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Moeschberger, Melvin L.

B. TECHNICAL SECTION
X. Abstract

> The overall objective of this proposal is to investi-
gate the robustness to departures from independence of methods
currently in use in .reliability studies when competing failure
modes or competing causes of failure associated with a szngle
mode are present in a series system. The first specific aim
is to examine the‘'error one makes in modeling a series system
by a model which assumes statistically independent .component
lifetimes when in fact the component lifetimes follow some
multivariate distribution. - The second specific aim is to assess
the effects of the independence assumption on the error in
estimating component parameters £rom life tests on series
systems. In hoth cases, estimates of such errors will be deter-
mined via mathematical analysis and computer simulations for
several prominent multivariate distributions. A graphical dis-
play of the errors for representative distributions will be
made available to researchers who wish to assess the possible
erroneous assumption of independent competing risks. A third
aim is to tighten the bounds on estimates of component relia-
bility when the risks belong to a general dependence class of
distributions (for example, positive quadrant dependence, posi-
tive regression dependence, etc.). Major decisions involving
:elzabxlxty studies, based on campétlng risk methodology, have
been made in the past and will continue to be made in the future.
This study will provide the user of|such techniques with a
clearer understanding of the robustness of the analyses to de-
partures from independent risks, an 'assumption commonly made

~ by the methods currently in use.
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Moeschbergér, Melvin L.
II. Specific dbjectives‘

' The overall objective is to investigate the robust-
ness to departures from independence to methods currently in
use in reliability studies when competing failure modes or com-
peting causes of failure associated with a single mode are
present in a series system. We shall also refer to such com-
petitive events as competing risks. The approach will be through
the investigation of certain aspects of specific parametric multi-
variate distributions or by classes of distributions which are
appropriate in reliability analyses when there are competing
risks present.

The specific ob;ect;ves are:

1) to assess the error incurred in modellng system
. 1life in a series system assumed to have indepen-
dent component lifetimes when in fact the com-~

ponent lifetimes are dependent.

2) to assess the error in estimating component param-
eters (i.e., component reliability, mean com-
ponent life, etc.) in a series system employing
either parametric or nonparametric models which
assume independent component failure times when
in fact the lifetimes are dependent and follow
some plausible multivariate distribution.*

3) to derive bounds on component reliability when
the failure modes are dependent and fall in a
particular dependence class (e. g-, positive quad-

mi _ rant dependence, positive regress;on dependence,

‘ etc.).

o .

n-—.'-’b.
"

=2a

4) to develop tests of independence, based on data
collected from series systems, by making some
restrictive assumption about the structure of the

L W

.Q: systems.**
{ .
! ? ' * A plausible parametric multivariate distribution will be
K§ ) one that satisfies one of the following conditions:

) .
éﬁ + i) the distribution of the minimum of the component
) é* failure times closely approximates widely accept~-
[ J ed families of system life distributions.
5 X .
fh o or ii) the marginal distributions closely approximate
st the distributions of component failure times in
s E: the absence of other failure modes.
§ . **This objective has been added to the original objectives be-
e cause it answers a natural questzon raised by our prelzm;nary

0 ?: investigation.

L
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III. - Introduction to Problem and Significance of Study

Alvin Weinberg (1978) in an editorial comment in the’
published proceedings of a workshop on Environmental Biologi-
cal Hazards and Competing Risks noted that "the question of .
competing risks will not quietly go away: corrections for.com-—
peting risks should be applied routinely to data.®” The problem
of campeting.risks commonly arises in 2 wide rangeé of experi-

" . memtal situations. Although we shall confine our attention

in the following discussion to those situations involving
series systams in which competing failure modes or competing
causes of failure associated with a single mode are present,
it is certainly true that we might just as easily speak of

- clinical trials, animal experiments; ox other -medical and bio-

"logical studies where competing events intexrrupt our study of
- the main event of interest (cf. Lagokes (1579)). .

K] : Consider electronic or mechanical systems, such as.

‘ ~ sateIlite transmission equipment, computers, aircraft, missiles
and other veaponry consisting of .several components in series.
Usually each component will have a random life length and the

A life of the entire system will end with the failure of the

- -

:i fg« shortast lived component., We will examine two situations more

‘ a closely in which competing.risks play a vital role.

U ﬁ o Pirat, suppose we are attempting to evaluate ‘system life
from knowledge of the individual component lifetimes. Such

Ky an evalunation will utilize either an. analysis involving math-
4 ematical statistics or-a computer simmulation.. At a recent ~
Y . confersnce-on Modeling and Similation, McLean (1S81) presented
G a scheme to simulate the life of a-missile which consisted of
many major- components in series.: The failure distribution asso-
! ' ciated vith each component was assumed to be known (usually
exponential or Weibull.) :To arxrive at the system failure dis-
: tributicn, the components were. assumed to act independently of .
n- @ each other. Realistically, this may or may not be the case.
- If the component lifetimes were depandent foxr any reason, the
computed system failure distribution (as well as its subsequent
m parameters such as systen mean life and system reliability foxr
4) a specified time) would only crudely approximate the true .. .
distribution. The first specific aim of this proposal is to
- ascertain the error incurred in modeling system life in a

life test of a series system. The response of interest is the
time until failure of a particular mode of interest. Frequently

by ﬁ . series system assumed to have independent ccmponent lifetinés.
(i.e., risks) when, in fact, the risks are dependent. .
i -{.j Second, suppose we wish to evaluate same aspect of the
;;' T distribution of a particular failure mode based on a typical
i..

-
5

-
TR

this response will riot be cbsexrvable due to the occurrence of

('. . some other event which precludes failure associated with the
3 mode of interest. We shall term such coxpeting events which
N ﬂ interrupt our study of the main failure modes of interest as
S competing risks. . .

v
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‘Competing risks arise in such reli.ability studies when

1) thestudyisterminatnddnetoaladcéffundsorthe'
- pre-determined period of observa.t.:.on has expired
('.I.'ype b 4 cem:ing) .

2): the study is terminated due to a p:e-detemined pumber
of £ailu:es of the particular failure mode of interest
being obsu:ved (Type II censoring).

3) some systms fail because components other than the
one of i.nta:est malfunction.

4) the canpmt of interest fails from some cause other
than t:hn one of interest.

Inallfou:situations, onemayth:.nkofthemaineventof
interest as being censored, i.e., not fully cbservable. In the
first two situatibtmns, the time to occurrence of the event of
mﬁ:cstshonldbeindependantctthecmsoringmchanm In
such instances, the methodology for estimating relevant reliabili-
ty probabilities has received considerable attention (cf. David
and Moeschbergexr (1978), Kalbfeish and Prentice (1980), Elandt-
1 Johnson and Johnson (1980), Mann, Schafer, Singpurwalla (1974)

. and Barlow and. Proschan (1975) for references and discussion}) -
In the third situation, the time to failure of the componeat of -
intevest _may or may not be independent of the failure times of

L~

ol
Wil
i
el
il
i}
;

i of dependent campeting risks is raised. A ‘similar observation
may be made with respect to the fourth situation, viz., failure
times associated with different failure modes of a single com-
ponent may be dependent. For a very special type of dependence,.
the models discussed by Marshall-Olkin (1967), Langberg, Proschan
and Quinzy (1978), and Langberg, Proschan, and Quinzy (1981)
allwmtoccnvarl: pend.ntmdcls into independent ones.

umusmptimwhatmmmdeahoutthctypeof
dependence betwesn the distribution of potential failure times,
there appears to be little hope of estimating relevant component
parameters. -In some situations, ocne may be appreciably misled ,
(cf. Tsiatis (1975), Petearson (1976)). However, as Easterling
(1980) so clearly points out in his review of Birnbaum's (1979)

- mograph

*"there seems to be a need for some :obustness
studies. How far might one be off, quantita-

b e

T

$ 25

S i o NS oy 2 A A

b - tively, if his analysis is based on incorrect

| E : assumptions?®

: o The second specific aim will address this important
N issue. First if a specific parametric model which assumes

£
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0 _ : b
independent risks has been used in the analysis, it would :
s

~ be of interest to know how the error in estidmtion: is .
affected by this assumption of independence. That is, if .
independent specific parametric distributions are assumed )
. for the failure times associated with different failure -
% modes when we really should nse a bivariate (or multivariate) o
distribution, then what is the magnitude of the error in 1

' estimating.component parameters? Secondly, one may.wish to

allow for a less stringent type of model assumption, and ask

4, . B
M the same question with regard to the estimation error. That' o
is, if a nonparametric analysis is performed, assuming in- !
- dependent risks, when some types of dependencies may be 3]
: present, then what is the magnitude of the estimation exror? A

The third specific zim will attempt to obtain bounds on

E_ the compconent reliability when the failure times belong to bl
s a broad dependence class {e.g., association, positive quadrant . Y

' ~ dependence, positive regression dependence,. etc.), More ah
e details will be presented in the methods section. ' }:ﬁ
1oV, ° . . ¥ )}

In summary,’ competing risk analyses have been performed o
o in‘theput-ndwincontinnetobepe:fomedinthefuture.
Y, This study will provide the user of such techniques with a - E
: clearer understanding of the robustness to departures from . ,
~ independent risks, .an assumption which most of the methods E

P currently in use assume.
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IV. Progress Report on Third Year's Work

A summary of the first and second year's work is reported in the annual reports
dated October 26th 1983 and October 26th 1984 respectively. We believe that during the
past three years we have made substantial progress in dealing with the objectives as
outlined on page 4. In addition to the papers and articles referred to in the first two
annual reports, we would like to mention some of the more recent work.

First, the recently published paper which investigates the problem of improving the
product-limit estimator of Kaplan and Meier (1958) when there is extreme independent
right censoring is presented in Appendix A. This paper looks at several techniques for
completing the product limit estimator by estimating the tail probability of the survival
curve beyond the largest observed death time. Two methods are found to work well for a
variety of underlying distributions. The first method replaces those censored
observations larger than the biggest death time by the expected order statistics,
conditional on the largest death, computed from a Weibull distribution. The Weibull is
chosen since it is known to be a reasonable model for survival in many situations.
Parameters of the model are estimated in several ways, but the method of maximum
likelihood seems to provide the best results. The second method replaces the constant
value of the product limit estimator beyond the iast death time by the tail of a Weibull
survival function. Again parameters are estimated by a variety of methods with the
maximum likelihood estimators performing the best.

Second, a paper which obtains bounds on the component reliability, based on data
from a series system, for the Oakes (1982) mode! has been revised. Since this model has
the same dependence structure as the random effects model with w having a gamma
distribution, these bounds are good for a general class of distributions. The bounds,
which are determined by specification of a range of coefficients of concordance, are
found by solving a differential equation in the observable system reliability and crude life
on one hand and the unobservable component survival function on the other hand. This

revision is reproduced in Appendix B.

.................
......................
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Third, we have submitted an overview paper for publication which summarizes {
some of the work performed during the past three years. The results of this paper were @
presented in an invited talk to the Eastern North American Region of the Biometrics
Society at Raleigh, North Carolina in the Spring of 1985. (See Appendix C for a copy of '_'_
k
this paper.) Y 3
¢4
Finally, a paper has been developed which discusses some general properties of a bty
random environmental stress model. Estimation of parameters under the Gamma stress N
model is considered, and a new estimator based on the scaled total time on test 3
.\;4 3
transform is presented (See Appendix D). Part of the results in this paper were presented o
at the International Statistical Institute meeting in Amsterdam in August, 1985. A copy ‘-"_
0y
of that contributed paper is found in Appendix E. e
e
V. Methods :
We refer to pages 8-52 of the original proposal for a discussion of the general t
.
methodology. b
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A Comparison of Several Methods of Estimating the Survival
Function when There Is Extreme Right Censoring

M. L. Moeschberger’ and Joha P. Klein’

Departments of Preventive Medicine' and Statistics?, The Ohio State University,
320 West 10th Avenue, Columbus, Ohio 43210, U.S.A.

SUMMARY
When there is extreme censoring on the right, the Kaplan-Meier product-limit estimator is known to
be a biased estimator of the survival function. Several modifications of the Kaplan-Meier estimator
are examined and compared with respect t0 bias and mean squared error.

1. Introduction

Inhumnandammalmmvalsmdm,asmﬂasmhfe-mngexpmmenummephyucal
scwnca, one method of estimating the underlying survival distribution (or the reliability
of a piece of equipment) which has received widespread attention is the Kaplan-Meier
product-limit estimator (Kaplan and Meier, 1958).

For the situation in which the longest time an individual is in a study (or on test) is not
a failure time, but rather a censored observation, it is well known that there are many
complex problems associated with any statistical analysis (Lagakos, 1979). In particular,
the Kaplan-Meier product-limit estimator is biased on the low side (Gross and Clark,
1975). In the case of many censored observations larger than the largest observed failure
time, this bias tends to be worse. Estimated mean survival time and selected percentiles, as
well as other quantities dependent on knowledge of the tail of the survival function, will
also exhibit such biases.

A practical situation which motivates this study is a large-scale animal experiment
conducted at the National Center for Toxicological Research (NCTR), in which mice were
fed a particular dose of a carcinogen. The goal of the experiment was to assess the effects
of the carcinogen on survival and on age-specific tumor incidence. Toward this end, mice
were randomly divided into three groups and followed until death or until a prespecified
group censoring tiine (280, 420, or 560 days) was reached, at which time all those still ative
in a given group were sacrificed. Often there were many surviving mice in all three groups
at the sacrifice times.

In general, we consider an experiment in which 7 individuals are under study and
censoring is permitted. Let ¢, ..., 4w denote the m ordered failure times of those m
individuals whose failure times are actually observed (fi) € --- € ). The remaining
n — m individuals have been censored at various points in time. It will be useful to introduce
the notation S; to denote the number of survivors just prior to time ¢ ;); that is, S; is the
aumber of individuals still under observation at time {;,, including the one that died at
t). Then the Kaplan~Meier product-limit estimator (assuming no ties among the ¢,,) of

A

2

Key words:  Adjusted Kaplan-Meier survival estimation; Bias of survival function; Life-testing; Right
censoring; Survival analysis.
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| ﬂ the underlying survival function, P(¢) = Pr(T > 1), is
:: ] for 1<y
0:;" J
;; g Rt) = ,I‘Il (S/ - l)/S/ for i) 8 I < ljen (1)
" 0 for ¢t limet)
o & forj=1,..., m, where {,. = if the longest time an individual is on study is a censoring
¥ time Or lm+:1) = ® if the longest time an individual is on study is a death.
5 ) This paper first proposes, in §2, some methods of “completing” the Kaplan-Meier
¥ ﬂ estimator of the survival function by (i) replacing those censored observations that are
* larger than the last observed failure time by their expected order statistics; (ii) using a

Weibull distribution to estimate the tail probability P(¢), for ¢ > ¢.; and (iii) employing a
method suggested by Brown, Hollander, and Korwar (BHK) (1974). The second purpose
is to demonstrate the magnitude of the bias and mean squared error (MSE) of the Kaplan-
Meier estimator and to compare all methods of “compieting” 2(s) in the context of the
aforementioned mouse study, utilizing simulated lifetimes from exponential, Weibull,
lognormal, and bathtub-shaped hazard function distributions. These results are presented

C in §3.

