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Towards Autonomous Vehicles

The Mobile Robot Laboratory Staff

Introduction Overview
The CMU Mobile Robot Lab was started in 1981 to pursue Our main subprojects pertain to vehicles, manipulators, servo
research in perception, planning and control for autonomously control, stereo, sonar, and distributed processing. We will dis-
roving robots. The short and long range practical applications cuss each of these briefly before launching into the details.
of robot mobility aside, we think our work directly addresses the Our long term plans call for an accurate, very maneuverable.
problem of building a generally intelligent machine. Among self-powered vehicle carrying a small manipulator. Pluto
living things, only mobile organisms exhibit the sensory and (generically the CMU Rover) was designed to meet these
behavioral characteristics that are the basis of our own intelli- requirements. Among its several innovations mas an ohidiree-
gence. A roving entity encounters a wide variety of circum- rqieet.Aogissvrlinvtoswsa miiestances, Arind mus t ec ers a with gareatieneraoit -to tional drive system for accurate control of robot motion in three '-stances, and must perceive and respond with great generality to independent degrees of freedom (forward/backward, left/right, .,
function effectively. We feel our research makes discoveries that and rotation). Our design used three complex wheel assemblies, ., -
parallel the evolution of intelligence in mobile animals. The each with two motors to independently drive and steer its own
selection function in both cases is the same--the effective func- wh toor s to entl dive a ser its own

wheel. Coordinated control of the six motors was a more diffi-tioning of a physical mobile entity in a varied and uncertain cult problem than we had anticipated, and is now being attacked
world. We think this experimentally guided bottom up approach as a research problem in its own right.
can find some solutions, such as the secret of effective common
sense reasoning, more effectively than the seemingly direct For the sake of the vision and navigation research we constructed
traditional top down approach to artificial intelligence, a much simpler second vehicle, Neptune. Power and control

information come via a tether. Two synchronous AC motors
Our first funding came from an Office of Naval Research con- steer and drive the robot, switched by a single onboard processor. - -

tract to develop land-based technology for eventual application Equipped with two vidicon cameras and a ring of sonar range
to autonomous underwater robots. The subprojects were design finders, Neptune is robust and has been used in visual and
and construction of highly maneuverable vehicles, develop- sonar mapping, navigation and obstacle avoidance experiments.
ment of stereo and sonar vision algorithms, and algorithms There are several other hardware efforts in progress. We are
for path planning and higher level control. New developments building a third vehicle, Uranus, with a new, more easily con-
were to be demonstrated in working systems that performed trolled omnidirectional drive system to carry on the longer
various tasks. range work stalled in Pluto. We are working on a special-purpose

manipulator for grasping doorknobs and have nearly com-
We chose two tasks, one simple and one complex. In the first, pleted a video digitizer/display that shares memory with a VAX.
the vehicle was to travel to a goal location specified relative to its In addition, we are exploring processor and digitizer configura-
starting point, avoiding obstacles en route. This would encour- tions for use on board the vehicles.
age efforts in stereo, sonar, path planning, and vision-based Pluto has been the center of our work on servo control. To
vehicle motion estimation. The second task-finding, opening, control the motion of Pluto, we successfully designed and
and passing through doorways-was to serve as a longer term implemented an independent motor controller for each of its
focus for work on maneuverable vehicles, object recognition, six motors. However, when we attempted to run the controllers
and distributed control. simultaneously to obtain coordinated motion, the robot experi- -

enced severe oscillations because of dynamic coupling torques
Our first generation of obstacle avoidance systems now work, in the overconstrained wheelbase. These coupling effects could
and we have taken first steps toward door-opening. We've built a not be practically compensated using independent controllers
simple vehicle to support obstacle avoidance work and a more executing on independent processors. The undesirable per-
complex vehicle to serve our longer term plans. Two obstacle formance inspired us to work on the more general problem of
avoidance systems have been tested, one relying solely on stereo the modeling and control of wheeled mobile robots. We are
and the other on sonar. An initial design for a distributed beginning the investigation by developing precise kinematic
control system has been tested in simulation. We are preparing and dynamic models to be used as a basis for an integrated
to start a second phase of our work which will extend the stereo control strategy for Pluto's entire wheelbase. We plan to apply -'-"
capability towards shape extraction and merge stereo and sonar our modeling methodology to simulate wheeled mobile robots .'-
into a single system. on a computer. This will enable us to test control strategies on

