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Towards Autonomous Vehicles

The Mobile Robot Laboratory Staff

Introduction

The CMU Mobile Robot Lab was started in 1981 to pursue
research in perception, planning and control for autonomously
roving robots. The short and long range practical applications
of robot mobility aside, we think our work directly addresses the
problem of building a generally intelligent machine. Among
living things, only mobile organisms exhibit the sensory and
behavioral characteristics that are the basis of our own intelli-
gence. A roving entity encounters a wide variety of circum-
stances, and must perceive and respond with great generality to
function effectively. We feel our research makes discoveries that
parallel the evolution of intelligence in mobile animals. The
selection function in both cases is the same—the effective func-
tioning of a physical mobile entity in a varied and uncertain
world. We think this experimentally guided bottom up approach
can find some solutions, such as the secret of effective common
sense reasoning, more effectively than the seemingly direct
traditional top down approach to artificial intelligence.

Our first funding came from an Office of Naval Research con-
tract to develop land-based technology for eventual application
to autonomous underwater robots. The subprojects were design
and construction of highly maneuverable vehicles, develop-
ment of stereo and sonar vision algorithms, and algorithms
for path planning and higher level control. New developments
were to be demonstrated in working systems that performed
various tasks.

We chose two tasks, one simple and one complex. In the first,
the vehicle was to travel to a goal location specified relative to its
starting point, avoiding obstacles en route. This would encour-
age efforts in stereo, sonar, path planning, and vision-based
vehicle motion estimation. The second task—finding, opening,
and passing through doorways—was to serve as a longer term
focus for work on maneuverable vehicles, object recognition,
and distributed control.

Our first generation of obstacle avoidance systems now work,
and we have taken first steps toward door-opening. We've built a
simple vehicle to support obstacle avoidance work and a more
complex vehicle to serve our longer term plans. Two obstacle
avoidance systems have been tested, one relying solely on stereo
and the other on sonar. An initial design for a distributed
control system has been tested in simulation. We are preparing
to start a second phase of our work which will extend the stereo
capability towards shape extraction and merge stereo and sonar
into a single system.

Overview
Our main subprojects pertain to vehicles, manipulators, servo

control, stereo, sonar, and distributed processing. We will dis-
cuss each of these briefly before launching into the details.

Our long term plans call for an accurate, very maneuverable,
self-powered vehicle carrying a small manipulator. Pluto
(generically the CMU Rover) was designed to meet these
requirements. Among its several innovations was an omnidirec-
tional drive system for accurate control of robot motion in three
independent degrees of freedom (forward/backward, lefuright,
and rotation). Our design used three complex wheel assemblies,
each with two motors to independently drive and steer its own
wheel. Coordinated control of the six motors was a more diffi-
cult problem than we had anticipated, and is now being attacked
as a research problem in its own right.

For the sake of the vision and navigation research we constructed
a much simpler second vehicle, Neptune. Power and control
information come via a tether. Two synchronous AC motors
steer and drive the robot, switched by a single onboard processor.
Equipped with two vidicon cameras and a ring of sonar range
finders, Neptune is robust and has been used in visual and
sonar mapping, navigation and obstacle avoidance experiments.

There are several other hardware efforts in progress. We are
building a third vehicle, Uranus, with a new, more easily con-
trolled omnidirectional drive system to carry on the longer
range work stalled in Pluto. We are working on a special-purpose
manipulator for grasping doorknobs and have nearly com-
pleted a video digitizer/display that shares memory with a VAX.
In addition, we are exploring processor and digitizer configura-
tions for use on board the vehicles.

Pluto has been the center of our work on servo control. To
control the motion of Pluto, we successfully designed and
implemented an independent motor controller for each of its
six motors. However, when we attempted to run the controllers
simultaneously to obtain coordinated motion, the robot experi-
enced severe oscillations because of dynamic coupling torques
in the overconstrained wheelbase. These coupling effects could
not be practically compensated using independent controllers
executing on independent processors. The undesirable per-
formance inspired us to work on the more general problem of
the modeling and control of wheeled mobile robots. We are
beginning the investigation by developing precise kinematic
and dynamic models to be used as a basis for an integrated
control strategy for Pluto's entire wheelbase. We plan 1o apply
our modeling methodology to simulate wheeled mobile robots
on a computer. This will enable us to test control strategies on
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the computer simulated robot without the need for time-
consuming hardware construction.

On the software side, we have concentrated on obstacle avoid-
ance and distributed processing. We have two obstacle avoid-
ance systems, one using stereo and the other using sonar. Both
use a new path planner first developed for the stereo system. We
have also designed and simulated the operation of a communica-
tion mechanism for distributed processors.

The stereo work improves on the system buiit for the Stanford
Can [7], which digituzed nine images at each robot location and
used correlation to track isolated feature points as the robot
moved. We have reduced the number of images digitized per
location, added constraints that improve the feature tracking
ability, and are now modifying the motion estimation algorithm.
In the process, we have reduced the runtime of the system by an
order of magnitude. The robot can now visually navigate across
a large room in under an hour on a VAX-11/780.

The sonar system uses data from a ring of twenty-four wide
angle Polaroid range finders to map the surroundings of an
autonomous mobile robot. A sonar range reading provides
information concerning space occupancy in a cone subtending
30 degrees in front of the sensor. The reading is modelled as
probability profiles projected onto a rasterized map of occupied
and empty areas. Range measurements from multiple points of
view (taken from multiple sensors on the robot, and from the
same sensors after it moves) are systematically integrated in the
map. Overlapping empty volumes reinforce each other, and
empty volumes serve to condense the profiles of occupied
volumes. The map resolution improves as more readings are
added. The final map shows regions probably occupied, proba-
bly unoccupied, and unknown areas, with weights in each raster
cell showing the confidence of these inferences. The method
deals effectively with clutter, and can be used for motion plan-
ning and for extended landmark recognition.

The sonar and stereo systems both plan robot paths with a new
algorithm called path relaxation. It was first developed for the
stereo vision navigator, but coincidentally has a structure per-
fectly suited to our sonar mapper. Space is represented as a
raster of weights as in the sonar maps. Costs are assigned to
paths as a function of their length and the weights through
which they pass. A combinatorial search on the raster grid
coarsely finds a least cost path, then a relaxation procedure
perturbs the coordinates of the vertices of this path to smooth it
and reduce its cost.

Our work on distributed processing began with a design for a
distributed planning and control system for the several proces-
sors of Pluto. A system has been designed around a network of
message-passing kernels, a central blackboard module to repre-
sent state, and a notion of master/slave processes wherein mas-
ters monitor the blackboard while slaves handle external events.
A small version of this system has been tested in simulation. We
plan to give the design a more rigorous test soon with a distri-
buted version of the sonar navigation system.

We have begun a new effort under the DARPA Autonomous
Land Vehicles project in cooperation with other groups in the
Robotics Institute led by William Whittaker and Takeo Kanade.

The shor term goal of this project is to build a system to follow
roads; the long term goals include obstacle avoidance, off-road
travel, object recognition, and long range navigation. The vehi-
cle for this project is the Terregator, a large mobile robot built by
Whittaker's group.

Vehicles

Our research plans called for a flexible vehicle to support work
on vision, vision-guided manipulation, and the planning issues
that come with mobility. Part of the design philosophy was the
perception that a mobile wheelbase could be considered part of
an attached arm. The weight and power of the arm can be
reduced by using the mobility of the vehicle as an enormous
reach substitute for the arm’s shoulder joint. Such a strategy
works best if the vehicle is given a full three degrees of freedom
(forward/backward, lefuright and compass heading) in the plane
of the floor. Conventional steering arrangements as in cars give
only two degrees at any instant. This approach to manipulation
is most effective when the wheels can be servoed very accurately
and rapidly.

Other properties we desired in a robot were that it run
untethered, that it use multiple sensory systems, and that it
carry some onboard processing power to reduce the communica-
tions bandwidth and perform some local decision-making.

Pluto, our first vehicle, was built to the above specifications. A
second, simpler vehicle called Neptune was subsequently built 10
support obstacle avoidance work. A third vehicle, Uranus, is cur-
rently being designed to test a new concept in omnidirectionality.

Pluto

Physically, Pluto is cylindrical, about 1 meter tall, 55 centimeters
in diameter, and weighs about 200 pounds (Figure 1a). Its three
individually steerable wheel assemblies give it a full three degrees
of mobility in the plane (Figure 1b). The control algorithm for
this arrangement steers the wheels so that lines through their
axles always meet at a common point. Properly orchestrated,
this design permits unconstrained motion in any (2D) direction
and simultaneous independent control of the robot’s rotation
about its own vertical axis.

To permit low-friction steering while the robot is stationary,
each assembly has two parallel wheels connected by a differen-
tial gear (Figure lc). The drive shaft of the differential goes
straight up into the body of the robot, and a concentric hollow
shaft surrounding the drive shaft connects to the housing of the
differential. Turning the inner shaft causes the wheels to roll
forward or backward; turning the outer one steers the assembly,
causing the two wheels to roll in a circle.

Each shaft is driven by a brushless DC motor with samarium-
cobalt permanent-magnet rotors and three-phase windings. The
motor sequencing signals come directly from onboard micro-
processors, one for each motor, which read shaft encoders to
servo the motors to the desired motion. A seventh processor, the
conductor, coordinates the action of the six motor sequencing
processors. Another processor reads the shaft encoder outputs
and monitors the motor torques to provide an onboard dead-
reckoning estimate of the vehicle’s position. Power for this ensem-
ble is provided by a set of sealed lead-acid batteries.
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Pluto was to be equipped with a collection of sensors including
cameras, sonar, and bump detectors and was to be used in a
series of advanced experiments in vision, navigation and
planning. The bulk of the computation would be performed on
aremote VAX-11/780, with communication taking place over a
microwave link for video and a radio link for other data. Extra
processors were included in the design to service the sensors
and manage the communication link.

This plan has been waylaid by a difficult and unexpected prob-
lem in controlling the six motors of the omnidirectional
wheelbase. We are able to drive the robot successfully when one
wheel at a time is energized. but large oscillations occur when all
are running simultaneously. The problem is caused by interac-
tions between the servo loops of the individual actuators through
the redundant degrees of freedom in the wheels. A similar
situation arises in a milder form in other locomation systems
with redundant degrees of freedom. especially legged vehicles.
We are now investigating control algorithms and processor archi-
tectures for this problem, but in the meantime Pluto is unavailable
for experimental work with our vision systems. Neptune was
built to fill the gap.
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Figure 1b. Pluto subassembly: card cage, wheel assemblies, etc.

Neptune

We decided to build quickly, but carefully, a simple and robust
platform for obstacle avoidance experiments. Neptune (Figure
2) was designed to eliminate many potential problems. It is a
tethered. remotely powered tricycle with a lone onboard
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Figure lc. Diagram of a wheel assembly illustrating differential
gear, concentric drive shafts

processor. To simplify servoing and remove the need for shaft
encoders, synchronous AC motors drive and steer the front
wheel while the rear wheels trail. The vehicle is about 2 feet tall,
4 feet long, and 2 feet wide. It weighs about 250 pounds. It is
currently configured with two black and white vidicon cameras
on fixed mounts and a ring of twenty-four Polaroid sonar range-

Figure 2. Neptune with sonar and stereo

finders. The range-finders have a useable range of about 35 feet
and a 30 degree beam width, so that the beams of adjacent
sensors overlap by about 50 percent. The vehicle moves at a
constant velocity, with angles and distances controlled by timing
the motors with an onboard MC68000.

Neptune is an unqualified success. It has been our workhorse
for obstacle avoidance and indoor road following experiments
and will be used in the future to test extended vision algorithms
and to merge stereo and sonar into one system.

Uranus

Omnidirectionality appears to be an idea whose time has come.
While Pluto was in gestation, several new methods for achieving
omnidirectionality were published and patented. One, developed
at Stanford, is based on novel wheels that have passive roliers
instead of tires, oriented at right angles to the wheel (Figure 3a).
The rollers permit the wheel to be pushed passively in the
broadside direction. Three such wheels, each with its own motor.
mounted around a round wheelbase allow smooth motion in
three degrees of freedom. Regardless of the direction of travel.
one wheel or another is always travelling nearly broadside, and
this is a weakness of the system. It requires an expensive and
potentially troublesome bearing system for the rollers, and suf-
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Figure 3a. Sketch of Stanford wheel

fers from a low ground clearance limited by the roller diameter,
nd inability to travel on soft ground. Despite these limitations,
it would have been a far more fortunate design choice than the
individually steerable wheels of Pluto.

Another new design for omnidirectionality was invented recently
in Sweden. It too uses wheels surrounded by passive rollers, but
the rollers are angled at 45 degrees to the wheel plane (Figure
3b). One of these wheels can travel broadside on its rollers, but
the whole wheel must simultaneously turn, resulting in a screw-
like motion. Like screws, these wheels are not mirror symmetric
and come in right handed and left handed varieties. An omnidi-
rectional vehicle is built with four of these wheels, mounted like
wagon wheels, but with careful attention to handedness. The
right front wheel is right handed and the left front is left
handed, but the right rear is left handed and the left rear is right
handed (Figure 3c). Each wheel is turned by its own motor. To
move the vehicle forward, all four wheels turn in the same
direction, as in a conventional wagon. However, if the wheels on
opposite sides of the vehicle are driven in opposite directions,
the vehicle moves sideways, like a crab. By running the front and
back wheels sideways in opposite directions, the vehicle can be
made to turn in place. Because the rollers are not required to
turn when the vehicle moves in the forward direction, the Swedish
design has good burr » and soft ground handling ability in that
direction. In our experience-scarred judgement, the Swedish
design is the most practical omnidirectional system. It is being
used outside of an experimental context, in commercially availa-
ble wheelchairs and factory transport vehicles.

Uranus, the Mobile Robot Lab's third construction, is being
designed around this proven drive system to carry on the long
range work stalled in Pluto. We obtained the wheels from
Mecanum, Inc. of Sweden, which holds the license. Pluto’'s many
lessons guide us in this project. In just about every way Uranus is
simpler than Pluto. There are four motors, not six, no concen-
tric shafts and only a single, benign, redundant interaction
mode among the wheels.
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Figure 3b. Swedish designed wheels
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Figure 3c. Sketch illustrating handedness of wheels

A Manipulator for Door-opening

We have decided that visually locating. opening and passing
through a door is an excellent task to guide development of
advanced vision, planning and control work. To this end, we've
designed and are building a special arm to be mounted on
Uranus (Figure 4a).

The arm design is simultaneously strong, light and low-power
because it exploits the mobility of the robot. The arm has four
joints: a vertical translational joint, rotational shoulder and
elbow joints with vertical axes, and a rotating wrist. The redun-
dancies between the shoulder and elbow joints and the rotation
of the vehicle permit the robot to hold the door in a stable, open
position while the body of the robot passes through the doorway.
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Figure 4a. Arm to be mounted on Uranus

F igure 4b. Gripper and collar

The arm ~ ~sign uses the robot’s strength to handle doors. The
manipuiator’s joints are only lightly actuated, since the motors
in the joints are used only for positioning the arm under no
load. Once the gripper secures a doorknob, the elbow joint
becomes a totally passive pivot and the base joint is alternately
locked into position and released. Neither joint's motor is actu-
ated again until the arm releases the door.

The gripper itself is constructed from a janitorial lightbulb
extractor (Figure 4b). This is a spring-loaded, cylindrical device
with a sliding collar. With the collar retracted, the gripper is
pushed over the lightbulb (or doorknob); when the collar is
tightened the gripper holds fast. Our manipulator uses this
gripper with a motorized collar.

Mobility Control for Wheeled Mobile Robots

It has become clear to us that the complex mechanical designs of
highly maneuverable wheeled mobile robots, such as Pluto and
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Uranus, require sophisticated coordinated controllers for effec-
tive motion control. Over-constrained multiple-wheeled robots,
in particular, are a major challenge. We initially approached the
problem by neglecting the motor interactions and designing
independent control algorithms for each of the motors on Pluto.
We found that only minimal mobility control was possible in this
framework [9]. The severe motor interactions we observed pro-
vided a motivation to develop better control algorithms.

Pulse-Width Modulation
Control of Brushless DC Motors

We implemented pulse-width modulation for controlling the
brushless DC motors which actuate the wheels of Pluto [10)].
The brushless DC motors utilize strong samarium-cobalt perma-
nent magnets and are desirable for use on a mobile robot because
of their high torque-to-weight ratio, ease of computer control,
efficiency, and simple drive circuitry. We control each motor
directly from a microprocessor using semiconductor power
transistors. These devices operate very efficiently in the switching
mode needed for pulse-width modulation.

Our theoretical and experimental results show that the motors
can be modeled by linear discrete-time transfer functions, with
the pulse-width playing the role of the control signal, if the
pulse period is chosen much smaller than the time-constants of
the motors. These models allow us to apply classical control
engineering to the design of the motor control system. We have
successfully designed controller structures and calculated feed-
back gains which provide each wheel with the ability toservotoa
desired position and velocity within a specified time interval.

Wheeled Mobile Robot
Simulations for Controlier Design Studies

Our experience with Pluto prompted a systematic study of the
problem of controlling wheeled mobile robots, both for Pluto’s
sake and for future designs. Our present approach to the prob-
lem is to develop precise kinematic and dynamic models of the
robots. These models will form the basis of computer simula-
tions of the robots on which proposed control strategies can be
tested. Using computer simulations, we will have the ability to
evaiuate the performance of a robot/controller combination
before spending much effort and expense in hardware
construction. Adaptive control algorithms show promise for
providing better robot control because they are able to adapt to
coupling torques from other motors and to a changing floor
surface or robot load. The controllers which demonstrate the
best performance in simulations will be implemented on actual
robots to verify both the accuracy of the simulations and the
performance of the controllers.

Stereo Vision

The obstacle avoidance task prompted our first major work on
robot perception. At the broadest level, the percepuon problem
has two main components: understanding how to use individual
sensors and understanding how to combine multipie sensors in
asingle system. We have addressed the first problem by develop-
ing rudimentary navigation systems that use vision and sonar
separately. These systems are described in this and the following




9
>
L3
L -
'
y e
»
~

v -
’

- e

.

Fasln

section. Our work on integrating these two systems is only just
beginning and will not be described in this paper.

Our stereo system continues the work done by Moravec with the
Stanford Cart [7]. The basic task requires the robot to navigate
from its initial position to a specified goal location, avoiding any
obstacles in between. Stereo is used to detect obstacles and
estimate the motion of the vehicle (actually avoiding the obsta-
cles is discussed later under path planning). The Cart approach
is to detect local, high variance features in one image, to use
stereo correspondence to determine the three-dimensional posi-
tions of the features, and to track the features over time to
determine the motion of the vehicle. Our work with these algo-
rithms has focussed on the following issues:

* the number of stereo images used at each point in time
¢ the interest operator used to pick features
* the algorithm used for tracking

After reviewing the algorithms used by the Stanford Cart, we
will discuss each of these issues in turn.

Vision in the Stanford Cart

The Stanford Cart used nine-way stereo at each robot position
to detect and track obstacles. These images were obtained by
stopping the robot and translating a single camera in two inch
steps along a slider mechanism. An interest operator was applied
to the center image to pick features, then a coarse to fine
correlation process was applied to locate the features in the
other eight images. Histogram-based triangulation from the set
of match locations provided the initial three-dimensional obsta-
cle positions. Obstacles were tracked as the robot moved by
applying the correlator to the new center image to reacquire the
old features. Then the features were matched in the other eight
new images to obtain distances to the obstacles from the new
robot location. Finally, least squares was used to find a best fit
transformation mapping the old feature locations into the new,
thereby obtaining the vehicle motion. Figure 5a illustrates the
process of picking, matching, and tracking features through two
steps of vehicle motion. The whole system moved the Cart in
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one-meter steps, taking about 15 minutes per step on a DEC
KL-10.

Number of Images

The great expense of using nine images prompted the use of
only two-camera stereo in our current system. Since the redun-
dancy provided by the nine images was a major strength of the
original system, this decision initially lowered the rehability of
the matching algorithm; to coinpensate, the stereo matcher now
makes fuller use of constraints which reduce the search area in
the second image. The constraints are as follows (Figure 5b).
Between a stereo pair, the known camera geometry restricts
possible matches to lie on a single line in the second image (the
“epipolar line”). This line is the intersection of the image plane
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Figure 5a. Stanford Cart stereo matching

Figure 5b. Diagram of the epipolar and disparity constraints




P N T TP Y ce et

. P IR I
AT SIS AT A

of the second camera with the plane containing the obstacle and
the two centers of projection. Near and far limits on the distance
to an obstacle of 1.5 meters to infinity impose “disparity limits”
that further restrict the search to a segment of the epipolar line.
None of these constraints per se are available when features are
reacquired in a new set of images. However, the known position
of the obstacles together with an estimnate of the vehicle motion
still permit searches to be restricted to subwindows of the new
images.

We have found that when all of the constraints are used, the
qualitative system performance, measured in terms of the per-
centage of features matched correctly and the accuracy of motion
estimates, is as good with the two-camera system as it was with
the old system of nine images. The new system runs in about 35
CPU seconds per step (three to four minutes of elapsed time) on
a VAX-11/780.

Although this experience demonstrates the effectiveness of two-
camera stereo, the use of redundant images remains an interest-
ing question. Two particular areas to be explored are the use of
three cameras, which offers the ability to detect mismatches,
and the use of the redundancy provided by motion. We expect
to examine these areas in the future, both theoretically and
empirically.

Interest Operators

The interest operator is designed to pick small patches or fea-
tures in one image that can be reliably matched in another. In
general, this requires that the patch exhibit high intensity varia-
tions in more than one direction to improve its localizability in
another image. For example, edges show high variation in the
direction of their gradient, but little variation in the direction of
their length, making them poor to localize in that direction.

Ostensibly, a better interest operator will lead to a higher likeli-
hood of correct matches. Many operators have been reported in
the literature [11, 4], but no convincing evidence shows that any
one operator is superior. Therefore, we evaluated the relative
performance of a number of operators in the context of our
system [16). The operators used were those of Moravec [7],
Kitchen and Rosenfeld [4], and several new operators we
developed within our lab. As a control, a set of features were also
picked by hand. The criterion used in assessing the perform-
ance of an operator was the number of features, from an initial
set of forty picked by the operator, that could be correctly
matched in another image. Here correct means that the match
location was within a pixel or two of the best match subjectively
as judged by the experimenter. Results were averaged over a
number of trials with different images. Experiments were also
run with and without the constraint offered by epipolar lines
and disparity limits.

We found that rates of matching success showed very little
variation between the better operators, which included the
Moravec and Kitchen and Rosenfeld operators, and two of our
new ones. The rates varied from about 60% correct in difficult
images with no matching constraint, to over 90% when ali con-
straints were used in less difficult images. On the whole, the
Moravec operator performed slightly better than other opera-
tors and only a little worse than manual feature selection. More
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importantly, we found that the improvement bought by the use
of search constraint was much more pronounced than that
obtained by using different operators. We conclude that our
research emphasis should no longer be placed on operators
(since the Moravec operator is cheaper than, and at least as
effective as other candidates), but should be placed on getting
the most out of the available constraints and image redundancy.

Tracking and Motion Estimation

The Stanford Cart tracked features and estimated the motion of
the vehicle as separate operations. Tracking was performed by
searching for features one at a time in new images. Bad matches
were then pruned with a heuristic that required the three-
dimensional distances between pairs of features to remain the
same over time. That is, objects that appeared to drift relative to
other objects were deemed incorrect and were ignored. Motion
estimation was then done by finding the transformation that
minimized the least squared error between new and old feature
positions.

This approach is unsatisfactory for two reasons. First, it makes
poor use of the assumption that objects in the environment do
not move. This is a valuable assumption and it underlies a large
part of the Cart software; for example, it shows up in the
pruning heuristic just mentioned and in the fitting of a single
transformation to all feature points. The problem is that the
constraint this assumption ~ffers is employed oaly after feature
match positions have been decided, which is too late. The
correlator matches one feature at a time, without considering
the locations of features matched previously; however, each new
match decision implies constraint on possible locations for subse-
quent matches. Thus, the Cart algorithms allowed inconsistent
matches to be made initially, then tried to catch them later. It
would be preferable to ensure from the outset that matches were
mutually consistent.

The second objection to the Cart approach is that it throws away
image intensity information too early. Despite the best efforts of
the interest operator, correlation peaks for individual features
may be fairly broad, so that it makes little difference locally
which pixel in a small region is chosen as the match. The actual
location of the peak may be strongly influenced by noise in such
cases. However, the correlator will pick the best peak and pass it
on; a poor choice at this stage has the potential to skew both the
depth estimate for the feature and the vehicle motion solution.
It would be better to somehow capture the uncertainty in the
match location and reflect that in other calculations.

We have addressed the first objection by using dead-reckoned
estimates of vehicle motion to constrain the searches made by
the matcher. This requires some tolerance to allow for errors in
the dead-reckoned estimate, however, and in Neptune the toler-
ance must be fairly large. A better approach that addresses both
objections has been developed by Lucas {5]. This is an iterative
registration method that directly incorporates the assumption
of stationary objects. An error measure for a trial transforma-
tion is defined to be the squared difference of image intensity
between a feature in the previous image and its projected loca-
tion in the new image, summed over all features. Starting from a
dead-reckoned motion estimate, the known three-dimensional




feature positions are projected into the new image, the error
measure is computed, and Newton iteration is employed to
modify the transformation to minimize the error measure.
Greater tolerance for errors in the initial estimate is obtained by
applying the algorithm first to blurred versions of the image,
then to successively sharper images. Lucas has shown that the
algorithm works well, with synthetic and real images, for a single
step of motion when the feature distances are given a priori. We
are currently adapting the algorithm for use in our system.

We should note that another answer to our second objection is
given by the work of Gennery (3], who used a correlator that
estimated a two by two covariance matrix for the match location
of a feature; that is, the matrix captured that broadness of the
correlation peak. These matrices were propagated into covari-
ance estimates for three-dimensional feature positions and for
camera motion. We have not determined what role this idea will
play in our future systems.

Sonar Mapping

Primarily because of computational expense, practical real-world
stereo vision navigation systems [7, 14] build very sparse depth
maps of their surroundings. Even with this economy, our fastest
system (6] takes 30 to 60 seconds per one meter step on a | mips
(millions of instructions per second) machine. Direct sonar range
measurements promised to provide basic navigation and denser
maps with considerably less computation. The readily available
Polaroid ultrasonic range transducer [13] was selected, and a
ring of 24 of these sensors was mounted on Neptune. We find
sonar sensors interesting also because we would like to investi-
gate how qualitatively different sensors, such as a sonar array
and a pair of cameras, could cooperate in building up a more
complex and rich description of the robot's environment.

Approach

Multiple wide-angle sonar range measurements are combined
to map the surroundings of an autonomous mobile robot. A
sonar range reading provides information concerning empty
and occupied volumes in a cone subtending 30 degrees in front
of the sensor. The reading is modelled as probability profiles
(Figure 6a) projected onto a rasterized map, where occupied
and empty areas are represented. Range measurements from
multiple points of view (taken from multiple sensors on the
robot, and from the same sensors after robot moves) are system-
atically integrated in the map. As more readings are added, the
area deduced to be empty expands, and the expanding empty
area encroaches on and sharpens the possibly occupied region.
The map becomes gradually more detailed. The final map
shows regions probably occupied, probably unoccupied, and
unknown areas. The method deals effectively with clutter and
can be used for motion planning and for extended landmark
recognition. It was tested in cluttered environments using
Neptune.

For navigation and recognition we developed a way of convolving
two sonar maps, giving the displacement and rotation that best
brings one map into registration with the other, along with a
measure of the goodness of the match. The sonar maps are very
useful for motion planning. They are denser than those made
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Figure 6a. Sonar beam probability profiles

by our stereo vision programs and computationally about an
order of magnitude faster to produce. We are using them with
the path relaxation method [15} to plan local paths for our
robot.

The Sensor

The sonar devices being used are Polaroid laboratory grade
ultrasonic transducers [13). These sonar elements have a useful
measuring range of one to thirty-five feet. The main lobe of the
sensitivity function corresponds to a beam angle of 30° at -38
dB. Experiemental results showed that the range accuracy of
the sensors is on the order of 1¢ . We are using the control
circuitry provided with the unit, which is optimized for giving
the range of the nearest sound reflector in its field of view and
works for our purpose.

The Array

The sonar array, built at Denning Mobile Robotics and mounted
on the Neptune, is composed of:

¢ a ring of 24 Polaroid sonar elements spaced 15° apart and
mounted at a height of 31 inches above the ground (see
Figure 2);

* a 280 controlling microprocessor which selects and fires the
sensors, times the returns, and provides a range value;

¢ a serial line over which range information is sent to a VAX
mainframe that interprets the sonar data and performs the
higher level mapping and navigation functions.

Representing the Sonar Beam

Because of the wide beam angle, individual rangings provide
only indirect information about the location of the detected
objects. We combine the constraints from individual readings to
reduce the uncertainty. Our inferences are represented as
probabilities in a discrete grid.
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A range reading is interpreted as providing information about
space volumes that are probably EMPTY and somewhere occupiep.
We model the sonar beam by probability distribution functions
(Figure 6a). Informally, these functions model our confidence
that the various points inside the cone of the beam are empty
(P(r)), and our uncertainty about the location of the point,
somewhere on the range surface of the cone, that caused the
echo (P.(r)). The functions are based on the range reading and
on the spatial sensitivity pattern of the sonar and are a maxi-
mum near the center axis of the beam and taper to zero near the
edges. These probability density functions are projected on a
horizontal plane to generate map information. We use the pro-
files that correspond 0 a horizontal section of the sonar beam.

Building Maps

Sonar Maps are two-dimensional arrays of cells corresponding
to a horizontal grid imposed on the area to be mapped. The
final map has cell values in the range (-1,1), where values less
than 0 represent probably empty regions, exactly zero repre-
sents unknown occupancy, and greater than 0 implies a proba-
bly occupied space (Figure 6b). This map is computed in a final
step from two separate arrays analogous to the empty and
occupied probability distributions introduced above. The posi-
tion and the orientation of the sonar sensor at the time of the
reading are used to register the profiles of each beam with the
map. In Figure 6b, each symbol represents a square area six
inches on a side. Empty areas with a high certainty factor are
represented by white space; lower certainty factors by “+" sym-
bols of increasing, thickness. Occupied areas are represented by
“x" symbols, and unknown areas by “.". The robot positions
where scans were taken are shown by circles, and the outline of
the room and of major objects by solid lines.

Different readings asserting that a cell is emp1y will enhance
each other, as will readings implying that the cell may be
ocCUPIED, while evidence that the cell is EMpTY will weaken the
certainty of it being occupiED and vice-versa. The operations
performed ca the empty and occupied probabilities are not
symmetrical. The probability distribution for empty areas repre-
sents a solid volume whose totality is probably empty, but the
occupied probability distribution for a single reading represents a
lack of knowledge about the location of a single reflecting point
somewhere in the range of the distribution. Empty regions are
simply added using a probabilistic addition formula. The occupied
probabilities for a single reading, on the other hand, are reduced
in the areas that the other data suggests is empty, then normal-
ized to make their sum unity. Only after this narrowing process
are the occupied probabilities from each reading combined using
the addition formula.

One range measurement contains only a small amount of
information. By combining the evidence from many readings as
the robot moves in its environment, the area known to be empty
is expanded. The number of regions somewhere containing an
occupied cell increases, while the range of uncertainty in each
such region decreases. The overall effect, as more readings are
added, is a gradually increasing coverage along with an increas-
ing precision in object locations. Typically after a few hundred
readings (and less than a second of computer time), our process
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Figure 6b. A two-dimensional sonar map

is able to “condense out” a comprehensive map covering a
thousand square feet with better than one foot position accuracy
of the objects detected. Note that such a result does not violate
information theoretic or degree of freedom constraints, since
the detected boundaries of objects tend to be linear, not quad-
ratic in the dimensions of the map. A thousand square foot map
typically contains as little as a hundred linear feet of boundary.

Map Matching

We have also developed a procedure that can match two maps
and report the displacement and rotation that best takes one
into the other. We begin with the maps described above, with cell
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values that are negative if the cell is empty, positive if occupied,
and zero if unknown.

A measure of the goodness of the match between two maps ata
trial displacement and rotation is found by computing the sum
of products of corresponding cells in the two maps. An occupied
cell falling on an occupied cell contributes a positive increment
to the sum, as does an empty cell falling on an empty cell (the
product of two negatives). An empty cell falling on an occupied
one reduces the sum, and any comparison involving an unknown
value causes neither an increase nor a decrease. This naive
approach is very slow. Applied to maps with a linear dimension
of n, each trail position requires O(n®) multiplications. Each
search dimension (two axes of displacement and one of rotation)
requires O(n) trial positions. The total cost of the approach thus
grows as O(n’). With a typical n of 50, this approach can use upa
good fraction of an hour of VAX time.

Considerable savings come from the observation that most of
the information in the maps is in the occupied cells alone.
Typically only O(n) cells in the map, corresponding to wall and
object boundaries, are labelled occupied. A revised maiching
procedure compares maps A and B through trial transforma-
tion T (represented by a 2 x 2 rotation matrix and a 2 element
displacement vector) by enumerating the occupied cells of A,
transforming the coordinates of each such cell through T to find
acorresponding cell in B. The [A. B] pairs obtained this way are
multiplied and summed, as in the original procedure. The
occupied cells in B are enumerated and multiplied with
corresponding cells in A, found by transforming the B coordi-
nates through T! (the inverse function of T), and these products
are also added to the sum. The result is normalized by dividing
by the total number of terms. This procedure is implemented
efficiently by preprocessing each sonar map to give both a raster
representation and a linear list of the coordinates of occupied
cells. The cost grows as O(n*), and the typical VAX running
time is down to a few minutes.

A further speedup is achieved by generating a hierarchy of
reduced resolution versions of each map. A coarser map is
produced from a finer one by converting two by two subarrays of
cells in the original into single cells of the reduction. Our existing
programs assign the maximum value found in the subarray as
the value of the résult cell, thus preserving occupied cells. If the
original array has dimension n, the first reduction is of size n/2,
the second of n/4, and so on. A list of occupied cell locations is
produced for each reduction level so that the matching method
of the previous paragraph can be applied. The maximum num-
ber of reduction levels is logon. A match found at one level can
be refined at the next finer level by trying only about three
values of each of the two translational and one rotational
parameters, in the vicinity of the values found at the coarser
level, for a total of 27 trials. With a moderate a priori constraint
on the transformation this amount of search is adequate even at
the first (coarsest) level. Since the cost of a trial evaluation is
proportional to the dimension of the map. the coarse matches
are inexpensive in any case. Applied o its fullest, this method
brings the matching cost down to slightly larger than O(n), and
typical VAX times to under a second.
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We found one further preprocessing step is required to make
the matching process work in practice. Raw maps at standard
resolutions (6 inch cells) produced from moderate numbers
(about 100) of sonar measurements have narrow bands of cells
labelled occupied. In separately generated maps of the same
area, the relative positions of these narrow bands shift by as
much as several pixels, making good registration of the occu-
pied areas of the two maps impossible. This can be explained by
saying that the high spatial frequency component of the posi-
tion of the bands is noise; only the lower frequencies carry
information. The problem is fixed by filtering (blurring) the
occupied cells to remove the high frequency noise.

Experiments suggest that a map from 100 readings should be
blurred with a spread of about two feet, while for maps made
from 200 readings a one foot smear is adequate. Blurring
increases the number of cells labelled occupied. So as not to
increase the computational cost from this effect, only the final
raster version of the map is blurred. The occupied cell list used
in the matching process is still made from the unfiltered raster.
With the process outlined here, maps with about 3000 six inch
cells made from 200 well spaced readings can be matched with
an accuracy of about six inches displacement and three degrees
rotation in one second of VAX time.

Results

We incorporated the sonar map builder into a system that
successfully navigates the Neptune robot through cluttered obsta-
cle courses. The existing program incrementally builds a single
sonar map by combining the readings from successive vehicle
stops made about one meter apart. Navigation is by dead
reckoning—we do not yet use the sonar map matching code.
The next move is planned in the most recent version of the map
by a path planning method based on path relaxation [15). Since
this method can cope with a probabilistic representation of
occupied and empty areas and does path planning in a grid. it
fits natually into our present framework. The system has success-
fully driven Neptune the length of our cluttered 30 by 15 foot
laboratory using less than one minute of computer time.

Local Path Planning

Path relaxation is a two-step path planning process for mobile
robots. It finds a safe path for a robot to traverse a field of
obstacles and arrive at its destination. The first step of path
relaxation finds a preliminary path on an 8-connected gnid of
points (Figure 7). The second step adjusts, or “relaxes,” the
position of each preliminary path point to improve the path.

One advantage of path relaxation is that it allows many different
factors to be considered in choosing a path. Typical path plan-
ning algorithms evaluate the cost of alternative paths solelv on
the basis of path length. The cost function used by Path
Relaxation, in contrast, also includes how close the path comes
to objects (the further away, the lower the cost) and penalties for
traveling through areas out of the field of view. The effectis to
produce paths that neither clip the corners of obstacles nor
make wide deviations around isolated objects, and that prefer to
stay in mapped terrain unless a path through unmapped regions
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Figure 7. Path relaxation and 8-connectedness

is substantially shorter. Other factors, such as sharpness of
corners or visibility of landmarks, could also be added for a
particular robot or mission.

A cost function describes how desirable it is to have a path go
through each point. This function can be thought of as a terrain
map, with the vehicle as a marble rolling towards the goal. The
terrain (cost function) consists of a gradual slope towards the
goal, hills with sloping sides for obstacles, and plateaus for
unexplored regions. The height of the hills has to do with the
confidence that there really is an object there. Hill diameter
depends on robot precision: A more precise robot can drive
closer to an object, so the hills will be tall and narrow, while a less
accurate vehicle will need more clearance, requiring wide,
gradually tapering hillsides. Using this analogy, the first step of
path relaxation is a global grid search that finds a good valley for
the path to follow. The second step is a local relaxation step that
moves the nodes in the path o the bottom of the valley in which
they lie.

Grid Search

Once the grid size has been fixed, the next step is to assign costs
to points on the grid and then to search for the best path along
the grid from the start to the goal. “Best,” in this case, has three
conflicting requirements: shorter path length, greater margin
away from obstacles, and less distance in uncharted areas. These
three are explicitly balanced by the way path costs are calculated.
A path’s cost is the sum of the costs of the nodes through which
it passes, each multiplied by the distance to the adjacent nodes.
In a 4-connected graph all lengths are the same, but in an
8-connected graph we have to distinguish between orthogonal
and diagonal links. The node costs consist of three parts to
explicitly represent the three conflicting criteria.

* Cost for distance. Each node starts out with a cost of one unit, for
length traveled.

* Cost for near objects. Each object near a node adds to that node’s
cost. The nearer the obstacle, the more cost it adds. The exact
slope of the cost function will depend on the accuracy of the
vehicle (a more accurate vehicle can afford to come closer to
objects), and the vehicle's speed (a faster vehicle can afford to
go farther out of its way), among other factors.

* Cost for within or near an unmapped region. The cost for traveling
in an unmapped region will depend on the vehicle's mission.
If this is primarily an exploration trip, for example, the cost
might be relatively low. There is also a cost added for being
near an unmapped region, using the same sort of function of
distance as is used for obstacles. This provides a buffer to keep
paths from coming too close to potentially unmapped hazards.

The first step of Path Relaxation is to set up the grid, construct
the list of obstacles, and determine the vehicle's current position
and field of view.! The system calculates the cost at each node,
based on the distances 10 nearby obstacles and whether that
node is within the field of view or not. The next stepistocreate a
graph with links from each node to its 8 neighbors. The start
and goal locations do not necessarily lie on grid points, so special
nodes need to be created for them and linked into the graph.

The system then searches this graph for the minimum-cost path
from the start to the goal. The search itself is a standard A*[12]
search. The estimated total cost of a path, used by A* to pick
which node to expand next, is the sum of the cost so far plus the
straight-line distance from the current location to the goal. This
has the effect, in regions of equal cost, of finding the path that
most closely approximates the straight-line path to the goal.

Relaxation

Grid search finds an approximate path; the next step is an
optimization step that fine-tunes the location of each node on
the path to minimize the total cost. One way to do this would be
to precisely define the cost of the path by a set of non-linear

'In this implementation. there are two types of obstacles: polvgonal and circular
Currently, the circular obstacles are used for points found by stereo vision svstem.
each bounded by a circular error limit. and the polvgons are used for the field of
view. The vision system will eventuallv give polvgonal obstacles. at which point
both the obstacles and the field of view will be represented as polvgons and the
circular obstacles will no longer be needed.
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equations and solve them simultaneously to analytically deter-
mine the optimal position of each node. This approach is not, in
general, computationally feasible. The approach used here is a
relaxation method. Each node’s position is adjusted in turn,
using only local information to minimize the cost of the path
sections on either side of that node. Since moving one node may
affect the cost of its neighbors, the entire procedure is repeated
until no node moves farther than some small amount.

Node motion has to be restricted. If nodes were allowed to move
in any direction, they would all end up at low cost points, with
many nodes bunched together and a few long links between
them. This would not give a very good picture of the actual cost
along the path. So in order to keep the nodes spread out, a
node’s motion is restricted to be perpendicular to a line between
the preceding and following nodes. Furthermore, at any one
step a node is allowed to move no more than one unit.

As a node moves, all three factors of cost are affected: distance
traveled (from the preceding node, via this node, to the next
node), proximity to objects, and relationship to unmapped
regions. The combination of these factors makes it difficult 10
directly solve for minimum cost node position. Instead, a binary
search is used to find that position to whatever accuracy is
desired.

The relaxation step has the effect of turning jagged lines into
straight ones where possible, of finding the “saddle™ in the cost
function between two objects, and of curving around isolated
objects. It also does the “right thing” at region boundaries. The
least cost path crossing a border between different cost regions
will follow the same path as a ray of light refracting at a bound-
ary between media with different transmission velocities. The
relaxed path will approach that path.

Example Run

In Figure 8 we see a run using real data. Objects are represented
as little circles, where the size of the circle is the positional
uncertainty of the stereo system. The numbers are not all
consecutive, because some of the points being tracked are on the
floor or are high off the ground, and therefore are not obstacles.
The dotted lines surround the area not in the field of view; this
should extend to negative infinity. The start position of the
robot is approximately (0, -.2) and the goal is (0, 14.5). The grid
path is marked with 0's. After one iteration of relaxation, the
path is marked by 1's. After the second relaxation, the path is
marked by 2's. The greatest change from 1 to 2 was less than .3
meters, the threshold, so the process stopped. The size of the
“hills” in the cost function is I meter, which means that the robot
will try to stay 1 meter away from obstacles unless that causes it to
g0 too far out of its way.

An Architecture for Distributed Control

Mobile robots pose a number of fascinating problems from the
point of view of overall software system design. A large number
of semi-independent activities are necessary to achieve autono-
mous mobility. These tasks include controlling actuators,
monitoring several qualitatively different sensors, interpreting
and integrating data from the sensors, and performing plan-
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Figure 8. An example run

ning and problem-solving activities in several different areas
and on various levels of abstraction.

