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Abstrat

in this paper we presentsa unified method for the delay analysis

of a large class of random multiple-access algorithms. -Q= method is

based on a powerful theorem referring to regenerative processes, in

conjuction withzesults from the theory of infinite dimensionality linear

systems. We apply the method to analyze and compute the per packet

expected delays induced by two algorithms, in the presence of the Poisson

* user model. The considered algorithms are: The controlled ALOHA

algorithm, and the "0.4 87' algorithm. The same method has been previously

applied, for the delay analysis of certain limited sensing random access
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1- INTRODUCTION

A key problem in the design of communication networks is the efficient

sharing of a common transmission channel, (such as a satellite link, a ground

radio channel, a computer bus, a coaxial cable, or an optical fibre) among a

large population of network users. This problem is referred to as the multiple-

access problem, since many independent users share, and, thus, access a common

channel for transmission of information. The solution to the multiple-access

problem must incorporate a distributed control scheme, termed multiple-access

algorithm, for allocating the channel resources among the network users.

The design and performance of multiple-access algorithms are highly

dependent on the nature of the users. When a channel is to support large

numbers of bursty (low duty-cycle) users, randommultiple-access algorithms

(RKAAs) become more efficient than deterministic algorithms. This has been

early recognized by the researchers in the field, and a plethora of RKAAs

have been proposed during the past fifteen years (1,21.

The key performance measures of a RMAA are its throughput and delay

characteristics. The evaluation of such characteristics has been the subject

of numerous studies. In most cases, a Markovian model is employed, and the

existence of steady state of the random-access system is related to the

ergodicity of an underlying Markov process. Depending on the complexity of

the state space of such a process, this formulation usually gives sufficient

information on the maximum input traffic rate that an algorithm can maintain.

However, the evaluation of the delay characteristics is a much harder problem,

since they are intimately itnerwoven with the dynamical behavior of the

algorithm's scheduling mechanisms. Due to this fact, it is not surprising that

results concerning the delay characteristics are limited, and are obtained after

a rather intricate and difficult analysis, which is usually matched to the
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peculiarities of the specific algorithm at hand.

In this paper, we show how the delay analysis of R14AAs can be unified and

simplified, by the use of some known results from the theory-of regenerative

processes, and the theory of infinite dimensional systems of linear equations.

After outlining the method in section 2, we demonstrate its wide applicability

and relative simplicity, by applying it, in sections 3 and 4, to cwo algorithms

that represent different classes of RMAAs, namely:

1) the Controlled ALOHA algorithm ("ALOHA-type" class) (61
2) the "0.487" algorithm ("gull sensing-blocked access" class) (7,81

For the above algorithms, we obtain explicit results on the induced mean

delay, for the Poisson infinite-user population model. The higher moments of

the delay, for the Poisson as well as for an arbitrary memoryless input stream,

can be computed using the same method. We note that the method has been already

applied for the delay analysis of a class of limited sensing random access

algorithms [11,18,19).

2. THE METHOD

In random-access systems, as in virtually every queueing system, many of

the involved stochastic processes are regenerative. The following definition is

taken from [4].

Definition The process Xn I n> is said to be regenerative with respect to the

renewal sequence [Ri)in , if for every positive integer M and every sequence

t1 ,.tt M , with O<t1 <...<t , the joint distribution of Xt1+Ri,..,XtM+Ri is inde-

pendent of i. The random variables R ,i>l, and C,- R,+1 - Ri,i>l are referred

to as regeneration points and regeneration cycles, respectively.

For regenerative processes, the following elegant and powerful result holds,

which will be referred to as the regeneration theorem [3,4,5].

- .
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Theorem 1

Let the discrete-time process (Xnln I be regenerative with respect

to the renewal process [Rdi1. Also, let Ci - Ri+ 1 - Ri, i-,2,...,

denote the length of the i-th regeneration cycle, and let f be a nonnegative,

real valued, measurable function.

Cl
If C E{C 11 < and S gE f(X1) < -, then,

i-i

n1 n S
nim- E f(Xi) - Lim a f(Xi) 1- " w.p. 1
nm=n il n4+- ir C

Furthermore, if, in addition to the finiteness of C and S, the distribution of

C1 is not periodic, then Xi converges in distribution to a random variable

X, and

S

C

Thus, under the conditions stated above, the limiting (expected) average,

and the mean of the limiting distribution of {f(Xn)}n) 1 exist, coincide,

and are finite. Moreover, their common value is then given in terms of the per

cycle quantities S and C.

Given a RKAA, let (Xn)1 be the process of interest associated with

the random-access systeml this process might, for example, be the delay process

induced by the algorithm. Then, provided that {Xn}n) I can be shown to be

regenerative, the regeneration theorem itself shows the way to establish the

existence of steady state, and to compute the steady-state moments, and the distribu-

tion of (Xnln >, by appropriately selecting the function f.

In virtually all existing RMAAs, it is relatively easy to identify regenera-

tive ti.ies (e.g., when the system becomes empty, or when an appropriate Markov

chain hits a suitable fixed state), at which the process of interest probabilis-
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tically restarts itself. Given a RNAA and a function f, the problem then is to

exploit the dynamics of the algorithm, to find those per cycle properties of the

sample function of the process, that could be subsequently used to evaluate the

quantities C and S.

In section 3, it is shown that for the delay process, and for f(x) = x,

the computation of S and C are intimately related to the solution of an infinite

dimensional system of linear equations. It can be shown that this is the case

when f(x) = x , n - 2,3,..., as well (11]. Therefore, the steady-state moments

of the delay process induced by a particular algorithm, can be computed

from the solution of the corresponding infinite linear system. In Appendix A,

we give a number of general results, that are useful in establishing the

existence and uniqueness of a solution, and in developing approximations to

the solution of such systems. In section 4, we apply these results to the

specific infinite linear systems developed for the two algorithms of section

3. This procedure involves the following steps.

Step I Find conditions under which the infinite linear system has a
unique, nonnegative solution.

Step 2 Show that the variables of interest coincide with the unique

solution.

Step 3 Develop arbitrarily tight upper and lower bounds on the solution.

3. TWO ALGORITHMS AND THEIR RELATED SYSTEMS OF EQUATIONS

For both algorithms of this section, we assume a collision-type, packet-

switched, slotted, broadcast channel. The channel is accessed by a very large

(effectively infinite) number of identical, independent, packet-transmitting,

bursty users. The cumulative packet generation process is modelled as a Poisson

process, with intensity A packets per slot. However, the proposed method can be

applied equally well, when the number of packets per slot are independent and

identically distributed (i.i.d) random variables.