I' I
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the computer simulated robot without the need for time- The short term goal of this project is to build a system to follow
consuming hardware construction. roads; the long term goals include obstacle avoidance, off-road %
On the software side, we have concentrated on obstacle avoid- travel, object recognition, and long range navigation. The vehi- .$ - -
ance and distributed processing. We have two obstacle avoid- dce for this project is the Terregator. a large mobile robot built by

ance systems, one using stereo and the other using sonar. Both Whittaker s group.
use a new path planner first developed for the stereo system. We Vehicles " iN'-"
have also designed and simulated the operation of a communica-
tion mechanism for distributed processors. Our research plans called for a flexible vehicle to support work

on vision, vision-guided manipulation. and the planning issues P....
The stereo work improves on the system built for the Stanford that come with mobility. Part of the design philosophy as the
Cart [7], which digitized nine images at each robot location and perception that a mobile wheelbase could be considered part of
used correlation to track isolated feature points as the robot an attached arm. The weight and power of the arm can be
moved. We have reduced the number of images digitized per reduced by using the mobility of the vehicle as an enormous
location, added constraints that improve the feature tracking reach substitute for the arm's shoulder joint. Such a strategy
ability, and are now modifying the motion estimation algorithm works best if the vehicle is given a full three degrees of freedom
In the process, we have reduced the runtime of the system by an (forward/backward, left/right and compass heading) in the plane
order of magnitude. The robot can now visually navigate across of the floor. Conventional steering arrangements as in cars give .- -
a large room in under an hour on a VAX-I 1/780. only two degrees at any instant. This approach to manipulation

The sonar system uses data from a ring of twenty-four wide is most effective when the wheels can be servoed very accurately '"" -. -

angle Polaroid range finders to map the surroundings of an and rapidly.
autonomous mobile robot. A sonar range reading provides Other properties we desired in a robot were that it run
information concerning space occupancy in a cone subtending untethered, that it use multiple sensory systems, and that it
30 degrees in front of the sensor. The reading is modelled as carry some onboard processing power to reduce the communica- .
probability profiles projected onto a rasterized map of occupied tions bandwidth and perform some local decision-making.....
and empty areas. Range measurements from multiple points of
view (taken from multiple sensors on the robot, and from the Pluto, our first vehicle, was built to the above specifications. A
same sensors after it moves) are systematically integrated in the second, simpler vehicle called Neptune was subsequently built to
map. Overlapping empty volumes reinforce each other, and support obstacle avoidance work. A third vehicle, Uranus, is cur- .-.
empty volumes serve to condense the profiles of occupied rently being designed to test a new concept in omnidirectionality.
volumes. The map resolution improves as more readings are
added. The final map shows regions probably occupied, proba- Pluto

bly unoccupied, and unknown areas, with weights in each raster Physically, Pluto is cylindrical, about I meter tall, 55 centimeters
cell showing the confidence of these inferences. The method in diameter, and weighs about 200 pounds (Figure la). Its three
deals effectively with clutter, and can be used for motion plan- individually steerable wheel assemblies give it a full three degrees
ning and for extended landmark recognition. of mobility in the plane (Figure I b). The control algorithm for

