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W. TECHNICAL SECTION

(I. Abstract

) The overall objective of this poposal is to investi-
gate the robustness to departures from independence of methods
currently in use in reliability studies when competing failure
modes or competing causes of failure associated with'a single
mode are present in a series system. The first specific aim
is to examine the" rror one makes in modeling a series aystem
by a model which assumes statistically independent component
lifetimes when in fact the component lifetimes follow some
multivariate distribution. -The second specific aim is to assess
the effects of the independence assumption on the error in
estimating component parameters from life tests on series
systems. In both cases, estimates of such errors will be deter-
mined via mathematical analysis and computer simulations for

V several prominent multivariate distributions. A graphical dis-
play of the-errors for representative distributions will be
made available to researchers who wish to assess the possible
erroneous assumption of independent competing risks. A third
aim is to tighten the bounds on estimates of component relia-
bility when the risks belong to a general dependence class of
distributions (for example, positive quadrant dependence, posi-
tive regression dependence, etc.). Major decisions involving
reliability ptudies, based on compting risk methodology, have
been made in the past and will contLnue to be made in the future.
This study will provide the user of such techniques with a
clearer understanding of the robus less of the analyses to de-
partures from independent risks, an assumption commonly made
by the methods currently in use.

V.
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I1. Specific Objectives

The overall objective is to investigate the robust-
ness to departures from independence to methods currently in
use in reliability studies when competing failure modes or com-
peting causes of failure associated with a single mode are
present in a series system. We shall also refer to such com-
petitive events as competing risks. The approach will be through
the investigation of certain aspects of specific parametric multi-
variate distributions or by classes of distributions which are
appropriate in reliability analyses when there are competing
risks present.

The specific objectives are:

1) to assess the error incurred in modeling system
life in a series system assumed to have indepen-
dent component lifetimes when in fact the com-
ponent lifetimes are dependent.

2) to assess the error in estimating component param-
eters (i.e., component reliability, mean com-
ponent life, etc.) in a series system employing
either parametric or nonparametric models which
assume independent component failure times when
in fact the lifetimes are dependent and follow
some plausible multivariate distribution.*

3) to derive bounds on component reliability when
the failure modes are dependent and fall in a
particular dependence class (e.g., positive quad-
rant dependence, positive regression dependence,
etc.).

4) to develop tests of independence, based on data
collected from series systems, by making some

:.U restrictive assumption about the structure of the
systems. **

* A plausible parametric multivariate distribution will be
one that satisfies one of the following conditions:

i) the distribution of the minimum of the component
failure times closely approximates widely accept-
ed families of system life distributions.

or ii) the marginal distributions closely approximate
the distributions of component failure times in
the absence of other failure modes.

**This objective has been added to the original objectives be-
cause it answers a natural question raised by our preliminary
investigation.
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ZUX. Zntzoduatdon to Pobeum and Sig nene of Study

avin Weinbe- *(1978) in an edtralcomment in the'
blshd ~prfoeding of a worksh opo virnT.. Dilogi-
calNaad d Cometing Risks noted -thit Jsthe question of

Mting rslks will not quiety. go away: correctios for .cm-
petimg risks zhould be applied routinely to data." Theprbe
of m ,tinZ sks commly arises in.a wide range of experi-
montal 4situatiJons. Although we shall con our atteton
in the following discussion to those situatio involving
series systems in which competing failure modes or competing
causes of fa l associat with a single mode are present,
it is ce y true that we might just- as easily speak of
ctriAls, anal eimnts, or other-me ial and bio-

"logial studies whir. competing events int our study of
t'i 4 a event of... nt .(cf. agokcos (1979).

Coside lecoi or mechanical ystems, such as-
atelite t misson eqpment,. computers, aircraft, missiles

and , weaponr csisitstrng of .several componets in series.
Usually e "component will have a random life length and the
life of the entLie system will end with the failure of the
shdest lived MRmponent, We will examine two sttuations mope
closely in which "ccpe .,. 'isks play a vital role.

" First, suppose we are'attempting to evaluate system life
fkom knowledge of the individual component lifetimes. Such
an evaluatin will utiLze either an a.nalysis involving math-&matial statis computer simulation. At a recent

c g n ane.on .. odeling and Siilation, McLem (1981) pesnted
a scb" to simulate thd life of a-issl4eI whIch consisted of
mny major- cmponent in seIes.- The failure distribution asso-
ciated Vith each' component was assumed to be Icawn (usually
e4p all K WIb1u.) -:To aSive at the MySte aU ds-
tIo! Iti, the components were. assumed to act indep.endent .y of
each "Ctbt. Reali y, ts my or may not be the case.

the omgponet lifetimeS were dependent for any reason, the
compted sysl-m failure distribution (as well as Its subsequent

eIparinet such 'as sgytg Mean life and system rolfiab1ty'for
a fied tm) wo!ld ony crudely a =o *im the true

ditrbuio.The first speicific aim of this PropSal is7 to
.acetain the error incurred in mdling system life in a

aerieNs systeim assumed to have idependent. component lifetmes
(i.e., risks) when, in fact, tbhe risks, axe e.

Second, suppose we wish to evaluate some aspect of the
dis-tIbu tion of a particular failure mode based on a typical
life tst of a series systs. The response of interest is the

4A.i until failure of a particular. mode of interst. Frequently
this response will niot be observyable due to the occur-ence of
some other event which precludes failure associated with the
made of Interest. We shall to= such competing events which
intsupt our study of the main failure modes of interest as
crisks.

SII-
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Compt g risks &rise in such relability studies when

pre-detirmin*d period of observation has expiced
(Tpe Z censoring).

21" the study is terminate due to a pre-detencuined number
of failures of the particular failure mode of interest
being obeved (Tye IZ censoring).

3) some systems fail because comonnt other than the
oe of interest xalfunctioi.

4) the of interest fais from some cause other
than the one of interest.

In al four situations, one may think of the* main event of
interest as being censored, i.e., not fully observa"le. In the
first two situations, the time to occurene of'the event of
interest shou'l be Iependent of the" ceno-ing mehanism. In
such instarmces, the methodology for estimating relevant reliabili-
ty probabilities has received onsdeable attention (cf. David
and Ifoeschberger (1978)', Xalbfeish and Prentice (1980), E'.andt-
Jonson nl Johns ('1980), Mann, Schafe, Singp=a.a (1974)
and BaloW" and -Poschan (1975) for references and discussion'-
Tz thethird situation, the t failure of the
interest may or a not be endepenent of the failure times of

-*othe cii-ionets , the system. For exaqple, there may be
comm envomental factors such as extr temperature ich
may affect 'the l4fetime -of several copnents. hs the questionof dependent'competing risks is raised. A *si observ.ation

y be made with respect -to tb fourth situation, viz., failureU "times associated'with different failure modes of a single com-
panent may be dependent. or a very special type of dependence,.
themodels discussed by Marshall-Olcin (1967), Langberg, Pros.ban
and Quinzy (1978), and Langberg, Proschan, and Quinzy (1981)
alow one to* cmuIert; eedn models into independetoes

Ifr. no asptLcns whatever axe made about the type of"
depezaence between the distri-buton of potential failumre times,
there appears to be little -hope of estimating relevant component
pa ze. In some situations, one may be appreciably mnsled
(cf. Tsiatis (.975), -Peterson, (1976)). However, s ZasnerlIng
(1980) so clearly. points ou. in his review of Birnbaum's (1979)

'r z~wiograph

*ther seems to be a need for some robustness
studies. How far might one be off. quantita-
tively, if his analysis is based on incorrect
assumptions?"

The second specific aim will address this important
issue. First if a specific parametric model which assumes
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i-ependent risks has been used in the analysis, it would
be of interest to know how the error in estimation- s
affected by this assumption of independence. That is, if
independent specific parametic distrbutions A=e assumed
for the failure t4mes associated with different failure
modes when w really should use a bivariate (or multiva-iate)
Aistribution, then what is the .magnitude of the. e=rCr ines~tiating .ccau ,e|"nt prm? Secondly, onm xWWish to
allow for a less stringent type of model assumption, and ask
the sawe question with regard to the estimation e=ror. That"
is, if a nmetrIc analysis is performed, assuming in-
dependent risks, when some types. of depe nencies may be
present, then what is the Magnitude of the estimation error?

The third specific aim will attempt to obtain bounds on
the Ponp ot reliability when the failure times belong to
a bzad dependepce class (e.g., association, positive qu t.
dep ence, positive regression dependence,. etc.), More
details will be presented in the methods section.""

in sminry, ommpating risk analyses have been perfomed
in the past and wil continue to be perfomed in the future.
This study will provide the user of such techniques with a
Clearer understanding of the robustness to departures from

I idependent risks, an assumption which most of the methods
currently in use assume.

3 * 1

,fK
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IV. Progress Report on Third Year's Work

A summary of the first and second year's work is reported in the annual reports

f dated October 26th 1983 and October 26th 1984 respectively. We believe that during the

past three years we have made substantial progress in dealing with the objectives as

outlined on page 4. In addition to the papers and articles referred to in the first two

annual reports, we would like to mention some of the more recent work.

First, the recently published paper which investigates the problem of improving the

product-limit estimator of Kaplan and Meier (1958) when there is extreme independent

right censoring is presented in Appendix A. This paper looks at several techniques for

completing the product limit estimator by estimating the tail probability of the survival

curve beyond the largest observed death time. Two methods are found to work well for a

variety of underlying distributions. The first method replaces those censored

observations larger than the biggest death time by the expected order statistics,

conditional on the largest death, computed from a Weibull distribution. The Weibull is

chosen since it is known to be a reasonable model for survival in many situations.

Parameters of the model are estimated in several ways, but the method of maximum

likelihood seems to provide the best results. The second method replaces the constant

value of the product limit estimator beyond the last death time by the tail of a Weibull

survival function. Again parameters are estimated by a variety of methods with the

maximum likelihood estimators performing the best.

Second, a paper which obtains bounds on the component reliability, based on data

+' from a series system, for the Oakes (1982) model has been revised. Since this model has

the same dependence structure as the random effects model with w having a gamma

* distribution, these bounds are good for a general class of distributions. The bounds,

4i which are determined by specification of a range of coefficients of concordance, are

found by solving a differential equation in the observable system reliability and crude life

on one hand and the unobservable component survival function on the other hand. This

revision is reproduced in Appendix B.

- * --Iv.-/- . .
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Third, we have submitted an overview paper for publication which summarizes

some of the work performed during the past three years. The results of this paper were

presented in an invited talk to the Eastern North American Region of the Biometrics

Society at Raleigh, North Carolina in the Spring of 1985. (See Appendix C for a copy of

this paper.)

Finally, a paper has been developed which discusses some general properties of a

random environmental stress model. Estimation of parameters under the Gamma stress

model is considered, and a new estimator based on the scaled total time on test

transform is presented (See Appendix D). Part of the results in this paper were presented

at the International Statistical Institute meeting in Amsterdam in August, 1985. A copy

of that contributed paper is found in Appendix E.

V. Methods

We refer to pages 8-52 of the original proposal for a discussion of the general

methodology.

.4.
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A Comparison of Several Methods of Estitating the Survival
Function when There Is Extreme Right Censoring

NL L Mow4er O Joib P. Me
Departments of Preventive Medicine' and Statistics, The Ohio State University,

320 West 10th Avenue, Columbus, Ohio 43210, U.S.A.

SUMMARY
When there is extreme censoring on the right the Kaplan-Mew product-limit estimator is known to
be a biased estimator of the survival fuancion. Several modifications of the Kaplan-Meier estimator
ae examained and compared with respect to bia and mean squared error.

In human and animal survival studies, as well as in life-testing experiments in the physical
sciences, one method of estimating the underlying survival distribution (or the reliability
of a piece of equipment) which has received widespread attention is the Kaplan-Meier
productlimit estimator (Kaplan and Meier, 1958).

For the situation in which the longest time an individual is in a study (or on test) is not
failure time, but rather a censored observation, it is well known that theme are many

complex problems associated with any statistical analysis (Lapkos, 1979). In particular,
the Kaplan-Meter product-limit estimator is biased on the low side (Gross and Clark,
1975). In the cue of many censored observations larger than the largest observed failure
time, this bias tends to be worme. Fstimated mean survival time and selected percentiles, as
well as other quantities dependent on knowledge of the tail of the survival function, will
also exhibit such biam.

A practical situation which motivates this study is a large-scale animal experiment
conducted at the National Center for Toxicological Research (NCTR), in which mice were
fed a particular dose of a carcinogen. The goal of the experiment was to assess the effects
of the carcinogen on survival and on age-pecific tumor incidence. Toward this end, mice
were randomly divided into three groups and followed until death or until a prespecified
group censoring time (280, 420, or 560 days) was reached, at which time all those still alive
in a given group were sacrificed. Often there were many surviving mice in all three groups
at the sacrifice times.