We define the delay, 0n , experienced by the n-th arrived packet, as the time

difference between its arrival at the transmitter, and the end of its successful

z
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transmission. We are interested in evaluating the steady state statistics of

the delay process {Vn)nl, when they exist. Due to space limitations in

this paper, we give explicit results, only for the first moment of the delay

process. However, higher moments of the delay, as well as other quantities of

interest can be computed, using the same method-

3.1 Example 1 : ontrolled ALOHA

The earliest and most well known RMAAs belong to the class of the ALOHA

techniques (13,6,16). Here, we analyze a version of the slotted ALOHA

algorithm, that operates with each user transmitting a newly arrived packet,

in the first slot after its arrival. Should this cause a collision, each

involved user independently retransmits its packet in the next slot,

with probability f.

A packet whose transmission is unsuccessful is said to be blocked. Let Mi be

the number of blocked packets at the beginning of slot i (time segment [ii+l)).

This number will be referred to as the backlog size. Also, let Ri denote the

number of blocked packets retransmitted in slot i, and Ni denote the number of

new packets transmitted in slot i. Given Mi- m, then clearly,

A
P(Ri=r) - E01 (f) -() fr (_f)II-r i - 0,1,2, (1)

A e-A A
n

P(Nimn) - Pn = ,---- 0,1,2,... (2)
nI

The delay process induced by the above algorithm "probabilistically

restarts itself" at the beginning of each slot Ti, at which MTi M 0, 1 - 1,2,...

this is so because the number of arrivals per slot is an i.i.d. sequence of

random variables. Precisely, let T1 = 1, and define Ti+ 1 as the first slot

after Ti at which MTi+I= 0. The interval (Ti, Ti+l), i = 1,2,..., will be

referred to as the ith session.

Let Ri, i - 1,2,..., denote the number of packets successfully transmitted

*in the interval (0, Ti+i] (Note that Ri also represents the number of packets

lo'
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arrived during the interval (0,T -1)).Then, Ci = - R i = 1,2,..., is
1+1 i+e1 i'i

the number of packets successfully transmitted in the interval (Ti, Ti+l]. The

sequence (Ri}i  is a renewal process, since {Cili is a sequence

of nonnegative i.i.d. random variables. Furthermore, the delay process (Dnln 

is regenerative with respect to the renewal process (Ri i >j, with regenera-

tion cycle, C1 .

From theorem 1, with f(Di ) = Di, we have that if C = E{C 11 < , and if

Cl

S E{ Wi} < -, then, there exists a-real number D, such that,
1=1

I n I n S
D Lim - EV1 = Lim - E( i) = E{ } . - a.e.

n.i n i-1 n.w n i=1 C

* The quantity D will be referred to as the mean packet de-

lay. Next, we develop two systems of equations, whose solution may be used to

compute the mean cycle length C, and the mean cumulative delay S. The

properties and the computation of the solution will be postponed until section 4.

l.a Mean Cycle Length
A

If the mean session length H = E {Ti+I - Til , i > 1, is finite, then

by Wald's theorem , we have that,

C - AH (3)

To determine H, we proceed as follows. Let hi denote the random number of

slots needed to return to zero backlog size, starting from a slot j where the

backlog size is equal to i, i > 0. The operation of the algorithm yields the

following relation for the h i's.

h 1 if Nj - 0, I (4oa)
1 + hN. if Nj > 1

3
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1+h. if R. +N. =0

h.0= 1 + hi+Nl I(i+N -1>0) if R. + N. = 1 (4.b)

1 + hi+N if R. + N. > 1j 3 3

where I(-) is the indicator function of the event in the parenthesis.

If we let Hi = E {h 1, i > 0, then after taking expectations in (4) we obtain,

00
H, b1 + E Cjk~ (5)Hi = bi +k0ik Hk -i"0(5

k=O

where bi = 1, i>0;

C 00 = c01 = 0, c0l = Pi i>l; cik = Pk-i' k>i+l, i>l;

" i+l = pi(l-B (f)),i>l; cii = PO(1-B (f))+ piB (f), 1>1;

Cl 0 - 0, ci 1 = PoB1 (f), i>l; clk= 0, k<i-1, i>l;

i
where Pi' B (f), i>0O, 0<j~i, are as defined-ln (1), (2), respectively.

Note that the mean session length H, can be computed-from system (5), since

H = H0 .

l.b Mean Cumulative Delay

The mean cumulative delay, S , can be computed using a system of equations

similar to system (5). To develop such a system we proceed as follows. Let wi

*i denote the cumulative delay experienced by all the packets that were successfully

transmitted during the hi slots. Also, let W. M E{w } 1 >0, and note that1 1 -- -

)..S WO •

4' The operation of the algorithm yields the following relations for the wi's.

w = if Ni = 0, or 1

Nj + WN if Nj > 1
JJ

(1) Here, for convenience, we count the delay of a packet, starting from
the beginning of the first slot after its arrival.
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i + N + w if R + N. = 0

W i + N + N.-1 l(i+N.-1>0) if R + N = 1 (6.b)
i>0= + Wi+.-J j J

i + N + wi+N if R. + N. > 1

After taking expectations in (6) we obtain

Wi  bi + :. c ik WX I i>O (7)

k=0

where bb = X , b! = i + X , i > 1, And cik are as defined in (5).

3.2 Example 2 : The "0.487" Algorithm

This algorithm is the most efficient RMAA known to date, for the Poisson

infinite-user population model and ternary feedbacki (it attains a-maximum

throughput of 0.487 packets per slot). Et is assumed that at the end of

each slot i (timesegment [i,il)), the users-receive feedback z -0, 1,

or c, if in slot i there were respectively zero, one or more than one packets

transmitted. For the description -of the algorithm, motivation,-.and background

discussions, the reader is referred to 18], and [15].

Suppose that at the beginning of slot v(time segment (v,v+l]), all packets

that arrived before time tv < v, have been successfully transmitted, and there

is no information concerning the packets that may have arrived in the interval

(t.,,v), (i.e., the distribution of the interarrival times of the packets in

[tv,v) is the same as the one assumed originally). The beginning of such a

slot v is called a "collision resolution instant"(CRI). The time difference

dv = V - tv will be referred to as the "lag at v". In slot v, the users

that generated packets in the interval (tv , tv + Uv ), where Uv = min(dv , A),

are allowed to transmit; A is a parameter to be properly chosen for throughput

maximization. In this case, we say that the interval (tv , tv + Uv ) is "trans-

mitted". After a random number of slots t, and following the rules of the algorithm,

.another CRI ,v', is reached, with a corresponding t ,>t . For the analysis of the

* algorithm, we need the following definitions.