,ﬁ: 3% 2. Completion of Kaplan-Meier Product-Limit Estimator
k 'l 5
) 2.1 Expected Order Statistics

One method of attempting to “complete” P(2), t > ¢, would be to “estimate” the failure
,v, times for those censored observations that are larger than the longest observed lifetime. Let
X n. be the number of censored observations larger than ¢4,.). A theorem regarding the
conditional distributions of order statistics states that for a random sample of size n from
a continuous parent, the conditional distribution of Ti.), given Tisn) = ln—ny, ¥ > n = 1,
is just the distribution of the (u = n + n.)th order statistic in a sample of size . drawn from
the parent distribution truncated on the left at ¢ = ¢,..., (se¢ David, 1981, p. 20).

For computational purposes, take 7. as an estimate of the (7 —~ n.)th order statistic. Then
find the expected value of the 7. order statistics from the parent distribution truncated on
the left at ¢.. Since the Weibull distribution with survival function P(¢) = exp(~¢*/8) has
been widely accepted as providing a satisfactory fit for lifetime data, it seems reasonabie to
employ the resuits of Weibull distribution theory to complete P(¢), ¢ > ¢.. (It should be
noted that any distribution which is reasonable for the specific situation may be used.) The
expected values of Weibull order statistics up to sample size 40 for location parameter
5 equal to 1 and shape parameter equal to .5 (0.5)4(1)8 may be found in Harter (1969). For

\ larger sample sizes, he states a recurrence relation which may be used.

To compute expected values of the n. order statistics in question, values for k and 4 must
be chosen. One approach is to use the maximum likelihood estimators, £ and 4, computed
by using ail observations to estimate k and 4. A second approach, due to White (1969),

o o

g -
—

& W

e i

\::. ¥ uses least squares estimates of k and ¢ obtained by fitting the model
¥ f” . In(s)) = (1/k) In 8 + (1/k) In{H ()] 2)
. 10 the £y’s, where H (%)) is the estimated cumulative hazard rate at £, obtained from the

Kaplan-Meier estimator. In our Monte Carlo study, we found the maximum likelihood
estimators performed better than the least squares estimators in all cases. Consequently,
the method of least squares will be dropped from future discussion in this paper.

o
-7

% ﬁ%‘. The survival function for a2 Weibull random variable, truncated on the left at ¢, is
e v Pr(t) = exp{=(t* = t£)/8), ¢>t. (3)
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So, by the theorem on order statistics stated at the beginning of this section, the conditional
distribution of Tiy), given Tiaeu) = La~sy (K =n—=n.+ 1,..., n) will be approximated
bythe(u—n-o-n,xhotdermusncmaumpleofn,dmwnfrom(:i) For simplicity, let
jmu=n+n,sothatj= 1, ..., 7. Now the expected value of the jth order statistic from
Q3)is

BT = a2 N _r POV~ PHOT'(™/0) dt

i - n(2) I o+ tymec-iprir-m @

where P( y) = exp(—y*/0), y = (t* = t£)/* 3 0 and T}, is the jth order statistic in a sample
of size n.. Equation (4) can also be written as

E(T},) = m(’,’-‘: l‘) J: (02 + t5Y PV (P ke dz 5)

where P(z) = exp(—z*), z = ( y/8)"/* 3 0. Now E(T}.,) may be crudely estimated by
(B(E(Z; )15 + tFy 1/ ©)

where E(Z;.,,) is the expected value of the jth order statistic from a sample of size n.
determined from Harter’s (1969) tables or recurrence relation, and § and £ are maximum
: likelihood estimators of ¢ and &, respectively.

d These n. estimated expected order statistics may then be treated as “observed” lifetimes
in adjusting (or “compieting™) the estimated survival function computed in (1). The area
under the estimated survival function up to {. remains unchanged. The area under the
extended estimated survival function based on the 2. estimated expected order statistics is
then added to the initial area to obtain a more precise estimate of P(¢) [estimated order

- = o g -

o "

ma a . _a g
- AN S

-
T . .

o
= R

; statistic (EOS) extension].

¥,

'!

" 2.2 Weibull Maximum Likelikood Teckniques

b & A straightforward approach to completing P(t) is to set

;'::, y B(t) = exp(~t*/0)  for t>t.. @)
;:; g Estimates of k and 9 based on all observations can be obtained by either the maximum

likelihood (WTALIL) or the least squares method. However, our study found the completion
using maximum likelihood estimators was always better in terms of bias and mean squared

A E €ITOr.
a}: ) One suggestion for ostensibly improving this estimator would be to “tie” the estimated
» tail to the product-limit estimator at 7. Two methods were attempted to accomplish this

goal. First, the likelihood was maximized with respect to k and 4 subject to the constraint
» that exp(—%/8) = B(z.). This method will be referred to as the restricted MLE tail probability
L estimate (RWTAIL extension). Second, a scale-shift was performed on the tail probability

- 2
:vst :‘

;:: X in (7) to tie it to the product-limit estimator. This method led to higher biases and mean
:.: ﬁ squared errors of the survival function and will be dropped from further discussion in this
o paper.

Y

#

2.3 BHK-Type Methods
0 The Brown-Holilander-Korwar completion of the product-limit estimator sets
I - B(t) = exp(=1/6%)  for t> ¢, ®)

s re

N1

o

3
()

\J . N ’ ) (
R 7 T R G R D R S e LTI ." R Pk RN




ﬁ

.,'t?,:,x
‘;::': @
‘:‘ “:; 256 Biometrics, March 1985
AN
E where 0® satisfies P(t,) - cxp(-g,/l!'). In the BHK spirit we tried to complete P(¢) by a
o Weibull function which used estimates of & and 9, k* and 4*, that satisfied the following
e two relations:
5 é‘g“kl- y
e & Plt) = exp(=t/0%
S }.,:, *
3
e g B(tm-1y) = exp(=tla-1/0%).
by The latter method also led to consistently poor performance and the results will not be
i g presented.
(“.,j
v Table 1
Bias/100 (and MSE/100%) for estimating mean survival time for various methods of completion
‘,;n; g . Weibull  Restricted
RA] Mean % . Estimated WTAIL  Weibull
Ayl censored BHK  orderswatistic exten- RWTAIL
'i"e": Distribution m 8t560dsys K-M  extension  extension sion extension
o 8 Weibull 00 187 -2000"  ~-1.462 -.101* 131 206
“ - (4034  (2271) (1.172) (1160  (1.543)
e k=35 500 23 =280 -2.078 -.176* 208 299
i (7.886)  (4.498) (1.922) (2.344) (3.292)
Ve 600 255  -3625" 2704 187 44 4m
5; N (3179 (1.522) GOBP 4215 (603
potd 400 246 -991"  ~047 -.046 016 0379
by (Lot (215° (257 279 (.343)
e kel 500 326 -1.63"  ~049 - 047 0713 116
a (2.69%)" (416 (.535) (.508) (.705)
. 600 393 -2.359" o2 034 .140 214
ot (5.592 (.596) (987 (1.023)  (1.353)
v 400 1.5 -036 136" -.005
Wi 59 (012 (053 (013) (019 (014
oy I'TY 500 346 =314 1.507" -020 o14* 019
Ui (109) (2830 (036 (.041) (.044)
Ly 600 59.9 -.903 5.982° ¢4 028° 039
Py i (822)  (41.430) (4.168) (14T (15T
C b Lognormal 400 20.6 -.868" -178" -.544 -.586 -412
o 1 179 (.363) (.403) (267
oo kw1 500 290 -1.427" -.150° ~.365 -918 -.696
! a 2060 (32 (855  (938)  (644)
iy 600 36.9 =2.079" -022* -1.234 -1281  -1.038
' (4.345)° ST (1.679) (1.800)  (1.301)
( 400 8.6 -070 129" -047 -.053 -0
oy (014 (036" (O14p (014  (O14p
W : k=4 500 2.1 -330 1.033" -.170 .181 -.135%
4 (.118) (1.459)" (.081) (.085) (043
Aol 600 54.5 -.353 4.430° -.391 -.392 -.356°
,,::g; § (734) (23159 (.199) (.199) Rba)
LR
ey Bathtub 400 18.6 ~1.069 ~.188 -.170 11257 063
®- (1.179) (234p (-260) (1745  (361)
ey , p=.\ 500 26.1 -172"  ~299 -202 1.523 046"
: ﬁ 7 Q%) (42 (360 (20  (508)
: ) 600 326 245  -362 =310 1.761 047
k< (6.043" 727 (982) 4.490)  (1.254)
o 400 8.1 -1.786"  ~).543 -1.547 -.936 343°
he &Q (3218  (2.463) (2.476) (1.081) (.S44y
L 4o pe.4 500 133 ~2370° ~1.826 -1.814 -825 58s*
4 4 (5,649  (3.472) (3.446) (1031  (1.303)
N 600 18.7 «307*  -2191 =2178 -387% 841°
_9:4 . (9466  (3.013) (4.983) (1285  (2792)
o) g " " Best etimation method.
z!"’n: * Wornt estimation method.
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‘ 3. A Comparisoa of the Various Methods

‘ A simulation study of data such as that collected at NCTR was performed. Three groups

Fy of 48 lifetimes were simulated with all testing stopping at 280, 420, and 560 days,

. respectively, for the three groups. Distributions with mean survival times of 400, 500, and

[~ 600 days were used. The generated lifetimes greater than or equal to the sacrifice time for

(. each particular group were considered as censored. The remaining set of observed lifetimes,

along with the number censored at the three sacrifice times, constituted a single sample.

& For each of the distributions studied, 1000 such samples were generated. Weibull distribu-

tions with shape parameters .5, decreasing failure rate, [, constant failure rate, and 4,

et A

=S

Table 2
Bias/100 (and MSE/100%) for estimating 90th percentile for various methods of completion

y——
Y Estimated Weibull Weibull
i BHK order statistic = WTAIL  RWTAIL
‘IR Digtributs . KM ) " N or
? Weibull 400 -5.017" -2.858 1.691 234 458
& (25.185)" (9.358) (16.424) (7.52¢% (0. m)
" k=5 500 ~7.655" —4.620 1.897 418
(58.604)" (22.711) (24.276) (14.319)' @1 442)
Q 600  -i0.306" —6.390 2213 1.064
N . (106.21)" (42.«92 (36.895) s 4|9r (37.911)
i 400 -3.610" 248 084 067
1 (13.035)" (1. 8922' (2.423) (1.980) (2.945)
b k=1 500 -5.913" 289 121 .306
. (34.963)" (2.995)' (4.681) (4.361) (5.903)
600 -8216" 244 610 418 550
(67.459)" (4198 9247 (8.331) (10.792)
" 400 -.045 098° -.007 -037 -011
? (.038)° (.236)" (.060) (.047) (.063)
YIRS k=4 500 -1.195 5.32¢" -.031 -.026 024*
% {_\x (1.429) (33.091)" (.146) 141 ( m)
I 600 -2.554 17.913" 120 .090
¢ (6.520) (355.02° (794) (.676) (641 )'
! Lognormal 0w  -2628" - 044 -1.263 -1.758 -967
: (6.908)" (1.526) (1.979) (3.407) (1.673)
] k=1 500 -4.680" 213 -2.354 -2.718 -1.908
) (21.902) (2.708) (6.153) (7.909) (4.751)
k¥ 600 -6.736" 759 -3.507 ~3.766 -2.980
. (45.373)" (4.764) (13.123) (14.981) (10.257)
N~ 400 -.085 .161 -.038 -.162" -024*
(.060° (.409)" (.081) (.065) (.093)
(N k=4 500 -1.251 3.722° -.584 -.657 ~.484°
N (1.566) (17.654 (.403) (.495) (318
N 600 -2.621 13.695* -1.214 -1.236 -1.158"
b (6.872) (210.30) (1.616) (1.662) (1.498)°
K Bathtub 00  -3.629" =177 033 -.104 108
L (13 167)' anmn (2.052) (2.058) (3.190)
\ p=.1 500 -.457 -0mn -208 .004*
h (36 m)' (2.955 . 702) (3.619) (5.245)
b L 600 7.997" -318 -244 -014*
Y (63 954)" (4.330 @ m) (7.608) (9.923)
TRl 400 -347 143 276 1154 981
(273 (.344 { on) (3.877 (4.747y"
0 .. pm4 500 -1.425 521 1.699 L.718"
. ; (2.039) (1.5400 (2.067) (8.574) (10.714)
{ 600 -3.554" -.137 2.304 2.450
(12.628)" (1.804) (2.352) (17.530) (22.456)
N . ® Best estimation method.
; :;, * Worst estimation method.
4
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increasing failure rate, were used. Lognormal distributions, failure rate changes from
increasing to decreasing, with first two moments comparable to the above Weibull distri-
butions with k = | and k = 4, were aiso used. Finally, a bathtub hazard model of Glaser
(1980), failure rate changes from decreasing to increasing, was used. This distribution is a
mixture of an exponential of parameter A with probability | = p and a gamma with
parameter A and index 3 with probability p. Mixing parameters of p = .1 and p = .4 were
used.

The bias and MSE for the estimation of the tail probabilities, i.e., the completed portion
of the product-limit estimator, were calculated for each hypothesized distribution and for
each competing method of completion. Since these resuits were extremely similar to those
foundmesumanngmeansumvalume,u-fo P(t)dt we show only the bias and MSE
of each competing estimator of x in Table 1. This also allows us t0 demonstrate the
magnitude of the bias and MSE of the product-limit estimator of u. The bias and MSE for
estimating the 90th percentile are also presented for the various estimation methods in
Table 2. As one would expect, the Kaplan-Meier (K-M) estimator performs considerably
more poorly than the other estimation schemes. The BHK extension does very well if the
underlying distribution is exponential or lognormal with first two moments compatible
with the exponential. BHK does reasonably well for the bathtub-shaped hazard model, but
it performs very poorly for the Weibull with increasing failure rate and for the lognormal
with first two moments compatible with the Weibull.

