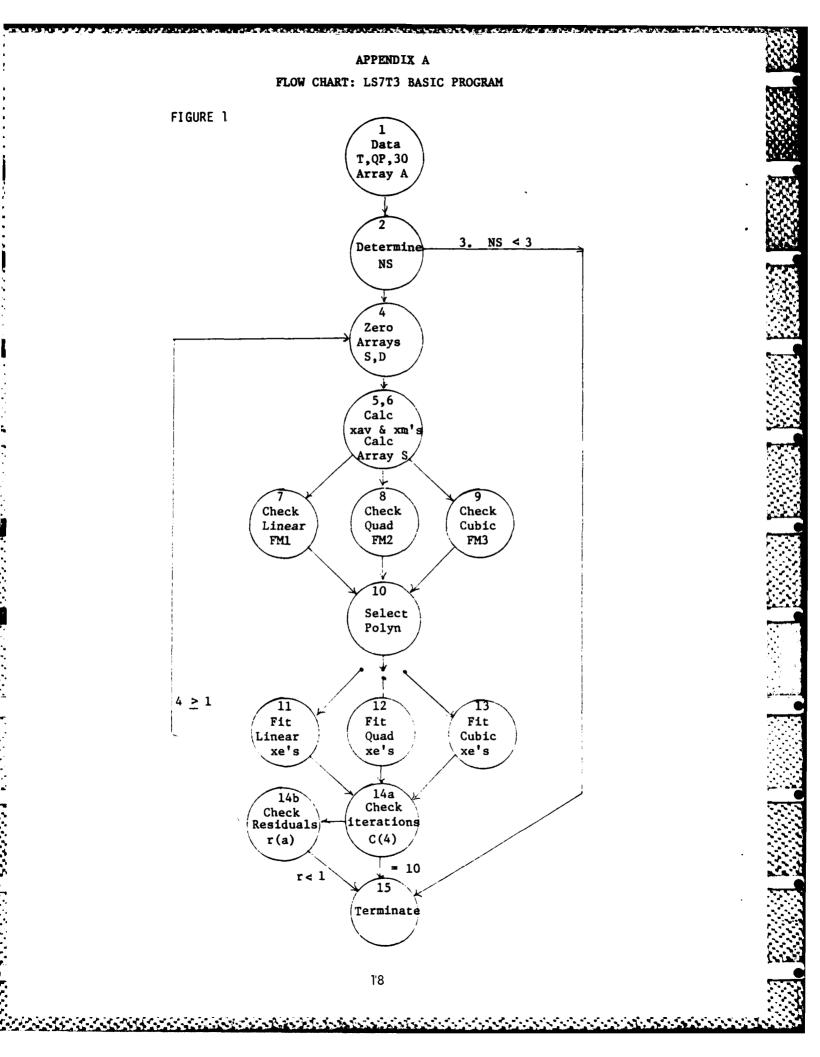
V. CONCLUSIONS AND RECOMMENDATIONS

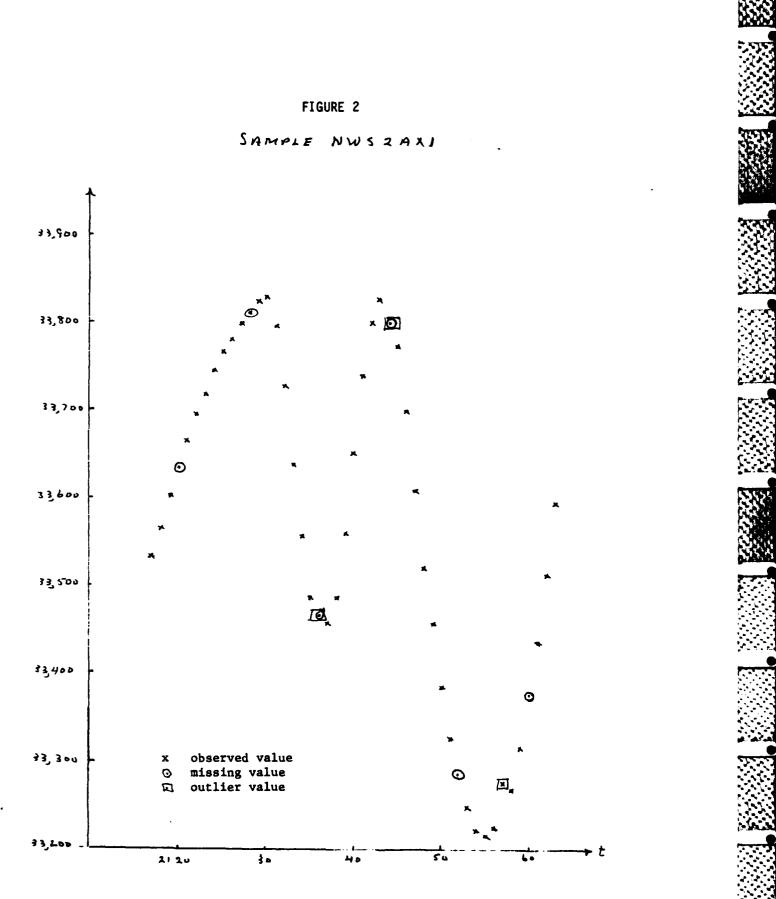
The BASIC program LS7T3.BAS presented in this report uses the Least-Squares Method to select a polynomial of order 1, 2, or 3 to fit 7-point segments of data. It establishes an estimate for the actual value at the midpoint of the data segment and a Figure of Merit (FM) to provide an indication of the quality of that estimate.

A modified version of this program (LS7T4.BAS) is available for a more detailed examination of the application of the program to any 7-point data segment.

It is recommended that this program be used for smoothing NUWES 3-D data. It is also recommended that this program be transferred to a spreadsheet format for use with LOTUS-123 with the intent of using macros to automate its application to the extent possible.

Possible modification of this program to change the treatment of multiple questionable points in a data segment needs further examination as suggested in Section IV.





- 1. J. B. Tysver, "Smoothing 3-D Data for Torpedo Paths", Naval Postgraduate School Technical Report NPS55-78-036pr, May 1978.
- J.B. Tysver, "Use of Sequential Differences in Smoothing 3-D Data", Naval Postgraduate School Technical Report NPS55-79-012pr, May 1979.