% ..--



t tv, - t v

N number of packets in [tv ,t v ,)

W sum of delays of the N packets, after the CRI v

V : sum of delays of the N packets, until the instant tv + Uv -

E{XIu} : conditional expectation of the random variable X, given that

Uv = U

Let {vii>l be the sequence of successive collision resolution

instants,and let di be the lag at vi . It is known, [9 ], that the sequence

{di}i) I is a Markov chain, with state space, F a denumerable dense subset

of the interval fI, -). Let TI = 1, d1 = 1, and define Ti+1, as the first slot

after Ti,at which dTi 1. From the description of the algorithm it can be
i+1

seen, after a little thought, that the induced delay process probabilistically

restarts itself at the beginning of each slot Ti , i - 1,2,... . Therefore,

using the notation and definitions of example 1, the mean packet delay D is

equal to S/C provided that both S and C are finite.

2.a Mean Cycle Length

As in example 1, if the mean session length H = E{Ti+i - Til is

finite, then C = AH. To evaluate H we proceed as follows.

Let hd denote the random number of slots needed to return to lag equal

to one, starting from a collision resolution instant vi with di - d. Note that,

by definition, h, is the session length. The operation of the algorithm yields

the following relations for the hd's, d e F.

if X = 1
1 A, hd = (8.a)

-I+hd_6+X if Z > 1

d > A hd = £+hd_6+t (8.b)

Taking expectations in (8) yields:

4

* d **
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1. < d 4 A , Hd - E(tId) + E p(r,old)Hd-.r+S (9.a)
r,s

d > A , Hdj = ELLIA) + Z p(r,sIA)Hd..r+S (9.b)
s,r

where p(r,s ix) is the joint conditional probability distribution of 6, and

X, at the point values r and s, given that the transmitted interval is of

length x. Note that,

(1+Ax e-Ax if r - x

( 0 otherwise

* System (9) can be written in the form

Hd-bd +E cdt Ht , deF (10)
te F

where bd - E{11d), 1 4 d 4 A, bd - E{ZIAJ, d > A, and where

Cdt, d, t eF are nonnegative coefficients that can be appropriately identified

from (9). The conditional expectation E{11Id), 1 4 d < A, can be computed

as shown in Appendix B.

2.b Mean Quulative Delay

Let wd denote the cumulative delay experienced by all the packets that

were successfully transmited during the h(T.5lots. The-operation of the algorithm

yields the following relation for the wd's, d e F.

1 4 d wA wd '= +

w+I4+1d6+Y. if -C > 1

d > A w Wd - wa+(d-A)N+w d6t if I > 1

* Taking expectations, we obtain.



1 ( d < A, Wd = E{(w)} + E(Id) + E p(s,rld)WA~r+s (1l.a)
r,s

d > 4, Wd = Ez(IAJ +E({ IA +(d-4)E(NAI + E p(srA)..d_r+s

sr

(11.b)

System (11) can be written in the form

Wd - ba+ E c( Wt f d e F (12)

where b'E(Wld1+E(*ld}. 1 4 d < A, b-.E((lA+E(1lA) +(d-A)X(NIA,

and where the coefficients Cdt, d, t £ F are as defined in (10). The

conditional expectations R{-iIdl, E(*ld), I < d - A, and E(;IA can be

computed as shown in Appendix B.

4. SYSTEM SOWUTION AND MEAN PACET DELY BOURDS

In this section, we inveatigate the conditions under which the infinite

dimensional linear systems 5h.-7 ). ._t0-),and-J.2-have-imtque - --

nonnegative solutions, and we develop upper and lower bounds on those solutions.

These bounds are then used to obtain bounds on the mean packet delay. We pro-

ceed, following the steps outlined in section 2.

4.1 Step 1
Fbr convenience, we rewrite an infinite linear system in an operator form.

Specifically, let E be the space of sequences X - (x(v)J: A-R, Where A

is a countable set. Also, let EL be the subspace of E for which,

E lc~vx(v)I <- , MCA, vCA, cL R

We define the operator L - {L (x)): EL-,E, as follows.

Lu1(x) - bil L + E cLPv x(v) ,cA x c EL , bL C R
v CA
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In this notation, systems (5), (7), (10), and (12) can be written

in the form,

SL = L(SL), SL e EL (13)

We are interested in the existence and uniqueness of nonnegative points

SL r EL, that satisfy (13); such points will be referred to as fixed

points of L, and represent solutions to the corresponding infinite linear

system of equations. The question of uniqueness of a fixed point SL, or

equivalently of the solution, (sL(L)}, to the system that operator L

2' represents, depends upon what conditions are imposed on the solution. Thus,

after the existence of a solution, {sL(i)), has been established, one

has to indicate a class -of sequences in which the solution is unique. If the

algorithmic sequences of interest (Hi), or (Wi) belong to the indicated

class, then they must coincide with the solution ({L(i)). (This will be

examined in Step 2).

Appendix A includes a number of results that can be used to establish

existence and uniqueness of a fixed-point -of an operator.'-- Depin " on- the

operator, some are more straightforward to apply than others. Among the

results in Appendix A that can be used to establish existence of a solution,

Lemma A.2 is usually the most useful. According to Lemma A.2, to establish

existence of a nonnegative fixed point, S ,of a nonnegative operator, L, it

suffices to find a point X C E , such that,

g.0 4 L(X°) 4X°  14

A point X° , satisfying (L4 ), also serves as an upper bound on sL. Further-

more, to establish a lower bound on SL, it suffices to find a point YO c EL,

such that,

YO ( L(Yo) Xo (15)

Thus, under (14) and (15), we have that,

I1 o
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yo < S L 4 Xo (16)

We proceed now with the analysis of the systems developed in section 3.

1. Controlled ALOHA

System (5) -- Existence: System (5) corresponds to an operator L1 with
Ll L l

b= bM, Cv I Cpv , P, v C No, where No is the set of nonnegative integers,

and the b P's and cPv'S are as defined in (5). If we let X° - {x0 (k)J with x°(0)=Cu,

x°(k) - auk + u , k 1, then by straightforward manipulations we have that, for

this choice of Xo , (14) is satisfied if and only if the following inequalities are

satisfied.

A<(f) -p0Bk(f) + p B(f) for every k ) 1 (17)

%u >SUPt:----. uk> 1 (18)

B> ( -a ((f)-)) / (PB (19.a)

Cu- >  u ( 'Pl + u ('Po- +a +- (19.b)

It can be readily seen from (17) that if the retransmission probability f is

constant in every slot, then there is no A > 0 for which (17) is satisfied.