The remaining three extensions (EOS, WTAIL, and RWTAIL) appear to be somewhat
comparable. Each of them is best under certain circumstances although many times the
biases and MSEs are so close to one another that they are essentially equivalent. Only the
EOS extension has the desirable property of never being worst. It usually is competitive
with the method that is best. Ordering the extensions from the standpoint of simplicity,
from simplest to most compiex, we have BHK, WTAIL, RWTAIL, and EOS.

In summary, the Kaplan-Meier estimator should probably be extended in the presence
of extreme right censoring. The choice of extension depends on one’s knowiedge of the
distribution of lifetimes under consideration and the extent of computer facilities available.
If the data follow an exponential-type distribution or if no computer facilities are present,
the BHK method is the extension of choice due to its simplicity. If the data exhibit a
nonconstant failure rate and computer facilities are available, then the RWTAIL or EOS
extensions seem to be advisable.
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REsuME

On sait que ['estimateur de Kaphn-Me:erat un estimateur biaisé de la fonction de survie quand le
_ pourcentage d’observations censurées est trés élevé, Plusieurs modifications de I'estimateur de Kaplan-
Meier sont examinées et comparées du point de vue de leurs biais et écarts moyens quadratiques.
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FOR DEPENDENT COMPPETING RISKS

by

John P, Klein and M. L. Moeschberger
Oepartment of Scaciscics Department of Preventive Medicine
The Ohio State University The Ohio Stace University

i BOUNDS ON NET SURVIVAL PROSABILITIES

SUMMARY
§§ Improved bounds on the marginal sucrvival function based on data from a
competing risk experiment are obtained. These bounds are obtained by specifying
“
EE a range o§ possible concordances for the risks. These bounds are tighter than

those of Pecerson (1976). A comparison to other exiscing bounds {s also made.

b

Key Words: Compecing Risks, Product Limit Escimacor, Net Survival Functionm,

Coefficienc of Concordance.
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I. INTRODUCTION

A common problem in survival analysis is to estimate the marginal
survival funccion of the time, X, until some event such as remission,
component failure, or death due to a specific cause occurs. Often obser-

vation of this main event of interest is impossible due to the occurrence

of a competing risk at some time Y < X, such as censoring, failure of a
different component in a series system, or death from some cause not
related to the study. Standard statistical methods, which assume these
competing risks are independent, estimate the marginal survival function
by the Product Limit Estimator of Kaplan and Meier (1958). This estimator
has been shown to be consistent for the marginal survival functiom by
Langberg, Proschan and Quinzi{ (1981) when the risks follow a constant

sum model defined by Williams and Lagakos (1977). When the risks are

not in the class of constant sum models, the Product‘Limit Estimator

is inconsistent and, in such cases, the investigator may be appreciably

misled by assuming independence.

) X 5 c ' Ml v Tr‘“nr"”‘-r r ;:‘1‘ YV -.-_ - . Tor 3
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In the competing risks framework we observe T = minimum(X,Y) and

I = X(X < Y) where X(-) denotes the indicator function. Tsiatis (1975)

)
55

W . and others have shown that the pair (T,I) provides insufficient information

That is, there exists both

e
v
T

-.

Tt e,
P

56 et

to determine the joint distribution of X and Y.

an independent and a dependent model for (X,Y) which produces the same
joint distribucion for (T,I). However, these "equivalent" independent

and dependent joint distributions may have quite different marginal

distributions. Also, due to this identifiability problem, there may be

several dependent models with different marginal structures which will

A

yield the same observable information, (T,I). In light of the consequences

»' w .
' of the untestable independence assumption in using the Product Limit
4
ki estimator to estimate the marginal survival function of X, it is important
‘3K 1;::;
K v to have bounds on this function based on the observable random variables

(T,I) and some assumptions on the joint behavior of X and Y.

Peterson (1976) has obtained general bounds on the marginal survival

function of X, S(x), based on the estimable joint distribution of (T,I).

LT

{

( Let Q,(x) = P(T > x, I = 1), and Qy(x) = P(T > x, I = 0 ) be the crude
SN :

}} " survival functions of T. His bound, obtained from the limits on the joint
o 3 distribucion of (X, Y) obtained by Fréchet (1951), is

{ (1.1)
N Ql(x) + Qz(x) < 8(x) i.Ql(x) + QI(O)- .
VRS

;:: By

3 Since these bounds allow br any dependence structure, they can be very wide
Ky

‘ i .

¢ fi and provide little useful information to an investigator.

)

Fisher and Kanarek (1974) have obtained tighter bounds on S(x) in

(X X

terms of a dependence measure a. Their model assumes that simultaneous
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to the occurrence of Y an event occurs which either stretches or contracts

the remaining life of X by an amount associated with a. That is,

P(X > x|]Y =y < x) =P(X> y + a(x-y)|Y > y + a(x-y)). A large a, for

example, implies that a small survival after censoring is the same as g-times

as much survival if censoring was not present. They show that if 0 is assumed

known, then the marginal survival function can be estimated from the
observable information. Also these estimates, §Q(x),are decreasing in a.

For their bounds, the investigator specifies a range of possible values

ap < @ <a, sothat S, (x) < S(x) < SaL(x).
u

Recently, Slud and Rubenstein (1983), have proposed general bounds.
They show that knowledge of the function

- P(x < X < x +8[X > x, Y < x)
0 (x) éi: P(x <X<xH[X>x, Y>x)

along with the observable information (T,I1) is sufficient to uniquely

determine the marginal distribution of X. These estimates §p(t) are

decreasing functions of p for fixed x. Their bounds are obtained by

specifying a range of possible values p,(x) < p(x) < p,(x) so that if
1 - ~ "2

p(x) is the true function §DZ(X)-i S(x) < §pl(X)-

In this paper we obtain different bounds'on the marginal survival

function by assuming a particular dependence structure on X and Y. These

bounds are functions of the observables (T,I) and a familiar dependence

measure, the concordance probability between X and Y. In Section 2 we

describe this model in detail. 1In Section 3 we derive the bounds and show

consistency when the dependence parameter is known. In section &4 these

bounds are compared to those obtained by Peterson, Fisher and Kanarek,

and Slud and Rubenstein.
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[I. THE MODEL
The dependence structure we shall employ to model the joint survival
was first introduced by Clayton (1978) to model association in bivariate
lifetables and, later, by Oakes (1982)‘co model bivariate survival data.
Let S(x) = P(X > x), R(y) = P(Y > y),with S(0) = R(0) = I, be the
continuous univariate survival functions of the death and censoring times,
respectively. For § > 1 define F(x,y) = P(X > x, Y > y) by '
6-1

0-1 - ]-1/(b-1) (2.1)

1

Fey) = Hggt®™ + Gy

This joint distribution has marginals S and R. As 8+1, then (2.1) reduces
to the joint distribution with independent marginals. For 6+, F(x,y) +
min(S(x), R(y)) the bivariate distribution with maximal positive association
for these marginals. The probability of concordance is 8/(8 + 1) so that
Kendall's (1962) coefficient of concordance is T = (8 - 1)/(6 + 1) which
spans the range 0 to 1.

This model has a nice physical interpretation in terms of the
functions A(x|Y = y) and A(x|Y > y), the hazard functions of X given Y = y

and X given Y > y, respectively. From (2.1) one can show that

A(x|Y = y) = OA(x|Y > y)

or

P(X > x|Y = y) =[P(X > x|Y > y))® (2.2)

For § >1 the hazard rate of survival if censoring occurs at time y is
8 times the hazard rate of survival if censoring does not occur at

time y. This implies that the hazard rate after censoring occurs is

P n) '

o e L e W LW L) = 0 . . -
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. 5
accelerated by a factor of 8 over the hazard rate if censoring had not

occurred. Also when 8 = 1, (2.2), reduces to the condition required by

Williams and Lagakos (1977) for a model to be constant sum and hence for

R R Y

the usudl product limit estimator of S(t) to be consistent (See Basu and

Klein (1982) for details).

o, T e

v
A

Oakes (1982) also shows that (2.1) can be obtained from the following

PR X

@i

random effects model. Let S*(x) = exp (- [ET;TI 1 +1} and let R%(y) be

similarly defined. Let W have a gamma distribution with density

1

1
gw)a we-l e ¥ and conditional on W = w let X,Y be independent with

-

-

survival functions {SXx)}" and {R*(y)}“. Then, unconditionally, X,Y have

E-=R =

the joint survival function F(x,y) given by (2.1).

For fixed marginals S and R the joint probability demsity fumnction,

e

¢ f(x,y), can be shown to be totally positive of order 2 for all 6 > 1.

-
o o T
1§ a ™ 5%

This implies that (X,Y) are positive quadrant dependent. In particular,

v one can show that for S,R fixed the family of distributions

F = {F(x,y): 6> 1} is increasing positive quadrant dependent in 0 as

defined by Ahmed, et al. (1979).
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" [II. BOUNDS ON MARGINAL SURVIVAL

M

: .

ﬁ Suppose that X and Y have the joint distribution (2.1) and let
L]

4,

H

T = min (X,Y), then the survival function of T is

’ - - -
0 R MR O M T =t (3.1)

and the crude density function associated with X,

)
R *
0 q,(c) = E% P(T < t, X < Y), is given by

K 3]
q, () = £EL pe)f, (3.2)

A s9¢e)

a’ 'i.l -

! A where s(t) = -dS(t)/dc.

s

¥ i Now consider the differential equation

&

& e

. s(e)/5°(e) = q; eV F(o)f (3.3)
TR

* and suppose 6 is known. Then the solution of (3.3) for S(t) is

+

-t

= S

1
9 (W) ] -(8-D)

g S,(t) = [1 + (6-1) du if 6>1

% d % (rf

q . (3.4)
By ?Q t  q

= exp( = (I) T(u—)-du) ife=1.

Tty
o 24"

The functions F(-) and ql(‘) are directly estimable from the data one

a ;“ sees in a competing risks experiment. Let Tl' cees Tn denote the observed

b .

% . test times of n individuals put on test and let Ii' i=1, ..., nbelorO0

n,

2 a according to whether the T, was an observation on X, or Y, , respectively.

C i i i

Y

s": 5

¢ (3

‘
\

q ‘
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n n
N . Define 1-(:) = IX(T, > t)/n and Q, (t) = zx(r <t, I, =1).
i i 1 i
i &; i=1 1=1
(!
:

Then Lif 8 is known, a natural estimator of Se(t) is

.
' ~
K - e 4w 1
D A Sa(t) = (1+ (8-1 a T (8- L
! % glc) = (1+ (8-1) (:) [F(u)]e } (8-1) if @ >
! ' (3.5)
: t ddl(u) '
. = exp( -~ 1 = ) 1f =1
2 0 F(u)
1 §§
1 - For § = 1, this estimator is of the form of the hazard rate estimator
' ﬁ: proposed by Nelson (1972). The estimators (3.5) can be expressed in
o
k)
b the following form for computation purposes,
& -
1 a S S
¢ Se(t) = exp{- z (n—-1+1) if 8 = 1
N @ sg <t,,I =1
I (i)—i (1)
§ (3.6)
1 1
: ! (1 + (8-1)a°1 Z‘—_“(n-m) 8 - a1
X. <
?,. | T( 1) t, I(i)
: & 1£0>1
L]
]
: 5. where T(l)'L'." T(n) are the ordered death times.
i " For @ known and if the true underlying joint distribution of (X,Y)
24 -
W is of the form (2.1) then Se(t) is a consistent estimator of S(t) as shown
X a; by the following theorem.
-
Y

- g 3

Theorem 1. Let (X,Y) have the form (2.1) with marginals S(t), R(t)

Then on the set where S(t) > 0 we have

TR

respectively. Let 8 > 1 be known.

Se(t) + S(t) a.s.
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. l Proof:

&

g“ o) For 8 = 1, the result follows by a theorem of Langberg, Proschan and
YN

,_,} M

Quinzi (198l1). Suppose that 8 > 1. Note that al(t) - Ql(t) a.s. and

F (u) + F(u) a.s. by the strong law of large numbers. Since §e(t) is a

i t .0

a dQl(u) ~

¢ continuous function of <3 in the support of F(u), it suffices to show
: . 0 (F(u)]

-

e

T b

t ~ t
IiQ]_(u) . dq, (u)
o Fa o Fuyd

a.s.

hRe NI
£ o=
==

Now, after an integration by parts,

o

LT,
[ A A
VIR S Y Y Y CO R
\ — 5~ ~ o~ ' Ql(u)d( )
: F 0 (Fw1”  (Fe))° o P
!; -~
Y Q) 1
s A =< - 1 {Q(u) ~ Q,(u)]}d(F ) + g Q (u)d( )
8 1 1 9 1
Ty [F(t)] 0 F_( u) 0 (U)
~ t
‘ 5 Q (&) - Q,(¢)
-~ - Q) - qwld, )
(F (w]® o 1! 1 # (u)

s

g P T e
%™
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t
.dQ, (u)
T N (3.7)
P 0 F (u)
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lim 61(‘) - 61(5)
R N L

= 0. a.s.,

i and n
! lim sup {IQl(u) - Ql(u)l} = 0, a.s.
n-roe
) .
&
s Y
' Hence, applying the above results to (3.7), the result now follows: //

fd
a

To obtain bounds on the net survival function based on data from a

competing risks experiment, we proceed as follows. First, note that from

-

£
{ & (3.5) it is true that §e(c) is a decreasing function of 9 for fixed t.
) éj Also, as 0 ~+ 1% ve have §e(t) t exp (- : g-l(u)dal(u)).
i 0
: ii which provides an upper bound. Notice that this upper bound corresponds
; - to an assumption of independence. As 6§ + = one can show that §e(t) + f(t)
; ;} whic? corresponds to Peterson's (1976) lower bound.
' In practice the'above bounds, with 8 = 1, =, while shorter than
! Peterson's bounds, may still be quite wide,

Tighter bounds may be obtained by an investigator specifying

N

a range of possible values for 8. If the sample size is sufficiently

w2

large and 61 <6< 62, then Sez(t) < §(t) E,Sel(t). Specifying 91, 62

is equivalent to specifying a range of values 7 <1< T, for the

B

e B L T

coefficient of concordance T since 8 = (1+7)/(1 -T). Hence the primary

value of Se(c) is in putting bounds on S(t) rather than on estimation of

S(e).
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IV. EXAMPLE AND COMPARISONS

To illustrate the bounds obtained in the previous section, consider
the mortality data reported in Hoel (1972). The data was collected on a
group of RFM strain male mice who‘were subjected to a dose of 300 rads of
radiation at age 5-6 weeks. There were three competing risks, thymic
lymphoma, reticulutum cell sarcoma, and other causes of death. For
illustrative purposes we consider reticulum cell sarcoma as the risk of
interest.