In general, we consider an experiment in which n individuals are under study and
censoring is permitted. Let 41, ... , 4., denote the m ordered failure times of those m
individuals whose failure times are actually observed (t) ,c ... is t)). The remaining
n - m individuals have been censored at various points in time. It will be useful to introduce

. the notation Sj to denote the number of survivors just prior to time f(j); that is, S is the
number of individuals still under observation at time tj), including the one that died at
4j). Then the Kaplan-Meier product-limit estimator (assuming no ties among the tj)) of

Key word" Adjusted Kaplan-Meer survival estimion; Bia of survival fnction; Life-testin& Right
cenoing; Survival analysis
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the underlying survival function, P(t) Pr(T > t, is

for t < 41)

t) - (- 1)/S for 4) Is t < tJ+,, (I)
{0t for I S I(. I)

forj- 1... m, wheret4.+-t, if the longest time an individual is on study is a censoring
time or t4.) - co if the lonrst time an individual is on study is a death.

This paper first proposes, in §2, some methods of "completing" the Kaplan-Meier
estimator of the survival function by (i) replacing those censored observations that are
larger than the last observed fuilure time by their expected order statistics; (ii) using a
Weibull distribution to estimate the tail probability P(t), for t > t4; and (iii) employing a
method suggested by Brown, Hollander, and Korwar (BHK) (1974). The second purpose
is to demonstrate the magnitude of the bias and mean squared error (MSE) of the Kaplan-
Meier estimator and to compare all methods of "completing" P(t) in the context of the
aforementioned mouse study, utilizing simulated lifetimes from exponential Weibull,
lognormal, and bathtub-shaped hazard function distributions. These results are presented
in §3.

2. Completion of Kalha-Miar Prodmet-LUmk Esdints

2.1 Expeced Order Statistics

One method of attempting to "complete" Pt), t > , would be to "estimate" the failure
times for those censored observations that are larger than the longest observed lifetime. Let
n, be the number of censored observations larger than 4t.. A theorem regarding the
conditional distributions of order statistics states that for a random sample of size n from
a continuous parent, the conditional distribution of T.), given T, - ,, u > n - nc,
is just the distribution of the (u - n + nk)th order statistic in a sample of size n, drawn from
the parent distribution truncated on the left at t - , (see David, 1981, p. 20).
For computational purposes, take t, as an estimate of the (n - n,)th order statistic. Then

find the expected value of the n, order statistics from the parent distribution truncated on
the left at t,. Since the Weibull distribution with survival function P(t) - exp(-tk/0) has
been widely accepted as providing a satisfactory fit for lifetime data, it seems reasonable to
employ the results of Weibull distribution theory to complete P(t), t > t,. (It should be
noted that any distribution which is reasonable for the specific situation may be used.) The
expected values of Weibull order statistics up to sample size 40 for location parameter
equal to I and shape parameter equal to .5 (0.5)4(1)8 may be found in Harter (1969). For
larger sample sizes, he states a recurrence relation which may be used.

To compute expected values of the n, order statistics in question, values for k and a must
be chosen. One approach is to use the maximum likelihood estimators, k and , computed

gby using all observations to estimat k and 0. A second approach, due to White (1969),
uss least squares estimates of k and 9 obtained by fitting the model

lf(4j)) - (I/k) In 0 + (i/k) ln(H())J (2)

to the tj/s, where H(%)) is the estimated cumulative hazard rate at 4, obtained from the
Kaplan-Meier estimator. In our Monte Carlo study, we found the maximum likelihood
estimators performed better than the least squares estimators in all cases. Consequently,
the meihod of least squares will be dropped from future discussion in this paper.

The survival function for a Weibull random variable, truncated on the left at t,, is
*P(t) _ CX((Ik - tk)/el, t > 4'. (3)
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So, by the theorm on oder statistics stated at the beginning of this section, the conditionalSsdibutm of T, given T(.. - 4.. (u - n -n, + 1,... , n) will be approximated
by the (u - n + n,)th order statistic in a sample of n, drawn from (3). For simplicity, let
jm u - n + n, so that j- 1.... Now the expected value of theJth order statistic from
(3) is

- f yk+ f~IkpylAPyJeIkk/)dy (4)

where P(y) - ex(-/O), y- (tk - )I/k o 0 and Tj,, is thejth order statistic in a sample
of size n. Equation (4) can also be written as

E(Tj-a,) - (0','(r .t)/kPzIIPzI 'z'd (5)

where P(z) _ ex(zX-Z Z( y/) Ik O. Now E(T.) may be crudely estimated by
'Ii[E(Zt.. + t11,11 (6)

where F(Z.p) is the expected value of the jth order statistic from a sample of size n,
determined from Harr's (1969) tables or recurrence relation, and J and k are maximum
likelihood estimators of 9 and k, respectively.

Them n, estimated expected order statistics may then be treated as "observed" lifetimes
in adjusting (or "completing") the estimated survival function computed in (1). The area
under the estimated survival function up to t, remains unchanged. The area under theextended estiated suviva function boned on the , estimated expete order statits is

then added to the initial area to obtain a more precise estimate ofJV(t) [estimated order
statistic (EOS) extension].

2.2 Wei/bd Maximum Likdeihood Techniques

A straghforward approach to completing P(t) is to set
P(t) - exp(-tk/9) for t > t. (7)

Estimates of k and 9 based on all observations can be obtained by either the maximum
likelihood (WTAIL) or the least squares method. However, our study found the completion
using maximum likelihood estimators was always better'in terms of bias and mean squared

One suggestion for ostensibly improving this estimator would be to "tie" the estimated
tail to the product-limit estimator at t,. Two methods were attempted to accomplish this
goel. First, the likelihood was maximized with respect to k and 0 subject to the constraint
that exp(-t,/O) - Pt). This method will be referred to as the restricted MILE tail probability
estimate (RWTAIL extension). Second, a scale-shift was performed on the tail probability
in (7) to tie it to the product-limit estimator. This method led to higher biases and mean
squared errors of the survival function and will be dropped from further discussion in this
paper.

2.3 BHK-Tp Methods

The Brown-Hollander-Korwar completion of the product-limit estimator sets

P(t) - ex(-t/O9) for t> t, (8)
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where 0 satisfies P ) - CX(-t ). In the BHK spirit we ti to complete P(t) by a
Weibull fiuction which used estimates of k and 0, k and 0*, that satisfied the following
two relations:

P(4~.0) - eXp-t(A,/9*)
and

The latter method also led to consistently poor performance and the results will not be
presente&

Tab!
51 100 (and MSEB1003)for eAvnat me= sw i twmv for WW nous mu of (o'm fm

Wdbili Renticted
hbm %midmod w'rAIL WebuU
Ic d BILK aff 0msc ecow RWTAIL

Duibsias x at 560 daw K-M eauemica gitomi m extson

Wuibu 400 18.7 -2.000P -1.462 -. 1016 .131 .206
(4.034)r (2.271) (1.172) (1.160)b (1.543)

k -. 5 So0 223 -2.802 -2.078 -. 176' .208 .299
(7.886) (4.498) (1.922)P (2.344) (3.292)

600 25.5 -3.625- -2.704 -.187 .344 .479
(13.179) (7.522) (3.025)P (4.275) (6.031)

400 24.6 -. 991" -. 047 -. 046 016' .0379
(1.013) (.215)b  (.257) (.275) (.343)k-I 50 32.6 -1.63? -. 049 -. 047' .073 .116
(2.696)" (.416)' (.535) (.O) (.705)600 39.3 -2.339w .022b .034 .140 .214
(S.592) (.596)' (.987) (1.023) (1.353)400 7.5 -.036 .036w -. 005 .0036 .004
(.012r' (.053) (.013) (.014) (.014)

k,4 500 34.6 -. 314 1.S7 -. 020 .014' .019(.109) (2XI30) (.036)P (.041) (.044)
600 59.9 -. 903 5.982 .144 .028b .039

(.822) (41.430) (4.168) (.147)P (.157)

Loma 400 20.6 -. 86r -. 1786 -. 544 -. 586 -.412
(.7r)- (.179)' (.363) (.403) (.267)

ck-I 500 29.0 -!.427w -. 150' -. 865 -. 918 -. 696
(2.060) (.323' (.853) (.938) (.644)

600 36.9 -2.079v -. 022 -1.234 -1.281 -1.038
(4.345)" (.571)P (1.679) (1.800) (1.301)

400 8.6 -. 070 .129" -. 047 -.053 -. 027'
(.014)P (.056) (.014) (.014)' (.014)'

k=4 500 29.1 -. 330 1.033" -. 170 .181 -. 135'
(.118) (1.459) (.051) (.055) (.043)

600 4.5 -. 853 4.430v -. 391 -. 392 -. 356'
(.734) (23.159) (.199) (.199) (.17m)

Bbb 400 18.6 -1.069 -. 185 -. 170 1.12r .063'
(1.173) (.234)b (260) (1.745) (.361)

p-I S00 26.1 -1.722" -1.59 -. 202 1.523 .0"'6
(2.996) (.427) (.560) (3.230) (.608)

600 32.6 -2.45? -. 362 -. 310 1.761 .047'
(6.043) (.727)' (.982) (4.490) (1.254)

400 8.1 -3.716" -I.543 -1..47 -. 936 .3436
(3.213)" (2.463) (2.476) (1.0 1) (.544)P

p =.4 500 13.3 -2.370" -1.826 -1.814 .825 .58P
(5.649)r (3.472) (3.446) (1.03I)' (1.303)

600 18.7 -3.07? -2.191 -2.175 -. 75 .S41'
(9.466)" (5.013) (4.983) (I.285)' (2.792)
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3. A Comperhain of the Varloi Method.U A simulation study of data such as that collected at NCTR was performed. Three groups
of 48 lfetimes were simulated with ail testing stopping at 280, 420, and 560 days,
respectivey, for the three group&. Distributions with mean survival times of 400, 500, and
600 days were used. The generated lifetimes greater than or equal to the sacrifice time for
each particular group were considered as censored. The remaining set of obseved lifetimes,
along with the number censored at the three sacrifice times, constituted a single sample.
For each of the distributions studied 1000 such samples were enerated. Weibull distribu-
tions with shape parameters .5, decreasing filure rate, 1, constant failure rate, and 4,

I~a/I0 (ad ME/10~)forTab 2

Awl100(a MM 10 fr dnwng9Mt pwmefor venou mahods of complktwn

Eitiimed Weibull Weibuil
Dhsuda oa staaMi 58AE ~r

(25.189.3)8 (16.424) (7.524)0 (10.812)
k - .5 500 -7.655w -4620 1.897 AV.642

(58.604)r (22.711) (24.276) (14.319)P (21.442)
600 -10.306 -6390 2.213 .734 1.064

(10621) (42~49  (36.895) (25.419)b (37.911)
400 -3.610w 104 .248 .084 .067

(13.035r (1.892 (2.423) (1.980) (2.945)
kmi 500 -5.913" .096t I28 .121 .306

(34.963)r (2.995r (4.681) (4.361) (5.903)
600 -8.216w 146 .610 .418 .550

(67.459)r (4.1"1b (9147) (8.331) (10.792)
(.038)P (236) (.060) (.047) (.063)

k=4 500 -1.195 5.324r -. 031 -.026.04
(.2) (33.091)" (.146) (.141)b (.177)

600 -2-554 17.913w A12 .090.08
(6.524) (355.02)r (.794) (.676) (.641!b

LOsInanm 400 -2.62r" .0 44 6 -1.263 -1.758 -.967
(6.906)" (1.526?P (1.979) (3.407) (1.673)

k- 1 So0 -4.680w lip -2.354 -2.718 -1.908
(21.902) (2.708)P (6.153) (7.909) (4.751)

600 -6.73w .759b -3.507 -3.766 -2.980
(45.373r' (4.764?P (13.123) (14.M1) (101257)

400 -.085 .161 -. 038 -.162" -.02 0b
(.060? (.409r" (.08 ) (.065) (.093)

k=4 500 -1151 3.722" -. 584 -. 657 -.4840
(1.566) (17.654r" (.403) (.495) (.318r

600 -2.621 13.695w -1.214 -1.236 -1.1S5P
(6.872) (210.30)" (1.616) (1.662) (1.498r

Bathtub 400 -3.6291 -. 177 .0536 -. 104 .105
(13.167r" (1.717)P (2.052) (2.058) (3.190)

PM.1 So0 -6.068" -.457 -. 071 _108604
q(36.826)" (1.955?P (4.702) (3.6 19) (5.245)

600 -7.997" -.31S .043 -24 -.014b
(63.954r" (4.330t (7.786) (7.608) (9.923)

40 -.347 .143t .276 1.154C .981
-(.273?0 .34 (1.078) (3.877 (4.747)-

pm.4 So0 -1.425 .521 .764 1.699 1.71r"
(2.035) (1.540)b (2.067 (8.574) (10.714)"

600 -3.5W4 -. 137 .13? 2M34 2.450
(12.28) (1.804?P (2.352) (17.530) (22.456)
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increasing failure rate, were used. Lognormal distrbutions, failure rate changes from
increasing to deceasi with first two moments comparable to the above Weibuil distri-
butions with k - 1 and k - 4, were also used. Finally, a bathtub hazard model of Glaser
(1980), failure rate changes from decreasing to increasing, was used. This distribution is a
mixture of an exponential of parameter X with probability I - p and a gamma with
parameter X and index 3 with probability p. Mixing parameters ofp- .1 and p - .4 were
used.