If the retransmission probability f , at each slot i, were allowed to depend

on the current backlog size, Mi, in accordance to a stationary control policy

f - f(Mi ), then it is of interest to choose f(.) so that it maximizes the set

of A's for which inequality (17) is satisfied. This is equivalent to

maximizing 4k(f) with respect to f. It can be easily verified that, for

every k > 1, Y(f) is maximized for f(k) = f*(k), where (2)

2. We should mention that, in a distributed environment, the backlog size
dependent retransmission probability f*(.) is nonimplementable, since
users are not aware of the current backlog size. However, the control
policy given by (20) can be implemented approximately by adaptive control
schemes that estimate the current backlog size using observable feedback
information from the past activity on the channel (6,16].
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i-A
f*(k) -: , k > 1 (20)

k-

From this point on, we assume that f is chosen as in (20). Under this assumption,

inequality (17) is satisfied, provided that,

< inf (&k(f*), k .41 - e -1

To satisfy inequalities-(18),- and (19), we choose,

ii.. 1
a sup , k > 1 (21.a)&k ( f * ) - X e--I

ie-A
, u - e --a u (1 e) cu" + 1uN ( - e) + Au (1- -Ag) (21.b)

Siil'arly, iL is straightforward to show that if X < e- 1 , then the point YO with

y0 (0) - ct, y°(k) - atk + Ot, k 1 1, and

1 . -A -1 e e at(lAe), ct. 1 + a A ( 1 -e)) + $t (1-e) (22)

satisfies (15). Thus, from (16) and for A < e-1 we have that system (5) has a

L LI
solution, S {s (k)), such that

0 < ct< s (0)<c u  0 < <ck + at < s (k) < ak + , k > 1 (23)

where a u, u are as given by (21), and at St, c1 are as given by (22).

System (7) -- Existence: System (7) corresponds to an operator L2 with b = bB- L2
cpv = cpv, P , v C No, where the b'!'s and cpv's are as defined in (7).

Due to the fact that bk.is a linear function of k, and since

c cik - 1, i ,
k 0
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it can be easily seen that there is no linear sequenceX 0 = [x0 (k)} satisfying

(14). However, given X < e- 1 , it is straightforward to show that we can choose

coefficients yu 6u, 4ut du Yte 6i, -, dt such that the pointX with

x0 (0) - du , x
0 (k) = yuk2 + 6uk + Cut k -> 1, and the point y0 (0) = dy,

y0 (k) = ylk 2 + 6 + C1, k > 1, satisfy (14), and (15), respectively. The

following is such a choice:

-1 -l 2+ x24a
y. - 0.5 (e -A) 6u = 2y6 (A+yu(X + x e )) (2 4.a)

Cu M (yu,6 ) XeX + yu (I + X (1 + X) eX) + 6u (XeX - 1) (24.b)

du M d (Yu. 6u, X + A (1+X - e-X) yu + X (1-e ) 6u + (1-e-e) u

(24. c)
- 1 A -1 2 -1

Y .5 (-0 -2 e A) 6 - 2yt (X + y(X + X + e (l-2A))) (25.a)

= - C (y' 6.t) dt - d (yt' 6 , C) (25.b)

where 1(-,-), d(.-,-.) are as defined in (24.b), (24.c), respectively.

Thus, if X < e 1 , then system (7) has'a solution S - (sL(k)} , such that,

L

0 <L2t Ss(0) <du(26.a)

0 < yk + 6 k < sL(k) < yuk 2 + 6uk + u , k > 0 (26.b)

where Yu , 6u, Yu9 du are as given by (24), and TL, 6,, r, df are as given by (25).

Systems (5) and (7) -- Uniqueness

We will show that both the solution is (i)) of system (5) and the

solution (s (i)) of system (7) are unique in the class

S2= x : sup .... . < G
iCNo  i2+c

where c is a positive constant.

We start with system (7). Since L2 is majorant of itself, from theorem A.1,
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L2 1.2 L.2
we have that L.2 has a principal f ixed point S* , such that 0 4 S* < S

According to theorem A.2, the fixed point S is unique in the class,

L2p IX(i)I

iCNq0  s L (j)

provided that Yo e E* . Since, Y E21 S L2will be unique
L.2

in E2 , if we show that E* = E2. According to leama A.1, it suffices to show

that,

* 1.2M

SUP < (27)
iC~o i2+c

and

L.2

inf------ >0 (28)
iCEi 12+c

0

1.2 L.2
Since 0 < s* Ci) < s Mi, (27) follows from (26). To show that (28)

L.2
holds, we use the power sequence, (Sn In1)I of L.2 with initial point 0. By

definition (see Appendix A), Sn is the point that results after L2 operates n
L.2 L.2 L2

times on the zero point, (i.e., Sn Ln(0)), and Sn + S* , as n + *Due

L.2 L.2
to the fact that bi > 0, cik > 0, i, k C No, we have that 0 < sn Mi <

Sn+i(i) < s* Mi, for every n > 1, 1 > 0. Also, it can be readily shown by

induction that, for every i > 1, n > 1,

L.2

Bn Mi >)ni - n(n-1)/2 (29)
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From (29) we obtain,

_ L2 L22
s. (i) si (i) i2i 1

tin inf-----) Lirainf--------)Z1 - (30)
ij 2+c j44 i2+c j-Co 2( (f+c) 2 0

L2

(26) follows from (30), and the fact that s* 1i) > 0, 1 > 0.

The uniqueness in E2 of the solution (s L(i)) of system (5) follows

from theorem A.4, part (ii), after one identifies L, with 02 and L2 with 01,

in the theorem.

2. The 0.4870 Alqorithm

System (10) -- Existence and Initial Bounds
L 1  L 1

System (10) corresponds to an operator L1 with b. - bp f c., -cv,

P, v e F, where the b'sr--and c~v's are as defined in (10). To

establish the_ existence ofarng A ...... -toi ts!a | , wfallow

the same procedure as in system (5).

Let )C - ix°(d)} with x(d) - Qud + uu, d eF , and let X' - L1 (X 0).

After straightforward manipulations, we obtain,

x'(d)=x°(d)+E{Lldl+au(E(Ijd}-E[6jd}-(l+Ad)e-A)Iu(I+Adle- 1 < d < A

(31.a)

x,(d) - xO(d) + E(jdj - a (E{6IA} - E(I&}), d > (31.b)

According to Lemma A.2, to establish the existence of a nonnegative fixed point

of L1 , it suffices to show that there exist au , Ou , such that,

0 x'(d) 4 x°(d) , for every d e F (32)
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If the condition

E{61A} > E{LIA} (33)

holds, then it can be readily seen from (31) that (32) is satisfied, if

we choose au, Ou as follows:

Q Eu W} - E(zI) (34.a)

Ou W max(- AU, sup (p(d))) (34.b)
14~

where

z(I Idl + G%(N(1jdI - E(61dl - (1+Ad)exp(-Ad))
P(d) ---------- -----------------

(1+Ad)exp(-Xd)

The conditional expectations appearing in the above expressions can be computed

as shown in Appendix B.

Similarly, it can be shown that, under (33), the point Yo - (yO(d)j

with y°(d) = a d + 01, d e F satisfies the inequality YO 4 L(YO) ) Xo ,

if at and 0 are chosen as follows:

at W= au , 0= inf ( p(d)) (35)

where au, P(d) are as given by (34).

