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Inv;his pap?;, we presentﬁg unified method for the delay analysis
of a large class of random multiple-access algorithms. -Ou;.method is

based on a powerful theorem referring to regenerative processes, in

conjuction with xegsults from the theory of infinite dimensionality linear
%, 1 l'-"‘l' e
systems. We apply the method to analyze and compute the per packet

expected delays induced by two algorithms, in the preseﬁce of the Poisson
user model. The considered algorithms are: The controlled ALOHA

& G
algorithm, and the "0.487" algorithm. The same method has been previously

applied, for the delay analysis of certain limited sensing random access

algorithms. /(EMH"«-’* : [Mvw/az‘;"“/ /)J::f‘kﬂ/ /l ;U?Zr:gfwy
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l. INTRODUCTION

A key problem in the design of communication networks is the efficient
sharing of a common transmission channel, (such as a satellite link, a ground
radio channel, a computer bus, a coaxial cable, or an optical fibre) among a
large population of network users. This problem is referred to as the multiple-
access problem, since many independent users share, and, thus, access a common
channel for transmission of information. The solution to the_mulgiple-access
problem must incorporate a distributed control scheme, termed multiple-access
algorithm, for allocating the channel resources among the network users.

The design and performance of multiple-access algorithms are highly
dependent on the nature of the users. When a channel is to support large
numbers of bursty (low duty-cycle) users, random-multiple-access algorithms
(RMAAS) become more efficient than degerg;nist;g_g}go;ithps:_ This has been

early recognized by the researchers in the field, and a plethora of RMAAs

have been propo;eé.during.;hé B@ég fifteen ;eéés [1;2].

The key performance measures of a RMAA are its throughput and delay
characteristics. The evaluation of such characteristics has been the subject
of numerous studies. In most cases, a Markovian model is employed, and the
existence of steady state of the random—-access system is related to the
ergodicity of an underlying Markov process. Depending on the complexity of
the state space of such a process, this formulation usually gives sufficient
information on the maximum input traffic rate that an algorithm can maintain.
However, the evaluation of the delay characteristics is a much harder problem,
since they are intimately itnerwoven with the dynamical behavior of the
algorithm's scheduling mechanisms. Due to this fact, it is not surprising that

results concerning the delay characteristics are limited, and are obtained after

a rather intricate and difficult analysis, which is usually matched to the

LTSI AN
I L o A RS ey

: . A . . . o . e
RN AT A i UG LT T e T RN T e n ST NS \
WALl T "\“.{%a'a‘.‘5’a?i"qﬁl’:,‘!('ﬂa’afl'qﬁ’s W I ,s’i‘t;’i‘afl‘is. BT I LR AC S ARG RS il Aaieh ~ i



peculiarities of the specific algorithm at hand.

i In this paper, we show how the delay analysis of RMAAS can be unified and
p} simplified, by the use of some known results from the theory of regenerative
Bt M

o\ .

?f processes, and the theory of infinite dimensional systems of linear equations.
)

e After outlining the method in section 2, we demonstrate its wide applicability

és and relative simplicity, by applying it, in sections 3 and 4, to two algorithms
t

:N| that represent different classes of RMAAS, namely:

u‘

)

e 1) the Oontrolled ALOHA algorithm (“ALOHA-~type" class) (6]

2) the "0.487" algorithm (*"full sensing-blocked access" class) (7,8]

3 For the above algorithms, we obtain explicit results on the induced mean
delay, for the Poisson infinite-user population model. The higher moments of

the delay, for the Poisson as well as for an arbitrary memoryless input stream,

jqo can be computed using the same method. We note that the method has been already
]
éﬂl applied for the delay analysis of a class of limited sensing random access

algorithms [11,18,19].

ga 2. THE METHOD

In random-access systems, as in virtually every queueing system, many of

aw ut
™

the involved stochastic processes are regenerative. The following defipnition is

T

taken from [4].

Z

o~
»
»

Definition The process {xn}n>1 is said to be regenerative with respect to the
renewal sequence {R1}1>1, if for every positive integer M and every sequence

Eyreertys with 0<t1<...<tM, the joint distribution of Xt1+Ri,..,xtM+Ri is inde-

LT e P
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pendent of i. The random variables R ,i>l, and C,= R, , - R,,1>] are referred

to as regeneration points and regeneration cycles, respectively.

For regenerative processes, the following elegant and powerful result holds,

s which will be referred to as the regeneration theorem (3,4,5]. f
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Theorem 1

B Let the discrete-time process {X,} be regenerative with respect
Yy n>1 g

to the renewal process {R;};,;- Also, let C; = Ry, = Ry, i=X,2,.0.,

»‘s:s, : denote the length of the i-th regeneration cycle, and let f be a nonnegative,
':9"'|'
)
‘:Q‘? real valued, measurable function.
N
i \
A ¢
Wt A 1
P If c=E{Cy} < = anda s = E{ I £(X4)} < =, then,
A i=1
&"‘Q.
RE e
) s
i tim = L £(X;) = tim = E | z fxp =2, wepe 1
:,;:? n+o B j=] n+e R i=1 c
&":!'
¥:‘.'
:::::“ Furthermore, if, in addition to the finiteness of C and §, the distribution of
@
ol C1 is not periodic, then X; converges in distribution to a random variable
1y
i 1 Xews, and

(]
E{f(Xe)} = -
C

i

ol

;:é Thus, under the conditions stated above, the limiting (expected) average,
‘jﬁ and the mean of the limiting distribution of {f (xn)}n>1 exist, coincide,

:4::' and are finite. Moreover, their common value is then given in terms of the per
:9:"; cycle quantities S and C.

(

t;‘,: Given a RMAA, let {xn}n,, be the process of interest associated with

;::'é the random-access system; this process might, for example, be the delay process
: induced by the algorithm. Then, provided that {xn}n>1 can be shown to be

:"; regenerative, the regeneration theorem itself shows the way to establish the

!

3: : existence of steady state, and to compute the steady-state moments, and the distribu-
‘.:'::: tion of (xn}n »>1+ by appropriately selecting the function f.

E:E:E: In virtually all existing RMAAs, it is relatively easy to identify regenera-
:Es?:: tive tines (e.g., when the system becomes empty, or when an appropriate Markov
:':‘: chain hits a suitable fixed state), at which the process of interest probabilis-
T .
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tically restarts itself. Given a RMAA and a function f, the problem then is to
exploit the dynamics of the algorithm, to find those per cycle properties of the
sample function of the process, that could be subsequently used to evaluate the
quantities C ana S.

In section 3, it is shown that for the delay process, and for f£(x) = x,
the computation of S and C are intimately related to the solution of an infinite
dimensional system of linear eqpations. It can be shown that this is the case
when f(x) = xn, n=2,3,ce., as well (11l]. Therefore, the steady—-state moments
of the delay process induced by a particular algorithm, can be computed
from the solution of the corresponding infinite linear system. In Appendix A,
we give a number of general results, that are useful in establishing the
existence and uniqueness of a solution, and in developing approximations to
the solution of such systems. In section 4, we apply these results to the
specific infinite linear systems developed for the two algorithms of section
3. This procedure involves the following steps.

Step 1 Find conditions under which the infinite linear system has a
unique, nonnegative solution.

Step 2 Show that the variables of interest coincide with the unique
solution.

Step 3 Develop arbitrarily tight upper and lower bounds on the solution.

3. TWO ALGORITHMS AND THEIR RELATED SYSTEMS OF EQUATIONS

For both algorithms of this section, we assume a collision-type, packet~-
switched, slotted, broadcast channel. The channel is accessed by a very large
(effectively infinite) number of identical, independent, packet-transmitting,
bursty users. The cumulative packet generation process is modelled as a Poisson
process, with intensity A packets per slot. However, the proposed method can be
applied equally well, when the number of packets per slot are independent and

identically distributed (i.i.d) random variables.