this arrangement steers the wheels so that lines through their
The sonar and stereo systems both plan robot paths with a new axles always meet at a common point. Properly orchestrated.
algorithm called path relaxation. It was first developed for the this design permits unconstrained motion in any (2D) direction
stereo vision navigator, but coincidentally has a structure per- and simultaneous independent control of the robot's rotation
fecdy suited to our sonar mapper. Space is represented as a about its own vertical axis.
raster of weights as in the sonar maps. Costs are assigned to To permit low-friction steering while the robot is stationary
paths as a function of their length and the weights through each assembly has two parallel wheels connected by a differen-
which they pass. A combinatorial search on the raster grid tial gear (Figure lc). The drive shaft of the differential goes
coarsely finds a least cost path, then a relaxation procedure tigea (u i. the d of the dentia oespertrbsthecoodintes f te vrties f ths pth o soot i~ straight up into the body of the robot, and a concentric hollow
perturbs the coordinates of the vertices of this path to smooth it shaft surrounding the drive shaft connects to the housing of the
and reduce its cost. differential. Turning the inner shaft causes the wheels to roll
Our work on distributed processing began with a design for a forward or backward; turning the outer one steers the assembly,
distributed planning and control system for the several proces- causing the two wheels to roll in a circle.
sors of Pluto. A system has been designed around a network of Each shaft is driven by a brushless DC motor with samarium
message-passing kernels, a central blackboard module to repre- coaft pe a a rotos D tr windi. "

sent state, and a notion of master/slave processes wherein mas- rmanent-magnet rotors and three-phase windings. The

ters monitor the blackboard while slaves handle external events. motor sequencing signals come directly from onboard micro-

A small version of this system has been tested in simulation. We processors, one for each motor, which read shaft encoders to
plan to give the design a more rigorous test soon with a distri- servo the motors to the desired motion. A seventh processor, the
butedconductor, coordinates the action of the six motor sequencingsystem.processors. Another processor reads the shaft encoder outputs
We have begun a new effort under the DARPA Autonomous and monitors the motor torques to provide an onboard dead- ". -'."

Land Vehicles project in cooperation with other groups in the reckoning estimate of the vehicle's position. Power for this ensem-
Robotics Institute led by William Whittaker and Takeo Kanade. ble is provided by a set of sealed lead-acid batteries.
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Figure Ia. Pluto of Robot

Pluto was to be equipped with a collection of sensors including
cameras, sonar, and bump detectors and was to be used in a
series of advanced experiments in vision, navigation and
planning. The bulk of the computation would be performed on
a remote VAX- 11/780, with communication taking place over a
microwave link for video and a radio link for other data. Extra Wheel
processors were included in the design to service the sensors Assemblies
and manage the communication link.
This plan has been waylaid by a difficult and unexpected prob-
lem in controlling the six motors of the omnidirectional
wheelbase. We are able to drive the robot successfully when one
wheel at a time is energized, but large oscillations occur when all
are running simultaneously. The problem is caused by interac- Figure lb. Pluto subassembly: card cage, wheel assemblies, etc.
tions between the servo loops of the individual actuators through
the redundant degrees of freedom in the wheels. A similar •
situation arises in a milder form in other locomotion systems
with redundant degrees of freedom, especially legged vehicles. Neptune
We are now investigating control algorithms and processor archi- We decided to build quickly, but carefully, a simple and robust
tectures for this problem, but in the meantime Pluto is unavailable platform for obstacle avoidance experiments. Neptune (Figure
for experimental work with our vision systems. Neptune was 2) was designed to eliminate many potential problems. It is a
built to fill the gap. tethered. remotely powered tricycle with a lone onboard

3 -0
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Figure 2. Neptune with sonar and stereo

I _J finders. The range-finders have a useable range of about 35 feet
CL and a 30 degree beam width, so that the beams of adjacent

sensors overlap by about 50 percent. The vehicle moves at a
constant velocity, with angles and distances controlled by timing
the motors with an onboard MC68000.

Neptune is an unqualified success. It has been our workhors
for obstacle avoidance and indoor road following experiments

=r ~ and will be used in the future to test extended vision algorithm
and to merge stereo and sonar into one system.