Thus, if (33) holds, then from lemma A.2 we have that system (10) has a
LI

nonnegative solution S , such that,

*d + 1 OC s (d) aud + Oud F (36)

%I



19

where u, Ou, and QX, 01 are as given by (34) and (35), respectively.

System (12) -- Existence and Initial Bounds

Let L2 be the operator that corresponds to system (12). Also, let

X- (x°(d)1 with x°(d) - 'rud 2 + 6ud + Cu' d eF , and YO = {yO(d)} with

y°(d) = ytd2 + 6 1d + C , d F.

Eblowing the same procedure as for system (10), we can show that if (33)
L2  L 2

holds, then system (12) has a nonnegative solution S ( (s (d)}, d c F,

such that,

Yd 2 +6Ld + r, 4 a (d),. Yud 2  6ud + ;.

where,

YU =YL-----

2(E{61A ) - E(1IA1)

E(NIA) + E(*IA} - A E(N1") + 'u E((-6fILL)
'6u = 61 - - - - -- - - - - -

E{61A} - {XlIA1

4u sup (t(d)) , 4X, - inf (f(d))
1 <d<A l(d(A

S. E(wld)+E('Id+Yu(E(6-) 2 d)-2d{6-IlI dJ -(+Xd)e- )-6u (E{6-EId}+(l+Xd)e-')

4(d) ---------- ------------------- ---------------------------------
(l+),d)e

-Ad

The conditional expectations in the above expressions can be computed as

shown in Appendix B.
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Remark It is known .7] ,that inequality 03) is satisif ied if A 4 Am(A);

where A (A) is maximized for A 1 2.6, and Am (2.6) ~ 0.4871.

Systems (10) and (12) -- Uniqueness

We will show that both systems (10) and (12) have unique solutions in the

class

Ixtd)I
E2 - x : sup - (38)

dOF d2

As in the case of systems (7) and (9) in example 1, if we show uniqueness for

system (12), then the uniqueness for system (10) follows from theorem A.4,

part (ii).
L2

According to theorem A.2, the fixed point S is unique in the class

E* X : sup ------deF l s. L2(d)<

L2 L2
provided that Yo e E* . Since, by construction, YO C E2 1 S will be

unique in E2 1 if E[. E2 . To show that the latter holds, we proceed

as follows.

Let {SLn}n be the power sequence of L with initial point 0. Clearly,

L L2  L2

sl(d) = bd > e > 0, for every d £ F (39)

Also, it can be easily shown by induction that,

-L2 n(n-1)

sn(d)-n((d-A)E(NIA)+E(W I +E(I)------ (E(61jA-E(LIA))E{NIA (40)
2
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for every d C F, n > I, such that d > nA . Fbr d > 24, letting( 3 )

n = - -I in (40), and using the fact that d I > d- - 1, yields,
L 2 L

s (d) >cad 2 + ad + Y,d >2A ,n >tL- (41)

where a > 0. (The expressions for the coefficients u, 0, Y are not of

interest and, therefore, are omitted).

If S* is the principal solution of L2, then from lemma A.2 we have,

L2  L2

s* (d) > sn(d) > 0 , for every d c F ,n > 1 (42)

From (39) and (42) we have that,

L2 2
s, Cd) • max (E, 'd + 8d + y) , YdeF (43)

From (43) we conclude that,

L2

s. (d)
inf ------ > 0 (44)

deF d2

*L 2  L2
From (37), and the fact that S. 4 S , we have,

s* (d)
suP ------ < (45)

dcF d2

L2

Finally, from (44), (45), and lemma A.1 we have that E, E2

3. LaJ denotes the maximum integer not exceeding a.

, ,, ~~~~~~~~~.. . ... . .. .................... . . .. . ,.,,., . ....- . ....
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4.2 Step 2

In step 1, we have established conditions for the existence of nonnegative

solutions to the systems of interest, and we have identified classes 
of

sequences in which these solutions are unique. Here, we show that the algorithmic

sequences (Hi), (Wil, where Hi = E (hi) and Wi = E (wij, belong to the

corresponding identified class, and therefore, coincide with the unique solution

in the class. The proof is based on theorem A.6, and is the same for the two

algorithms.'

Fbr the case of the sequence (Hi), let, in theorem A.6, L - L1 ,

-X = hi, and Xn = min(hi, n), n = 1,2,3,.... By definition, the X's and

Xn's satisfy condition (a) in the theorem. Oondition (b) follows from the

fact that X1 4 n a.e. . Finally, condition (c) follows from the operation

of the algorithm. Thus, (Hi } - S

L2Similarly, to show that (Wil - S , we apply theorem A.6, with L L2 ,

X - wi , and Xn - min(wi, n), n = 1,2,3,....

4.3 Step 3

In step 1, we have already found upper and lower bounds, X0 and YO,

respectively, on the solutions to the systems of interest. These bounds

can be improved either by computing the power sequences of the corresponding

operators with initial points the bounds X and YO, (lemma A.2), or by solving

finite systems of linear equations that are truncations of the original in-

finite systems, (theorem A.5). Both methods can provide arbitrarily tight

. upper and lower bounds. We use the first method in the "0.487" algorithm,

and the second method in the controlled ALOHA.

. ontrolled ALOHA

Fbr system (5), we apply theorem A.5 with L = L, and,

-.

,0 ,.-. , . -,-..-,-.,- .- ,:.-., .:.- '.. ... ,.,.-....-.-..:. .-. ,,, .,,, . ,.>> ., n _,- .
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IL'

L.,.' £ i)M ayi + Ox C No

A. = (0,1,2...,j} , j E N0

;where au, Ou' and aj, Ot are as given by (21) and (22), respectively. Note

. .that, for j < , A. is a finite set and, therefore, all conditions in the theorem

are satisfied. Thus, for X < e-

0.i
s (i) Hi = s (i) 4 s (i) , 0 < i 4 j

where {S (i)}o(i(j and {s (i)}Oi j are the unique solutions of

the (j+1)-dimensional systems (46) and (47), respectively.

u j L,
Hi = bi + E ci k  1 0 < i < (46).~k=0

Hi . bi + ECik Hi  , 0 < i < j (47)

k=0
where bi  bi  are as defined in the theorem with pi = li = i j.

therein. We solved systems (46) and (47) for j = 50. The obtained upper bound

and lower bound on the mean session length H0, can be found in table 1,

for different values of X, (A < e-1 ). Fbr system (7) we followed the procedure

described above with,

*• L = L2

L2 2L

u(i) = U i + 6u i + u No
L2 : M (i) = yi 2 + 6x i + L i E No

L.2

-±Pi = bi , i C A 3 = (O,1,2,...j) , j £ No
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where yu, 6u, Cu are as given by (24), and Y¥, 6X, 4X are as given by (25). The

obtained bounds Wu, WX on the mean cumulative dealy W ° are included in table I;0 00

they were computed using j - 50. From the regeneration theorem and (3) we have (4 },