- 3. J.B. Tysver, "A 3-D Data Smoothing Algorithm", Naval Postgraduate School Technical Report NPS55-001, January 1981.
- 4. J.B. Tysver, "Selection of Segment Length for Least-Squares Polynomial Smoothing", Naval Postgraduate School Letter Report, January 1982.
- 5. J.B. Tysver, "Analysis of Potential Outliers and Missing Data Points in NUWES Data", Naval Postgraduate School Project Report NPS55-83-029pr, October 1983.
- J.B. Tysver, "Missing Data Points and their Relationship to Distance from Position Location Arrays and to Distance Between Vehicles", Naval Postgraduate School Project Report NPS55-83-036pr,November 1983.
- 7. J.B. Tysver, "A Figure of Merit for NUWES Data", Naval Postgraduate School Project Report

DISTRIBUTION LIST

Commanding Officer Naval Undersea Warfare Engineering Station Keyport, Wa 98345 No. Copies Attn: R.L. Marimon, Code 70 1 CDR Brian Uber, Code 80 1 R.L. Mash, Code 50 1 R. Hellander, Code 51 1 S. McKeel, Code 512 1 P. Hughes, Code 5122 1 K. Herlihy, Code 5122 T. Ward, Code 5122 1 General Administration, Code 01 1 Naval Postgraduate School Monterey, Ca 93943 Attn: Library, Code 142 2 Director of Research, Code 012A 1 Library, Code 55 1 Professor O.B. Wilson, Code 61W1 1 Professor J.D. Esary, Code 55Ey 1 Professor R.R. Read, Code 55Re 1 Professor J.B.Tysver, Code 55Ty 3 Defense Technical Information Center 2 Cameron Station Alexandria, Va 22314