We define the delay, Un, experienced by the n-th arrived packet, as the time

difference between its arrival at the transmitter, and the end of its successful
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transmission. We are interested in evaluating the steady state statistics of
the delay process {U;}n>1' when they exist. Due to space limitations in

this paper, we give explicit results, only for the first moment of the delay
process. However, higher moments of the delay, as well as other quantities of

interest can be computed, using the same method-

3.1 Example 1 : Controlled ALOHA

The earliest and most well known RMAAsS belong to the class of the ALOHA
techniques (13,6,16). Here, we analyze a version of the slotted ALOHA
algorithm, that operates with each ;ser transmitting a newly arrived packet,
in the first slot after its arrival. Should this cause a collision, each
involved user independently retransmits its packet in the next slot,
with probability f.

A packet whose transmission is unsuccessful is said to be blocked. Let M; be
the number of blocked packets at the beginning of slot i (time segment [i,i+l)).
This number will be referred to as the backlog size. Also, let Ry denote the

number of blocked packets retransmitted in slot i, and N; denote the number of

new packets transmitted in slot i. Given My =m, then clearly,
A
P(R;=r) = BR(£) = (T) £F (1-£)"7F , i = 0,1,2,... (M
A e*an
P(Ni-n) = pn R eocooos ’ i= 0,‘,2,0.0 (2)
n!

The delay process induced by the above algorithm "probabilistically
regstarts itself” at the beginning of each slot T;, at which MTi =0, i = 1,2,¢00;
this is so because the number of arrivals per slot is an i.i.d. sequence of
random variables. Precisely, let Ty = 1, and define Tj,q as the first slot
after T; at which MTi+1 = 0. The interval (T;, Tj4q), L = 1,2,..., will be

referred to as the ith session.

Let Ri' i=1,2,..., denote the number of packets successfully transmitted

in the interval (0, Ti+q] (Note that Ri also represents the number of packets

45




arrived during the interval [0, T ~1)) .Then, Ci = Ri+1 - Ri' i=1,2,0.., is

i+l

the number of packets successfully transmitted in the interval (Ti' Ti+1l‘ The
sequence {R;}; 3, is a renewal process, since {C;}, ;; is a sequence

of nonnegative i.i.d. random variables. FPurthermore, the delay process {0} .
is regenerative with respeet to the renewal process {Ri)j.N' with regenera-

tion cycle, C,.

From theorem 1, with f(vi) = Di' we have that if C = E{c1} < ©, and if

¢
s = E{ ID;} < =, then, there exists a.real number D, such that,
i=1 .
1 n 1 n S
D= fim - L0 = fim - E( I0)) = E{D ) = ~ a.e.
nte B j=1 e B jai ¢

The quantity D will be referred to as the mean packet de-

lay. Next, we develop two systems of equations, whose solution may be used to
compute the mean cycle length C, and the mean cumulative delay S. The

properties and the computation of the solution will be postponed until section 4.

l.a Mean Cycle Length

A
If the mean session length H = E {T44¢ -~ T3} , £ > 1, is finite, then

by Wald's theorem , we have that,

C = AH (3)

To determine H, we proceed as follows. Let h; denote the random number of
slots needed to return to zero backlog size, starting from a slot j where the
backlog size is equal to i, i » 0. The operation of the algorittm yields the

following relation for the hi's.

(4.a)

- e e WTEE WA TRE TR T R T R E T e o




a3 ’
.‘téI\
MR
A'.‘
i (1 + h, if R, + N, = 0
1 J J
INGT
Ny h, ={1 +h, I(i+N,-1>0) if R, + N, =1 (4.b)
22'% l1+h if R, + N, > 1
WA \ 14N, 3 3
:ﬂ . where I(*) is the indicator function of the event in the parenthesis.
g
:g If we let H =E {hi}’ i > 0, then after taking expectations in (4) we obtain,
[\ X
oGl H =b. + % ; i>0 (5)
KN 1 =0t E ey B, 12
Z; -I k=0
Yy
ﬁhi where b, =1, i>0;
.’?'1_ i -
1; 50 = o1 = 0, Cor = Py» i>1; ik = Py k>i+l, i>1;
)

[Far3

i i i
il pi(l-Bo(f)),QZ;, cyy = po(l-Bl(f))+ piBo(f), i>1;

i — [
0 o, Ci41 = poBl(f), i>1; Cep = 0, k<i-1, 1>1;

A 1 : - e p :

& j where p, Bj(f). i>0, 0<j<i, are as defined in (1), (2), respectively.

!;xi

L7

:g;; Note that the mean session length H, can be computed from system (5), since
LG

.)“ H = Hg.

ey

:;g

? J l.b Mean Cumulative Delay

The mean cumulative delay, S , can be computed using a system of equations

g%‘ similar to system (5). To develop such a system we proceed as follows. Let wj
d

| denote the cumulative delay experienced by all the packets that were successfully

MY transmitted during the hi slots.(l) Also, let L E{wi}; i >0, and note that
A » S = Wo.

o~ The operation of the algorithm yields the following relations for the w;'s.

e i

Nj if Nj = 0, or 1
uo = { (6.a)

+wy if Ny >0

o (1) Here, for convenience, we count the delay of a packet, starting from
LAty the beginning of the first slot after its arrival.
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.another CRI ,v', is reached, with a corresponding tv,>t
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T e

8
i + if R, + N, =0
i+ Nj wi 3 3
(6.b)
w, = i+ N, +w 1(i+N,-1>0) if R, + N, =1
j +N,. -1 j
i%O J 1 j J J
if R, + N, > 1
i+ Nj + wi+Nj 3 j
After taking expectations in (6) we obtain
- -]
Wy =b} +Lcy W o i>0 7

k=0
where by = A , b} =4 + X, i > 1, dnd cyk are as defined in (5).

3.2 Example 2 : The "0.487" Algorithm

This algorithm is the most efficient RMAA known to date, for the Poisson
infinite-user population model and ternarf feedback; (it attains a-maximum
throughput of 0.487 packets per slot). It is assumed that at the end of
each slot i (time segment [i,i+l)), the usérs.receive feedback z = o0, 1,
or ¢, if in slot i there were respectively zero, one or more than one packets

transmitted. For the description of the algorithm, motivation, and background

discussions, the reader is referred to [8], and [15].

Suppose that at the beginning of slot v(time segment (v;v+1]), all packets
that arrived before time ty < v, have been successfully transmitted, and there
is no information concerning the packets that may have arrived in the interval
{tv,v), (i.e., the distribution of the interarrival times of the packets in
(ty,v) is the same as the one assumed originally). The beginning of such a
slot v is called a "collision resolution instant“(CRI). The time difference

dy = v =~ t, will be referred to as the "lag at v". 1In slot v, the users

that generated packets in the interval (t,, t, + Ug), where U, = min(d,, &),
are allowed to transmit; A is a parameter to be properly chosen for throughput
maximization. In this case, we say that the interval (ty., ty + Uy) is "trans-

mitted”. After a random number of slots £, and following the rules of the algorithm,

For the analysis of the

algorithm, we need the following definitions.

ek e
B Y o
ALY

1y




t

v v

N : number of packets in [tv’tv')

w : sum of delays of the N packets, after the CRI v

v : sum of delays of the N packets, until the instant t, + U,.

E{xlu} : conditional expectation of the random variable X, given that

Uy, = u

Let {Vi}i>1 be the sequence of successive collision resolution
instants,;and let d; be the lag at v;. It is known, [9 ], that the sequence
{di}i>1 is a Markov chain, with state space, F a denumerable dense subset
of the interval [l1, ). Let Ty =1, 44 = 1, and define T;,q, as the first slot
after Ty, at which dTi+1 = 1. From the description of the algorithm it can be
seen, after a little tﬁought, that the inducéd delay process probabilistically
restarts itself at the beginning of each slot Ty, i = 1,2,... . Therefore,
using the notation and definitions of example 1, the mean packet delay D is

equal to S/C provided that both § and C are finite.