The bias and MSE for the estimation of the tail probabilities, ie., the completed portion
of the product-limit estimator, were calculated for each hypothesized distribution and for
each competing method of completion. Since these results were extremely similar to those
found in estimating mean survival time, f -o P(t) di, we show only the bias and MSE
of each competing estimator of is in Table 1. This also allows us to demonstrate the
magnitude of the bias and MSE of the product-limit estimator of g. The bias and MSE for
estimating the 90th percentile are also presented for the various estimation methods in
Table 2. As one would expect, the Kaplan-Meier (K-M) estimator performs considerably
more poorly than the other estimation schemes. The BHK extension does very well if the
underlying distribution is exponential or lognormal with first two moments compatible
with the exponential. BIK does reasonably well for the bathtub-shaped hazard model, but
it performs very poorly for the Weibull with increasing failure rate and for the lognormal
with first two moments compatible with the WeibuiL

The remaining three extensions (EOS, WTAIL, and RWTAIL) appear to be somewhat
comparable. Each of them is best under certain circumstances although many times the
biases and MSEs are so close to one another that they are essentially equivalent. Only the
EOS extension has the desirable property of never being worst. It usually is competitive
with the method that is best. Ordering the extensions from the standpoint of simplicity,
from simplest to most complex, we have BHK, WTAIL, RWTAIL, and EOS.

In summary, the Kaplan-Meier estimator should probably be extended in the presence
of extreme right censoring. The choice of extension depends on one's knowledg of the
distribution of lifetimes une consideration and the extent of computer facilities, available.
If the data follow an exponential-type distribution or if no computer facilities are present,
the BHK method is the extension of choice due to its simplicity. If the data exhibit a
noncontant failure rate and computer facilities are available, then the RWTAIL or EOS
extensions seem to be advisable.
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t. INTRODUCTION

A common problem in survival analysis is to estimate the marginal

survival function of the time, X, until some event such as remission,

component failure, or death due to a specific cause occurs. Often obser-

Xvation of this main event of interest is impossible due to the occurrence

of a competing risk at some time Y X, such as censoring, failure of a

different component in a series system, or death from some cause not

29. related to the study. Standard statistical methods, which assume these

competing risks are independent, estimate the marginal survival function

by the Product Limit Estimator of Kaplan and Meier (1958). This estimator

has been shown to be consistent for the marginal survival function by

Langberg, Proschan and Quinzi (1981) when the risks follow a constant

sum model defined by Williams and Lagakos (1977). When the risks are

not in the class of constant sum models, the Product Limit Estimator

4 is inconsistent and, in such cases, the investigator may be appreciably

misled by assuming independence.

*% %
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In the competing risks framework we observe T minimum(XY) and

I = x(X < Y) where X(-) denotes the indicator function. Tsiatis (1975)

and others have shown that the pair (TI) provides insufficient information

to determine the joint distribution of X and Y. That is, there exists both

an independent and a dependent model for (X,Y) which produces the same

joint distribution for (T,I). However, these "equivalent" independent

Aand dependent joint distributions may have quite different marginal

distributions. Also, due to this identifiability problem, there may be

several dependent models with different marginal structures which will

yield the same observable information, (T,I): In light of the consequences

*of the untestable independence assumption in using the Product Limit

estimator to estimate the marginal survival function of X, it is important

to have bounds on this function based on the observable random variables

I(T,I) and some assumptions on the joint behavior of X and Y.
Peterson (1976) has obtained general bounds on the marginaL survival

function of X, S(x), based on the estimable joint distribution of (TI).

Let Ql(x) - P(T > x, I - 1), and Q2 (x) - P(T > x, I - 0 ) be the crude

survival functions of T. His bound, obtained from the limits on the joint

distribution of (X, Y) obtained by Frichet (1951), is

-J Ql(x) + Q2 (x) < S(x) <.Ql(x) + Ql(O). (1.1)

Since these bounds allow b~r any dependence structure, they can be very wide

and provide little useful information to an investigator.

Fisher and Kanarek (1974) have obtained tighter bounds on S(x) in

terms of a dependence measure a. Their model assumes that simultaneous

"I
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to the occurrence of Y an event occurs which either stretches or contracts

the remaining life of X by an amount associated with a. That is,

P(X > xlY - y < x) a P(X > y*+ a(x-y)IY > y + a(x-y)). A large a, for

example, implies that a small survival after censoring is the same as a-times

as much survival if censoring was not present. They show that if a is assumed

known, then the marginal survival function can be estimated from the

observable information. Also these estimates, SM(x),are decreasing in a.

For their bounds, the investigator specifies a range of possible values

aL < a so that S (x) < S(x) < S (x).

Recently, Slud and Rubenstein (1983), have proposed general bounds.

They show that knowledge of the function

S(x) - lira- P(x < X < x +6 ( > x, Y < x)
(x) - P(x < X < x +SX > x, Y > x)

if along with the observable information (T,I) is sufficient to uniquely

determine the marginal distribution of X. These estimates Sp(t) are

decreasing functions of p for fixed x. Their bounds are obtained by

specifying a range of possible values p1(x) 1 0(x) P2 (x) so that if

p(x) is the true function S0 2 (x) < S(x) < So1 (x).

In this paper we obtain different bounds'on the marginal survival

function by assuming a particular dependence structure on X and Y. These

bounds are functions of the observables (T,I) and a familiar dependence

measure, the concordance probability between X and Y. Tn Section 2 we

describe this model in detail. In Section 3 we derive the bounds and show

"p consistency when the dependence parameter is known. In section 4 these

bounds are compared to those obtained by Peterson, Fisher and Kanarek,

and Slud and Rubenstein.
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I [I. THE MODEL

The dependence structure we shall employ to model the joint survival

was first introduced by Clayton (1978) to model association in bivariate

lifetablet and, later, by Oakes (1982) to model bivariate survival data.

Let S(x) - P(X > x), R(y) - P(Y > y),with S(O) - R(O) - l,be the

continuous univariate survival functions of the death and censoring times,

respectively. For 9 >1 define F(x.y) = P(X > x, Y > y) by

F(x,y) - + 0-1 (2.1)

This joint distribution has marginals S and R. As 8-1, then (2.1) reduces

to the joint distribution with independent marginals. For 04-,F(x,y)

min(S(x), R(y)) the bivariate distribution with maximal positive association

for these marginals. The probability of concordance is 6/(0 + i) so that

Kendall's (1962) coefficient of concordance is T - (8 - 1)/(e + 1) which

spans the range 0 to 1.

This model has a nice physical interpretation in terms of the

functions A(x IY - y) and X(xIY > y), the hazard functions of X given Y y

and X given Y > y, respectively. From (2.1) one can show that

A(xIY - y) - BA(xlY > y)

or

P(X > xlY - y) -[P(X > xjY > y))? (2.2)
~!

For 8 >1 the hazard rate of survival if censoring occurs at time y is

8 times the hazard rate of survival if censoring does not occur at

time y. This implies that the hazard rate after censoring occurs is

hy

., *P4.
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3 accelerated by a factor of 0 over the hazard rate if censoring had not

occurred. Also when 0 - 1, (2.2), reduces to the condition required by

Williams and Lagakos (1977) for a model to be constant sum and hence for

the usual product limit estimator of S(t) to be consistent (See Basu and

Klein (1982) for details).

Oakes (1982) also shows that (2.1) can be obtained from the following

random effects model. Let S*(x) - exp (- - and let R*(y) be
SW(x

similarly defined. Let W have a gamma distribution with density

1 1-

g(w)caw _-1 •- w and conditional on W - w let X,Y be independent with

survival functions {S1x)}w and {R*(y))w . Then, unconditionally, X,Y have

the joint survival function F(x,y) given by (2.1).

For fixed marginals S and R the joint probability density function,

f(x,y), can be shown to be totally positive of order 2 for all 9 > 1.

This implies that (X,Y) are positive quadrant dependent. In particular,

one can show that for S,R fixed the family of distributions

F - (F(x,y): 0 > 11 is increasing positive quadrant dependent in e as

4, defined by Ahmed, et al. (1979).

IIS
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1I1. BOUNDS ON MARGINAL SURVIVAL

Suppose that X and Y have the joint distribution (2.1) and let

T min (X,Y), then the survival function of T is

I -1 18-

F(T) = [[-jI + -- -1 (3.1)

and the crude density function associated with X,

d
q1 (t) - -± P(T < t, X < Y), is given by

qI(t) - 8(t) [F(t)P, (3.2)

where s(t) - -dS(t)/dt.

Now consider the differential equation

s(t)/58 (t) - q (t)/OF(t)f (3.3)

and suppose 6 is known. Then the solution of (3.3) for S(t) is

(t) 1 + (0-1) (u) d if 8 >1SOt)= +(Ol)0 [F(u)p u

(3.4)

t q 1 (u)
exp( - I F(u- ) du) if e 1.

0

The functions F(-) and qI(*) are directly estimable from the data one

sees in a competing risks experiment. Let T1 9 .... T denote the observed

test times of n individuals put on test and let Ii. i - 1, ..., n be 1 or 0

according to whether the Ti was an observation on X or Yi. respectively.

L".
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n n

Define F(t) - x(Ti > t)/n and Ql(t) X (Ti < t, 1).

Then if 9 is known, a natural estimator of Se(t) is

t dQl" (u) 1
Se(t) - (1+ ((-1) -() f (-1) if e >

t 0 d (u) f6(3.5)

= exp( - A ) if 6
0 F~u

For e - 1, this estimator is of the form of the hazard rate estimator

proposed by Nelson (1972). The estimators (3.5) can be expressed in

the following form for computation purposes.

T T(i)- i -I(i) " 1
~(3.6)i 1- 1

(1 + (0-l)n9-  (n-i+l) -.T T(i)<tZ(1)-l

if 9>1

where T( , ... , T(n ) are the ordered death times.

For 6 known and if the true underlying joint distribution of (XY)

is of the form (2.1) then S (t) is a consistent estimator of S(t) as shown

by the following theorem.
4

Theorem 1. Let (X,Y) have the form (2.1) with marginals S(t), R(t)

respectively. Let 6 > I be known. Then on the set where S(t) > 0 we have

S( (t) S(t) a.s.

*- : *



Proof:

For 0 1, the result follows by a theorem of Langberg, Proschan and

Quinzi (1981). Suppose that e > 1. Note that Ql(t) Ql (t) a.s. and

F (u) - F(u) a.s. by the strong law of large numbers. Since Se(t) is a

SdQiu)

continuous function of 1 in the support of P(u),it suffices to show~0 [F(u) ]e

t dQ(u) t dQj(u)
1 - - a.s.

0 [F(u)] 0 [F(uA9

Now, after an integration by parts,

r t d^l (U) t)  t

dQl-u Ql(t)te ^ e Q(u)d(_  )
0 [F(u) (F(t)) 0 (u)

Q1 (t) t t

-- ; [Ql(u) - Q1 (u)]d( 8 1 ) + I Q(u)d( )"F@(u) F (u)

-lt Q1 (t) 1

R (u)] 0 [l(u) Q(u)]d( u)

t

+ .dQ1(u)
0 F (u)

By the dominated convergence theorem

t tim dQ1 (u) 0 (~)
I im f = I dQl(u) a.s.,

So(U) [F(u)p

4;
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li= Q1(c) - Q1(t)

and i sup {1Q1 (U) - q1 (u)I} - 0, a.s.

n-ma

Hence, applying the above results to (3.7), the result now follows: //

To obtain bounds on the net survival function based on data from a

competing risks experiment, we proceed as follows. First, note that from

(3.5) it is true that S (t) is a decreasing function of 6 for fixed t.
+ t (u)du

Also, as 0 -~ 1 we have S0()t exp - udlu)

0

which provides an upper bound. Notice that this upper bound corresponds

to an assumption of independence. As 9 * m one can show that S (t) + F(t)

which corresponds to Peterson's (1976) lower bound.

In practice the above bounds, with e - 1, -, while shorter than

Peterson's bounds, may still be quite wide.

Tighter bounds may be obtained by an investigator specifying

a range of possible values for e. if the sample size is sufficiently

large and _ then e2(t) < S(t).! S (t). Specifying el, e2
1 e2 2

is equivalent to specifying a range of values TI < T < T2 for the

coefficient of concordance T since 8 - (l+-)/(l--T). Hence the primary

value of Se(t) is in putting bounds on S(t) rather than on estimation of

S(t).

10

f - ~ a
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9 IV. EXAMPLE AND COMPARISONS

To illustrate the bounds obtained in the previous section, consider

the mortality data reported in Hoel (1972). The data was collected on a

group of RFM strain male mice who were subjected to a dose of 300 rads of

radiation at age 5-6 weeks. There were three competing risks, thymic

lymphoma, reticulutum cell sarcoma, and other causes of death. For

illustrative purposes we consider reticulum cell sarcoma as the risk of

interest.

Table 1 reports the value of S6 (t) for concordance T - (0 - )/(0 + 1).

The value of Se(t) at T - 0 corresponds to Nelson's (1972) hazard rate

estimator assuming independence. Peterson's upper and lower bound

(T 1 1) are also reported as are Fisher and Kanerek's bounds and the Slud

and Rubenstein bounds for several values which reflect a positive

association between risks.

From Table 1 we first- note that Peterson's bounds are very wide.

Substantial improvement is obtained if one assumes a non-negative

dependence structure between risks (See Table 2). Further tightening

of these bounds is achieved by assuming that T is in the range 0 to .5

where the width of the boundaries is at most about 50% of that of Peterson's

bounds.