These problems are aggravated by the fact that, to achieve
real-time response, large amounts of processing power are
necessary. One way of achieving this is to apply several proces-
sors to the problem. All this, however, brings the need 10 develop
new and adequate distributed control and problem-solving
mechanisms.

To face some of these concerns, we have designed a distributed
software control structure [ 1] for mobile robots equipped witha
variety of sensors and actuators. In this architecture, Expert
Modules run as independent processes and exchange informa-
tion over a blackboard (Figure 9a). The modules are distributed
over a processor network and communicate through messages.
We are now working on an experimental implementation of this
systemn.
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Figure 9a. General architecture of the distributed control system

The Architecture

Expert Modules are specialized subsystems used to control the
operation of the sensors and actuators, interpret sensory and
feedback data, build an internal model of the robot's environ-
ment, plan strategies to accomplish proposed tasks, and super-
vise the execution of the plan. Each Expert Module is composed
of a master process and a siave process, where the master process
controls the scheduling and the activities of the slave process
and provides an interface to other modules. The master retrieves
data from the blackboard that is needed by the slave, changes
the status (run/suspend/terminate/resume) of the slave, and posts
relevant results generated by the latter on the blackboard. The
slave process is responsible for the processing and problem-
solving activities as such.

One of the modaules, the supervisor, dynamically abstracts sched-
uling information for the Expert Modules from a Control Plan.
The Control Plan provides information specific to the execution
of a given task by specifying subtasks and constraints in their
execution. High-level information needed by the different sub-
systems is shared over the blackboard (2]). This includes informa-
tion on the robot’s status, relevant interpreted sensory and
feedback data, and control information. Actual access to the
blackboard is done only by the blackboard monitor, 1o insure the
integrity of the posted data. A blackboard scheduler schedules the
master processes to interact with the blackboard, according to
their own priorities and the priorities of data and events being
recorded there.

The Expert Modules are distributed over the processor network.
An executive local to each processor is responsible for process
scheduling. Besides using the blackboard, processes also
exchange data of more specific interest directly among
themselves. The system is built on top of a set of primitives that
provide process handling, message-based interprocess commu-
nication and access to the blackboard.

|4

An Example: Sonar-based Navigation

To provide an experimental testbed for the proposed architec-
ture, we are re-implementing our sonar-based navigation sys-
tem (8] as a distributed system. The main modules of the sonar
system are sonar control, the scanner, the mapper, the path
planner, and the conductor; for the distributed version we add
to these a guardian and a supervisor process. The functions of
these modules are:

Sonar Control: Interfaces to, and controls the sonar sensors.
Provides range readings.

Scanner: Preprocesses the incoming sonar data and
catches erroneous readings. Annotates sonar
readings with sensor position, generating what
is called a view.

Mapper: Integrates the view into a sonar map.

Path Planner: Using the information about free, unknown and
occupied areas stored in a sonar map, generates
safe paths for the robot.

Performs the actual locomotion of the robot
vehicle along the proposed path.

Conductor:

Guardian: Does a simple check on the sonar range data
that is being acquired continuously during
locomotion, to make sure that enough distance
is maintained relative to objects in the robot’s
environment. This is a safety system to take care
of rapidly moving objects that were not regis-
tered in the sonar map.

Takes care of the overall behavior of the system

and extracts scheduling information from the
Control Plan.

The original, monolithic version of the system worked by pass-
ing control to each module in sequence. However. such a serial-
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Figure 9b. A distributed implementation of the sonar-based mobile robot navigation system

ization is inconvenient when the processes involved are logically
distinct or when they operate on different time-scales. For
example, the path planner certainly requires the output of the
mapper, but the planning activity is distinct from mapping and
there is no reason why planning and mapping should follow a
rigid pattern. They can be viewed instead as working on differ-
ent sides of a shared database, with one process adding to and
correcting the database while the other draws inferences from
the information therein. As an example of different time-scales,
both the guardian and the scanner act on sonar readings, but
the guardian runs continuously whereas the scanner waits until
its views come from sufficiently different positions of the robot.

In the distributed version of the system, each of the modules
described above is an expert, with a master process that watches
the blackboard for conditions that warrant a change in status
(run/terminate/suspend/resume) of its slave. Information con-
cerning the availability of data or results, the status of the robot,
the activities of the Expert Modules and other relevant high-
level data and control information is shared over the blackboard.
The supervisor provides additional scheduling information to
achieve an overall integrated and coherent behaviour. The bulk
of thedatais still passed directly between the modules themselves,
since it consists of information relevant only to specific routines.
Figure 9b illustrates the main flow of data control.
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In a typical run, sonar ranging is done continuously. All read-
ings are checked by the guardian to see whether any object is
dangerously near. Selected sets of readings, taken from
sufficiently distinct positions, are processed by the scanner and
the mapper to provide an improved sonar map. Path-planning
is done, and the existing path is updated. Locomotion proceeds;
if the guardian issues a warning, the robot stops immediately
and only proceeds after reassessing the situation of its
environment. With this architecture, the system is able to respond
in an asynchronous fashion to the various needs for data
processing and problem-solving as they arise.

New Work

We have begun work in a major new area; road following systems
for the DARPA Autonomous Land Vehicles program. The goals
of the DARPA program begin with following well defined roads
with no intersections or obstacles, then progress to navigation
and obstacle avoidance in road networks and eventually to navi-
gation in open terrain.

We are working on this in cooperation with other Robotics
Institute groups led by William Whittaker and Takeo Kanade.
The vehicle for this project is the Terregator, a large mobile
robot built by Whittaker’s group. Powered by an onboard gaso-
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line fueled generator, it is designed for long outdoor journeys
and is equipped with a television camera and microwave TV
link. We have written a program that drives it along benign,
well-defined roads in real time, visually tracking the left and
right edges. We are extending this work to more difficult roads,
longer journeys, and faster speeds, and plan to incorporate
obstacle detection, landmark recognition and long range
navigation. The effort complements our other projects and is a
natural application of a number of the techniques we have been
developing.

Conclusion and Philosophy

The most consistently interesting stories are those about journeys,
and the most fascinating organisms are those that move from
place to place. These observations are more than idiosyncrasies
of human psychology. but illustrate a fundamental principle.
The world at large has great diversity, and a traveller constantly
encounters novel circumstances and is consequently challenged
to respond in new ways. Organisms and mechanisms do not exist
in isolation, but are systems with their environments, and those
on the prowl in general have a richer environment than those
rooted to one place. Mobility supplies danger along with
excitement. Inappropriate actions or lack of well-timed appro-
priate ones can resultin the demise of a frec roamer, say over the
edge of a cliff, far more easily thar of a stationary entity for
whom particular actions are more likely to have fixed effects.
Challenge combines with opportunity in a strong selection pres-
sure that drives an evolving species that happens to find itself in
a mobile way of life in certain directions quite different from
those of stationary organisms. The last billion years on the
surface of the earth has been a grand experiment exploring
these pressures. Besides the fortunate consequence of our own
existence, some universals are apparent from the results to date
and from the record. In particular, intelligence seems to follow
from mobility.

The same pressures seem to be at work in the technological
evolution of robots and it may be that mobile robots are the best
route to solutions for some of the most vexing unsolved prob-
lems on the way to true artificial intelligence—problems such as
how to program common sense reasoning and learning from
sensory experience. This opportunity carries a price: programs
to contro] mobile robots are more difficult to get right than
most, and the robot is free to search the diverse world looking
for just the combination that will foil the plans of its designers.
There is still a long wav to go.

We believe that our real-world experimental approach is teach-
ing us important lessons. It is our experience that many percep-
tual and control problems succumb to simple techniques, but
that only a very small fraction of the plausible simple methods
work in practice. Determining which methods work often cannot
be decided theoretically, but can be decided readily by realistic
experiments.
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High Resolution Maps from Wide Angle Sonar

Hans P. Moravec

Alberto Elfes

The Robotics Institute

Carnegie-Mellon University

Abstract

We describe the use of multiple wide-angle sonar range measurements
to map the surroundings of an au bile robot. A sonar range
reading provides information concerning cmpty and occupied volumes in
a cone (subtending 30 degrees in our case) in front of the sensor. The
reading is modelled as probability profiles projected onto a rasterized
map, where somewhere occupied and everywhere emply areas are
represented Range measurements from multiple points of view (1aken
Jrom multiple sensors on the robot, and from the same sensors gfter robot
moves) are systematically integrated in the map. Overlapping empty
volumes re-inforce each other, and serve 1o condense the range of
occupied volumes. The map definition improves as more readings are
added. The final map shows regions probably occupied probably
unoccupied, and unknown areas The method deals effectively with
clutter, and can be used for motion planning and for extended lundmark
recognition. This system has been tested on the Neptune mobile robot at
CMU.

1. Introduction

This paper describes a sonar-based mapping system developed for
mobile robot navigation. It was tested in clutiered cnvironments using
the Neptune mobile rotot[8), developed at the Mobile Robot
Laboratory of the Robotics Institute, CMU. The Neptune system has
been used successfully in several arcas of research, including stereo
vision navigation {$, 10] and path planning [11]. Other rescarch in the
laboratory includes the investigation of adequate high-level robot
control structures, the usc of distributed and parallel processing
methods to improve the real-time response of the system, navigation in
outdoor cnvironments and the design and construction of more
advanced robuts with higher mobility.

Primarily because of computational cxpense, practical real-world
stereo vision navigation systems (7, 10] build very sparse depth maps of
their surroundings. Even with this cconomy our fastest system,
described in [S], takes 30 - 60 scconds per one meter step on a 1 mips
machine.

This work has been supported in part by Denning Mobile Robotics,
Inc., by the Western Pennsylvania Advanced Technology Center and
Yy the Office of Naval Rescarch under contract number N0O0014-81-
K-0503. The sccond author is supported in part by the Consclho
Nacional de Desenvolvimento Cicntifico e Tecnologico - CNPq, Prazil,
under Grant 200.986-80; in part by the Instituto Tccnologico de
Acrondutica - 1A, Brazil; and in part by The Robotics Institute,
Camcgie-Mellon University.

The views and conclusions containcd in this document are those of
the authors and should not he interpreted as reprosenting the official
paliies, e'ther expressed or implied, of the funding agencics.

Dircct sonar range mcasurcments promiscd to provide basic
navigation and denscr maps with considerably less computation. ‘The
readily available Polaroid uitrasonic range transduccr [9] was selected
and a ring of 24 of these sensors was inounted on Neptune.

We find sonar scnsors interesting also because we would like to
investigate how qualitatively different sensors, such as a sconar array and
a pair of camcras, could cooperatc in building up a morc complex and

rich description of the rubot's environment.

1.1. Goals

We cxpected sonar measurements to provide maps of the robot’s
environment with regions classified as empty, occupicd or unknown,
and natches of new maps with old oncs for landmark classification 2nd
to obtain or correct global position and oricntation information.

1.2. Approach

Our method starts with a number of range measurements obtained
from sonar units whose position with respect to one another is known.
Each measurement provides information about cmpty and possibly
occupied volumes in the space subtended by the beam (a thirty degree
cone for the present sensors). This occupancy information is projected
onto a rasterized two-dimensional horizontal map. Sets of readings
taken both from different sensors and from different positions of the
robot are progressively incorporated into the sonar map. As more
readings arc acded the area deduced to be empty expands, and the
expanding empty area encroachcs on and sharpens the possibly
occupicd region. The map becomes gradually more detailed.

For navigation and recognition we developed a way of convolving
two sonar maps, giving the displaccment and rotation that best brings
one map into registration with the other, along with a measure of the
goodness of the match.

The sonar maps happen to be very useful for motion planning. They
are denscr than those made by our sterco vision programs, and
computationally about an order of mnagnitude faster to produce. We
presenty use them with the Path Relaxation method {11] to plan local
paths for our robot.

1.3. Related Work

Sonar is a developed technology but few applications until recently
involved dctailcd map building. Traditional marine applications,
camera autofocus systems, and some simple robot navigation schemes
[2,6] rely on sparse proximity measurcments to accomplish their
narrow goals.
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The most advanced sonar systems used in marine intclligence
opcrations locate sound sources passively [1). Ulirasound systems used
in medicine are typically active and build maps for human perusal, but
dcpend on accurate physical modcls of the environments that the sound
traverses 4], and work with very small beam widths, about 1° - 3°,
Narrow beam widths, formed by phascd array techniques, arc also used
in advanced side looking mapping sonar system for submersibles. An
indcpendent CMU sonar mapping cffort [3) also uscd a narrow beam,
formed by a parabolic reflector, in its attempts to build a line-based
description.

Ia contrast the sonar scnsors that we choose to cmolov have a wide
beam, with an cffective angle of about 30°.

2. The Sonar System

2.1. The Sensor

The sonar devices being used are Polaroid laboratory grade ultrasonic
transducers [9). These sonar elements have a uscful measuring range of
0.9 to 35.0 R. The main lobe of the sensitivity function corresponds t0 a
beam angle of 30° at —38 dB. Expcrimental results showed that the
range accuracy of the scnsors is on the order of 1 %. We arc using the
control circuitry provided with the unit, which is optimized for giving
the range of the ncarest sound reflector in its ficld of view, and works
well for this purpose.

2.2. The Array
The sonar array, built at Denning Mobile Robotics, and mounted on
the Neptune mobile robot is composed of:

® A ring of 24 Polaroid sonar elements, spaced 15° apart, and
mounted at an height of 31 inches above the ground (see
Fig. 1).

o A Z80 controlling microprocessor which sclects and fires
the scnsors, times the returns and provides a range value,

@ A serial line over which range information is sent to a VAX
mainframe that presently interprets the sonar data and
performs the higher level mapping and navigation
functions.

3. Sonar Mapping

3.1. Obtaining Reliable Range Data from the Sonar Sensor
We begin our map building by preprocessing the incoming readings
to remove chronic errors. The following steps are used:

o Thresholding: Range readings above a certain maximum R'
are discarded. We observe that sonar readings caused by
specular reflections are ofien near the maximum range of
the device (R ). With R slightly below R . many of
these readings arc discarded. The systcm becomes slightly
myopic, but the overall quality of the map improves. Very
large open spaces are detected by analyzing the set of
distance values obtaincd from the sonar, and in this case the
filtering is not donc. A similar heuristic is applicd for small
readings: values below the minimum sensor range R, are
usually glitches and are discarded.
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o Averaging: Sevcral independent readings from the same
scnsor at the same position arc averaged. The sonar
rcadings arc subject to error not only from reflcctions but
also from other causcs such as fluctuations in the effective
sensitivity of the transducer. As a result readings show a
cortain dispersion. Averaging narrows the spread.

o Clustering: A sct of rcadings from onc sensor at a given
position sometimes shows a clustering of the data around
two diffecrent mean values. This happens when different
rcadings are being originatcd by objects at staggered
distances. We apply a simple clustcring analysis to the data,
and cxtract a mecan value for each cluster for use in
subscquent processing.

3.2. Representing the Sonar Beam

Because of the wide beam angle the filtered data from the above
methods provides only indirect information about the location of the
detected objects. We combine the constraints from individual readings
to reduce the uncertainty. Our infcrences are represcnted as
probabilities in a discrete grid.

A range reading is interpreted as providing information about space
volumes that are probably EMPTY and somewhere OCCUPIED. We
model the sonar beam by probability distribution functions. Informally,
these functions modetl our confidence that the various points inside the
cone of the bcam arc empty and our uncertainty about the location of
the point, somewherc on the range surface of the cone, that caused the
echo. The functions are based on the range reading and on the spatial
sensitivity patiern of the sonar.

Consider a position P = (x,y,z) belonging to the volume swept by the
sonar beam. Let:

R be the range measurement returned by the sonar sensor,
¢ be the mean sonar deviation error,

w be the beam aperture,

S= (x, Ye 2.) be the position of the sonar sensor,

8 be the distance from Pto S,

@ be the angle between the main axis of the beam and SP.

‘We now identify two regions in the sonar beam:

o Empty Region: Points inside the sonar bcam ( § < R—e and
#Sw/2 ), that have a probability p£=f£(6.0) of being
empty.

o Somewhere Occupied Region: Points on the sonar beam
front ( §e[R=eR+¢] and @#<w/2 ) that have a
probability p,= fo(S.d) of being occupied.

Fig. 2 shows the probability profiles for a sonar beam that returned a
range reading R. The horizontal crossection of the beam is associated
with two probability distributions corresponding to the cmpty and the
occupicd probabilitics.

The cmpty probability density function for a point P inside the sonar
bceam is given by:

plxy.2)=p position (xy.2) is empty |J=E(SYE(6) (D)
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Figure 2: The Probability Profiles corresponding to the probably Empty
and somewhere Occupicd regions in the sonar beam.
The profiles represent a horizontal cross section of
the beam.

The opcrations performed on the empty and occupied probabilities
are not symmctrical. The probability distribution for empty areas
represents a solid volumc whose totality is probably empty but the
occupied probability distribution for a single reading represents a lack
of knowledge we have about the location of a single reflecting point
somewhere in the range of the distribution. Empty regions arc simply
added using a probabilistic addition formula. The occupied probabilities
for a single reading, on the other hand, are reduccd in the areas that the
other data suggcsts is empty, then normalized to make their sum unity.
Only after this narrowing process are the occupied probabilities from
each reading combined using the addition formula.

One range mcasurement contains only a small amount of
information. By combining the evidence from many readings as the
robot moves in its environment, the area known to be empty is
expanded. The number of regions somewhere containing an occupied
cell increases, while the range of uncertainty in each such region
decreases. The overall effect as more readings are added is a gradually
increasing coverage along with an increasing precision in the object
locations. Typically aftcr a few hundred readings (and less than a
second of computer time) our process is able to "condense out” a
comprehensive map covering a thousand square fect with better than
one foot position accuracy of the objccts detected. Note that such a
result does not violate information theoretic or degree of freedom
constraints, since the detccted boundarics of objects are linear, not
quadratic in the dimensions of the map. A thousand square foot map
may contain only a hundred lincar feet of boundary.

Formally the evidence combination process proceeds along the
following steps:

1 RESET: The whole Map is sct to UNKNOWN by making
Emp(X.Y): =0 and Oce(X.Y):=0.

2, SUPERPOSITION OF EMPTY AREAS: For every sonar reading &
modify the cmptyncss information over its projection by:

FNHANCE: Emp(X.Y):=
Emp(X.Y)+ Emp ‘(X.Y)- Emp(X.Y)x F.‘mpk(x.Y)

3. SUPFRPOSITION OF OCCLPIED AREAS: For cach reading &,
shift the occupicd probabilites around in response to the
combincd cmptyncss map using:

CANCEL: Occ.(X.Y): = Occk(X.Y) (1= Emp(X.Y))
NORMALIZE: Occk(X.Y): = o“‘(x.v)/z Occ.(X.Y)

ENHANCE: OcaX.Y):=
Oce(X.Y)+ Occk(X.Y)- Occo(X.Y)x OCC*(X.Y)

4. THRESHOLDING: The final occupation value attributed to a
cell is given by a thresholding method:

THRESHOLD: Map(X.Y):=
{Ocdx.Y) if OcdX.Y)2 Emp(X.Y)
= Emp(X.Y) if Occ(X.Y)< Emp(X.Y)

3.5.Maps

A typical map obtaincd through this mcthod is shown in Fig. 3, and
the corresponding ccrtainty factor distributions are shown in Figs. Fig.
4 and S. These are the maps obtaincd before the thresholding step.

The final maps obtaincd after thresholding arc shown in Figs. 6, 7
and 8.

Figure 3: A Two-Dimensional Sonar Map. Each symbo! rcpresents a
squarc arca six inches on a side in the room pictured
in Figure 1. Thec right edge of this diagram
corresponds to the far wall in the picture. Empiry
arcas with a high ccrtainty factor are represented by
white space; lower certainty factors by "+ "
symbols of increasing thickness. Occupied areas are
represented by * x " symbols, and Unknown areas by
".* . The robot positions where scans were taken are
shown by circles and the outline of the room and of
the major objects by solid lines.

4. Matching

Sonar navigation would benefit from a procedure that can match two
maps and report the displacement and rotation that best takes one into
the other.

Our most successful programs begin with the thresholded maps
described above, with cell values that are negative if the cell is empty,
positive if occupicd and zero if unknown.
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Figure 4: The Occupied Areas in the Sonar Map. This 3-D view shows
the Certainty Factors Oce(X, Y).

Figure 5: The Empty Areas in the Sonar Map. This 3-D view shows the Figure 8: The Empty Areas in the Sonar Map After Thresholding.
Centainty Factors Emp(X,Y).

A measure of the goodness of the match between two maps at a trial Co
displaccment and rotation is found by computing the sum of products
of corresponding cclls in the two maps. An occupied ccll falling on an RO
occupied cell contributes a positive increment (o the sum, as does an S
empty cell falling on an empty cell (the product of two negatives). An -
empty cell falling on an occupied one reduces the sum, and any
comparison involving an unknown valuc causcs neither an increase nor ’
a decrease.  This naive approach is very slow. Applicd to maps with a
lincar dimension of n, each trial position requires O(n’) multiplications. )
Each scarch dimension (two axes of displacement and one of rotation) T
requires Xn) trial positions. The total cost of the approach thus grows ~
as O(r’). With a typical n of 50 this approach can bum up a good
fraction of an hour of Vax time.

)
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Considerable savings come from the observation that most of the
. information in the maps is in the occupicd celis alone. Typically only
- Figure 6: The Two-Dimensional Sonar Map Afier Thresholding. O(n) cells in the map, corresponding to wall and object boundarics, are
' labelicd occupiced. A revised matching procedure comparcs maps A and
3 B3 through trial transformation T (represented by a 2x2 rotation matrix
and a 2 clement displacement vector) by cnumerating the occupicd cells
of A, transforming the co-ordinates of each such cell through T'to find a
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corresponding cell in B. The [A, B] pairs obtaincd this way are
multiplicd and summecd, as in the original procedure. The occupied
cells in B are cnumcerated and multiplicd with corresponding cells in A,
found by transforming the B co-ordinates through 77 (the inverse
function of 7). and these products arc also added to the sum. The result
is normalized by dividing by the total number of terms. This procedure
is implemented cfficiently by preprocessing cach sonar map to give
both a raster representation and a lincar list of the co-ordinates of
occupicd cclls. The cost growns as O(n*), and the typical Vax running
time is down to a few minutcs.

A further speedup is achicved by generating a hicrarchy of reduced
resolution versions of cach map. A coarser map is produccd from a
finer onc by converting two by two subarrays of cclls in the original into
single cells of the reduction. Our existing programs assign the
maximum value found in the subarray as the value of the result cell,
thus preserving occupied cells. If the original array has dimension a,
the first reduction is of size #/2. the second of n/4 and so on. A list of
occupicd cell locations is produced for cach reduction level so that the
matching mcthod of thc previous paragraph can be applicd. The
maximum number of reduction levels is logzn. A match found at one
level can be refined at the next finer Jevel by trying only about three
values of each of the two translational and one rotational parameters, in
the vicinity of the values found at the coarser level, for a total of 27
trials. With a moderate a-priori constraint on the transformation this
amount of scarch is adequate cven at the first (coarscest) level. Since the
cost of a trial cvaluation is proportional to the dimcension of the map,
the coarse matches arc incxpensive in any casc. Applicd to its fuilest,
this method brings the matching cost down to slightly larger than O(n),
and typical Vax times 10 under a sccond.

We found onc further preprocessing step is required to make the
matching process work in practice. Raw maps at standard resolutions (6
inch cells) produced from moderate numbers (about 100) of sonar
measurcments have narrow bands of cclls labelled occupied. In
separately generated maps of the same area the relative positions of
these narrow bands shifts by as much as several pixels, making good
registration of the occupied areas of the two maps impossible. ‘This can
be explained by saying that the high spatial frequency component of
the position of the bands is noise, only the lower frequencies carry
information. The problem is fixed by filtering (blurring) the occupied
cells to remove the high frequency noise. Experiment suggests that a
map made from 100 rcadings should be blurred with a spread of about
two feet, whilc for map made from 200 rcadings a one foot smear is
adequate. Blurring increascs the number of cells labelled occupied. So
as not to increasc the computational cost from this cffect, only the final
raster version of the map is blusred. The occupicd cell list used in the
matching process is still made from the unfiltered raster,

With the process outlined here, maps with about 3000 six inch cells
madc from 200 well spacced readings can be matched with an accuracy
of about six inches displacement and three degrees rotation in one
second of Vax time.

5. Results

We incorporated the sonar map builder into a system that
successfully navigates the Neptune robot through cluttered obstacle
courscs. The existing program incrementally builds a single sonar map
by combining the readings from successive vchicle stops made about
onc meter apart. Navigation is by dead reckoning - we do not yet use
the sonar map matching code. The next move is planncd in the most
recent version of the map by a path-planning method based on path
relaxation [11].  Since this method can cope with a probabilistic
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represcntation of occupicd and empty arcas and docs path-planning in
a grid, it fits naturally into our present framework. The system has
successfully driven Neptune the length of our cluticred 30 by 15 foot
laboratory using less than onc minute of computer time.

6. Conclusions

We have described a program that builds modcrately high resolution
spatial maps of a mobile robot's surroundings by combining scveral
hundred range readings from unadomned Polaroid ultrasonic units. The
main innovation is an cfficicnt mathcmatical method that reduces the
position unccrtainty of objects detected by wide angle sonar beams by >
combining interlocking constraints in a raster occupation probability ®
map. We have also developed a fast algorithm for relating two maps of -
the same area to derive relative displacement, angle and goodness of
match.

We have used this mapping mcthod in a system that navigates a
mobile robot 1o a desired destination through obstacles and clutter, and
are preparing a morc claborate navigation system that depends on 'Y
matching of the sonar maps to recognize key locations and on higher- BRI
level representations to navigate over iong distances. R
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Abstract

This paper describes a sonar-based mapping and navigation system for
autonomous mobile robots operating in unknown and unstructured
surroundings. The system uses sonar range data to build a multi-leveled
description of the robot’s environment. Sonar maps are represented in the
system along several dimensions: the Abstraction axis. the Geographical
axis. and the Resolution axis. Various kinds of problem-solving activities
can be performed and different levels of performance can be achieved by

1. introduction

The Delphn system js intended to provide sonar-based mapping and
navigation for an autonomous mobile robot operating in unknown and
unstructured environments. The system is completely autonomous in
the sense that it has no a priori model or knowledge of its surroundings
and also carrics no user-pr-wided map. It acquires data from the real
world through a set of sonar sensors and uses the interpreted data to
build a multi-leveled and mulii-faceted description of the robot’s
operating cnvironment. This description is uscd to plan safe paths and
navigate the vehicle towards a given goal.

The system is intended for indoor as well as outdoor use; it may be
coupled to other systems, such as vision. to locate landmarks that would
scrve as intermediate or final destinations.

In the course of this paper. we will bricfly identify some of the
conceptual processing levels needed for mobile robot software, relate the
prescnt system to this framework, discuss the multiple representations
developed for sonar maps as well as their use in different kinds of
problem-solving activities, describe the overall system architecture and
show some results from actual runs. We finish with an outline of further
research.

2. Conceptual Processing Levels for an

. from qualitatively different semsors.  Specific assertions -
Autonomous Mabile Robot provided by the Sensor Modules arc correlated to cach other X ;'
The sonar mapping and navigation system discussed here is part of a on this level. For example, geomcetric boundarics of an .:,

rescarch cffort that imvestigates  various issucs involved in the
devclopment of the software structure of an autonomous mobile robot.

2.5

To situate the Dolphun system within this wider context, we characterize
in this section somce of the cunceptual processing levels reguired for an
autonomous vehicle (sce Fig. 2-1). Each is bricfly discussed below:

VIi. Global Contro!

VI. Giobal Planning

¢ operating with these multiple representations of maps. The major modules V. Navigation
of the Dolphat system are described and related to the various mapping -
representations used. Results from actual runs are presenied. and further IV. Real-Worid Modelling
research is mentioned. The system is also situated within the wider context -
of developing an advanced software architecture for autonomous mobile 1ll. Sensor Integration
robots.
Ii. Sensor Interpretation
L J

i. Robot Controt

Figure 2:1: Conceptual Activity Levels in 2 Mobile Robot Software
Architecture.

® Robot Control: This level takes care of the physical control of
the different sensors and actuators available to the robot. It
provides a set of primitives for locomotion. actuator and
sensor control. data acquisition, etc., that serve as the robot
interface, freeing the higher levels of the system from low-
level details. This would include dcad-reckoning motion
estimation and monitoring of internal sensors. /nternal
Sensors provide information on the status of the different
physical subsystems of the robot, while External Sensors are
used to acquire data from the robot's environment.

® Sensor Interpretation: On this level the acquisition of sensor
data and its interpretation by Sensor Modules is donc. Each
Sensor Module is specialized in one type of sensor or even in
extracting a specific kind of information from the sensor
data. They provide information to the higher levels using a
common representation and a common frame of reference.

® Sensor Integration: Due 10 the intrinsic limitations of any
sensory device, it is essential to integrate information coming

obstacle extracted by sonar can be projected onto an image
provided by the vision subsystem and can help in identifying

.
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a certain object. On this level, information is aggregated and
assertions about specific portions of the cnvironment can be
made.

® Real-World Modelling: To achieve any substantial degree of
autonomy. a robot system must have an understanding of its
surroundings, by acquiring and manipulating a rich model of
its environment of operation. This model is based on
assertions integrated from the various sensors, and reflects
the data acquired and the hypotheses proposed so far. On
this level, local picces of information are used in the
incremental construction of a coherent global Real-World
Modcl: this Model can then be used for several other
activitics. such as landmark recognition, matching of newly
acquired information against already stored maps, and
generation of expectancies and goals.

@ Navigation: For autonomous locomotion, a variety of
problem-solving activities are nccessary, such as short-term
and long-term path-planning. obstacle-avoidance, detection
of emergencies. cic. These different activities are performed
by modules that provide specific services.

o Global Planning: To achieve a global goal proposed to the
robol. this level provides task-level planning for autonomous
generation of sequences of actuator, sensor and processing
actions. Other nccessary activities include simulation, error
detcction. diagnosis and recovery, and replanning in the case
of unexpected situations or failures.

® Global Control: Finally, on this level Supervisory Modules
are responsible for the scheduling of different activities and
for combining Plan-driven with Data-driven activities in an
integrated manner so as to achieve coherent behaviour.

This conceptual structure provides a paradigm within which several of
our research efforts are situated [6,11,12]. It has influenced, in
particular, the architecture of the Dolphm system for sonar-based
mapping and navigation, as mentioned in Section 5.

3. Sonar Mapping

3.1. Introduction

The Dalphin sonar system is able to build dense maps of the robot's
environment and use them for autonomous navigation. The central
representation of sonar mapping information is the Probabilistic or
Sensor Level Local Map. which uses a medium-resolution grid (with a
typical accuracy of 0.5 f1). The cells of a two-dimensional array spanning
the area of interest arc used to store occupancy information (EMPTY,
OCCUPIED or UNKNOWNX ), as well as the associated confidence factors.

Currently, the cycle of operation of the sonar system is as follows:
from its current position. the robot acquires a set of range measurements
provided by the sonar sensor array; these readings are then interpreted
as asscrtions concerning empiy and occupied areas, and serve to update
the sonar map. The map is now used to plan a safc path around
obsticles. and the robot moves a centain distance along the path. It
updates its position and oticntation estimate and repeats the cycle.

3.2. Building Maps

The l.ocal Map building process is discussed in detait in [11], and is
reviewed here only bricfly,. We proceed to describe how other
representations arc derived from it.

2LeE

The sonar sensor array is composed of 24 Polaroid laboratory grade
ultrasonic transducers, These devices are arranged in a ring and
controlled by a microprocessor that also interfaces to a VAX mainframe.
For experimental runs, the array was mounted on two different robots
(Neptune [13] for indoor runs, and the Terragator [12] for outdoors).

The mapping system processes range measurements obtained from the
sonar transducers, annotated with the positions of the corresponding
sensors, which are derived from the position and orientation of the
robot. Each measusement provides information about probably empty
and possibly occupied volumes in the space subiended by the beam (a
30° cone for the present sensors). This occupancy information is
projected onto a rasterized two-dimensional horizontal map. Sets of
readings taken both from different sensors and from different positions
of the robot are incrementally integrated into the sonar map, using a
probabilistic approach. In this way, crrors and uncertainties are reduced
and the map becomes gradually more detailed.

The sonar beam is modelicd by probability distribution functions.
Informally, these functions describe our confidence that the points
inside the conc of the beam arc empty and our uncertainty about the
location of the point that caused the echo. The functions are based on
the range value and on the spatial sensitivity pattern of the sonar device.

These sonar maps are very useful for motion planning. They are much
denser than those made by typical stereo vision programs, and
computationally at least one order of magnitude faster to produce.

3.3. Related Work

In the Robotics area. ultrasonic range transducers have recently
attracted increasing attention. This is due in part to their simplicity. low
cost and the fact that distance measurements are provided dircctly. Some
research has focused specifically on the development of more claborate
beam-forming and detection devices (see. for example, [8]). or on the
application of highly sophisticated signal processing techniques [1} to
complex sonar signals.

Specific applications of sonar scnsors in robot navigation include
determining the position of a robot given a known map of the
environment [9. 10. 5] and some ad hoc navigation schemes(2). An
independent CMU sonar mapping and navigation cffort [3,4] uses a
narrow beam. formed by a parabolic reflector, to build a line-based
description of the environment.

4. Multiple Axis of Representation of Sonar
Mapping Information

From the Probabilistic 1.ocal Maps described in the previous section,
scveral other data structures arc derived. We use the following
dimcensions of representation (Fig. 4-1):

o THE ABSTRACTION AXIS: Along this axis we move from a
sensor-bascd. data-intensive representation to increasingly
higher levels of interpretation and abstraction. Three levels
are defined: the Sensor Level, the Geometric Level and the
Symbolic Level.

® THE GEOGRAPHICAL AXIS: Along this axis we define Fiews,
Local Maps and Global Maps. depending on the extent and
characteristics of the area covered.

o THE RESOLUTION AXIS: Sonar Maps arc generated at
different values of grid resolution for differcnt applications.
Some computations can be performed satisfactorily at Jow
levels of detail, while others nced higher or even multiple
dcgrees of resolution.
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Figure 4-1: Multiple Axis of Represcntation of Sonar Maps.

4.1. The Abstraction Axis

The first kind of sonar map built from the sonar range data uses the
Probabilisuc representation described carlier. A two-dimensional grid
covering a imited arca of interest is used. This map is derived directly
from the intcrpretation af the sensor rcadings and is, in a sense, the
description closest to the real world. It serves as the basis from which
other kinds of representations are derived. Along the Abstraction Axis,
this data-intensive description is alse defined as the Sensor Level Map.

The next level is called the Geometric Level, 1t is built by scanning the
Sensor Level Map and identifying blobs of cells with high OCCUPIED
confidence factors. These are merged into uniquely labeled objects with
explicithy represented pohygonal boundaries. 1f needed. the sume can be
donc with MP1Y areas.

The third is the Symbolic Level. where maps of larger arcas (typically
Global Maps) arc described using a graph-like representation.  This
description bears only a topological cquisalence to the real world. Nodes
represent “interesting” arcas. where more detailed mapping information
is necessary or available, while edges correspond to simpler or
"uninteresting” arcas (navigationally spcaking). such as corridors.

Different kinds of problem-solving activitics arc better performed on
different levels of abstraction. For example, global path-planning (such
as how to get from onc building wing to another) would be done on the
symbolic level. while navigation through a specific office or lab uses the
sensor-level map. where all the detailed information about objects and
frec space, as well as the associated certainty factors, is stored.

4.2. The Geographical Axis

In order to be able to focus on specific geographical areas and to
handle portions of as well as complete maps, we define a hierarchy of
maps with increasing degrees of covcrage. Progressing along the
Geographical Axis, we start with ¥'jews. which are maps gencrated from
scans taken from the current position. and that describe the area visible
10 the robot from that place. As the vehicle moves. several Views are
acquired and integrated into a Local Map. The latter corresponds to
physically delimited spaces such as labs or offices. which define a
connected region of visibility. Global Maps are sets of several Local
Maps. and cover wider spaces such as a whole wing of a building, with
fabs, offices, open areas, corridors, etc.
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4.3. The Resolution Axis

Finally, along the Resolution Axis, we again siart with the Sensor-
Level Local Map and generate a progression of maps with increasingly
less detail. This allows certain kinds of computations to be performed
either at lower levels of resolution with correspondingly less
computational expense, or else enables operations at coarser levels to
guide the problem-solving activities at finer levels of resolution.

The most detailcd sonar maps that can be obtained from the method
outlined in Section 3 (considering the intrinsic limitations of the sensors)
have a cell size of 0.1 x 0.1 ff . For navigation purposes. we have
typically been using a 0.5 ft grid for indoors and a 1.0 fi grid for
outdoors. Nevertheless. scveral operations on the maps are expensive
and are donc more quickly at even Jower levels of resolution. For these
cascs we reduce higher resolution maps by an averaging process that
produces a coarser description. One example of an application of this
technique is the Map Matching procedure described in [11), where two
Local Maps being compared with cach other are first matched at a low
level of detail. The result then constrains the scarch for a match at the
next higher level of resolution.

5. Overall System Architecture

To provide a context for these multiple descriptions, we present in this
Scction the overall architccture of the Dolpbwt Sonar-Rascd Mapping and
Navigation system (Fig. 5-1). The function of the major modules and
their intcraction with the various sonar map represeniations 7] is
described below:
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Figure 1. Architecture of the Sonar Mapping and Nawigation
System,
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Sonar Control: Interfaces to and runs the sonar sensor array, providing
range readings.

Scanner: Preprocesscs and filters the sonar data. Annotates it with the
position and oricntation of the corrcsponding sensor, based on the
robot’s motion estimate.

Mapper: Using the information provided by the Scanner. generates a
View obtained from the current position of the robot. This View is then
integrated into a Local Map.

Cartographer: Aggregates scts of local Maps into Global Maps.
Provides map handling and bookkceping functions.

Marcher: Matches a newly acquired 1.ocal Map against portions of
Global Maps for operations such as landmark identification or update of
the absolutc position cstimate.

Object Eatraction: Obtains geometric information about obstacles.
Objects are extracted by merging blobs of occupikD cells and
determining the corresponding polygonal boundarics. A region-coloring
approach is uscd for unique labeling.

Graph Building: Scarches for larger regions that are either empty or
elsc have complex patterns of obstacles, labeling them as “free” or
"interesting” spaces.

Path-Planning: Three levels of path-planning are possible: Symbolic
Path-Planming is done over wider arcas (Global Maps) and at a higher
level of abstraction (Symtbolic Maps); Geomerric Path-Planning is done
as an intermediary stage. when the uncertainty in Local Maps is low;
and Sensor Map Path-Planning is used to gencrate deuailed safe paths.
The latter performs an A® search over the map cells, with the cost
function taking into account the obstacle certainty factors and the
distance to the goal. The planned path is provided to the Navigator.

Navigator: Takes care of the overall navigation issues for the vehicle.
This includes examining alrcady planned paths to determine whether
they are stll usabic, invoking the path-planner to provide new paths,
setting intermediary goals. oversecing the actual locomotion, etc.

Conductor: Controls the physical locomotion of the robot along the
planned path. The latter is currently approximaied by sequences of line
segments, using a line-fitting approach. Provides an estimate of the new
position and orientation of the robot.

Guardian: During actual locomotion, this module checks the incoming
sonar readings and signals a stop if the robot is coming too close to a
(possibly moving) obstacle not detected previously. It serves as a “sonar
bumper”.

Supervisor: Oversces the operation of the various modules and takes
care of the overall control of the system. It also provides a user interface.

Comparing this architecture with the activitics outlined in Section 2,
we sce that the Sonar Control and Conductor modules belong to the
Robot Control level: the Scanning and Mapping modules operate on the
Sensor Interpretation level: the Object Extraction, Graph Building,
Cartographer and Maicher modules provide functions on the Real-
World Modclling level: Path-Planning. the Guardian and Navigation
are situated on the Navigation level; and the Supervisor belongs to the
Control level.

6. Tests of the System

The Dolphn system described here was tested in several indoor runs in
cluttered environments using the Neprune mobile robot {13]. developed
at the Mobile Robot Laboratory of the Robotics Instituie, CMU. It was
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also tested in outdoor environments, opcrating among trees, using the
Terragator robot in the context of the CMU ALV project. The system
operated successfully in both kinds of cnvironments, navigating the
robot towards a given destination.

In Fig. 6-1. an example run is given. The sequence of maps prescnted
shows how the sonar map becomes gradually more dewailed and how the
path is improved. as more information is gathercd. The cxample
corresponds to an indoor run, donc in our laboratory. A distance of
approximatcly 25 ft was covercd; the grid size is 0.5 fi. Objects present in
the lab included chairs, tables. boxes, workstations, filing cabinets, etc.
Empiy spaces with high certainty factors are represented by white areas:
lower certainty factors by “-" symbols of increasing thickness. Occupied
arcas are shown using "X symbols, and Unknown areas using "-" . The
planned path is shown as a dotted line, and the route actually foliowed
by the robot as solid line segments. The starting point is a solid + and
the goal a solid x.

In Fig. 6-2, an outdoor run is shown. together with an example of the
Object Extraction algorithm. The objects are uniquely identificd and the
polygonal boundarics are shown. ‘The map corresponds to a run done
among trees. A distance of approximately 50 ft was raversed. The grid
size was 1.0 fi. which proved adequate for navigation. but did not allow a
more precisc description of the real boundarics of the detected objects.

7. Further Research

We conclude our discussion by outlining in this Section some rescarch
lines to be further pursued.

7.1. Handling Position Uncertainty

Our current system presupposcs that the position and orientation of
the robot (and by that, of the sonar sensors) as it acquires sonar data is
known with reasonable precision. This is crucial for integrating readings
taken over shorter distances, which are combined as previously outlined.
Drifis over longer distances are inevitable, but lead only to a topological
distortion of the map.

To update the current position of the robot, we presently rely on
dead-reckoning cstimates based on wheel encoders and an onboard
inertial navigation system. These drift with travelling time and distance.
As a result. ground truth (the real-world environment) and the sonar
map drift apart. This problem is characteristic of navigation without
access to absolute pusition information. In sierco vision navigation. it has
traditionally been addressed by cstimating motion based on image
matching.

We arc currently investigating two complementary approaches to this
problem: incorporating the uncertainty in the position of the robot into
the map-making process and do motion solving by matching new sets of
readings against the map being incrementally built.