Uranus
Omnnidirectionality appears to be an idea whose time has corn.
While Pluto was in gestation, several new methods for achieving

Figue I. Dagra ofa weel sseblyillutraingdiffrenial omnidirectionality were published and patented. One, developedFigue I. Dagra ofa weel sseblyillutraingdiffrenial at Stanford, is based on novel wheels that have passive rollergear, concentric drive shafts instead of tires, oriented at right angles to the wheel (Figure 3a). 0
The rollers permit the wheel to be pushed passively in the

processor. To simplify servoing and remove the need for shaft broadside direction. Three such wheels, each with its own motor.
encoders, synchronous AC motors drive and steer the front mounted around a round wheelbase allow smooth motion i
wheel while the rear wheels trail. The vehicle is about 2 feet tall, three degrees of freedom. Regardless of the direction of travel.
4 feet long, and 2 feet wide. It weighs about 250 pounds. It is one wheel or another is always travelling nearly broadside, and
currently configured with two black and white vidicon cameras this is a weakness of the system. It requires an expensive and
on fixed mounts and a ring of twenty-four Polaroid sonar range- potentially troublesome bearing system for the rollers, and suf-

*b. . - - '
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Figure 3a. Sketch of Stanford wheel Figure Sb. Swedish designed wheels

fers from a low ground clearance limited by the roller diameter,
nd inability to travel on soft ground. Despite these limitations,

it would have been a far m,)re fortunate design choice than the
individually steerable wheels of Pluto.

Another new design for omnidirectionality was invented recently -__._.-_._-_
in Sweden. It too uses wheels surrounded by passive rollers, but - . __. ___ i _ -

the rollers are angled at 45 degrees to the wheel plane (Figure
3b). One of these wheels can travel broadside on its rollers, but
the whole wheel must simultaneously turn, resulting in a screw-
like motion. Like screws, these wheels are not mirror symmetric
and come in right handed and left handed varieties. An omnidi-
rectional vehicle is built with four of these wheels, mounted like
wagon wheels, but with careful attention to handedness. The I"-"-"-
right front wheel is right handed and the left front is left -.-...- ._-.-
handed, but the right rear is left handed and the left rear is right
handed (Figure 3c). Each wheel is turned by its own motor. To
move the vehicle forward, all four wheels turn in the same .
direction, as in a conventional wagon. However, if the wheels on
opposite sides of the vehicle are driven in opposite directions,
the vehicle moves sideways, like a crab. By running the front and Figure 3c. Sketch illustrating handedness of wheels . .

back wheels sideways in opposite directions, the vehicle can be
made to turn in place. Because the rollers are not required to
turn when the vehicle moves in the forward direction, the Swedish A Manipulator for Door-opening
design has good buff p and soft ground handling ability in that A M u f D - n
direction. In our experience-scarred judgement, the Swedish We have decided that visually locating. opening and passing
design is the most practical omnidirectional system. It is being through a door is an excellent task to guide development of " "
used outside of an experimental context, in commercially availa- advanced vision, planning and control work. To this end, we've
ble wheelchairs and factory transport vehicles, designed and are building a special arm to be mounted on
Uranus, the Mobile Robot Lab's third construction, is being Uranus (Figure 4a).
designed around this proven drive system to carry on the long The arm design is simultaneously strong, light and low-power
range work stalled in Pluto. We obtained the wheels from because it exploits the mobility of the robot. The arm has four
Mecanum, Inc. of Sweden, which holds the license. Pluto's many joints: a vertical translational joint, rotational shoulder and
lessons guide us in this project. Injust about every way Uranus is elbow joints with vertical axes, and a rotating wrist. The redun-
simpler than Pluto. There are four motors, not six, no concen- dancies between the shoulder and elbow joints and the rotation
tric shafts and only a single, benign, redundant interaction of the vehicle permit the robot to hold the door in a stable, open -"
mode among the wheels. position while the body of the robot passes through the doorway.

- -
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Uranus, require sophisticated coordinated controllers for effec- 4

tive motion control. Over-constrained multiple-wheeled robots,
', in particular, are a major challenge. We initially approached the

problem by neglecting the motor interactions and designing
. independent control algorithms for each of the motors on Pluto.

We found that only minimal mobility control was possible in this ".j
framework [9]. The severe motor interactions we observed pro-
vided a motivation to develop better control algorithms.