Substantial improvement in the general bounds is also obtained by

the bounds of Fisher and Kanerek or Slud and Rubenstein. The bounds of

Fisher and Kanerek assume a specific censoring pattern and require a

specification of a stretching constant a. Without some additional informa-

tion, such specification may be impossible. Slud and Rubenstein's bounds

are for the general dependence structure. Their bounds require the

C.p
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specification of the o(t) function. This function is a quantity which

is not easily conceptualized by investigators from either a statistical

or biological perspective. This makes it questionable whether reasoable

upper and lower bounds on p(t) can be extracted from one's prior beliefs.

The major advantage of the bounds printed in this paper is that they

require only the specification of an upper and lower concordance, a

measure quite familiar to most investigators and easily explainable to

nonstatisticians.

NIT

I$.

4 m

>M J



C%4 0 0C" -: 4

* 12

-- 4 N% a0 (4 P. (-4 0~~ a-.~ P1 4 .-4 0 0

ao C

aD . C-4 C-4 Go- PlO
r, 0% 7 Nt C4

0% C" 04 v- O

V1 0% .- I% 0% (4 0

a 0 0% C.. 4 0 0
V,' e, a* N

% 4 0 Wn % -4 N4 &-I

c4 P10 NO (470

C-4 IA t 4A
V-1 It P

0" 0- %a 0 .-4 %(-4 %Q

A 0 -4 %a Cn.4 V-4 %0 (*4 %0

* P0% u- I 0P Nc 1 N

Ch 'TrbC4 N

it. z1 - . '0 0 1 P
t4' 4 'O '%N '

Uc # - -- % - -

Gd -40 4'1 0 e4'

.0 00- P '

C4 W, 0% r-' 0' 1 -4 c 0

co % N M n 04 P.P.

U3~P. 0- C4 C4e .%
!W1 ( 4 C4I cc 0

0a "0P N I 0 a-. V. .
*~a r ' % N e.'04 a-

-4 ~~1" 1u CP fP1(4.4 00

V3 e1- 0 P 4 p. N
0 mI LA -i- 0

w % - fl- - - - -4

en0 N A In0Z a -4 0 3
so 0. . .- .. 0

42 C4

a* %0 Nv N4 P10 V1

ka c% 0 ( 0 -7 V .

el C1 -. 10 P1. 0w1 N

0~~ ~k 41I - % P1. % N G
6 7 % %04 00T e .0

W AWCO 0 0) *. . . . .. . . . . 0
0) -I - - -4C-

41 P1 N 00 
P I

3 0. N 0%0 cc t1 G

m A
%- -



14

Table 2

RELATIVE SIZE OF THE BOUNDS ON NET SURVIVAL

FOR AN ASSUMED DEPENDENCE STRUCTURE

AS COMPARED TO PETERSON'S BOUNDS

Time 0 < T < 1 0 < T < .5 0 < T < .7

V 350 .9707 .0879 .2674

525 .9352 .2449 .5931

600 .7338 .5171 .6787

620 .6722 .5120 .6298

650 .5009 .4420 .4870

675 .3831 .3576 .3797

700 .2883 .2767 .2833

750 .0600 .0600 .0600

N

, .. .... _.I__ .. ... .
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I~~ 1.____

i ". In troductio

Consider a systm consisting of several compoets Linked in

series. For sxd a system the failure of any am of the components
causes the system to fail. Th a biological or medical contxt

we can consider the coonents to be different lethal diseases
anWor different reasons for rveval fimm the study. In a clini-
cal trials ftueworic the primary response of interest, death or

remission, and censoring can be considered as components of the

system. MThs general formulation has been detailed in the theory
NI-" of competing risks (cf. David and Moeschberger (1978)).

A common assumption in such a foriulation is that the

component lifetimes are statistically independent. Several

audv= have shown that based n data fzria series syste only,

this assumption, by itself, is not testable because there is no

way to distingupish betien, ineaat or. depwjdent component

Lifetimes (see Basu (1981), Basu and: K.eint (1982), Miller (1977),
Peterson (1976), etc.). Hiever, several authors (see Lagakos

(1979) p. 152 and Easterling (1980) p. 131) have pointed out the

need to determine, quantitatively, how far off one might be if an

analysis is based on an incorrect asiuuption of iependence.

I To study the effects of erronously assuming independence we

shall assume that each of the components have exponentially dis-

tributed lifetimes uhen tested separately and that the property of

marginal exponentiality will be preserved even though some
dependence may be induced when the components are linked in series.

The assumption of y ed component lifetimes

has been made by Man and Grubb (1974), %tan finding confidence

bounds on system reliability, Boarazi and Kendall (1970), sben

estimating co nerit lifetimes frcm system data, and Miyamrau
(1982), Wan oambinb component and sytem data. (See Barlow and

P C 178) or Mann, Schaffer, and Singzala (1974) for a

_0'



Ia" comuplete review.) We shall modal the depadence structure by
the three models of 0 wb@3 Q96CI, a model proposed by Do.intn

(197I), and a mode3 deseribed by Oakes (1982). These models are
briefly described In Section 2.

The effects of a departure from t e assumption of idepedent

ocmenvt lifetimes will be addessed for two distinct situations.

The first situation arises in modeling the performance of a

theoretical series system constrced from two cmpoents. fiere,

based on testing each component separately or on engineering

design principles, it is reasonable to assume that the components
are exponentially distributed w.th krzo parameter values. Based

on this information, we wish to predcit parameters suh as the

mean life or reliability of a series system consrted from

these oompwift. In Section 3 we describe how these quantities

are affected by departures fro m a~u

The seond situatio involves mking inferences about

component lifetm distributio fr data collected n series

systens. Ccmonly, data collected on such systems are analyzed

by assuming a constant-sum model, of Qtich indeperience is a

special case (compare William and Lagakos (1977) and L Maos and

Williams (1978)). In Section 4.1 we study the properties of the

maximum likelihood estimators of the component mean life calcu-

lated under an erroneous assumption of independent exponential

component lifetimes as mentioned above. Because of the wide

spread use of the nonparetric estimtor proposed by Kaplan-
tHmier (1958) for the cponent reliability we study in Section 4.2,

its proerties, the m: z l r% liabiIt e exsanential

and irdependn is incrrcty s .

2. The ?tMdels

Considiez a two component series system with am~pamet life

lengths x,, x2. suppose that each has an eniwital urvival

6 ,2



I
function

(2.1) Ti(t) aPOC.j ;- t) 2 exp-11 t) Ai :0 0, t > 0.

Tis; assztsion is made an the basis of extensive testing of

each omponent separately or on kzowledge of the underlying

mechanism of failure.

z To examine the effects of a departure from rcepe we-

consider five bivariate exponential models, each with marginals

equivalent to (2.1). The first three,m dels are due to Gumbel

(1960); the last tw m:dels are due to Downton (1970) and Oakes

(1982).

2.1 Gumbel's Model A

For this model the joint survival ftizcticn is

(2.2) P(X > X.1 X2 > 2 ) = e(-- "x - Y- 2 - .2x 2 ),

x , I 2 !.0, X , X2 >, < _ 1 2 11i' 2 -

The correlation betwee X1 , X2 is

P 1 _ 2 exp(l12 A12) Ei2(- 1121A12) - ,

where Ei(z) = exp(-u) du is the -integrated logrithmI U
For this model o varies from - .40365 to 0 as X12 decreases from

X2 to 0. It is never positive. The regression X2 on X is non-

leanear with

E(X Jxz  x2) = (A1 + 12x2 - '12/A2)/(xl 
+ X 12x) 2

2.2 Gumbel's Model B

For this model the joint suVival function is

(2.31 _P(XlX 1 1 X2 > xY2 ) exp(- .1xY ,X2X 2 )(l + 4p(1-exp(- 1xl))

01- exp(- AX2 x2)), Al l 2 .:, x1; x 2 , 0, - l/' C p _ 1/l.

The coct1ietjn, P, my be positive or negative. Meu regressicn.

-3-
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Iof X2 on X, is again ronineaxw'witfx

E0C11 X2 ax 2) a( 1 +2P -40 exp(-7 X x2))/Al.

The effects of a departure frcm independence on modeling system

reliabillity and estimating component reliabilitie has been studied

in detail in Mbeschberger and K~lein (1984).

2.3 Gumbel's Model C

For this model the joint survival function is

P(l>x1') > Y~ = exP Xlxl)m + (AX2x2 )mlm}

The correlation is 1x2> .m 1xX2>a

0 = ( 4 + -2 ) ( c o; s s i ) 3 d o - 1

u.tLich varies from 0 to 1. For this mo~del m z1 corresponds to

independence and as m -

(2.S ) P(X 1 > x1 , X2 > x2 ) - minimum [exp(- Xlxl) I exp(- X2x2)J

the Flrichet (1958) upper bound for these marginals.

2.4 Downton's Model

DoI4nton (1970) suggests modeling bivariate exponential systems'

by a successive damage model. -This mo~del assumes that in a tw.o

caqponent system the times between successive shoks on each

componnt ha e deendent expnetial distributions- and -that the

nuber of shocks requir-ed to cauzse each amen to fail fo1Jlows

a bivariate geometric distribution. The joint probability
density function of- the coMoent life times is

(2.S5) foc XP. Y- I' A(3~XxP(- X2x2 )) I,(2sP/l-2"1.

J.. P *** P
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Qwr is the modified Bese1 wtion of the first kind of
ore eo n Op :l. The cltrela-

tion b enX, X2 is P WKIc spans the interval L,13. As - 1

the joint survival funtion of X, X2 approaches the upper

Frichet distribution (2.5). For this model
E(XlIX2 = x2) = l- P A IP /Xr

2.5 Oakes' Model

Oakes (1982) has pzvposed a model for bivariate survival

data. This model was first proposed by Clayton (1978) to model

association in bivariate lifetables. Special cases of Oakes'

general model have been suggested by Lindley and Sinrurwal-la (1985)

and Hutchinson (1981).

For ths model the joint survival pobability is

(2.7) P(Xl> x1l, X2 > x2 ) =exp(.X(e-)x 1 ) 2)-]

)l' ;k2 1 , ' >1 , x 2 >.

For 8 = 1, X1, X2 are independent and P(X > X. X2 > x2 ) - (2.S)

as e --. For this model Kendall's (1962) coeffcient of concordance

is T (e-l)/(e+l) ;hich spans the range 0 to 1. The correlation,

P, also spans the range 0 to 1 and is found numerically.

This model has the following physical interpretation. Let

r( xIX2 = x2 ) and r(xIX2 > x2 ) be the conditional failure rates

ofx, givenX 2  x2 and X2 > 2 " Men r(xiX2 = x2 ) =6 r(x.IX2 >x 2 ).

The model can also be derived from a random effects model.

This fozmilation assmes that 4en the conponents are tested

separately under ideal oonditions the coponent srvival functions

ae Si(t) z expt- exp(xit(9-l)) + 1], i = 1, 2, and that when the

t cmonents are put in a series systm in the opem-ting

enviroment-t ere is a indon factor W QJdch simltanemusly changes

each comonent life distribution to. SW. WhataSo

distribution with density function M0€) aw e then,

V.,

I-5
.4 .
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uWcOnditicnally, the joint survival fumction (2.7) hlds.

2.6 Frif6et Bouds

Fret C19S8) obtained bounds of the joint suvival trtions

Qiich can be obtained for any set of marginal distributions. For

exponential marginals these are

': tIA fV2 (e1, a) <
-(X 2 X2 )

MINIMUM (e ,e .

. For this set of marginals the lower Frhet distribution has
correlation -. 694 and the upper Frichet distribution has

correlation 1.0. These aze the minimal and maximal corrlations

o__ for exponential mrgials.

3. Errors in Mobdeling Systi Life

L Suppose that based on extensive testing or based on theore-

tical considerations each of the to components in a series

system is known to have an exponential distribution, (2.1) with

marginal means i/AI, I/X2, respectively. It is of interest to

predict the system reliability R(t) = P(X 1 > t, X2 > t) and the

system mean life p F(t) dt. If the investigator assu.mes that

the two components are independent then the system reliability is

(3.1) 1(t) = exp(- (Xl + \2)t) and system mean life is 11: l/(Xl + k2)"

If the c zponents are rat independent, but in fact follow one

of the models in Section 2, then a measure of the effects of

incorrectlUy awningn IM ten Mie t) M1't) - r (t))!'T1 t) and

is P -' tl 1u',' brpa tn& S*y ste relIability and system mean

life, respectively, Qwire Y~t) and Uz are omp~uted under the

approriae dependent mo~de l ue ofAt) can be =qpted

' : directly ftcm (2.2), (2.3), (2.4), (2.6) (by mkmirAl integration)

or fromu (2.7). E for - are giv-en: in Appendix 1 Al

rK

A l I A



csswns f(or A(t) and 4 deper on the values of X' and 12 only

throvf th rai X1 / X2 aKndfrK < h vle ar equiva-
lot to t oe for r 1 For the upperPkechet di istiution,

K.

&Ct) 0 P7 W 1 uere K 1and tp zthe point
Qw-e re(t) :P. Also"/KforK>1. Forthelower rechet

distribution

K K 1
-: A~p) p- ['p - 'p p- h f p *p -1_)>0

t,.n o t - -I Table 3. o

=ion of the equality XK + X : . Table I gives th values of
A(tp) x lOO% and 6 x lOOt for p= .9, .7, .5, .3, . for the upper

and lower Frichet distributions.
From Table 1 we see that the largest perrent error occurs

when the parmters are equal. Also for fixed K them is rela-
ot tively smaI error in estimating system reliability by modeling

a dependent system by an independent system ,ben F(t) is large.