7.2. Extending the Architecture

The architecture described above embodies a sequential control-flow
organization. This. however, docs not reflect the problem-solving
characteristics inherent to mobile robot sofiware. The various modules
involved in the problem-solving effort arc frequently quasi-independent
and have a low degree of coupling: therefore. they should conceptually
proceed in parallel. interacing with each other as needed. We have
recently started the implementation of a distributed version of Dolphin
[12] along the lines discussed in [6). where multiple agents work on
concurrent activities,
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» - Figure 6-1: An Example Run. This run was performed indoors. in the
: Mobile Robot Lab. Distances are in ft. Grid size is 0.5 f.
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. Figure 6-2: Objects Extracted from a Sonar Map. The objects are
: numbercd and their polygonal boundarics are shown. This
’ map describes an outdoor run, and the objects are trees. T
J Distances are in ft. Grid size is 1.0 ft. !
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Another issue we are currently investigating is the development of a
task-level Global Planner that would automatically gencrate a Control
Plan, cstablishing scquences of parallel and sequential actions. We are
considering a hicrarchical approach similar to NOAH [14), using a graph
to represent the plan and explicitly storing alternatives and sensor-
dependcnt conditions as part of it. The elementary operations of sensor
information gathering. interpretation, actuator control and specific
problem-solving activities are the primitives used by the planner,

8. Concilusions

We have described a system that uses a Sensor Level, probability-
based sonar map representation of medium resolution to build several
kinds of maps. Three different dimensions of representation are
defined: the Abstraction Axis, the Geographical Axis and the Resolution
Axis. These maps arc uscd by a sonar mapping and navigation system
that performed successfully in indoor and outdoor environments. We
are now investigating motion recovery techniques and expanding the
systern o test distributed control and global planning mechanisms.
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Three Dimensional Images from Cheap Sonar

Hans P. Moravec
4 The Robotics Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

December 21, 1985

1 Introduction
We propose 1o build and use moderate resolution three dimensional space occupancy maps buitt from
multiple measurements from cheap sonar sensors. By cheap sonar | mean range readings obtained from
unmeodified Polaroid sonar transducers driven by the original Polaroid circuit board, or by an improved
b board (allowing closer minimun ranges) from Texas Instruments. This is a simple, but highly developed
and reliable, not to mention inexpensive, system that returns the distance to the nearest reflector in a
certain wide cone of sensitivity. Though much more information can be obtained, in principle, from single
sound bursts by modifying the aperture, phase relationships, frequencies and processing, such an
approach ignores the present very good solution.

2 Past Work
In earlier work [Moravec&Elfes 1985] we described the use of multiple wide-angle sonar range
measurements to map the surroundings of an autonomous mobile robot. A sonar range reading provides
information concerning empty and occupied volumes in a cone (subtending 30 degrees in our case) in
front of the sensor. The reading is modelled as probability profiles projected onto a rasterized map, where
somewhere occupied and everywhere empty areas are represented. Range measurements from multiple
points of view (taken from multiple sensors on the robot, and from the same sensors after robot moves)
] are systematically integrated in the map. Overlapping empty volumes re-inforce each other, and serve to
condense the range of occupied volumes. The map definition improves as more readings are added. The
final map shows regions probably occupied, probably unoccupied, and unknown areas. The method deals
effectively with clutter, and can be used for motion planning and for extended landmark recognition. This
N system was tested on our Neptune mobile robot, and recently outdoors on the Terregator robot.

3 Experimental Approach

Processing a single reading from a standard unit is computationally cheap; only one number is
generated, limiting the computations necessary or possible. The range accuracy of a typical reading is
better than a centimeter, but because of the wide angle of the pulse, the lateral position of the reflection is
uncertain to on the order of a meter. By exercising multiple units repeatedly, readings from multiple
viewpoints may be combined to deduce the location of the reflecting surfaces more precisely. The
combining process is a kind of deconvolution - each point in the final high resolution map is a
consequence of many of the individual readings combined in a particutar, unique way and each reading
participates in many map points.
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Our existing approach uses the idea that the interior of each sonar reading cone (bounded by the
sensitivity profile laterally, and by the range surface lengthwise) is known to be empty, and that the
3 reflecting point is somewhere on the range surface in this cone. The empty interiors of other readings
overlapping this range surtface reduce the region of uncertainty of the location of the echoing point in a
probabilistic way, while intersecting range surfaces reinforce each other at the intersections. The
deconvolution is essentially non-linear.

[ ] The old programs work in two dimensions, collapsing the measurement cones vertically into flat pie
wedges that are combined in a two dimensional map array that ultimately holds numbers giving the
confidence that a given cell is empty or occupied. We have experimentally noted that maps with a range
of 10 meters and a resolution of 15 to 30 cm can be reliably constructed with data from a ring of 24
robot-mounted transducers looking out horizontally at 15 degree intervals and pulsed at six locations a
few meters apart in the robot’s travels (144 independent measurements). The sharpness of the map can
be seen to improve as more readings are added. Many readings are combined to form one map
probability point, and this process makes our method quite tolerant to the occasional range errors
encountered in the sonar data.

A highly optimized version of the program, using fixed point arithmetic, can process 144 points in
roughly 1 second on a big Vax, 2 seconds on a Sun2 and 4 seconds on a Macintosh, building a 32x32
map of eight bit probabilities. A companion program correlates two such maps, using a coarse to fine
hierarchy of reductions and a dual representation (raster and list of occupied cells) to search over X, Y
shift and angle, in similar times. Another program devises good robot paths through the probability maps.

3.1 3D mapping
Our approach generalizes very naturally to three dimensions - in fact the collapse of cones to wedges
in the 2D program is its greatest single approximation, and information waster.

The sensors must be configured differently, however. The only height information in the present planar
ring comes from the vertical divergence of the cones of sensitivity, whose symmetry makes it impossible
in principle to distinguish reflections from above the ring plane from those an equal distance below the
plane. Even without this ambiguity, the present arrangement could provide very little vertical resolution.

An arrangement of sensors on the surface of a partial sphere would be much better. The 15 degree
spacing of the 24 sensors on the planar ring was chosen to give some overlap of fields of view. It was
discovered that this spacing allowed multiple sensors to be fired simultaneously without serious
interference, in three, or even two, interleaved banks, greatly speeding data gathering. Using the same
idea and spacing to fill a sphere instead of a circle leads to the following calculation.

A sphere represents 4n of solid angle. Spacing the sensors 15 degrees from each other assigns a
cone with 15 degree apex to each sensor. A cone with apex angle T subtends 2r(1-cos(T/2)) solid angle,
and we can (glossing over packing problems) arrange about 4n/(2r(1-cos(T/2)) = 2/(1-cos(T/2)) of them
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into a sphere. With T=15 degrees 233 transducers fill a sphere. If we content ourselves with a 90 degree
wedge (almost a fisheye if you note that the beams fan out an additional 15 degrees on all edges, for a
net coverage of 120 degrees) then this gets reduced to a more manageable 34 transducers.

If actually packed onto a spherical cap, the sensor group would greatly resemble a compound insect
eye, each facet being a Polaroid transducer. The insect would be a monster. The transducers are
somewhat less than 5cm in diameter, which would demand a sphere radius of about 40cm. A 90 degree
cap from this sphere would be a shallow bowl 56cm in diameter and 12cm deep.

One such sensor array on the nose of a vehicle, tilted down somewhat, should be adequate for many
tasks, but imagine getting better side coverage, say for obstacle avoidance, by placing two, one on each
side of the head, enhancing the giant insect effect.

3.2 How Many Readings, How much Computation?
The 3D map we hope to derive from this array has more cells than the 2D maps we have worked with,
and will require more data. How much?

Suppose we build our maps to a range of about 10 meters in the vehicle forward direction, 5 meters
laterally and 3 meters in the vertical direction, and to a resolution of 30cm in each direction. There will be
33x17x10 cells, each holding a number, in the final map. This is 5,610 numbers. A naive degrees of
freedom analysis suggests that a similar number of readings each returning one number are necessary to
determine this many variables. Fortunately our 2D experience suggests that far fewer will suffice.

We have noted experimentally that 144 readings nicely spaced around our cluttered laboratory is just
enough to give us good 32 cell by 32 cell maps covering a square area 10 meters on a side. There are
1024 points in such maps, so we seem to be accomplishing the impossible, extracting 1024 unknowns
from 144 equations. Actually, the 1024 numbers are not very informative as their magnitude represents
our certainty (or uncertainty) about particular cells being occupied, not something intrinsic about the
scenery. Most of the cells in the final mape are labelled an unsurprising "unknown” (represented by 0) or
"probably empty” (represented by a negative number). The real information is concentrated in the
locations of the reflecting boundary seen by the robot, i.e. the minority of cells labelled “probably
occupied”. To first approximation this boundary is a one dimensional contour embedded in the 2D map.
Its length in cells is on the order of the boundary length of the map, 4x32. The information is not in the
contents of these cells (positive probability numbers), but in their location. Each cell represents about one
number - think of the boundary expressed in polar co-ordinates - the information is in the radius at each
angle, the angle itself is just the independent variable. SO - we have 144 equations to determine about
4x32 = 128 variables - just about right! Mathematics is great.

In 3D the contour becomes a surface. In our example of two paragraphs ago the map size was
33x17x10 cells. The surface of this volume has about 2,100 cells, and thus requires about 2,100
readings by the above analysis, or 62 full scans of the 34 transducers in the 90 degree eye. The sensors
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can be puised about twice per second. With two way interleaving, a full eye poll takes a second. The 62
readings would thus take about a minute. Computation times on a big Vax, extrapolating from the fast 2D
¢ program, would also be at about 30 seconds to a minute. i is assumed that the robot travels about ten
meters during this minute (a speed of 0.6 km/hr) to give each reading set a fresh vantage point, and that
adequate dead reckoning is provided to correctly relate the 60 sets geometrically. Of course, lower
resolution maps, or simple obstacle detection, can be accomplished faster, in as little as one (half second)
pulse gathering period.

v Y ¥ ¥

b These numbers suggest that high speed travel is best left to longer range sensors, and perhaps
i simpler techniques. The sonar mapping could be very useful for slow, close in, tight maneuvering in
complicated environments and on very rough ground. The very general path passability grid route
planners demonstrated by the group extend in a natural way to the dense 3D data this approach will
provide.

4 Research Plan

All our sonar experiments so far have been conducted with early prototype sonar rings provided by our
sometime collaborator, Denning Mobile Robotics, Inc. of Woburn, Massachusetts. Because of a rather old
fashioned (small buffer) serial intertace on our Vax computers, the processors on these rings can't reliably
communicate with the Vaxes in the present configuration, and this has been a serious hinderance to
sonar experimentation. We will begin the work by building new interfaces for the transducers using Texas
Instrument driver boards funneling into an MC68000 microprocessor. Denning has agreed to help in this
effort - they have been using a Tl board based design successfully for six months.

A second stage is design and construction of the physical array. This will require a mathematical
optimization and an evaluation by simulations of the individual sensor placements.

The bulk, and point, of the work will be an extended series of experiments with 3D map building and
navigation programs. One small but interesting subproblem in the early stages is 3D raster fill of conically
bounded sphere surfaces and volumes. A more significant problem is the handling of position uncertainty
in the measurements made during an extended run. Our probability raster permits a very direct
representation for uncertainty - it can simply be added to the probability distribution, increasing the spread
of each reading in the appropriate directions.

We'd like to try an approach that projects the incremental uncertainty of each move onto old
measurements rather than new ones. The result would be a map that is always detailed for the local area
around the vehicle, and fades to fuzziness under the cumulative effect of errors in the distance. Very old
readings that provide almost no information because of uncentainty in their location could eventually be
eliminated from the mapmaking.

The three dimensional nature of the images will permit some work in identification of large objects.
Recognition of small objects is ruled out by the coarseness (about 10cm) of the anticipated maps.
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Experiments and Thoughts on Visual Navigation

C. Thorpe, L. Matthies, and H. Moravec

Carnegie-Melion University

Abstract

We describe a second generation system that drives a camera-
equipped mobile robot through obstacle courses. The system,
which evolved from earlier work by Moravec [6], incorporates a new
path planner and has supported experiments with interest
Operators, motion estimation algorithms, search constraints, and
speed-up methods. In this paper we concentrate on the effects of
constraint and on speed improvement. We also indicate some of
our plans for a follow-on system.

1. Introduction

FIDO is a navigation and vision system for a robot rover. Using
only stereo vision, it locates obstacles, plans a path around them,
and tracks the motion of the robot as it moves. FIDO's main loop
repeatediy:

e picks about 40 points from one member of a sterso
image pair

o stereo-ranges those points by a hierarchical correlation
technique

o plans a path that avoids those points

o moves forward

© takes two new stereo pictures

o relocates those same points and stereo ranges them
again

o deduces vehicle motion from apparent point motion.

This paper describes our experimental investigations and
improvements in FIDO's performance. Early versions of FIpo and its
predecessor, the Stanford Cart programs, used 9-eyed stereo, took
15 minutes or more per step, and were not always reliable. By using
additional geometric constraints, we have been able to increase the
reliability while using only 2 stereo images instead of 9. With fewer
images and several optimizations, we reduced the run time from 15
minutes to less than a minute per step. We also explored using
paraliel hardware for further speedups.

Section 2 of this paper discusses the constraints used and their
effects on system precision. Section 3 presents optimizations for
speed and prospects for parallelism. Finally, section 4 presents
some exirapolations on the FIDO experience.

The FIDO system has supported experiments in other aspects of
visual navigation, notably interest operators, used to pick points to
be tracked from image to image, and path planning. The results
have been presented sisewhere (8, 8). We found that the simple
interest operator used in the original Cart program worked as well
as more expensive ones, and it was retained with only slight
changes. FiDo does incorporate a new, more flexible, path planner
based on a grid combinatoriai search and incremental path
smoothing.

CH2152-7/85/0000/08308$01.00 © 1985 IEEE
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1.1 Constraints

FIDO uses a variety of constraints to improva the accuracy of its
stereo vision and motion solutions. Most reduce the area of the
image to be searched by the cotrelator. A smaller search window
reduces the chance of finding a false maich and improves system
performance in several ways. First, 88 more points are tracked
correctly it becomes easier to identify those incorrectly tracked and
delete them. Secondly, more points (and higher precision) improve
the accuracy of the motion calculations [10). Finally, points can be
successfully tracked through more images, and over longer
distances, for more accurate iong term navigation.

Some of the constraints arise from the known relationship
between the cameras and the vehicle. Other constraints come from
vehicte inotion estimates: the image location of an object that has
been stereo ranged on a previous step is constrained by
approximate knowledge of the vehicle's new position.

We tested FIDO using various combinations of constraints in order
to judge their effect. We usually made a live vehicle run with the
current best settings, and saved all the images and position
predictions in a file. Subsequent runs were done off-line using this
stored data, with different constraint settings. Such runs were
compared for accuracy of the final calculated position, number of
features successfully tracked at each step, and occurrence of any
catastrophic failures.

1.2 Imaging Geometry Constraints

These constraints are the simplest to understand and to apply.
They depend only on camera and robot geometry, and they are
applicable to stereo point matches of both new and praviously
ranged points.

Near and Far Limits. Point distances are not permitted to be
greater than infinity (by the real world) or less than a certain
distance (by the nose of the robot). This determines a maximum
and minimum stereo disparity of the feature match.

Epipolar Constraint. This is the standard sterec epipolar
constraint: if the point of view moves purely sideways the image of
a point will aiso move sideways (in the opposite direction) but not
up or down. in the real world of misaligned cameras and distorted
vidicons, the image might appear to move a littie verticaily, 30 we
aliow some slop (10% of the image height typical).

1.3 Motion Geometry

The estimated motion of the vehicle from step to step places a
strong constraint on point matches. It can be used either a priori to
limit the search area within an image, or a posteriori to gauge the
reasonableness of a match. The predicted position of the vehicle
can also be combined with the points tracked by vision in the
vehicle motion calculation. FIDO uses the motion geometry
constraints in the following 4 ways:

37

Nt e B RS PO B B
D P T T A R N AL I
= L T T Y

LA S anh i Aoy b sl Al Sat Al i i T Nallhy vy ch “ial A R Y
‘

1~

Cr
4
Y




n  _am e i as 4

-

Two D Motion. We usually run our robot on locatly flat ground, in
which case we know it will not pitch, roll, or move vertically. This
reduces the problem of determining vehicle motion from 6 degrees
of freedom to 3, simplifying the computation and tightening the
constraints.

Reacquire Constraint. Given the 3D location of a point relative
to a previous vehicle position, and a dead reckoned new position
and heading for the vehicle, it is possible to predict where that point
should appear in the new stereo pair of images. if this constraint is
active FIDO will use the prediction to limit the stereo matcher's
search. Three user-settable variables control the error estimates in
robot position and orientation, and consequently the size of the
search box around the predicted image position.

Prune. When all points from a previous position have been
reacquired at a new vehicle location and stereo-ranged, there is &
pruning step that looks for points that do not move rigidly with the
rest of the points. The points that do not appear to move rigidly
have probably been tracked incorrectly, and can be deleted before
the least-squares process that solves for vehicle motion. Activating
the Prune constraint causes the predicted vehicle position to be
included as one of the points in the rigidity test, perhaps weighting
the selection to the correctly matched points rather than a
coincidentally consistent incorrect set.

Motion Solution. The motion solver determines the motion that
minimizes the error between where points have been seen and
where they should have been seen given that motion. The
predicted vehicle position can be included as one of the points in
this least-squares proress, weighted more or less depending on the
assumed precision of the prediction.

1.4 Results

We made several runs of the FIDO system on Neptune, with fairly
consistent results. Data from June 24, 1984 was most extensively
analyzed. On that run a single large obstacle was placed a close 2
meters ahead of Neptune's cameras, with the destination set to the
far side. It was a tough test for FI1DO, since it required the maximum
allowed turn (limited by the need to have significant overlap in the
views from successive positions) on each step to get around the
obstacle and back on course. We ran FIDO with each constraint in
what we thought to be its best state, and saved images and dead
reckoning information. Then we made a series of off-line runs on
the stored data, varying settings and watching the results. Several
runs differed in only one parameter from the original, a few others
changed two or three. The fast grqup of runs began with one using
none of the constraints, followed by a series each with only one
constraint on.

Figure 6 summarizes the resuits. The most important measure of
a run's success is the (program's) calculated position at the end of
the run: the nearer to the actual (manuaily) measured position, the
better.

Some cautionary notes are in order. The relative success of the
run with only the far distance constraint is accidental. During that
run. there were two steps where the motion solution was completely
wrong but that by coincidence nearly oftset each other. Many of
the other single constraint runs that appear worse actualty had only
one wiki miscalculation.

Some of the all-but-one constraint runs also appear too good. In
many of these cases the dead-reckoning information was
sometimes better than the visual tracking. The run with no epipolar
constraint has a better final position than the run with no reacquire
constraint, because, by luck, it tracked lewer points at the right
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times and refied on dead reckoning while the latter placed too much
reliance on small numbers of tracked points.

Based on our experiences, we make the following observations:

o The epipolar constraint is the single most powerful
congtraint. Tuming it off, and all the others on,
significantly decreases the minimum and average
number of features tracked and the accuracy of the
motion solution. Tuming it on, with ail others off,
significantly increased the number of points tracked. In
a sanse, this is not surprising, since the epipolar
constraint rules out 80% of the image, more than any
other constraint.

o No single constraint makes the difference between a
successful and a catastrophic outcome.

ein none of the runs was vision as accurate at
calcuiating transiation as straight dead reckoning
based on motor commands, though in the best runs
vision determined the rotation more correctly. it would
have been better 10 use the dead reckoned motion
rather than the visually determined one if the number of
features tracked dropped below 6 or 7, rather than 4
which was the thresholid, at least for the level of ground
roughness and mechanical accuracy in the
experiments.

o We noticed that even the best runs have about 8 20%
error in calculated transiation, always on the short side.
We suspect a small camera calibration error, and
possibly systematic errors in representing uncertainty.
FIDO calculated a point's 3D location by projecting rays
through the centers of the pixels in the stereo images,
which gives a location on the near side of the range of
uncertainty of distance.

eThere is a problem in using all the
constraints to cut down the search area since it leaves
none for verification and pruning. If we had very
accurate motion prediction, we would have to resort 10
photometry instead of geometry to identify points that
had been occluded or otherwise lost.

2. Speed-up Methods

FIDO now takes 30 to 40 seconds per step on a Vax 11/780 under
Unix. To run in real time, we would have to reduce that to about
second per step. We have looked at several speed-up techniques,
including faster processors, dedicated hardware, coding hacks,
and paraliel processing.

Faster General Purpose Computers

Our vAX is about a one-mip (million instructions per second)
machine. It is technically possible to get the required speedup by
simply obtaining a 30-MiP or faster computer. Budget and logistics
leave this as a tantalizing future possibility.

Commercial Array Processors

Buying 8 commercial array processor is more feasible for us than
buying a faster computer. About 80 percent of the runtime in FIDO
occurs in image array operations and geometric calculations,
particularly the convolutions in point matching. These are done by
small pieces of code that work on large amounts of data, and are
we!l suited 10 the pipelined vector arithmetic of available array
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processors. We estimate, for instance, that a 100 miP array
processor could give us the desired factor of 30 speedup. We've
made several serious attempts to acquire one; so far, this remains
another tantalizing possibility.

Coding optimizations .

Much effort has been expended on speeding up the Vax
implementation. We feel there is littie room for left for significant
improvements in a time-shared, paged-memory environment. The
basic routines, such as the correlator and the interest operator, fit
all the criteria for good candidates for optimization [2]: the code is
fairly well understood, stable, small, and accounts for a large
amount of run time. For instance, the implementation of the
correlator uses the following coding techniques:

o The calculations of parameters of the correlating
window are done once, outside the main loop.

e Sums and sums of squares for consecutive columns
and rows are calculated by Price's technique [7]. The
next window total is calculated by adding in the total for
the column that just entered the window and
subtracting off the total for the column that just left the
window.

e Squares are calculated by table lookup. Since the
squares are of sums of two pixel values, the table
needs only 511 entries.

o Image windows are moved by pointer swapping, rather
than by data transfers.

o Loop indices count down to 0, since the vax hardware
has an efficient test-for-not-0-and-branch instruction.

o Formulas are rewritten to eliminate extra calculations.
For axample,
2 * I(img1 *img2) =

Z((img1 +img2)t2) - Z(img112) - Z(img2t2)

gives a way of calculating the sum of the products of
the pixel values by additions (which are cheap) and
squares (which can be done by table lookup) rather
than multiplications. The individuatl sums are also used
in other parts of the calculation, so in this case the sum
of products comes tor iree.

eLoop unrolling. The code in the innermost loop is
written n times in line, rather than written once inside &
loop that counts to n. This saves n increments of the
counter and n tests for the end of the loop.

o Register use. The most frequently used variables are
located in hardware registers.

These programming techniques reduce the run time of the
correlator trom 140 ms per call for a straightforward implementation
to 4 to 5 ms per call. Similar optimizations have been performed on
the other tight loops. such as in the interest operator and the image
fine to coarse reduction routine. The user-ievel routines have been
optimized to the point that the single routine that uses the most
CPU time is now an image unpacker.

Dedicated hardware
A dedicated microcomputer running FIDO with enough memory t0
store all the relevant images offered some hope. We tried an

implementation of the correlator on a 10-MHz MC68000 system,
with all the images held in integer arrays. After eliminating all
fioating point operations the resulting code still took 29
microseconds per call to the correlator, compared with 4 to Sonthe
VAX.

2.1 Parallelism

There are several ways to break FIDO into separate processes that
can run in parallel on different machines, including pipelining on
macro of micro scales or the use of a master/slave system.

Macro Pipelining

One process might do the reductions. the next could do
reacquires, the next the match, another motion-solving, and the last
path planning. This organization improves throughput but not the
latency. The problem with this method is the sequential nature ot
FIDo. Since all the image reductions have to be finished before the
reacquires can start, all the matches done before the path planning,
and so forth, each pipeline stage has to wait for the previous stage.
Since each step takes as long as on a serial machine, and since the
steps are done sequentially, the time to process any one set of
images is the same as on a single processor system.

Micro Pipelining

The processes could be subdivided more tinely. For instance,
one processor might do the first level of match-for one point after
another, handing its results to the process that does the next level
of match. When matches are finished, the pipeline could be
reconfigured for path planning, and so on. This approach requires
huge communication bandwidth between processes.

Master/slave

This method has one master process and several identical stave
processes. Each slave handles every image processing task:
reduction, matching, and interest operator. At any time all the
slaves work on the same task with different data. For example,
during image reduction, each slave reduces part of the image, and
during matching each slave processes its own queve of points.
The master process does tasks that require global knowledge such
as path-planning or motion-solving, and coordinates the slaves.
This more flexible organization avoids several delays inherent in
pipelines.

We implemented variants of this idea in our Ethernet-connected
multi-Vax environment. Given the existing uniprocessor code. the
task was not difficult. The slaves required new code for
communication with the master, but the actual work is done by calls
to the old image processing routines. The master contains the old
path planning and display code. and new communication code and
dispatch tables to keep track of each slave’s activities. When a
slave completes a task the master updates its dispatch table, finds a
new task and puts the slave to work again. For instance during
point matching each slave is initially given one point to correlate.
When a slave finishes its correlation, the master hands it a8 new
point to find. When ali the points are handed out the master
redundantly hands out points that are still in process on other
slaves, and accepts the first answer to be returned, giving some
protection against overioaded or crashed processors.

A version of the system that used several vAxes in paraliel was
swamped, as expected, by the overhead of squeezing images
between machines through the Ethemnet. Another version that used
muiltiple processes on a single Vax gave us some 1dea of the
performance that might be possible if faster communication,
perhaps through shared memory, were available.
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The single machine version uses the same decomposition as the
multiple machine version, and the same general-purpose
interprocess communication package. Because of limitations in the
communications package, each siave caiculated its own image
pyramid.

2.2 Timings for a 28-Step Run

Single Processor 978
One Slave
Master
Slave 1

28

Five Slaves
Master
Slave 1
Slave 2
Sleve 3
Slave 4
Slave 5

BR4488

Notes:

o The time for the Master varies littie with the number of
slaves.

e Without image acquisition or communication package
overhead the time for a single slave would be about 325
seconds or 12 seconds per step.

o Without image or communication overhead, and with
the time for picture reduction shared evenly, the time
for each of the five slaves would be 65 seconds, or
about 2.5 seconds per step.

e The work spreads very evenly among the slaves. With
5 glaves, the workload is balanced to within the
accuracy of our measurements.

o If the master process did not handie images, had zero-
cost communication, and didn't have to do image
distortion correction, it could run in 75 to 80 seconds,
or about 3 seconds per step.

e By comparison, the original uniprocessor system runs
in 978 seconds, or 35 seconds per step. With the
advantages we assumed above (no image handling
overhead) it would still have taken 503 seconds, or 18
seconds per step.

2.3 Remarks

Our experiments suggest that it is possible to decompose FIDO
into a 5 to 10 fold parailel set of efficiently cooperating parts
running on conventional processors. To realize the run times

suggested above we would need the following:

o Shared main memory large enough to Hold at least two
image pyramids without swapping or data packing. (2
(256 + 64 + 16 + 4 + 1 + .25] = 700 KiloBytes).

o Fast interprocess communication for small messages.

o At least 5 processors. It takes 5 slave processors to
bring the image processing time into the same range as
the master process' time.

- P R A I P IR L

o A device able to digitize images directly into the shared
memory.

o Cameras with less image distortion than our current
vidicons, so image warping would not be needed.

3. The Next System

Some simple hardware enhancements could improve FiDO's
performance. A pan mechanism for the stereo cameras would
permit larger turns while still maintaining continuity of field of view.
Motion and heading sensors would improve navigational accuracy
and eliminate some catastrophic misperceptions.

Navigational accuracy could also by improved by moditying the
motion estimation algorithm. The current algorithm reacquires
features in new a image by searching for the features within
windows predicted by an a priori motion estimate. This makes poor
use of the assumption that objects do not move; that is, that they
appear to move rigidly from frame to frame. Since all search
windows are defined before any search begins, constraint is not
propagated from one match to another. A seemly better approach
is the iterative registration method [1], [3]. [4). In this method, 3-D
feature positions are projected onto a new image using an initial
motion estimate, then the motion estimate is refined to optimize
some measure of match in the image. We are currently
experimenting with the variation proposed by Lucas [4] and plan to
report empirical results in the near future.

Two bugbears in our systems to date have been the calibration ot
camera and motor parameters and the represention of uncertainty
in the 3-D locations of perceived objects. We are considering an
adaptive approach that calibrates the cameras (semi-)continuously
on the fly and adjusts the motor control parameters from
observations of past vehicie motions. A simpie technique like this
was used successfully in an early program that drove the Stantord
Can in straight lines [S]. We are aiso iooking at carrying along
uncertainties in feature locations and updating the uncertainty as
new measurements are taken. Eventually, we hope to automate the
process to the point where calibration simply requires turning on
the vehicle and letting it run by itself for a while.
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Path Relaxation: Path Planning for a Mobile Robot

Charles E. Thorpe

Computer Science Department, Carnegie-Mellon University

Abstract.  Path Rclaxation is a method of planning safe paths around
obstacles for mobile robots. It works in two steps: a global grid scarch
that finds a rough path, followed by a local relaxation step that adjusts
each nodc on the path 1o lowcer the overall path cost. The representation
used by Path Relaxation allows an cxplicit tradeoff among length of
path, clearance away from obstacles, and distance traveled through
unmapped arcas.

1. Introduction

Path Relaxation is a two-step path-pl=rning process for mobile robots.
1t finds a safe path for a robot to traverse a field of ubstacles and arrive at
its destination. The first step of path relaxation finds a preliminary path
on an eight-connected grid of points. The second step adjusts, or
"relaxcs”, the position of each preliminary path point to improve the
path.

Onc advantage of path relaxation is that it allows many different
factors to be considered in choosing a path. Typical path planning
algorithms evaluate the cost of alternative paths solely on the basis of
path length. The cost function used by PAth Relaxation, in contrast, also
includes how close the path comes to objects (the further away, the lower
the cost) and penaltics for traveling through areas out of the field of view.
The cffect is to produce paths that ncither clip the corners of obstacles
nor make wide deviations around isolated objects, and that prefer to stay
in mapped terrain unless a path through unmapped regions is
substantially shorter. Other factors, such as sharpness of comners or
visibility of landmarks, could also be added for a particular robot or
mission.

Path Relaxation is part of Fido. the vision and navigation system of the
CMU Rover mobile robot. [7] The Rover. under Fido's control, navigates
solcly by stereo vision. It picks about 40 points to track, finds them in a
pair of stereo images, and calculates their 3D positions relative to the
Rover. The Rover then moves about half a meter, takes a new pair of
pictures. finds the 40 tracked points in cach of the new pictures and
recalculates their positions. The apparent change in position of those
points gives the actual change in the robot’s position.

Fido's world model is not suitable for most existing path-planning
algorithms. They usually assume a completely known world model, with
planar-faced objects. Fido's world model, on the other hand, contains
only the 40 points it is tracking. For each point, the model records its
position, the uncertainty in that position, and the appearance of a small
patch of the image around that point. Furthermore, Fido only knows
about what it has seen; points that have never been within its field of
view are not listed in the world model. Also, the vision system may fail
to track paints correctly, so there may be phantom objects in the world
modef that have been seen once but are no longer being tracked. All this
indicates the need for a data structure that can represent uncertainty and
inaccuracy. and for algorithms that can usc such data.

Scction 2 of this paper outlines the constraints available to Fido's path
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planncr. Section 3 discusscs some common types of path planners, and
shows how they are inadequate for our application. The Path Relaxation
algorithm is cxplained in detail in Scetion 4, and some additions to the
basic scheme are presenied in Section S, Finally, Scction 6 discusses
shortcomings of Path Relaxation and some possible cxtensions.

2. Constraints

An intelligent path planner necds to bring lots of information to bear
on the problem. This scction discusses some of the information useful
for mobile robot path planning, and shows how the constraints for
mobile robot paths differ from those for manipulator trajectories.

Low dimensionality. A ground-based robot vehicle is constrained to
three degrees of freedom: x and y position and orientation. In particular,
the CMU Rover has a circular cross-section, so for path planning the
orientation docs not matter. This makes path planning only a 2D
problem, as compared to a 6 dimensional problem for a typical
manipulator.

Imprecise control. Even under the best of circumstances, a mobile
robot is not likely to be very accurate: perhaps a few inches, compared to
a few thousandths of an inch for manipulators. The implication for path
planning is that it is much less important to worry about exact fits for
mobile rotot paths. If the robot could, theoretically, just barely fit
through a certain opening, then in practice that's probably not a good
way to go. Computational resources arc better spent exploring alternate
paths rather than worrying about highly accurate motion calculations.

Cumulative error. Errors in a dead-reckoning system tend to
accumulate: a small error in heading. for instance, can give rise to a large
ervor in position as the vehicle moves. The only way to reduce error is to
periodically mcasure position against some global standard, which can be
time-consuming. The Rover, for cxample, does its measurcment by
stereo vision, taking a few minutes to compute its exact position. So a
slightly longer path that stays farther away from obstacles, and allows
longer motion between stops for measurement, may take less time to
travel than a shorter path that requires more frequent stops. In contrast,
a manipulator can reach a location with approximately the same error
regardlcss of what path is taken to arrive there. There is no cumulative
error, and no time spent in rcorientation.

Unknown arcas. Robot manipulator trajectory planners usually know
about all the obstacics. The Rover knows only about thosc that it has
scen.  This leaves unknown arcas outside its ficld of view and behind

obstacles. 1t is usually prefcrable to plan a path that traverses only
known empty regions. but if that path is much longer than the shortest

path it may be worth fooking at the unknow n regions.

Fuzzy objects. Not only du typical manipulator path-planncrs know
about all the objects, they know precisely where cach object is. ‘Ihis
information might come, for instance. from the CAD system that
designed the robot workstation.  Mobile robots. on the other hand,
usuaily sense the world as they go.  Fido, instcad of having precise

!

‘o e .‘.', _'.".: CANEN

e
A A
et Sl o ia a8 o




Ty
-~

A e A R R N AR AR RENE LR ARR S S et

bounds for objects, knows only about fuzey points. The location of a
point i8 only known to the precision of the sterco vision system, and the
extent of an object beyond the point is entirely uaknown.

In summary, a good system for mobile robot path planning will be
quite different from a manipulator path planner. Mobile robot path
planners nced to handle unceruainty in the sensed world model and
errors in path execution. They do not have to worry about high
dimensionality or extremely high accuracy. Section 3 of this paper
discusses some existing path planning algorithms and their shortcomings.
Section 4 then presents the algorithms used by Path Relaxation, and
shows how they address these problems.

3. Approaches to Path Planning

This section outlincs several approaches to path planning and some of
the drawbacks of each approach. All of thesc methods except the
potential fields approach abstract the search space to a graph of possible
paths. This graph is then searched by some standard search technique,
such as breadth-first or A® [8]. and the shortest path is returned. The
important thing to note in the following is the information made explicit
by each represcntation and the information thrown away.

Free Space methods. [2, 3. 9] One type of path planner explicitly deals
with the space between obstacles. Paths are forced to run down the
middle of the corridors between obstacles. for instance on the Voronoi
diagram of the trec spacc. Free space algorithms suffer from two related
problems, both resulting from a data abstraction that throws away too
much information. The first problem is that paths always run down the
middic of corridors. In a narrow space, this is desirable, since it allows
the maximum possible robot error without hitting an object. But in some
cases paths may go much further out of their way than nccessary. The
second problem is that the algorithms do not use clearance information.
The shortest path is aiways selected, even if it involves much closer
tolerances than a slightly longer path.

Vertex Graphs. {5, 10, 6] Another class of algorithms is based on a
graph connecting pairs of vertices. For each pair of vertices, if the line
between them does not intersect any obstacie. that line is added to the
graph of possible paths. Vertex graph algorithms suffer from the "too
¢losc™ problem: in their concern for the shortest possibic path. they find
paths that clip the corners of obstacles and even run along the edges of
some objects. It is, of course, possible to build in a margin of error by
growing the obstacles by an extra amount; this may, however, block
some paths.

Both free space and vertex graph mcthods throw away too much
information too soon. All obstacles are modcled as polygons, all paths
are considered cither open or blocked, and the shortest path is always
best. There is no mechanism for trading a slightly longer path for more
clearance, or for making local path adjustments. There is also no clean
way to deal with unmapped regions, other than to cluse them off entirely.

The Potential Ficlds[1. 4] approach trics to make thosc tradeoffs
explicit. Conceptually, it turns the robot into a marble, tilis the floor
towards the goal. and watches to scc which way the marble rolls.
Obstacles are represented as hills with sloping sides, so the marble will
rol! a prudent distance away from them but not too far, and will scek the
passes between adjacent hills. The problem with potential field paths is
that they can get caught in dead ends: once the marble rolls into a box
canyon, the algorithm has to invoke special-case mechanisms to cut off
that route, backtrack, and start again. Moreovcr, the path with the fowest
threshold might tumn out to be a long and winding road, whilc a path that
must climb a small ridge at the start and then has an casy run to the goal
might never be investigated.

Another approach that could explicitly represent the conflicts between
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short paths and obstacle avoidance is the Regular Grid method. This
covers the world with a regular grid of points, each connected with its 4
or 8 ncighbors to form a graph. In existing regular grid implcmentations,
the only information stored at a node is whether it is inside an object or
not. Then the graph is searched, and the shortest grid path reumed.
This straightforward grid search has many of the same "00 close”
problems as the vertex graph approaches.

4. Path Relaxation

Path Relaxation combines the best features of grid scarch and potential
fields. Using the rolling marblc analogy. the first step is a global grid
search that finds a good valley for the path to follow. The sccond step is
a local relaxation step, similar to the potential ficld approach, that moves
the nodes in the path to the bottom of the valley in which they lie. The
terrain (cost function) consists of a gradual slope towards the goal, hills
with sloping sides for obstacles, and platcaus for uncxplored regions.
The height of the hills has to do with the confidence that there really is
an object there. Hill diamcter depends on robot precision: a more
precise robot can drive closcr to an object, so the hills will be tall and
narrow, while a less accurate vehicle will need more clearance, requiring
wide, gradually tapcring hillsides.

This section first presents results on how large the grid size can be
without missing paths. It next discusses the mechanism for assigning cost
to the nodes and searching the grid. Finally, it prescnts the relaxation
step that adjusts the positions of path nodes.

Grid Size. How large can a grid be and still not miss any possible
paths? That depends on the number of dimensions of the problem, on
the connectivity of the grid, and on the size of the vehicle. It also
depends on the vehicke's shape: in this section, we discuss the simplest
case, which is a vehicle with a circular cross-section.

Y
L
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Figure 1: Grid Size Problems

The arca to be traversed can be covered with a grid in which cach node
is connected to either its four or its eight nearcst neighbors. For a four-
connected grid. if the spacing were 7, there would be a chance of missing
diagonal paths. Atleft in Figure 1. for instance, therc is cnough room for
the robot to move from (1.1) to (2.2), yet both nodes (1.2) and node (2,1)
arc blocked. To guarantee that no paths are missed. the grid spacing
must be reduced to 7 ® sqry(2) / 2, as in the center of Figure 1. That is
the largest size allowable that guarantees that if diagonally opposite
nodes are covered, there is not enough room between them for the robot
to safely pass. Note that the converse is not necessarily true: just because
there is a clear grid path does not guarantee that the robot will fit. At this
stagc. the important thing is to find all possiblc paths, rather than to find
only possible paths.

If the grid is eight-connectad, as in the right of Figure 1, (cach node
connected to tts diagonal, as well as orthogonal, neighbors), the problem
with diagonal paths disappears. The grid spacing can be a full r, while
guaranteeing that if there is a path it will be found.
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Gnid Search.  Once the grid size has been fixed, the next step is to
assign costs (0 paths on the grid and then 1o search for the best path
along the grid from the start (o the goal. "Best”. in this case, has three
conflicting requirements: shorter path length, greater margin away from
obstacles, and less distance in uncharted arcas. These three are explicitly
balanced by the way path costs are calculated. A path's cost is the sum of
the costs of the nodes through which it passes. each multiplicd by the
distance to the adjacent nodes. (In a 4-connected graph all lengths are
the same, but in an 8-connccted graph we have lo distinguish between
orthogonal and diagonal links.) The node costs consist of three parts to
explicitly represent the three conflicting criteria.

1. Cost for distance. Each node starts out with a cost of one
unit, for length raveled.

2. Cost for ncar objects. Each object near a node adds to that
nodc’s cost. The ncarcr the obstacle, the more cost it adds.
The cxact slope of the cost function will depend on the
accuracy of the vehicle (a morc accurate vehicle can afford to
come closcr to objects), and the vehicle's speed (a faster
vehicle can afford to go farther out of its way), among other
factors.

bl

Cost for within or ncar an unmapped region. The cost for
traveling in an unmapped region will depend on the vehicle's
mission. If this is primarily an exploration trip, for example,
the cost might be relatively low. There is also a cost added
for being near an unmapped region, using the same sort of
function of distance as is used for obstacles. This provides a
buffer to keep paths from coming too closc to potentially
unmapped hazards.

The first step of Path Rclaxation is to set up the grid and read in the list
of obstacles and the vehicle's current position and ficld of view. The
system can then calculate the cost at each node, based on the distances to
nearby obstacles and whether that node is within the ficld of view. The
next step is to create links from each node (o its 8 neighbors. The start
and goal locations do not neccssarily lie on grid points, so special nodes
need to be created for them and linked into the graph. Links that pass
through an obstacle, or between two obstacles with too little clearance for
the vehicle, can be detected and delcted at this stage.

The system then searches this graph for the minimum-cost path from,
the start ¢o the goal. The scarch itself is a standard A® [8] scarch. The
estimatcd total cost of a path, used by A*® to pick which nodc to expand
next, is the sum of the cost so far plus the straight-line distance from the
current location to the goal. This has the effect, in regions of cqual cost,
of finding the path that most closely approximates the straight-line path
to the goal.

The path found is guaranteed to be the lowest-cost path on the grid,
but this 15 not necessarily the overall optimal path. Firt of all, even in
areas with no obstacles the grid path may be longer than a straight-line
path simply because it has to follow grid lines. For a 4-connected grid,
the worst case is diagonal lines, where the grid path is sqrt(2) times as
long as the straight-linc path. For an 8-connccted grid, the equivalent
worst case is a path that goes cqual distances forward and diagonally.
This gives a path about 1.08 umes as long as the straight-line path. In
cases where the path curves around several obstacles, the extra path
length can be cven more sigmficant. Secondly, if thc grid path goes
between two obstacles, it may be non-optimal because a node is placed
closer to one obstacle than to the other. A node placed cxactly half way
between the two obstacles would. for most types of cost functions, have a
lower cost. The placcment of the node that minimizes the overall path
cost will depend both on node cost and on path length, but in any case is
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unlikely to be exactly on a grid point. If the grid path is topologically
cquivalent to the optimal path {i.c. gocs on the same side of each object),
the grid path can be itcratively improved to approximate the optimal
path (sce Section 5). But if the grid path at any point goes on the
“wrong" sidc of an obstacle, then no amount of local adjustment will
yicld the optimal path. The chance of going on the wrong side of an
obstacle is related to the size of the grid and the shape of the cost vs.
distance function. For a given grid size and cost function, it is possible to
put a limit on how much worse the path found could possibly be than the
optimal path. If the resull is too imprecise, the grid sizc can be decreased
until the additional computation time is no longer worth the improved
path.