2.2 Mean Cycle Length

As in example 1, if the mean session length H = E{Ti+1 - Ti} is
finite, then C = AH. To evaluate H we proceed as follows.

Let hd'denote the random number of slots needed to return to lag equal
to one, starting from a collision resolution instant vy with d4; = d. Note that,
by definition, hqy is the session length. The operation of the algorithm yields

the following relations for the hy's, d € F.

N & if L = 1

1<d<A‘ hd=. (80&)
L+hg. 544 if 2> 1

d> A, hg = L+hg_ s+ (8.b)

Taking expectations in (8) yields:
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1 <da<a, Hg=E(2|lda} + I p(r,s|d)Hy-r+g (9.a)
r,S
s#1
d>48, Hy=©{2|a} + I p(r,s|8)Hg r+s (9.b)
S,r .

where p(r,slx) is the joint conditional probability distribution of 6§, and

£, at the point values r and s, given that the transmitted interval is of

length x. Note that,

(1+Ax) e~ A% if T=x
P(rcllx) =

0 otherwise
System (9) can be written in the form

Hd = bd + Z cdt Ht ’ deF (10)
teF

where by = E{2|d}, 1 < 4 < 4, bg = E{2|4}, 4 > A, and vhere
Cger d¢ t eF are nonnegative coefficients that can be appropriately identified
from (9). The condiciohalﬁeipéégaﬁioﬁ ﬁ{lld}, 1< d < 4, can be computed

as shown in Appendix B.

2.b Mean Cumulative Delay

Let wq denote the cumulative delay experienced by all the packets that
were successfully transmited during the hd.slots. The. operation of the algorithm
yields the following relation for the wag's, 4 € F.

w+y if A =)
l1<ac<a, wq =

WHpwa_geg Lif £ > 1

d>A, w, = wtp(d-8)Ntw

a aeg A A2

Taking expectations, we obtain,
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1<4a <8, wy=©E{w{al + Ely|la}l + £ p(s,ridIWg g (11.a)
r,s
s#1

a> 8, Wy=El{w|a} +E{yp|a} +(a-B)E(N|A} + £ p(s,r|8)Wy_r4q
S,r

(11.b)

System (11) can be written in the form

Wy =by+ Lcgy We ,ac€F (12)
. t€

where by=E{w|a}+E(¥|a}, 1 < 4 < 4, bg=E{w|a}+e{v|a} +(a-8)E(N|a},
and where the coefficients Caer 4, t € F are as defined in (10). The
conditional expectations E{w|a}, E{¢|a}, 1 < & < 4, ana E(N|A} can be

computed as shown in Appendix B.

4. SYSTEM SOLUTION AND MEAN PACKET DELAY BOUNDS

In this section, we investigate the conditions under which the infinite
dimensional linear systems (5),.(7), (10),-and-(12)-have-unique. — == - - -
nonnegative solutions, and we develop upper and lower bounds on those solutions.
These bounds are then used to obtain bounds on the mean packet delay. We pro-

ceed, following the steps outlined in section 2.

4.1 Step 1

For convenience, we rewrite an infinite linear system in an operator form.
Specifically, let E be the space of sequences X = {x(v)}: A.«R, where A
is a countable set. Also, let EL pe the subspace of E for which,

£ |c1'"vx(v)| < =, ueA , veA, L eR
veA uv

We define the operator L = {Lu(x)}: EL., E, as follows.

L,(x) = buL + L °Luv"(") . ueA , x e EL Gl o p
veA u

L .
[ PR P D A ATEC LR A TR LR AR R LR TR
Y *mm&»&-ﬁ Ayl '-i':kf A
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,32:, In this notation, systems (5), (7), (10), and (12) can be written
&0 :
)
ﬂﬂ in the form,
o L Ly oL ¢ gL
f'!'.' . st = L(s%), s™ ¢ E (13)
%ﬁ-
el
ﬁﬁg We are interested in the existence and uniqueness of nonnegative points
I
qqi st e EL, that satisfy (13); such points will be referred to as fixed
e
,:L points of L, and represent solutions to the corresponding infinite linear
'y _
%Qk system of equations. The question of uniqueness of a fixed point SL, or
- equivalently of the solution, {sL(I)}, to the system that operator L

)
Ai? represents, depends upon what conditions are imposed on the solution. Thus,
Ak
X,
Ay after the existence of a solution, s , has been established, one {
A fter th £ a solution, {s“(1)}, has be blished
o
T has to indicate a class of sequences in which the solution is unique. If the
At . g —_
Y
a%: algorithmic sequences of interest {H;}, or {W;} belong to the indicated i
D .
1462
S class, then they must coincide with the solution {sl(i)}. (This will be
o examined in Step 2).
?'.'
4 .
*§$ Appendix A includes a number of results that can be used to establish
A . e i 4
ﬁ?g existence and uniqueness of a fixed point of an operator.— Depending on the
?ﬂ operator, some are more straightforward to apply than others. Among the
‘.“'
‘ Al
~§l, results in Appendix A that can be used to establish existence of a solution,

§. Lemma A.2 is usually the most useful. According to Lemma A.2, to establish

e existence of a nonnegative fixed point, SL,of a nonnegative operator, L, it
{4
A suffices to find a point X° ¢ EL, such that,
o
a5 |
po: o o
o 0 € L(X") <X (14)
LI N
o )
.ma A point X°, satisfying (14 ), also serves as an upper bound on S“. Further-
e
U
%a& more, to establish a lower bound on SL, it suffices to find a point Y° € EL,
R
eal such that,
% Y° < L(Y®) < x° (15)
3%
; Thus, under (14) and (15), we have that,
e

( €y, ‘l Ll I%.f\"\v("%;.l".-
O™ Y ‘Mi&ﬁiﬁl L0
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yo < sl < x° (16)
We proceed now with the analysis of the systems developed in section 3.

Control led ALOHA

System (5) -- Existence: System (5) corresponds to an operator Lj with
Ly Ll
by = by, Cyy = Cuys U, Vv € Ny, where N, is the set of nonnegative integers,

and the b,'s and ¢, 's are as defined in (5). If we let X° = {x°(k)} with x°(o)=cu,
x%(k) = ak + Bu' k » 1, then by straightforward manipulations we have that, for
this choice of X,, (14) is gatisfied if and only if the following inequalities are

satisfied.

A< g (£) e.poaf(t) + plag(f), for every k 21 a7
1 |
Ex(£)-A
By 2 (1 - oy (€,(H)-1) / (p,BL(E)) (19.2)
21 +a, (-pp) +B, (-p, =8 T T (19.b) )

It can be readily seen from (17) that if the retransmission probability £ is
constant in every slot, then there is no A > 0 for which (17) is satisfied.
If the retransmission probability £ , at each slot i, were allowed to dépend
on the current backlog size, M;, in accordance to a stationary control policy
£ = £(M;), then it is of interest to choose f(-) so that it maximizes the set
of A's for which inequality (17) is satisfied. This is equivalent to
maximizing §y(f) with respect to f. It can be easily verified that, for

every k > 1, €k(f) is maximized for f£(k) = f*(k), where (2)

We should mention that, in a distributed environment, the backlog size
dependent retransmission probability f£*(.) is nonimplementable, since
userg are not aware of the current backlog size. However, the control
policy given by (20) can be implemented approximately by adaptive control
schemes that estimate the current backlog size using observable feedback
information from the past activity on the channel [6,16].

- . ) " “we ~ RV LYE
TOPRIE, R ATl St T ad ittt e e Y

ROOCE ot N\ X
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4 l-k > 1

% £*(k) = === , k
R (k) =X (20)
an
g&?
V1
ol

From this point on, we assume that f fs chosen as in (20). Under this assumption,

inequality (17) is satisfied, provided that,

B

D) LE (1

r?.