For smller values of system re iAbility one can be appreciably
misled. Errors in estimating system mean life appear to be

substantial unless one component has considerably longer marginal
life than the second one. In that instance, one can see instiun-

* tively that the correlation would have a minimal impact.
Figud.res lA -C and 2A-,2C are. plq of A(tp) ,p : .2,,.,S,..75,

,. and X2 :1, 1.S for the five zzdelsdescribed in Secti6 2.
Figures 3A,. 38 ame plots of. 6 for. all five models as a, functiion of
the corzlat.on. Frcm these plots,.nte that for positivecor"la-

" tions the most modelim g occurs for the Qumbel C zmdel. For
relatively am correlation, -- ,2 . p .25 thee may still .be. a

-7-
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moderate modeLi, erro, an the ordwe at least + 10% for pre-

dictiM system rel iabil ity, at lCt) z .25, or F'Ct) z .5and for

estiamting the mean system life.

TABLE 1
UPPER AND LOWER BOUNDS ON THE PERCET ERROR IN MOOEINS SYSTEM LIFE

FITis.? -W.7 M(20S FT43 FT.. EAN LIFE

LOE tPPER LJER UPPER LOVECR UPPER LO NER UPPER LONER UPPR LOWER UPPER

NN 00 NN WAf saN NU NS mmN US NI no DW 10101 MND

-~ ~ ~ t --- - - - -

1 -. 2. 5.41 -Le-I 19.5-2 -17.1 4t.42 -1 .00 3- -1F00.0 2. -3. 10.0
2 -0.26 3.37 -L 3 -15.27 25. -100.00 ".3 -100.0 11.44 -U.07 50.00
3 -0.22 2.67 -2.06 1.33 -12.9 13.92 -51.52 3512 -100.00 77.3 -34.3 33.35
4 -0.19 2.13 -2.44 7.39 -11.02 14.87 -44.11 27.23 -100.00 3.49 -32.3 25.00
5 -0.16 1.77 -2.2 4.12 -..57 12.25 -33.33 22.22 -100.00 44.73 -31.04 20.00
6 -0.14 1.52 -1.17 5.23 -1.45 10.41 -33.91 1877 -100.00 3o." -29.53 16.67
7 -0.13 1.33 -1.67 4.56 -7.55 9.05 -30.33 16.24 -100.00 33.35 -23.18 14.29
3 -0412 1.18 -1.51 4.04 -4.82 8.01 -27.42 14.31 -100.00 29.15 -26.9 12.50
Y -4.11 1.06 -1.37 3.63 -6.22 7.11 -25.02 12.79 -100.00 25.3? -25.93 11.11

10 -0.10 0.94 -1.24 3.30 -5.71 6.50 -22.99 11.57 -100.00 23.28 -24.90 10.00

11 -4.09 0.80 -1.17 3.02 -5.28 5.95 -21.27 10.55 -100.00 21.13 -24.12 9.09
12 -0.06 0.1 -1.08 2.78 -4.I1 3.48 -19.78 9.70 -100.00 19.38 -23.34 1.33

13 -0.08 0.76 -1.01 2.58 -4.59 5.00. -18.49 3.9 -100.00 17.88 -22.42 7.69
14 -0.07 0.70 -0.9 2.41 -4.30 4.73 -17.13 3.34 -100.00 16,39 -21.96 7.14

is -0.07 0.64 -0.90 2.25 -4.03 4.43 -16.35 7.82 -100.00 13.43 -21.35 6.67

16 -0.06 0.42 -0.83 2.12 -S.83 4.16 -15.45 7.34 -100.00 14.50 -20.79 4.25

17 -0.06 0.59 -0.80 2.00 -3.43 3.93 -14.45 6.92 -100.00 13.65 -20.26 3.88

18 -0.06 0.56 -0.76 1.89 -3.45 3.72 -13.93 6.54 -100.00 12.88 -19.76 3.56

19 -0.04 0.33 -0.73 1.80 -3.29 3.53 -13.27 6.20 -100.00 12.20 -19.30 3.26

20 -0.05 0.50 -0.49 1.71 -3.14 3.36 -12.47 5.90 -922 1139 -18.87 5.00

21 -0.05 0.41 -0.66 1.63 -3.00 3.20 -12.13 5.43 -8.34 11.03 -13.44 4.76

22 -0.05 4.4k. -0.64 i.5 -2.18 3.0. -11.63 537. -4.73 03 3 -1.0 4.55

23 -0.05 0.44 -0.41 1.30 -2.74 2.93 -11.14 5.14 -41.41 10.07 -17.71 4.35

24 -0.04 0.426 -0.59 1.44 -2.44 2.81 -10.74 4.3 -71.34 9.45 -17.37 4.17

23 -0.04 0.41 . -0.57 .1.38 -254 2.70 -10.34 4.74 -75.49 9.26 -17.04 4.00

V! 7



4 . MNrs in Estain Ccopment Parameters

•.1 Paratric a eion

rn this section we examine effects of incorrectly assuming

irdepend ece on the magnitude of the estimation error in esti-

mating the first component mean life based on data from series

systems. Suppose that n series systems are put on test. For

each system we observe the system failure time and uhch camponent

caused the failure. Let ni dentoe the number of systems Qiere
.th,

the system failure was caused by failure of the i !orponent,
i = 1, 2, and let T be the total time on test for all n systers.

If we assume that the coaponent lifetimes are independent and

exponentially distributed then e e and David (1971) show

that the maximzu likelihood estimator of ul, the first component
mean life is

(4.1) 11 Tht. for n, > O.

This estimator is asymptotically unbiased and for n finite

E(uI) = E(T)-E(I/InJr. > 0) due to the independence of T and nI.

Suppose now that the two component lifetimes are not inde-

pendent but follow one of the models discribed in Section 2. If

we incorrectly assune independence then a measure of the excess

bias due to incorrectly assuming independence is

B = [E(ullDepenlent model) E(J independence)]/u I . For each of

the dependent models under consideration T and nI are independent.

For large n, B converges to (O/p- ul)/ 1 Where is is the mean
-, steu .if e aid p'is the bily the first ccmponent fails

first, computed under the dependent model. For finite n,

E(U1 ) zn u E (Wnjn1 ,> () oiuuted undler the appropriate model-

whre Ep (/nln ) ( )PK(>p)K/K / (J_( 1 -P)n)" Expressions

for u and p are given in Appendix 1 and Appendix 2, respectively.

Z-9-



e r dePend o! Al, A2 only t ugh the i K 2.

For all models, p a 1/2 m K = 1.
For the upper p-rchet distribution p z 0 if K < 1; 1/2 if K =;

and 1 if K > 1. Hernce for K < I no failures f Mm the f irst wcO-

ponent are ever observed so that the modeling error B becomes

infinite for all n. ForK> 1, p = land ui = P SO that

B = Cl - ECil[Tndependence)/U1) qldch tends to 0 as n . In

this case the models with correlation ranging from ( to 1 have B

increasing forp< p 0 and decreasing for p > p0 " For the wer

Frkchet distribution, p is the value of X ,tich solves the

equation X + XK - 1 = 0. For K< 1 we havep < 1/2 and for K > 1

we have p> 1/2. Table 2 gives the value of Bfor n = 2S S,0-

for the two Fr~chet distributions. It also gives the arxixmn

modeling error for the Guibel C model 4uch is an indication of

maximal excess mo~deling ervr.



From Table 2 we note that the dependee structure erts a large

effect on estimating the smaller of the two cop ient mum and

that either effect is uo-st exaggerated .for small sampieszs

For K > 1 there is very little sample size effect on the modeling

error. For K strictly bigger than cne the maxinum bias under the

Gwibel C model decreases with K and the correlation at uhich this

maxinun is attained also decreases to 0. Figures A-4C are plots

of B as n - - for K 3/2, 1, 2/3, resppcitvely. Figures 5A-SC

are plots of B for n 10 for K = 3/2, 1, 2/3, respectively.

TAKE 2
MATIvE KNOlEN 00 IN ESTINATINS T11 HE

LMt -MMWl C L. CLOER Wsum C

K Nu lll AM MO HAS lIUNI 110.1 I0 I IAS NUll Moot I BIAS

1/10 -147.44 o44o.e 1.000 *looee 4.09 *el.o 1.041 -ogo o5.44 oo44o 1.Oj0

II 9 -12." 4a4o4 1.000 oo444 -7.3 t444o4 1.000 -44o4 -57.34 #o4m 1.000 444

I/ 1 -123.37 o 1oo44 .000 444o44 -74.68 ooa4 t.000 4o4444 -54-.73 4 o 1.000 44#4o

1/ 7 -107.2 .. 4o 1.000 4e4 -49.03 04o4* 1.000 o...o -55.37 woo 1.000 e444

1 4 -93.44 #44,* 1.000 t4444 -4.34 404#4 1.000 4044#e -54.43 woo# 1.000 0#444
1/ 5 411.91 440 1.000 04444 -61.54 044444'1.000 @444O -14.13 #"4o". 1.000 "4oeH

11 4 -71.45 0404 1.000 44404 -57.50 L44444 1.000 .e.o -51.24 eeee 1.000 00440e

I/ 3 -61.78 .ooo.o 1.000 04#4" -53.00 444444 1.000 0 -440.73 oo4444 1.000 0044*

It 2 -52.14 *o. 1o 1.000 #o464# -47.31 t.o444 1.000 *4oooo -43.01 o4ooo 1.000 044,44

1 -40.90 105.99 1.000 105.99 -39.45 102.13 1.000 102.13 -38.43 100.00 1.000 100.00

2 -32.4 -2.79 0.510 10.82 -32.84 -1.04 0.310 11.50 -32.12 0.00 0.528 11.91

3 -28.23 -t.82 0.400 5.33 -21.39 -0. 9 O .34 -21.39 0.00 0.424 4.15

4 -2.43 -1.3310.346 3.39 -25.74 -4.32 0.342 3.74 -23.3 0.00 .M 4.01

S -23.2 -.0 0.312 L23 -23.80 -0.41 0.330 L71 -U." 0.06 0.341 2.91
& -22.0 -4.0 4.31 1.3 -2L2 -0.34 0.307 L09 -2L.34 LOO6.o19 2.26
1 -20.77 -4.71 0.I 1.46 -20." 0.29 0.20 1.6#A -21.1t LOG M.Us 1.83
1 -11.49 -4.07 0.237 1.20 -19.92 -4.2A 0.2n7 1.40 -20.04 L~OO 0.21" 1.53

S9 -t0.70 -4.3910.246 1.01 -19.00 -0.23 0.266 1.09 -19.13 O.O 0.27" 1.31

10 t -17.11 -.33 0.237 OX8 -11.20 -4.20 4.237 t.03 -tIL33 LO.O 0.V1 114



I

ASMIIC IG THE FIOPJT UNIT ESTIIIATOR

.~L 6W C LMOli ~ lll 9XNM ww El
K 0 M IM R O JiW S IG O Meit AND IGl SO RHlOw INS Ilsi# °00.0 -45.8; .O 0 4 6-0 OO.00 00 .00 "lOZ.0 R33 K.00 23K.3a

11/ 1 "l0.00 42.81.000 42.81 -100.00 10.0 t.000 100.00 -100.00 2U.33 1.000 233.33
1I 7 -100.00 42.06 1.000 42.86 -100.00 100.00 1.00 100.00 -100.00 233.33 1.000 233.33

1/ 6 -100.00 42.96 1.000 42.6 -100.00 100.00 1.00 100.00 -100.00 233.33 1.000 233.13
t/ 5 -100.00 42.86 1.000 42.86 -100.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33
11 4 0tO0.00 42.0& 1.000 42.86 -t00.00 t0O.00 1.000 100.00 -100.04 233.33 1.000 233-3311 3 -100.00 42.84 1.000 42.86 -100.00 100.00 1.000 100.00 02.70 233.33 1.000 233.33

11 2 -100.00 42.86 1.000 42.86 -100.00 100.00 1.000 100.00 -24.21 233.33 1.000 233.33
1 -100.0 11.52 1.000 19.52 -t"0.0 41.42 1.000 41.42 -9.63 6L27 1.000 62.57
2 -100.00 0.00 0.21 3.17 -24.67 0.00 O.5 7.65 -4.40 0.00 0.323 13.67
S-100.00 0.0 0.424 2.0? -14.1" 0.00 0.424 4.10 -2.3 0.00 0.424 7.22

4 -63.03 0.00 .33 1.3 -10.7 0.00 0.373 2.0 -2.11 0.01 .73 4.74
3 -1.67 0.000.341 1.0L -6.42 0.00 0.341 1.1 -44. 0.0 0.341 3L47
6 -i.3 0.00 0.31 .79 -4.1 0.00 0.31? t.54 -34.91 0.000.3t? 2.70
7 -1.11 0.00 0.303 0.4 -5.36 0.00 00.3 1.26 -23.71 6.0O .303 Li?
8 -1.03 0.00.290 0.34 -5.0? 0.00 0.290 1.0 -24.4 0.00 0.20 1.93
9 -0.92 0.00 .27? 0.46 -4.50 0.000.271 0.0 -21.31 0.00 0.279 1.57

10 -0.12 0.00 0.27t 0.44 -4.03 0.00 0.27t 0.78 -16.69 0.00 0.271 1.37

I
Figures SA-SC for p = .25, 6A-4C for p . and 7A-7C for

p .7S ,are plots of &1(p) for the S models and k = 3/2, 1, 2/3.