A few details on the shapc of the cost function deserve mention. Many
different cost functions will work, but some shapes are harder to handle
properly. The first shape we tried was lincar. This had the advantage of
being casy to calculate quickly, but gave probiems when two objects were
close together. The sum of the costs from two nearby objects was equal
to a linear function of the sum of the distances to the objocts. This
creates cilipses of equal cost, including the degenerate ellipsc on the line
between the two objects. In that case, there was no reason for the path to
pick a spot midway between the objects, as we had (incorrectly)
expected. Instead, the only change in cost came from changing distance,
so the path went wherever it had to to minimize path length. In our first
attempt to remedy the situation we replaced the lincar slope with an
exponentially decaying value. This had the desired effect of creating a
saddle bewwceen the two peaks. and forcing the path towards the midpoint
between the objects. The problem with exponentials is that they never
reach zero. For a linear function, there was a quick test to sce if a given
object was close cnough to a given point to have any influence. If it was
too far away, the function did not have to be cvaluated. For the
exponential cost function, on the other hand, the cost function had o be
calculated for every abstacle for cach point. We tricd cutting off the size
of the cxponential, but this Icft a small ridge at the extremum of the
function, and paths tended to run in nice circular arcs along those ridges.
A good compromise, and the function we finally scitied on, is a cubic
function that ranges from 0 at some maximum distance, set by the user,
to the obstacle’s maximum cost at 0 distance. This has both the
advantages of having a good saddle between neighboring obstacics and
of being easy to compute and bounded in a local area.

Relaxation. Grid search finds an approximate path; the next step is
an optimization step that fine-tunes the location of each node on the path
to minimize the total cost. Onc way to do this would be to precisely
definc the cost of the path by a set of non-lincar equations and solve
them simultaneously to analytically dctermine the optimal position of
each node. This approach is not, in gencral. computationally feasible.
The approach used here is a relaxation method. Each node’s position is
adjusted in turn, using only local information to minimize the cost of the
path sections on cither side of that node. Since moving one node may
affect the cost of its neighbors, the entire procedure is repcated until no
node movcs farther than some small amount

Node motion has to be restricted. 1f nodes were allowed to move in
any direction, they would all end up at low cost points. with many nodcs
bunched together and a few fong links between them.  This would not
give a very good picture of the actual cost along the path. So in order to
kecp the nodes spread out, a node's motion is restricted to be
perpendicular 10 a line between the preceding and following nodes.
Funthcrmore, at any onc step a hode is allowed to move no more than
one unit

As a node moves, all three factors of cost arc affected: distance traveled
(from the preceding node, via this node, to the next node), proximity to
objects. and relationship to unmapped regions. The combination of
these factors makes it difficult to directly solve for minimum cost node
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position. Instead. a binary scarch is used (o find that position to
whatever accuracy is desired.

The relaxation step has the effect of turning jagged lines into straight
oncs where possible, of finding the “saddle” in the cost function between
two objects, and of curving around isolated objects. [t also docs the
“right thing” at region boundaries. The least cost path crossing a border
between different cost regions will follow the same path as a ray of light
refracting at a boundary betwcen media with different transmission
velocities. The relaxcd path will approach that path.

5. Additions to the Basic Scheme

One extension we have tried is to vary the costs of individual obstacles.
The current vision system sometimes reports phantom objects, and
somctimes loses real objects that it had been tracking correctly. The
solution to this is to "fadc™ objccts by decreasing their cost each step that
they are within the ficld of view but not tracked by the vision module.

Another extension implemcented is to re-use existing paths whencver
possible. At any one step, the vchicle will usually move only a fraction of
the length of the planned path. If no new objects are seen during that
step, and if the vehicle is not too far off its planned course, it is possibic
W use the rest of the path as planned. Only if new objects have becn
secn that block the planned path is it necessary to replan from scratch.

The relaxation step can be greatly speeded up if it runs in parallel on
several computers.  Although an actual parallel implementation has not
yet been done, a simulation has been written and tested.

6. Remaining Work

Path Relaxation would be easy to extend to higher dimensions. It
could be uscd, for cxample, for a 3D scarch to be used by underwater
vehicles mancuvering through a drilling platform.  Another use for
higher-dimensional scarches would be to includc rotations for
asymmetric vehicles. Yet another application would be to model moving
obstacles: then the third dimension becomes time, with the cost of a grid
point having to do with distance to all objects at that time. This would
have a slightly different flavor than the other higher-dimensional
cxtensions; it is possible to go both dircctions in x, y, z, and theta, but
only onc dircction in the time dimcension.

Another possible extension has to do with smoothing ocut sharp
comers. All wheels on the Rover steer, so it can follow a path with sharp
corners if necessary. Many other vehicles, arc not so mancuverable; they
may steer like a car, with a minimum possible turning radius. In order to
accommodate thosc vehicles, it would be necessary to restrict both the
graph scarch and relaxation steps. A related problem is to use a
smoothly curved path rather than a serics of lincar scgments.

An interesting direction to pursuc is multiple-precision grids. This
could make it possiblc to spend more effort working on precise motion
through cluttered areas, and less time on wide open spaces.

Path rclaxation, as well as almost all existing path planners, deals only
with gcometric information. A large part of a robot’s world knowledge,
however, may bc in partially symbolic form. For example, a map
assembled by the vehicle itself may have very precisc local patches, each
mceasurcd from one robot location. The rclations between patches,
though. will probably be much less precise, since they depend on robot
motion from one step to the neat. Using such a mixture of constraints is
a hard problem.

Acknowledgements Thanks tv Hans Moravee, Larry Matthics, and
Rich Wallace for advice and encouragement. This rescarch was partially
supported by Office of Naval Rescarch contract N00014-81-K-0503,
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Example Run. Figure 2 is a run from scraich, using real data
extracted from images by the Fido vision system. The circles are
obstacles, where the size of the circle is the uncertainty of the stereo
vision system. The dotted line surrounds the area out of the field of
view. The start position of the robot is approximatcly (0, -.2) and the
goal is (0, 14.5). The grid path found is marked by 0's. After one
iteration of relaxation. the path is marked by 1's, and after the second
(and, in this case, last) relaxation, by 2's.
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Mddelling Uncertainty
in 3D Stereo Navigation

]
Larry Matthies
Computer Science Department
Carnegie-Mellon University
o
Abstract
o

We are studying the accuracy with which stereo vision can guide a mobile robot. In stereo
navigation, a robot uses a sequence of stereo images to estimate its own motion as it travels through
a world of stationary objects. A set of landmarks is established by finding corresponding features in
one stereo pair. This yields an initial 3-D model of the local environment of the robot, defined in
¢ robot-centered coordinates. As the robot moves, it periodically digitizes another stereo pair, finds the
landmarks in the new images, and computes their coordinates relative to its new location. The motion
of the robot since the last stereo pair is determined by fitting a transformation mapping between the
new and the old coordinate values.

® Previous algorithms for stereo navigation have suffered from poor accuracy and low tolerance to
correspondence errors. This is partly due to inadequate models of stereo triangulation error.
Typically, scalar reliability factors are associated with landmarks to indicate the uncertainty in their
3-D coordinates. These scalars are used to weight the contribution of each landmark in the motion
solving algorithm. This paper argues that stereo triangulation error is better modelled by treating

® landmark locations as random variables with 3-D normal distributions. This leads to revised
algorithms for motion solving in which the covariance matrices weight the contribution of each
landmark. Preliminary simulation results show that the matrix weights achieve substantially more
accurate motion estimates than scalar weights. These results should carry over into applications of

- 3-D vigion outside of navigation.

1. introduction

Mobile robot navigation is a problem of growing interest and practical importance. A travelling
robot must be able to detect the shapes and positions of nearby objects and to monitor its own
position in a global reference frame. This requires range sensors and motion sensors; we are
currently exploring stereo vision for use as both.

Our paradigm for stereo navigation operates as follows [13]. For simplicity, assume that nothing in
- the environment moves except for the robot. A set of landmarks is defined in a robot-centered
coordinate system by matching features in a pair of stereo images. The robot then takes a step, finds
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the landmarks in a new pair of images. and calculates their coordinates relative to its new location.
The motion between stereo pairs is reflected in the difference between the new and the old landmark
coordinates; an estimate of this transformation is found with least squares. The whole process is
repeated periodically to monitor robot motion over long distances.

We have previously used this paradigm in systems that were able to guide a robot through short
obstacle courses [13], [17]. In one set of experiments, the robot accumulated approximately half a
® meter of error in its global position estimate over a course 8ix meters long [11]. However, the motion
estimates were rather unstable. This instability is reflected throughout the computer vision literature:
algorithms for visual motion estimation are generally very sensitive to noisy data [2] .

Part of this sensitivity is due to inadequate modelling of stereo triangulation error. Triangulation
/] induces an uncertainty on 3-D coordinates that is greater for distant points than for near points and
greater in the direction of the line of sight than perpendicular to it (see figure 2). This phenomenon
has been recognized and modelled for a long time in photogrammetry [15]), but has been
comparatively ignored in computer vision. In photogrammetry it is common to model all
measurements as corrupted by normally distributed noise. 3-D positions inferred by triangulation
¢ have an uncertainty modelled by 3-D normal distributions. In computer vision, Blostein and Huang
[2] have recently derived other probabilistic models of triangulation error, but they appear not to use
them in their algorithm for motion solving. Moravec's system [13] approximated triangulation error
with scalar coefficients used to weight the contribution of each landmark to the motion solution.
However, this does not capture the eiongated and oriented nature of the uncertainty.

The purpose of this paper is to demonstrate the importance of modelling triangulation error. The
next section shows how 3-D normal distributions modelling the uncertainty in landmark positions can
be inferred from stereo data. This model is used in section three to derive new equations for

® estimating motion. in these eqyations the covariance matrices of the normal distributions replace the
scalar weights of previous methods. Section four shows how to update the local 3-D model with e
measurements from successive stereo pairs. It proposes to keep the representation in robot-centered e
coordinates and shows how to use the error model to weight successive range measurements of S
point locations. Only transiational motion is treated. In section five we discuss the cascading of Ry
incremental robot motion estimates to obtain an estimate of the global robot position and positional
uncertainty. The results of simulations on synthetic data are presented in section six. These compare
the new error model with a scalar weighting scheme and show substantially better performance with
the new model. Finally, the last section discusses the significance of these results, the difficulties we
expect to have in transferring them to real images, and our plans for extending the work.

™

2. Modelling Stereo Triangulation Error

The geometry of stereo triangulation is shown in figure 1. For the moment we consider just the 2-D
case in which two dimensional points project onto one dimensional images. Two cameras are placed
at offsets of ) from a coordinate system centered between the cameras. Given the coordinates X
and x_of the left and right images of the point P, the coordinates of P are given by
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This estimate can be in error for several reasons. The finite resolution of the images contributes a
quantization uncertainty shown in figure 2a. A point projecting to pixels x,and x_can lie anywhere in
] the shaded region. As shown in figure 2b, this region grows with the distance to the point, becomes
more skewed with increasing distance, and is always directed along the line of sight to the point.
Besides this quantization effect, the stereo matcher can return slightly incorrect values of x and x_
due to perspective and photometric distortions of the image. On top of this their may be geometric
distortions in the image or calibration errors between the two cameras. These errors are of 8 more
P random nature, but they all contribute uncertainty similar to that shown in figure 2.

Our goal is to find a model that accurately reflects the nature of this uncertainty and that can be
used conveniently to constrain algorithms for motion solving. Scalar weights can capture the "size"
of the uncertainty, but nothing of its shape. in a slightly different context, Baird [1] used polygons to
outline the border of the uncertainty region. These became constraints in a motion solving algorithm
based on linear programming. [n our situation the random nature of the errors makes a statistical
approach more appropriate. Motivated largely by the example of photogrammetry and the stereo
calibration work of Gennery [7], we model the image coordinates as random variables with known

» distributions and derive distributions on the point coordinates. For simplicity, we use linear models
and normal distributions throughout, rather than try to determine exact distributions from nonlinear
functions.

We begin by treating X, and x_in equation (1) as corrupted by zero-mean, gaussian (normally
D distributed) noise; that is, :
X=X +e [
x=x +e ,
where ¢~ N(O,o,). e~ N(O.o'), and x,and x are the true values of xland X, Since (1) is nonlinear, Xr
and Y, will not be normally distributed. However, we will approximate them as binormal, with means
given by (1) and covariances obtained by linearization. Thus,

P=P+e,
(1.5)
e~NOV)
and V= JVJT

Here P is the true value of P, ¢, is Its random component, J is the Jacobian of (1), and V is the 2x2
covariance matrix of the image coordinates. In the model we have described, ¥ will have ¢ ,and o, on
the diagonal and zeroes off the diagonal, since we are assuming there is no correlation between

images.
47
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Note that constant probability contours of the error distributions describe ellipses that approximate
the shape of both the non-random (figure 2) and the random contributions to landmark uncertainty.
The principal shortcoming of the model we have proposed is that it is not long-tailed as the true
distribution would be. Figure 2 hints at this; the uncertainty regions have a skew that isn’'t modelled
by a symmetric distribution. The skew is not significant for nearby points, but grows with distance.
We have not analyzed the effect of this other than by way of the simulations presented {ater. The
extension of this error mode! to 3-D points projecting onto 2-D images is straightforward.

3. Solving for Robot Motion

With the procedure above, 3-D coordinates and covariance matrices are estimated for a number of
points matched in the first stereo pair. After the robot moves and digitizes another stereo pair, we find
the same features in the new images, triangulate, and compute new covariance matrices. This leads
to two models of the same points, with coordinates differing by the motion of the robot. if the robot
approached a landmark there will be less measurement error in the landmark coordinates, so the
terms of its covariance matrix will be smaller. The opposite will be true if the robot receded from the
landmark. See figure 3.

We now wish to determine the motion of the robot between stereo pairs. Suppose for the moment
that the motion is purely translational. Let P represent landmark coordinates with respect to the first
robot position, O, represent the coordinates with respect to the second position, and T= [T, T T ]T
be the unknown translatlon vector. The motion is described simply by

q=ﬁ+T
2
In (2) we have observations of P, and Q, and wish to find T. The standard method is to apply least
squares to minimize

n
g(a,-r,- N (Q-P-T)

3)
Differentiating, setting the result to zero, and solving for T we obtain

T-;}_'_: @©-P,

When one has information on the reliability of each point, as we do here, the terms in the sum are
typically weighted according to their reliability. For scalar weights this modifies expression (3) to be

n
g w(Q~P~DT(Q~P-T)

@)
with the resulting motion solution given by

bq

.....................................................................
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With the new error model we proceed differently. Since P‘ and Q, are treated as normally distributed
vectors, the motion equation (1.5) can be rewritten as

° T=Q,- Pi= D,

5)
where D ; will be a normal vector with distribution NQ, Vet VQ,) = M0, Vi). Equation (5) is a linear
statistical model whose optimal solution can be reached several different ways [5]. One of these is to
minimize the following least squares expression:

¢

n
S ©@-P-TTV ' Q-P-T)
i=1

(€)

n
= Q-P~TW,(Q~-P-T)
i=1
This is equation (4) with the scalar weights LA replaced by the matrix weights W, (the inverses of the
covariance matrices V,). The solution for T is

] n n
T= (Z W)”Z W(Q-F)
i=1 i=1

@

The inverse covariance matrices in (6) have the effect of replacing the usual Euclidean distance
norm, represented by the vector dot product in (4), with new norms for each point that stretch the
space as appropriate for the error in that point. This is shown in figure 4. Without the matrix weights,
residual vectors lying on circular contours have equal contributions to the total error of fit; with the
matrices, these contours become elliptical. This effectively gives more weight to errors perpendicular
to the line of sight than paraliel to it, which intuitively is what we want. In fact, scalar weights are just
the special case of matrices in which the matrix is diagonal with all diagonal elements equal, ie.
W, = wll.

Since the transiation T is given as a linear combination of normal random vectors, it will itself be a
normal random vector. The mean of its distribution is simply the value computed by equation (7). The
covariance matrix is given by

Vr= QoW

i=]
This matrix can be analyzed to determine the quality of the motion estimate.

All of the foregoing was derived assuming that the robot motion was purely translational. This is
convenient because the equations remain linear, allowing solutions to be obtained simply and

S




L U I R N S i e A A At R lara e’ Al

S s A o ke 8 0e dh 4

Pad i b FRLh N e At Ay iy Kd"w,"'".“.‘!"‘b‘m
.
-,

._;... CS,

preserving the normal error model. in the case of general motion, the presence of rotation introduces f,‘:f- :
a nonlinearity that complicates matters. The motion is now expressed by : lj: RS
Q=RP+T PRNN

® Pece

where R is a 3x3 rotation matrix. The standard least squares approach would find R and T by e
minimizing '

n

3_w(Q~RP-DT(Q,~RP~T) o
i=1 - T
® e
Since the matrix R is a complicated function of the rotation angles, the equations obtained by Ry
differentiating are nonlinear. The original approach to solving them was to linearize and iterate;
however, recently two methods have been found to obtain a solution directly. In first, Hebert
[10] expressed the rotation as a quaternion and found a direct solution by applying certain identities
in quaternion algebra. The other is a technique from statistics called Procrustes analysis that solves
the matrix formulation directly [14]. Both of these methods apply to equations such as (9) that invoive
only scalar weights, but fail when matrix weights are used. Applying our error model to general

motion leads to minimizing '

n
2_Q~RP =T W(Q,~RP,~T)
=1
(10)

with W,= (R Vp RT + V)™

where P:" N(, VH) and Q,~ NQO, VQ,)
The only method we have found for solving this equation is iterative. An initial approximation is
obtained using the Procrustes method with acalar weights, then several iterations are performed on a S
finearized version of (10). Since the initial approximation is close to the solution, weight matrices W, f-:;;; :-.‘Z;
are calculated only once with the initial approximation for R, rather than recalculated every iteration. L

As in the purely translational case, the computed motion parameters are random vectors, but
because of the nonlinearity of the rotation they are no longer normally distributed. A normal
approximation to the true distribution can be obtained from the converged solution to (10).

4. Updating the Local Model

The foregoing triangulation and motion solving algorithms provide a series of 3-D models defined
relative to successive robot locations. Combining these models can serve two purposes. First, N
averaging landmark sightings from several views should provide more accurate estimates of the b
landmark positions, which should in turn lead to more accurate estimates of robot motion. Second, e
all of the models can be incorporated into a single map of the entire area traveraed. Previous T

approaches to these tasks differ according to whether they have an incremental or a batch nature.

One of the best examples of a batch approach is the classical photogrammetric biock adjustment
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[15). The problem here is to find the 3-D coordinates of ground points from their correspondences in
a block of overlapping aerial photographs. The solution involves writing a set of simultaneous
equations relating all of the image coordinates to the unknown ground points and camera positions,
then solving for the unknowns via least squares. Typically, all of the measurements and all of the
unknowns are treated as normally distributed random variables, much as we have just done. A large
aerial survey may involve several hundred unknowns.

The drawbacks of this approach are that it is expensive in time and space, it is difficult to find errors
in the mass of data, and its off-line nature makes it inappropriate for continuous, real-time navigation.
Photogrammetrists have responded to these problems with an incremental technique called on-line
photogrammetry [8]. This method processes new measurements sequentially to update previous
estimates of camera and ground point positions, rather than first accumulating all measurements and
then estimating the unknowns. Kailman filters are used for the update process. On-line
photogrammetry is used as an automation aid when processing aerial images and as an initial screen
for erroneous measurements, but it appears that the batch solution is still used to deliver the final
values for coordinates.

in computer vision, the best example of an incremental technique is the system developed by
Hallam [9). This involved a 2-D world in which a moving submersible used sonar to track moving and
stationary targets. The positions and velocities of the robot and the targets were modelled as state
vectors defined in a fixed, global coordinate system. Incoming sonar readings created a local model
of the targets in robot-centered coordinates. The current robot parameters were estimated from the
difference between the local and global target models, then added to the local target models to
update the global target positions and velocities. Kalman fiiters were the basis for the state updates.
Errors in the sonar data were modelled by 2-D normal distributions. This system was found to wotk
quite well on simulated data, but has not yet been applied to real data.

Broida and Chellappa [3] have taken a similar approach to motion estimation from a monocular
image sequence. They estimate the position and velocity of a single moving object seen by a
stationary camera. Feature correspondences are used as input to a Kalman filter-based state update.

Chatila and Laumond have developed an incremental navigation system for a robot equipped with a
laser range finder and an odometer [4). The robot is modelled as travelling through 2-D world of
stationary, polygonal obstacles. The key features of their gystem are that it uses a scalar model of
uncertainty similar to Moravec [13] and that object models are rooted in a common global coordinate
frame. Their approach to world model update is intermediate between classical photogrammetry and
recursive filtering; when new information on robot position arrives, they percolate this backward to
update positions of previously seen objects. This effect "fades”, so that the percolation stops after a
short time.

In our problem we are concerned with stationary points (landmarks) seen from a moving vehicle.
We adopt an update method similar to Hallam, but keep the landmark coordinates in robot-centered
rather than global coordinates. For example, consider the situation after solving for the first step of
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robot motion (figure 5). We have landmark sightings obtained from the previous robot tocation,
sightings from the current robot location, and an estimate of the intervening motion. Covariance
matrices are associated with all landmark positions and the robot motion. We propose to transform
the previous sightings into the current coordinate frame, average the two sets of coordinates, and use
the result as a new, robot-centered estimate of the landmark locations. The transformation and
averaging will result in new covariance matrices for the landmarks that should represent diminished
uncertainty in their robot-centered coordinates. '

The rationale for this approach lies in the uncertainty of the motion estimate. For a robot travelling
in an unknown environment, its position relative to any fixed reference frame must become more and
more uncertain. If new landmark sightings are related back to this tixed frame, then their positions in
the fixed frame also become more and more uncertain. Thus, it we transform new measurements
back to an old frame for the sake of averaging, we inflate the uncertainty of the new measurements
and degrade their contribution to the average. Unfortunately, for a robot travelling forward the most
recent stereo measurements will be the most accurate and should be weighted the most heavily;
transforming backward will weight it the least heavily. Therefore, in what follows we transform
information forward to maintain the landmark coordinates in robot-centered coordinate frame. We
expect that this will lead to better estimates of step-by-step robot motion, although other procedures
may be prelerred for mapping the area covered in several robot steps.

We will treat only trans!atiqnal-mot_ion. Let Pi be the robot-centered coordinates of a landmark at
timeiand P, be its updated, robot-centered coordinates at time i + 1. P, is transformed to the i+ 1%
coordinate frame by

P{=P+T
()
where T is the intervening robot motion. Since we are modelling both P, and T as corrupted with
zero-mean, gaussian noise with known covariance, P, will also have a zero-mean, gaussian noise
component. If the noise in P is e,~M0,V) and in T'is ex~ N(O,V)), then the uncertainty e" in P,’ is
distributed M0, V,’) with

V,’ = V,+ Vr

(12)
That is, transforming the point to the current coordinate frame infiates its covariance by the amount of
uncertainty in the transformation itself. in this we have overiooked some correlation induced by (11).
Our initial assumption is that the errors in any landmark location are independent from all other
landmarks. Equation (11), by applying the same uncertain transformation to all landmark locations,
will cause the new coordinates P; to be correlated between landmarks [12]. Taking such correlations
into account would increase the cost of the update quadratically for a small performance
improvement, so we choose to ignore it.

Let the measurement of the landmark taken from the new robot location be Q, with covariance VQ,..
We wish obtain an updated estimate of the landmark’s coordinates by combining P:’ and Q,. Treating
these as two estimates of the mean and covariance of an unknown 3-D normal distribution and
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spplying standard linear statistical theory leads to the following updated estimates of the point N
location and its uncertainty: : x::-.;;-.?
ik
= 1 -hy~1 -
Vin=W" ¥y R
(13) Nl
K '};:ﬂt:":
- 1 -} ' .'- -
Pa=Vi (VT P 1V, Q) o S*ZE
[} \.‘.
Recall that the V's are 3x3 covariance matrices. The intuition behind (13) is as follows. The elements " :

of the covariance matrices V{ and VQi will be large if the uncertainty of the corresponding estimates
P{ and Q,is large. The larger the elements of a covariance matrix, the smaller (loosely speaking) will
be the elements of its inverse. Hence, the more uncertain a measurement, the less weight it receives
in estimating P Laumond and Chatila [4] have described the analogous averaging scheme for

i+
scalar quantities.

Another way to formulate the point location update is to use Kaiman filters. Taking Q, as the new
measurement and P, as the state to be updated, we obtain [6]

— 1 -1y=~1
V=¥ + VQ:

(142)

P, = P".-l- Vinr VQl-l Q,~F)
(14b)
V, 4+, here is the same as in equation (6); furthermore, it can be shown that the estimates of P, .
arrived at by (13) and (14) are identical. There is, however, a difference in the cost of the two
formulations; using (13) requires three matrix-vector products and one vector-vector add, whereas
(14) requires two matrix-vector products and two vector-vector adds. The latter is cheaper overali.

The intuition behind (14b) is fairly simple. The second term takes the difference of the new RO

measurement from the old state estimate (Q, ~ P/), weights the difference by (¥, , VQ,“ , and applies l.ﬁ.l
it as an update to the oid state estimate P/. Matrix ¥, will be “larger" for more accurate new S
measurements, giving them more weight, and "smaller™ tor less accurate measurements, giving them POt
less weight. Conversely, ¥, will be “small” for an accurate old estimate, 5o that the new update is R
weighted less, and vice versa for an inaccurate old estimate. We have used the filter formulation of A

(14) in our implementation. L""'!

5. Updating the Global Robot Position

Previous sections have dealt with estimating each step of the robot’'s motion and updating the local
world model. In this section we are concerned with estimating the robot's global position and
positional uncertainty. This involves summing or integrating the step-wise motion estimates. Smith
and Cheeseman [16] have recently shown how to do this for motion in the plane, involving two
degrees of translation and one degree of rotation. They give the details of a Kalman filter formulation
of the problem. Hallam [8] appears to have used a similar approach, although detailed equations are
not shown. An extension to unconstrained, six degree-of-freedom motion has not yet appeared in the

LY



computer vision and robotics literature. We will illustrate the approach for translational motion,
summarize the Smith and Cheeseman treatment of planar motion, and discuss the difficulties with
extending this 10 unconstrained motion.

Suppose that after / steps the robot's position is T,with covariance V,md that the next step is
estimated to be T‘with covariance V'. The new global position is

T =T*T,
. . (15)
Since (15) is linear and involves gaussian variables, the error in T, 1 will be gaussian with covariance
V=V tY,

The difficulty in extending this to motions involving rotation is that the update equation (15) is no
longer linear, so the error propagation is no longer strictly gaussian. Smith and Cheeseman solve this
for planar motion by linearizing. Each step-wise motion is represented by an uncertain translation
(X.) in the fioor piane and an uncertain rotation § about the vertical axis. Given two such motions
(XX.YI.Ol) and (X, Y,.o,). they obtain closed form expressions for the variables X,. Y, and 0, of the
combined motion in terms of the variables X1 ces .02. The equations are nonlinear and result in a
non-gaussian distribution for the combined motion. They approximate this with a gaussian
distribution obtained by linearizing. They also show how to use Kalman filter methods to incorporate
motion estimates from several sensors into one overall position estimate.

When the motion involves all six degrees of freedom, the linearization approach is harder to apply
because it is difficult to obtain closed form expressions for the combined motion in terms of the
component motions. We speculate that expressing the rotation as a quaternion may lead to a
manageable formulation. It seems likely that this problem has been addressed before in aerospace
applications. .

6. Simulation Results

A number of simulations were run to compare the performance of the 3-D normal error model to the
performance of scalar weights. These experiments first examined the performance on a single step of
robot motion, then the performance over several steps. The methodology attempted to mimick the
configuration of cameras, objects, and motions used in our previous experiments with a real vehicle
and real images [17). The simulated cameras had a resolution of 5§12x512 pixels, a focal length of
12mm, and a field of view of 53 degrees. The baseline between cameras was 0.5 meters. The zscene
consisted of random points uniformly distributed in & 3-D volume in front of the cameras. Typically
this volume extended 5 meters to either side of the cameras, 5 meters above and below the cameras,
and from 2 to 10 meters in front of the cameras. Image coordinates were obtained by projecting the
points onto the images, adding gaussian noise to the floating point image coordinates, and rounding
to the nearest pixel. These coordinates would be the input to the algorithms described above for
triangulation, motion solving, and model updats.
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To abtain covariance matrices for point locations, image coordinates were assigned a distribution

with standard deviations of one pixel for each of x.y,.x,.y, and no correlation between any two

¢ coordinates. These were propagated through the triangulation as described in section 2. Scalar
weights were derived by taking the Z variance from the covariance matrix. Scalars obtained by
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several other methods were tried and found to give very similar results. These include the volume and Z:-::_-}E:.
length of the major axis of the standard error ellipsoid and Moravec's halif-pixel shift rule [13]. :'r:,%"}:i

. $E¢:-
6.1. Single step motion _ [ I -4

Planar motion estimation was tested first. After a step of one meter directly forward, the robot :.‘_::f A

estimated its lateral translation (X axis), forward translation (Z axis), and rotation about the vertical (Y

. axis). Experiments were done varying the number of points tracked and the distribution of the points

@ in space. For any one experiment, averages and standard deviations were caliculated for the resuits

| of 5000 trials. In this set of simulations no noise was added to the image coordinates, so that
quantization of the image was the only source of error.

‘ When all points were 2 to 10 meters away, which corresponds to disparities of 13 to 84 pixels

} ¢+ {roughly 3% to 11% of the image width), the mean estimate of the forward motion was within 0.1% of
correct for both scalar and matrix weights and for anywhere from 6 to 50 points tracked. Since the
true motion was 1 meter, this implies average estimates of about 0.9985 meters. The error that did
occur showed a slight bias to underestimate the true motion.

” Standard deviations of the motion estimates as a function of the number of points tracked are
plotted in figures 6 and 7. Figure 6 shows the results for rotation. Estimates based on scalar weights
have about 10 times the spread of estimates based on matrix weights. With 20 points tracked, the
standard deviation with matrix weights is about 0.03 degrees. Figure 7 shows the results for X and Z

- translations. There is a factor of 10 difference in spread between the scalar and matrix cases for X,

I © but only a factor of 5 for Z. This is explained by the fact that lateral transiations and vertical rotations

1 have a coupled effect on errors of fit, so that smail lateral translations strongly resemble small
rotations about the vertical axis. It is significant that the coupling is reduced by using matrix weights.

_ With matrix weights, tracking 20 points yields standard deviations in X and g of approximately 0.004

‘e meters over a 1 meter motion, or 0.4% of the distance travelled. This compares to 3.5% and 1.86% for

X and Z, respectively, with the scalar algorithm.

The results for motion solving in space are comparabie to the results for motion in the plane. The

| previous experiment was re-run with the motion solver estimating all six parameters of motion. The L

< average solution for Z transiation still underestimated the true motion by about 0.1%. Figures 8 and 9

' show the standard deviations of the rotations and the translations, respectively. The pattern is very

similar to the three degree of freedom case. The deviations are roughly the same size and the ratios

between scalar-based and matrix-based motion solving are the same. The scalar-based algorithm

o shows a coupling between lateral transiation and panning rotation, vertical transiation and tilting

{ rotation, but not between forward translation and rolling rotation. Using full covariance matrices
moderated this effect.
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Adding gaussian noise to the image coordinates in both of these experiments increased the
standard deviations for all curves, but did not effect the ratios between scalar and matrix results.

® The next experiment tested the effect of increasing the distance to points in the scene, or
equivalently reducing the maximum disparity in the image. Twenty points were generated in a volume
spanning 4 to S0 meters in front of the cameras (see inset of figure 10), giving disparities ranging from
2 to 32 pixels or 0.5% to 6% of image width. The volume was gradually shrunk by moving the near
limit from 4 meters back until all points were 50 meters away, so that all disparities were on the order
of 2 to 3 pixels. The results are shown in figures 10 and 11. The horizontal axes in both figures show
the distance to the near limit and the equivalent pixel disparity in the 512x512 images. Figure 10
shows the average, over 5000 trials, of the estimated forward motion as a function of maximum
disparity. The matrix-based method underestimates the motion by 1% to 2% for all disparity ranges.
3 The scalar-based method, on the other hand, underestimates by about 1% when large disparities are
available, but overestimates by close to 30% when all disparities are near 3 pixels. The standard
deviations of these estimates are shown in figure 11. The spread is tight for all disparity ranges with
the matrix-based algorithm, but grows rapidly with shrinking disparity with the scalar-based algorithm.
The breakdown with distance shown by the scalar algorithm is well-known in computer vision; this
u 1§ makes the stability of the matrix algorithm come as quite a surprise.
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6.2. Multi-step motion

Motion over several steps was simulated to examine the behavior of the pomt location update and
the effect it had on the accuracy of successive motion estimates. The simulated robot moved one
meter straight ahead between each stereo pair. Twenty points were used to solve for motion each
time. These were initially generated in the volume 2 to 10 meters in front of the robot. As points fell
out of the field of view, new points were generated in the volume 2 to 10 meters in front of the current
robot position. The unknowns in the motion solver were just the three components of translation. In
this experiment gaussian noise with a standard deviation of half a pixel was added to the image
coordinates before rounding to the nearest pixel.

e,

I}
s r

To test the effect of the point update, a point initially 15 meters in front of the robot, 4 meters to the
right, and at eye level was tracked until it passed out of view. The mean location for both scalar and
matrix methods was within 5 centimeters or 3% at all times, with the error being an underestimate of
the true distance. The standard deviations of the robot-centered coordinates of the point after each
step are shown in figure 12. As expected, averaging more measurements causes the standard
deviations to shrink. Note that after six steps (seven sightings), spread of the matrix-based update is
half that of the scalar-based update. o

Successive estimates of the robot motion showed a steady bias of about 0.5% on the short side for
both algorithms. That is, the one meter motions were always estimated to be about 80.5 centimeters.
Figure 13 shows the standard deviations of these estimates over time. The spread of the estimates
shrinks unti! it reaches a plateau. The matrix-based estimates have one third to one quarter the
variability of the scalar-based estimates. This showed up in the accumulated global position
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estimates. After 10 meters of simulated motion, the standard deviation of the matrix-based estimates
of total distance travelled was 1.6 cm, versus 4.4 for the scalar method.

7. Discussion

The goal of this paper was to show that using a model of stereo triangulation error based on 3-D
normal distributions would lead to more accurate motion estimation than scalar error models. The
simulations have verified this claim. Step-wise motion estimates, global position estimates, and
landmark location estimates are better with the new method than the scalar method. Other motion
solving algorithms from the literature [2], not based on probabilistic error models, had performance to
our scalar-weighted algorithm and poorer than the matrix-weighted version.

© Three dimensional normal distributions model triangulation error better than do scalars, but they are
not entirely faithful to reality either. This shows up in the biased estimates obtained in the simulations.
.However, these biases are small enough that it may be acceptable to ignore them.

One of the most striking aspects of the new mode! is the improved performance is gives with distant
points. This implies that the new method permits shorter stereo baselines to0 be used without
sacrificing accuracy of the motion estimate. Since the length of the baseline directly affects the
difficulty of stereo matching, this may offer a way to alleviate the correspondence problem.

: Ouwr first priority for future work is to verify the simulation results with tests on real images. Shouid

® the results hold up on data free of correspondence errors, the next step will be to pursue the idea of
' shortening the baseline to reduce the likelihood of mismatches. This will be augmented with
statistical tests to filter any remaining mismatches. Further extensions include coping with general
rotation in the global position update, tracking lines as well as points, and estimating velocity as well
as position.
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First Results in Robot Road-Following

Richard Wallace, Anthony Stentz
Charles Thorpe, Hans Moravec
William Whittaker, Takeo Kanade

Robotics Institute, Carnegie-Mellon University

Abstract

The new Carnegie-Melion Autonomous Land Vehicle group has
produced the first demonstrations of road-loliowing robots. In this
paper we first describe the robots that are part of the CMU
Autonomous Land Vehicle project. We next describe the vision
system of the CMU ALV. We then present the control algorithms,
including a simple and stable control scheme for visual servoing.
Finally. we discuss our plans for the future.

introduction

CMU has formed the Autonomous Land Vehicle (ALV) group to
develop a perceptive outdoor robot. We have produced the first
demonstrations of an autonomous vehicle able to follow a road
using a single on board black and white television camera as its
only serisor. Our robot has made several successful runs over a
curving 20 meter path, and 10 meter segments of staright
sidewalk, moving continuously at slow speeds, by tracking the
edges of the road.

The research described in this paper is a first complete system,
covering everything from low-level motor drivers 1o the top-level
control foop and user interface. We took a “depth-first” approach
to building our testbed: we picked one rough design and built all
the pieces of a functioning system, rather than spending a lot of
time at the beginning exploring design alternatives.

Related research at the Unversity of Maryland [6] has focused on
the problem of visually tinding and tracking roadways. The
“bootstrapping” phase of the Maryland road finding program, in
which the robot detects a road on start-up with no a priori position
information, currently has no counterpart in our system. Our
vehicle is always started with an orientation more or less aligned
with the diraction of the road and with knowledge of an initial roed
model. The Maryland road finding module is expected to be
tested soon on an ALV built at Martin Marietta Denver Aerospace.

in this paper we first describe the robots that are part of the CMU
Autonomous Land Vehicle project. We next describe the vision

C tty. this project is funded in pert by Carnegie-Melion University, by the
Office of Nava! Resssrch under contract number N0DD14-81-K-0503, by the
Western Py yh A d Technology Center. by Delenss Advanced
Ressarch Projucts Agency (DOD). ARPA Order No. 3697, monitored by the Air
Force Avionics Laboratory undor contract F33815-81.K-1830, and by Denning
Mobile Robotice. Inc  Fichard Watisce thanks NASA for supporting him with 8
NASA Graduate Student Researchurs Progrem Fellowship Grant.

System of the CMU ALV. We then present the control algorithms,
including a simple and stable control scheme for visual servoing.
Finally, we discuss our plans for the future.

Terregator and Neptune

No mobile robot system is complete without a mobile robot. The
primary vehicle of the CMU ALV project is the Terregator, built in
the Civil Engineering Department. The design and construction of
the Terregator (for terrestrial navigator) is documented in (7). Itis
a 6-wheeled vehicle, 84 inches iong by 39" wide by 37" tall. All
wheels are driven, with one motor for the 3 left wheels and one for
the 3 right wheels. Shaft encoders count wheel turns, but the
vehicle skid-steering introduces some indeterminacy.

The Terregator is untethered. Power is provided by an on-board
generator. Communications with & host computer are via a bi-
directional 1200 baud radio fink for vehicie status and commands,
and a 10 megahertz microwave link for television signal from the
vehicle to a digitizer. A remote VAX 11/780 runs programs for
symbolic processing of visual data and navigation. A Grinnell
GMR 270 attached to the Vax computes low- fevel visual
opersations such as edge detection. A Motorola 68000 on the
Terregator transiates steering commands from the VAX into wheel
velocities for the left and right wheels.

Earlier work aiso used the tethered robot Neptune, built by the
Mobile Robot Lab. Neptune is a simple tricycle, with a powered
and steered from wheel and two passive wheels in the rear. its
sensors consist of two cameras (for stereo vision work), plus a
ring of 24 sonars. While it was intended primarily for indoor work,
it has large enough wheels to run outside on gentle terrain. With
suitable modifications (an umbrella taped to the camera mast), it
even has limited all-weather capability.

Our first successful continuous motion road following was
achieved with Neptune running in our lab on a road marked with
black electrical tape on the fioor. This 5 meter road had one left
turn and one right turn, which Neptune navigated successfully. At
the end of the road, Neptune made a sharp right turn and drove
around in circles.
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The Vision and Navigation Program

[ 3 The primary task of our vision and navigation program is to keep
the vehicle centered on the road as it rolls along at a constant
speed. The program accomplishes this task by repeatedly
digitizing road images, locating the road edges in the image,
calculating the deviation from the center line, and steering to

realign the vehicle.
The program was designed to be fast yet reliable. While the
| vehicle is moving along a planned path, an image is digitized.

©
o8
|
B |
[}
o
4
, .4
-~
' K
IO
,
,
.
e
' .
! 4
.
1
r

PRy



Y1 B N

LT

AL PV N PP PN )

Since images are digitized frequently. the appearance of the road
edges does not change appreciably across successive images;
consequently, searching the entire image is unnecessary. In order
to constrain the search, the program maintains a model of the
road The model contains the position and orientation of the teft
and right road edges seen in a recent image. The program uses
these model edges to generate two smali subimage rectangles in
which to search for the left and right road edges. Sincg the
approximate direction of each road edge is known a p(i(;ﬂ. Qhe
program uses directed curve tracing to reduce processing glme
and to preclude spurious edges. Generally the program finds
more than one edge in each subimage rectangle. The model is
used to select the pair of extracted edges most likely to be road
edges. This new pair replaces the old pair in the model. From the
model pair. the program computes a center line. the vehicle’'s quﬂ
from the center line, and a steering command to bring the vehicle
closer 1o the center line. As the vehicle executes a steering
command another image is digitized and the cycle repeats. Figure
3 depicts the pragram control fiow. In the remainder of the paper
we explain each component of the program in greater detail.

Constraining the Search

Each time the program digilizes an image it chooses two
subimage rectangles to constrain the search for leh. and right
edges. The representation of the rectangle is two horizontal and
two vertical bounding line segments. The vehicle always "looks"
» fixed distance ahead; therefore, the placement in the image of
the horizontal bounding segments is predetermined and remains
tixed across successive images. The placement of the segments
is partly determined by two parameters selected manually: the
height of the rectangle (typically 50 to 100 pixeis) and rectang!e
overlap, that is, the percentage of the road in a rectangie seen in
the preceding image (typically 50%). These two parameters
present important trade offs: If a large height is chosen, the
extracted road edges will be longer, thus providing more accurate
information about the road; however, the processing time will be
increased. and the road will be scrutinized less often. If a large
overlap is chosen, more information is available from the pre\{ious
image and spurious edges are less likely to deceive the algorithm;
nowever. the vehicle's speed must be siowed to enable such
overiap. The two parameters, coupled with the vehicle's speed,
the image processing time, and the camera's tilt determine the
placement of the horizontal bounding segments in the image.

The vertical bounding segments change from image to image.
The program selects bounding segments so that the road edges,
basad on predictions from the model and a preset error tolerance,
will appear within the rectangle. This error tolerance arises from
two sources: First, the program obtains its estimates of the
vehicle's motion by dead reckoning, which is somewhat
inaccurate. Second, the program assumes the road is straight,
that is, predictions are made by linearly extending the road edges.
Road curvature introduces a discrepancy between these
predictions and the actual road: consequently, the rectangle must
be wide enough to see the road edge within a preset tolerance.