Pulse-Width Modulation
Control of Brushles DC Motors
We implemented pulse-width modulation for controlling the

".. . brushless DC motors which actuate the wheels of Pluto [10].
The brushless DC motors utilize strong samarium-cobalt perma-
nent magnets and are desirable for use on a mobile robot because
of their high torque-to-weight ratio, ease of computer control,

Figure to be ounted on Urnus diretlyefficiency, fo anda simple drive n e circuitry. emcnutreh control poer motor
directly from a microprocessor using semiconductor power

Figure 4a. Arm to be mounted on Uranus transistors. These devices operate very efficiently in the switching

mode needed for pulse-width modulation.

Our theoretical and experimental results show that the motors .

can be modeled by linear discrete-time transfer functions, with
the pulse-width playing the role of the control signal, if the
pulse period is chosen much smaller than the time-constants of
the motors. These models allow us to apply classical control
engineering to the design of the motor control system. We have
successfully designed controller structures and calculated feed-

back gains which provide each wheel with the ability to servo to adesired position and velocity within a specified time interval.

Wheeled Mobile RobotSimulations for Controller Design Studies

Our experience with Pluto prompted a systematic study of the
problem of controlling wheeled mobile robots, both for Pluto's
sake and for future designs. Our present approach to the prob-
lem is to develop precise kinematic and dynamic models of the
robots. These models will form the basis of computer simula-

Figure 4b. Gripper and collar tions of the robots on which proposed control strategies can be . .".
tested. Using computer simulations, we will have the ability to . -

evaluate the performance of a robot/controller combination..The arm '-sign uses the robot's strength to handle doors. The before spending much effort and expense in hardware
manipuiator's joints are only lightly actuated, since the motors construction. Adaptive control algorithms show promise for . - -

in the joints are used only for positioning the arm under no providing better robot control because they are able to adapt to
load. Once the gripper secures a doorknob, the elbow joint coupling torques from other motors and to a changing floor
becomes a totally passive pivot and the base joint is alternately surface or robot load. The controllers which demonstrate the
locked into position and released. Neither joint's motor is actu- best performance in simulations will be implemented on actual
ated again until the arm releases the door. robots to verify both the accuracy of the simulations and the .•

The gripper itself is constructed from a janitorial lightbulb performance of the controllers.
extractor (Figure 4b). This is a spring-loaded, cylindrical device
with a sliding collar. With the collar retracted, the gripper is Stereo Vision
pushed over the lightbulb (or doorknob); when the collar is
tightened the gripper holds fast. Our manipulator uses this The obstacle avoidance task prompted our first major work on 0 I
gripper with a motorized collar. robot perception. At the broadest level, the perception problem

has two main components: understanding how to use individual
Mobility Control for Wheeled Mobile Robots sensors and understanding how to combine multiple sensors in

a single system. We have addressed the first problem b% develop-
It has become clear to us that the complex mechanical designs of ing rudimentary navigation systems that use vision and sonar
highly maneuverable wheeled mobile robots, such as Pluto and separately. These systems are described in this and the following - *.

°'.*.•r....
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section. Our work on integrating these two systems is only just one-meter steps, taking about 15 minutes per step on a DEC
beginning and will not be described in this paper. KL- 10.

Our stereo system continues the work done by Moravec with the Numer of Images
Stanford Cart [7]. The basic task requires the robot to navigate
from its initial position to a specified goal location, avoiding any The great expense of using nine images prompted the use of
obstacles in between. Stereo is used to detect obstacles and only two-camera stereo in our current system. Since the redun-

* estimate the motion of the vehicle (actually avoiding the obsta- dancy provided by the nine images was a major strength of the
cles is discussed later under path planning). The Cart approach original system, this decision initially lowered the reliability of
is to detect local, high variance features in one image, to use the matching algorithm; to compensate, the stereo matcher now .
stereo correspondence to determine the three-imensional posi- makes fuller use of constraints which reduce the search area in.
tions of the features, and to track the features over time to the second image. The constraints are as follows (Figure 5b).
determine the motion of the vehicle. Our work with these algo- Between a stereo pair, the known camera geometry restricts
rithms has focussed on the following issues: possible matches to lie on a single line in the second image (the
- the number of stereo images used at each point in time epipolar line"). This line is the intersection of the image plane

* the interest operator used to pick features .

e the algorithm used for tracking 00

After reviewing the algorithms used by the Stanford Cart, we
will discuss each of these issues in turn.