As in the previous figures one can see that for even a smaU

departure from independence the relative effect of dependence

can be quite large.



4.2 NoprmercEstimation

A second approach to the, pzobin of estimating c~onent
parameters is via the q estimator of Kaplan and
Maeier (1958). Investigators Qo routinely use n'npaz'mwtz'i
techniques may take this approach in hopes of obtaining estimators
that are robust with respect to the assumption of exponentiality.
Howver this estimator is not necessarily robust to the assumption
of independence.

The product limit estimator, assuming independent risks is
constructed as follows. Suppose that n systems are put on test
and let ril, ... , r. be the renks of the ordered ni failures

from cause i, X(1) x X.()' aong allnorder lifetimes.Xi(1), ... ./ni , -th al
The estimator of the t r,,liability for the ith component is

4.2.1 Si(x) 1 if <XC xi(l)

i(i,x) xI x(j(1 )
I! n-r.. '

jzl n- r. +1

whtere j(ix) is the largest value of j for which xj(j) < x. This

estimator is asympotically unbiased when the component lifetimes
are independent.

When the risks are dependent Klein and e (1983)
show that S(t) is not estimating the marginal component relia-
bility, but rather-it is estimating consistently another survival
function

4.2.2 r.X) = ex( x d Qjt where.

rkt) z (jmjniu %X,X2 ) 2- t) and Q.C~t)z

P(minOC,X 2) < t, innX 1,X2) a X1), 1,z 2. Exrsios for

*1.

i. *



(kt) for the fJ..v models of iatergt am. given in Appendix 3.
A measure of the affect of dependene in~ using the Prioduct

limit estbmator wil dependent risks is alCp) 2(Ir9 Ct I - p)/p
e, wiexv tp is th, time whiere the true omvonent reliability is p.

di Cp) is again only a function of k 2 l)2.For the upper

LIZ Fr~.het distribution
9 a 1Cp) = p 4l - 1. for k <l

P-1 / 2  2.I for k a since

a for k >1

for k -c. I RIM)=2. for all t since the first clomponent never

fails, while for k > I. all failures are due to the first olmponent.

For' those moels with corrilation nin the riange CC - lJfi (P)

is increaszi for correlatons less than P* and deczeasiW fbr

correlationis gmeter than P~ when k > 1. For the lower Frele

distribution Ff1 (t) p ep f du for p t.(1Y

For ~ -l otherwise.

Table 3 shows the value of 1 (p) x i~o% for p z .7,. .S, .3 for the

tw.o Freci distributions. o k > 1, the mnaxim=u value under

the Guiibel C mocdel is also given. As in the parametric estimation

Iproblem the largest e-ors are incurred ,ben k < 1. In all cases

the effect of a departurie fromn independence is the largest when

p is small (i.e. for large t). The effect decreases as k

u ~~vasels reflecting the fact that when kc X ) > X' 2 the majority
of the system failures are due to the failure of the first

coponent.



S.Colsos

The r~sults presented in this paper show that for afl. five
bivariate exponetial models one may be appreciably misaled by
falsely assuning inependence of component lifetimes in a serie-s
system. The amount of error inaurred in modeling system reliabilit
not only depends upon the corrlelation between component l.ifetim'es

but also on the level of system reliability. The errlor in
modeling mean system life similarly depends upon the correlation
and the l.ength of mean system life. Both quantities depend on the
relative magmitudes; of the paramters.

For thie dual pcobLen of estimting component reliability
based an daa frcz a series system, it appears that departures
frcz independence ame of pwel MMonsq~eCe. Both parem'ic
and rnputric estimators of relevant comonent parameters

are incnsistent. Bias increases dramatically as the correlation
gets further frm zezm. However, the five models do not e~dibit
appreciable differences in bias and mean squared error as

correlation changes. This suggests that these mo~dels may belong
to a large class of bivariate exponential distributions 4-tich
possesses the properties exhibited here.
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jorm~s fr aqtedSyteu Life,

Gal A- w ,X)

qr1,'2 r12

wheare ;F() is the survival function of a standard norwal randO

variable.

Ganbel B- 1 + 12(A.2

Ga~bel. C -- C*)-/M (AL.3)

M5 E)1 A 2 ) -p 1x 2

+* [(X +X,) 4/)0QX]X 1124 2  2P 2 x

2 ~XC(X I+,k2) - 40 X1x2

Oakes -foundi by numeri.cal integrat ion
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A~pnd - Formulas for p: P0C' 2
X2,

Guutbel A 1 /0C <X)=12 + (-A 1 xp((Al+'X2 )2T(A~ j > 0

where IC.) is the survival function of a stanard ro l.

random variable. WA. 1)

Gumbel B - P(X1 < X2) A 4o A2(C --,2 )

(A2.2)

Gmbel C - P(X < X2 ) z Am

(A2.3)

Downton - P(X1 < X2) 2A 1A.(-P)

A'
4  

2
) 2

- ', x1 A2 )(,-A 2 + V%/(A+A 2 ,2 - 1 x2

(A2.4)

Oakes - P(X1 .< X2) found numerically.
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Appendix 3

Gunbel A - ff~x = (( x-1 A3. 1)

Gwnbel B - ff(xW) exp- JCi + 4o~l-exp(-)L t)(1-2exp.JA1tM) 4A3.2)
0 l+ 40C1.'exp(-%2 t))(..exp(--X t))

Gumbei C - H(x) =exp~) X m (- (A3.3)

M'4mton. - Found numerically due to no close foru solution for

Oakces - =) exp) " x~expQ1 Ce-.)t) dt
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FIGLRE 2A

* Relative Error in Mdeling System Reliability at t .
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FIGIRE 2C

Relative Error in Modeling System Reliability at t p .75
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Asyptotic Modeling Error in Esticating u, for K 1
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Asymptotic Error in the Nonparametric Estintor" of the
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A RANDOM ENVIRONMENTAL STRESS MODEL FOR COMPETING RISKS

John P. Klein and Sukhoon Lee

Depatmet of Statistics
~The Ohio State University

~Columbus, Ohio 43210

ABSTRACT

A random environmental effects model is proposed for competing risks experiments. The
model assumes a random stress, Z, which changes the scale parameter of each of the assumed

Weibull times to occurrence of the risks. Some general properties of the model are discussed, and

specific properties for a Uniform or Gamma stress model are presented. Estimation of parameters
under the Gamma stress model is considered, and a new estimator based on the scaled total time on
test transform is presented.

IN'MODUCTION

The problem of competing risks. arises naturally in a number of engineering or biological
experiments. In such experiments, for some items put on test, the primary event of interests (such
as death, component failure, etc.) is not observable due to the occurrence of some competing risk
of removal from the study (such as censoring, failure from a different component, etc.).
Competing risks arise in an engineering context in analyzing data from

(a) series systems,

(b) field tests of equipment with a fixed test time and a random or staggered entry into

the study, or

(c) systems with multiple failure modes.
Competing risks arise in biological applications in analyzing data from

Ja . . . . - . . . .. E -. - , € .. .



(a) clinical trial with a fixed trial duration and staggered entry
(b) clinical trials with some patients withdrawing from the trial prior to response
(c) studies of the time to death from a variety of causes
A common assumption made in analyzing competing risks experiments is that the potential

(unobservable) times to occurrenc of the competing risks are independen This assumption is not
testable due to the identifiability problem. That is, for any dependent competing risks model, there
exists an independent competing risks model which yields the same observables. (See Basu and
Klein (1982) for details.) However, Moeschberger and Klein (1984) show that an investigator can
be appreciably misled in modeling competing risks by erroneously assuming indepencence.

In this paper we present a model for dependence between the various risks by assuming that
dependence is due to some common environmental factor which effects the potential times to
occurrences of each risk. In section 2 we present the model and study its properties for bivariateom s-series and parallel systems. In section 3, we consider estimation of the model parameters for

competing risks systems.

2. THE MODEL

For simplicity we shall consider the problem of bivariate systems and discuss our model in
terms of engineering applications. We assume that under ideal, controlled conditions, as one may
encounter in the laboratory in the testing or design stage of development, the time to failure of the

t two components, to be linked in a system, are X0 and YO. We suppose that under these

conditions, X0 ,Y0 have survival functions F0 , GO on [0, .). We assume that both X0 andY0S
follow a Weibull form with parameters (ill, X1) and (12, X2 ), respectively, That is, F0 (x) = exp(-

) 1x'll). The Weibull distribution, which may have increasing ('Ti > 1), decreasing (11 < 1) or

constant failure rate (11 = 1) has been shown experimentally to provide a teasonable fit to many
different types of survival data. (See Bain (1978)). We now link the two components into a

MRsystem in such a way that under ideal lab conditions the two components are independent

Now suppose that the above system (X0 , YO) is put into operation under usage conditions.

We suppose that under such conditions the effect of the environment is to degrade or improve each

component by the same random amount That is, the effect of the environment is to select a
random factor, Z, from some distribution, H, which changes the maginal survival functions of the

two components to F0 and G0 Z. A value of Z less than one means that component reliabilities are

simultaneously improved, while a value of Z greater than one implies a joint degradation. The
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resulting joint reliability of the two components' lifetimes, (XY) in the operating environment is

F(xy) = E[exp(-Z(X xT'l 1+ k2Y'1 2 ). (2.1)

This model has been proposed by Lindley and Singpurwalla (1984) in the reliability context
when F0 , Go are exponential and H( ) follows a gamma distribution. This basic dependence

structure was also proposed by Clayton (1978) to model associations in bivariate survival data, and
later by Oakes (1982) to model bivariate survival data. Hutchinson (1982) proposed a similar

model when H( ) has a gamma distribution and F0 (t) = G0 (t) = exp(-t).

The model described above for a general distribution of the environmental stress has a
particular dependence structure which we summarize in the following lemmas.

Lemma 1. Let (X,Y) follow the model (2.1) where Z is a positive random variable with finite

r s
(- + .)th inverse moment. Then

TI 112
- -S"1l2 -(r1l +s"2)

E(XrYs) =X k2  M + rill1) ( + sr 2 ) E(Z (2.2)

The proof follows by noting that, given Z = z, (XY) are independent Weibulls with parameters

(I 1, ;L1 z) and (112 ,X;2 z), respectively and E(XrVZz) = 1  z r(1+ r/t11) with a similar

expression for Ys. When the appropriate moments existwe have

(A) E(X) =E(X0) E(Z )

(B) V(X)=E(X2) Var(Z'l )+E(Z 1  )2ar(X ),

-11111 -1/11
(C) Coy (XY) = E(X0) E(Yo) Cov(Z , Z - which is greater than 0.

f :11 = 112 =1 then the correlation between (X,Y) is

r(l+ Itri)2 Var(Z 1 /11)

Var(Z l /il) r(1+2l)+ (r(1+21) - r(+fI)2) E(Z"b11)2

In this case the correlation is boundedcabove by r(+1/Itl)2 / r(1+2/T1). Figure I shows the

maximal correlation as a functcion of -n forn rc(0, 10). Note that this maximalcorrelation is an



FIGURE 1
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increasing function of Tl. One can also show that F(x, y) is positive quadrant dependent for any

111,'12"

Exact expressions for competing risks quantities of interest can be computed when a
particular model is assumed for the distribution of Z. We shall consider the gamma and uniform

models. Consider first the gamma model with hz(z) = ba za" I exp(-bz)/7(a), z > 0. For this

r' model, the joint survival function is

ba
F(x,y) = (2.3)

[b+ .lX + X2y a

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal distributions are

univariate Burr distributions with

4/T
E(X) = (Xl/b) h(1+I11,)r(a- 1i1ll) r(a), if a> 1/1,

-2/l r(l+2tnI)r(a-2/1l) r(i+1/ll)r(a-ll) .2}, if a> 2/111
r (a) r(a)

-" with similar expressions for E(Y), Var(Y). The covariance of (XY) is

-171 -/1 r(a-ltrll-1r2) -r(a-l/T12) r(a-l/Tl)

Cov(X,Y) = (X1/b) (X2/b) r(l+XtT1) r(1+1/r2){i~i r(a) r(a)

for a > l/111 + 1/112. For the gamma model, the reliability function for a bivariate series system is

given by

L Rs(t) = (l+(%1/b)t 1+ (X2 /b)t 2 )-a, (2.4)

and for a parallel system by

= ~ T (l(X/~1  112 112 112)a(2)
Rp(t) =(+(X/b)t+ (1+ (X2/b)t )" - (1+( X.I/b)t2+ (X2 /b)t )(25)

Figures 2A-E are plots of the series system reliability for .1= 1, X2 2 and several combinations
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of 1 ,1112. Each figure shows the reliablity for a = 1/2, 1, 2, 4, and the independent Weibull

model. In all cases, b = 1. For these figures we note that for fixed X1, X2 11 1, 112, t, the series

system reliability is a decreasing function of the shape parameter a. Figures 3A-E are plots of the
. parallel system reliability (2.5) for the above parameters. Again, the reliability is a decrtasing

function of a. Also in both the series and parallel system reliability, the shape of the reliability

function is quite different from that encountered under independence.
The gamma model is a reasonable model for the environmental stress due to its flexibility and

the tractability of the model in obtaining close form solutions for the relevant quantities and in
estimating parameters. However, in some cases, such as when the operating environment is

1.; always more severe than the laboratory environment, the support of H may be restricted to some
fixed interval. A possible model for such art environmental stress is the uniform distribution over

[ab]. For this model, the joint survival function is

I1 T12 'Il 12
(exp (-b(X 1 x + X2y )) - exp(-a( lx +

F(x,y) = (2.6)

./, :,,, (b-a)()liX +)L2 y "/I(11/1 -)T1

"5: E(X) = )X1  (I+1/'11)' 1 (b -a /{(11l-1)(b-a)] if ill 1

S-lnn(b/a)/[X 1 (b-a)] if 11=1,

V,- 2/11 (11-2)/111 (1 l-2)T
.bVat(X) 2 bl F )(l+2/1ll) (b] 2  - a1 1

2 .:2/()L12ab) - An(b/ a)2/[(b-a) 7.1]2 if Ill= 1

fn(b/a) H
. (b-a) (bl/2 +al/2.X1

'Y'- 7- 7 -
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FIGURE 2 R
SERIES SYSTEM RELIABILITY UNDER GAMMA(A.1) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 B
SERIES SYSTEM RELIABILITY UNDER GAMMA(A.1) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 CI
SERIES SYSTEM RELIABILITY UNDER GAMMA(R,l) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 0
SERIES SYSTEM RELIABILITY UNDER GAMMA(R,1) MODEL
FOR THE ENVIRONMENTAL STRESS.
),i=1. X2=2.O, ni=1/2. 12=1/2.