Table 1 reports the value of §e(t) for concordance T = (8 - 1)/(8 + 1).
The value of §e(t) at T = 0 corresponds to Nelson's (1972) hazard rate
estimator assuming independence. Peterson's upper and lower bound
(t = 1) are also reported as are Fisher and Kanerek's bounds and the Slud
and Rubenstein bounds for several values which reflect a positive
associaction between risks.

From Table 1 we first - note that Peterson's bounds are very wide.
Substantial improvement is obtained if one assumes a non-negative
dependence structure between risks (See Table 2). Further tightening
of these bounds is achieved by assuming that T is in the range 0 to .5
where the width of the boundaries is at most about 502 of that of Peterson's
bounds.

Substantial improvement in the general bounds is also obtained by
the bounds of Fisher and Kanerek or Slud and Rubenstein. The bounds of
Fisher and Kanerek assume a specific censoring pattern and require a
specification of a stretching constant a. Without some additional informa-
tion, such specification may be impossible. Slud and Rubenstein's bounds

are for the general dependence structure. Their bounds require the

SRR ALY R AN N A TS AL
Sal D Ll O R e Ay R

‘\\.".'-‘
\\'p

W ad gl ;-

P I,

-

XX V¥ X X]

2.

v a_w @



T Kot u? i IR

Cil

i

2 i

- s s ot

Fe

B

-

LAY

Py

11

specification of che p(t) function. This function is a quantity which

is not easily conceptualized by investigators from either a statistical

or biological perspective. This makes it questionable whether reasoable
upper and lower bounds on p(t) can be extracted from one's prior beliefs.
The major advantage of the bounds printed in this paper is that they

require only the specification of an upper and lower concordance, a

measure quite familiar to most investigators and easily explainable to

nonstatisticians,
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Table 2

)

g 53 RELATIVE SIZE OF THE BOUNDS ON NET SURVIVAL
: FOR AN ASSUMED DEPENDENCE STRUCTURE
, !! AS COMPARED TO PETERSON'S BOUNDS
: y
[ Time 0<t<1 0<t<.5 0<t< .7
:; 3 350 .9707 .0879 .2674
i = 525 .9352 . 2449 .5931
AN - 600 .7338 .5171 .6787
\ 620 .6722 .5120 .6298
b 5 650 5009 4420 4870
¢ 675 .3831 .3576 .3797
S 700 .2883 .2767 .2833
g 750 .0600 .0600 .0600
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; INDEPENDENT OR DEPENDENT COMPETING RISKS?
% @ DOES IT MAKE A DIFFERENCE
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‘ @ Columbus, Chio 43210 Columbus, Chio 43210
- ABSTRACT

b z

This article investigates the consequences of departures from
independence when the camponent lifetimes in a series system are
exponentially distributed. Such departures are studied when the
joint distribution is assumed to follow either one of the three
Gumbel bivariate exponem::.al models, the Downton bivariate
exponentza.l or the Qakes bivariate exponential model. Two
distinct situations are considered. First, in theoretical modeling
of series systems, when the distribution of the component lifetimes
is assumed, one wishes to compute system reliability and mean
system life. Second, errors in parametric and nonparemetric
estimation of component reliability and component mean life are
studied based on life-test data collected on series systems when
the assumption of independence is made erroneously. Systems with
two comoonents are studied.

“HR 5 B

BN

KEY WORDS: Competing risks: Component life; Modeling series
‘ systems; Robustness studies; System reliability;
Gumbel bivariate exponential; Downton bivariate
exponential; Oakes bivariate exponential.
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. s °- ' 1. Introduction

b i Consider a system consisting of several components linked in
5" o series. For such a system the failure of any one of the components
f causes the system to fail. In a biclogical or medical context

o g we can consider the components to be different lethal diseases

] . " and/or different reasons for removal from the study. In a clini-
X cal trials fremework the primary response of interest, death or
remission, and censoring can be considered as components of the
system. This general formulation has been detailed in the theory
of competing risks (cf. David and Moeschberger (1978)).

A common assumption in such a formulation is that the
& component lifetimes are statistically independent. Several
~(: authors have shown that based on data from series systems only,
: dﬁsasamﬁq\,byitself,ismtmmblebegmseﬂmism

o T - PO~
wuEn B sl B

.‘: _ way to distinguish between independent or. dq:ei-da:t component

b i lifetimes (see Basu (198l), Basu and Klein (1982), Miller (1977),
& Peterson (1976), etc.). However, several authors (see Lagakos

% 2 (1379) p. 152 and Easterling (1980) p. 131) have pointed out the
‘ * need to determine, quantitatively, how far off one might be if an
3 analysis is based on an incorrect assumption of independence.

N ; To study the effects of erroneously assuming independerce we
.:: shall assume that each of the components have exponentially dis-

:{ 35 tributed lifetimes when tested separately and that the property of
:: marginal exponentiality will be preserved even though some

, dependence may be induced when the components are linked in series.
:‘i g The assumption of exponentially distributed component lifetimes

53 has been made by Mamn and Grubbs (1974), when finding confidence
B g bounds on system reliability, Boardman and Kendall (1970), when

g estimating component lifetimes from system data, and Miyamura

. ;ﬁ (1982), when combining camponent and sytem data. (See Barlow and

. ) . Proschan (1975) or Marm, Schaffer, and Singpurwalla (19‘{“) for a
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more complete review.) We shall model the dependence structure by

N the three models of Gumbel (196Q), a model proposed by Downton
;f‘ ?ﬁ (197G), and a model described by Oakes (1982). These models are
. briefly described in Section 2.

The effects of a departure from the assumption of independent

=2

component lifetimes will be addressed for two distinct situations.
The first situation arises in modeling the performance of a
theoretical series system constructed from two components. Here,
based on testing each component separately or on engineering
deigt'principls, it is reasonable to assume that the components

X
-
e
£ 2 i |

:E‘ % are exponentially distributed with known paremeter values. Based
_E, ﬁ on this information, we wish to predict parameters such as the
Q mean life or reliability of a series system constructed from
‘ " these components. In Section 3 we describe how these quantities
SRR are affected by departures from independerce.
R The second situation involves making inferences about
) a component lifetime distributions from data collected on sSeries
;:; systems. Commonly, data collected on such systems are analyzed
;:' 53 by assuming a constant-sum model, of which indeperdence is a
Y special case (compare Williams and Lagakos (1977) and Lagakos and
: Williams (1978)). In Section 4.1 we study the properties of the
:;- g maximum likelihood estimators of the component mean life calcu-
:3 4 lated under an erroneous assumption of independent exponential
‘E: :}E component lifetimes as mentioned above. Because of the wide
'(' spread use of the nonparemetric estimator proposed by Xaplan-
9 ’g Meier (1958) for the component reliability we study in Section 4.2,
K its properties, uhen the marginal reliabilities are exponential
L 2. The tidels
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function
2.1) ~(tl s PX, > T) = = ep(-A; t),3; >0, t2>0.

This assumption is made on the basis of extensive testing of
each component separately or on knowledge of the underlying
mechanism of failure.

To examine the effects of a departure from independence we
consider five bivariate exponential models, each with marginals
equivalent to (2.1). The first three models are due to Gumbel
(1960); the last two models are due to Downton (1970) and Oakes
(1982).

2.1 Gumbel's Model A

For this model the joint survival function is

The correlation between is
hy xi X2

p=- T' ecp(llkzlklz) E (- Alkzh\lz) -1,

where E.(2) = [:z g:_cﬁ_-g_ du is the ‘integrated logarithm
For this model p varies from - .40365 to 0 as A,, decreases from
AjA, 0 0. It is never positive. The regression X, on X, is non-
leanear with ‘

ECC X, = %) = O * Aty = Ag/A/ Oy + Appxp) "
2.2 Gumbel's Model B

For this model the joint survival function is

(2.3 OG> 1, X, > %50 = @@= A1y =AML + spep(-Ayx)))

- Q- ep(- A%,))s Al’ Ay >0, i %20, =U4 <p < 1/u.

The comlanon, P, may be posz.t:l.ve or negat:we. The 'mgmssim
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ofxzonxlisagain ronlinear with
t:'o(llx2 23,0 2 {1+ 2 - W apl-AxA,.

The effects of a departure from independence on modeling system
reliability and estimating camponent reliabilities has been studied
in detail in Moeschberger and Klein (1984).

2.3 Gumbel's Model C

For this model the joint survival function is
PX, > %), X, > %) = expl= [Opx™ + O™,

M dg> 0 w2l x>0,
The correlation is

Pz (4 + 2m) I"’z (cos 8 sin )@

S 2exm | 48 -1
0 |eosd + sin 6%

which varies from 0 to 1. For this model m = 1 correspords to
indeperderce and as m + =

(2.5) P(X >x, X >x) + minimm (exp(- A;%,), exp(- 2,%,)]
the Fréchet (1958) upper bound for these marginals.
2.4 Downton's Model

Downton (1970) suggests modeling bivariate exponential systems
by a successive damage model. This model assumes that in a two
component system the times between successive shocks on each
raumber of shocks muﬁumahse"achm&ummfasi follows’
a bivariate geametric distribution. The joint probability
ders;tyﬁmtmnotﬂwcmmuthfetw:s '

(2.5) £0x3%,)) = An), 9:9(-' Oyx, + Azxzi)lo(zfo Mip 4% )
1 - I-p 1~p

IO ¢ o TN P ;—.._.’"-A,-M-'»-».'. ,\_- L READIE SE R CRERES
st *o.-%"‘ebs'.n; "iuus VOB BT I T A R J‘.i‘i“.,w *k ( LN T s %



| ST I N
l&. '.d‘fﬂlé EE .

: | mlu(-)isﬂnmdifiedaaselﬁmctimofﬂ\efhstkindof
P orderzem,ax\d_‘»\l,_}?z>0,xl.x2:0,’0_<_pi1. The correla-

S tion between X, X, is p which spans the interval [0,1]. Asp ~1
L the joint survival function of X;, X, approaches the upper
. K Fréchet distribution (2.5). For this model
v
o B [X, = %) = (L= Py + 0 Apxpfhy.
A 2.5 Qakes' todel
’:‘ e
) Oakes (1982) has proposed a model for bivariate survival
i ? data. This model was first proposed by Clayton (1978) to model
z ' association in bivariate lifetables. Special cases of Oakes'
5 general model have been suggested by Lindley and Singpurwalla (1985)
S and Hutchinson (1981).
- For this model the joint survival probability is
o) Tt -
S (2.7) BOG> %, X,> %) = (@@ (8-1)x)) + exp(hy(6-Lixy)-1] -Ve-1
o
:' vmerekl,xz>0,6_>_1,x1,x2_>_0.
':, For 8 =1, )&, X2 are independent and P(X1 > % )(2 > xz) - (2.9)
::f {% as 8 ~ ». For this model Kendall's (1962) coeffcient of concordance
:;:g 3 is t = (8=1)/(8+1) which spans the range 0 to 1. The correlation,
5 P, also spans the range 0 to 1 and is found numerically.
" E This model has the following physical interpretation. Let
:.:‘ r(x, [X, = x,) and 1:‘(x.]_|x2 > x,) be the conditional failure rates
M
::: g of xl given X, = x2 Then z~(xl|)<2 x.z) =0 t'(xllx > Xy
i 'D\emdelcanalsobedenvedfmameffectsmdel
2 iz This formulation assumes that when the conponents are tested

sepamtelymderidealcmditimsthecanponmtsmvivalﬁrntims
are S; (t) = expl- exp(); t(g-1)) + 1], i =1, 2, and that when the
twcunpormtsamwtmasenessystenmﬂ\eopemung
wmumtﬁum:sa“anfmﬂﬂudxsmnmmmslydwmges

.

T
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K = each component life distribution to Sw(t). ]:_Lt’ W has a gamma

hy -

Ry distribution with density function £(x) au(&n'l ¥ then,
e ?

] ',‘l‘

; -5

fal J‘J\-

y ! .‘_4’

j' S

M.

4

R

.‘l

: . - .

N e O N O B VN SR S R ERARA 10 (it ARy




X
.P...f,,f&"".

Pt % i i
o

e’
S

-
N
o ans

2

S

-
~

. \, . T ’ " ) w " T Y 4 .\‘.\.F AT (TR A
“.*’ﬂ‘*‘.h’\' ‘a"‘a".h'\\\'lb.o“.tf'.oﬁ.,\! t.\sf'f“w ,b‘.‘:'t‘u.. PLENY L, \k .lo‘ " NP EVGS i AN

unconditionally, the joint survival function (2.7) holds.
2.6 Fréchet Bourds

Fréchet (1958) obtained bounds of the joint survival functions
which can be cbtained for any set of marginal distributions. For
exponential marginals these are

pete!

MAXTMM (e *ek2x2~1,0)_<_1>(xl>xl,x>x2)g
MINIMRM (e )‘1 l, e-szz) .

For this set of marginals the lower Fréchet distribution has

correlation -.63% and the upper Fréchet distribution has

carrelation 1.0. These are the minimal and maximal correlations

for exporsential marginals.

3. Ek'mrs J.n Modeling System Life

Supposeﬁxatbasedonextms:.ve testing or based on theore-
tical considerations each of the two components in a series
system is known to have an exponential distribution, (2.1) with
marginal means 1/A1, 1/12, neséectively. It is of interest to
predict the system reliability F(t) = POy > €, X, 2 t) and the

system mean life u r F(t) dt. If the investigator assumes that
the two components are mdepende.nt then the system reliability is

3.1) F'I(t) = exp( -(xl + Az)t) and system mean life is U; = 1/()‘1 + ).