K | -

%‘1 A< inf (§(£%), k 21} =e 1

v To satisfy inequalities (18), and (19), we choose,

RIT

||0

e @ = gup | -—toeem , k> 1= -t (21.a)
UL u P -1

° g, (£9)-) e "=

A i I S W ]
o Bu =e -a 1-A e) , c, - 1+ a, A (l-e” ) + Bu (1-e Ae’) (21.b)
e

1

E -9

- o
Similarly, it is straightforward to show that 1f A < e ~, then the point Y with

Yo(o) = cz) Yo(k) = alk + BL’ k2 1, and

AL - - A=A
% a, = (oor AL, By = - aL(l-)‘e)‘), ep = 1+ ap a-a"y + By (1-e’f-xe ) @

i satisfies (15). Thus, from (16) and for A < e-l we have that system (5) has a

v)_ Ll Ll
e solution, S = = {s ~(k)}, such that

o L L
UK 1 . 1
il 0<cp<s (0 <c;0<apk+B<s™ (k) <ak+B ,k2l (23)

¢
:gg: where a, Bu, c, are as given by (21), and ap Bl’ cp are as given by (22).

Wy
;s ) L2
5 System (7) ~- Existence: System (7) corresponds to an operator L, with b, = by, ,

i'- Lo

b Cuv = Cuys U + Vv € Ny, where the by,'s and c,,'s are as defined in (7).

| z; Due to the fact that bk_is a linear function of k, and since

e Leoge=1,1 219,
RS k=0

! 1 ' e L% 1 ."t-‘_‘\ ~a \_‘\:- (P .rv‘,ﬁ 1‘(‘),(;-
A I e TR L et Lt ot . SRERNR ARG BAn:
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it can be easily seen that there is no linear sequencexo = (x°)} satisfying

i’i:‘ (14). However, given A < e-l, it is straightforward to show that we can choose
0"'{
0 o
2:3:: coefficients Y , § , §» d,» Yp» 8p, &p,» dp such that the pointX" with
o N o o 2 o _
N x (0) = du, x (k) = Yuk + Guk + Cu’ k 2 1, and the point y (0) = dl’
N
ﬁa yo(k) = YLkz + 6& + Ly, k 2 1, satisfy (14), and (15), respectively. The
ALY
;Eig: following is such a choice:
W‘i:.ﬂ

’ -1 -1 2 -A
. Y, " 0.5 (e™=A) ~, Gu = ZY‘i (A+Yu(1 + A%+ e)) (24.a)
£ AL A A A
:;:": C“ = C(Y“,G“) Ae” + Y, A+2X A +)) )+ 6\1 (Ae"- 1) (24.1b)
e A - A X, =A
du =d (Yu, 6u. l;u) =LA+ A (14X - ) Yy, + X (1-e") Gu + (1-e"-)e )§u
;‘gf@; (24-C)
'!b' - - -
b Yp = 0.5 (35 2L, 8 = 2vp O + v, (A + 22 4+ ela-22))) (25.a)
K =
e
i‘.' Cz = (YL’ G.C)’ dL =4d (YL' 6[_- Cz) (25.b)
5*% where [(°,*), d(*,*,*) are as defined in (24.b), (24.c), respectively.
A -1 A Ly - Ig
Q%; Thus, if A < e ~, then system (7) has a solution § “ = {s “(k)} , such that,
D) L,
;'i' 0<dp<s7(0) <4 (26.a)
g::? 2 L, 2 6
b 0 < ypk" + 8k + 7, <8 “(k) <Yk +8§k+ , k>0 (26.b)
9 where Yy du’ I;u, du are as given by (24), and Ypo 62’ cf.' d£ are as given by (25).
§

-

¥ Systems (5) and (7) -- Uniqueness

Y L

n“k 1

®: We will show that both the solution {8 (i)} of system (5) and the
L

Ay 2

::::; solution {s (i)} of system (7) are unique in the class

’.;:::

4‘::: Ix(1) |

W

nll Eza{Xosup ------ <O}

b ieN i%+c

l::'l

;‘::

?;“f where ¢ is a positive constant.

i‘:"Q

, We start with system (7). Since Ly is majorant of itself, from theorem A.1l,

)

- - .
e . TR o AT ; G0 GOLO 880 050
. a ; TN R » A e D oo O Cr 20 O KX OO Whe, ,.‘”,0.9"
! _7‘£‘,:~l‘:6°1’l~|: “:‘"y.ﬂ!?".h‘% oty x A ! eﬁ‘. l!' X Ak e Aty PANDIONATRIRY . 1 !’I:‘ U OO M YOCUNAY O UM A PN UM ON
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¥,
oy
b
o
‘ {
" L, Ly L,
" we have that L, has a principal fixed point S, , such that 0 < g, <§ .
‘Q ;
MY Ly
:z}f According to theorem A.2, the fixed point S is unique in the class,
L
6
5
> L, |x(0) |
N Ee =¢X : sup I L
o
S L
o L2 0 2

provided that ¥Y° € E, . since, Y° € E;, s will be unique
A I‘z i
" in E;, if we show that E« = E;. According to lemma A.1, it suffices to show
)
»
Sy that,
e
"%
® L
e 8« (1)
: : s“p wmmmmen { ® (27)
i 1eN_  12+c
93 o
33
L
LA

and
.“’
b3
R g
W - L S - P 5
R inf -———- ->0 (28)
) ieN,  1%4c
B
) Ly Ly
' Since 0 < g8« (1) <8 (i), (27) follows from (26). To show that (28)
s L2
("7 holds, we use the power sequence, {Sp },31, of Lz with initial point 0. By
. L
+ 2 .
¥ definition (see Appendix A), S, is the point that results after Ly operates n
& Ly Ly L2
: times on the zero point, (i.e., Sn = L‘z‘(O)), and s, * Se . @S n +*® ., Due
%7 L2 L2
' to the fact that by > 0, cj) >0, i, k & N,, we have that 0 < s, (i) <

L L
1 2 2
:‘:: Sp+1(i) € se (i), for every n > 1, 1 2 0. Also, it can be readily shown by
)

0 .
;:" induction that, for every i > 1, n 21,
i
I'.; L2
o:,. 8, (i) 2> ni - n(n-1)/2 (29)
" .
A
f
l'::
@
A
J ) 1 ELA UG N IR ¢ E U R e Lo AT G 4 O Tl s
R R e e L it AP AR A A WAt et 3
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From (29) we obtain,

2 2
se (1) s (), 121 1
Lim inf —===-- 2> Lim inf --=—--- > 4l ———py—— = — (30)
) 12+¢ 140 12+¢ 40 2(1"4c) 2
Ly
(26) follows from (30), and the fact that s« (i) > 0, i > 0.

Lq
The uniqueness in Ez of the solution {s (i)} of system (5) follows

from theorem A.4, part (ii), after one identifies Lq with 0, and L, with 0,,

in the theorem.

2. The "0.487" Algorithm

System (10) -- Existence and Initial Bounds

Lq Lq
System (10) corresponds to an operator L4 with bu = bu ¢ Syy ™ Cuye

u, v € F, where the bji'sand c,,'s ;félas defined in (10). To
establish the existence of a nonnegative solution-to syatem (10), we follow .. __ _____ - ]
the same procedure as in system (5).

Let X° = {x°(4)} with x(d) = a,a + B,, 4 €F , and let X' = Ly(x °).

After straightforward manipulations, we obtain,

x'(d)-x°(a)+z{z|d}+au(z(zld}-s{s|d}-(1+xd)e""d)-suu+xd)e'}‘d , 1<d<A
(31.a)
x'(d) = x°(d) + E{t|d} - a (E{§[a} - E{2]|8}), a > & (31.b)

According to Lemma A.2, to establish the existence of a nonnegative fixed point

of Ly, it suffices to show that there exist a,, B, such that,

0 < x*'(d) € x°(d) , for every d € F (32)
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If the coundition

P

E(§|4} > E(2]a} (33)

holds, then it can be readily seen from (31) that (32) is satisfied, if

we choose a,, B, as follows:

e{2]A}
= : (34.a)
% = E(8]a) - ECe]a) N
By = max{- ay,, sup (p(d))} (34.b)
1<d<A
[
where
e{2 |a} + o (E{2]|a} - E(S§]a} - (1+Ad)exp(-Ad))
p(d) =

(1+Ad)exp(=-Ad)

The conditional expectations appearing in the above expressions can be computed

as shown in Appendix B.