Selecting the Best Edges

The line finding routine generally returns more than one line
from each rectangle. The program passes these lines through a
number of filters to determine which, if any, are road edges. The
new road edges are used to plan a path for the vehicle and to
update the model. The 16 best left and right edge candidates
(based on weights supplied by the line finding routine) are
retained, and the rest are discarded. The program assumes that
the camera's cahibration, position, and oneniation with respect to
the road are known, that the ground is iocally level and that all
candidate edges arse from ground features. These assumptions
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allow the program to project each candidate edge into a unique
line in the ground plane. We establish a righthanded coordinate
system with the vehicle al the origin and the xy-plane on the
ground, with the positive x-axis directed to the right of the vehicle
and the positive y-axis directed torward. For each transformed
edge. the program calcuiates the following parameters: the
perpendicular distance r measured from the origin to the edge and
the angle § measured lrom the positive x-axis. The ditterencesinr
and 8 between each transformed candidate edge and the
corresponding model edge are calculated (cali these values dr
and df respeclively). The quantity dr is the difference in
displacements of the vehicle from the model edge and from the
candigate edge. The quantity d@ is the angle between the model
edge and the candidate edge. Test runs have shown that the
vehicle tends to remain aligned with the center line; most of the
error is in the form of lateral drift from this line. Hence, dr provides
the most information for evaluating candidate edges. The quantity
dé tends to be smali (less than 10 degrees); consequently, an
early filter uses it to eliminate spurious edges. After this round of
edge elimination, one of three cases remains:

1. All edge candidates have been eliminated

2. All edge candidates have been eliminated for a
particular road edge (either left or right)

3. At least one edge candidate remains for both the left
and right road edge

In the first case, the program obtains no new information and the
vehicle continues to execute the path planned from the previous
image. In the second case, only one road edge is visible. The
other road edge is occluded, shadowed, or poorly defined.
Suppose for example the program tound a set of candidate road
edges on the right side but none on the left. From the candidate
edges on the right side the program selects the one with the
minimum dr value. it inserts this new edge into the model, retains
the old model edge for the leit side, and generates a new steering
command. In the third case, both road edges are visible. The
program selects one edge from each list of road edges (left and
right) by comparing each left edge to each right edge candidate
and choosing the pair that minimizes the difference in their dr
values, that is, it selects the two edge candidates that differ trom
their corresponding model edge in the same way. Figure 3
illustrates road edge selection in this case. This decision is based
on the observation that vehicie motion error and road curvature
shift the location of each edge in the image in the same way. The
program inserts the two new road edges into the model and plans
a new path.

Line and edge extraction

At the lowest levels of the vision system for our vehicle. the edge
and line extraction modules, we found that for detecting road
edges we coukd rely on the principle "almost anything works in the
simple cases.” That is, any of a number of simple edge and line
finding techniques could be used to extract road edges in various
situations. Our approach then was to try everything. We tested
vanous edge and line finding programs on static road images and
on images acquired by the vehicle in actual runs. Simple
techniques proved adequate in many situations we encountered.

The basic approach of all the vision moduies we tried was to find
the lelt and right boundaries of the road and represent them as
lines. Theretore. the task of the low level vision modules is 1o find
line segments which are plausible candidate road edges. We
sought to make only the most general assumptions about what
might constitute a road in an image. The technique used to
extract road edges and represent them as lines depends on

.
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whether we think of a road as an intensity change from
background, a texture change, a color change or a combination.
We experimented with 7 methods for extracting road edges from
images and three methods for fitting lines to the edges. The seven
techniques we used to find edges in road images were:

1. Correlation. Assuming that a road edge is a more or
less vertical feature in a subimage it can be followed
by selecting a small sample patch of the edge and
correlating this on a row-by-row basis with the
subimage. Where the correlation is strongest in each
row a road edge element is assumed. The resultis a
list of points where the road edge appears in each
row. A line can be fit to these directly. The
correlation approach worked very well when the
sample road edge patch was hand selected.

2. 00G operator. A Difference of Gaussian edge
operator was tried at a wide range of spatial
resolutions on road images. Road edges tend to be
low spatial frequency signals so large DOGs were
required to find them directly. Two-dimensional DOG
filters tended to break up the road edges even at low
frequencies. One dimensional DOG operators applied
horizontally in the image produced more connected
road edge pieces, since the road boundaries were
almost vertical features in the image. High spatial
frequency DOG operators can be used as the basis of
a texture-based segmentation of road images,
however.
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Figure 3: Edge selection using the perpendicular
distances. Only edge candidates with § =0 were
included for simplicity. Candidates et and e4, with
et = " and 1, ¢ * o minimize the error
I(r.m-r.) ('ngm"n" and are selected as the new model

road edges.

7¢

3. Temporal Edge Detector. Subtracting two

successive image frames is an inexpensive method for
detecting image features that change from one
moment to the next. I a vehicle is traveling down an
ideal road (where the intensity of the road is uniform,
the intensity of the surrounding region is uniform and
the road edges are straight and paraliel) then the
ditference of two successive road images is zero.
When the vehicle begins to turn left or right oft the
road, however, simple image differencing finds the
road edges. This strategy was used in one
experiment to servo Neptune visually down a hallway.
Here the road edges were particularly distinct so the
idealness assumption was more or less satisfied.

. Roberts Operator. A 2x2 Roberts edge operator

was sufticient to find road edges where they were
relatively well-defined intensity step functions, such as
when the vehicle traveled down a hallway or when we
artificially marked the road edges with tape.

. Intensity Segmentation. A simple binary intensity

segmentation of the road image works in many cases
where the road is a set of pixels most of whose
intensities are grouped together in the image
histogram. We used a simple segmentation technique
based on classifying all the pixels in the bottom 50%
of the histogram as one region and those in the upper
50% as another. Standard procedures for expanding
and shrinking the resulting segments to join closely
spaced segments and eliminate small ones are
applied. Road edges are assumed to lie along the
boundaries of the resulting regions.

Oigitize an image Steer vehick
Determine subimage Compute center ine
rectangles for and plan path

edge extraction
Extract sdges Select best edges
from subimages and update model

Figure 4: System Block Diagram
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Texture Segmentation. Texture  based
segmentation often proves better than intensity based
segmentation for road edges where the road is
relatively smooth and the surrounding region is not,
such as when the road is asphalt against a grass
background. A simple texture operator which we
have found useful in detecting road edges is one
which counts the number of edges per unit area and
classifies all those areas where the edge count is high
as a single region.

. Row Integration. Summing the intensities column-

by-cofumn in a set of scanlines in the image results in
a single-scanline intensity image where the road is
roughly a one dimensional box function. given that the
road is a more or less vertical feature and the road
and surrounding area each have fairly uniform but
different intensities. Finding the boundaries of the
box amounts to finding the average position of the left
and right road edges over the scaniines summed.
Repeating the procedure for another set of rows in the
image locates another pair of road edge points which
can be joined with the first to approximate the road
boundaries as line segments.

The three line-extraction techniques we used were:

1.

Least Sqaures Line Fitting. When we had onfy one
possible line in an edge image, such as the result of
running a correlation operator over the rows or
coflecting a number of road edge points by row
integration, a line could be fit 1o the points by least
squares.

2. Muff Transform. A modified Hough (Muff) transform

was used to fit lines to edge data where the edge
extractor returned points that could plausibly be parts
of several lines. The Hough transform has been used
to detect road edges in other road finding programs
[sj{1]. The Mutt transform wuses a new
parameterization for lines in images. The Muft
transform has several implementational advantages
over the conventional p-@ parameterization. The
details and implementation of the Mulf transform are
presented elsewhere [5).

3. Line Tracing. Most of the subimages we processed

to find lines were bands about 50 pixels tail and 250
pixels wide. A simpie raster tracking algorithm found
in (3] proved sufficient to trace the road edges.
Basically. if an edge point P above some high
threshhold ¢ is found while scanning the subimage,
then we search on scan lines below for connected
edge points above some lower threshhold 1. The last
such point found in the subimage is called Q and we
assume PQ 18 a line segment. The line tracing
procedure is much like the inverse of a Bresenham
algorithm for drawing lines. with the simifar fimitation
that we can find lines that are only with 45 degrees of
vertical. We find lines more than 45 degrees from
perpendicular and lines with gaps by searching in a
neighborhood below an edge point for the next
adjacent edge point. Stniclly speaking. our tracing
program returns the endpoints of a curve which may
not necessarity be a line. but over the small distances
in the subymages we search for lines we have found
this fast tracing procedure vyields an adequate
approximation. The line tracing procedure was used
in ail of the real tme continuous motion runs of our
vehicle under vision control.
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A combination of three factors enabled us to reduce the image
processing time for each image sample to about 2 seconds. First,
special image processing hardware in our Grninneli GMR 270
display processor was used for the low level correlation and
convolution. Second. only small subimages (50 by 250 pixels)
were searched for road edges by the line knding routines. Third,
selection from among the possible set ot candidate road edges of
the actual road edges was accomphshed by ssmpie means (q.v.).

The next step in our plans for development of low-level road-
finding vision is to 1ntegrate severa! types of feature detectors in a
blackboard data structure. We want 1o eviluate the success of
combining intensity, texture and cclor edge and region features to
find road edges. Earlicr we said that we relied on the principle
“almost anything works in simple cases”. For complicated cases.
such as we have encountered in actual outdoor road scenes, we
have found that none of the techniques we have tried a/ways
works. We believe that a combination of techniques will enable us
to find road edges reliably in a wide range of situations.

Control

The control procedure transiates the visual measurements into
vehicle motor commands that, if successiul, keep the vehicle
moving along the road. We evaluated a half-dozen approaches
experimentally with our vehicles and analytically. One approach,
servoing to keep the road image centered in the forward field of
view, excelled in all the measures, by such a margin that we feel it
deserves to be considered a fundamentai navigational principle
for mobile robots.

Figure 5: Processing Graphics. Here a road image is
shown after processing to enhance intensity changes.
The vision program selects a window in which to
search for road edges. Candiate lelt and right road
edges are lines fit to the raw edge data, shown here as
black lines. Heavy black lines indicate the lett and
right road edges sclected by the program. The
computed road center line is shown as a double line
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Let x represent the shortest distance between the center of our
vehicle and the centerline of a straight road. § is the angle
between the heading of the robot and the road direction, i.e. when
@ = 0 the robot is driving paralle! to the road. Suppose the vehicle
travels at a constant scalar velocity v, and that control is achieved
by superimposing a steering rate. d@ / dt (where t is time) on top
of the forward motion. If there is no slippage, the following
kinematic relationship will hold:

(1)
dx/dt = -vsiné

The general problem for continuous road following is to find a
steering function F such that by setting dé /dt = F(x,8) the
vehicle approaches the road center. We tried several functions
and noticed a number of recurring problems. Estimating 8 and x
trom the image requires both a precise calibration of the camera
and accurate determination of the position and orientation of the
road edges in the image. Both are difficult to achieve in practice,
and the high noise level in these quantities made most of our
functions unstable. A secund problem led directly to our solution.
The road image sometimes drifted out of the camera's 40 degree
field of view, and in the next sampling period the program would
fail to find a road, or (worse) identified some other feature, like &
door edge, as road. The obvious solution was to servo to keep the
road image centered. Experimentally this approach was a
stunning success. Besides helping the vision, it seemed to be
insensitive to even large calibration errors and misestimates of the
road parameters.

The theoretical analysis was remarkably sweet also, and bore
out the empirical observations. A first order analysis, where wé
assume the road image is kept perfectly centered, gives the
relation

@
x/r = 8ind

where r is the distance in front of the robot where a ray through
the camera image center intersects the ground (i.e. the range at
which we do our road finding). The parameter r can be changed
by raising or lowering the camera, changing its tilt, or by using a
ditferent scanline as the center of the region in which road edges
are sought.

Equation (2) can be substituted into (1) to give
@)

dx/dt = -vx/r

which can be solved directly, giving
4
X = xo ’-vt/v

where x, is the initial value of x when t = 0, so to first order the
vehicle approaches the centerline of the road exponentially with
time.

A more detailed analysis considers the actual servo loop
behavior. The displacement of the rcad centertine image from the
center of the forward field of view is proportional to

(5)
(sin@ - x/r)/cosl

Servoing the steering rate on (5) sets

(6)
dd/dt = -g(sin@ - x/r)/cosé
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wherae g is the servo loop gain. The full behavior of the robot can
be found by solving (1) with (6) simultaneously. These equations
are made linear and easily solvable by the substitution Q = sin 8,
giving
@
dx/dt = vQ
dQ/dt = -g(Q-x/r)

By co-incidence or cosmic significance of all the servo functions
we considered, only this one yielded a fully general analytic
solution.

The solution has three cases distinguished by the sign of the
exprassion

®)
gr - 4v

in all cases the solution converges to x =0, Q (and ) = 0
exponentially with time. When g<4v/r the convergence is a
decaying oscillation - the sluggish steering causes repeated
overshoots of the road center. When g>4v/r the solution
contains a second exponential, and the robot approaches the
road center more slowly. When g = 4v/r, the critically damped
case, we have the fastest convergence and no overshoot, and the
behavior is given by the equations

)

x = @Vr(vt(2xy/r-Qp) + x)
(o
Q = e™Mraw/r(2x,/r-Qy) + Q)

The gain sets the turn rate required of the robot. Note that to
retain the critically damped situation while increasing v without
changing g, it is necessary only to increase r, i.e. arrange to have
the vision look further ahead.

The method is successtul for severai reasons. It keeps the road
in view at all times. Because the system always converges, errors
in g or camera calibration do not jeopardize performance.
Because the parameter being servoed is the most robust direct
measurable, namely road position in the image, the noise
problems of the other approaches are almost totally eliminated. In
particular, 8 {or Q) and x though they occupy a central position in
the theoretical analysis, need never be calculated in the actual
servo loop.

Conclusions

We have developed a vision and control system for a mobile
robot capable of driving the vehicle down a road in continuous
motion. The system has been tested on two mobile robots,

Neptune and the Terregator. in both indoor (hallway and artificial
road) and outdoor (asphalt paths in a park and cement sidewalk)
environments. In our best run to date the Tesregator traversed a
20 meter outdoor path at 2 cm/sec. Image processing time has
been reduced to 2 sec/image.

Failure modes of our vehicle have included driving off the road.
driving into trees and walls, and driving around in circles. Such
failures were mostly due to bugs n our programs, imprecise
calibration procedures, and limitations of current hardware (2.9..
B&W camera with narrow angle lens). not fundamental limtations
ot the techniques used.
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Future Work
There are several areas that we plan to address. First is the [6) Waxman, A. M., J. LeMoigne and B. Scrinivasan.
construction of a true testbed. This involves mostly software Visual Navigation of Roadways.
[ 3 engineering. such as cleaning up and documenting the interfaces In International Conference on Robotics and Automation.
between vision and control. This will enable us to try other vision IEEE, 1685.
methods, such as texture and color operators.
[7]  W. Whittaker.
Further work will require the use of a map, aiong with program Terregator - Terrestrial Navigator.
access to a magnetic compass and a gyro. The map will list Technical Report, Carnegie-Mellon Robotics Institute,
road direction, width, appearance, and intersections, which will 1964.
® provide strong cues to both the image processing and the

navigation system. The compass, along with the map information,

will help predict road location in the image. This will become

increasingly important as we venture onto curved and hilly roads, Vi iat tadepenpents
and as we encounter intersections and changes in the road  symboiic

Maps & oae Seget Path phosaie

The next step is obstacie avoidance, which will require limited
0 3D processing. Projects in the CMU Mobile Robot Laboratory
have already demonstrated obstacle avoidance with sonar {2] and  (33ects Yopmat
stereo cameras [4]; we intend to integrate these into the testbed.
Later work may add a laser rangefinder and programs to handle yoem
that data. Sevasery

wytacien
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Finally, as the testbed becomes more complicated, system x':z'.‘:.'r‘mum : ferrain :
——

. control will become a major issue. We plan to work on a g
'3 blackboard system with cooperating and competing knowledge | e e
sources. All the data, from the lowest level signals to the highest - Vet e eeebeeaty ]
level models and maps, will be on the blackboard and available to  Transforses S
| - m -
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A Modified Hough Transform for Lines

Richard S. Wallace

Department of Computer Science
Carnegie-Mellon Univeristy
Pittsburgh, PA 15213

Abstract

A new parameterization for lines in images is presented
with application to the Hough transform. The modified
Hough (Mufl} transform has several implementational ad-
vanatages over the conventional p- 6 parameterization. The
Muffl transform parameter space is better suited to com-
puter graphics line drawing routines. The Mufl transform
requires no transcendental function calls or table lookup.
The relation between the tesselation of the parameter space
and ihe resolution of the lines represented is discussed. The
shape of the Mufl space is amenable to compaction into a
rectangular array. The implementation of the Muff trans-
form is presented.

The Hough transform can be used to find lines in imagesl’z,
Tach edge element in the picture votes for all of the lines
that could possibly pass through it. The voting takes place
in a two-dimensional parameter space, where each line is
represented as a point.  This space is tesselated into a
grid of rectangular cells, and cach cell accninulates votes
for lines represented by values in that cell. In implemen-
tations of the Hough transform the tesselated parameter
space is an accumulator array. To extract the lines in an
image, the llough parameter space is searched for peaks
which lie above some thresshhold: these are assumed to
correspond with lines in the image. Two problems which
arise in the implementation of the digital Hough trans-
forn are the selection of the Hough parameters and the
choice of granularity of tesselation for the parameter space.
The usual parameters selected to represent lines in Hough
space are p and 0, where lines are given by the expression
p=zcosb + ysin@. These parameters have the advantage
over m and bin the y = mz +b form that they are bounded.
It is easy to see that for an rectangular image extending
from (Zpn,Ymin) L0 (Tmaz,Ymaz) the values of p and @ are

bounded by —\/zm’ n +y?um < p < V2., +y3, and
0 < @ < x, whereas m and b are unbounded. This paper
presents a different bounded parameterization of lines in

The new Hough line parameterization is illustrated in fig-
ure 1. We assume for simplicity that the image is bounded
by a rectangle parallel to the z- and y-axes and extend-
ing from the origin to some (Tmaz,Ymaz)- A bounding box
extending around the image provides the basis for the pa-
rameterization. A line passing through the image is pa-
rameterized by the two points where the line intersects the
perimeter of the bounding box. These points are given by
their distance along the perimeter of the bounding box,
where distance is measured counterclockwise along the box
starting at the origin. Thus a line has two parameters, s,
and 87, representing the two points where the line inter-
sects the box. To preserve uniqueness of the representa-
tion, we assume s; < 82. The range of possible value are
0 < 81 < 82 < 2(ZTmaz + Ymaz)- This new parameterization
is called the Muff transform.

An immediate advantage of the Mufl transform is purely
graphical. The transform parameters easily map back into
points on the image’s bounding rectangle. The line repre-
sented by (s, s;) in figure 1, for example, passes through
the image at (84,0) and (2%.naz + Ymar — 82,Ymaz). These
points can be passed directly to a computer graphics rou-
tine to draw the line. No clipping is needed. The cal-
culation of the endpoints for a line p — @ requires more
work. First, the peak value indecies in the accumulator ar-
ray must be mapped back into their corresponding p -- 6
values. These are then used to write a line equation of the
form Az + By + C = 0, which then must be solved for z
and y at each side of the rectangle. The Mull representa-

tion requires at most two subtractions to determine both
endpoints.

xmax +
2ymax T

|
|

2 Xxmax +
2 ymax

"‘I Xmax+ymax

an image and several advantages of this new represcutation 0 Xxmax
over the p — 8 parameters. F I g ure 1
CH2145-1/85/0000/0665%01.000© 1985 IEEE g ,
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Implenientations of the Hough transform for lines can suffer
from two problems related to the use global edge informa-
tion in the image to find local lines. First, edge elements on
colinear but not connected line segments vote for the same
line. Second, the transform of an image with many noisy
edge pcints or many irregular blobs may contain spurious
lines linking distant edge elements because the thresshhold
on peak detection in the Hough space must be set low in
order to obtain any lines. The pure Hough transform does
not preserve information about which edge points voted for
a particular line and hence the transform cannot find di-
rectly the endpoints of line segments. One obvious solution
is to store in each bin of the Hough space not only the count
of edge elements voting for a particular line, but also a list
of the pixel coordinates of the edge elements themselves.
Later processing can then fit line segments to connected
sets of pixels in peak Hough bins. Another approach is
to divide the image into a number of smaller rectangular
regions, and compute the transform for each. The Muff
transform is best suited to the latter.

The transform is implemented by the following procedure.
Given an edge element {a,b) find the point (c,d) on the
bounding box so that (0,0), (a,b) and (c,d) are colinear.
{c.d) is parameterized by a value s,,,-. Then for each s,,
0 < 8; < 8mqz, and the point along the box associated with
s, there is another point given hy sz so that s,’s point,
(a,b) and s2’s point are colinear. The calculation of s; is
straightforward and depends on which side of the rectangle
a line intersects. In any case the computation of s; from s,
and (a,b) reduces to the problem of intersecting a line in

two-point form with a horizontal or vertical line3. Thus an
advantage of the Muff transform over the p— 8 transform is
that no transcendental function calls are needed. The need
for actual transcendental function calls can be eliminated in
implementations of the p — 6 transform algorithm by table
lookup, however. The p—0 transform requires only divisions
and no transcendental function calls or table lookup.

The choice of tesseslation for the parameter space affects
the resoltion of the lines which can be found. Intuitively,
the finer the tesselation, the finer the accuracy of the lines
which can be represented. One measure of resolution is the
distance measured between two lines where they intersect

one side of the image. For the z-axis, let’s call this distance
Az. Figure 2 shows that for the p — 8 representation the
resolution Az is a function of p. The further the line from
the origin, the coarser the representation. In the Muff rep-
resentation, however, the resolution Az is constant around
the perimeter of the image. In all fairness, the angular
resolution of lines in the Muff representation is finer near
the corners than near the center of the image. The Muff
representation, however, caputures exactly the set of lines
that can be drawn by computer graphics from one point on
the rectangle to another, up to the resolution of the tes-
selation. The absolute upper bound on the useful size of
the Muff parameter space is (Zmaz + Ymaz)?, Where Zmaz
and ym,; are respectively the number of pixels along the
z-axis and y-axis sides of the image, because no more lines
than this pumber can be drawn by graphics from a pixel
on one side to a pixel on another side of the image. The
p— 0 representation will not represent this entire set or rep-
resent some of its elements redundantly, depending on the
granularity of the parameter space tesselation.

Rt . A A AN S de e B S B 2

A peculiarity of the p — 6 form for the Hough space is
that, although it is bounded, it has an irregular shape (see
fig. 3). Not all pairs of (p,8) in the rectangle given by

“VZImin +ymgn <p< Vzvzlu: +yv2n¢: and -7r/2<f<n
represent possible lines in the image. If minimizing stor-
age were an issue in a Hough transform implementation,
the compaction of the p — 8 space would prove difficult.
Figure 3 shows the set of possible values in the Muff rep-
resentation. It is clear how these could be compacted into
a rectangular array if necessary. Also, it is simple to write
an algorithm which efficiently scans only the Muff array's
possible cells for peaks or local maxima. For each row ia
the accumulator array, the cells can be scanned from left
to right starting at the first possible value in that row.

e

A9

AN\ \Ax\

ax

Figure 2. In the p-© representation the resolution

of fines that can be represented is a function of

p and ©. This dgiagram illustrates two lines that
appear adjacent in the tesselated transform space.
The distance between these lines where they intersect
the x-axis grows as p increases.

AX

In the Muff representation the resolution of lines
represented is constant throughout the space.
The muff representation captures exacity the set
of lings that can be drawn across the rectangle
by computer graphics.
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The Muff transform has been implemented and tested on
images of roads. In the road following application, it is not
usually necessary to find the endpoints of line segments in
the image. It is the road edges which are important, and
these can be assumed to extend from one side of the image
to another. Thus neither the technique of storing pixel
locations in the Hough accumulator array nor the method
of dividing the image up into smaller rectangles is used.
Road edges tend to be strong and extend over the whole
image, so the Muff transform picks them out easily. The
design of special purpose voting hardware? has made the
use of the Muff transform more practicable for real-time
vision tasks.

Figure 3. The set of possible values of p and © b
for lines passing through a rectangular image s
dgefines an irregular shape in the p-®© piane.

[1) Duda, Richard O. and Peter E. Hart “Use of the Hough The irregularity makes it difficult to compact

Transform to Detect Lines and Curves in Pictures” CACM the useful values into a rectangular array. R
vol. 15 no. 1, January, 1972. pp. 11-15. i S
{2] Ballard, Dana H. “Generalizing the Hough Transform s! 52 $3 s4 \
to Detect Arbitrary Shapes,” Pattern Recognition vol. 13 .
no. 2, 1981. pp. 111-122. -
s!
|3] Bowyer, Adrian and John Woodwark A Programmer’s
Geometry, Butterworths, 1982.
§2
(4] Sher, David and Tevanian, Avidas “The Vote Tallying
Chip: A Custom Integrated Circuit”, Custom VLSI Con-
ference, Rochester, May, 1984. s3
s4

The set of plausible pairs of parameters in the
Muff space can be easily compacted into a
rectanguiar array. In this diagram, s1 = xmax

$2 = XMaxe+ymax, s3 = 2xmax+ymax, s4 = s(xmax+ymax). L"**“‘
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Progtess in Robot Road-Following

R. Wallace, K. Matsuzaki, Y. Goto,
J. Crisman, J. Webb, T. Kanade

Robotics [nstitute, Carnegie-Mellon University

Abstract

We repont progress in visual road following by autonomous robot
vehicles. We present resulls and work in progress in the areas of
systemn architeclure, image rectification and camera calibration,
oriented edge tracking, color classification and road-region
scgmentation, cxtracling geometric struclure. and the use of a
map. in test runs of an outdoor robot vehicle, the Terregator, under
control of the Warp computer, we have demonstrated continuous
molion vision-guided road-folowing at speeds up to 1.08 kim/hour
with image processing and steering servo loop times of 3 sec.

1. Introduction

Research in ro’)ot navigation on roads is part of the Autonomous
Land Vehicle 7ro,act (ALY) at Casnegie-Mcllon University. Broadly,
our work is pimed st creating sutonomous mobile robots capable of
operating in snstructures environments. To this end, our research
program involves a vo.iety ol sensors, programs and experimental
robot vehicles. This paper is focused on recent progress in
detection of and navigation on roads, using a TV camera as our
sensor and a six-wheeled outdoor autonomous cobot, the
Terregator (7], as our test vehicle. We present results and work in
progress in tho areas of system architecture, image rectification
and camera calibration, oriented edge tracking, calor classification
and road-region segmentation, extracting geometric structure. and
the use of a map.

For robot navigation of roads, we use a single television camera
as our primary sensor. In this application, the monocular TV
camera is considered superior to ranging sensors such as laser
scanners or sonar tor three reasons. First, roads we are interested
in foliowing do not necessarily have prominent 3.dimensional
features at their shoulders; most often there is no depth
discontinuity between the road surface and the surrounding
roadside. Second, we have developed one steering strategy that
servos the vehicie based on measurements in the image plane
itself, rather than on measurements in a world coordinate frame.
Third, we have so far relied on a local ground plane assumption,
that the ground around the vehicle is locally planar, so that any time
we do need to transform irage points 1o world coordinates, the
transformation is trivial,

To attain the brosd goals of our project, we have split the
research into two efforts. The goal of the first effort is to develop a

Clmcnuy. this project in fundod In part by Carnegie Mcllon University, by the
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Labaratory under conteact F33G615-81-K-1539, and dy Denning Moblle Robotics, inc.

Hichard Viallace thanks NASA lor supporling him with 38 NASA Graduate Student
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road-following system which uses a map to navigate around a
highly structured and visually simple network of sidewalks pn the
CMU campus. The goal of the second effort is to devalop vision
routines lor road-follawing in a less structured and visually more
complex environment in a nearby park.

2. Sidewalk Navigation

The sidewalk environment at CMU is a network of mostly straight”
concrete pathways joined at intersections of various shape. The
sidewalks have fairly uniform color and texture and are always
surrounded by well-groomed grass, giving them consistent high-
contrast edges. The goal of our research in this environment is to
develop afgorithms {or geometric reasoning, shape-matching and
navigation withamap.

2.1 Map and Blackboard

The overall system architecture to which a vision-based road-
following subsystem interfaces is a blackboard [5], a shared
memory structure containing a local map of the robot's
environment. Other sensing processes, such as those interpreting
range data, and other knowledge-based processes, such as those
updating the local map, are also tied to the blackboard. .

2.1.1 Dialogue Mode!

The road-following subsystem consists of four modules; Vision,
Map, Navigator, and Motion Control. These modules commumnicate
with each other by sending and receiving lokens through the
Blackboard. In selecting this decomposition of aur system inta
modules, we followed the principle of information hiding. The
Vision module contains expertise needed for extracting features
from images. The Map module knows the structure of the robot's
environment and its position. The Navigator is responsible lor
planning paths. The Motion Control module insures that the vehicle
executes navigation commands. Thus each module has a dilferent
domain of expertise. For example the Vision module does not know
the robot's map or route. That information is kept hidden and is
used only by the Map module to make predictions to the Vision
module.

Communication between the various modules looks like a
dintogue. Figure 1 shows the dialogue model of :he road.-following
subsystem. This mode! refiects the Information hiding principle of
the design. In the example, the Map hides Information from the
vislon module, except lor the facts which are retevant for the
current scene. The Map tells the Vision module only about the
predictions it makes for the current scene.

With map data, the Map module produces the token, Predicted
Object, which shows what the Vision system shall see. For
example, 8 Predicted Object can be a road or an Intersection,
Using Predicted Object, Vision sees and makes the token, Detected
Object, which shows the shapes of objects in front of the vehicie.

- Using Detectad Quject, the Map decides the vehicle's Currént
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Position. Using Current Position and the map data, the Navigator
supntics the token, Mation Command, which tells how to drive the
vzhicle. Using Motion Couwnand, the Motion Conlrol drives the
vehicle,

R2

11 R4 I4

User: Robot is at road R1, 3 meters from 1.
Navigate to RJ, 2 meters from I3,

Map: Vision wili see siraight road and cross-type intersection.
The color in the left is ... Delect them.

Yision: Ok. | found them. Their shapes ace ...

Navigator: Drive on it 2.5 melers and turn ta right 90 degrees.
Motion Contol: Ok. | drive. (vehitle moves)

Map: Vision will seq slraight road. The color an the feftls ..
Detect it

Figure 1: Dialogue Model of Map Interface

In the road-following subsystem, two kinds of coordinate systems,
World Coordinate and Vehicle Coordinate, are used. World
Coordinate is an absolute coordinate. The map data is written with
World Coordinate. The Vehicle Coordinate frame, which is fixed on
the vehicle, is used by Vision to represent Detected Obiject,
because it does not know where the vehicle is. Coordinate
transformation is done when necessary.

2.1.2 Prediclions

The map module supplies predictions to the vision module. The
map data consists of two kinds of maps, a topological map and a
geometrical map. The topological map stores the topology of roads
and intersections. The geometrical map stores the shapes of roads
and intersections. ’

With these map data, the Map predicts the kinds, the shape and
the image features of objects which shall ba seen in a camera view.
The purpose of detecting objects is to navigate the vehicle. The
detait of an object shape is trivial and therefore, not necessary for
navigation. The Map creates intarest segments, which are the
primary edge line segments of roads and intorsections. The
injerest segments are enough for Map to decide the vehicle's
Current Position and the object shape necessary for navigation.
They are likely to be the edye segments most eastly datected by
Vision, and therelore are included in the Predicted Object. An
interest segment i also a key for matching. We discuss this in detail
below.

2.2 Extracting Geometric Structure

Our Autonomous Land Vahicle has to not only follow single road,
hut also to detect an intersection and turn into one of the
intersocting roads. In this case accurate shape of roads and an
intersection hus to be extracted. This i3 difficult because variations
in camera view and imaging conditions result in variations in the
shapes detected. Furthermore thera are many factors which muke
it difficuit to detect a ropd shape such as cracks, dust, gaps
between concrete slabs. They are not noise but physical
subsctance, thereloro even if region claasification is done perfecily,
they possibly remain. To solve these problems, we implomerited
tvio procedures. First, the image is processed to eliminate these
disturbing factors and 10 reproduce the road region. Aftor that,

using knowledge from map, interest segments, which are key to
decide an position of an intersection, are found.

2.2.1 Reproducing the Road Region

To eliminate the disturbing factors, two phase image processing
is done; cxtracting high-confidence road regions and then
connecting them.

The result of region cegmentation includes four types of
segments: 1)actually road and classified as rcad, 2)actually not
road and classilied as not road, 3)actually toad but classified as not
road, 4)actually nat road but classified as road. At the first image
processing phase, the program seiscts a conservative classification
threshold so that only ideal road surface is classilied as road. This
result includes much type 3 region but little type 4 region, and
region classified as road is confidently road. Then, to cover type 3
region, we did a combination of reducing resolution and
expansion/contraction of image.

-The expansion/contraction method is known as a good method
to eliminate gaps or small holes, but calculation time is long when
the size of defects are large and large number of
expansion/contraction is needed. We have to use this method in
real time during vehicle running. So, we reduced resolution before
expansion/contraction. This method absorbs several pixels into
one pixel, and decides the the new pixel value by a threshold on the
proportion of original pixels classified as road to nonroad. We use
a reduction ratio of 8°8 to 1 pixel followed by 1 or 2 iterations of
expansion/contraction, This obtained both sulficient shape
estimates and quick calculation.

2.2.2 Polygon Fitting

To recognize an Intersection from the reproduced shape, we fit a
polygon to the intersection contour. Shape analysis based on
polygon is much quicker than one based on whole pixels or run-
tength data. The processing includes following steps.

1. Extracting Straight Line. Most of roads imaged are
straight but if they include curves, these can be
represonted as a set of segmented straight lines. So,
we apply a polygonal approximation to original precise
polygon to extract major straight components. The
tolerance is set so that the interest segments can be
picked up well.

2. Labseling Lines. We have developed a program which
labels lines. At first,this program idenlilies viewing
frame edge fines by searching lines which are
contained in the Coordinate of viewing frame. Sccond,
this program classifies lines by angle and gives same
labels for the similar angle lines. The Map module
produces also the description of interest segments
which shows the segment atiribute and the relationship
between segments. Using this description, this
program can match the classified lines to the predictod
interest segments easily. The lis} showing the delected
segineits and their correspundence to the predicted is
returned to the Map modute. Understanding of whole
geometric slructure is done by the Map In next map
matching step.

2.2.3 Map matching

With the result of the Vision module and the object prediction, the
Map module can know ihe names and the shapes of the detected
objects. In order to sstimate the vehicle current position, the Map
module selects crossing lines in the detected objects and
corresponding lines in the map data, and calculates coordinates
transformation which can match them. In this stage, when only
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straight portion of the road is in the view frame, the measurement
from the Vision module’ can constrain the vehicle: position and
orientation only perpendicular to the road. In such case, lthe
location atong the road is calculated using the vahicle maotion. The.
positional error which might accumulate along the path will be
corrected as the vohicle approaches to the intersection and can
see tho road edges in muitiple orientations. .

Figure 2 shows a result of CMU campus sidewalk run. Along the
vehicle approaches an intersection, the vision module delects
diffarent parts of road contour which are predicted as major line
segments by the map module.
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Javigation on the sidewak using 8 map: (b) tho images taken when
approaching intersection |-5. The trapezokisl region in (a) representa the pradicied
view ol the Vision. (c) Ibe results of r00d region extraction of the images in (b). The
imnges ere roctilied into the map coordinates from the imsge coordinates. The
edges matchad with prediction sre indicated by boid knes.

Figure 2: Navigation on Campus Sidewalk using Map

3. Park Road Following

Our park environment contains a 1 kilometer curving asphalt path
part of which is always dluminated directly and part of which Is
shaded by trees. The path itself varies in texture from mostly

_ herative It (r,, c) > (¢, ,. ¢, ). This process
" search window (alis outside of the image bounds.

smooth and featureless to cracked and pot-holed, and in color from
biue-gray to black. The shoulder around the path consists mostly
of grass, but there are also some seclions of dirt and rock.
Seasonally, both road and shoulder are obscured by leaves, snow
or ice. Trees and their shadows are also present. The main goal of
our research in the park environment is to develop vision algorithms
capable aof steering the wehicle reliably in this unstructured
environment.

3.1 Road-Edge Following

We have developed a technique for tracing the edges of a road
using an oriented edge detector. Like the tracker discussed in [9]
our algorithm begins with an estimate of the start position from
which is the edge is to bhe traced. Unlike that tracker, ours
integrates or smooths the edge along the edge direction.
Integrating the signal along the direction of the edge has the effect
of smoothing and reducing nolse content. Then, the position of the
edge is localized by matching an ideal step edge model with the
one-dimensional cross-section.

Oriented edge detection operators have been explored in
computer vision, with perhaps the best results found in [2). We
chose an oriented operator since it is more reliable than an
unoriented one. For example, if the road in the image is oriented at
415 degrees, then a conventionat edge detector will find gradually
sloping intensily values, see ligure 3. However, if the same detector
is oriented at 45 degrees, then the oriented detector would see a
sharp change In intensities, and therefore, the edge location is
detectable. We have implemented edge operators at a number of
different arientations so that we can obtain a reliable response
regardiess of the orientation of the road in the image.

Edge Profile

Orienled Operalor

Figure 3: An Oriented Edge Opearator
3.2 Implementation
The edga tracer constructs a list of road cdge points in an image
given a position {r,, c°) and orientation, 00 ol a road edge. The
oriented edge operator integrates the signal along its columns.
the operator does not align with the image columns, then it sefects
pixel values nearest to the position of its columns for the

. summation. This one dimensional result of the edge operator is

called the edge signature or edgo profile.

Then a new road edge point, (r’. ca). is predicled to lie a distance
from (’o' €,) at an angle of 0. A search window is created centered
at ('o" ¢_), oriented at the angle 4. The edga operator creates an
edga profife in the search window. The roud cdge. (1, c), is
determined o be where the an ideal stop edge and the window
profile have the best correspondence. The orientation of the road
is recaiculated by & = arclan2(c, - ¢, . 7, - r). This algorithm Is
repeated until the
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3.2.1 Results

The edge tracer has been tested on 480 X 512 grey level images.
The dimensions used for the search window were 64 rows by 128
columns. Figure 4 shaws a typical result of the edge tracer. The
initial position is given near the bottom of the image and the
oriented edge detector proceeds upward in the image. The larger
boxes outline the search windows, and the smaller, inncr boxes
show the positions of best correlation. The edge proliles are shown
inside the search windows.

We have developed a vehicle driver systam based on orlented
edge tracing. The initial position and orientatian of the feft and
right road edges are input to the system and used for the lirst
iteration of the orlented edge tracer. Alter finding the road edges in
the image, they are back-projected to the ground plane. The
vehicle motion between images Is used to locate the previously
found road edges relative to the vehicle. Then the previous edges

are projected in the new image. These edge locations are used for ™

the position and orientation estimations required for the edge
tracer. The 3D projection of the road edges also allow the right and
left road edges o be tested lor parnlieliam and proper separation.

This system works well on images where there Is afair amount of
contrast between the road edge and the road shoulder. We have
been able to drive our vehicle quite reliably on gently curving roeds,
However, we have had difficulty when the edge of the road lies
close to obstacles or when shadows lie on the road. The edge
tracer can locate a road edge point in under one second. The
system can drive the vehicle at speeds up to 0.3 meters/sec.

We are currently warking pn testing the road edges found by the
edge tracer for geometricai consistency. if the right and left edges
of the road are not parallel and the proper wiith apaet, then the
sysiem must decide which edge should ba used to drive the vehicle.
Measures of evaluation based on the hoight, width, smoothness,
and consisioncy are currently being tested. If these measures are
roliable, tho system should be able to evaluate its performance .

3.3 Road-Region Segmentation

The second major approach to road feature detection is reglon
segmentation. This difigrs from the edge-based procedure In that
the rood itsell is extracted, rather than its conlours. As we
mentioned earlier, the edge Information can be used to verify and
tocolize the region hypgthesis. Region classification is based on
assignment of region labels to all pixels in an imago, where the
assignment depends on properties of thal pixel such as hrighiness,

texture and color around that pixel. Our work is focused on color

classification.
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3.4 Color

Early in our work on visual delection of roads we recognized the
importance of utilizing color vision sensors. We found in black-
and-white images of our test sits that the perceived intensity of the

LI BV N o AZJ'

asphalt road differed very litle from the intensily of the surrounding l

grass, although the color was very different. Gray-lgvel histograms e
of the images wera either very fat, or they had peaks caused by OCRCA
shadows and highlights_rather than rosd or nonroad features. N

Histogram-based segmentation techniques and edge operators
feilod for the same reason. We considered texture energy
measures to segment road and graas, since the grass has more
edges per unit area, but the nolise introduced into the images by an
inferior TV transmission system copfounded attempts to measure
high-frequency texture informstion. Even in the presence ot high
spatial frequency image noise color information is retained.

3.4.1 Pixel Classification

In color images each pixel (x, y) has an associated cofor vector
{Rlx, y), G(x, y), Blx, y)). The set of all possible {R.G,8) values forms
8 color cube RGB. The RGB cube can be divided in various ways
80 that pixels having certain color vector vaiues can be classified as
road or nonroad. A simple reglon classification involves selecting a
sample road region and grass region from a tralning image, and
using the average values (un,qum“pa,m) and
{;AR',._“.;LG‘,M#B,,”'.) as ideal leature points in AGB space. If
the covariance malrices = and T are also measured then
tha colors can be modele‘g as trivariate normal distributions
(TVNDs). The resuilt of a TVND mode! is to divide color space into
reglons separated by quadratic surfaces, Figure 5 shows a resutt of
classifying a sequence of rectified road images from the park site.

3.4.2 Color variation

Unfortunately the color of road and shoulder do not remain
constant irom one image to the next. Variation in color arises for a
variety of reasons, such as fllumination changes (e.g. shadow
versus direct Humination) and material changes (e.g. dry asphait
versus wat, green grass versus yelfow). Additionally, our test
vehicle is equipped with a TV broadcast station, through which
images are transmitted to a fixed-based computer. The chromatic
component of the TV signal varies depending on such factors as
theo position of the robot vehicle with respect to the TV receiver.

We have begun to explore the use of adaptive color models to
reduce the problems arising from color variation.

3.4.3 Shadows ond normalized color

Shadows cause many of the failures of our vision system. Edge-
based schemes for detecting road edges ar¢ looled by high.
conirast shadow edges, as shadow edges often have a greater
brightness-to-darkness ratio than material edges. Even region
classification schemes based on color are confoundod by shadows

o - .

Figure 8: Culor Segmentation of Rectifier) Park Scenes
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because images of objects in shadow contain color values
clustered around dilferent points in RGB space.