If the camponents are not independent, but in fact follow one
of the models :.nSectmn 2, then a measure of the effects of
incorrectly assunung Mpmdum‘l(t) = (Fte) - F (t))/FI(t) and
§ = (u - “I)/“I’ forpmdictmgsystm mluhilityand System mean
life, ‘respectively, where’ “TCt) and u' are camputed under the
appropriate dependent model. Values of F(t) can be computed
directly from (2.2), €2.3), (2.4), (2.6) (by mumerical integration)

or from (2.7). Exptasw\sforuarep.mmmpe:uxxl. ‘All°

2§

-------- Y ST R S ) e e e e




g
a

-~y e
VoA

expressions for A(t) and §depend on the values of M and xz only

‘:'

o through the ratio },/3, = Kand for K < 1 the values are _equiva-
fa v lmttpﬂbsefor K’:-]l-('-. For the upper Prechet distribution,
K '

3‘.: & A(tp-)=p'z;r-luml<$la:dtp=ﬂwpoint

’ -

\/

:\5, &:. where F'I(tP) =2 p. Also § = 1/K for K » 1. For the lower Frechet
R distribution

. .1 X K 1

Q ;::', A(tp)= p'm*p-m-p'l-lif pm+pK-l>0
S

:': & -1 otherwise

SR

e and § = K2 + K ¢ 1 - (c#1)? Y + (K#1) Ln(Y) where Y is the solu-
& K K

. 2

‘; {T;f tionoftheeqmlityxx+x=1._‘rablelgivsﬁnyalmof
) 4(t;) x 100% and § x 100% for p = .9, .7, .5, .3, .1 for the upper
) d and lower Fréchet distributions.

z' From Table 1 we see that the largest percent error occurs
.' 2 when the parameters are equal. Also for fixed K there is rela-
i?» o tively small error in estimating system reliability by modeling
"I a deperdent system by an independent system when F(t) is large.
‘;: !ﬁ E'?r smaller values of system reliability one can be appreciably
h misled. Errors in estimating system mean life appear to be

K h)

A & substantial unless one camponent has considerably longer marginal

life than the second one. In that instance, one can see instinc-

e t:.vely that ﬁ\econelatmnwouldraveammml impact.

" Figures 1A~IC and 2A~2C.are_plots of A(tp) for.p = .24, 55,75,
; a Xl landkz 1, 1.5 for the five models.described in Sectng.

MR Figures 3A, 3B are plots of § for, all five models as a.function of
~ the correlation. From these plots. note that for. _positive correla-
e mmmmmmformeamcm For
5 relatively small correlation,.-.25 < p < .25 there may still.ba a
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moderate modeling error, on the order at least + 10% for pre-

el
e

;:' ' dicting system reliability at Frct) s .25, or ?I(t) = .5 and for
K3 estimating the mean system life.

{ .
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P TABLE 1

¥ UPPER AND LOVER BOUNDS ON THE PERCENT ERROR N MODELING SYSTEM LIFE

",i:; f FiNe0.9 FNe0.7 "F(T1e0.3 U R FUT1e0. 1 AEM LIFE
N3 [y

::.: LOWER UPPER LOWER UPPER LOWER UPPER LOWER UPPER LOWER (UPPER LOVER UPPER
.:,t BOUND GOUNO BOUND BOUND BOUND BOUND BOUND BOUND BOUXD  DOUND -BOUND  BOUND
O 0.2 541 3.8l 19.52 -U7.16 41,42 -100.00 82.57 -100.00 21623 -38.63 100.00
".:? '0.2‘ 3.57 ‘3.3’ 12.‘2 -‘:cu a-” .tNO“ ".a -l“Q“ lis.“ °31-°, ”.“

.22 267 <28 933 (2.9 18.92 -51.52 3S.12 -100.00 77.83 3483 33.33
0.0 L3 <46 L3P -11.02 14.87 4401 .23 -100.00 Se.49 3283 25.00
0.6 7T <L12 612 A5 12,25 3038 2.2 -100.00 4678 ~31.06 20.00
0.4 (.52 -1.87 S.25  -8.43 10.41 3.9 1877 -100.00 4.9 -29.53 16.67
043 L33 <l.47 AS6 <753 9.05 30,33 16.2¢ -100.00 33,33 -28.18 1429
“0.12 118 -f.51 408 -5.82 .01 -27.42 1431 -100.00 20.15 ~26.99 12.30
0.1 (.06 ~1.37 3.63 -6.22 1.8 -25.02 12.7% -100.00 25.8¢ -25.93 1.1l

-
:
>

P
- A
‘A,*.Z

-cnvo-ua.«n—-i »

LW

Y E‘é 10 0.10 0.% -1.26 330 -5 .50 -22.99 1157 -100.00 23.28 -2¢.98 10.00
o - ! i -0.09 0.88 -1.17 3.02 -5.28 S.95 -21.27 10.35 -100.00 2015 -2¢.12 °9.09
b 12 -0.08 0.8 -1.08 2.78 -491 S.48 -19.78 9.70 -100,00 19.38 ~-23.3¢ Q.33

-0.08 0.76 ~1.01 2.58 -4.59 S5.08 . -18.49 .98 -100.00 17.88 -22.62 V.49
-0.07 0.70 0.9 2.4 -4,30 €75 -17.35 4.36 -100.00 [(6.59 ~21.9% 1.14
13 -0.07 0.4b -0.90 2.23 -4.05  4.43 -16.35 7.82 -100.00 15.48 -21.38  4.487
14 -0.06 0.482 -0.85 .12 -3.83 418 -15.45  7.34 -100.00 14.30 -20.78  4.25
-0.06 0.59 -0.80 2.00 -3.63 3.93 -14.55 4.92 -100.00 13.65 -20.26 .88
-0.06 0.56 -0.76 (.89 -3.45 3.72 -13.93 &.5¢ -100.00 12.88 -1%.76 3.36
-0.06 0.53 -0.73 1.80 -3.29 3.53 ~-13.27 &.20 -100.00 12,20 -(9.30 3.26
20 -0.03 0.5 -0.49 (.71 3.4 334 -12.47 S.90 -2 11.5¢ -18.87 3.0
-0.05 0.48 -0.66 (.63 <300 3,20 ~12.13 S.63 -88.34 11,03 -84 &.Tb
2 003 0.4 . 044 LS 288 04 -3 LI7. -4LT3 1083 -18.08 . 4.53
23 -0.05 0.46 0.6 1.50 278 293 -li.h S04 -An.4 10,07 771 433
0.00 0,42  =0.59 .44 2.4 281 -10.7¢ 493 7838 .65 (1.3 AT
0.08 0.4, 0.57 138 -5 270 .-10.34 47¢ 1549 2% -17.04 4,00
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4. Erors in Estimating Component Parameters
4.1 Parametric Estimition

) In this section we examine the effects of incorrectly assuming
independence on the magnitude of the estimation error in esti-
mating the first component mean life based on data from series
systems. Suppose that n series systems are put on test. For

each system we observe the system failure time and which component
caused the failure. Let n; dentoe the number of systems where

the system failure was caused by failure of the 1 component,

1l =1, 2, ard let T be the total time on test for all n systems.

If we assume that the component lifetimes are indeperdent and
exponentially distributed then Moeschberger and David (1971) show
that the maximum likelihood estimator of Uys the first component
mean life is
4.1)

o
This estimator is asymptotically unbiased and for n finite )
E(;]_) 2 E(T)'E(l/nl|n]; > 0) due to the independence of T and n;.
Suppose now that the two component lifetimes are not inde-
pendent but follow one of the models discribed in Section 2. If
we incorrectly assume independeme then a measure of the excess
bias due to incorrectly asswnmg independence is
B = [E(ullbependent model) - E(ullmdependence)]/ul For each of
the dependent models under consideration T and n, are independent.
For large n, B converges to (u/p-~ ”1)/"1 vhere u is the mean
systenllfeaxdpxsﬁuptobamlnyﬁtefu'stcmlponent fails
computed under the- dependent model. For finite n,
E(ul) snukE (ynll“l > Q) computed under the appropriate model,

K n
where Ep(*/"l'"l >0Q) = 2 (k)p Q-p) /K / Q-Q1-p) ). Expressions

=T/ft.lforul>0. -

fovuardpmgivmmAppendelardApperdlempecuvely.
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meexpzessionsdependm/\l,}zonlyttmughtheratioK;Allkz.

Porallmdels,p:llzmenl(=1.

For the upper Fréchet distribution p =0 if K< 1; /2 if K =

ard 1 if K > 1. Hence for K < 1 no failures from the first com-
panent are ever observed so that the modeling error B becomes
infinitefogalln. ForX>1l,p=1and u=u180ﬂut
=(l—E(ullIndependeme)/ul)michtexﬁstoﬂasn*-. In
this case the models with correlation ranging from @ to 1 have B
ircneasingforp<pua:ﬂdecmasingforp>po. For the lower
Fréchet distribution, p is the value of X uhich solves the
equation X + X =1 =0. For K< 1 wehavep < 1/2 and for K > 1
we have p 5 1/2. Table 2 gives the value of B for n = 25, 50, =
for the two Fréchet distributions. It also gives the maximum
modeling error for the Gumbel C model which is an indication of
maximal excess modeling error.
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From Table 2 we note that the dependence structure exerts a large
efrectonestmtmgthewallerofthemmowrtmmmd
ﬂate.xthet‘effectlsmstemggetatedformnsmlesxm

FovK:ld\mxsvetle.ttlesamplesueeffectonthemddmg

error.

For K strictly bigger than one the maximum bias under the

Gumbel C model decreases with K and the correlation at uwhich this

maximum is attained also decreases to (.
of Bas n=+ = for K = 3/2, 1, 2/3, respecitvely.

Figures YA-4C are plots

Figures SA-SC

are plots of B for n = 10 for K = 3/2, 1, 2/3, respectively.

TAMLE 2
RELATIVE MODELING ERROR IN ESTINATING THE MEAM
=20 N=30 Re[NFINITY
Lover GUNBEL C  LOWER GUNOEL C  LOWER e C

K O0UND RNO=t RHO BIAS

BOUND  RHG=l RNO BIAS

BUN0  RHOel RO BIAS

1710 ~187.45 eedsee 1,000 ¢esese
1/ 9 -142.98 eceoes [,000 sdesse
17 8 -123.37 seseee 1,000 taseee
17 7 -107.23 sesess 1,000 sesese
17 6 -93.66 te0tes {,000 tadees
175 -81.91 eceeee {,000 teeese
17 & =71.45 eeseae 1,000 t4eees
173 81,78 seeeas 1,000 seeees
112 -S2.14 eecese 1,000 eescee
-40.90 103.99 1.000 105.99
«32.5% -2.79 0.510 10.82
-28.28 -1.82 0.400 3.33
'23.“ '1.33 .0.3“ ,-”
«23.42 ~1.00 0.312 2.3¢
-2.05 <9.890.288 1.2
°N.77 "o" 0021‘ ‘o“
19,49 -0.47 0.237 1. 20
-10.70 <9.39 0.26 1.0t
«(7.98 .33 0.237 0.@7

D O & N WNe -

""0"“"’0‘#..\ s "‘I‘..’.l. [

.
n.‘.t"o" .0 WY

=§0.09 teeees 1,000 sesees
75,35 sestee 1,000 eeesas
76,48 testes 1,000 setsee
69,03 ceceed 1,000 csteee
43,34 secees 1,000 sedeee
~51.54 seesee 1,000 seaees
«$7.50 secsee 1,000 tedece
<$3.00 secaes 1,000 sedone
«47.31 teeese {000 ceteee
-39.45 102.13 1.000 102,13
<32.84 -1.04 0.318 11.50
-28.3% -0.69 0.410  3.@¢
2876 ~-0.52 0.362 3.2%
«23.80 ~0.41 0,330 2™
2.8 0.3 0.307 200
-20.98 -0.29 0.2 L.
-(9.92 -0.2% 0.277 .40
«19.00 -0.23 0.264 .17
16,20 «0,20 0.237 .03

AT -‘_o_-.‘-..--\- SR LY
‘w -“ J . "‘ )1’

<S0.44 coesse 1,000 seated
<$7.84 cossse [,000 seetss
56,73 csesee 1,000 sedere
<55.87 seacee 1,000 teedne
=$4.63 esseee 1,000 sesite
<56, 13 seatee 1,000 sentee
51,20 cossee 1,000 sesdes
«48.73 tecess 1,000 sectee
~48.08 teseee 1,000 teedse
~38.463 100.00 1.000 100.00
<12.12 0.00 0,328 1i.9t
'2'.3’ 00“ 0.‘20 ('Y lS
«25.83  0.00 0.373 4.01
2236 0.00 0.31? 2.2
'2‘0“ 00“ 0.303 lon
‘N.“ .Q“ 0.1" los
""o 13 .o“ 0-17' !03‘

"kﬁf’\"“ w-'.\',-r



U
¥
I

her

ot

e X2

£ ps
LAY

4

by

4 L0, .

B
'_‘Il‘f“_k,“i

FINe0.7

TABLE 3

ASYNPQTIC BIAS OF THE PROTUCT LINIT ESTIRATOR

F(1)e0,S

F(T1ee.3

LOVER
* K souND

GUNBEL €

RHO=t RNO

LOVER GUNOEL C
B0UND  RHO=l RHO  BIAS

Lawer GUNBEL C
BOUND RHO=t RHO OIAS

17 9 -100.00
{7 9 -100.00
17 7 -100.00
i/ 4§ -100.00
1/ § -100.00
1/ 4 -100.00
1/ 3 -100.00
1/ 2 -100.00
t -100.00
2 ~100.00
3 -100.00
¢ 4308
S -8
6 -3
T -1t
g -1.03
T .M
0

{ -0.82

42.86 1.000
42.84

0.00 0.424
0.00 0.373
0.00 0.341
0.00 0,317
0.00 0.303
0.00 0.29¢
0.00 0.279
9.9¢ 0.271

42.86
42.88
42.86
42.86
2.8
42.86
42.84
42.86
19.32
.0
.00
1.38
1.01
.7
0.64
9.34
0.4
.4

Figures SA-SC for

As in the previous figures one can see that

p:

-100,00 100,00 1,000 100.00
-100,00 100.00 1,000 100.00
-100.00 100.00 1,000 100.00
-100,00 100.00 {.000 100,00
-100.00 100.00 1.000 100.00
-100.00 100.00 1.000 100.00
~100.00 100.00 1.000 100.00
-100.00 100.00 1.000 100.00
-100.00 41.42 1.000 41.42
<2047 0.00 0.520 1.43
“14.98  0.00 0.42¢ 4.10
-10.78  0.00 0.373 .70
-8.42  0.00 0.3¢1 1.7
491 0,00 0.317 (.54
's.“ 0.00 0.303 1.26
-5.09 0.00 0.290 1.0
-4.50 0,00 0.279 0.90
. -4,03  0.06 0.271  0.78

.25, 6A-6C for p
p = .75 -are plots of Al(p) for the S models and k = 3/2, 1, 2/3.