Similarly, it can be shown that, under (33), the point Y° = {y°(d)}
with y©9(d) = ad + By, de€ F satisfies the inequality Y° < L(Y°) < Xx°,
if ap, and By are chosen as follows:

ag =a, , By = dinf ( p(d)) (35)
1<4a<a

where a,, ¢(d) are as given by (34).

Thus, if (33) holds, then from lemma A.2 we have that system (10) has a
Ly
nonnegative solution S « such that,

Lq
agd + By €5 (d) S ad+B,,acF (36)
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where a,, B,, and ag, By are as given by (34) and (35), respectively.

System (12) -- Existence and Initial Bounds

Let L, be the operator that corresponds to system (12). Also, let
x° = {x2(d)} with x°(d) = v a2 + §.a + ¢, d €F , and ¥° = {y%(a)} with
yo(d) = vga2 + §pa+ ¢, ,aceF.
Following the same procedure as for system (10), we can show that if (33)

L L
2
holds, then system (12) has a nonnegative solution s = {s (d)}, 4 ¢ F,

such that,
2 L2 2

Ygd® + §pa + gy €8 (d) S Y, AT + 8 a + g, .. GD. .
where,

= einja}

u T o(e(s|a} - E(z]ah)

E{w|a} + E{¥|a} - & E(N|A} + v, E{(6-9F|a}

6“ = 62 =

e{é§|a} - e{z]a}

Ly = sup (¢¥(Q)) , ¢y = inf (¢(d))
1<da<a 1<a<a

E{w|d}+E[w|d}+Yu(E{(6-1)2|d}-2dE[6-£|d}-(1+Ad)e-AA)—6u(E{6—2|d}+(1+Ad)e-

d

$(d) = -- —— -—
(1+Ad)e=-Ad

The conditional expectations in the above expressions can be computed as

shown in Appendix B.

O 0 AT £ WAL ek 5 Y KRR
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‘ Remark It is known,[7],that inequality (3 ) is satisified if A < A (4);

i ‘ where A, (4) is maximized for A = 2.6, and A, (2.6) = 0.4871.
gt
el
2t .
”q— Systems (10) and (12) -- Uniqueness
]
a;c;' We will show that both systems (10) and (12) have unique solutions in the
§
?%t
f‘% class
al
. |xta)|
ﬁ$ Ey =4(X : sup " < = (38)
nhel acF d
'\’q‘r
Rk
o
;v As in the case of systems (7) and (9) in example 1, if we show uniqueness for
;%g system (12), then the uniqueness for system (10) follows from theorem A.4,
O
Y
KN part (ii).
I3 )
"."Qtll Lz

According to theorem A.2, the fixed point S is unique in the class

- Ly [x(a|
§€ L 7 E* = - o«

X : sup ==c=—- - <
LR SR 7]
A4 b 0@
2 L2
ﬁ}ﬂ provided that Y° € E, . since, by construction, Y° € E,, § will be
%4 Ly
‘EH unique in E;, if E« = E;. To show that the latter holds, we proceed
htﬁ as follows.
e L
&
:z% Let {Snz}qzl be the power sequence of L, with initial point 0. Clearly,
)% )
‘:,-_“;
t M)
S? s;(d) =bq >€ >0, for every d € F (39
s
0 44
:ka Also, it can be easily shown by induction that,
‘.__l J
— L2 n(n-1) 4
= 8,(d)=n((d-8)E{N|A}+E{w|A}+E{y]A)})- ---5--(s{6|A}-s{z|A})s{N|A} (40)

.. A

LA

iy
{
A
1

YA

(o
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for every d € F, n 21, such that d > n8 . For 4 > 24, letting(3)
d d d
n =L-J - 1 in (40), and using the fact that l_ - _\) - =1, yields,
A A A
L2 J
2
Sn(d) » ad + Bd + Y ., d > 2A , N ZLZJ -1 (41)

where @ > 0. (The expressions for the coefficients «, 8, Y are not of

interest and, therefore, are omitted).
L
2
If S« is the principal solution of L,, then from lemma A.2 we have,

L, L,
Se (d) >8,(d) >0, foreveryd €F , n >1 (42)

From ( 39) and (42) we have that,

Ly

s« (d) 2> max (e, udz + B8d +Y) , ¥ deF (43)
From (43} we conclude that,
L
s« (4)
inf ——-——- >0 (44)
ae'F a2
L Ly

From (37), and the fact that S« < S , we have,

L
s« (d)
sup ______ < «® (45)
aeF a2
L2
Finally, from (44), (45), and lemma A.1 we have that E. = EZ

3. LgJ denotes the maximum integer not exceeding a.
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4.2 Step 2

In step 1, we have established conditions for the existence of nonnegative

solutions to the systems of interest, and we have identified classes of

sequences in which these solutions are unique. Here, we show that the algorithmic

sequences (H;}, (Wj}, where H; = E (h;} and W; = E {w;}, belong to the

corresponding identified class, and therefore, coincide with the unique solution
in the class. The proof is based on theorem A.6, and is the same for the two
algorithms.’

For the case of the sequence {H;}, let, in theorem A.6, L = Ly,
X, = hi' and x? = min(h;, n), n = 1,2,3,... . By definition, the xi's and

xg's satisfy condition (a) in the theorem. Oondition (b} follows from the

fact that x? € n a.e. « Finally, condition (c) follows from the operation
Lq
of the algorithm. Thus, {H;} =s .
L2
Similarly, to show that {W;} = s , we apply theorem A.6, with L = L,,

X, = w,, and x? = min(w;, 0}, 0 = 1,2,3,.00

4.3 Step 3

In step 1, we have already found upper and lower bounds, x° and Yo,
respectively, on the solutions to the systems of interest. These bounds
can be improved either by computing the power sequences of the corresponding
operators with initial points the bounds x° and Yo, (lemma A.2), or by solving
finite systems of linear equations that are truncations of the original in-
finite systems, (theorem A.5). Both methods can provide arbitrarily tight
upper and lower bounds. We use the first method in the “0.457“ algorithm,

and the second method in the controlled ALOHA,

1. Controlled ALOHA

For system (5), we apply theorem A.5 with L = L, and,
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L4
u (i) = oui + Bu ¢ i €Ny
Ly
£ (i) = agi + By ¢ 1 € Ng
Aj = {0,1,2.0:,3‘} P} j € No

iwhere o,, B,, and ag, By are as given by (21) and (22), respectively. Note

that, for j < = , Aj is a finite set and, therefore, all conditions in the theorem

v are satisfied. Thus, for A < e~ V,’

2
o
pro > A . L 0.

ol J 1 J . .

~ s (i) <Hj =8 (i) <85 (i) , 0 < i < j
W i
-J‘A--:'
° % %

where {s (1)}g¢icy and {s (1)}g¢ji¢y are the unique solutions of

\3}?’:
.Q:'}:‘ the (j+1)-dimensional systems (46) and (47), respectively.
‘\"'? u J L1
iil k=0
s .
Ly 2 1 I R ) . D 47
30 Hi = bi + Z Cik Hi e 10 < i <3 (47
T'ln k=o
, o5 4 L
A where bi ¢ by are as defined in the theorem with py =03 = bi 0 < i < jo.
o
::i: therein. We solved systems (46) and (47) for j = 50. The obtained upper bound

P
s

Hg and lower bound H: on the mean session length Ho, can be found in table 1,

® -

T for different values of A, (A < e 1). For system (7) we followed the procedure
AN
;rib described above with,

1 AN
Wy
iy

. L = Lz

oz
:"-»' L2 2
‘-‘::" u(i)=Y“:L +6ui+cu,iENo
)
S L

Sl 2 2 . .