KEY
O ---- SHAPE 1/2

.-- SHAPE I
+ ---- SHRPE 2X.-.- SHAPE

S----INDEP

ZCD

-

>Mo

,U
>0

'b. oo 1o.00 2.00 3.00 '.00 5.00
TIME.

.~N,



FIGURE 2 E
SERIES SYSTEM RELIABILITY UNDER GAMMA(A,1) MODEL
FOR THE ENVIRONMENTAL STRESS.

,i= l.0, >.2=2.O0, ni=1/2. 12=2.0.

* KEY
C6 ---- SHAPE 1/2-- .. SHAPE I

+ ----SHAPE 2

---- NDEP

ZCD

Cc

co

co

Cuj

0

Ib ,0 1.00 2.00 3.00 4.00 5.00
TIME.



FIGURE 3 R
PARALLEL SYSTEM RELIABILITY UNDER GAMMA(A,1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 B
PARALLEL SYSTEM RELIABILITY UNDER GAMMA(A,1) MODEL
FOR THE ENVIRONMENTRL STRESS.
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FIGURE 3 C
PARALLEL SYSTEM RELIABILITY UNDER GAMMAIA,1) MODEL
FOR THE ENVIRONMENTAL STRESS.
Xi=10. )2=2.0, i=2.0. n2=2.0.
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FIGURE 3 0
PARALLEL SYSTEM RELIABILITY UNDER GAMMAIA,l) MODEL
FOR THE ENVIRONMENTAL STRESS.

== .0, xa= ,0, 11/2. '42=1/2.°0

I-

* p KEY
-- .. SHAPE 1/2
---- SHAPE I

+ ----SHAPE 2X ---- SHAPE
*I ---- I NDEP

CD
z

uU

-j

CcD

>0

UV)

lo Io0 11.00 2".00 3".00 4.00 5".00
TIME.

Aa 9W, ~



and

1112-11 2 111112-l'2

r(1+tili)r(+111 2) 111112 (b -a
Cov(XY) xi 1/111 __ __ ____ ____ (111112 -111-112) (__

x1 l- x2  121 1-

111 111 112112
111112 (b -a A( -a

)i 1 1, 11 1 , 1 /1

(b-a) 2

111-1 111-1

r (1+/1 1) r ((21 1 -1)/Tl) fln(bla) 1112 (bi -a1  ) /1 J 1f/JJ1

x(1ltrU X 11011-1) (b-a T11 (-)2 ~ ( a)fnba

if II* 1/111=

1li l Iln bla)2 l

r (ab/l) Il V(b)n ( a 2nba

For ~ ~ ~ ~ ~ ~ ~ ~ ~~i tIii mel the. reblt ucinfrasxe ytmi

R5(t) - exp(-b(X 1 11 2 11t exp(-a( XI t 11 2 112)] (2.7)

CtA~t2 +~}

4
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U and for a parallel system is

Rp(t) -[exp(-b(Xl t 1) -exp(-a X1 t) + [exp(-b X2t 12 ) -exp(-a k2t 12)
(b-a) X Ill (b-a) 2t72 Rs(t)

VFigures 4A-E show the reliability for a series system ard figures 5A-E for a parallel system

under the uniform model for various combinations of )L1, 2, ! 1' 2 a,b. Notice that when A =

.25, B = .75, which corresponds to an operating environment which is less severe than the test

environment, the system reliability is greater than that expected under independence, while when

(a,b) = (1.25, 1.75) or (1., 2), which corresponds to an environment more severe than the test

environment, the system reliability is smaller. Also when the (ab) contains 1, which corresponds

to an environment which incurs the possibility of no differential effect from that found in the

laboratory, there is little difference in the dependent and independent system reliability.

3. Estimation of Parameters Under Gamma Model

Consider the model (2.3) with 1 112 =1. For this model, the reliablity for a series system

is

Rs(t) (I + tXI )-a.  (3.1)
b

Notice that this model depends only on two parameters 0= (X1+ ;2)/b and a so that if we had data

only from systems on test in the operating environment, the only identifiable parameters are a, 0,

NO



FIGURE 4 R
SERIES SYSTEM RELIABILITY UNDER UNIF(R,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE '4 B
SERIES SYSTEM RELIABILITY UNDER UNIF(A.B) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 4 C
SERIES SYSTEM RELIABILITY UNDER UNIF(AB) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 4j D
SERIES SYSTEM RELIABILITY UNDER UNIF(A.B) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 R
PARALLEL SYSTEM RELIABILITY UNDER UNIF(A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.S)'=l.O- , X,2= 2. 0, 111 0 2=1.0.
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FIGUR9E 5 B
PARALLEL SYSTEM RELIABILITY UNDER UNIF(IIB) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 C
PARALLEL SYSTEM RELIABILITY UNDER UNIF(A,B) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 0
PARALLEL SYSTEM RELIABILITY UNDER UNIF(A,B) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 E
PARALLEL SYSTEM RELIABILITY UNDER UNIF (A.B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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11, not XI, X, , a, b. However, in many instances we have extensive data on the performance of

the components in the lab under ideal operating conditions so that one may consider X1, X2 , 11 to be

S known based on estimates from this data. We shall focus on the problem of estimating 0 and a,

based on data on the system failure times collected in the operating environment. Let tl, ..., tn be

the failure times for n such systems put on test, and, let wi = till, i = 1, ..., n.

Prior to attempting to estimate (a, 0), we would like to check if the model (3.1) is feasible.

~A graphical check of this model can be done through the scaled total time on test (SITOT) plot of

Barlow and Campo (1975). The STIOT for W is

I t Rs(t)dt
0

Gw(t) = -'I(1- = l-(1-t)(a'l)/a for a> 1. (3.2)

Rs(t)&
0

Note that (3.2) depends only on a. Figure 6 shows the form of the STTOT for several values of a.

Notice that for all a, the STrOT is below the 450 line (which corresponds to exponential system

life) since the hazard rate of the series system is decreasing. Let

i

Tn(W(i)) = Z, WOj) + (n-i)W(i), (3.3)
j=l

where W(1)5 W(2):5... <W(n) are the ordered systems failure times be the total time on test at

W(i). The empirical IfTOT plot then plots (i/n, Tn(W(i))/T(W(n))) which can be compared to

figure 6 for a graphical check of the model. Also, crude estimates of a can be obtained by
*(1



If

FIGURE 6
SCALED TOTAL TIME ON TEST TRANSFORM
FOR GAMMA MODEL.
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comparing the empirical and theoretical STOT plots. When there is no random environmental

effect and the components are independent, then the empirical SITOT plot should look like the 450

line. Also as a tends to infinity this plot approaches the 450 line.

We now consider several estimates of a and 0. The log likelihood for the model (3.1), based

on a sample of size n, is
n

L(a,e) = n n a + n ln 0 -(a+l)1 An (1+0 W i) (3.4)
i=1

so tha

n
a/aa L(aO) = nla - I In (1 + 0 Wi) (3.5)

i=l

n
and aIaO L(a,O) = n/O - (a+l) i w/i(l+ Owi)  (3.6)

i=l

I For (3.5) we note that the maximum likelihood estimator of a

amle -= (3.7)
n
In (1 + O Wi)

and the maximum likelihood estimator of 0 is the solution to

n n W.
+1) ( )=0. (3.8)

S In ( 1 + O Wi) I + OWi

One can show that ( is positive if ni w,2 > 2( 1 w) 2 . (3.9)

In such case erl € is obtained by solving
* |

-" '" " * " ..' " .w * ' "; " ' " '" i :" ' : i "
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(3.8) numerically.

A second estimator of (a, 0) is the method of moments (mine). Since E(W) = [0(a-1)]- 1

and E(W2 ) - 2[ 02 (a-1)(a-2)] "1 where a > 2, we have

I wi2 I wi2-2(y.w,) 2

a +e 1 + (3.10) and O(( ) (3.11)I wi2 - 2(7. wi2) I wi(l wi)2

provided that (3.9) holds. If (3.9) does not hold, then this estimator does not exist

A third estimator was suggested by Berger (1983) in a different context He suggested

estimating 0 a modified methods of moments estimator ber = (a w) - 1, (3.12)

where w = wi/n,

which is used as the true value of 0 in the likelihood (3.4) so that the estimator of a is the solution

to

i nn (1 w i )+wa(a+ l )  lwi(w
w- An+1 -_-_2_ = 0 (3.13)

aw wa lswi/(aw)

A final estimator is based on the STTOT plot Let Ci = Aln(l-i/n) andD i =

6 n(l-Tn(W(i))/Tn(W(n))), i = I, ... , n-1. If (3.2) holds, then we should have

~D i - (l-I/a)Ci, i =I..,n-1, (3.14) r

so the value of a which minimizes

n-i
i (Di - (1-1/a) q) 2 is a reasonable estimator of a

The resulting estimator is als = C 2  (3.15)
XCI - CDi



which is in the parameter space if C 2 > ,C Di. A better estimator should be obtained by

weighting the Di's differently since for i < j, Var (Di) < Var (Dj). The variance of Di depends on

the unknown parameter a so we weight by the variance of Di computed under an assumed

exponential distribution. The variance of Di in that case is

i 1
Vi = i=1, ..., n-1 (3.16)

j= n-lj)

~ so that the weighted least squares estimator of a is

al Ci2 C/V if Y Ci2/Vi > z CiDi/Vi. (3.17)

Vi Vii

Once we have obtained a by either of tht. two least squares estimators, we substitute this value into

(3.6) and solve this equation numerically for 0s or Owls.

The condition Z Ci2/Vi > £: Ci Di/Vi includes a few more possible samples than the

condition (3.9) for the other three estimators. However, those samples which satisfy I Ci2 /Vi >

tot Ci Di / V i for which (3.9) fails to obtain yield very large estimates of 0. Since a reasonable

model for T when 0 and a are not estimable is the independent Weibull series system which has

Ssystem reliability very close to (3.1) when a is very large, this is not a problem. Figures 7a and 7b

are scaled total time on test plots from two simuilated samples of size 30 from (3.1) with a = 3, 0=

1. Looking at figure 7a, we see that the estimated scaled total on test doesn't look too different

from the 45* so that an exponential model might not be unreasonable. For this data set only the

weighted least squares estimator exists and it yields aWLS = 45.33 and 0= .0567. For the data in

l figure 7b all estimates exist, and we have

: 7 .



FIGURE 7 R
SCALED TOTAL TIME ON TEST PLOT
FOR SIMULATED DATA.
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FIGURE 7 B
SCALED TOTAL TIME ON TEST PLOT
FOR SIMULATED DATA.
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Ond e = .93 amle = 2.98

S 0 rme = .491 atm e = 4.86

Ober - .7 2 0  aber - 7.02

013 = .739  . a 5= 3.58

Owls = .970 awls - 2.89

To study the properties of these estimators, a small scale Monte Carlo study was performed.

Random samples of size n = 15, 30, 50, 75, or 100 were generated with X1 + X2 = 3, b = 3, so 0

=I and a = 2, 3, 5. 1000 samples were generated for each combination of n and a. The bias,

standard deviation of the estimates and n, the number of samples where the estimator exists is

reportedin table 1 for a, table 2 for 0, and in table 3 for an estimator of the system reliability

Sobtained from (3.1) at to = 9.085. The true system reliability at to is .8255 when a = 2, .75 when a

.. =3, and .619 when a = 5. Also reported in each table is the bias and standard deviation of the least

square and weighted least square estimators when they are restricted to those samples where the

other estimators exist.