~100.00 233,33 1.000 233.33
~100.00 233.33 1.000 233.33
=100.00 233.33 1.000 233.33
-100.00 233.33 1.000 233.33
-100.00 233.33 1.000 233.33
-100.00 233.33 1.000 233.53
=52.70 233.33 1.000 233.33
=24.21 233.33 1.000 233.33

-9.63 02,37 1.000 €2.37

“4.40  0.00 0.328 3.7

«2.83 0,00 0.42¢ .22

LIt 0.00 0373 474
4430 0.00 0.341 LW
-34.83  0.00 0317 70
“28.71  0.00 0.303 219
<2443 0.00 0.290 1.83
-2L.3t 0,00 0.2 L&
-18.89 0.00 0.271 137

.5 and 7A-7C for

for even a small

departure from independence the relative effect of dependence
can be quite large.
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4.2 Nonparemetric Estimation

A second approach to the problem of estimating component
parameters isviathemmmicstﬁamofl@phnand
Meier (1958). Investigators who routinely use nonparametric
techniques may take this approach in hopes of obtaining estimators
that are robust with respect to the assumption of exponentiality.
However this estimator is not necessarily robust to the assumption
of independence.

The product limit estimator, assuming indeperdent risks is
constructed as follows. Suppose that n systems are put on test

andletvu, ....rm bethemnksoftmomdwedn failures
i

S

D e e wr Ow

‘ from cause i, Xic1ys -oe» (n ).magallnozda-hfenmes
| . The estimator of the ocmpormt mhab:.h.ty for the i jth component is
O -
$
~3‘ 4.2.1 Si(x) = 1 if x< X. (1) >
ﬁ j(i.x’ X > x(i(l)
] . It n- ri.j '
: & j‘.'l ne= l‘ij + l
‘ where j(i,x) is the largest value of j for which Xi(5) € % This
: ! estimator is asympotically unbiased when the component lifetimes
« are independent.
| i& When the risks are dependent Klein ard Moeschberger (1983)
’ show that S,(t) is not estimating the marginal component relia-
' # bility, but rather it is estimating consistently another survival
p function
L] . ‘< -
. @ 4.2.2  HQ = exp(-[x d Qy(t) ) where.
| @ o)

F(t) = PGuinimm (X, ,%,) > t) and Q;(t) =
P(minO(l.x.z) <t, nn‘.n(xl,xz) s Xi). i=1, 2. Bxpressions for
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H;(t) for the five models of intevest are given in Appendix 3.

A measure of the affect of dependence in using the Product
limit estimator with dependent risks is 4,(p) = (Pfl(tp) - pMp
uhezetpisthetimemmtheﬁueoanpormtmliabilityisp.
A1(p) is again only a function of k = A;/A,- For the upper
Frechet distribution .

8= pt -1 for k<l
pl/2 for k=1 since

for k>1

for k< 1 -Hl(t)=1foralltsi.ncethefirstcmpmentm
fails, while for k > 1 all failures are due to the first component.
Por* those models with correlation spanning the range (0 - 11,4, (p)
is increasing for correlations less than p* and decreasing for
correlations greater than p* when k > 1. For the lower Frechet

(=]

distribution K (t) = ep - J’l 1 du for p> (-0
' P utu -1

Q . otherwise.

Table 3 shows the value of 8,(p) x i00% for p = .7,..5, .3 for the
two Frechet distributions. For k > 1, the maximum value under

the Gumbel C model is also given. As in the parametric estimation
problem the largest errors are incurred when k < 1. In all cases
the effect of a departure from independence is the largest when

p is small (i.e. for large t). The effect decreases as k
increases reflecting the fact that mn1> >, the majority
of the system failures are due to the failure of the first

component.
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The results presented in this paper show that for all five
bivariate exponential models one may be appreciably misled by
falsely assuming independence of component lifetimes in a series
systen. The amount of error incurred in modeling system reliability
not only depends upon the correlation between camponent lifetimes
but also on the level of system reliability. The error in
modeling mean system life similarly deperds upon the correlation
and the length of mean system life. Both quantities depend on the
relative magnitudes of the parameters.

For the dual problem of estimating component reliability
g . based on data from a series system, it appears that departures

ﬂ from indeperdence are of greater consequence. Both paremetric
and nonparemetric estimators of relevant component parameters
@3 are inconsistent. Bias increases drematically as the correlation
gets further from zero. However, the five models do not exhibit
! appreciable differences in bias and mean squared error as
correlation changes. This suggests that these models may belong
k.- to a large class of bivariate exponential distributions which
’ g’ possesses the properties exhibited here.
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Appendix 1

Formulas for expected System Life,

Y,
(o

A
G.nnbelA-acp01+).2)2 i B'A-}-f'—?- . L)

B e N
> Vi 12
@ where 3C¢) is the survival function of a standard normal random
' variable.
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Downton - (xlﬂz)(l—o) (AL.4)
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[(Al»‘z) - 4p xlxzj
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‘/ 4 2 2,2
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2

B dR

5T

)
Oakes - found by numerical integration

s e e e

- .

a

A PaT
‘n € -~

i}'i;"i."!‘ s Aoy, 4 (R KM X "}’Q PTr T ’ It ‘b, / () J ‘h \ 3 \J .. 4 5‘ ) § ¥ ¥, ¥
3t “»,“,,!,!.E“qu 8 .Q'“t‘ JJ‘I)‘."Q’ Q"b f { |,’ .' “ﬁ ! “ ' “ ) ." () gy () (}
A PR AT RN T A ‘l.-,\:i»%,‘?'“-’\.ﬁ‘llh‘@ “D“A. . ] 2,009 { ‘ ) \ ' v () U
ST RS A ~|vl.~. I.u Ll s WL ) l‘ ) (A
B .‘ WAL LI RN R, 'a AR A '
- i 128 Uhe LA L3 ) L) ~ \




Appendix 2 - Formulas for p = PX, < X,)

/ =~ (M%)
Gumbel A - P(X) < X,) = 1/2 + (A 4,) (“*12 )’(T")"lz’

A12
. where 9 (-) is the survival function of a standard normal
g random variable. (A2.1)
4 )
a Gutbel B - PIx < X,) = A * 4o A0 h,)

(A%, GAJTO0+ AT
Ay *X,) AR I T )

$ (A2.2)
ﬁ GwnbelC-P(xl<X2)=AT-
m.m

Downton - P(Xl < Xz) = ZAIAZ(l-p)

2 2
(/(xl*v\z) - 4p "1*2)(*1"2 + /(x]_*xz) - upxlxz)
(A2.4)

Oakes - P()(1 < Xz) found numerically.

L S |

S R

@~

»

-

N gty gy e
IR 2 RN P "s Y

1, .
lg‘nb.p' ORI JA"HGH Ay t'b‘q‘“ b,



S T

,‘,,_
L,
g -~

e

)

1, [) N

4

B

\

=

k) Appendix 3 -

. : - . \ 2

: & Gumbel A - f(x) = expl~ Ayx = 4, %) (A3.1)
'»5

3, 3

3 y = x

K & Guibel B - () = expl- [ [1 + 4oCl-exp(3,6))(L-2exp(4yt1)]  Ka3.2)
. d

Q1 + 40(1-exp(-A,t))(1-exp(-X; t)) ]

w4 ,-':‘
o 00
o Gumbel C - z -an
g . H G = expy- 4y -l (A3.3)
% h m,,m,y

: (x1+xz
M
o _

by, Downton - Found numerically due to no close fom solution for

B F(v).
! ﬁ
3 H (x) = 'xx (1, (8-1)t)
,-. . Hl =z exp!-~ JO 19P(A, (8- )t dt
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FIGURE 4A
Asymptotic Modeling Error in Estimating u, for K = 1.5
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FIGURE 48

Asymptotic Modeling Ervor in Estimating u, for K=1

2 s s [P
1.75

=8

1.50

A B 8 X
1.00 1.25

o
2 nL
-+ e

0.50

- —‘:37

4

SoNNTON
X J2IToaEs -

-40 -0.20 -~ 0,00 ~*~"0.20 ~— "0.40 "770.607 7 7,0.80
7 CORR:

e Isx
0.25

TR

u#ec O AR A A A ..,‘.'v_J-.r-.a-f,~ hY *’"'.-\u\.-\»‘w .(_.)...’ TN TR
!.‘ "‘ i‘,’:!’”'.”“"":"v&;’?“l‘«’l“"' o 'y' “n\‘ XLy % T by ¢ ' RCLEALS ) ﬂ. , o o\ A‘.‘ b ‘('.“'!, % .-‘0"3_5



S e Y N

i FIGURE 4C
. Asymptotic Modeling Errvor in Estimating u, for K = .67
’ \
™
g <
% -
[+ <}
§  ©
R =
o'-n
: s
§ -
72r
5 T o
P m
| -
N
g
g ~
Q
o‘-
£
n)
(2]
Q
g o
= | ol
X -2 loaxes
B v
~N
# - '0.s0 G:.2s d.00 _ 0.25 0.5  0.75 1.00

™

¥ IR v Ny .". . e . W T" . -, r X £y - -~ ‘e . ) , . v . .
AN ANy BN OGO XYUO OO SO A (A ® . XA, “\‘; ! ; 3 AAGALL .
S S N R RO R DA TR OO U e SN GERR A R 2 L Dby A DRI R WY

A

R el o o 4

e T el e



"

-

o e
" -~

| S50

o

ol
X a
= g

22 ™.

e

(|

7 s

by

RS

)

0‘ ’ .

\ ~

S
] L

O

.

0 ;¥-
ALY
}
i~
L) g
A

,lfg

FIGURE SA
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FIGURE SB
Smal!l Sample Size (N=10) Modeling Errur in o itimaring by K=1.
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Small Sample Size Modeling Error (N=10) in Estimating Hys K = .67
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Asymptotic Error in the Nonparametric Estimator of the
First Component Survival function at
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W ﬁ A random environmental effects model is proposed for competing risks experiments. The
Ay model assumes a random stress, Z, which changes the scale parameter of each of the assumed

Weibull times to occurrence of the risks. Some general properties of the model are discussed, and
specific properties for a Uniform or Gamma stress mode] are presented. Estimation of parameters
under the Gamma stress model is considered, and a new estimator based on the scaled total time on

»
ST mav

The problem of competing risks-arises naturally in a number of engineering or biological
E§“ experiments. In such experiments, for some items put on test, the primary event of interests (such
as death, component failure, etc.) is not observable due to the occurrence of some competing risk

': " " test transform is presented.
:‘::' :
o ﬁ INTRODUCTION
2090
%
B

T
gy :.‘
.. 3 of removal from the study (such as censoring, failure from a different component, etc.).
e ﬁ Competing risks arise in an engineering context in analyzing data from
r.‘ [} N
:‘;Z:i () series systems,
W E ' . . .
n;};;, (®) field tests of equipment with a fixed test time and a random or staggered entry into
Nyt
r 9 @ the study, or
b (c) systems with multiple failure modes.
S
B! ﬁ Competing risks arise in biological applications in analyzing data from
!‘;;i a
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(@) clinical trials with a fixed trial duration and staggered entry

() clinical trials with some patients withdrawing from the trial prior to response

(c) studies of the time to death from a variety of causes

A common assumption made in analyzing competing risks experiments is that the potential
(unobservable) times to occurrence of the competing risks are independent. This assumption is not
testable due to the identifiability problem. That is, for any dependent competing risks model, there
exists an independent competing risks model which yields the same observables. (See Basu and
Klein (1982) for details.) However, Moeschberger and Klein (1984) show that an investigator can
be appreciably misled in modeling competing risks by erroneously assuming indepencence.

In this paper we present a model for dependence between the various risks by assuming that
dependence is due to some common environmental factor which effects the potential times to
occurrences of each risk. In section 2 we present the model and study its properties for bivariate
series and parallel systems. In section 3, we consider estimation of the model parameters for
competing risks systems.

2. THEMODEL

_M,,,.
S

) For simplicity we shall consider the problem of bivariate systems and discuss our model in

ﬁ terms of engineering applications. We assume that under ideal, controlled conditions, as one may
’: encounter in the laboratory in the testing or design stage of development, the time to failure of the
! ’Cr: two components, to be linked in a system, are X( and Y(;. We suppose that under these
k) A

conditions, Xg,Yq have survival functions F, Gg on [0, -<). We assume that both X andY,

follow a Weibull form with parameters (1) 1 ll) and (M5, )\2), respectively, That is, F(x) = exp(-

I et o

vtls'
’;'ﬁ A,x"1). The Weibull distribution, which may have increasing (1 > 1), decreasing (n < 1) or
: ": constant failure rate (1| = 1) has been shown experimentally to provide a reasonable fit to many
g different types of survival data. (See Bain (1978)). We now link the two components into a
@ : system in such a way that under ideal lab conditions the two components are independent.
' ‘ Now suppose that the above system (X, Yq) is put into operation under usage conditions.
: 1 We suppose that under such conditions the effect of the environment is to degrade or improve each
i w component by the same random amount. That is, the effect of the environment is to select a
o q" random factor, Z, from some distribution, H, which changes the maginal survival functions of the
E two components to Fo and GOZ A value of Z less than one means that component reliabilities are
@ simultaneously improved, while a value of Z greater than one implies a joint degradation. The
1 * .
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2
e

§ 3

-

:§ :%} resulting joint reliability of the two components' lifetimes, (X,Y) in the operating environment is

':::'Z ,n F(x,y) = E{exp(-Z(A ;x"1+ A,y"2)]. (2.1)

.;:: ‘ This model has been proposed by Lindley and Singpurwalla (1984) in the reliability context
“g i when Fq, Gy are exponential and H( ) follows a gamma distribution. This basic dependence
. structure was also proposed by Clayton (1978) to model associations in bivariate survival data, and

later by Oakes (1982) to model bivariate survival data. Hutchinson (1982) proposed a similar
model when H( ) has 2 gamma distribution and Fy(t) = Gg(t) = exp(-t").

The model described above for a general distribution of the environmental stress has a
. particular dependence structure which we summarize in the following lemmas.