...‘, I'A (1)=Y£i +°2.l+(,2 llENo
‘::::2: pi = 01 = bi , 1 € AJ = {0,1'2:"'0j} ’ ) € No
::::}

e

[

—

58S

RIS

T i T o e



24

where Y,, 8,, §, are as given by (24), and Yy, 6y, 4y are as given by (25). The
obtained bounds wg, wg on the mean cumulative dealy W  are included in table 1;

. they were computed using j = 50. From the regeneration theorem and (3) we have(4),
: %o

; D= === + 0.5 (48)
N AH

y o
The upper bound DY = wg/(Xag) + 0.5, and the lower bound pt = wg/(kﬂg)+0.5
on D are included in table l.  Note_that, according ta theorem A.5, arbitrarily

tight bounds can be obtained by increasing j. From a theoretical view point the

bounds become exact as j + %.

20 The “0.487" Alqotithn

L

1
From section 4.2 we have that, for A < 0.487, Hg=s (d), d € F, ana
L Lq L
. Wag=s8 (d),a€c F, where 8§ and s are the fixed points identified in
* .
3 section 4.1. According to lemma A.2 we have that,
[\
A - L1
¥ L}y <s  <Lix , n=1,2,...,a¢€F (49)
'i LZ
; L}(Y,%) €8 < L}XJ) , n=1,2,...,da€F (50)
[}
A = 0O =
» where X = {ad + B} 4 ¢ pr Y40 = laga + 8y 4 o F
{
N - 2 O = 2
} x3 {Yu as + 6u a+ Cu} aeFr Y3 {Yu ac¢ + 6, a+ Cu} aefF
3

and where a,, B,, ®g, Bg, Yg, 62, Cor Yyr Gu' ¢, are as given by (34), (35), and

(37). For n=1, and d = 1, (49) yields the following bounds on the mean session

length Hjy:

N XA

L u
Hy € Hy < Hy

4. The additional 0.5 units of time represent the mean delay of a packet, until
u the beginning of the first slot following its arrival. (See footnote 1).

™o, -

B N Sl

) . ava a e A N ~ FNCR T A *an » A S RPN
§ A ’ v . ) < “ 0 ¢
Y (% bi\’t 0,’.\..‘.9 A L .’ 4 ‘J‘ N X LN ol A A l, 8 ‘blm AN .N M £) WAt }\ A gt & A LA N
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. where
g
f{ A
:ﬁ Hi=E{2[1} + a (1-(1+A)e” +E{2[1}-E(8] 1})+B (1-(1+))e -4
‘A
) -
e u‘% = Hy - (B, - By)(1-(1+A)e 4
13N
g
' 5 The above bounds can be found in table 2, for different values of A, ( A < 0.487).
>
0
ek For n = 1, and d = 1, (50) yields the following bounds on the mean cumulative delay
&)’ over a session Wy:
LpA
o
Y u
‘\ , “1 < w1 ‘ w1
@
~$ﬁ where
54 -
i 0 wi=E{w|1}+e{v[1}+7, (1-(1+))e Ae(6-22]1}-2E(6-2] 1))
t' {
."

Ak

+ 8,(1-(1+M)e™} ~E(6-A|1h)+¢ (1-(1+X)e™)

AN, -

R Wy = WY =(Ey=Eg) (1-(1¢h)e™Y)

)

a;; The bounds W? and W:';;dliﬂéludéa:tn'éiﬁi;'z. From the regeneration theorem

Jal

73u we have D = wl/(xu‘). The upper bound DY = w?/(AH1z), and the lower

Yol

o L oWt /Oowl

3&’ bound D* = Wy /(181) on the mean packet delay D are included in table 2. The

;‘@'A

W

35& upper bound is plotted in figure 1, together with the same bound for the contro-
ed

f;_ lled ALOHA. We note that tighter bounds can be obtained either by evaluating the
3(

‘2% bounds given by (49) and (50) for higher values of n, or by the method of truncated

1"3 systems used in the previous example. In both wmethods, however, we must first

:.- compute the conditional probabilities p(6.2|x) defined in (9), which is a

;

computationally complex task. Note that for the found bounds, (i.e., for n = 1 in

(49) and (50)), such a computation is not required.
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5. CONCLUSIONS AND PRIOR WORK

In this paper wé have introduced a method for the delay analysis of RMAAs, in
which the induced packet delay process is regenerative, and we have demonstrated
its wide applicability by applying it to two specific examples. The method is
based on a well known result from the theory of regenerative processes, which relates i
the asymptotic statistics of such processes to quantities that refer only to one
cycle of the process. The per cycle quantities, (e.g., mean ¢ycle length, expectation

of the sum of the values of the process over a cycle), are evaluated from the

solution of infinite dimensional systems of linear equations.
In applying the method to the two example-algorithms, we have put emphasis
on the methodology and rigorous derivations rather than finding short cuts in the

analysis of a particular algorithm. In doing so, the essential simplicity of the

method may have been obscured. However, to iééteciaté the siﬁplicity of the method,

we note that only by using Lemma A.2, one can obtain with minimal effort:

1) A lower bound on the maximum input rate that an algorithm maintains with
finite delay, (i.e., a lower _bound on the maximum stable- throughput—induced

by the algorithm). Note that fof The two exampres of -this paper, the
found bound coincides with the maximum stable throughput-

“ " 2) optimal algorithmi¢ parametet GHOIGEE (6Fi7 the rétrinsmission=probas- T A 2
bility policy in the ALOHA algorithm, and the window size A in-the "0.487"
algorithm).

3) Initial bounds on the mean packet delay, that can be used (if so desired)
to form finite linear systems, whose solution can yield arbitrarily tight

bounds on the mean packet delay.

The algorithms that served as examples in this paper have been analyzed in a
number of studies. From the literature on ALOHA-type algorithms, we mention the
work in {6]}, where the stability properties of the version of the Oontrolled ALOHA
algorithm considered here have been studied, using a Markovian model. The optimal
retransmission policy was derived in (6] using Pake's lemma, but the delay analysis
problem was not addressed.

The delay characteristics of the "0.487" algorithm have been studied in (9 1],
using a different approach. 1In contrast to the method in {9 ), the method proposed

here does not require the computation of steady-state probabilities of the under-

o e L R A L L e e oot D L AL S
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lying Markov chain and, therefore, it is computationally simpler. Furthermore,

g;p‘ o since our approach is based on the asymptotic properties of regenerative processes,

it yields stronger convergence results.
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4 u u £ u
A H 0 H 0 weo W 0 D D
0.05 1.00426 1.00426 0.05782 0.05782 1.65163 1.65163
0.10 1.01983 1.01983 0.14067 0.14067 1.87936 1.87936
0.15 1.05361 1.05361 0.27541 0.27541 2.24265 2.24265
0.20 1.12017 1.12017 0.53225 0.53225 2.87576 2.87576
0.25 1.25676 1.25676 1.14710 1.14710 4.15097 4.15097
0.30 1.59883 1.59883 3.39345 3.39345 7.57485 7.57485
0.35 3.48032 3.51077 |37.04013 39.39037 30.64403 32.83714

Table 1
Delays for the Oontrolled ALOHA
4 £ 4 -
! | Ju ; a
A H, H} W) wy ] D
.01 1.00025 1.0003 .015258 .015258 1.5253 1.5255
<05 1.00395 1.00474 .08234 .082346 1.6348 1.6388
o1 1.025 1.030 .18503 . 1859 1.796 1.8130
«15 1.060 1.061 «3212 «3245 2.000 2.040
2 1.1167 1. 11367 «5162 «5254 2.270 2.352
25 1.2069 1.240 .8243 .8468 2.66 2.80
3 1.356 1.408 1.381 1.434 3.270 3.525
«35 1.627 1.710 2.6088 2.7423 4.358 4.8151
.40 2.2279 2.374 6.64138 6.8603 6.779 7.670
45 4.487 4.8536 35.012 37.871 16.030 18.754
47 9.110 9.916 163.698 178.178 35.125 41.613
.48 21.175 23.122 944.35% 1031.12 85.086 101.452
Table 2