Consider an object imaged with color C, in a sunlit part of the
scene and color C, in a shadowed region. To a first approximation,
C, = kC, for some constant k. This is because the object reflects
the same color in shadow, it is just imaged at a dillerent intensity.
Thus a preprocessing step is to normalize all the color vectors of an
image, by transforming each point {R(x, y). G(x, y), 8(x, y}) into (r(x.
y). glx. y). bix. y}) such that

¢« A/(Re¢G+8), @ =«G/(R+G+8), p = B/(R+G+B).
Then all the color points lieon the plane R+ G+8a 1,

Although the transformalion from RGB to rgb is sulficlent for
erasing shadows in many cases, it is not always successful. There
are two factors limiting its usefulness. First, the dynamic range of a
TV camera Is not very large (a maximum brightness:darkness ratio
of 7:1) compared with film {a maximum brightness:darkness ratio of
20:1) or the human eye (a maximum brightnass:darkness ratio of at
least 1000:1). Thus TV images containing of shadowed regions

may have splotches of maximum bright or dark, i which all spatial

detail and color information is lost. Color normalization will not
work in these areas. The second factor Is less important, but easler
to work around. Nonshadow arcas in our putdoor road scenes are
illuminated by direct sunlight, which has a more-or-less constant
spectral distribution. Shadowed regions are illuminated by skyfight
and by sunlight reflected off surrounding objects (such as tree
leaves and tree trunks in our case). Thus the refiected color of a
shadowed part of a region Is ngt quite the same as the color
refiocted from that part of the region iQ direct sunlight. In practice
the difference Iis small enough not to matter for our classlification
techniques.

Color normalization reduces the dimensionality of color
classification to two, in which case a bivariate normal distribution is
vsed as a ¢olor feature model.

3.5 Image Rectitication

We have implemented programs for nonlinear warping of an
perspective of a road to transform it into a view like whal we would
see it we werce llying over the road and looking down on it. This
transtormation, called image reclification, produces a map-like
image in which the structure of the road is made explicit. The result
is an image which is in vehicle coordinates and can bo used lor
camera calibration, debugging of ground-plane operations,
detection of ground-plane features, and display of planned robot
paths.
3.5.1 Doatinition

Figure 6 shows the process of image rectilication. It is most easily
described by considering @ rectangular grid projected onto the
ground plane. Grid points can be considered as pixels of the
rectified image. Rectification consists of back-projecting the grid-
points in the ground plane to the original image, in order to see
what intensity value should be placed at that poinl. Once the back.
projection is computed, it is stored as a fookup table so that
subsequent images can be rectitied quickly.

Figure 7 shows the process of image rectification for a wide-angle
fish-eye lens. This lens is superior to a standard reflex lens (which
we usually model as a pin-hole) for Imaging the road, because the
road aiways remains in Jew even when the vehicle makes sharp
turns off the centerfine, The point (~1,/ el ) on the ground ofane
is first projected onto the unit sphere centered at tho origin, then
perpendicularly to the image piane which s tangent (o the sphere nt
(0.0,1). The overall trangformatiori is .

U d=(=LI,WVTFT F ), :
where A is the rectitied image and (' Is the original iriage.
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This transformation is more useful if it can be done quickly: we
anticipate carrying out this transformation on the CMU Warp
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Figure 6: Image Rectification for Pin-Hole Lens and
Determination of Camera Tilt
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Figure 7: Image Rectilication lor Fish-Eye Lens

3.5.2 Camera calibration '

The image rectitication process (for the pin-hole lens mode!) can
be uged for camera calibration. By “"camera calibration" we mean
deriving the necessary parameters for transforming image points to
the tocal ground plane around the vehicle. By intersecting a pair of
lines in the ground plane around the vehicle a point on the horizon
{vanishing line) can be detected. Note that the actua/ horizon need
not be in view, onty a pair of lines in the local ground plane. In fact,
the lines necd only lie in any plane paraliel to the ground plane,
except the planes containing the camera axis. In practice we use a
pair of lorward-painting straight metal poles bolted to the side of
the Terreyator as a calibration "hood arnament”. We hand-select
these points from a calibration image.

Once the horizon line i3 known, the tilt of the camera is easily
derived as in figure 8 Given the tilt 8 of the camera and an estimate
of the camera focal length /, the transformation from ground plane
points to image points i3 obtained directly as in ligure 8.

A sacond aspect of camera calibration is determining the x and y
scale lactors for the image, where x indicates distance along an
axis parallgl to the vehicle forward direction and y (s distance along
an axis parallel to the wheel rotution axes. To measure these
parameters, we place meter sticks on the ground plane in camera
view, digitize and rectify a test image, and then measure the lengths
of the meter sticks along the x and y dimensions.

3.6 Warp Runs

In test rung of an outdoor robot vehicle, the Terregator, under
control of the Warp computer, we have demonstrated continuous
motion vision-guided road-following at speeds up to 1.08 km/hour

- with image processing and steering servo loop times of 3 sec.
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3.8.1 Warp Hardware Description

The Warp machine has three camponents: the Warp processor
array, or simply Warp, thé interface unit, and the host, as depicted
in Figure 8. We describe this machine only briefly here; more detail
is available separately [1]. The Warp processor array performs the
bulk of the computation:in this case, low-leve! vision routines [2].
The interface unit handles the input/output between the array and
the hos!. The host has two funclions: carrying out high-level
application routines and Supplying data to the Warp processor
array.

The Warp processor array is a programmable, one-dimensional
systolic array, in which all cells are replicas of each other. Data
flow through the array on two data paths (X and Y), while addresses
and systolic control signals travel on the Adr path (as shown in the
Figure 8). The Warp celis are specialized for fioating-point
operations. The data path of a Warp cell is depicted in Figure 9.
Each cell contains two floating-point processors: one multiplier and
one ALU(8]. These are highly pipelined; they each can deiiver up
to 5 MFLOPS each. This performance transiates 1o a peak
processing rate of 10 MFLOPS per cell or 100 MFLOPS tor a 10-cefl
processor array. To ensure that data can be supplied at the rate
they are consumed, an operand bulfer is dedicated to each of the
arithmetic units, and a crossbar is used to support high intra.cell
bandwidth. £ach input path has a queue to buffer input data. A
4K.word memory is provided lor resident and temporary data
storage.

As address patterns are typically data-independaont and common
to all the cells, full address genecation capability la factored out
from the cell architecture and provided in the interface unit.
Addrasses are gencrated by the interface unit and propagated from
cell 1o cell {together with the control signals). - In addition to
generating addressas, the interface unit passes data and resulls
between the host and the Warp array, possibly performing some
data convarsion in the process.

The host is a general purpose computer. It is responsible for
high-level application routines as well as coordinating ail the
peripherals, which might include other devices such as the digitizer
and graphics displays. The host has a large memory In which
images are stored. These images are fed through Warp by the host,
and result images from Warp are stored back into memory by the
host. This arrangement is flexible. it allows the host to do tasks not
sulted to Warp, including low-level tasks, such as initializing an
array lo zero, 83 well as higher level tasks, such as processing a
histogram to determineg a threshoid.

3.6.2 Warp Road Following Algorithm

The Warp-implemented road following algorithm is very simple,
but proved to ba remarkably robust. The algorithm is region-based;
it searches for the road as a bright region in the blue spectrum of a
color image. A 100 x 512 band of the image is taken about hatiway
down the image. The algorithm then works as foflows:

1. Blue Filtar. The ¢plor image is filtered by digitizing
only the bive band. Blue was chosen because bive Is a
strong companent in the color of the roads we are
driving on (asphait and concrete), but less strongly a
component of the background (generally grass).

2.Edge-preserving smoothing. This is & smoothing
operation which avgids smoothing across odges. Ris
the algorithm EGPR in the Spider subroutine fibrary [4],
implemented on Warp. The sigorithm takes a & x &
window wound each pixel and chooses nine
subwindows in the § x 5 window. The subwindow with
smatlest variance Ig chosen, and tho central pixel is
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Figure 8: Warp machine overview
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Figure 9: Warp cell datapath

repiaced by the mean of this window. Two passes of
this algorithm are executed. The effect is 10 remove
noise rom the image, especially noise {rom the poor
quality o_t the TV reception in some cases.

‘

3. Histogramming. A stundard higtogram is taken on

the Warp machine.

4. Threshold sclection. The histogram is used by the

Sun 120 o select a threshaid. The threshold is
sealected by starting at the S0th percentile level in the
histogram and then finding a focal minimum by
comparing adjacent 3-element averages of the
histogram.

6. Binarization. A gray value table fransiation table is
constructed by the Sun using the threshold, and the
image in binarizéd using this table on Warp.

8. Region smoothing. The resulting hinary Image is
once again subjected to two passes of edge-preserving
amoothing. The kiea here is to remove small cracks in
the road, and to eliminate small ragions of ones in the
background. Edge-praserving smoothing was chosen
for this step instead of a more traditional oporation, like
shrinking and growing, because tha edge-preserving
filtering program was available while the (simpler)
binary operator program was nol.

7:8lob dotoction. At this point the road is a reglon ol
ones surrounded by a background of zeroes. Ten scan

lines, taken ten rows apart, are taken from the image
and each is axaminod to find the longest continuous
sequence of ones. Each scan line thus defines a left
and right road edge. The lelt and right edges are
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averaged together individually to find the estimated
road edges. An earlier approach was lo find the left
edge by finding the lirst long sequence of ones moving
to the right from the left side of the image and the right
edge similarly. This did not work as well as the second

approach, since the vehicle tended to steer into the
center of forks in the road.

8. Stearing. Our servoing strategy is to steer the vehicle
to keep the center of the road centered in the image.
Basically we start with a farge (512 x 512) image array
and reduce It as quickly as possible to a point (x, y).
This is the point considered to be the center of the road
some fixed distance in front of the vehicle. [t is also the
point to which the vehicle steers. Assuming that the
center of the image is the point (0, 0), the stcering
command is to turn left or right at some dv/dt = ¥x
where y is a gain constant related to the distance
shead imaged and to vehicle speed. dr/dt is rate of
turn of the vehicte (giving path curvature) in degrees
per second. See [6}{or detalls.

3.6.3 Hardware Configuration

In addition to programming an efficient road foifowing algorithm
on Warp, we have made improvements in our video transmission
system and vehicle interface that have increased the reliability of
our system and further reducted time between image digitizations.
Time reductions between in the image processing cycle increase
the servo rate of the vehicle steering contro! loop, and enable the
vehicle to drive at higher speed.

We chose to digitize the image of the blue band only, in order to
obtain the highest possible contrast between the test road and the
surraunding geass in the image. Since grass absorbs almost all
blue light and the asphalt road reflects a lot of blue light, the TV
image in the blue band shows a very bright road surrounded by very
dark grass. The blue filtering of the signal is tied to the particular
road on which we are testing the vehicle. The next step In
hardware configuration Improvement is to selectively digitize the
red, green and biue bands and to combine them using our Matrox
{rame bullers and the Warp.

4. Conclusion

We have presented a comprehengive view of a vision-based road-
foliowing system for an autanomous vehicle. Various parts of this
system exist and have been tested both olf-ine on “canned”
images and during real-time tests using the Terregalor.

An overall picture of our system can be seen by considering the
path of a single image through the entire processing loap. Flrst, the
tap module announces a set of predictions for the current scene,
knowing the vehicle's position, The Vision module then
dynamically applies color and texture segmentation techniques to
extract the predicted road region. An oriented edge tracker uses
the gegometry of the extracted road region and the predicted
interest segmants o eithar localize the position of the road or reject
the region and report failure. M road or intersection region
detection is successtul, fhe Navigator is aleried and generales a
steering plan {rom the road region. If not successful, the Vision
system halts and signats the blickboard so that another module (or
porson) 1o take conirol. The steering plan is raccived by the low-
ievel motion cor. ol modyle, which interfaces to the vehicle’s gyros
and shalt encoders and executles the steoring stralegy.
Timestamps on data carried through the entire system enable the
vohicle to be controlled in real time, with old steering plans aborted

as the Navigator creates new ones. To work for continuous mollqn_ .
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road-following even at the slowes! speed the Terregator has run in
any road-following experiment (10 cm/sec) the entire processing
loop must complete every 10 seconds.

Warp has proved to be a useful high-speed processor for vision
tasks. An important advantage of Warp over other image
processing computers ig its floating-point capability. Many of the
processes we have discussed, such as image rectification, color
segmentation, and oriented edge tracking, are Implemented as
fioating-point algorithms and can run efficiently on Warp. Using the
Warp, we have already demonstrated one eflicient and robust road-
following algorithm.
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Pulsewidth Modulation Control of Brushless DC Motors
for Robotic Applications

PATRICK F. MUIR, STUDENT MEMBER, IEEE, AND CHARLES P. NEUMAN, SENIOR MEMBER, IEEE

Abstract—Pulsewidth modulation (PWM) coutrol of brushless dc
motors is implemented with digital servo mechauisms for robotic
applications. Under the assumption that the puise period is much smaller
than the motor time-constasts, the motor is modeled by a discrete-time
transfer fanction with the pulsewidth playing the role of the coatrol
sigusl. This model ensbles the application of ciassical limear coatrol
engineering (o the design of a digita) position servo for the brushiess dc
steering motors on the CMU Rover. The controller is implemeated with 2
microprocessor and programmasble timer to calculate concurrently the
actusting signals, time sampling periods, and pulsewidths, as well as to
provide commutation. Computer simuplation and resl-time hardware
implementstion of the servo demonstrate the efficacy of the approach.

1. INTRODUCTION

THE DESIGN and implementation of digital servo control-
lers for brushless dc motors, utilizing pulsewidth modula-
tion (PWM), has become a significant control engi-
neering task because of the desirable characteristics of these
motors for robotic applications. Brushless dc motors (using
samarium-cobalt permanent magnets) are appropriate for
robotic applications because of their high torque-to-weight

Manuscript received April 25, 1984. This paper was supported by an R. K.
Mellon Fellowship granted to P. F. Muir by Carnegie-Mellon University, the
Office of Naval Research under Contract N00014-81-0503, and the Depart-
ment of Electrical and Computer Engineering, Mellon University.

The authors are with the Department of Electrical and Computer Engineer-
ing, Camegie-Mellon University, Pittsburgh, PA 15213,

ratio [1}, ease of computer control, efficiency, and simple
drive circuitry. Semiconductor power transistors can drive the
motor directly from a microprocessor. Power transistors
operate most efficiently in a switching mode. Velocity control
of a brushless dc motor is accomplished (in the switching
mode of operation) by the PWM of the stator coil voltages.

If the motor position is measured by a digital shaft encoder,
the feedback contro! system, with the exception of the motor,
is digital. The brushless dc steering motors on the CMU Rover
[2] (described in Section III) exemplify such a systemn. The
Rover is a mobile robot which rolls on three wheels that are
actuated by brushless dc motors. In this paper, digital servo
controllers are designed using PWM to provide mobility. The
steering motors are modeled, position controllers are de-
signed, and the control system is simulated and implemented
in hardware. Simulation and experimental results demonstrate
that the design goals of zero overshoot and a 100-ms settling
time are achieved.

The PWM control of a lincar analog system is assessed.
Under the assumption that the pulse period is much smaller
than the time-constants of the system, the system can be
modeled by 2 linear discrete-time transfer function, with the
pulsewidth playing the role of the control signal. This model
enables the application of classical control engineering [3)-[6]
to the design of pulsewidth-modulated systems for the control

0278-0046/85/0800-0222801.00 © 1985 IEEE
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MUIR AND NEUMAN: PWM CONTROL

of brushless and conventional brushed dc motors, and electro-
magnetic solenoids.

This paper is organized as follows. The operation of
brushless dc motors is reviewed in Section II, and their
application on the CMU Rover is described in Section III.
PWM control of linear analog systems is highlighted (in
Section IV) and applied to model the steering motor on the
Rover using experimental data (in Section V). This modeling
process and the ensuing controller design are accomplished
entirely in the discrete-time domain. An algorithm is then
presented for transforming the discrete motor model into an
equivalent mode! at a sampling period which is different than
the sampling period of the experimental data, since the
sampling period of the controller is not specified at the
identification stage. Consequently, when a low-order transfer
function is identified from the origmnal data, the modeling
experiments need not be repeated at the controller sampling
period to reidentify the model.

Controller design (including the choice of sampling period)
is outlined in Section VI. The controller sampling period is
specified in terms of processing time, motor response time,
velocity resolution, and timer operational limitations. Because
the servo execution time exceeds one-half of the sampling
period, the processing time is incorporated (as a computational
delay) in the closed-loop system model, thereby increasing the
order of the system. Nonlinearities in the control system
(caused by friction, motor saturation, and position quantiza-
tion) are neglected in the controller design. Controller gains
are calculated to satisfy the design goals of zero overshoot and
a 100-ms settling time. The step-response of the closed-loop
control system, using these gains, is simulated in the presence
of the aforementioned nonlinearities. The controller gains
which meet the performance specifications (in the presence of
the nonlinearities) are selected for the hardware evaluation.

The hardware implementation of the controller is evaluated
in Section VII. Motorola 6805 microprocessors execute the
control algorithms, which are stored in nonvolatile read-only-
memory. An interrupt driven routine and a programmable
timer enable the processor to calculate concurrently the
actuating signal and time sampling periods, and to provide
pulsewidth modulation. The performance of the position servo
is evaluated from experimental step-response data. The results
are summarized and concluding remarks are advanced in
Section VIII.

II. BRUSHLESS DC MOTORS

A brushless dc motor has the same torque-speed characteris-
tic as a conventional dc motor even though the principle of
operation is more complex [7]). There is no electrical connec-
tion to the rotor of a brushless dc motor because the rotor
consists of permanent magnets. Samarium-—cobalt permanent
magnets, which provide higher torque than conventional
alnico magnets, are commonly used in brushless dc motors.
Commutation of a brushless dc motor is accomplished by
electronically switching the current in the stator windings. The
proper stator winding polarities (at each instant) are derived
from the shaft position, as read from a shaft encoder, and the
desired direction of rotation. Velocity control is accomplished
either by adjusting the stator currents (using D/A converters

....................
........

and current amplifiers), or, more simply, by adjusting the
current duty cycle (using power transistors and PWM). To
reverse the direction of rotation, the stator windings are
sequenced in reverse order, rather than reversing the current
polarity.

Even though the operation of a brushless dc motor is more
complex than that of a conventional brushed dc motor,
practical advantages accrue. The removal of heat produced in
the windings of brushless dc motors is more easily accom-
plished because the path to the environment is shorter.
Problems with brushes, such as wear and brush noise, are
eliminated. Brushless dc motors require minimal interface
circuitry for microprocessor control. Power transistors are
operated in a switching mode, as coil drivers are more
efficient than the analog power amplifiers used with conven-
tional motors. Minimizing weight and power consumption is
essential for mobile robots because the capacity of self-
contained power sources is limited. Disadvantages of brush-
less dc motors are the need for electronic commutation, its
high cost, and low availability. As the demand for brushless dc
motors grow, these motors will become more available and
less expensive.

II. THE CMU ROVER

The CMU Rover [2] is a mobile robot currently being
designed and constructed in the Robotics Institute of Carnegie-
Mellon University, Pittsburgh, PA. The CMU Rover is
cylindrical in shape, 1-m tall, and 55 cm in diameter. Mobility
is provided by three wheels upon which the robot is supported.
Three brushless dc steering motors [8] control the orientation
of the wheels and three additional brushless dc drive motors
control the rotation of the wheels. The motors are directly
coupled to the wheels. A Motorola 6805 microprocessor [9] is
dedicated to the control of each motor. Servo reference
positions are communicated to the individual motor processors
via a common serial line from high-level processes [2]
executing on independent onboard processors. Power MOS-
FET devices drive the motor coils from the microprocessor
output ports through optoisolators which protect the processor
from electrical noise generated in the motor. The motor shaft
position is fed back to the processor via a digital shaft encoder
{10}.

IV. PWM OF A LINEAR SYSTEM

There are practical reasons why the dynamic models of dc
motors cannot be applied directly to model the motors on the
CMU Rover. Although many of the characteristic parameters
are provided by the motor manufacturer, there are parameters
(c.g., the moment of inertia of the load, frictional torque, and
damping constant) that must be obtained experimentally after
the motor is built into the robot. Furthermore, the input to a
conventional dc motor is the voltage applied to the motor
windings; whereas, the voltage pulsewidth plays the role of the
input for a motor controlled using PWM.

The PWM control of motors is analyzed for the state-space
model of the Nth-order linear time-invariant system

dx
;’--Ax(t)+bu(t) m
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Fig. 1. Pulsewidth modulation.

where the (N X 1) state vector is x and the scalar input is w.
The (N x N) motor matrix is 4 and the (N x 1) input vector
is b. The solution of (1) is [5]

x(f) =exp{A(t — 10) }x(to) + s:. exp {A(r = N)}du()\) d\

@

where exp {A¢} is the matrix exponential [3, 5].

The scalar pulsewidth modulated signal w(f) is shown in
Fig. 1. The input u(?) is the constant K (volts) for the fraction
$/T of each period, and zero for the remainder of each
period. The pulsewidth is the magnitude of the contro] signal
and is, therefore, positive. Negative control signals reverse the
commutation sequence of the motor (as discussed in Section
VI). The goal is to find conditions under which (2) is linear in
the pulsewidth s. The digital controller samples the states at
discrete-time instants. Instead of the continuous state vector
x(7), attention focuses on the state vector x(nT) at the
sampling instant n7, where T is the constant sampling period
and n is the iteration index. In (2), the sampling period, from ¢
= nTtot = (n + 1)T, is divided into two subperiods. The
first runs from #, = nT w0 ¢ = nT + s(nT); where the
pulsewidth s(nT’) can vary from sampling period to sampling
period, and the pulse height is constant. In the second, from ¢,
= nT + s(nT)tot = (n + 1)T, the input u(f) is zero. Thus

x(nT+5(nT)]=exp{As(nT)}x(nT)

+K[" explan} an b )

o(nT)
[

'Y. | £
o

and

x{(n+ 1)T)=exp {A[T-s(rT)}}x(nT+5(nT)). “@

Upon substituting (3) into (4), the state-vector x{(n + 1)T], at
the (n + 1)th sampling instant, is related to the state-vector
x(nT) according to
x{(n+1)T] =exp{AT}x(nT)
+K exp{AT} exp{—As(nT)}

#nT)
-So exp{A\} d\ b. )

To continue the development, the matrix exponentials in (5)
are approximated by their first-order series expansions [4];
i.e., exp (At} = I + At, under the assumption that the
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sampling period T and consequently the pulsewidth s(nT) <
T are much smaller than the system time-constants. In first-
order systems, this assumption ensures that the scalar expo-
nential exp{7/7} can be adequately approximated by 1 + T/
7, where 7 is the system time-constant. By applying a
similarity transformation [3] to diagonalize the system matrix
A, the first-order condition generalizes for approximating the
matrix exponentials in (5). Upon substituting the first-order
matrix approximation and retaining the linear terms in s(nT),
(5) leads to

x{(n+1)T}= {I+ AT}x(nT) + Kbs(nT) ©)

where I is the (N X N) identity matrix. The discrete state-
space PWM model in (6) is linear in the pulsewidth s(nT)
which plays the role of the control signal. The state, and hence
the outputs (which are linear combinations of the states),
depend linearly on the pulsewidth s(nT’). The only assumption
made in leading to (6) is that the sampling period is much
smaller than the time-constants of the syster. This assumption
is practical because conventional digital control systems
operate on a sampling period which is much smaller than the
response time of the system under control. This engineering
assumption and interpretation of the linear model in (6) lay the
foundation for the design (in Section VI) of control systems for
the motors on the CMU Rover.

V. MODELING THE STEERING MOTOR
A. Introduction

The framework of Section IV is applied to the practical
problem of modeling the brushless dc steering motors on the
CMU Rover. The analog transfer function, from input voltage
to output velocity of a dc motor is linear [7]. Consequently, the
motor under PWM control can be characterized by the linear
discrete-time state-space model in (6), and a corresponding
linear transfer function, from pulsewidth to velocity, if the
sampling period is small compared to the time-constants of the
motor. Since the motor parameters are unknown, experimental
data are acquired (in this section) to identify the discrete-time
model. The order of the model is chosen to ensure acceptable
accuracy, without increasing the complexity of the servo
controller.

B. Experimental Data

The velocity step-response of a steering motor is easily
measured and sufficient to identify the transfer function (from
pulsewidth to velocity). Velocity measurements are acquired
every 2 ms, since this is a convenient sampling period to
implement. Data are taken until the step-response settles (160
data points are stored for model identification). The dominant
time-constant of the motor is found to be 58 ms. The motor
exhibits nonlinear saturation at the maximum velocity (6.25
revolutions per second) and a frictional dead zone at small
command inputs. The data used to identify the model are taken
at a command value that is within the active linear range of
motor operation. The transfer function selected to model the
motor has the simplest structure which closely approximates
the experimentally obtained step-response of the motor.
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Fig. 2. Steering motor model. '~ -

C. Model Order

The input—output transfer function of a conventional or
brushless dc motor, from voltage input to velocity output is
second-order [7]. The discrete model (6) of the motor under
PWM control is also second-order. One mode of the mator
dynamic response is characterized by its mechanical time-
constant and the second mode by its electrical time-constant.
Since the electrical time-constant of the motor is much smaller
than the mechanical time-constant, a first-order model should
be sufficiently accurate for controller design.

First- and second-order discrete-time transfer functions are
introduced to model the steering motor (from pulsewidth input
to velocity output). The first-order transfer function is

Kz™!
Gz ) =—— ™
1-p2
and the second-order model is
K,z \(1+ 292!
Gz = L) ®

1-pz-'=pz-?’

A ¢omputer program was written to simulate the step-response
of these models using user-specified modél parameters (i.c.,
K, and p; and K, 2o, p, and p,). The program calculates the
accumulated squared-error between the simulated output of
each model and the experimentally obtained step-response.
The user systematically adjusts the model parameters to
reduce the accumulated squared-error for both the first- and
second-order models. Finally, the minimum squared-error of
the first-order model is compared with the minimum squared-
error of the second-order model to decide whether the second-
order model is significantly more accurate to warrant the
additional implementational complexity.

The second-order model of the steering motor produces a
squared-error which is only 4.7 percent less than that of the
first-order model. This small improvement, in our opinion,
does not warrant its corresponding increased complexity.

D. Identified Steering Motor Model

The transfer function model G,(z~!) of the steering motor,
which is used in the controller design (in Section VI), is
depicted in Fig. 2. The motor velocity is measured in units of
shaft encoder counts (there are 2'? = 4096 counts/revolution)
per sampling period (2 ms). The model has a dc gain of 0.187
and a pole at 2 = 0.966 corresponding to a time-constant of 58
ms. The second-order model has the same dc gain, poles at 2
= 0.965 and z = 0.436 (corresponding to time-constants of
56 ms and 2 ms, respectively), and a zero at 2 = 0.397. Since
the pole at 7 = 0.436 responds much faster than the dominant
pole at 7 = 0.965, which matches the pole of the first-order
model, the response of the first-order model closely resembles
that of the second-order mode).
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E. Sampling Period of the Model

The sampiing period of the motor controllers is not
specified when experimental data are collected to model the
motors. The controller sampling period may differ from the
sampling period of the experiments. Since a discrete transfer
function mode] of an analog system is an explicit function of
the sampling period [11), the discrete motor model used in the
controller design must correspond to the controller sampling
period.

To change the sampling period of the motor model, the
discrete transfer function Gy(z~') in (7) is assumed to be the
step-invariant transformation [11] of the first-order analog
transfer function

G(S)=fs{(H . )
Thus

P=p(T)=exp{-T/1} 10
and

K, =K(T)=K11-p(T)). an

When the sampling period is changed from T to T, the
digital transfer function in (9) becomes

Ki(T)z"!
N T

Gi(z™") T—AT)2 (12)
where

T)=exp{T/T In p(T)} (13)
and

_ 1-p(T))
K(T)=K(T) T—ph) (149)

V1. CONTROL SYSTEM DESIGN
A. Introduction

The objective of this section is to design a position servo for
the steering motor. The linear discrete-time transfer function
model identified in Section V enables the application of
classical linear control engineering to PWM controller design.
The design goals are zero overshoot and a 100-ms settling
time.

B. Sampling Period

Motor characteristics and processor capabilities lead to the
selection of the controller sampling period. The controller
must operate with a sampling period that is much smaller
(e.g., 10 times smaller) than the motor time-constants, so that
the pulsewidth-modulated motor can be modeled by the
discrese transfer function in Fig. 2. Since the time-constant of
the steering motor is 58 ms, the controller sampling period
should not exceed 5.8 ms. Execution of a prototype servo
program is timed and found to set a lower limit on the
sampling period at 1.27 ms, because the program must be able
to execute within each sampling period. The minimum
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Fig. 3. Steering motor position servo controller.

sampling period is also limited by the precision of velocity
calculations. Velocity measurement precision is low if the
sampling period is small, because velocities are calculated as
the difference between position readings at successive sam-
pling periods. By experimentation with the prototype servo
program, the lower limit (1.85 ms) on the sampling period is
found to provide sufficient velocity precision and thereby
avoid undesirable nonlinear quantization effects which result
in jerky motor operation. The controller sampling period of 2
ms is chosen because it satisfies the aforementioned con-
straints and because it is convenient to implement sampling
periods that are multiples of 0.25 ms with the programmable
timer. Since the pulse period of the PWM is one sampling
period, the choice of 2 ms as the sampling period guarantees
that the lincar modeling assumption of Section IV (i.e., the
pulsewidth is much smalier than the time constant 58 ms of the
motor) is satisfied.

C. Control System Structure

The position servo (in Fig. 3) is implemented by incorporat-
ing position and velocity feedback. The control signal is the
pulsewidth modulated voltage applied to the motor coils. The
pulsewidth in the nth sampling period is the magnitude of s(n),
where

s(n)=K,{Ry(n—1)- Pn—- 1)} ~K,V*(n-1)
and where

1s)

Ryn — 1) current reference motor position,

Pn-1) current shaft position as read from the shaft
encoder,

E)n -~ 1) current position error,

V*(n — 1) current velocity calculated as [P(n — 1) -
H" - 2)]’

K, position gain (in Section VI-D),

K, velocity gain (in Section VI-D).

The position and velocity gains K, and K, control the
transient response of the servo. The height of each pulse is
constant (24 V) and the pulsewidth is calculated as the
magnitude of (15). The sign of (15) specifies (in Section VII)
the motor coil commutation sequence. This is analogous to
reversing the polarity of the voltage applied to a brushed dc
motor. The delay z-! is introduced in the forward path to
model the execution time of the controlier program. The
calculation of the control signal is not completed until 1.27 ms
after the inputs are received, due to the program execution

time (as explained in Section VI-B). To ensure that the
actuating signal is synchronized with the sampling period, the
calculated control signal is stored until the beginning of the
next sampling period, when the magnitude of the control
signal is used as the puisewidth and the sign specifies the
commutation sequence. The motor parameters K, and p arc
calculated at the controller sampling period of 2 ms using the
formulac in Section V-E. In this design, the controller
sampling period and sampling period of the modeling experi-
ments coincide and the transfer function in Fig. 2 is applied for
the controller design.

D. Gain Calculation

The closed-loop transfer function of the position servo (in
Fig. 3) is third-order

Pz") KKz

RAzY) 1-(p+ Dz '+[p+ KK, + Kz 2~ KKz~

(16)

The controller gains K, and K, are calculated to meet the
design specifications of zero overshoot and a 100-ms settling
time. The trar .zt function in (16) is factored into the cascade
of a second-order component and a first-order component

PzY)  Kyz! z!

Ryz") (1-az”')?(1-pxz")’

where 0<py<a<l.

amn

The objective is to force the critically damped second-order
component (with two equal real poles at Z = a) to dominate
the closed-loop response. The closed-loop system is thus
designed to respond as fast as possible without overshoot. By
equating (16) and (17), the third system pole p,, feedback
gains X, and KX, and gain K; are computed in terms of o and
the motor constants X, and p according to

pr=(p+1)-2x (18)
pa?
x5 (19)
xpta’ﬂaps-p-mk. 20)
K,
and
K"K’KI. (21)
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Fig. 4. Simulated step-response of steering motor position servo,

The settling time of the closed-loop system is then calculated
from (17) for different values of . The servo gains K, and X,
are calculated from (19) and (20) for values of a which
produce settling times less than 100 ms. The choice of gains is
finalized by simulating the control system, with the calculated
gain combinations, on a computer in the presence of nonlinear
motor saturation and quantized position feedback values. The
feedback gain values

K,=32and K,=3 @)

provide acceptable simulated response characteristics and
satisfy the design constraints in computer simulation. The
value of @ = 0.838 (corresponding to a time-constant of 11.3
ms) is substituted into (18) to calculate the location of the third
pole py = 0.290 (corresponding to a time-constant of 1.6 ms).
The third pole thus responds much faster than the two equal
dominant poles, as desired.

E. Control System Simulation Results

The simulation program implements the block diagram of
Fig. 3 to calculate (at discrete time instants) the step-response
of the steering motor servo. The simulated step-response of
the steering motor position servo controller, using the gains in
(22), is shown in Fig. 4. The step-response does not overshoot
and displays a 100-ms settling time, and thus satisfies the
design specifications (with zero steady-state error).

VII. HARDWARE IMPLEMENTATION AND
EXPERIMENTAL RESULTS
A. Hardware Overview
The steering motor controller is implemented as an assem-
bly language program running in real time on a Motorola 6805
microprocessor. Reference positions are communicated (over
a serial communication link) to the processor from high-level
processors. The processor communicates, the pulsewidth-
modulated control signal to the motor via an output port 1o the
motor coil drivers. The motor shaft position is fed back to the
input port of the processor from an optical shaft encoder. In
each sampling period, the program calculates the pulsewidth
and the motor coil excitation pattern, and produces a pulse-
width-modulated signal to control the motor.

B. Controller Program

Two independent programs are shown in the flowchart of
the servo program in Fig. 5. The main routine implements the
calculations and logic which produce the motor coil excitation
pattern (i.e., commutation) and actuating signal (i.e., pulse-

width), and requires spproximately 1.27 ms of each 2-ms
sampling period to execute. The interrupt routine handles only
those functions that require accurate timing, such as reading
the shaft encoder, sending signals to the motors, and control-
ling the timer. The software is structured so that the most
urgent tasks (those serviced in the interrupt routine) are
processed when necessary, and the tasks for which timing is
not critical (those serviced in the main routine) use the

The programmable timer is used to time the pulsewidth and
sampling period, and synchronize the control signals in the
following manner. The timer is loaded with the pulsewidth
(which was calculated by the main routine in the previous
sampling period); and the proper motor coils are energized by
loading the microprocessor output port with the excitation
pattern (the excitation pattern was also determined by the main
routine in the previous sampling period); and the position of
the motor shaft is stored. The timer counts down the
pulsewidth, while the main routine calculates the pulsewidth
and coil excitation pattern for the next sampling period. When
the pulsewidth has elapsed, the timer generates a hardware
interrupt to the processor. The processor immediately stores
the present state of execution of the main routine and begins
executing the interrupt routine. The interrupt routine caicu-
lates the time remaining in the sampling period, loads this
value in the timer, and turns off all of the motor coils by
storing a 0 in the output port. Control is then returned to the
main routine, which resumes execution at the point at which it
was interrupted. After the programmable timer has counted
down the remaining time in the sampling period, a second
interrupt is generated. By this time, the main routine has
completed its calculations, and the cycle repeats each succeed-
ing sampling period.

Implementation of the multiplication operation in assembly
language code is accomplished using shift and add instruc-
tions. Addition and subtraction of 12-bit quantities on the 8-bit
processor is achieved by double-precision calculations. Calcu-
lations iavolving cyclical shaft position readings must be
checked and corrected for wraparound errors. Position read-
ings must lie within the range 0-4095. If the calculated
position error is outside this range, a multiple of 4096 must be
added to or subtracted from the value (as appropriate), to bring
the result within the allowable range. A similar correction
procedure must be executed if the calculated velocity value is
outside of the range ~ 2048 to 2048.

The main program implements electronic commutation of
the motor coil voltages by a table look-up to determine the
excitation pattern which produces the maximum torque in the
desired direction for the present shaft position. The table is a
list of ranges of shaft positions; each with two associated
motor-coil excitation patterns. The first excitation pattern
produces maximum motor torque in the clockwise direction if
the motor position is within the range. The second produces
maximum torque in the counterclockwise direction. The
range in which a shaft position occurs is identified by
comparing the shaft position with the range boundary posi-
tions. If the shaft position is greater than or equal to the lower
boundary of a range and less than the upper boundary, then
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the shaft position is in that range. The excitation value for the
desired direction of rotation is read from the table under the
entry for that range.

C. Experimental Results

A typical experimentally obtained step-response of the
steering motor servo controller (with the Rover stationary and
only one motor operating) is plotted in Fig. 6. The plot shows
that the servo response satisfies the design specifications of
zero overshoot and a 100-ms settling time. The shape of the
response is similar to the simulsted step-response plot in Fig.
4. Neither plot exhibits third-order characteristics, which

verifies that, by design, the third system pole p; in (17)
responds significantly faster than the two dominant equal poles

a.

VIII. CONCLUSION

The modeling, design, and implementation of a controller
utilizing a pulsewidth-modulated actuating signal is high-
lighted in this paper. A brushless dc motor (actuated by a
pulsewidth-modulated signal) is modeled (using experimental
data) as a discrete linear system whose control signal is the
pulsewidth, under the assumption that the pulse period is much
smaller than the time-constants of the motor. The controller
sampling period and PWM pulse period are equal in this
implementation. This model enables the application of classi-
cal lincar control engineering to the design of a digital
controller for the motor.

A position servo controller designed for the steering motors
on the CMU Rover meets the specified performance objec-
tives. The conmtroller is implemented on a microprocessor
which uses a programmable timer and an imerrupt driven
routine, and calculates the pulsewidth, provides commutation,
and times concurrently the sampling period and pulsewidth.
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Simulated and experimental step-response data demonstrate
that the desired servo operation is realized.

The servo can be enhanced by measuring the shaft encoder
pulse period to provide a more precise velocity measurement
[12). The position servo on the CMU Rover steering motors
has recently been modified to servo simultaneously to a
desired position and velocity [13). The framework of this
paper can be applied to the PWM control of brushless dc
motors for robotic manipulators, conventional brushed dc
motors, and electromagnetic solenoids.
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Abstract
™ We summarize our methodology for formulating the kinematic equations-of-motion of a wheeled
l mobile robot. The complete paper|l], which is currently being prepared for publication, is over
one-hundred pages in length. Wheeled mobile robots having conventional, omnidirectional, and ,::E:;:E:::E::
ball wheels are modeled. While our approach parallels the kinematic modeling of stationary ma- E::E_‘_::-_'.::-
. nipulators, we extend the methodology to accommodate such special characteristics of wheeled ;';::;_'
|. mobile robots as multiple closed-link chains, higher-pair contact points between a wheel and a <
surface, and unactuoted and unsensed degrees-of-freedom. We apply the Sheth- Uicker convention ’
to assign coordinate axes and develop a matriz coordinate transformation algebra to derive the
equations-of-motion. We calculate the forward and inverse solutions and interpret the conditions
O which guarantec their existence. Applications of the kinematic model are also described.

t Graduate student, Department of Electrical and Computer Engineering; and Member, Autonomous Mobile v
Robots Laboratory, The Robotics Ina:itute. 2:“.::
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1. Introduction

The wheeled mobile robot litcrature shows that the documented investigations have concen-
trated on the application of mobile platforms to perform intelligent tasks rather than on the develop-
ment of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved
mechanical designs and mobility control systems will enable the application of WMRs to tasks were
there are no marked paths and for autonomous mobile robot operation. A kinematic methodology
is the first step towards achieving these goals.

Even though the methodologies for modeling and controlling stationary manipulators are appli-
cable to WMRs, there are inherent differences which cannot be addressed with these methodologies,
such as:

1.) WMRs contain multiple closed-link chains; whereas, manipulators form closed-link chains
only when in contact with stationary objects.

2.) The contact between a wheel and a planar surface is a higher-pair; whereas, manipulators
contain only lower-pair joints.

3.) Some degrees-of-freedom of a wheel on a WMR are not actuated or sensed; whereas, all
, degrees-of-freedom of each joint of a manipulator are actuated and sensed.

Wheeled mobile robot control requires a methodology for modeling, analysis and design which
extends the principles applied to stationary manipulators. In this paper, we advance the kinematic
modeling of WMRs, from the motivation of the kinematic methodology, to its development and
applications. In Section 2, we present the three wheels (conventional, omnidirectional and ball
wheels) utilized in all existing and foreseeable WMRs. We present a definition of a wheel mobile
robot and enumerate our assumptions in Section 3. Coordinate systems are assigned to prescribed
positions on the the robot (Section 4). We develop transformation matrices to characterize the
translations and rotations between coordinate systems (Section 5). Matrix coordinate transforma-
tion algebra is developed as a means of calculating position, velocity, and acceleration relationships
between coordinate systems in Section 8. We apply the axioms and corollaries of this algebra to
mode] the kinematics of WMRs.

The equations-of-motion relating robot positions are developed in Section 7, and we develop
the velocity and acceleration relationships in Section 8. We relate the motion of a wheel to the
motion of the robot body by calculating a wheel Jacobian matrix. From the simultaneous motions
of the wheels, we obtain the motion of the robot in Section 9. Specifically, we obtain the inverse
solution, and the forward solution. We discuss the application of the kinematic methodology in
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.....................

.........................




F N A e R R AR A A A At A

¢ Section 10 and summarize the kinematic modeling procedure in Section 11. We outline our plans
for continued research in Section 12.

Many sections and details of the original paper had to be omitted from this summary for
brevity. The full paper contains: a survey of documented WMRs, detailed derivations of the

inverse and forward solutions, detailed applications, the development of the kinematic model of
several example WMRs, and a nomenclature and symbolic representation for WMRs. Further
details on the topics presented in this summary are also included.

2. Wheel Types

Three basic types of wheels are used in WMRs: conventional, omnidirectional, and ball wheels.
In addition, conventional wheels often are mounted on a steering link to provide an additional
degrec-of-freedom. The degrees-of-freedom of each wheel are indicated by the arrows in Figure 1.
The kinematic equations relating the angular velocity of the wheel to its linear velocity along the
surface of travel are also compiled in the figure.

) The nonsteered conventional wheel is the simplest to construct having two degrees-of-freedom.
It allows travel along a surface in the direction of the wheel orientation, and rotation about the
point-of-contact between the wheel and the floor. We note that the rotational degree-of-freedom is
slippage, since the point-of-contact is not stationary with respect to the floor surface. Even though
@ we define the rotational slip as a degree-of-freedom, we do not consider slip transverse to the wheel
orientation a degree-of-freedom, because the magnitude of force required for the transverse motion
is much larger than that for rotational alip.

The omnidirectional wheel has three degrees-of-freedom. One degree-of-freedom is in the di-
rection of the wheel orientation. The second degree-of-freedom is provided by motion of rollers
mounted around the periphery of the main wheel. In principle, the roller axles can be mounted
at any nonzero angle 7 with respect to the wheel orientation. The third degrec-of-freedom is rota-
tional slip about the point-of-contact. It is possible, but not common, to actuate the rollers of an
omnidirectional wheel, with a complex driving arrangement.

The most mancuverable wheel is a ball which is actuated to posses three degrees-of-freedom
without slip. Schemes have been devised for actuating and sensing of ball wheels, but we are
unaware of any existing implementations. An omnidirectional wheel which is steered about its point-
of-contact is kinematically equivalent to a ball wheel, and may be a practical design aliternative.
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3. Definitions And Assumptions

We introduce an operational definition of a WMR to specify the range of robots to which the
kinematic methodology presented in this paper applies.

Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the
actuation of whee] assemblies mounted on the robot and in rolling contact with the surface. A wheel
assembly is a device which provides or allows relative motion between its mount and a surface on
which it is intended to have a single point of rolling contact.

Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot body
and the wheel constitute a wheel assembly. We introduce the following practical assumptions to
make the modeling problem tractable,

Assumptions

1.) The WMR does not contain flexible parts.

2.) The WMR moves on a planar surface.

3) There is zero or one steering link per wheel.

4.) All steering axes are perpendicular to the surface.

5.) The translational friction at the point of contact between a wheel and the surface is large
enough so that no translational slip may occur.

6.) The rotational friction at the point of contact between a wheel and the surface is small
enough so that rotational slip may occur.

4. Coordinate System Agsignments

Coordinate system assignment is the first step in the kinematic modeling of a mechanism.
Lower-pair mechanisms® (such as revolute and prismatic joints) function with two surfaces in
relative motion. In contrast, the wheels of a WMR are higher-pairs; they function ideally by point
contact. Because the A-Matrices which model manipulators depend upon the relative position
and orientation of two successive joints, the Denavit-Hartenberg convention leads to ambiguous
assignments of coordinate transformation matrices in multiple closed-link chains which are present

} Lower-pair mechanisms are pairs of components whose relative motions arc constrained by a

common surface contact; whereas, higher-pairs are constrained by point or line contact.
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¢ in WMRs. We apply the Sheth-Uicker convention to assign coordinate systems and model each

wheel as a planar pair at the point of rolling contact. This convention allows the modeling of the
{ higher-pair wheel motion and eliminates ambiguitics in coordinate transformation matrices. The
E planar pair allows three degrees of relative motion: x and y translation, and rotation about the
! °® point-of-contact as shown in Figure 2.

L Floor

Planar Pair Conventional Wheel
Figure 2
Planar Pair Model of a Wheel

“This modeling of a WMR leads to the coordinate system assignments defined in Table 1 . The
floor coordinate system is a reference frame for robot motions. The robot coordinate system is
assigned to the robot body so that the position of the WMR is the relative translation from the
floor coordinate system to the robot coordinate system. The hip coordinate system is assigned at
a point on the robot body which intersects the steering axis. The steering coordinate system is
assigned at the same point along the steering axis, but is fixed relative to the steering link. We

assign .. contact point coordinate system at the point-of-contact between each wheel and the floor.

We aeﬁne an instantaneously cosncident robot coordinate system for describing motions (i.c.,
velocities and accelerations) of the robot relative to its own position and orientation. We also
define a function R(t*) which returns a coordinate system that is stationary relative to the floor
coordinate system and coincident with the robot coordinate system at the time t = ¢*:

E(t‘) =R 'g:go .

\
[
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Table 1: Coordinate System Assignments

N Number of wheels on the robot.
F Floor : Stationary reference coordinate system with the z-axis orthogonal to the surface of

travel.

R Robot : Coordinate system which moves with the WMR body, with the z-axis orthogonal to
) the surface of travel.

H; Hip (fori=1,...,N): Coordinate system which moves with the WMR body, with the z-axis
coincident with the axis of steering joint 1 if there is one; coincident with the contact point

of coordinate system ¢ if there is no steering joint.

S; Steering (for 1 = 1,..., N) : Coordinate system which moves with steering link s, with the

z-axis coincident with the z-axis of H;, and the origin coincident with the origin of H;.

C; Contact Point (for ¢ = 1,...,N) : Coordinate system which moves with the steering link

1, with the origin at the point-of-contact between the wheel and the surface; the y-axis is

parallel to the wheel (if the wheel has a preferred orientation; if not, the y-axis is arbitrarily
assigned) and the x-y plane tangent to the surface.

o R Instantaneously Coincident Robot : Coordinate system instantaneously coincident with the
R coordinate system at the time t* and stationary relative to the F coordinate system (i.e.,
R is the value of R at the time t*: R = R |i—¢).

C; Instantaneously Coincident Contact Point (for ¢ = 1,...,,N) : Coordinate system instanta-
neously coincident with the C; coordinate system at the time ¢* and stationary relative to
the F coordinate system (i.e., C,=C; le=¢+).

The instantaneously coincident robot coordinate system is thus a discrete sample of the con-
tinuous robot coordinate system at the time t*. Similarly, the instantaneously cotncident contact
point coordinate system is coincident with the contact point coordinate system at the time t = ¢*,

and stationary relative to the floor coordinate system.

Placement of the coordinate systems is illustrated in Figure 3, where we show a pictorial view
of a WMR. For a WMR with N wheels, we assign 4N+2 coordinate systems to the robot and onc

stationary reference frame.
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Figure 3

WMR Model Showing Placement of Coordinate Axes

5. Transformation Matrices

Homogeneous (4 x 4) transformation matrices are conventionally defined to express the position
and orientation of one coordinate system relative to another. The transformation matrix AIlg
transforms the coordinates of point Zr in coordinate frame B to the corresponding coordinates “r
in the second coordinate frame A.

We adopt the following notation. Scalar quantities are denoted by lower case type (e.g., w).
Vectors are denoted by lower case boldface type (e.g., r). Matrices are denoted by upper case
boldface (e.g., IT). Pre-superscripts denote reference coordinate systems. The pre-superscript may ‘
be omitted if the defining coordinate frame is transparent from the discussion. Post-subscripts may ® q
be used to denote coordinate systems or specific components of a vector or matrix. ‘

Before we define the transformation matrices between the coordinate systems of our WMR




model, we define in Table 2 nomenclature for rotational and translational displacements, velocities

and accelerations.

Table 2
Scalar Rotational and Translational Variables

495 : The rotational displacement (counterclockwise by convention) between the x-axis of the A
coordinate system and the x-axis of the B coordinate system about the z-axis of the A
coordinate system. 405 = Avp and 48p = 4ap.

Adp; : (for j € [z,y,2]) : The translational displacement between the origin of the A coordinate

system and the origin of the B coordinate system along the j-axis of the A coordinate

system. Adp; = 4wp and Adp; = 4ap.

A transformation matrix in our WMR model embodies a rotation 46p about the z-axis of
coordinate system A and translations Adg,, #ds, and “dp, along the respective coordinate axes

as shown in (5.1).

co8 “03 —sinAaa 0 Adaz

A A A
Ary_ _ | 8in40p cos40g O “Adp,
nB — o 0 1 Adﬂg (5.1)
0 0 0 1

The assignment of coordinate systems results in two types of transformation matrices between
coordinate systems: constant and variable. The transformation matrix between coordinate systems
fixed at two different positions on the same link is constant. Transformation matrices relating
the position and orientation of coordinate systems on different links include joint variables and
thus arc variable. Constant and variable transformation matrices are denoted by ATy and 4® 5,

respectively.

6. Matrix Coordinate Transformation Algebra

The kinematics of stationary manipulators are conventionally modeled by exploiting the prop-
erties of transformation matrices. We formalize the manipulation of transformation matrices in
the presense of instantancously coincident coordinate systems by dcfining matriz coordinate trans-
Jormation algebra. An algebra consists of a set of operands and a set of operations which may be

/c9




applicd to the operands. The operands of matrix coordinate transformation algebra are transforma-

tion matrices and the operations are matrix addition, multiplication, differentiation and inversion.
Matrix coordinate transformation algebra allows the calculation of the relative positions, velocities
and accelerations of robot coordinate systems (including instantaneously coincident coordinate sys-
tems) without physical insight. The following axioms define the special properties of transformation
matrices (i.e, those properties which arbitrary matrices do not posses).

Axioms
Cascade : ATl = AN B
Inversion : AMlp = Bﬂ;’
Identsty : ATI =1
Instantaneous Coincidence : (ZII Ale=ee =1

The matrix coordinate transformation axioms lead to the following corollaries which we apply
to the kinematic modeling of WMRs.

Corollaries
Cascade Position : ANz = 45 BIic Cnp RS |
Cascade Velocity : ATz = ATl BTI; + Al BIIc Oz + ... + ATy Y1
. We make extensive use of the axioms and corollaries of matrix coordinate transformation RN
algebra for deriving the wheel equations-of-motion. L—"

7. Position Kinematics

We apply the transformation matrices and matrix coordinate transformation algebra to calcu-

late the following positional kinematic relations:




W

1.) the position of a point r relative to one coordinate system A in terms of the position of
the point relative to another coordinate system Z, and

2.) the position and orientation of a coordinate system Z relative to another coordinate system
A

Problem 1 is solved in (7.1) by applying the property of matrix transformation.

Ar =11 *r (7.1)

When the transformation matrix 4TIz is not known directly, we apply the cascade position corollary
to calculate it from known transformation matrices in (7.2).

‘Hz = Aig BHc °Np ... YNz (7.2)

We must determine whether there is a complete set of known transformation matrices which can be
cascaded to create the desired transformation matrix. We apply transformation graphs to resolve
this problem. In Figure 3, we display a transformation graph of 8 WMR with one steering link per
wheel.

The origin of each coordinate system is represented by a dot, and transformations between
coordinate systems are depicted by directed arrows. The transformation in the direction opposing
an arrow is calculated by applying the inversion axiom. Finding a cascade of transformations to
calculate a desired transformation is thus equivalent to finding a path from the reference coordinate
system of the desired transforination A to the destination coordinate system Z. The matrices to
be cascaded are listed by traversing the path in order. Each transformation in the path which is
traversed from the tail to the head of an arrow is listed as the matrix itself, while transformations
traversed from the head to the tail are listed as the inverse of the matrix.

We solve problem 2 by equating components of the matrices on both sides of matrix equation
(7.2), and solving for the position 4dz., 4dz, and 4dz, and the orientation 40z, of coordinate

system Z relative to coordinate system A.
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Transformation Graph of a WMR
8. Velocity and Acceleration Kinematics -
We relate the velocities of the WMR by differentiating the position equations in Section 7. !.r;;-j;
The wheel Jacobian matrix is developed by applying the cascade velocity corollary. The wheel ‘_':::-‘:.f
Jacobian matrix, analogous to a manipulator Jacobian matrix, relates the component velocities of «."
. the robot -ﬁvn,, ﬁvn,, and Ruw R« to the velocities of the steering link #wg, and the wheel contact '.:::".::;,
point aTvc‘i,,, z'Tvc;i,,, and a'wc.... Some wheels do not have steering links and some do not allow L,.,_
motion perpendicular to the wheel orientation; thus, the number of degrees-of-freedom for wheel ¢ o
is m; < 4. The Jacobian matrix for wheel ¢ is of dimensions (3 x m;). l:‘-' .
‘ L.
|- R
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© We begin development of the Jacobian matrix by applying the cascade position corollary to
) write a matrix equation with the unknown dependent variables (i.e., robot coordinates, Ry R) on
the left-hand side, and the independent variables (i.e., wheel § coordinates, # @5, and b'_‘ici) on
. the right-hand side:

Frip = P1g! Py Coc, ST Magl BTyl (8.1)

To introduce the velocities, we apply the cascade velocity corollary. We apply the axioms and
corollaries of matrix coordinate transformation algebra to solve for the robot velocities in term of
the whee] velocities:

sinRoc, cosRos, -Rdc,: Rdy,.

R R in R R R Covc,s
YRz cos 00.. - sn 0ci dcw - d};‘, Fo
P= = ‘
0 0 1 -1

where 1 = 1... N is the wheel index, E;') is the vector of robot velocities in the Fobot frame, J; is
the pseudo-Jacobian matrix of wheel ¢, and G is the pseudo-velocity vector for wheel §. The actual
velocity vector for typical wheels does not contain the four component velocities in (8.2). Typical
wheels posses fewer than four degrees-of-freedom and thus fewer than four elements in the velocity
vector. Further, since all actual wheel motions are rotations about physical wheel axes, the wheel
velocity vector contains the angular velocities of the wheels rather than the linear velocities of the
point-of-contact along the surface of travel. We relate the (4 x 1) pseudo-velocity vector to the
(m; x 1) actual velocity vector §; by a (4 X m;) wheel matrix W,:

QG = Wia. (8.3)

We substitute (8.3) into (8.2) to calculate the robot velocities in terms of the wheel velocity vector
in (8.4).
Bp = J: We & (8.4)

The kinematic wheel equation-of-motion (8.4) is of the form:
Bp = Jia. : (8.5)
where J; = J; W, is the (3 % m;) wheel Jacobian matrix for wheel 3.

The accelerations of the WMR are calculated by applying the cascade acceleration corollary

.......................
.....................
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to write the second derivative of the position equations in Section 7.

ﬁaﬂz cos Roc.- ~ sin Réc, RdCiv -Rduill Eac"
Ragy | = | sinROc, cos®Oc, - Ric.. PRdy,. 6__00.- v
Ry Rs 0 0 1 -1 H'.QC.-
‘o S
(8.6)
Rdc.- z RdH.- z adﬂ % ] a“”c.'
+ | Rdcyy Rdw,y Fdnmy -2 Gy, Hiwg,
0 0 0 H, Wg..

The robot accelerations in (8.6) are composed of three acceleration components: the wheel acceler-

[

ations (Crac,s, Crac,y and Ciac,); the centripetal accelerations (Cw, and #iw ) having squared

velocties; and the coriolis accelerations (a‘-wa, Hiys,) having products of different velocities.

8. The Composite Robot Equation-of-Motion

We combine the equations-of-motion of each wheel on a WMR to form the composite robot
equation. Two solutions of the composite robot equation have practical applications. The inverse
solution computes the actuated wheel velocities in terms of the robot velocity vector. The forward
solution is the least-squares solution of the robot velocity vector in terms of the sensed wheel
velocities.

The inverse solution is calculated independently for each wheel on a WMR by applying the
inverse Jacobian matrix. The actuated velocities are extracted from the solution for application to
robot control.

The least-squares forward solution provides the optimal solution of the robot velocities in the
presense of sensor noise and wheel slippage in the sense that the sum of the squared errors in the
velocity components is minimized. We may insure that the solution can be calculated by proper
WMR design. We find that the forward solution may be simplified by eliminating the eqiations-
of-motion of any wheel having three non-sensed degrees-of-freedom (e.g., a castor) because they do
not change the solution.

A study of the nature of the solutions of the composite robot equation illuminates robot
motion, actuation and sensing characteristics. Of particular importance are the conditions under
which actuation of a sct of the wheel degrees-of-frcedom causes undesirable overdetermined and

undetermined solutions. We prefer determined actuation structures because they allow control over




¢ all robot degrees-of-freedom and do not cause undesirable actuator conflict. We also propose that ., .
overdetermined sensing structures arc preferable because the least-squares forward solution tends R
to reduce the effects of sensor noisc with redundant measurcments. ":-:"':::
A

e

We calculate the inverse and forward solutions by applying the kinematic equations-of-motion

f » of each wheel in three dimensions z, y, and 0. 1If a WMR is constrained by the wheel arrangement

‘ to move in only two dimensions, we may calculate the inverse and forward solutions in an analogous
manner by eliminating the third dimension from the wheel Jacobian matrices.

10. Applications

The kinematics of WMRs play important roles in modeling, design and control. We introduce
five practical applications of our kinematic methodology in this section. We apply the results of our
i ¢ study of the composite robot equation-of-motion to the design of WMRs. WMRs can be designed
to satisfy desirable mobility characteristics such as two and three degrees-of-freedom and the ability
to actuate and sense the degrees-of-freedom. Dead reckoningis the real time integration of the robot
velocity calculated from wheel scnsor measurements. Kinematics-based WMR control systems are
'. implemented by applying the inverse solution in the feedforward path and dead reckoning in the
) feedback path such that the error between the actual robot position and desired robot position
» is continually reduced. An improved controller is possible by applying knowledge of the robot
: dynamics. Qur kinematic methodology is the foundation of dynamsc modeling of WMRs. Accurate
robot control systems rely on both kinematic and dynamic models. We also apply the kinematic

! * equations-of-motion to the detection of wheel slip. When a WMR detects the onset of wheel slip the
: current robot position is corrected by utilizing slower absolute locating methods such as computer
| vision before continuing motion. The control system is thus able to track desired trajectories more
' - accurately by continually insuring an accurate measure of robot position.

11. Summary of Kinematic Modeling Procedure

We have formulated a systematic procedure for modeling the kinematics of a WMR. In this
section we summarize the modeling procedure to outline a step-by-step enumeration of the method-
ology to facilitate engineering applications.

1.) Make a sketch of the WMR. Show the relative positioning of the wheels and the
steering links. The sketch need not be to scale. A top and a side view are typically sufficient.

2.) Assign the coordinate systems. The robot, Lip, steering, contact point and floor

............
.......
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b coordinate systems are assigned according to the conventions introduced in Table 1.

3.) Assign the (4 x4) coordinate transformation matrices. The robot-hip, hip-steering,
and stcering-contact transformation matrices are assigned as described in Section 5.

b 4.) Formulate the wheel equations-of-motion. The position, velocity and acceleration
wheel equations-of-motion are developed by applying transformation graphs and matrix coordinate
transformation algebra. The specific equations required will depend upon the application.

5.) Formulate the composite robot equation-of-motion. The individual wheel equations

»
are combine to model the motion of the robot.
6.) Solve the composite robot equation. The inverse solution and the forward solution
may be calculated depending on the application.
L N
The reader is refered to the full paper for further details.
> 12. Continuing Research

Our study of wheeled mobile robots is motivated by the need for designing robust feedback
control algorithms for their accurate motion control. We are proceeding by paralleling the de-
velopment of robust dynamic manspulator control systems. The first step, that of developing a
_ kinematic model, is documented in this paper[1]. We are applying the kinematic model to develop
dynamic models of WMRs. The composite kinematic-dynamic WMR model will lay the foundation
for WMR control. We will apply the robot models in simulation to facilitate the design of control
systems. The performance of candidate WMR control systems will be evaluated in simulation prior
~ to time-consuming hardware implementation. In parallel with our engineering activities, we are
implementing a practical contro] system for the newly constructed WMR Uranus. The theoretical
and practical studies are proceeding concurrently, each reinforcing the the results of the other.

{1) P. F. Muir and C. P. Neuman, "Kinematic Modeling of Wheeled Mobile Robots,” Technical
Report, The Robotics Institute, Carnegic-Mellon University, Schenley Park, Pittaburgh, PA. 15213,
January 1986.
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, Feasibility of Dynamic Trajectories
’ for Mobile Robots

Dong Hun Shin

Department of Mechanical Engineering
Carnegie - Melion University
Pittsburgh, PA 15213
November 1885

Abstract

Constraints for the feasible dynamic trajectories of the mobile robot are considered and conditions

on the slippage between wheels and terrain are presented for testing the feasibility of dynamic

4 trajectories. Slippage constraints are devided into two cases, the translational slippage and the loss
of the traction and each case is investigated using newtonian mechanics and coulomb’s friction law.
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1 Introduction

5 This paper concerns the feasibility of the dynamic trajectories used for the supervisory steering
control of the wheeled mobile robots. The steering control objective is to navigate the robot among
obstacles to reach the specified destination. A usual steering control problem of a mobile robot
consists of three hierachical structures [4] [5] [1] which are illustrated in Fig 1.

o
Path  Planning
L c,oﬂ-’.ﬁow 'cruz Pa*e\
D)mw:( 'rrujecwr)r
L/ Generatton
)L refererce Taput ; function " time
Servo - Controller
c .
FTS 1 hierochicad ctructure q) +H suPcruTSorg Heern\J ccnﬂmf
The first ievel of the control hierachy is to plan a collision free path which is usually a sequence of
o nodes from the current positin to the destination. A dynamic trajectory is then generated which takes
into consideration system dynamics and limits on control inputs. This trajectory is converted into
reference control trajectories for the servo-controlled actuator inputs.
° The issues addressed in this paper is the feasibility condition of the dynamic trajectories of the

mobile robot. Since the feasibility of the trajectories depend on the constraints of the control system,
constraints of the mobile robot are discussed and especially, slippage constraints which are the
crucial and characteristic constraints for the feasible trajectories of the mobile robot are investigated.

The remainder of this paper is organized as follows. The feasibility problem of the trajectory is
formulated in section 2. The potential sources of infeasibility are discussed in section 3. Section 4
presents the feasibility condition due to slippage constraints. The concluding section identifies
several directions for future research.

2 Problem Formulation

The dynamics of a mobile robot with n degrees of freedom can be represented by n coupled second
order differential equation (1).

ffaags) = 0 a
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where
i=),....n
L q=lq,....q) - ngeneralized coordinates
4=[@,----.°,,l - ngeneralized velocities
G=4,....) - ngeneralized acceleration
"=[’x' ....7,] - ngeneralized forces
L] It we let Q be the 2n dimensional set of feasible generalized coordinates and velocities, physical
operating region of system is expressed as
@d ¢ 0 | @
o Since the generalized forces are combination of components of control input forces/torques, they
are also limited as '
- +
7 S TS 3
. where, i=1,....n
The task of the mobile robot is normally specified in the global coordinate frame where the
destination and the obstacles can be most easily represented. Thus computation of the steering
control in terms of the generlaized coordinates requires mapping the destination and the obstacles
| ® into the generalized coordinate frame and solving a nonlinear control problem with state variable
constraints. But it is not easy. A tractable approach to steering control is to plan the collision free
path in the global coordinate frame independently of the dynamic congtraints. A dynamic trajectory is
‘ ° then generated in globat coordinates as a function of time with respect to the specific point of the

robot.
X=X\ @)
where, X =[Xl. . ¢ "] 1 trajectory in global frame

These dynamic trajectory are then converted into the generalized coordinates as reference input for
the lower level servo controller.

¢ = {40 ‘ (O]

where

i=l,....n
¢ : trajectory in generalized frame

These dynamic trajectories must satisfy the equation of motion under the constraints (2) and (3).

................
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As an example, we consider a simplified model of a tricycle which moves on a planar surface and is
configured in Fig 2. It goes only forward and has one steered and driven front wheel and two rear idle
wheels with same radius.

. F
la{'
7Y Y S
X

Fita 2. o Stmple amodel of -TrTcon-L

where,

XY,z aretheinertial giobal coordinates

xy.z are the body coordinates which is fixed to the mass center of the robot
and translates with velocity V., and yaws with angular velocity 8,
with respect to the inertial coordinate frame.

steering angle of the driven wheel

L 4
q); rolling angle of the driven wheel
T torque to steer the wheel

" torque to tum the wheel

If we consider the degrees of freedom for the tricycle model, the three coordinates X.Y and @,
constitute a complete set to express the position and the orientation of the robot. The variation dX.dY
and doz are not, however, independent, since the requirment that any translation must be in the
heading direction implies the constraining relation .

dy
Z-X=tan 0 .

in other words, there is one nonholonomic constraint. Thus the degrees of freedom of the tricycle
model for the planar motion is two, which is known as the minimum degree of freedom for the two
dimensional planar motiojn [6), as the conventional steered vehicle has two degrees of freedom.

........................
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Then, two generalized coordinates and forces for the tricycle model can be taken as

¢=ly, o)
1'=[T‘.Tz]

The simple operating region of the tricycle can be represented as
0 < o, . lol = @, ©)
Py S Pomax 0 19 S @,

And the limit on control inputs can be specified as
0 < T" < T" max
IT| s T,

The dynamic trajectory with respect to the mass center of the tricycle can be generated in the
inertial coordinate frame as
X = 40
Y = fL9)

"

and these trajectories can be converted into the generalized coordinates as
?, = L0
9, = S0

3 Potential Sources of Infeasibility

This section gives a brief discussions of each major potential source of the infeasibility of the
dynamic trajectory. Major potential sources are as follows.

1. Kinematic constraints
2. Vehicle stability
3. Limits on control input force/torque

4, Slippage of wheels

The first, kinematic constraints, can be thought as equation (2) or (6), feasible generalized
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coordinates and velocities. This is one of the major constraints problem for the steering control of
manipulator because it limits the working space and velocities in terms of the generalized coordinates

and constraints are coupled with each generalized coordinates and velocities. But, generally there is

no significant problem to deal with these constraints of the mobile robot because they are not ,::'”»'j.
coupled seriously like the constraints of the tricycle model (6). The overturn of the mobile robot :::'-,,
during turning around or acceleration would be thought as another constraint from the view point of ::'C::'-.'::::j
the vehicle stability. This constraint depends on the height of mass center, geometric composition of PAEREY
wheels, angular velocity and acceleration, etc. L‘*‘“

The control input forces/torques are limited by the servo motor which is specified in the local
generalized coordinate frame as equation (3). If the input forces/torques required by the trajectory
(4) or (5) exceed the limit on control input, the trajectory will not be feasible. Contro! input constraint

not sufficient, the whee! will slip. Thus the slippage constraint of a wheel is expressed as (using
Coulomb'’s friction law)

F <5 pN )]

where, F : frictional force
gm) : friction coefficient
N : normal force

problem is very important to enabls the robotic manipulators to perform their maximum capability and :
efficiency, which lead to high productivity. So the industriai manipulator control problem against .
these constraints has been the issue and trajectories even optimized with respect to time and energy e
was reported [2] [3). : j:.f:f:‘f:'{:‘:

Last, slippage constraints are the characteristics of the mobile robot problem. A wheel rolis due to ‘ \':
the driven torque and frictional force between the wheel and terrain. If the actual frictional force is L '::

If the wheels of the mobile robot slip, the robot will slip and leave the given dynamic trajectory, that R
is, the trajectory will not be feasible. Thus the dynamic trajectory must be constrained to guarantee L_.,,..!
no slip of the wheel of the robot. Slippage constraint problem is thought as the most important for the oo
feasible dynamic trajectories of the mobile robots because of the following reasons.

1. Kinematic constraints are the most. crucial for the feasible trajectories but generally can
be represented easily because they are not coupled seriously in the mobile robot
problem. Also it can be easily checked.

2. Vehicle stability constraints, i.e. the overturn of the robot, would not be serious, if it is
taken care of at the design of the robot. Then, slippage of wheels will occur before a e
overturn as the conventional vehicle does. ] (
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Next section will present a approach to deal with the slippage constraints.

4 Slippage Constraints

It is difficult to solve the general slippage constraint problem and to obtain the required frictional
force ot each wheel for the feasible dynamic trajectory. if the trajectory is feasible, there is no slip at
the point of contact between any wheel and terrain. In other words, the point of contact is
momentarily at rest. Then, sincé no work is done by the frictional forces, there is no explicit term of
the frictional forces in the equation of the mation (1). Hence, the frictional forces can not be
computed with the equation of the. motion {1) and the given trajectory (4) or (§). Those forces wouid
be obtained complicatedly with the geometric constraints of the robot and the equations of the motion ‘
of the subsystems. To make the problem tractable, slippage constraints are divided into two cases

under the following assumptions. ) v .—;
1. The robot does not have any flexible part. A

2. The robot moves on a planar surface with no irregulities.
3. The frictional coefficient, g, is constant. | - :
4.1 Translational Slippage

We first consider the translationa! slippage of the wheel when there is no slip due to the loss of
traction. A general m wheeled mobile robot with the frictional forces required by the trajectory are

NG
. —% " S
. | 9 @‘ F\ P F5 M {ﬁtﬁ?ohuﬂ {m—u .

simply configured in Fig 3.

FT: 3 m wheeflel mobils yobot' amd fHictiom :‘:-\
Since all the wheels are fixed to the robot, it can be thought as a rigid body under external force ::
LN

I-‘! J=1,...,m, and driven torques. Thus any part of a rigid body can not siip uniess the whole body,
or mass center, slips. So, we make assumption 4 as '




4., Any wheel do not slip translationally uniess the mass center of the robot slips.

In other words, the required frictional force of any wheel, Fj , will not exceed pN,. unless the total
sum of I‘} exceeds the total sum of uN /i If there is no translation slip, the next equation should be
satisfied.

m m ’
2 F = X omN, @®
J= =

Since the positions and orientations of the mass center of the robot in the body coordinate frame

can be computed from by the dynamic trajectory, we obtain velocities of e mass center

Vx(l). Vy(l). ¢ z(t)

And we can obtain relations from the equations of the motion of the m wheeled mobile robot

m () e
;ZE Fy=M(V,~V8)
m

; Fy=M(V,~V20)
m

2Ny~ Mg=0
=1
where M is the mass of the robot.

g is the gravitational constant.
Then, the equation (8) becomes

1
V,~ Vy&)’+(l.’y+ VIXF s pe o)

As examples, we consider simple circular motions of the tricycle model in section 2. First, if a
circular motion with constant angular velocity, 5 =@ is considered as in Fig 4

Then,

...........




l.’x=wR .Vy=0
Vx=0 Vy=0

We obtain th relation from equation (9)
'R < pg

which agrees with the physical understanding.

Second, if a circular motion with constant angular acceleration, ,=al, is considered, then
Vx'—' atR Vy= 0

Vx= aR Vy= 0
And we obtain the relation from equation (9)

1
2 -
1
‘s e
a'R a
4.2 Loss of Traction .
Next, we consider the slippage of one driven wheel due to the loss of traction. A simplified driven

wheel under torque Tis figured.

| Fra & Driven what omd xtowna] forees

The frictional force required by the trajectory can be decomposed into the fongitudinal and the
traverse force with repect to a wheel; F..F_ and from equation (7), the wheel slips if next equation is

€'
not satisfied.
1

F=[F€’+ F"]; S pN (10)
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As the driven torque is increased for the ecceleration, the frictional force F will be increased and
' - eventually become the maximum feasible frictional force pN. Then the torque is increased more and

the wheel, however, does not slip until FG alone exceeds the pN if the assumption 4 holds: there is no
movement of the wheel due to slippage without the slippage of the whole robot. Physically,as I’e is
{ increased, F" will be decreased while Fis uN. Thus if there is no translational slippage of the robot,

any wheel does not slip provided

F, s pN ay

From the Fig 5, the equation of the motion is

1‘0" = T—F‘r

Then, equation (11) becomes

T-1.0
—'L! S aN 12

So, the mobile robot will not slip as long as equation (9) and (12) hold.

5 Conclusion and Futu re Research

In this paper, we have discussed the constraints for the feasible dynamic trajectory and presented
an approach for a slippage constraints which are the most important and characteristic contraints to
the mobile robot dynamic trajectory. Directions for future research include

o Derivation of constraints on vehicle stability.

e Methods for the generation of the feasible dynamic trajectory considering constraints
discussed in section 3.

o Implementation of feasibility constraints to the dynamic steering control of the mobile

robot.
e Moditication of the dynamic steering algorithm so that it may be applied to the navigation ,-f:;l-.;.:‘,
of the current mobile robot. RS
o Integration of the dynamic steering algorithm with higher level planning or previous . .
information. S

o Navigation of the mobile robot using the dynamic steering control.
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The NEPTUNE Mobile Robot E
i
L Gregg W. Podnar .\ -
Robotics Institute e
Carnegie-Mellon University DO A
Pittsburgh, PA 15213 I’:::_-\: N
R
& Neptune is a functional vehicle for autonomous mobile robot research. As a reliable mobile base, it supports S

experiments in perception, real-world modeling, navigation, planning and high-level control. It is self-propelled,
with computer control of direction and motivation.

.
e

© One of the prime design goals was the minimization of the number of subsystems. By doing so, reliability was
enhanced.
Structure

(#

Neptune’s basic structure is best likened to a child’s tricycle. The three 10-inch (25cm) pneumatic tires are used to
provide spring, compliance, and traction on soft ground.

Steering of the fork is accomplished by one motor. The fork-mounted wheel is driven by a second motor. This

) allows sharp turning which facilitates navigation in cluttered environments. The other two wheels are paraliel and
rotate freely. The fork can turn at least 90° left and right, and the wheel can be driven forward or back. Together,
these two features enable the vehicle to rotate about a vertical axis through a point located directly between the two
passive wheels. The overall width is 22.5 inches (57cm), and the length is 32.5 inches (83cm). The turning length
‘curb-to-curb’ is only 42 inches (107cm).

9
Power
To eliminate on-board power storage and recharging, mains power is supplied through an umbilical. This 120VAC is :'.-_ R
distributed for all on-board electrical equipment via outlets mounted in the vehicle frame. Each piece of equipment
provides its own power conversion/protection.
Motors R
{ e
]
Using 120vAC motors eliminates the need for massive power conversion equipment. Synchronous motors were '.:’_-'.-'-i:j'.
chosen for drive and steering as this replaces a feed-back and servoing system (Run a motor for a length of time, and
calculate the revolutions.). The elimination of optical encoders or resolvers enhances reliability.
(
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Control

An on-board processor accepts commands from a serial data link through the umbilical. This processor controls the
motor relays and monitors fork position. It also provides control and monitoring for other vehicle-mounted
equipment (such as switching between two television cameras).

Communication

Together with the Power, the umbilical carries cables for digital and video signals to and from off-board computers.

Construction

Neptune is made from two basic assemblies, the Fork and the Frame. Both parts were designed to have an excess
of structural fortitude to withstand abuse and provide secure mounting points for auxiliary experimental equipment.

The frame is made of four pieces of four inch square aluminum tubing which are are welded together. Likewise, the
four major fork pieces are aluminum and are welded. This was done mainly for strength but it also reduced the
required machining. Once all the pieces were made, assembly of the mechanical parts took less than a week.

Prefabricated Components

For mounting the rotating shafts (two axles and the fork neck), off-the-shelf, housed bearings are used. In the same
way, the chains and sprockets for driving and steering are standard components. The wheels and tires are units
manufactured for handtrucks. Delivery time on these items is short, on the order of one to three weeks. By
employing pre-fabricated components, shop time was minimized. It took one machinist about one full week to make
all the other parts.

Performanece

The Drive motor provides 1800 oz.in. of torque. With the 4:1 reduction gearing, about 90 pounds of pull is
developed at the drive wheel. Fully loaded with cameras and a ring of 24 sonar sensors, Neptune weighs about 200
pounds and easily manages a 10° slope. It travels at about nine inches per second; about 1/2 MPH.

Neptune has had different configurations of sensor systems mounted on it to perform a variety of experiments. It
has navigated in hallways, cluttered labs and sidewalks. It was even used in the rain with the addition of an
umbrella to protect the electronics. It has reliably served our research purposes since early in 1984.
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The URANUS Mobile Robot

J Gregg W. Podnar
Robotics Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

) Uranus is a sophisticated vehicle for autonomous mobile robot research. As an omni-directional mobile base, it
makes possible experiments in perception, real-world modeling, navigation, planning and high-level control. It is
self-propelled and can support a wide variety of sensor and manipulator packages. True autonomy is possible as
electrical and computing power are carried on-board.

) The most unique feature of Uranus is its four wheels. Developed by a Swedish company, MECANUM, for
omni-directional movement of factory floor pallets and wheel chairs, we have adapted them for use in mobile robots.
With respect to the wheels’ Swedish origin, we pronounce Uranus: Qo-ron’-00s.

« Wheels

Each wheel has twelve free-spinning rubber rollers around its circumference. The axle of each roller is at a 45°

angle to a line parallel to the wheel’s axle. When viewed from the side, the end of each roller overlaps the

beginning of the next, and due to the barrel shape of each roller, the wheel presents a circular silhouette. As a wheel
> rolls, its contact with the ground changes from one roller to the next smoothly.

There are right-handed and left-handed wheels which can be thought of as working in pairs, with each pair on a

common axis. When both wheels are rotated in the same direction, the sideways components generated by the

rollers cancels and the wheels move forward or back. However, when the wheels are rotated in opposite directions,
) the sideways components add and the wheels move sideways.

Structure

. Uranus describes a rectangular envelope which is 30" (76cm) long by 24" (61cm) wide by 12"(30cm) high, with
additional height of 0.5"-2.5" (1.3-6.3cm) due to ground clearance. The primary frame components are 3"x6"
(7.6x15.2cm) rectangular aluminum tubing. The suspension components are all stainless steel.

The vehicle has three layers. The first six inches (15¢m) includes the wheels, drivetrain, motors, batteries and power RO
control. As this is the majority of the weight, the center of gravity is very low. Ta

The second six inches (15cm) includes computers and control electronics along with their associated power supplies.
The four comners of this level are for springs and dampers of the suspension,

The third level consists of the top plate or deck. It is 23" (58cm) by 27" (69cm); slightly smaller than the vehicle
envelope. This allows the wheels to contact a vertical obstacle first. The deck provides structural support for up to
250 pounds (113kg) oi additional equipment. It is full of 1/4"-20 holes on a grid of one inch (2.5cm) centers.
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Motors

Each of the four wheels is driven by a samarium-cobalt brushless D C. motor. An on-board computer controls
motor position, speed and rotation by monitoring shaft position with an optical encoder. The motors are mounted in
the side frame pieces of the first layer between the wheels. The shaft end of the motor protrudes into the frame and
connects with the drivetrain. The power electronics for switching a motor’s coils is housed in a heat sink mounted
directly to the outboard side of the motor housing. This is to minimize EMI and allow convection cooling.

Suspension

Each wheel is mounted on what can most easily be described as a trailing-arm. Vertical movement of two inches
(5cm) maximum is possible. Initially, the vehicle is suspended on stiff coil springs which allow just enough
compliance to ensure that all four wheels have adequate contact with the ground. Space is available for the option of
an active suspension. By computer control of pneumatic or hydraulic actuators, the vehicle can be leveled, raised
and lowered to facilitate certain environments.

Power

Power is supplied by an on-board sealed lead-acid battery. The motors operate directly from the 24vDC battery
power, whereas the computers and other equipment convert and condition power through dedicated switching power
supplies.

An umbillical provides 24vDC from an off-board supply. This supply is capable of powering the entire vehicle and
simultaneously charging the batteries. In this way, experimentation which does not require full wireless operation
and indefinite operating times are facilitated.

Performance

Four motors, developing peak torque of 3.5 ft.Ibs. (4.7nm) drive the wheels through a 4:1 reduction. With a 9"
(23cm) wheel diameter, about 150 1bs. (660nt) of thrust is developed. This is the theoretical maximum; about half
this number is a practical value.

With these motors the maximum speed is about three feet (Im) per second or 2MPH (3.2KPH) which is adequately
fast for a cluttered environment. This can be increased if need be.

With on-board batteries, about four hours of wireless operation is possible. This estimate must be reduced if the
vehicle requires more power for rough terrain or interaction with objects in the environment. Similarly, more time is
available for a single experiment if the movements are more sedate.

i3
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Robots That Rove RO
NS
L Hans P. Moravec
Robotics Institute
Carnegie-Mellon University
Pittsburgh, PA 15213
August, 1985
. °
> The most consistently interesting stories are those about journeys, and the most fascinating organisms
{ are those that move from place to place. | think these observations are more than idiosyncrasies of
human psychology, but illustrate a fundamental principle. The world at large has great diversity, and a Cj
traveller constantly encounters novel circumstances, and is consequently challenged to respond in new :.
ways. Organisms and mechanisms do not exist in isolation, but are systems with their environments, and

those on the prowl in general have a richer environment than those rooted to one place.
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Mobility supplies danger along with excitement. Inappropriate actions or lack of well-timed appropriate
ones can result in the demise of a free roamer, say over the edge of a cliff, far more easily than of a
stationary entity for whom particular actions are more likely to have fixed effects.

Challenge combines with opportunity in a strong selection pressure that drives an evolving species that
happens to find itself in a mobile way of life in certain directions, directions quite different from those of
stationary organisms. The last billion years on the surface of the earth has seen a grand experiment L
exploring these pressures. Besides the fortunate consequence of our own existence, some universals are RSy
apparent from the results to date and from the record. In particular, intelligence seems to follow from -~ N
mobility.

| believe the same pressures are at work in the technological evolution of robots, and that, by analogy,
mobile robots are the most likely route to solutions to some of the most vexing unsolved problems on the
way to true artificial intelligence - problems such as how to program common sense reasoning and
leaming from sensory experience. This opportunity carries a price - programs to control mobile robots are
more difficult to get right than most - the robot is free to search the diverse world looking for just the
combination that will mess up your plan. There’s still a long way to go, but perhaps my experiences thus
far pursuing this line of thought will convince you as they have me. Among the conclusions that surprised RS
me is that future intelligent robots will of necessity be more like animals and humans that | used to R
believe, for instance they will exhibit recognizable emotions and human irrationalities. On to cases. RO

Mobility and Intelligence in Nature

T
»

»

Two billion years ago our unicelled ancestors parted genetic company with the piants. By accident of
energetics and heritage, large plants now live their lives fixed in place. Awesomely etfective in their own
right, the plants have no apparent inclinations towards intelligence; a piece of negative evidence that
supports my thesis that mobility is a parent of this trait.
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Animals bolster the argument on the positive side, except for the immobile minority like sponges and
clams that support it on the negative.

A billion years ago, before brains or eyes were invented, when the most complicated animals were
something like hydras, double layers of cells with a primitive nerve net, our progenitors split with the
invertebrates. Now both clans have intelligent members. Cephalopods are the most inteliectual
invertebrates. Most mollusks are sessile shellfish, but octopus and squid are highly mobile, with big brains
and excellent eyes. Evolved independently of us, they are different. The optic nerve connects to the back
of the retina, so there is no blind spot. The brain is annular, a ring around the esophagus. The green
blood is circulated by a systemic heart oxygenating the tissues and two gill hearts moving depleted blood.
Hemocyanin, a copper doped protein related to hemoglobin and chlorophyll, carries the oxygen.

Octopus and their relatives are swimming light shows, their surfaces covered by a million individually
controlled color changing cells. A cuttlefish placed on a checkerboard can imitate the pattern, a fleeing
octopus can make deceiving seaweed shapes coruscate backward along its body. Photophores of deep
sea squid, some with irises and lenses, generate bright multicolored light. Since they also have good
vision, there is a potential for high bandwidth communication.

Their behavior is mammal like. Octopus are reclusive and shy, squid are occasionally very aggressive.
Small octopus can learn to solve problems like how to open a container of food. Giant squid, with large
nervous systems, have hardly ever been observed except as corpses. They might be as clever as
whales.

Birds are vertebrates, related to us through a 300 million year old, probably not very bright, early reptile.
Size-limited by the dynamics of flying, some are intellectually comparable to the highest mammals.

The intuitive number sense of crows and ravens extends to seven, compared to three or four for us. Birds
outperform all mammals except higher primates and the whales in "learning set” tasks, where the idea is
to generalize from specific instances. In mammals generalization depends on cerebral cortex size. In
birds forebrain regions called the Wulst and the hyperstriatum are critical, while the cortex is smail and
unimportant.

Our last common ancestor with the whales was a primitive rat-like mammal alive 100 million years ago.
Some dolphin species have body and brain masses identical to ours, and have had them for more
generations. They are as good as us at many kinds of problem solving, and can grasp and communicate
complex ideas. Killer whales have brains five times human size, and their ability to formulate plans is
better than the dolphins’, who they occasionally eat. Sperm whales, though not the largest animals, have
the world's largest brains. Intelligence may be an important part of their struggle with large squid, their
main food. Elephant brains are three times human size. Elephants form matriarchal tribal societies and
exhibit complex behavior. Indian domestic elephants learn over 500 commands, and form voluntary
mutual benefit relationships with their trainers, exchanging labor for baths. They can solve problems such
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as how to sneak into a plantation at night to steal bananas, after having been belled (answer: stuff mud
into the bells). And they do have long memories.

v
Apes are our 10 million year cousins. Chimps and gorillas can leam to use tools and to communicate in
human sign languages at a retarded level. Chimps have one third, and goriflas one half, human brainsize.
) Animals exhibiting near-human behavior have hundred billion neuron nervous systems. Imaging vision

alone requires a billion. The smariest insects have a million brain cells, while slugs and worms make do

with a thousand, and sessile animals with a hundred. The portions of nervous systems for which tentative

wiring diagrams have been obtained, including nearly all of the large neuroned sea slug, Aplysia, the flight

controller of the locust and the early stages of vertebrate vision, reveal neurons configured into efficient,
@ clever, assemblies.