K

-_,_(
LN |

S % Lemma 1. Let (X,Y) follow the model (2.1) where Z is a positive random variable with finite
Ly

R r
M ﬁ (— + —)M inverse moment. Then

N M
S ™y -vmp -(my s/'q2)

" N The proof follows by noting that, given Z = z, (X,Y) are independent Weibulls with parameters
"N . amy -ty

?‘ (M1,A; 2) and (Np, Ay 2), respectively and E(X"Z=z)=A; z  I'(1+1Mm,) with a similar

5, .

E§§ :} expression for YS. When the appropriate moments exist, we have

'3‘ . -1m 1

; L (A) EX)=EXQEZ ),

5

S -1my -1my

;% ¥ ®) VX =EX)Var@Z )+EZ ) VarXp),

) .

0 -1 -1
my_-imy
LA ©) Cov(X,Y)=EXg E(Yg)Cov(Z ,Z %) which is greater than 0.
.‘:1
. 4
El If 11, =Ny =7 then the correlation between (X,Y) is
Lt
i r'(1+ 1m)2 Varz-1/my
" .'.'- p = .
o
S VarZ M) F(1+2mp+ (T(142m) - T+ 1)) EZ Y2
W
= In this case the correlation is bounded above by 1"(1+1/r1)2 / T(1+2/m). Figure 1 shows the
N .
1{, t maximal correlation as a functcion of M for 1 € (0, 10). Note that this maximal correlation is an
”:
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4

‘ :
“ increasing function of 1. One can also show that F(x, y) is positive quadrant dependent for any

“! N1 Mp-

. Exact expressions for competing risks quantities of interest can be computed when a
&‘ particular model is assumed for the distribution of Z. We shall consider the gamma and uniform

A ST T (W 2 e o §
. 5

R

models. Consider first the gamma model with h,(z) = b2 z3-1 exp(-bz)/T'(a), z > 0. For this

model, the joint survival function is

5e |

3
SEEYY)
R &
ba
n F(x,y) = 23)
) n n
' b+ Ayx 1+ Ay 213

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal distributions are
univariate Burr distributions with

== PO i

£

-1
E(X) = (A/b) mll(1+lln1)l"(a- 1My T), ifa> I,

-2my  T+e2mpia-2my)  T+1mha-1my)
Var() = (M) { - [
I (a) ['(a)

with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is

ek e
v .

]2}’ifa>2/nl

\:Reineer.
4

’,3 -1y -1my [(a-1Mm¢-1my) I(a-1my) I'(a- l/ﬂ%)

- Cov(X,Y) = (A/b) (Mp/b) L(1+1my) T(1+1mp){ -
S I'(a) I'(a)
.
« ? fora> 1M, + 1/m,. For the gamma model, the reliability function for a bivariate series system is

3 given by
K @& m 2
L] Ry(®) = (1+(A1/b)t + (Ap/b)t ~ )3, (2.4)
"" & and for a parallel system by
]

n n 2 n2

Kt 8} Rp(t) = (1+(Aqy/b)t l+ (1+ A/t 2 y3- (1+(A/b)t + )t )2 (2.5)
" ‘ Figures 2A-E are plots of the series system reliability for A= 1, A, = 2 and several combinations
L !
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of 11, N,. Each figure shows the reliablity for a = 1/2, 1, 2, 4, and the independent Weibull

model. In all cases, b = 1. For these figures we note that for fixed A}, Ay 1, M, t, the series

system reliability is a decreasing function of the shape parameter a. Figures 3A-E are plots of the
parallel system reliability (2.5) for the above parameters. Again, the reliability is a decreasing
function of a. Also in both the series and parallel system reliability, the shape of the reliability
function is quite different from that encountered under independence.

The gamma model is a reasonable model for the environmental stress due to its flexibility and
the tractability of the model in obtaining close form solutions for the relevant quantities and in
estimating parameters. However, in some cases, such as when the operating environment is
always more severe than the laboratory environment, the support of H may be restricted to some
fixed interval. A possible model for such an environmental stress is the uniform distribution over
{a,b]. For this model, the joint survival function is

M
[exp(-bA; x ~ + 7&2y )) - exp(-a( klx + kzy

F(x,y) = , (2.6)
(b-a)(llxnl-t— My 11%
-1, G1-Dimy (mp-1imy _
E=%  T(+lmpn; ® -a yH{(p-DOb-a)]  ifng#1
= in(b/ay/[A;(b-a)] ifn=1,
2 My (pdm
Vargo=ny Ay Ts2mpn & )
(b-2)
T (1+1/111)21'l1 (bml ny) a (Tll-llﬂl))z if my#12
My-1%(-a) :
2/(A2ab) - tnb/ a)2/[(b-a) 111 ifn,=1
Al in(b/ a) II .
TN [ (v =2

T .,,_.

'v.l a"l |",I&. A ‘. ”. ‘.»“&‘ (W) "‘h “' ‘0“':' ¥ > \ “

Lo ) l



RD-A164 417 EFFECTS OF RSSUNING INDEPENDENT COMPONENT FRILURE TIMES
- F THEY ARE ACTUA 0 I TATE UNIV RESERR!

OUMDRTION COLUNBUS H CHBERGER ET AL. DEC 85

UNCLASSIFIED AFOSR-TR-85-1215 AFOSR- 82 038 G 12/1

NL




losie -
= = 22
—— g [ KT L
s LS §20
"" Ll k.
] .8 )

MLz s mie /

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OFf STANDARDS-1963-A
K}

LN N \ .-~

WY P - 1 h
‘a’h STy n"\.:’:‘s*\‘ Y A‘l "b‘ V8 q’b.-,' LA 'lk ’t a'l . l. “‘ .’.'i &‘\‘.l‘% * &’ “0 W ' AR " .'\’\ '~"‘.b..ﬂ' h"le SN et Yy ,‘; "
\

NI T
‘l,l',:‘c

£ ‘»‘!"'

et




e ot
PRI

-

»
Cd

w2

¥
14

0N et

—
)
al

Tt

s

[e

-~
]
[

‘;‘ l’.l‘
Ca iR

ALRCRC

FIGURE 2 A
SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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; FIGURE 2 B
" SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 C
SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1)
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 D
SERIES SYSTEM RELIABILITY UNDER GAMMA (R, 1) MODEL
FOR THE ENVIRANMENTAL STRESS.
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FIGURE 2 E
SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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: FIGURE 3 A
i PARALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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| FIGURE 3 B
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 C
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 D
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FBR THE ENVIRGNMENTAL STRESS.
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For this model, the reliability function for a series system is

no.oM LTI
Ry(®) = [expb(Agt +Agt D-expl-a(Agt +Agt DIl @.7)

AR ST I A R AR

A ARIYI Y V)
s AR AR AR ERGY n sy




ook
>

g =R

Peat]

g
t

o

%)

." AN

U
Ll'n

RN )
A0, P AN 3.‘.‘.‘.‘

TP U Y I T O O T T ONY

n n
(b-a)(llt1+)2t2)

and for a parallel system is
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Figures 4A-E show the reliability for a series system asd figures SA-E for a parallel system

under the uniform model for various combinations of 3\.1, Ay M 1, M 2 3,b. Notice that when A =

.25, B = .75, which corresponds to an operating environment which is less severe than the test
environment, the system reliability is greater than that expected under independence, while when
(a,b) = (1.25, 1.75) or (1., 2), which corresponds to an environment more severe than the test
environment, the system reliability is smaller. Also when the (a,b) contains 1, which corresponds
to an environment which incurs the possibility of no differential effect from that found in the
laboratory, there is little difference in the dependent and independent system reliability.

3.  Estimation of Parameters Under Gamma Model
Consider the model (2.3) with 1y =n4 =n. For this model, the reliablity for a series system
is

Ry)= (1+ )3, (3.1)

Aq1+M)
b

Notice that this model depends only on two parameters @ = (A;+ A,)/b and a so that if we had data

only from systems on test in the operating environment, the only identifiable parameters are a, 6,
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FIGURE 4 A

MODEL

SERIES SYSTEM RELIABILITY UNDER UNIF (A,B)
FOR THE ENVIRONMENTAL STRESS.
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| FIGURE 4 B
SERIES SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRAONMENTAL STRESS.
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FIGURE 4 C
SERIES SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 4 D
SERIES SYSTEM RELIABILITY UNDER UNIF (R,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE S A
PARALLEL SYSTEM RELIABILITY UNDER UNIF (R,B) MODEL
¥ FOR THE ENVIRONMENTAL STRESS.
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FIGURE S B
PARALLEL SYSTEM RELIABILITY UNDER UNIF (R,B) MOGDEL
FGR THE ENVIRONMENTAL STRESS.
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FIGURE S C
PARALLEL SYSTEM RELIABILITY UNDER UNIF (R,B) MODEL
FGR THE ENVIRGONMENTAL STRESS.
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FIGURE S D
PARALLEL SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
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PRRALLEL SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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T, not Ay, A, N, 3, b. However, in many instances we have extensive data on the performance of

the components in the lab under ideal operating conditions so that one may consider A{, A, 1 to be

known based on estimates from this data. Weshaﬂfocusontheproblémofcsﬁmatingb and a,

based on data on the system failure times collected in the operating environment. Letty, ..., t, be

the failure times for n such systems put on test, and, let w; = ti“, i=1,..,n

Prior to attempting to estimate (a, 8), we would like to check if the model (3.1) is feasible.
A graphical check of this model can be done through the scaled total time on test (STTOT) plot of
Barlow and Campo (1975). The STTOT for W is

0
Gy(®) = =1-(1-)@1/2 fora s 1, (3.2)

Note that (3.2) depends only on a. Figure 6 shows the form of the STTOT for several values of a.

Notice that for all a, the STTOT is below the 45° line (which corresponds to exponential system
life) since the hazard rate of the series system is decreasing. Let
i
Tn(W (1)) =3 W(J) + (n-i)W(i), 3.3)
j=1

where W1y SW(9) S... S W(y,) are the ordered systems failure times be the total time on test at

W(i). The empirical STTOT plot then plots (i/n, Tn(W(i))fI‘(W(n))) which can be compared to

figure 6 for a graphical check of the model. Also, crude estimates of a can be obtained by

-----------------
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FIGURE 6
SCALED TOTAL TIME ON TEST TRANSFORM

FOR GAMMA MAODEL.
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comparing the empirical and theoretical STTOT plots. When there is no random environmental

ny

effect and the components are independent, then the empirical STTOT plot should look like the 45°

line. Also as a tends to infinity this plot approaches the 45° line.

We now consider several estimates of a and . The log likelihood for the model (3.1), based

on a sample of size n, is
. n

Iy L(2,8)=n ina+n in - (a+1)T in (148 W;) (3.4)
e i=1 .

5 so that
& o

d/dal(a®)=na-X n(1+90 W) 3.5)
. i=1
A
) n
h and 9/08 L(a,6) = 0/0 - (a+1) T w;/(1+ 6w;) (3.6)
i=1

>
Ez For (3.5) we note that the maximum likelihood estimator of a
N n

‘ dmle = ' G.7

n
Ry Tin(l1+0W;)
’F"t i=1 !
i
I and the maximum likelihood estimator of 0 is the solution to
¢ |
:‘5 n n Wi
o — - +1)E ———)=0. (3.8)
" 0 Znn(1+0Wi) 1+06W;
%
o n n
£ One can show that is positive if n % wiZ > 2( }:lwi)z. (3.9)
1= =

In such case O}, is obtained by solving

o %) -'\-'-" L P D T2 BT Sl P TP T ] N T R R A L A oY r"r.:{.
RO ARG s S a i3, 1 M8 A .n.. LA il &&5&.&2«. ‘:“{&}\"Chir 1‘\_).&')..')‘.4_)5,24 l‘ul m}':::‘:'f}
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(3.8) numerically.

A second estimator of (a, 0) is the method of moments (mme). Since E(W) = [ 9(3.-1)]'1

\

and E(W2) = 2[ 62(a-1)(a-2)]"! where a > 2, we have

z wiz 2z wi2-2(2wi)2

(3.10) and 6 = (3.11)
Z “712 - 2(2 Wiz_) mme

dmme =1+
' ZwiZ wy?

T

provided that (3.9) holds. If (3.9) does not hold, then this estimator does not exist.

A third estimator was suggested by Berger (1983) in a different context. He suggested

estimating 6 a modified methods of moments estimator ew =(a w)'l, (3.12)

where w = ¥ wy/n,

which is used as the true value of 0 in the likelihood (3.4) so that the estimator of a is the solution

PR

to

£

wi (a+1) wj
S in(l+—)+ ) =0 (3.13)
aw w?z 1+w;/(aw)

A final estimator is based on the STTOT plot. Let C; = dn(1-i/n) and D; =
an(1-Tn(W (i))/Tn(W (n)))» i=1,..,n-1. If (3.2) holds, then we should have
D; ~ (1-1/a)C;, i = 1, ..., n-1, (3.14)

so the value of a which minimizes

AN

n-1
Z D;-(1-1/a) C1)2 is a reasonable estimator of a

i=1
: -

X The resulting estimator is ajg = 3.15)

3 IC-IGD;
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Y ‘which is in the parameter space if ZCi2>ZCiDi. Abe&cresﬁmtorshouldbeobtainedby

{: ‘ weighting the Dy's differently since for i < j, Var (D;) < Var (Dj). The variance of D; depends on
2’ i the unknown parameter a so we weight by the variance of D; computed under an assumed
193
§ exponential distribution. The variance of D; in that case is
:: g v 2% L 1 1 (3.16)
! 1= 1i=1,..,0N- .
wi. kg2
R
& Q so that the weighted least squares estimator of a is
;
¢
i 1t
: ZCv; 5
IS Awls = ) if ¥ C;4/V; > ZC;Dy/V;. 3.17)
% 2 G° o GDi
g E—-Z—)
. Vi Vi
e
“' ik Once we have obtained a by either of the two least squares estimators, we substitute this value into

7
.
.