/ I
Vision in the Stanford Cart
The Stanford Cart used nine-wav stereo at each robot position /
to detect and track obstacles. These images were obtained by 0
stopping the robot and translating a single camera in two inch
steps along a slider mechanism. An interest operator was applied /
to the center image to pick features, then a coarse to fine / I
correlation process was applied to locate the features in the / I

other eight images. Histogram-based triangulation from the set
of match locations provided the initial three-dimensional obsta- /
cle positions. Obstacles were tracked as the robot moved by /
applying the correlator to the new center image to reacquire the /

old features. Then the features were matched in the other eight N,( "
new images to obtain distances to the obstacles from the new .. I
robot location. Finally, least squares was used to find a best fit
transformation mapping the old feature locations into the new,
thereby obtaining the vehicle motion. Figure 5a illustrates the 6 polar
process of picking, matching, and tracking features through two imag., •Ii
steps of vehicle motion. The whole system moved the Cart in &me

/ window Il..+'

* L~~.~f..-T cond nine
in s IC C 2.. .

Match Reaquire

C1 & C2 center of camera projection

0 object

. .. first nine N near limit", 1.6m from cames

Do 0 far Unit" , infinite distance

Match - -"Pick Projection. N & M on Image 2 define
Features march window

Figure 5a. Stanford Cart stereo matching Figure 5b. Diagram of the epipolar and disparity constraints
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of the second camera with the plane containing the obstacle and importantly, we found that the improvement bought by the use

the two centers of projection. Near and far limits on the distance of search constraint was much more pronounced than that
to an obstacle of 1.5 meters to infinity impose "disparity limits" obtained by using different operators. We conclude that our
that further restrict the search to a segment of the epipolar line, research emphasis should no longer be placed on operators
None of these constraints per se are available when features are (since the Moravec operator is cheaper than, and at least asreacquired in a new set of images. However, the known position effective as other candidates), but should be placed on getting " -

of the obstacles together with an estimate of the vehicle motion the most out of the available constraints and image redundancy.still permit searches to be restricted to subwindows of the new S.
images. Dacking and Motion Estimation
We have found that when all of the constraints are used, the The Stanford Cart tracked features and estimated the motion of
qualitative system performance, measured in terms of the per- the vehicle as separate operations. Tracking %as performed by
centage of features matched correctly and the accuracy of motion searching for features one at a time in new images. Bad matches
estimates, is as good with the two-camera system as it was with were then pruned with a heuristic that required the three-
the old system of nine images. The new system runs in about 35 dimensional distances between pairs of features to remain the
CPU seconds per step (three to four minutes of elapsed time) on same over time. That is, objects that appeared to drift relative to
a VAX- 11/780. other objects were deemed incorrect and were ignored. Motion
Although this experience demonstrates the effectiveness of two- estimation was then done by finding the transformation that
camera stereo, the use of redundant images remains an interest- minimized the least squared error between new and old feature
ing question. Two particular areas to be explored are the use of positions.
three cameras, which offers the ability to detect mismatches, This approach is unsatisfactory for two reasons. First, it makes
and the use of the redundancy provided by motion. We expect poor use of the assumption that objects in the environment do
to examine these areas in the future, both theoretically and not move. This is a valuable assumption and it underlies a large