Wo
D --- + 0.5 (48)

XHo

The upper bound Du - Wo/(XH) + 0.5, and the lower bound DI -= /(.X)+o.s

on D are included in table 1. Note that, according to theorem A.5, arbitrarily

tight bounds can be obtained by increasing j. From a theoretical view point the

bounds become exact as j + *

2. The "0.487" Algorithm
LI

From section 4.2 we have that, for A < 0.487, Rd - s (d), d e F, and

Wd - s (d), d C F, where S and S are the fixed points identified in

section 4.1. According to lemma A-2 we have that,

n~o- Ll

L (I ) 4 S 4 L?(XI) , n=1,2,..., d e F (49)

L.(y 2
0 ) 4 S L L(Xo) , n-1,2,..., d £ F (50)

where X = (a d + u1d d e F

X2 (Y d 2 + 6u dFY d 2 + 6u d +u

x~-y d+62 d u d F

and where au, Ou' at, OX, T1' 6t, Ct, Yu, 6u' Cu are as given by (34), (35), and

(37). Ebr n = 1, and d - 1, (49) yields the following bounds on the mean session

length HI:

4. The additional 0.5 units of time represent the mean delay of a packet, until
the beginning of the first slot following its arrival. (See footnote 1).



25

where

H'jU=E(LI11 + a%(l-(l+A)e- A +E{Jtn1)-E{6j 1))+u (1-(l+x)e -A

The above bounds can be found in table 2, for different values of X, ( A < 0.487).

Fbr n 1 1, and d - 1, (50) yields the following bounds on the mean cumulative delay

over a session WI:

where

. + 8 l-l+AleA -E(6-AIl+ ()+¢l-l+Ale-A)
uu

W 1X n Wu1
L 

. r11- ) ] - 'i e

The bounds Wj and W are included-In table 2. From the regeneration theorem
we have D - W,/(A 1H). The upper bound Du WU/(AH1X), and the lower

bound D1 - WI /(AHi') on the mean packet delay D are included in table 2. The

upper bound is ploted in figure 1, together with the same bound for the contro-

lled ALOHA. We note that tighter bounds can be obtained either by evaluating the

bounds given by (49) and (50) for higher values of n, or by the method of truncated

systems used in the previous example. In both methods, however, we must first

compute the conditional probabilities p(6,X1x) defined in (9), which is a

computationally complex task. Note that for the found bounds, (i.e., for n 1 in

(49) and (50)), such a computation is not required.

Co

. .,
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5. CNLaUSIONS AND PRIOR WORK

In this paper we Wave introduced iithod for the delay analysis of RMAAs, in

which the induced packet delay process is regenerative, and we have demonstrated

its wide applicability by applying it to two specific examples. The method is

based on a well known result from the theory of regenerative processes, which relates

the asymptotic statistics of such processes to quantities that refer only to one

cycle of the process. The per cycle quantities, (e.g., mean cycle length, expectation

of the sum of the values of the process over a cycle), are evaluated from the

solution of infinite dimensional systems of linear equations.

In applying the method to the two example-algorithms, we have put emphasis

on the methodology and rigorous derivations rather than finding short cuts in the

analysis of a particular algorithm. In doing so, the essential simplicity of the

method may have been obscured.- However, to appreciate the simplicity of the method,

we note that only by using Lemma A.2, one can obtain with minimal effort:

1) A lower bound on the maximum input rate that an algorithm maintains with
finite delay, (i.e., a- lower-bound on-the- maximum stable- throughpa-4nduced
by the algorithm). Notie -te p--Ii~tWte-' ethis p-aper, the .
found bound coincides with the maximum stable throughput-

2) optimal algorithmic paramet~ iS V~-h ~rfei5@t-~~'
bility policy in the ALOHA algorithm, and thewindow size A in the "0.487"

algorithm).

3) Initial bounds on the mean packet delay, that can be used (if so desired)

to form finite linear systems, whose solution can yield arbitrarily tight

bounds on the mean packet delay.

The algorithms that served as examples in this paper have been analyzed in a

number of studies. From the literature on ALOHA-type algorithms, we mention the

work in [6), where the stability properties of the version of the Controlled ALOHA
I

algorithm considered here have been studied, using a Markovian model. The optimal

retransmission policy was derived in (6] using Pake's lemma, but the delay analysis

problem was not addressed.

The delay characteristics of the "0.487" algorithm have been studied in [9 1,

using a different approach. In contrast to the method in [9 1, the method proposed

here does not require the computation of steady-state probabilities of the under-

4
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lying Markov chain and, therefore, it is computationally simpler. Furthermore,

since our approach is based on the asymptotic -properties of- regenerative processes,

it yields stronger convergence results.

04 111C1,1 I

Z. 111 1 1



Hu D D u

0 000

0.05 1.00426 1.00426 0.05782 0.05782 1.65163 1.65163
0.10 1.01983 1.01983 0.14067 0.14067 1.87936 1.87936
0.15 1.05361 1.05361 0.27541 0.27541 2.24265 2.24265
0.20 1.12017 1.12017 0.53225 0.53225 2.87576 2.87576
0.25 1.25676 1.25676 1.14710 1.14710 4.15097 4.15097
0.30 1.59883 1.59883 3.39345 3.39345 7.57485 7.57485
0.35 3.48032 3.51077 37.04013 39.39037 30.64403 32.83714

Table 1

Delays for the Cbntrolled ALOHA

X Ht H Wl w u uu -0I~ II

.01 1.00025 1.0003 .015258 .015258 1.5253 1.5255
.05 1.00395 1.00474 .08234 .082346 1.6348 1.6388
.1 1.025 1.030 .18503 .1859 1.796 1.8130
.15 1.060 1.061 .3212 .3245 2.000 2.040
.2 1.1167 1.11367 .5162 .5254 2.270 2.352
.25 1.2069 1.240 .8243 .8468 2.66 2.80
.3 1.356 1.408 1.381 1.434 3.270 3.525
.35 1.627 1.710 2.6088 2.7423 4.358 4.8151
.40 2.2279 2.374 6.6438 6.8603 6.779 7.670
.45 4.487 4.8536 35.012 37.871 16.030 18.754
.47 9.110 9.916 163.698 178.178 35.125 41.613