Delays for the *“0.487" Algorithm
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APPENDIX A

We present, in a generalized format, some basic results regarding the
approximate computation of solutions of infinite dimensionality linear systems
(17). lLet A be a denumerable set of indices, and let £ be the space of sequences
X = {x(k)}: A + R. Given a set { cngR, b? €R,i,k€A }, let EL be the subspace

of E defined as follows: ELV = {x: L |c?kx(k)|< w ¥icA }. We define an operator
keA

L : EL > E as follows: y(i) = L;(X) = b? + EAcgkx(k),i €A ,xeEL. A point
k

sk ¢fL, such that,

L

st = L(s) (A.1)

is called a fixed point of the operator L. (A.1) represents an infinite system of

linear equations and a fixed point is a solution to this system. Given an operator
n 1 4 n+1 4 n

L, we define its n-th power L as follows: L (X,) = L(X5), L (X,) = L(L(X,)),

n=1,2,..., provided that X, e, ana L“(xo{ ?FL, for every n > 1. The sequence

A
{x,} = {L"(xo)}, n=1,2,... is called the power sequence of L, with initial

point X,. A fixed point of L that is a pointwise limit of the power sequence of L,

with initial point X, £ 0, is called a principal fixed point of L, and is denoted by

sl. an operator ©O: E9 +E is called a majorant of L, iff,

|cik| < c?k ik €A

|bY| < bg icA

In this case, L is called a minorant of O. The notation X ¢ X', X < X', x,x'eE

means that x(k) < x'(k), (x(k) € x'(k)), k €A . A point X € is called positive

(nonnegative) iff, 0 < X (0 € X). By |xl we denote the sequence defined by
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|x|(k) = |x(k)|, k € A. Theorems Al, A2 below are essentially theorems I, IX § 2
of [17). They relate the existence and uniqueness of a fixed point of L, to the

existence of a fixed point of a majorant © of L.

Theorem A.1 If 0 is a majorant of L, and ©Q has a nonnegative fixed point SG,

;:;": then both © and L have principal fixed points S?, sk. Moreover, 0 < |sL| < s‘2 < g%
b T,
,‘:5. Theorem A.2 If O is a majorant of L, and O has a nonnegative fixed point se,
o [ 5
then the principal fixed point sf: of L is unique in the class E? CE I“, defined as

'\."‘
;"l'é" foll
h".. o) OWS.e
)
W
v x(i)
s E? = {x €E : sup -'-----' < =}(1)
S i€A s4(4)
N
[P A
1Y L
} fq Furthermore, Sy is the pointwise limit of any power sequence of L, with initial point
R
) any point in Eg
-
“‘ .
:'5‘ Theorem A.3 below relates the existence and unigueness of a fixed point of L,
!
: to the existence of a fixed point of a majorant © of L, and it is a consequence of the
b
- theory of regular systems {l17). Its difference from theorems A1, A2, lies in the fact
i U"
’(f.’r
" ‘:‘ that, under the stated assumptions in it, we have, Se = s?.

]
Ay
'." e} Theorem A.3 If O is a majorant of L, and O has a positive fixed point Se,
e
' such that,
W
oy 0
QA by
edd inf =2-=- > 0,
aag ieh 91
)
".
LI then S(,') = se. Therefore, theorem A.2 holds with S? replaced by Se.
AN A
:l' ()
,;9"(.0
X (1) We adopt the convention:
+00
g
i 0 a

- = 1 -= . >

iylyt 0 ! 0 ’ °
,'1‘.:0
Jaiatt
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The following theorem relates the existence and uniqueness of a fixed point

of some operator () to the existence and uniqueness of such a point for another

operator 01, where the latter is not necessarily a majorant of the former.

Theorem A.4 Let 0y, 0, be two operators such that,
0 0
1 2 01
(a) cjx > |cjk| ¥ ik €A, by € [0,@),%i €A
01
(i) 1f 01 has a fixed point S ,.and there exists a sequence gx:A'* R, such that,

XS
N 0,
NS (b) g+8 >0
e
Z"‘ ‘ 04‘

7 (¢) L Jejk gtk)| < =,%i € A
6 xeA
]
#r-‘.\
L 02 04 04
o (@) |by | €(by + g(i) - L cy4y g(k)) M, ¥i €A, for some M > 0.
kil keA
- 0y
B then,0, has a fixed point, § “. 0
4
) 2
; (i) If (a), (b), (4) hold, for g = 0, then S is unique in the

ﬁ&’l
'4'1._1.

0 04

class E« , where E« is as defined in Th. A.2.

=

’:'. (iii) If in addition to (a), (b), (4), we have that,
A
o
W 2, 04
i bi +g(i)- L Cikg(k)
04 keEA
N (e) g+S > 0, and inf ——-emceewccccccnoa- > 0,
J',‘} iEA 01
4: s (i)+g(i)
e 2 then the fixed point S of 02 is unique in the class Eg C E , defined as
o
% . follows.
Tl
N 04 x(i)
R Eg = {XeE : sup I L
":; ieA 0,
4 s (i)+g(i)
M
e % 0
‘::.. s is the pointwise limit of any power sequence of 02, with initial point in Eg.
Wy
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Y
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Lemma A.1 If {s(1)} , {§(i)} : A » R, and,

A.4
Proof
- 04 0, 04 04
Part (i):Let Y = (S +g) M. Since S = (4(S ), we have that,
04 04
Y /M-g=07 (Y /M-q)
or
04 04 0y 0q 04
y (i) = M(bj +g(i) = I cjrg(k)) + L ci v (1) (A.2)
k€A keA

From (A.2) and (b), we see that the operator O with parameters,

o 04 04
b = M (b; +g(i)- i ¢y 9(k)), i €A
0
Pik = osx 1k €A,
0

has a nonnegative fixed point s@ =y 1. Because of (@) and (d), © 4is a majorant
of (3. From theorem A.1, we conclude that 0, has a fixed point.

0 0
Part (ii) : This follows from theorem A.2, by observing that S*= Ms*l, and

0
thorefore, Es = E*l.

Part (iii) : Under condition (e), theorem A.3 is applicable, and shows the uniqueness

04
of the fixed point in Eg .

The following lemma is useful in identifying the class within which the fixed

point of an operator is unique, in the case where the solution of the majorant is not

exactly known.

(a) {s(1)}, {§(1)} are nonnegative

s(i)

——— K ®

(b) sup
ieA (1)

s(i) —
(c) inf—w—-=== >0, - )

ieA (1)
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ARRESEIE R R Mi WA LU, :



. Y1 o sl e TR T T TR T

x €E

. L.e. the classes

x(i) x(i)

X Eg = {xeE: sup l----l < ®} and EF = {xe&: sup l—---l < ®»} coincide.
K ieA s(i) ieA  §(1)
»
'“;! Proof For the "if" part let
e

'
B |x(1) |
oy sup -----—- =A<+ |x(i)] < As(i), ic¢€A (A.3)
-,—:’ ieA s(i)
1—““'
BRI Because of (b), we have,
[N
P .
o s(i) < B f(i), i €A, B¢ = (A.4)
A
0:::1' lx(i’l
a0y From (A.3), (A.4), we conclude that |x(i)| SAB (i), i €A ,or sup =———-- SABK®,
® ieA (1)

(.
i}} The proof of the “only if" part is similar.

it
"
:}3; The lemma below is used to establish the existence of a fixed point st of an
\ operator L, as well as upper and lower bounds on st. Monotonicity is proved by induc-
e

tion, while the existence of a fixed point is established via the extended monotone