empirically, part of the Cart software; for example, it shows up in thepruning heuristic just mentioned and in the fitting of a single ." ,
Interest Operators transformation to all feature points. The problem is that the
The interest operator is designed to pick small patches or fea- constraint this assumption ' ffers is employed only after feature
tures in one image that can be reliably matched in another. In match positions have been decided, which is too late. The
general, this requires that the patch exhibit high intensity varia- correlator matches one feature at a time, without considering
tions in more than one direction to improve its Iocalizability in the locations of features matched previously; however, each new
another image. For example, edges show high variation in the match decision implies constraint on possible locations for subse-
direction of their gradient, but little variation in the direction of quent matches. Thus, the Cart algorithms allowed inconsistent
their length, making them poor to localize in that direction. matches to be made initially, then tried to catch them later. It
Ostensibly, a better interest operator will lead to a higher likeli- would be preferable to ensure from the outset that matches ere .
hood of correct matches. Many operators have been reported in mutually consistent.
the literature [ 11,41, but no convincing evidence shows that any The second objection to the Cart approach is that it throws away
one operator is superior. Therefore, we evaluated the relative image intensity information too early. Despite the best efforts of I..
performance of a number of operators in the context of our the interest operator, correlation peaks for individual features
system [16]. The operators used were those of Moravec [7], may be fairly broad, so that it makes little difference localk
Kitchen and Rosenfeld [4], and several new operators we which pixel in a small region is chosen as the match. The actual
developed within our lab. As a control, a set of features were also location of the peak may be strongly influenced by noise in such - . -.
picked by hand. The criterion used in assessing the perform- cases. However, the correlator will pick the best peak and pass it
ance of an operator was the number of features, from an initial on; a poor choice at this stage has the potential to skew both the
set of forty picked by the operator, that could be correctly depth estimate for the feature and the vehicle motion solution. .!

matched in another image. Here correct means that the match It would be better to somehow capture the uncertainty in the
location was within a pixel or two of the best match subjectively match location and reflect that in other calculations.
as judged by the experimenter. Results were averaged over a We have addressed the first objection by using dead-reckoned
number of trials with different images. Experiments were also estimates of vehicle motion to constrain the searches made by
run with and without the constraint offered by epipolar lines the matcher. This requires some tolerance to allow for errors in
and disparity limits. the dead-reckoned estimate, however, and in Neptune the toler-
We found that rates of matching success showed very little ance must be fairly large. A better approach that addresses both
variation between the better operators, which included the objections has been developed by Lucas [5]. This is an iterative
Moravec and Kitchen and Rosenfeld operators, and two of our registration method that directly incorporates the assumption
new ones. The rates varied from about 60% correct in difficult of stationary objects. An error measure for a trial transforma-
images with no matching constraint, to over 90% when all con- tion is defined to be the squared difference of image intensity
straints were used in less difficult images. On the whole, the between a feature in the previous image and its projected loca-
Moravec operator performed slightly better than other opera- tion in the new image, summed over all features. Starting from a
tors and only a little worse than manual feature selection. More dead-reckoned motion estimate, the known three-dimensional
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feature positions are projected into the new image, the error -( )

measure is computed, and Newton iteration is employed to I **(t)

modify the transformation to minimize the error measure. , ,
Greater tolerance for errors in the initial estimate is obtained by . ,
applying the algorithm first to blurred versions of the image, II:
then to successively sharper images. Lucas has shown that the •
algorithm works well, with synthetic and real images, for a single , ,.

*step of motion when the feature distances are given a priori. We sl
are currently adapting the algorithm for use in our system. -
We should note that another answer to our second objection is
given by the work of Gennery (3], who used a correlator that
estimated a two by two covariance matrix for the match location
of a feature; that is, the matrix captured that broadness of the .
correlation peak. These matrices were propagated into covari-

*• ance estimates for three-dimensional feature positions and for
camera motion. We have not determined what role this idea will
play in our future systems. p a,, ). po
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Sonar Mapping Figure 6a. Sonar beam probability profiles

Primarily because of computational expense, practical real-world
stereo vision navigation systems [7, 14] build very sparse depth
maps of their surroundings. Even with this economy, our fastest
system (6] takes 30 to 60 seconds per one meter step on a I mips by our stereo vision programs and computationally about an
(millions of instructions per second) machine. Direct sonar range order of magnitude faster to produce. We are using them with
measurements promised to provide basic navigation and denser the path relaxation method [15] to plan local paths for our
maps with considerably less computation. The readily available robot.
Polaroid ultrasonic range transducer [13] was selected, and a Tees
ring of 24 of these sensors was mounted on Neptune. We find

• sonar sensors interesting also because we would like to investi- The sonar devices being used are Polaroid laboratory grade
gate how qualitatively different sensors, such as a sonar array ultrasonic transducers [ 13]. These sonar elements have a useful
and a pair of cameras, could cooperate in building up a more measuring range of one to thirty-five feet. The main lobe of the
complex and rich description of the robot's environment, sensitivity function corresponds to a beam angle of 30* at -38 " --

dB. Experiemental results showed that the range accuracy of
Approach the sensors is on the order of I, . We are using the control - ,- ..