" .48 21.175 23.122 944.35 1031.12 85.086 101.452

Table 2

Delays for the "0.487" Algorithm

-A A 0 vA& S
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APPENDIX A

We present, in a generalized format, some basic results regarding the

approximate computation of solutions of infinite dimensionality linear systems

[17]. Let A be a denumerable set of indices, and let E be the space of sequences
L L L

fx(k)}: A + R. Given a set ( CkR, b ERikeA 1, let E be the subspace

of E defined as follows: EL = (X: Z ICLkX(k)I< -,VieA 1. We define an operator
keA i

L : EL + E as follows: y(i) = L (X) = bL + E CL x(k),i cA ,XeEL. A pointi k k),

SL EEL, such that,

SL  L(SL ) (A.1)

is called a fixed point of the operator L. (A.1) represents an infinite system of

linear equations and a fixed point is a solution to this system. Given an operator
L, we define its n-th. power Ln as follows: L (Xo L(Xo), n+A(Xo ) ! L(Ln(o)),

n-1,2,..., provided that Xo EEL, and Ln(Xo) cEL , for every n . 1. The sequence
A

{Xnl - (Ln(Xo)}, n-1,2,... is called the power sequence of L, with initial

point X oO A fixed point of L that is a pointwise limit of the power sequence of L,

with initial point Xo  0, is called a principal fixed point of L, and is denoted by

S*. An operator 0: E0  E is called a majorant of L, iff,

L 0ciki 4 cik i,k c A

IbLI 4 b i EA

In this case, L is called a minorant of 0. The notation X < X', X 4 X', x,xcE

means that x(k) < x'(k), (x(k) 4 x'(k)), k cA . A point X cE is called positive

(nonnegative) iff, 0 < X (0 4 X). By jlx we denote the sequence defined by

a
4 /
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Ixl(k) Ix(k)I, k C A. Theorems Al, A2 below are essentially theorems I, II 2

of [17]. They relate the existence and uniqueness of a fixed point of L, to the

existence of a fixed point of a majorant e of L.

Theorem A.1 If 0 is a majorant of L, and 0 has a nonnegative fixed point S

then both 0 and L have principal fixed points S , SL . Moreover, 0 4 1s. L < SO 4 SO

Theorem A.2 If 0 is a majorant of L, and 0 has a nonnegative fixed point S o

then the principal fixed point SL of L is unique in the class E! CEL, defined as

follows..

Ixci)l
E? = {X CE : sup .. . 'C )(1)

icA s(1)

Furthermore, SL is the pointwise limit of any power sequence of L, with initial point
any point in E,.

Theorem A.3 below relates the existence and uniqueness of a fixed point of L,

to the existence of a fixed point of a majorant 0 of L, and it is a consequence of the

theory of regular systems [17]. Its difference from theorems Al, A2, lies in the fact

that, under the stated assumptions in it, we have, So = S.

A 0Theorem A.3 If 0 is a majorant of L, and 0 has a positive fixed point S ,

such that,

:0
* bi

inf > 0,icA so(iW

S then S? = So. Therefore, theorem A.2 holds with S? replaced by So.

(1) We adopt the convention:

- = 1, - = -, a > 0
0 0
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The following theorem relates the existence and uniqueness of a fixed point

-> of some operator 02 to the existence and uniqueness of such a point for another

operator 01, where the latter is not necessarily a majorant of the former.

Theorem A.4 Let 01, 02, be two operators such that,

(a) 0i 1 0 2k V i,k eA , b 1 E O)V A

Ci) If 01 has a fixed point S 01 .and there exists a sequence %:A+ R, such that,

01
(b) g + S 0O

01
* (c) E Icik g~k)l < -,vi c A

keA

02 01 0
(d) lb± 1 4 Cb1 + 9(i) - E Cik g(k)) m, vi eA ,for some M4 > 0.

keA

then,02 has a fixed point, S 2. 02

(ii) If (a), (b), (d) hold, for g - 0, then S is unique in the

01 01
class E* , where E* is as defined in Th. A.2.

Ciii) If in addition to Ca), Cb), Cd), we have that,

0~ bi +g(i)- Zcik(c)

(e) g + S > 0, and inf--------------------- >0,
icA Oi

s Ci)+g~i)

thntefxdpitS02 01 0 2
the th fied oin S Of 02 is unique in the class Eq C E defined as

* follows.

01 Ix~l)I
Eq = [XCEE: sup-- -- --- -- *I

02 01

NS is the pointwise limit of any power sequence of 02, with initial point in Eq.
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Proof

Part (i):Let Y 01= (S 01+g) M4. Since S 01= 0,(S 01), we have that,

01 01
Y /14 - g = 0 1 (y /M - g)

or

010i Oi 01 0,
y (i) M(b1 +g~i) - E cikg(k)) + E Cik Y Mi (A.2)

keA kcA

From (A.2) and (b), we see that th6 operator 0 with parameters,

b= 14 (b.0 +g( i)- EC0 k),i eA

e 0 i kA

00 1

has a nonnegative fixed point S~ Y y Because of (a) and (d), 0 is a inajorant

Of 02. From theorem A. 1, we conclude that 02 has a fixed point.

Part (ii) :This follows from theorem A.2, by observing that S M 014 , and

therefore, Ee = E1.

Part (iii) :Under condition (e), theorem A.3 is applicable, and shows the uniqueness

* 01
* of the fixed point in E

The following lemma is useful in identifying the class within which the fixed

point of an operator is unique, in the case where the solution of the majorant is not

exactly known.

Lemma A.1 If {s(i)1 {6(i))} A -~ R, and,

(a) {s(i)}, (6(1)) are nonnegative

* 8(i)
(b) sup-----<

ieA 6 (1)

(c) inf----- > 0,

icA 6 i
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then sup -X(i)l < , iff sup--------< 0, X EE , i.e. the classesiCA 6(i) W s(i)

ES = (xcE: sup ..... < -1 and E F = fxcE: sup---- ... < - coincide.
-icA SW- iJA a(i)

Proof Fbr the "if" part let

sup ...... = A < c + jx(i)I 4 A s(i), i eA (A.3)
iA sli)

Because of (b), we have,

s(i) 4 B 6(i), i , B < (A.4)

From (A.3), (A.4), we conclude that Ix(i) 1 A B 6(i), i eA ,or sup---- .. . A B < m.
S ieA Vi

The proof of the "only if" part is similar.

The lemma below is used to establish the existence of a fixed point SL of an

operator L, as well as upper and lower bounds on SL . Monotonicity is proved by induc-

tion, while the existence of a fixed point is established via the extended monotone

convergence theorem.

Lemma A.2 Let L be an operator with nonnegative parameterss i.e.
LL x

CL > 0 i,k cA bi 0, icA. If there exist points Yo, Xo £EL,Cik

such that,

( (a) Y0 X0

(b) X° >L(X° ) > 0

(C) Yo 4 L(yO),

O- then the power sequence of L, with initial points X° (Y°),decreases (increases)
monotonically and pointwise, to a fixed point SL L Furthermore, Y < < S < Xo

(5 .-. SL 5L x0

Land S > 0.