- convergence theorem.
%

_)u Lemma A.2 Let L be an operator with nonnegative parameters, i.e. :
NV
b e L
S ci‘k 20 i,k €A, b; >0, icA If there exist points Y°, x° eEL,
EJ such that,
o
L J (a) ¥° <x°
- 1"':
i (b) x° >L(x°) >0
1"$-| —
% (c) ¥° < (Y%,
LB,
@ then the power sequence of L, with initial points X° (Y°),decreases (increases)
Lo
. L oL 0 2L ¢ oL ¢ O
"{V monotonically and pointwise, to a fixed point S(S"). Furthermore, Y € S~ € 8§~ < X,
L
28 and SL > 0.
¢ - _—
{ It is generally difficult to establish tight bounds on SL, using the method
D,
(
?. exhibited by lemma A.2. The following theorem provides an alternative method for
W
1S
Nh the computation of such bounds. Its proof is based on theorems A.l, A.2, and A.3,

'y and is straightforward.
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A.6

Theorem A.5 Let L be an operator with nonnegative parameters:

oL

ik 20, i,keA, bi' 20, i €A .
Let SL be a nonnegative fixed point of L, for which it is known that
tE < sl < UL,LL, SL, ot e Y. Let AjC:A, A; be the complement
of Aj, and let ¢y Fj, Oj be the operators with parameters,
: L .

o _ o _ Py goiic s doweh

Cik = Cik = Cik = X
0 , otherwise

L L
b + £ gfk s (k) , ieAj

KEA
b1;= ]
0 _ + otherwise
L L L
Qj k€ ]
bi =

,» otherwise

o; + z cc?k uL(k) ;, Os

ej keAj .
bi =
0

Then, (a) Fj has a nonnegative fixed point S

L
> by, 1ehy

. oOtherwise

J
, such that,

o {SLm o1
s (i) =
0 s Otherwise

WP N N T VT T WU T T T WO W U WO ey WY

o,
J
(b) bj is a minorant of Fs, and its principal solution S « is such that,
¢. F. F
j j h|
0 € Ss € S« <Ss Gj
bj
(c) Oj is a majorant of FB, and if sup ==-- < *, then Oj has a
1EA. L.
J b |
nonnegative fixed point S ., such that,
F. Ja .
i 9 ©;
0 < S« < S« < S

- . ew R
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) W,
ST N DR T R SN N X A e

J AR
~ "-'\ \')'..-"' '.‘
.

A RANA LA LANN A DS

N
A

e e R e W R
J“. i,\ J‘\‘-% s




]

g' A./
3 (d) If in addition to the previous conditions, also s* > 0, ana
]
: bL
i

inf ———-- > 0, then the operators ¢4, Fjr 0y have respective

ieA, sP(i)
2 e;  Fy o
H unique fixed points, S S ., S . in the class
‘ Fy |x(1) | o3 Fs 9

E~ =(x eE : sup --——-- < ®®), and § <s <s

i€A Fj
s (i)

Remark If Aj is a finite set with bg > 0, Vi € Aj, the conditions in (c) and (d) are

clearly satisfied. If in addition, p; = 0, = b?, and Aj/’A, then it can be
F. 0.
J L J L . .
shown that, S, + S¥, and s, *+ S*, pointwise.
jre B R

The quantities of interest in the various random access algorithms are statistics
of random variables, where many of thoge statistics are fixed points of some operator L.
Theorem A.6 is used to justify the latter statement and appeared in [l4].

Theorem A.6 Let L be an operator with nonnegative parameters that has a unique

|4 |
nonnegative fixed point s’ in the class E = {er sup =-=== < ®},
2 i€eA g(i)

Let {xin}, {xi}, i €A, n € N, be families of random variables, such that,

(a) 0 < xjr_‘/xi, a.e. for every i €A

(b) x? < M g(i), a.e. for every i €A , M o<

() £, < L(£ ), £ = L(£), where £ (i) = E {x;™}, £(1) = E {x;}
Then, £ coincides with the unique fixed point Sl in Eg.
Proof

L

We observe that because of (b), anE;’ and tecause of (c) and lemma A.2, f < S
n =

From (a) and the monotone convergence theorem, we have that f increases to f
n

pointwise; thus, f < SL, which implies that feEg. The assertion now follows

from the fact that f is a fixed point of L.

— —— - e =
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APPENDIX B

In section 4.2, we saw that the computation of conditional expectations,

E{X|d}, is required. In this appendix, we show that those conditional expectations

can be computed with high accuracy. Let us define,

E{X|d, k} : The conditional expectation of the random variable X, given that
the arrival interval contains k packets, and has length d.

Then,

o k
E(x|a} = I E{x|d,kjed 2D

k=0

(B.1)

Using the rules of the algorithm, the quantities E{XId,k} can be computed

recursively , as follows.

E{%2/d,k} = E{%2/1,k}; ¥ deF

E{2/1,0} = E{2/1,1} = 1 (B.2)
k-1

E{2/1,k} = (1+P§+E{z/1,k-1}P}+ z E{z/l,i}v§)/(1-2pg); k>2
i=2

where Pk = (%)Z-k . L

E{8/d,k} = d E{8/1,k}; ¥ deF
E{6/1,0} = E{6/1,1} = 1 1 . (B.3)
B(/1,k} = (PK+plek E(8/1,k-1}PY+ T B{6/1,1)P5)/(2-(1-B)); ke > 2

i=2

E{22/d,k}= E{22/1,k};V deF

E{22/1,0}= E{22/1,1} = 1

2 ) Kk . k. 2 k=1l 5 K
E{L°/1,k}= (2E{2/1,k}+25{2/k,k—1}'P1+P1-1+P1E{2 /1,k-1}+ £ E{2 /1,1}pi)/
i=2
(1-285); k > 2 (B.4)

E{62/d,k}= d®E(62/1,k} ; ¥ deF

£{62/1,0}= E{62/1,1} = 1

E{62/1,k}= (.25(P§+pg)+.5 P%E{G/l,k}+.5 PT E{6/1,k-1}+.25 E{62/1,k-1}p§+
k-1

25 1 (6250 /Y ks 2
i=2

‘.5
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B.2

E{82/d,k} = d E{6%2/1,k} ; ¥ deF

E{6%/1,0} = E{62/1,1} = 1

E{82/1,k} = (E{G/l,k}+.SPtE{£/1,k—l}+.5P§E{£/1,k }+.5 P:+.5E{5/1,k-l}P:+
-
+.5PXE(62/1,k-1}+.5 T E{Gl/l,i}Pl;)/(l—Pg) k> 2 (B.6)
i=2
E{N/d,k} = E{N/1,k}; ¥ deF
E{N/1,0} = 0, E{N/1,1} =1
K k-1 K
E(N/1,k} = PMPIE(N/L-1}+ & BN/1,105; k> 2 (B.7)
i=2
E{w/d,k} = E{w/Ll,k}; ¥ deF
E{w/1,0} =0, E{w/1,1} =1 (8.8)
k K k-1 k
E{w/1,k} = (Pl+E(N/l,h}+PIE(N/1,k-1}+P§E{w/1,k-1}+ z E{w/l,k}P:)/(l-ZPo); k>2
i=m2
E{y/d,k} = d E{y/1,k}; ¥ deF
E(/1,0} = 0, E{y/1,1} = % (8.9)
k K k1 k
E(W/1,k} = (B{N/1,k}(1-PQ)-PIE(N/1,k-1}+.SE+E{Y/1, k-11P5+ T E(Y/1,1}P%)
1=2

12 1P 5 k> 2

From formulas (B.2)-(B.9), we see that a finite number, M, of terms from the

it fnite SerIes (B ) "cdn B8 easily computed. Also, For lirge & values, andbaved”
on the recursive expressions, simple upper and lower bounds on E{X/d,k} can be

o -ad QX
developed. Those bounds can be used to tightly bound the sum £ E{X/d,kl}e ST
k=M+1 :

Remark It can be also proved that

E{N/d} = AE{6/4d}

E(y/d} = Ad E{8/d} - AE{6%/d)0.5
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