(3.6) and solve this equation numerically for 6y or Oy,s.
The condition T C;2/V; > T C; Dy/V; includes a few more possible samples than the

Efi condition (3.9) for the other three estimators. However, those samples which satisfy 3, Ci2/V ;>

s & 2 C; D; /V; for which (3.9) fails to obtain yield very large estimates of 8. Since a reasonable

§ & model for T when 0 and a are not estimable is the independent Weibull series system which has

s; i)z system reliability very close to (3.1) when a is very large, this is not a problem. Figures 7a and 7b
LS are scaled total time on test plots from two simuilated samples of size 30 from (3.1) witha = 3,0 =
E E’f 1. Looking at figure 7a, we see that the estimated scaled total on test doesn't look too different

::, 9,3 from the 45° so that an exponential model might not be unreasonable. For this data set only the

] weighted least squares estimator exists and it yields awy g = 45.33 and 8 = .0567. For the data in

figure 7b all estimates exist, and we have

|
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FIGURE 7 A
SCALED TOTAL TIME ON TEST PLOT
FOR SIMULATED DATA.
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FIGURE 7 B
SCALED TOTAL TIME ON TEST PLOT
FOR SIMULATED DATA.
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Bpnle = 93 amle =2.98
Omme = 491 amme = 4.86
Oper =720 aper = 7.02
=739 .  a =358
By1s =970 ag1s = 2.89

To study the properties of these estimators, a small scale Monte Carlo study was performed.
Random samples of size n = 15, 30, 50, 75, or 100 were generated with A+ M=3,b=3,500
=1 and a=2,3,5. 1000 samples were generated for each combination of n and a. The bias,
standard deviation of the estimates and n, the number of samples where the estimator exists is
reported in table 1 for a, table 2 for 6, and in table 3 for an estimator of the system reliability
obtained from (3.1) at tg = 9.085. The true system reliability at tg is .8255 when a = 2, .75 when a
=3, and .619 when a = 5. Also reported in each table is the bias and standard deviation of the least

. square and weighted least square estimators when they are restricted to those samples where the

other estimators exist.

From these tables we note that Berger's modified estimator performs very poorly. Also the
weighted least squares estimator allows for estimation of parameters in many more samples when n
is small. In general the maximum likelihood estimator outperforms the other estimators, however,
when the weighted least squares estimator is restricted to those samples where the maximum
likelihood estimator exists, this estimator performs much better when n is small. The somewhat
better performance of the MLE in terms of bias is deceptive since some of the estimates of a are less
than one, which implies that the mean system reiliability is infinite. Also the weighted least squares
estimator of system reliability seems to outperform the other estimators of the system reliability in
spite of its relatively poor performance as an estimator of 6. Our recommendation is to use the
weighted least squares estimator since it more often provides estimators of the relevant parameters

and is somewhat easier to compute.
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TABLE 1 .
BIAS AND STANDARD DEVIATION(SD) OF ESTIMATORS OF A
MAX IMUM WEIGHTED METHOD OF
LIKELIHOOD LEAST SQUARES  LEAST SQUARES MOMENTS
M  BlAS SD M  BIAS SO M  BIAS SD M BIAS  SD
769 4.5 29. 852 4.8  4l. /62 5.8 49, 770 3.1 37
766 1.3 5. 715 3.5  1s.
916 2.8 20. 933 4.7 37. 877 6.4 S52. 918 4.1 32.
912 1.1 3. 8%7 S.4 St.
979 5.8 114. 989 .7 10. 956 4.0 16, 979 8.5 131
976 1.0 3. 952 3.5 12
996 ©.9 4, 998 1.0 5. 974 2.4 12, 998 2.2 4.
996 1.0 5. 972 2.4 12.
999 0.3 3. 1000 1.7 35. 989 1.5 9. 999 1.7 S,
999 0.6 2. 989 1.5 9,
642 7.3 39. 753 36.4 843, &S3 13.1 189, 443 16.8 77
636 1.3 9. S73 10.7 159,
809 5.7 30, 870 13.8 141, 748 (1.9 100. 810 9.9 104,
804 1.8 4. 731 1.1 102,
916 3.6 18. 935 6.9 5. 864 5.4 33, 916 6.6  25.
912 2.9 29. 85t 5.7  32.
963 2.5 14, 977 2.8 17. 925 1.6 144, 983 4.7 24,
958 1.3 5. 923 1.6 144,
978 1.7 . 7. 989 2.1 12. 9% 3.7 19. 978 3.0 9.
978 1.3 5. 952 3.6 19,
520 38.7 573. &5 8.2 53. S%8 30.3 493. S22 &9.8 925.
S16 -0.7 5. 4%8 1.8 1S.
474 20.4 148. 7S2 9.3 48, 689 13.7 109. 674 31,7 202.
660 3.2 29, &0t 8.4  Bs.
80t 7.6 39. 850 9.0 97. 7S6 13.4 88. 801 rt.4  S2.
787 2.0  {o. 722 8.8  Sé. ' .
893 12.8 139. 915 8.0 94, 827 6.6 22. 893 15.3 122
878 2.9 la. 714 5.8  20.
897 9.5 44, 913 1%9.6 307. 833 1.0 B81. 892 13.0 120,
79 13.7 273, &2 9.5 79,
- ]

IS NI N N,

BERGER'S METHOD

998 4.3 8.

799 3.7 8
843 26.0 114,
809 17.7 48.
916 t2.5 42.
963 9.6 38.
978 7.2 135,

522 112.9
474 S56.37 347,
801
893 32.46

892 . 27.1 203,
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o @ TABLE 2
< - BIAS AND STANDARD DEVIATION(3D) OF ESTIMATORS OF ©
5 MAX ITMUM WEIGHTED METHOD OF
, !§ LIKELIKOOD LEAST SQUARES LEAS! SQUARES MOMENTS BERGER 'S METHOD
(%W

AN M BIAS S0 M BIAS 80 M BIAS SD M BIAS SD M BIAS SO

15 7e9 0,356 1.702 852 -.102 0.74% 782 -.192 0.729 770 -.683 0.208 770 -.803 0.122
786 -.027 0.025 713 -.134 0.701
2 30 9186 0.112 0,919 933 -,135 0.580 877 -.234 0.386 9is
912 -.100 0.567 857 -.239 0.384 :
979 0.016 H.648 989 -.126 0.492 956 -.2563 0.514 979
976 -.115 0.486 952 ~-.260 0,513
994 -.02F 0.522 998 -.125 0.432 974 -,247 0,475 996 -.341 0.174 994
996 -.124 0,431 972 -.244 0.474
999 -.0G19 0,437 1000 -, 101 0,381 989 -.216 0.423 999 -.3508 0.133 999 -.787 9.032
1000 -.101 0.381 989 -.216 0.423 ’

okl
24
(]

«623 0.192 914 -.798 0.093

.373 0.184 979 -.792 0.079

o~ ;f‘!
ZA

[

A

o

[}
~
o

790 0.063

-~
y <2l
ro
—
<=
o

N 313 442 0.691 1,900 7353 0.210 1.049 653 0.119 1,031 483 -.513 0.348 643 -.70S 0.203
WY 636 0.390 1.040 573 0.245 1.038
b 3 30 809 0.175 1.049 B70 0.000 0.757 769 -.094 0.745 810 -.489 0.338 B80F -.725 0.160

by _ 804 0.074 0.740 731 -.057 0.743
5030 91s 0.075 0.766 935 -.012 0,618 864 -.W12 0.46463 916 -.404 0.333 914 -.718 0.135
912 0.011 0.409 8SL -.100 0.660

5

24
,
(_-nl
e’

éi 3 075 983 0.030 0,624 977 -.027 0.555 925 -.1484 0,803 9863 -.375 0.322 963 -.717 0,120
I , 958 «,010 0,546 923 -.142 0.603
o 3100 978 -.028 0,515 989 -.07S 0.472 956 -.165 0.511 978 -.345 0.297 978 -.716 0.104
pN - 978 -.055 0.465 952 -.161 0.509
A S 15 922 1.352 3.109 445 0.715 (.409 SS58 0.578 1.536 522 -.238 0.601 S22 -.546 0.348
- ' 515 1.084 1.599 4S8 0.827 1,581

!& S 30 474 0.558 1.809 752 0.3&46 1.118 569 0.1BC 1.026 474 -.199 0,576 &74 -.584 0.28%

a6h 0.523 1.104 601 0.286 1.029
S0 801 0,254 1.559 850 0.184 0,889 756 0.105 0,863 801 -.193 0.541_ 801 -.615 0,232
787 0.267 0.850 722 0.150 0.858 -
897 0.128 0.817 915 0.112 0.728 827 0.014 0,747 893 -.199 0.%935 893 -.428 0.2tu
878 0.153 0.719 B:4 0.028 0,744
100 892 0.033 0.683 913 0.020 0.4628 833 -.064 0.b66 B892 -.206 0,494 897 -.634 0,18S i
879 0.085 0.615 821 -.050 0,663
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15

30

S0

50

73

100

MAX LHUM
LIKELIHOOD
n Bias S0
T789 -.01% L0647
916 -.005 .0473
979 -.001 ,0372
996 0.000 ,0290
999 0.001 ,0243
442 -.018 .0815
809 -.007 .0377
916 -.003 .0429
963 -.001 .0372
9788 0.001 .0309
520 -.029 .1011
874 -.022 .0691
801 -.006 .0345
893 -.005 .0442
892 ~.002 0375

WELIGHTED

LEAST SQUARES

M BlAS SO

8352 -.004 ,058%
766 =-.004 ,0577
953 0.002 .0424
912 0,001 ,0426
989 0.003 ,0349
976 0.003 .0348
998 0.004 ,0274
996 0.003 .0274
1000 0,004 ,0234
999 0.004 ,0233
793 -.010 .07a7
636 -.015 .0764
870 ~-.003 .039%82
B804 -.004 .0544
933 -.001 .0412
912 ~-.002 0411
977 0.000 .0334
958 0.000 ,0357
989 0.002 .0299
978 0.002 .0299
563 -.024 L0967
916 ~-.030 .09468
732 ~-.020 .0474
6860 ~.027 .0665
850 -.006 .0530
787 ~.008 .0928
915 -.00§ 0434
878 -.00&6 .0430
913 ~.001 ,0392
879 ~.692 .1390

TABLE
BLAS AND STANDARD DEVIATION(SD) OF ESTIMATORS OF SYSTEM RELIABILITY AT T=,908S
METHOD OF
MOMENTS

3

LEAST SQUARES

o -

0.002 ,0388
0.002
0.010 ,0434
0.009 .0434
0.010
0.010
0.010 ,0292
9.010 .
0.010 ,0248
0.01¢ 0248
-.Q04
-.008 .0751
0.002 .035S1
0.001 .0550
0.005 .0431
0.005 ,.0432
0.007 ,0374
0.007 ,0375
0.008 ,0311
0.008. ,0312
-.020 ,0977
-.022 ,0968
-.01l3 ,065!
~.018 06352
-.002 ,03532
-.002 ,083S
-.002 ,0431
-.002 ,0432
0.003 ,0380

0.003 .0381

996
999
643
819
916
963

978

522

474

801

89z

89¢

0.037
0.033
0.034
0.038
0.0;1
0.024
0.022
0.021

0.019

0.012 .0926

0.001

Q.010

0.007

0.008

0300

0244

.0223

0661

. 0490

0366

.0327

. 0267

0613

0494

. 04064

L0283

BERGER 'S METHOD

- --

996

99

643

809

F16

763

978

0.064

0.069 .

0v.071

0.072

0.073

0.087

0.062

0.066

0.0687

Q0.067

0.034

0,043

0.033

0.0351

2 ¢.0%2
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On Dependent Competing Risks

b
John P, Klein an Sukhoon Lee
Depacrtment of Stactistics
The Ohio Scate University
Columbus, Ohio 43210 USA

1. Introduction

The problem of competing risks arises naturally in a number of contexts,
namely the modeling of series systems in reliabilficy, the problem of estimation
with censored data and the analysis of physical or biological systems with
mulciple failure modes. A common, untescable assumption is usually made thac
the potential faflure times for each risk are statistically independent (see
Basu and Klein (1982)). Moeschberger and Klein (1984) show that an investiga-
tion may be appreciably misled in modeling series systems reliabilicty and in
estimacing component parameters by {ncorrectly assuming independent component
lifecimes. In chis paper ve model dependence between components through a
common environmental effect on each component. Such a dependence strucfure
has also been suggested by Oakes (1982), Lindley and Singpurvalla (1985), and
Hucchinson (1981). )

2. The Model

Consider a two-component system. Suppose that under ideal, coatrolled
condicions, as encountered ian che testing stage, the times to failure of the
two components are X, and Y_. Under these conditions, X ,Y. are {ndependent
with marginal survival funcgions. F, and G,. Now suppose the two components
are linked into a system and exposeg to the environment. The effect of the
environment is to select a random factor, Z, from a discribution, H(z), which

Z rA
changes the marginal survival functions of the two components to Fo . Go ’

respectively. A value of Z less than one means that component reliabilicy is
improved, while a value greater than one implies a joint degradation. In the
sequel we assume that Xo and Yo follow a Heibullugistribution with parameters
)} - - .
(QX'“X)' and (QY.AY). That is, Fo(x) exp( Axx ). The resulting joint
reliabilicy of che two compongnts‘ éifeciaes. (X,Y), in the operating environ-
ment is F(x,y) = E(exp(-Z(A x X, &y Y». F(x,y) is positive quadrant dependenct.
-lg, p 2, co7=2/0x -l/ay2
Also E(X) = E(XJE(Z )i V(X) = E(X,7)E(Z ) -(E(XE(Z )" : and

Cov(X,Y) = E(XO)E(YO) Cov(z-llai. Z-llay). The correlation is always positive

and {s bounded above by [(1 + 1/a)2/T(1 + 2/a) whea a_ = a_ = a, Explicic,
though lengthy, formula for the moments of (X,Y), system and component
reliabilicy, and syscem components can be obtained when Z is assumed to be
eicher a uniform or gasmar random variables. The gamma case leads to
bivariace Burr distribucions.

3. Escimacion

The estimaction of model parameters i{s carried out under the assumpt ion

that Z has a gamma discribucion with density lt(z)az..1 exp(~bz). Since the
paramccers A, Ay are not idencifiable when only data from either a series or
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parallel system is available, wve incorporate sample information obtained
independently on each coamponent under test conditions. Maximum likelihood

and method of moments estimators are obtained and their properties are studied
by Monte~Carlo methods since no closed form maximum likelihood estimates are

avallable.
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Resume

Un modele pour les syscc-es dependants dans 1' analyse de la fiabilite est
examine. Le modele suppose que, sous les conditions ideales. les temps de
survie des constituancts du systeme ont des distributions Weibull indépendantes.
Sous des conditions d'opération un facteur extérieur al@atoire affecte chaque
constituant simultanément en multiplianc son taux de hasard par une quancicé
aléatoire. Les propriétés de ce modele et l'estimation des paramétres du
moddle sont considérés, 2 partir des exemples concrets du laboratoire et de

la pratique.
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