It is generally difficult to establish tight bounds on SL, using the method

exhibited by lemma A.2. The following theorem provides an alternative method for

the computation of such bounds. Its proof is based on theorems A.1, A.2, and A.3,

* and is straightforward.
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Theorem A.5 Let L be an operator with nonnegative parameters:

CL >O, i,keA ,bL -O , i CA

Let S Lbe a nonnegative fixed point of L, for which it is known that

LL4SL < uL ,L SL, UL C EL. L.et A CA, A. be the complement
3 I

ofAand let 4l. Fj (3 be the operators with parameters,

$vj cej Fj =c ik ke
Cik Cik =Cik{

0 otherwise

bF i+ E L L (k) , LCA

* bi=
0 otherwise

4;Pi + t (k) , pi < b L cA1

0, otherwise

E L QL~ L icA.
Ij kCAF . ~

bj

0, otherwise
F.

Then, (a) F. has a nonnegative fixed point S ,such that,

F. sL( 1 ) ,iCA.
s Mi = I

'0 ,otherwise

(b i sa ioan f and its principal solution S *is such that,

. F. F.

(c) Ojis a majorant of F.I and if sup------< ~,then 0. has a
ic A. Lj

0i bi
nonnegative fixed point S ,such that,

F. 0 0
0O -S* 1 S, S
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(d) If in addition to the previous conditions, also SL > 0, and

bL1
inf --- > 0, then the operators 0j, Fj, Oj have respective

Oj Fj 0j

unique fixed points, S , S , S , in the class

SEFj =Ix E :s ax(i) j F Oj

ieA F3
s (i)

Remark If A. is a finite set with bL > 0, vi e Aj, the conditions in (c) and (d) are
I I)

clearly satisfied. If in addition, P b , and AOA, then it can be

F. 0.
shown that, S* + SL, and S. SL , pointwise.

The quantities of interest in the various random access algorithms are statistics

of random variables, where many of those statistics are fixed points of some operator L.

Theorem A.6 is used to justify the latter statement and appeared in [143.

Theorem A.6 Let L be an operator with nonnegative parameters that has a unique

Ixil
nonnegative fixed point SL in the class E L (XCE : sup ---- }.

ieA g(i)

Let (xIn}, (x 1 , i CA , n C N, be families of random variables, such that,

(a) 0 4 xf/xi, a.e. for every i CA

(b) xn < 4 ng(i), a.e. for every i LA , Mn <

(c) fn 4 L(fn), f = L(f), where fn (i) = E (xin), f(i) = E (xi }

Then, f coincides with the unique fixed point SL in EL.

g
Proof

We observe that because of (b), fn EL , and because of (c) and lemma A.2 f < SLng'andbecuseof c) nd emm A.2 f<

From (a) and the monotone convergence theorem, we have that f increases to f
n

pointwise; thus, f < S , which implies that fE L . The assertion now follows
g

from the fact that f is a fixed point of L.
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APPENDIX B

In section 4.2, we saw that the computation of conditional expectations,

E{Xjd}, is required. In this appendix, we show that those conditional expectations

can be computed with high accuracy. Let us define,

E{XId, k1 The conditional expectation of the random variable X, given that
the arrival interval contains k packets, and has length d.

Then,

E{X0d} = . E{XXd,kjeXd ()d) kE{Xjd Zk=O d~j k! (B .1)

k=O

*Using the rules of the algorithm, the quantities E{Xld,k} can be computed

0 recursively , as follows.

E{L/d,k} = E{Z/l,k}; V deF

E{Z/1,01 = E{2/1,}= 1 (B.2)

E{1/l,kl = (I+Pk E{L/,k-} 1. E{t/1,iP )/(I-2P ) k > 2
•. i=2

where P= (k2.

E(S/d,k) = d E{6/l,k}; V deF

E{6/l,0} = E{6/l,l} = 1 (B.3)

k-i
kk k k

E{6/l,k} (Pk+P--E{6/l,k-l}P + E E{6/l,i}P )/(2.(l-P); k > 2
i=2

E{2/d,k}= E{Z2/l,k};V deF

" E{Z2/1,0}= E{2 2 /ll} = 1

E {R2 /l,k}= (2E[{./l,k}+2E{L/k,k-l1}-P I+f+P ={22/,k-} Z /

k
* (l-2P k ); k > 2 (B.4)

E{6 2 /d,k}= d2 E{62/l,k} ; V deF

E{6 2/, 0}= E{6 2 /1,1} = 1

E{6 2 1 ,k}= ('25(pk.pk)+.5 PkE6{6,'k}+'5 Pk E{6/l,k-l}+.25 E{62/l,k-1}Pk+

1 ' 0' jj 11~k-I

i=.25Z E(6211"i}P .5pk) ; k > 2 (B.5)

i=2 1
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E{6t/d,k) = d E{62/1,k) ; V deF

E{6L/1,O1 - EW6~/1,1} = 1

E{65t/1,kl = ({/k).P1E/lk- J.P {/, 1+.5 P I+ .5E{6/1,k-1}P I+
5Pk{6/1k k1+5 k k(B)

+.5pkE{6.t/l~k-l}+.5 EE{61./,ily /(1-P6) k>2(B61 i-2

E{N/d,k} = EfNI1,k}; V cleF

E{N/1,O} = 0, E{N/1,1} = 1

E{N/1,k) = Pk+PkNh/lkl}+ kE{Nfv,ilP k ; _ B7
1 1 i.=2 1

Efwld,k} - EfW/ilk); V cleF

Efw/l,O1 - 0, EfW/.1,11 .= 1 (B.8)

E[W/1,k} = (P k+E(N/1,IG1+pkE(N/1,k-11+Pt-E{W/1,k-11+ E E{W/1 klPk)/(l2k k >21 1-2 ' j 1~ 2 0 >
*E{O/d,k} = d E{*/1,k}; V deF

E{*/i,01 - 0, Euj/,ij (B.9)
2 kPl~~ E~ krg k k-1

Ef*/l,kl - (E{Nl, )i-Pko)-Pk~iN/,k-i+.5 1 +E{1P/1,k-1,P + E.E{4/1,i}P)
k 11i=2

/(2 (i-q 0 )) ; k > 2

From formulas (B.2)-(B.9), we see that a finite number, H, of terms from the

~ cmpued.Als, fr 1rek -values, and based

on the recursive expressions, simple upper and lower bounds on E[X/d,kJ can be

CO E dked (d) k
developed. Those bounds can be used to tightly bound the sum E kXd~~e k

Remark It can be also proved that

E{N/dl - XEftS/d}

E{V/dl = Ad E{6/d) -E E{62 /d)0.5

4q
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