Mobility and Intelligence around the Lab

The twenty year old modem robotics effort can hardly hope to rival the billion year history of large life on
earth in richness of example or profundity of result. Nevertheless the evolutionary pressures that shaped
life are already palpable in the robotics labs. I'm lucky enough to have participated in some of this activity
and to have watched more of it at first hand, and so will presume to interpret the experience.

-] The first serious attempts to link computers to robots involved hand-eye systems, wherein a computer-
interfaced camera looked down at a table where a mechanical manipulator operated. The earliest of these
(ca. 1965) were built while the small community of artificial intelligence researchers was still flushed with
the success of the original Al programs - programs that almost on the first try played games, proved
mathematical theorems and solved problems in narrow domains nearly as well as humans. The robot

L4 systems were seen as providing a richer medium for these thought processors. Of course, a few minor
new problems did come up.

A picture from a camera can be represented in a computer as a rectangular array of numbers, each
representing the shade of gray or the color of a point in the image. A good quality picture requires a
million such numbers. Identifying people, trees, doors, screwdrivers and teacups in such an
undifferentiated mass of numbers is a formidable problem - the first programs did not attempt it. Instead
they were restricted to working with bright cubical blocks on a dark tabletop; a caricature of a toddler
leaming hand-eye co-ordination. In this simplified environment computers more powerful than those that
N had earlier aced chess, geometry and calculus problems, combined with larger, more developed,
programs were able to sometimes, with luck, correctly locate and grab a block.

2

The general hand-eye systems have now mostly evolved into experiments to study smaller parts of the
problem, for example dynamics or force feedback, or into specialized systems aimed at industrial
applications. Most arm systems have special grippers, special sensors, and vision systems and
controllers that work only in limited domains. Economics favors this, since a fixed arm, say on an

~
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assembly line, repetitively encounters nearly identical conditions. Methods that handle the frequent I;-: o

situations with maximum efficiency beat more expensive general methods that deal with a wide range of I}:.-\-:.'
5 circumstances that rarely arise, while performing less well on the common cases. ""‘""
’o l:::l _‘d
E Shontly after cameras and arms were attached to computers, a few experiments with computer controlled :‘:-1".6
) mobile robots were begun. The practical probiems of instrumenting and keeping operational a remote }"‘-'
i ® controlled, battery powered, camera and video transmitter toting vehicle compounded the already severe v
. practical problems with hand-eye systems, and conspired to keep many potential players out of the game. ,LP_;
3 e
3 e
s w
3 The earliest successful result was SRI’'s Shakey (ca. 1970). Although it existed as a sometimes functional
physical robot, Shakey's primary impact was as a thought experiment. its creators were of the first wave

o *reasoning machine” branch of Al, and were interested primarily in applying logic based problem solving
methods to a real world task. Control and seeing were treated as system functions of the robot and
relegated mostly to staff engineers and undergraduates. Shakey physically ran very rarely, and its blocks
world based vision system, which reqired that its environment contain only clean walls and a tew large
smooth prismatic objects, was coded inefficiently and ran very slowly, taking about an hour to find a block

and a ramp in a simple scene. Shakey's most impressive performance, physically executed only b

: piecemeal, was to "push the block” in a situation where it found the block on a platform. The sequence of RN
t actions included finding a wedge that could serve as a ramp, pushing it against the platform, then driving S
i up the ramp onto the platform to push the block off. -;:I-'_
L J I SR
The problems of a mobile robot, even in this constrained an environment inspired and required the lt::’“

development of a powerful, effective, still unmatched, system STRIPS that constructed plans for robot 2{3',.:::1:

tasks. STRIPS’ plans were constructed out of primitive robot actions, each having preconditions for Zf:::f«ij

) applicability and consequences on completion. It coukd recover from unexpected glitches by incremental iy
L4 replanning. The unexpected is a major distinguishing feature of the world of a mobile entity, and is one of L:.:_

the evolutionary pressures that channels the mobile towards intelligence.

- Mobile robots have other requirements that guide the evolution of their minds away from solutions

<, seemingly suitable for fixed manipulators. Simple visual shape recognition methods are of little use to a
machine that travels through a cluttered three dimensional world. Precision mechanical control of position |1
can't be achieved by a vebhicle that traverses rough ground. Special grippers don't pay off when many yot
different and unexpected objects must be handled. Linear algorithmic control systems are not adequate T
for a rover that often encounters surprises in its wanderings. \L

The Stanford Cart was a mobile robot built about the same time as Shakey, on a lower budget. From the

start the emphasis of the Cart project was on low level perception and control rather than planning, and R

the Cart was actively used as a physical experimental testbed to guide the research. Until its retirement in ;::j:_;:'

1980 it (actually the large mainframe computer that remote controlied it) was programmed to: Ry
)

« Follow a white line in real time using a TV camera mounted at about eye level on the robot.
The program had to find the line in a scene that contained a lot of extraneous imagery, and
could afford to digitize only a selected portion of the images it processed.




« Travet down a road in straight lines using points on the horizon as references for its compass ;::7':$:-‘(:

heading (the cart carried no instrumentation of any kind other than the TV camera). The .;::'; oy

program drove it in bursts of one to ten meters, punctuated by 15 second pauses to think u*_-ﬁ

L d about the images and plan the next move. ...
» Go to desired destinations about 20 meters away (specified as so many meters forward and -:'.:-;I_ )

so many to the left) through messy obstacle courses of arbitrary objects, using the images e ‘-;3.

from the camera to servo the motion and to detect (and avoid) obstacles in three dimensions. AR

With this program the robot moved in meter long steps, thinking about 15 minutes before :.-:-::-::

@ each one. Crossing a large room or a loading dock took about five hours, the lifetime of a walass
charge on the Cart’s batteries. T

The vision, world representation and planning methods that ultimately worked for the Cart (a number were
tried and rejected) were quite different than the "blocks world™ and specialized industrial vision methods L
® that grew out of the hand-eye efforts. Blocks world vision was completely inappropriate for the natural »ce-ss
indoor and outdoor scenes encountered by the robot. Much experimentation with the Cart eliminated
several other initially promising approaches that were insufficiently reliable when fed voluminous and
variable data from the robot. The product was a vision system with a different flavor than most. It was "low
, level” in that it did no object modelling, but by exploiting overlapping redundancies it could map its
t surroundings in 3D reliably from noisy and uncertain data. The reliability was necessary because Car
joumeys consisted of typically twenty moves each a meter long punctuated by vision steps, and each step

had to be accurate for the journey to succeed.

v At Carnegie-Mellon University we are building on the Cart work with (so far) four different robots
' optimized for different parts of the research.

Pluto was designed for maximum generality - its wheel system is omnidirectional, allowing motion in any
direction while simultaneously permitting the robot 10 spin like a skater. R was planned that Pluto would e
® continue the line of vision research of the Cart and also support work in close-up navigation with a |' '
" manipulator (we would like a fully visually guided procedure that permits the robot to find, open and pass ‘
through a door). The real world has changed our plans. To our surprise, the problem of controlling the
three independently steerable and driveable wheel assemblies of Pluto is an example of a difficult, so far
' - unsolved, problem in control of overconstrained systems. We are working on it, but in the meantime Pluto

is nearly immobile. L——-—v

When the difficulty with Pluto became apparent, we built a simple robot, Neptune, to carry on the long
range vision work. I'm happy to announce that Neptune is now able to cross a room in under an hour, five
times more quickly than the Cart.

i 3

Uranus is the third robot in the CMU line, designed to do well the things that Pluto has so far failed to do.
It will achieve omnidirectionality through curious wheels, tired with rollers at 45 degrees, that, mounted

L . like four wagon wheels, can travel forward and backward nommally, but that screw themselves sideways
when wheels on opposite sides of the robot are turned in opposite directions.

[ 1
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Our fourth mobile robot Iis called the Terragator, for terestrial navigator, and is designed to travel
outdoors for long distances. it is much bigger than the others, almost as large as a small car, and is
powered by a gasoline generator rather than batteries. We expect to program it to travel on roads, avoid
and recognize outdoor obstacles and landmarks. Our earlier work makes clear that in order to run at the
speeds we have in mind (a few knvhr) we will need processing speeds about 100 times faster than our
medium size mainframes now provide. We plan fo augment our regular machines with a specialized
computer called an array processor to achieve these rates.

Our ambitions for the new robots (go down the hall to the third door, go in, look for a cup and bring it
back) has created another pressing need - a computer language in which to concisely specify complex
tasks for the rover, and a hardware and software system to embody it. We considered something similar
to Stanford’s AL arm controlling language from which the commercial languages VAL at Unimation and
the more sophisticated AML at IBM were derived.

Paper attempts at defining the structures and primitives required for the mobile application revealed that
the linear control structure of these state-of-the-art arm languages was inadequate for a rover. The
essential difference is that a rover, in its wanderings, is regularly "surprised” by events it cannot
anticipate, but with which it must deal. This requires that contingency routines be activated in arbitrary
order, and run concurrently. We are experimenting with a structure where a number of specialist
programs communicating via a common data structure called a blackboard are active at the same time,
some operating sensors, some controlling effectors, some integrating the results of other modules, and
some providing overall direction. As conditions change the priority of the various modules changes, and
control may be passed from one fo another.

The Psychology of Mobiie Robots

Suppose we ask Uranus, equipped with a controller based on the blackboard system mentioned in the
last section to, in fact, go down the hall to the third door, go in, look for a cup and bring it back. This will
be implemented as a process that looks very much like a program written for the arm control languages
(that in turn look very much like Algol, or even Basic), except that the door recognizer routine would
probably be activated separately. Consider the following caricature of such a program.

MODULE Go-Fetch-Cup
Wake up Door-Recognizer with instructions
( On Finding-Door Add 1 to Door-Number
Record Door-Location )

Record Stant-Location

Set Door-Number to 0

While Door-Number < 3 Wall-Foflow

Face-Door

IF Door-Open THEN Go-Through-Opening
ELSE Open-Door-and-Go-Through

Set Cup-Location to resutt of Look-for-Cup

Travel to Cup-Location

Pickup-Cup at Cup-Location

Travel to Door-Location
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Face-Door
IF Door-Open THEN Go-Through-Opening
ELSE Open-Door-and-Go-Through
Eravel to Start-Location
nd

So far so good. We activate our program and Uranus obediently begins to trundie down the hall counting
doors. It correctly recognizes the first one. The second door, unfortunately is decorated with some garish
posters, and the lighting in that part of the corridor is poor, and our experimental door recognizer fails to
detect it. The wall follower, however, continues to operate properly and Uranus continues on down the
hall, its door count short by one. It recognizes door 3, the one we had asked it to go through, but thinks it
is only the second, so continues. The next door is recognized correctly, and is open. The program,
thinking it is the third one, faces it and proceeds to go through. This fourth door, sadly, leads to the
stairwell, and poor Uranus, unequipped to travel on stairs, is in mortal danger.

Fortunately there is a process in our concurrent programming system called Detect-Cliff that is always
running and that checks ground position data posted on the blackboard by the vision processes and also
requests sonar and infrared proximity checks on the ground. It combines these, perhaps with an a-priori
expectation of finding a cliff set high when operating in dangerous areas, 10 produce a number that
indicates the likelyhood there is a drop-off in the neighborhood.

A companion process Deal-with-Cliff also running continuously, but with low priority, regularly checks this
number, and adjusts its own priority on the basis of it. When the cliff probability variable becomes high
enough the priority of Deal-with-Cliff will exceed the priority of the current process in control, Go-Fetch-
Cup in our example, and Deal-with-Cliff takes over control of the robot. A properly written Deal-with-Cliff
will then proceed to stop or greatly slow down the movement of Uranus, to increase the frequency of
sensor measurements of the cliff, and to slowly back away from it when it has been reliably identified and
located.

Now there’s a curious thing about this sequence of actions. A person seeing them, not knowing about the
internal mechanisms of the robot might offer the interpretation "First the robot was determined to go
through the door, but then it noticed the stairs and became so frightened and preoccupied it forgot all
about what it had been doing”. Knowing what we do about what really happened in the robot we might be
tempted to berate this poor person for using such sloppy anthropomorphic concepts as determinination,
fear, preoccupation and forgetfulness in describing the actions of a machine. We could berate the person,
but it would be wrong.

1 think the robot came by the emotions and foibles indicated as honestly as any living animal. An octopus
in pursuit of a meal can be diverted by hints of danger in just the way Uranus was. An octopus also
happens to have a nervous system that evolved entirely independently of our own vertebrate version. Yet
most of us feel no quaims about ascribing concepts like passion, pleasure, fear and pain to the actions of
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the animal.

$ We have in the behavior of the vertebrate, the mollusc and the robot a case of convergent evolution. The
needs of the mobile way of lite have conspired in all three instances to create an entity that has modes of
operation for different circumstances, and that changes quickly from mode to mode on the basis of
uncertain and noisy data prone to misinterpretation. As the complexity of the mobile robots increases |
expect their similarity to animals and humans will become even greater.

Among the natural traits | see in the immediate roving robot horizon is parameter adjustment leamning. A
precision mechanical arm in a rigid environment can usually have its kinematic self-model and its dynamic
control parameters adjusted once permanently. A mobile robot bouncing around in the muddy world is
o likely to continuously suffer insults like dirt buildup, tire wear, frame bends and small mounting bracket
slips that mess up accurate a-priori models. Our present visual obstacle course software, for instance,
has a camera calibration phase where the robot is parked precisely in front of an exact grid of spots so
that a program can determine a function that corrects for distortions in the camera optics. This allows
other programs o make precise visual angle measurements in spite of distortions in the cameras. We

have noticed that our present code is very sensitive to mis-calibrations, and are working on a method that

will continuously calibrate the cameras just from the images perceived on normal trips through clutter.

With such a procedure in place, a bump that slightly shifts one of the robot's cameras will no longer cause

systematic errors in its navigation. Animals seem to tune most of their nervous systems with processes of
‘i ® this kind, and such accomodation may be a precursor to more general kinds of learning.

Perhaps more controversially, | see the begininnings of self awareness in the robots. All of our control
programs have internal representations, at varying levels of abstraction and precision, of the world around
: the robot, and of the robot’s position within that world. The motion planners work with these world models
| ® in considering alternative future actions for the robot. If our programs had verbal interfaces we could ask
. questions that receive answers such as "l tumed right because ! didn't think | could fit through the
opening on the left ". As it is we get the same information in the form of pictures drawn by the programs.

X So What's Missing? e

There may seem 1o be a contradiction in the various figures on the speed of computers. Once billed as
"Giant Brains" computers can do some things, like arithmetic, millions of times faster than human beings.
"Expert systems" doing qualitative reasoning in narrow problem solving areas run on these computers
approximately at human speed. Yet it took such a computer five hours to simply drive the Cart across a
room, down to an hour for Neptune. How can such numbers be reconciled?

The human evolutionary record provides the clue. While our sensory and muscile control systems have
been in development for a billion years, and common sense reasoning has been honed for probably
about a million, really high level, deep, thinking is little more than a parior trick, culturally developed over a
few thousand years, which a few humans, operating largely against their natures, can leamn. As with




y
1
y
4

A
4
»
le
'
t
)
.
s
1
.
o
b
.
.

LY

L)

-
L]
.

r

[}
£
]

¥
!
’

-
*

.
v
L]

*y
2, 1

a gt
L4
PR -

»
.

R

i
. €

¢

.’?
.'-.

AR 2

- vy
L
e
P,

T v T
AN
.
I“P
L

Samuel Johnson's dancing dog, what is amazing is not how well it is done, but that it is done at all.

]

4 Computers can challenge humans in intellectual areas, where humans perform inefficiently, because they
can be programmed to carry on much less wastefully. An extreme example is arithmetic, a function
leamed by humans with great difficulty, which is instinctive to computers. These days an average
computer can add a million large numbers in a second, which is more than a million times faster than a
person, and with no errors. Yet one hundred millionth of the neurons in a human brain, if reorganized into
an adder using switching logic design principles, could sum a thousand numbers per second. If the whole
brain were organized this way it could do sums one hundred thousand times faster than the computer.

Computers do not challenge humans in perceptual and control areas because these billion year old

b functions are carried out by large fractions of the nervous system operating as efficiently as the
hypothetical neuron adder above. Present day computers, however efficiently programmed, are simply
too puny to keep up. Evidence comes from the most extensive piece of reverse engineering yet done on
the vertebrate brain, the functional decoding of some of the visual system by D. H. Hubel, T. N. Weisel
and colleagues.

The vertebrate retina’s 20 million neurons take signals from a million light sensors and combine them in a
series of simple operations to detect things like edges, curvature and motion. Then image thus processed
goes on to the much bigger visual cortex in the brain.

?
Assuming the visual cortex does as much computing for its size as the retina, we can estimate the total
capability of the system. The optic nerve has a million signal carrying fibers and the optical cortex is a
thousand times deeper than the neurons which do a basic retinal operation. The eye can process ten
° images a second, so the cortex handles the equivalent of 10,000 simple retinal operations a second, or 3

million an hour.

An efficient program running on a typical computer can do the equivalent work of a retinal operation in
about two minutes, for a rate of 30 per hour. Thus seeing programs on present day computers seem to be

{ 100,000 times slower than vertebrate vision. The whole brain is about ten times larger than the visual
system, so it should be possible to write real-time human equivalent programs for a machine one million
times more powerful than todays medium sized computer. Even todays largest supercomputers are about
1000 times slower than this desiratum. How long before our research medium is rich enough for full
intelligence?

Since the 1950s computers have gained a factor of 1000 in speed per constant dollar every decade.
There are enough developments in the technological pipeline, and certainly enough will, to continue this
pace for the forseeable future.

The processing power available to Al programs has not increased proportionately. Hardware speedups
and budget increases have been dissipated on convenience features; operating systems, time sharing,




high level languages, compilers, graphics, editors, mail systems, networking, personal machines, etc. and
have been spread more thinly over ever greater numbers of users. | believe this hiatus in the growth of

' processing power explains the disappointing pace of Al in the past 15 years, but nevertheless represents
a good investment. Now that basic computing facilities are widely available, and thanks largely to the
initiative of the instigators of the Japanese Supercomputer and Fifth Generation Computer projects,
attention worldwide is focusing on the problem of processing power for Al.

The new interest in crunch power should insure that Al programs share in the thousandfold per decade
increase from now on. This puts the time for human equivalence at twenty years. The smallest
vertebrates, shrews and hummingbirds, derive interesting behavior from nervous systems one ten
thousandth the size of a human’s, so we can expect fair motor and perceptual competence in less than a

) decade. By my calculations and impressions present robot programs are similar in power to the control
systems of insects.

Some principals in the Fifth Generation Project have been quoted as planning "man capable” systems in
ten years. | believe this more optimistic projection is unlikely, but not impossible. The fastest present and
nascent computers, notably the Cray X-MP and the Cray 2, compute at 109 operations/second, only 1000
times too slowly.

As the computers become more powerful and as research in this area becomes more widespread the rate
b of visible progress should accelerate. | think antificial intelligence via the "bottom up" approach of
technological recapitulation of the evolution of mobile animals is the surest bet because the existence of
independently evolved intelligent nervous systems indicates that there is an incremental route to
intelligence. It is also possible, of course, that the more traditional "top down" approach will achieve its
goals, growing from the narrow problem solvers of today into the much harder areas of leaming, common-
b sense reasoning and perceptual acquisition of knowledge as computers become large and powerful
enough, and the techniques are mastered. Most likely both approaches will make enough progress that
they can effectively meet somewhere in the middle, for a grand synthesis into a true artificial sentience.

This artificial person will have some interesting properties. Its high fevel reasoning abilities should be SRR
astonishingly better than a human’s - even today's puny systems are much better in some areas - but its

low level perceptual and motor abilities will be comparable to ours. Most interestingly it will be highly :j-Z
changeable, both on an individual basis and from one of its generations to the next. And it will quickly T
become cheap. : X
9
The Future o

What happens when increasingly cheap machines can replace humans in any situation? What will | do
when a computer can write this article, and do research, better than me? These questions face some
occupations now. They will affect everybody in a few decades.
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By design, machines are our obedient and able slaves. But intelligent machines, however benevolent,
threaten our existence because they are alternative inhabitants of our ecological niche. Machines merely
as clever as human beings will have enormous advantages in competitive situations. Their production
and upkeep costs less, so more of them can be put to work with given resources. They can be optimized
for their jobs, and programmed to work tirelessly.

Intelligent robots will have even greater advantages away from our usual haunts. Very little of the known
universe is suitable for unaided humans. Only by massive machinery can we survive in outer space, on
the surfaces of the planets or on the sea floor. Smaller, intelligent but unpeopled, devices will be abie to
do what needs to be done there more cheaply. The Apollo project put people on the moon for forty billion
dollars. Viking landed machines on Mars for one billion. If the Viking landers had been as capable as
humans, their multi-year stay would have told us much more about Mars than we found out about the
moon from Apolio.

As if this weren't bad enough, the very pace of technology presents an even more serious challenge. We
evolved with a leisurely 100 million years between significant changes. The machines are making similar
strides in decades. The rate will quicken further as multitudes of cheap machines are put to work as
programmers and engineers, with the task of optimizing the software and hardware which makes them
what they are. The successive generations of machines produced this way will be increasingly smarter
and cheaper. There is no reason to believe that human equivalence represents any sort of upper bound.
When pocket calculators can out-think humans, what will a big computer be like? We will simply be
outclassed.

Then why rush headlong into the intelligent machine era? Wouldn't any sane human try to delay things as
long as possible? The answer is cbvious, if unpalatable on the surface. Societies and economies are as
surely subject to evolutionary pressures as biological organisms. Failing social systems wither and die, to
be replaced by more successful competitors. Those that can sustain the most rapid expansion dominate
sooner or later.

We compete with each other for the resources of the accessible universe. If automation is more efficient
than hand labor, organizations and societies which embrace it will be wealthier and better able to survive
in difficult times, and expand in favorable ones. If the U.S. were to unilaterally halt technological
development, an occasionally fashionable idea, it would soon succumb either to the military might of the
Soviets, or the economic success of its trading partners. Either way the social ideals that led to the
decision would become unimportant on a worid scale.

If, by some evil and unfikely miracle, the whole human race decided to eschew progress, the long term
result would be almost certain extinction. The universe is one random event after another. Sooner or later
an unstoppable virus deadly to humans will evolve, or a major asteroid will collide with the earth, or the
sun will go nova, or we will be invaded from the stars, or a black hole will swallow the galaxy.

[+77




The bigger, more diverse and competent a culture is, the better it can detect and deal with extemal
dangers. The bigger events happen less frequently. By growing sufficiently rapidly it has a finite chance of
surviving forever. Even the eventual collapse or heat death of the universe might be evaded or survived if
an entity can restructure itself properly.

The human race will expand into the solar system soon, and human occupied space colonies will be part
of it. But the economics of automation will become very persuasive in space even before machines
achieve human competence.

| visualize immensely lucrative self-reproducing robot factories in the asteroids. Solar powered machines
would prospect and deliver raw materials to huge, unenclosed, automatic processing plants. Metals,
semiconductors and plastics produced there would be converted by robots into components which would
be assembled into other robots and structural parts for more plants. Machines would be recycled as they
broke. If the reproduction rate is higher than the wear out rate, the system will grow exponentially. A small
fraction of the output of materials, components, and whole robots could make someone very, very rich.

The first space industries will be more conventional. Raw materials purchased from Earth or from human
space settlements will be processed by human supervised machines and sold at a profit. The high cost of
maintaining humans in space insures that that there will aways be more machinery per person there than
on Earth. As machines become more capable, the economics will favor an ever higher machine/people
ratio. Humans will not necessarily become fewer, but the machines will multiply faster.

When humans become unnecessary in space industry, the machines’ physical growth rate will climb.
When machines reach and surpass humans in intelligence, the intellectual growth rate will rise similarly.
The scientific and technical discoveries of super-intelligent mechanisms will be applied to making
themselves smarter still. The machines, looking quite unlike the machines we know, will explode into the
universe, leaving us behind in a figurative cloud of dust. Our intellectual, but not genetic, progeny will
inherit the universe. Barring prior claims.

This may not be as bad as it sounds, since the machine civilization will certainly take along everything we
consider important, including the information in our minds and genes. Real live human beings, and a
whole human community, could be reconstituted if an appropriate circumstance ever arose. Since we are
biologically committed to personal death, immontal only through our children and our culture, shouldn’t we
rejoice to see that culture become as robust as possible?

An Alternative

Some of us have very egocentric world views. We anticipate the discovery, within our litetimes, of
methods to extend human lifespans, and look forward to a few eons of exploring the universe. We don't
take kindly to being upstaged by our creations.

...............
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The machines’ major advantage is their progress rate. Our evolution is largely cultural, but is tightly
constrained by our Darwinianly evolving biological substrate. Machinery evolves 100% culturally, culture
itself being a rapidly evolving process that feeds on and accelerates itself. How can we, personally,
become full, unhandicapped, players in this new game?

Genetic engineering is an option. Successive generations of human beings could be designed by
mathematics, computer simulations, and experimentation, like airplanes and computers are now. But this

is just building robots out of protein. Away from Earth, protein is not an ideal material. It's stable only in a g $ o
narrow temperature and pressure range, is sensitive to high energy disturbances, and rules out many AT
construction techniques and components. Anyway, second rate superhuman beings are just as ?
threatening as first rate ones, of whatever they're made. - 1
LR
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What's really needed is a process that gives an individual all the advantages of the machines, at small ]

personal cost. Transplantation of human brains into manufactured bodies has some merit, because the
body can be matched to the environment. It does nothing about the limited and fixed intelligence of the
brain, which the artificial intellects will surpass.

A el s

Transmigration

You are in an operating room. A robot brain surgeon is in attendance. By your side is a potentially human
equivalent computer, dormant for lack of a program to run. Your skull, but not your brain, is anesthetized.
You are fully conscious. The surgeon opens your brain case and peers inside. Its attention is directed at a
small clump of about 100 neurons somewhere near the surface. it determines the three dimensional
structure and chemical makeup of that clump non-destructively with high resolution 3D NMR holography,
phased array radio encephalography, and ultrasonic radar. It writes a program that models the behavior
of the clump, and starts it running on a small portion of the computer next to you. Fine connections are
run from the edges of the neuron assembly to the computer, providing the simulation with the same inputs
as the neurons. You and the surgeon check the accuracy of the simulation. After you are satisfied, tiny
relays are inserted between the edges of the clump and the rest of the brain. Initially these leave brain
unchanged, but on command they can connect the simulation in place of the clump. A button which
activates the relays when pressed is placed in your hand. You press it, release it and press it again.
There should be no difference. As soon as you are satisfied, the simulation connection is established
firmly, and the now unconnected clump of neurons is removed. The process is repeated over and over for
adjoining clumps, until the entire brain has been dealt with. Occasionally several clump simulations are
combined into a single equivalent but more efficient program. Though you have not lost consciousness, or
even your train of thought, your mind (some would say soul) has been removed from the brain and
transferred to a machine.

In a final step your old body is disconnected. The computer is installed in a shiny new one, in the style,
color and material of your choice. You are no longer a cyborg halfbreed, your metamorphosis is complete.




For the squeamish there are other ways to work the transfer. The high resolution brain scan could be
done in one fell swoop, without surgery, and a new you made, "While-U-Wait". Some will object that the
instant process makes only a copy, the real you is still trapped in the old body (please dispose of
properly). This is an understandable misconception growing from the intimate assocation of a person’s
identity with a particular, unique, irreplaceable piece of meat. Once the possibility of mind transfer is
accepted, however, a more mature notion of life and identity becomes possible. You are not dead until
the last copy is erased; a faithful copy is exactly as good as the original.

If even the last technique is too invasive for you, imagine a more psychological approach. A kind of
pocket computer (perhaps shaped and worn like glasses) is programmed with the universals of human
mentality, with your genetic makeup and with whatever details of your life are conveniently available. it
carries a program that makes it an excellent mimic. You cany this computer with you through the prime of
your life, and it diligently listens and watches, and perhaps monitors your brainwaves, and learns to
anticipate your every move and response. Soon it is able to fool your friends on the phone with its
convincing imitation of you. When you die it is installed in a mechanical body and smoothly and
seamlessly takes over your life and responsibilities.

What? Still not satistied? !t you happen to be a vertebrate there is another option that combines some of
the sales features of the methods above. The vertebrate brain is split into two hemispheres connected by
a very large bundle of nerve fibers called the corpus callosum. When brain surgery was new it was
discovered that severing this connection between the brain halves cured some forms of epilepsy. An
amazing aspect of the procedure was the apparent fack of side effects on the patient. The corpus
callosum is a bundle far thicker than the optic nerve or even the spinal cord. Cut the optic nerve and the
victim is utterly blind; sever the spinal cord and the body goes limp. Slice the huge cable between the
hemispheres and nobody notices a thing. Well, not quite. In subtie experiments it was noted that patients
who had this surgery were unable, when presented with the written word "brush”, for instance, to identify
the object in a coliection of others using their left hand. The hand wanders uncertainly from object to
object, seemingly unable to decide which is "brush™. When asked to do the same task with the right hand,
the choice is quick and unhesitating. Sometimes in the left handed version of the task the right hand,
apparently in exasperation, reaches over to guide the left to the proper location. Other such quirks
involving spatial reasoning and motor co-ordination were observed.

The explanation offered is that the callosum indeed is the main communications channel between the
brain hemispheres. It has fibers running to every parn of the cortex on each side. The brain halves,
however, are fully able to function separately, and call on this channel only when a task involving co-
ordination becomes necessary. We can postulate that each hemisphere has its own priorities, and that
the other can request, but not demand, information or action from it, and must be able to operate
effectively if the other chooses not to respond, even when the callosum is intact. The left hemisphere
handles language and controls the right side of the body. The right hemisphere controls the left half of the
body, and without the callosum the correct interpretation of the letters "b r u s h” could not be conveyed to
the controller of the left hand.

.......




But what an opportunity. Suppose we sever your callosum but then connect a cable to both severed ends
leading into an external computer. If the human brain is understood well enough this external computer
can be programmed to pass, but also monitor the traffic between the two. Like the personal mimic it can
teach itself to think like them. After a while it can insert its own messages into the stream, becoming an
integral part of your thought processes. In time, as your original brain fades away from natural causes, it
can smoothly take over the lost functions, and ultimately your mind finds itself in the computer. With
advances in high resolution scanning it may even be possible to have this effect without messy surgery -
you would just wear some kind of helmet or headband.

Whatever style you choose, when the process is complete advantages become apparent. Your computer
has a control labelled speed. it had been set to slow, to keep the simulations synchronized with the old
brain, but now you change it to fast. You can communicate, react and think a thousand times faster. But
wait, there’s more!

The program in your machine can be read out and altered, letting you conveniently examine, modify,
improve and extend yourself. The entire program may be copied into similar machines, giving two or more
thirking, feeling versions of you. You may choose to move your mind from one computer to another more
technically advanced, or more suited to a new environment. The program can also be copied to some
future equivalent of magnetic tape. If the machine you inhabit is fatally clobbered, the tape can be read
into an blank computer, resulting in another you, minus the experiences since the copy. With enough
copies, permanent death would be very unlikely.

As a computer program, your mind can travel over information channels. A laser can send it from one
computer to another across great distances and other barriers. lif you found life on a neutron star, and
wished to make a field trip, you might devise a way to build a neutron computer and robot body on the
surface, then transmit your mind to it. Nuclear reactions are a million times quicker than chemistry, so the
neutron you can probably think that much faster. It can act, acquire new experiences and memories, then
beam its mind back home. The original body could be kept dormant during the trip to be reactivated with
the new memories when the return message arrived. Atternatively, the original might remain active. There
would then be two separate versions of you, with different memories for the trip interval.

Two sets of memories can be merged, if mind programs are adequately understood. To prevent
confusion, memories of events would indicate in which body they happened. Merging should be possible
not only between two versions of the same individual but also between different persons. Selective
mergings, involving some of the other person’s memories, and not others would be a very superior form
of communication, in which recollections, skills, attitudes and personalities can be rapidly and effectively
shared.

Your new body will be able to carry more memories than your original biological one, but the accelerated
information explosion will insure the impossibility of lugging around all of civilization's knowledge. You will
have to pick and choose what your mind contains at any one time. There will often be knowledge and
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skills available from others superior to your own, and the incentive to substitute those talents for yours will i
be overwhelming. In the long run you will remember mostly other people’s experiences, while memories
you originated will be floating around the population at large. The very concept of you will become fuzzy,

replaced by larger, communal egos. Q_‘W}ﬁ
Sl
Mind transferral need not be limited to human beings. Earth has other species with brains as large, from "‘";:;:
dolphins, our cephalic equals, to elephants, whales, and gianmt squid, with brains up to twenty times as :"::.", X
big. Translation between their mental representation and ours is a technical problem comparable to
converting our minds into a computer program. Our culture could be fused with theirs, we could !’{."f_';{‘
incorporate each other's memories, and the species boundaries would fade. Non-intelligent creatures ,{Zf{‘;f:
could also be popped into the data banks. The simplest organisms might contribute littie more than the PN

oy

information in their DNA. In this way our future selves will benefit from all the lessons learned by terrestrial
biological and cultural evolution. This is a far more secure form of storage than the present one, where \
genes and ideas are lost when the conditions that gave rise to them change.

Our speculation ends in a super-civilization, the synthesis of all solar system life, constantly improving
and extending itself, spreading outwards from the sun, converting non-life into mind. There may be other
such bubbles expanding from elsewhere. What happens when we meet? Fusion of us with them is a
possibility, requiring only a translation scheme between the memory representations. This process,
possibly occuring now elsewhere, might convert the entire universe into an extended thinking entity, a
probable prelude to greater things.
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» Elfes, A. E, A Sonar-Based Mapping and Navigation System, Workshop on Robotics, Oak
Ridge National Lab, Oak Ridge, TN, August, 1985. (invited presentation), in the proceedings
of the 1986 IEEE International Conference on Robotics and Automation, San Francisco, April
7-10 1986. (to appear)

» Wallace, R. W., K. Matsuzaki, Y. Goto, J. Webb, J. Crisman, T. Kanade, Progress in Robot
Road Following, the proceedings of the 1986 IEEE International Conference on Robotics
and Automation, San Francisco, April 7-10 1986. (to appear)

* The CMU Mobile Robot Lab staff, Towards Autonomous Vehicles, CMU Robotics Institute
1984 Annual Research Review, The Robotics Institute, CMU, Pittsburgh, PA, September
1985, pp. 33-50.

* Moravec, H. P, The Second Week: Speculations on the future of artificial and human
intelligence, Harvard University Press, Cambridge, 1986. (in preparation)

o Muir, P. F. and C. P. Neuman, Pulse-Width Modulation Control of Brushless DC Mofors
for Robotic Applications, Presented at the 27th Midwest Symposium on Circuits and
Systems June 12, 1984, Morgantown, West Virginia. In IEEE Transactions on Industrial
Electronics, August 1985, pp. 222-229.

e Muir, P. F. and C. P. Newman, Kinematic Modelling of Wheeled Mobile Robots, 1985. (in
preparation)

e Thorpe, C., L. Matthies and H. Moravec, Experiments and Thoughts on Visual
Navigation, the proceedings of the 1985 IEEE Intemational Conference on Robotics and
Automation, St. Louis, March, 1985, pp. 830-835.

» Wallace, R. S., A Modified Hough Transform for Lines, proceedings of the 1985 IEEE
Conterence on Vision and Pattem Recognition, San Francisco, June, 1985, pp. 665-667.

o Wallace, R., A. Stentz, C. Thorpe, H. Moravec, W. Whittaker and T. Kanade, First Results
in Robot Road-Following, proceedings of the 1985 WCAI, Los Angeles, August, 1985 and
proceedings of the 1985 ASME conference on Computers in Engineering, Boston, August,
1985.

¢ Moravec, H. P. and L. H. Matthies, eds., Vision, Planning and Control for Mobile Robots,
Kluwer Academic Publishers, 1986. (in preparation)

e Moravec, H. P. and A. E. Elfes, High Resolution Maps from Wide Angle Sonar,
proceeding of the 1985 IEEE Intemational Conference on Robotics and Automation, St.
Louis, March, 1985, pp 116-121, and proceedings of the 1985 ASME conference on
Computers in Engineering, Boston, August, 1985,

» Moravec, H. P., Machines with Mobility, in Robots, Salamander Books, London, England
1985, pp. 66-79. American edition by Crescent Books.

e Moravec, H. P., The Rovers, in Robotics, Marvin Minsky, ed., Doubleday, 1985, pp.
123-145.

s Podnar, G. W., K. F. Hensley and M. K. Blackwell, Physical System of a Mobile Robot:
Piuto, CMU Robotics Institute technical report, 1985. (in preparation)




e Thompe, C. E., FIDO: Vision and Navigation for a Mobile Robot, PhD Thesis, Computer
Science Dept., Camegie-Melion University, Autumn 1984.

Ll » Wallace, R. S., Three Findpath Probiems, Proceeding of AAAI-84, Austin, Texas, August
. 6-10, 1984, pp 326-329.

» Lucas, B. D., Generalized Image Matching by the Method of Differences, Ph.D. Thesis,
Computer Science Dept., Camegie-Mellon University, Autumn 1984.

» Moravec, H. P., Locomotion, Vision and intelligence, First International Symposium of
Robotics Research, Bretton Woods, N.H., August 1983. (invited presentation) in Robotics
Research - The First International Symposium, Michae! Brady and Richard Paul, eds.,
MIT Press, 1984, pp. 215-224.

» Moravec, H. P., Three Degrees for a Mobile Robot, Proceedings of the ASME Conference
on Computers in Engineering, Las Vegas, Nevada, August, 1984.

» Matthies, L. H. and C. E. Thorpe, with Visual Robot Navigation, proceedings
of IEEE Oceans 84, Washington, D.C., August, 1984.

e Thorpe, C. E., Path Relaxation: Path Planning for a Mobdile Robot, CMU-RI-TR-84-5,
Robotics Institute, Camegie-Melion University, April, 1984. also in proceedings of IEEE
Oceans 84, Washington, D.C., August, 1984 and Proceedings of AAAI-84, Austin, Texas,
August 6-10, 1984, pp. 318-321.

e Podnar, G. W., K. Dowling and M. K. Blackwell, A Functional Vehicle for A.ionomous
Mobile Robot Research, CMU Robotics Institute technical report CMU-RI-TR-84-28, April
1984.

o Muir, P. F., Digital Servo Controller Design for Brushless D.C. Motors, Master's Thesis,
Carnegie-Mellon University, April, 1984. July 1984, CMU-Robotics Technical report.

« Thorpe, C. E., An Analysis of interest Operators for FIDO, CMU-RI-TR-83-13, Robotics
institute, Carnegie-Mellon University, December 14, 1983 also in Proceeding of IEEE
Workshop on Computer Vision, 1984,

e Moravec, H. P., Mobile Robols: Basic Research, Workshop on Autonomous Ground
Vehicles, Xerox International Center, Leesburg, VA, October 24-26, 1983. (invited
presentation)

s Elfes, A. and S. N. Talukdar, A Distributed Control System for the CMU Rover,
proceedings of the eighth 1JCAI-83, Karlsruhe, West Germany, August 8-12, 1983, pp.
830-833.

+ Thorpe, C. E. and S. A. Shafer, Correspondence in Line Drawings of Multiple Views of
Objects, Proceedings of IJCAI-83, Karlsruhe, West Germany, August 8-12, 1983, pp.

959-965.
T o Effes, A. and S. N. Talukdar, A Distributed Control System for a Mobile Robot,
proceedings of the first National Congress on industrial Automation, Sao Paulo, Brasil, July
4 11-15, 1983, pp 360-366 and CMU Design Research Center report DRC-18-65-83,

R December 1983.
Al « Moravec, H. P., The Stanford Cart and The CMU Rover, Proceedings of the IEEE, July
1983, pp. 872-884. (invited paper)

+ Thorpe, C. E,, The CMU Rover and the FIDO Vision and Navigation System, 1983
Symposium on Autonomous Underwater Robots, University of New Hampshire, Marine
Systems Engineering Lab, May, 1983.

¢ Carley, F. B. and H. P. Moravec, The Rocket/Skyhook Combination, L5 News, Voi. 8 #3,
March 1983, pp. 4-6.
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« Thorpe, C. E. and D. M. McKeown, Autonomous Vehicle Navigation: Smart Vehicle e

Simulator Version 1 Technical Report, Westinghouse Electric Corporation, December 1982. ’:';":":'-‘_1'.:

Lt

e Thorpe, C. E., Underwater Landmark identification, Proceedings of the Second boxisy

International Computer Engineering Conference American Society of Mechanical Engineers, Q -~ ‘_l

August 1982. Qj:,.:,-:-

\ e

e Moravec, H. P., The CMU Rover Proceedings of AAAI-82, the second national artificial R

intelligence conference, Pittsburgh, August 18-20, 1982, pp. 377-380. also Update, Volume TN

3, July 1982, Marine Systems Engineering Laboratory, University of New Hampshire. :'.:ﬁ;:‘; o

s Moravec, H. P., The Endless Frontier and The Thinking Machine, in The Endless i 4

Frontier, Vol. 2, Jerry Poumelle, ed., Grosset & Dunlap, Ace books, January 1982, pp. MR
374-397. o

elucas, B. D. and T. Kanade, An Hierative Image Registration Technique with an
Application to Stereo Vision, proceedings of the seventh International Joint Conference on
Artificial Intelligence, Vancouver, British Columbia, August 1981.

e Moravec, H. P., Rover Visual Obstacle Avoidance, proceedings of the seventh
International Joint Conference on Atrtificial Intelligence, Vancouver, British Columbia, August
1981, pp. 785-790.

s Moravec, H. P., 3D Graphics and the Wave Theory, presented at the 1981 Siggraph
conference, Dallas, Texas, August 1981; Computer Graphics, Vol. 15 #3, August 1981, pp.
289-296.

e Moravec, H. P., Robot Rover Visual Navigation, UMl Research Press, Ann Arbor,
Michigan, 1981. (book)

o Forward, R. L. and H. P. Moravec, High Wire Act, Omni, Omni publications international,
New York, July 1981, pp. 44-47. Also in- The OMNI! Book of Space, Zebra Books,
Kensington Publishing Corp., New York, N. Y., January, 1984, pp. 73-82.

» Moravec, H. P., Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover, Ph.D. thesis, Stanford University, Stanford, California, May 1980. Available as
Stanford AIM-340, CS-80-813 and CMU-RI-TR-3.
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