From these tables we note that Berger's modified estimator performs very poorly. Also the

weighted least squares estimator allows for estimation of parameters in many more samples when n

Sis small. In general the maximum likelihood estimator outperforms the other estimators, however,

when the weighted least squares estimator is restricted to those samples where the maximum

likelihood estimator exists, this estimator performs much better when n is small The somewhat

better performance of the MLE in terms of bias is deceptive since some of the estimates of a are less

than one, which implies that the mean system reiliability is infinite. Also the weighted least squares

estimator of system reliability seems to outperform the other estimators of the system reliability in

spite of its relatively poor performance as an estimator of 0. Our recommendation is to use the

weighted least squares estimator since it more often provides estimators of the relevant parameters

and is somewhat easier to compute.



(ABLE 1
SIAS AND STANDARD DEVIArION(SD) OF ESTIMATORS OF A

MAXIMUM WEIGHTED METHOD OF
LIKELIHOOD LEAST SQUARES LEAST SQUARES MOMENTS BERGER'S METHOD

1;~ N 10 BI AS so M SIAS SD Mi BIAS SD m B IAS SD M BIAS SD
5L5 79 4.2 9 8S2 4.8 41. /62 6.8 49. 770 9.1 37. 770 14.4 65.

766 1.3 5. 715 3.5 16.

2 TO 916 2.8 20. 953 4.7 37. 877 6.4 52. 916 6.1 32. 916 10.0 52.

912 1.1 3. 857 5.4 51.
950 979 5.8 114 99 1.7 10. 956 4.0 16. 979 8.5 131. 979 15.4 241.
976 1.0 3. 952 3.5 12.

2 75 996 1).9 4. 998 1.0 3. 974 2.4 12. 996 2.2 4. 996 4.5 9.

996 1.0 S. 972 2.4 12.
2 100 999 0).3 3. 1000 1.7 35. 989 1.5 9. 999 1.7 5. 999 3.7 9.

I 999 0.6 2. 989 1.5 9.
3 15 642 7.3 39. 753 36.4 843. 653 13.1 149. 643 16.8 77. 643 26.0 14.

636 1.3 9. 573 10.7 159.
3 30 809 5.7 30. 870 13.8 141. 768 11.9 100. 910 9.9 104. 809 17.7 68.

804 1.8 6. 731 11.1 102.
.3 50 916 3.6 18. 935 6.9 65. 864 6.4 33. 916 6.6 25. 916 12.5 42.

912 2.9 29. 851 -7 32.
3 75 96! 2.5 14. 977 2.8 17. 925 11.6 144. 963 4.7 24. 963 9.6 38.

958 1.3 5. 923 11.6 144.
S 100 979 1.7 7. 989 2.1 12. 956 3.7 19. 978 3.0 9. 978 7.2 15.

979 1.3 5. 952 3.6 19.
5 15 520 38.7 573. 665 8.2 53. 558 30.3 493. 522 69.8 925. 522 112.9 1505.

516 -0.7 5. 458 1.9 15.
3 30 674 20.4 148. 752 9.3 69. 669 13.7 109. 674 31.7 202. 674 56.3 347.

660 3.2 29. 601 9.4 86.
() 801 7.6 39. 850 9.0 97. 756 13.4 88. 801 11.4 52. 801 23.4 91.

787 2.0 10. 722 8.6 56.
3 75 893 12.8 139. 415 9.0 94. 827 6.6 22. 893 15.3 122. -9'3 32.6 260.

878 2.9 16. 714 5.9 20.
I 3 lo,:' 91 9.5 T1 1-3 19.6 307. 3' 11.0 91. I 92 13.0 1) 0. 992. 27 1 3.

9 879 13.7 23. 2a1 9.5 79.

ILK



TABLE 2
BIAS AND STANDARD DEVIATION(SD) OF ESTIMATORS OF e

MAXIMUM WEIGHTED METHOD OF

LIKELIHOOD LEAST SQUARES LEAS) SQUARES MOMENTS BERGER'S METHOD

A N M B8IAS SD M ASD M -- [ASSD M.BIAS S BD M BIAS SO

l1 769 o.356 1.702 852 -.102 0.742 782 -.192 0.729 770 -.683 0.205 770 -. 803 0.122
766 -.027 0.025 715 -. 156 0.701

2 30 916 0.112 0.919 9533 -. 135 0.580 877 -.254 0.596 916 -.623 0.192 916 -.798 0.095

912 -. 100 0.567 857 -.239 0.584
S 2 50 979 0.016 9.648 989 -.126 0.492 956 -.263 0.514 979 -.575 0.184 979 -.792 0.079

976 -.115 0.486 952 -.260 0.513
2 75 996 -.025 0.522 998 -.125 0.432 974 -.247 0.475 996 -.341 0.174 996 -.790 0.065

996 -. 124 0.431 972 -.246 0.474
2 100 999 -.019 0.437 1000 -.101 0.381 989 -.216 0.423 999 -.508 0.153 999 -.785 0.052

1000 -.101 0.381 989 -.216 0.423
3 13 642 0.691 1.900 753 0.210 1.049 653 0.119 1.031 683 -.513 0.348 643 -.705 0.203

636 0.390 1.040 573 0.245 1.039
3 30 809 0.175 1.049 870 0.000 0.757 769 -.096 0.745 910 -.469 0.338 809 -.725 0.160

904 0.074 0.740 731 -.057 0.743
3 5') 916 0.075 0.766 935 -.012 0.618 864 -.L12 0.663 916 -.404 0.333 916 -.718 0.135

912 0.011 0.609 851 -.100 0.660
3 75 963 0.030 0.624 977 -.027 0.555 925 -.144 0.603 963 -.375 0.322 963 -.717 0.120

958 -.010 0.546 923 -.142 0.603
3 100 978 -.028 0.515 989 -.075 0.472 956 -.165 0.511 978 -.343 0.297 978 -.716 0.104

979 -.055 0.465 952 -.161 0.509
3 15 522 1.352 3.I09 665 0.7t5 L.&09 558 0.578 1.536 522 -.238 0.&01 522 -.546 0.348

516 1.094 1.599 458 0.827 1.561
5 30 674 0.558 1.609 752 0.366 1.118 669 0.L80 1.026 674 -. 199 0.576 674 -. 584 0.282

660 0.523 1.104 601 0.286 1.029
5 50 801 0.254 1.559 850 0.184 0.869 756 0.105 0.863 801 -. 193, 0.541 801 -. 615 Y. 232
5 787 0.261 0.850 722 0.150 0.858

75 893 0.128 0.817 915 0.112 0.728 827 0.014 0.747 893 -.189 0.535 893 -.628 0. 21.-
878 0.153 0.715 814 0.("28 0.744

5 100 892 0.033 0.683 913 0.020) ).628 83 -. 064 0.666 892 -. 206 0.494 892 -. 644 0.185
879 0.055 0.615 821 -. 050 0.663



TABLE 3
BIAS AND STANDARD DEVtAT[ON(SO) OF ESTIMATORS OF SYSTEM RELLABILITY AT T-.9065

MAXIMUM WEIGHTED METHOD OF
LIKELIHOOD LEAST SQUARES LEAST SQUARES MOMENTS BERGER'S METHOD

AN 14 BIAS D M IAS ..SD M SEAS - i M S --- ai S -AS SDo --- BIAS -- SD... .; ....... -... ... ... - e 0 ----....-----
2 -13 769 -. 1 .479-04 .5672.02089 70 0.037 .0 5 70 0.04 .0463

766 -.006 .0577 715 0.002 .0586
2 30 916 -.005 .0473 953 0.002 .0424 877 0.010 .0434 916 0.037 .0357 916 0.069 .0335

912 0.001 .0426 957 0.009 .0434
2 50 979 -.001 .0372 999 0.003 .0349 956 0.010 .0359 979 0.035 .0300 979 0.071 .0233

976 0.003 .0348 952 0.010 .0359
r., 2 75 996 0.000 .0290 998 0.004 .0274 974 0.010 .0292 996 o.034 .0244 996 0.02 .0238

996 0.003 .0274 972 0.010 .0293
2 100 999 0.011 .0243 100 0.004 .0234 999 0.010 .0248 999 0.034 .0223 999 0.075 .0216

999 0.004 .0233 989 0.010 .0249
T 15 642 -.018 .0815 753 -.010 .0767 653 -.Q06 .0748 643 0.031 .0661 643 0.067 .0616

636 -.015 .0764 573 -.008 .0751
3 30 809 -.007 .0577 870 -.003 .0Z52 769 0.002 .0551 810 0.024 .0490 809 0.062 .0471

804 -.006 .0544 731 0.001 .0550
3 50 916 -.003 .0429 935 -.001 .0412 864 0.005 .0431 916 0.022 .0366 916 0.066 .0340

912 -.002 .0411 851 0.005 .0432
3 75 963 -.001 .0372 977 0.000 .0356 925 0.007 .0374 963 0.021 .0327 963 0.067 .0313

959 0.000 .0357 923 0.007 .0375
. 100 9788 0.001 .0309 989 0.002 .0299 956 0.008 .0311 978 0.019 .0267 978 0.067 .0261

978 0.002 .0299 952 0.008. .0312
5 15 520 -.02.9 .1011 665 -.024 .0967 558 -.020 .0977 52Z 0.012 .0926 522 0.054 .0921

516 -.030 .0968 458 -.022 .0968 -
5" 30 674 -.022 .0691 752 -.020 .0674 669 -.013 .0651 674 0.001 .0613 674 0.045 .060e

66') -.027 .0665 601 -.016 .0652
550 901 -. 006 .0545 850 -. 006 0530 756 -. 002 .0532 901 0.010 .0494 801 0.055 o09

787 -.008 .0528 722 -.002 .0535
5 75 893 -. 005 .0442 915 -. 005 0436 827 -. 002 .0431 893 0.007 .0406 893 0.051 .038o

.979 -. ()06 .0430 814 -. 002 .0432
S 100 892 -. 01)2 .0375 913 --. ))1 .0392 831 0.003 .0380 892 0.008 .0353 892 0,052 .0.345

879 -. u02 0390 821 0.003 .0381

.Z
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On Dependent Competing Risks

by
John P. Klein and Sukhoon Lee

Department of Statistics
The Ohio State University

Columbus. Ohio 43210 USA

1. Introduction

The problem of competing rLsks arises naturally in a number of contexts.
namely the modeling of series systems in reliability, the problem of estimation
with censored data and the analysis of physical or biological systems with

Vmultiple failure modes. A common, untestable assumption is usually made that
the potential failure times for each risk are statistically independent (see
Basu and Klein (1982)). Hoeschberger and Klein (1984) show that an investiga-
tion may be appreciably misled in modeling series systems reliability and in
estimating component parameters by incorrectly assuming independent component
lifetimes. In this paper we model dependence between components through a
common environmental effect on each component. Such a dependence structure
has also been suggested by Oakes (1982). Lindleyand Singpurvalla (1985), and
Hutchinson (1981).

2. The Model

Consider a two-component system. Suppose that under ideal, controlled
conditions, as encountered in the testing stage, the times to failure of the
two components are X0 and Y'. Under these condittons. XOY ate independent

with marginal survival functions F and G0. Now suppose t e two components
are linked into a system and exposea to the environment. The effect of the
environment is to select a random factor, Z, from a distribution, H(z). which

z z
changes the marginal survival functions of the two components to F0

Z  GO0

respectively. A value of Z less than one means that component reliability is
improved. while a value greater than one implies a joint degradation. In the
sequel we assume that X0 and Y follow a Weibull distribution with parameters

, and That is, Fo(x) - exp(-kx x). The resulting joint

reliability of the two components' lifetimes. (X.Y). in the operating environ-

ment is F(x.y) - E(exp(-Z(A x x + Y Z. F(x,y) is positive quadrant dependent.

Also E(X) E(XE(Z'L ); V(X) - E(Xo)E(Z2/"'x) -(E(X(Z-lcx)) 2 ; and

Cov(XY) - E(X0)E(Y0 ) Cov(Z
" G/ x. z- 1 /6Y). The correlation is always positive

and is bounded above by (l + 1/a) /r( + 2/a) whena - a - a. Explicit.

though lengthy. formula for the moments of (X,Y), system aJd component

. reliability, and system components can be obtained vhen Z is assumed to be
either a uniform or gammar random variables. The gamma case leads to
bivariate Burr distributions.

•3. Estimation

The estimation of model pramer.ters is carried out under the assumption

that Z has a gamma distribution with density h(s)m exp(-ba). Since the

S paramacers 4,,, Ay are not identifiable when only data from either a series or



parallel system is available, we incorporate sample information obtained
independently on each component under test conditions. Maximum likelihood
and method of moments estimators are obtained and their properties are studied
by Monte-Carlo methods since no closed form maximum likelihood estimates are
available.
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Resume

Un modile pour les systimesd'pendancs dans l'analyse de la fiabilite est
examine. Le modele suppose que, sous les conditions ideales, les cemps de
survie des constituanca du sysceme ont des distributions Weibull ind;pendantes.
Sous des conditions d'operation un facteur excfrieur aleacoLre affecce chaque
€onatituant simultandmnt ean multipliant son caux de hasard par une quanticE
al acoire. Lea propriltes de ce mod'tle ec l'estimacion des paramecres du
modble sont considdrds, I partir des exemples concrets du laboratoire ct de
la pratique.
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