Multiple wide-angle sonar range measurements are combined circuitry provided with the unit, which is optimized for giving : ..-
* to map the surroundings of an autonomous mobile robot. A the range of the nearest sound reflector in its field of view and

sonar range reading provides information concerning empty works for our purpose.
and occupied volumes in a cone subtending 30 degrees in front The Array
of the sensor. The reading is modelled as probability profiles
(Figure 6a) projected onto a rasterized map, where occupied The sonar array, built at Denning Mobile Robotics and mounted - .'-
and empty areas are represented. Range measurements from on the Neptune, is composed of:
multiple points of view (taken from multiple sensors on the * a ring of 24 Polaroid sonar elements spaced 150 apart and
robot, and from the same sensors after robot moves) are system- mounted at a height of 31 inches above the ground (see
atically integrated in the map. As more readings are added, the Figure 2);
area deduced to be empty expands, and the expanding empty
area encroaches on and sharpens the possibly occupied region. * a Z80 controlling microprocessor which selects and fires the
The map becomes gradually more detailed. The final map sensors, times the returns, and provides a range value;
shows regions probably occupied, probably unoccupied, and * a serial line over which range information is sent to a VAX
unknown areas. The method deals effectively with clutter and mainframe that interprets the sonar data and performs the
can be used for motion planning and for extended landmark higher level mapping and navigation functions.
recognition. It was tested in cluttered environments using
Neptune. Represnting the Sonar Bea-n

For navigation and recognition we developed a way of convolving Because of the wide beam angle, individual rangings provide
two sonar maps, giving the displacement and rotation that best only indirect information about the location of the detected
brings one map into registration with the other, along with a objects. We combine the constraints from individual readings to
measureofthegoodnessofthematch. The sonar maps are very reduce the uncertainty. Our inferences are represented as
useful for motion planning. They are denser than those made probabilities in a discrete grid.

* . . . . . . . . . .. . . . .



* A range reading is interpreted as providing information about
space volumes that are probably EMPTY and somewhere ocCUPIED.
We model the sonar beam by probability distribution functions
(Figure 6a). Informally, these functions model our confidence -
that the various points inside the cone of the beam are empty ... .

(P,(r)), and our uncertainty about the location of the point, .......... . "- .%- :
somewhere on the range surface of the cone, that caused the N
echo (P.(r)). The functions are based on the range reading and * * .. . ...
on the spatial sensitivity pattern of the sonar and are a maxi- 4, .. ' ...... 4..- - . 4.

mum near the center axis ofthe beam and taper to zero near the .... .... . .
edges. These probability density functions are projected on a . ..

horizontal plane to generate map information. We use the pro- ......

files that correspond to a horizontal section of the sonar beam. .
*. * I

.... " . . .. .Building Maps *. . . .
Sonar Maps are two-dimensional arrays of cells corresponding .. • ..+ ........
to a horizontal grid imposed on the area to be mapped. The. ...... .. .... .•
final map has cell values in the range (- 1,1), where values less ..... a .
than 0 represent probably empty regions, exactly zero repre- .. . .a
sents unknown occupancy, and greater than 0 implies a proba- ......
bly occupied space (Figure 6b). This map is computed in a final . .. , .. "

C, step from two separate arrays analogous to the empty and ...... ,
occupied probability distributions introduced above. The posi- ..... ...

tion and the orientation of the sonar sensor at the time of the .. ,.
reading are used to register the profiles of each beam with the •AI: X. .-+lx .......3 4 * * '=***

*  
.. ......... """"

map. In Figure 6b, each symbol represents a square area six .,**o,T.. -...........
inches on a side. Empty areas with a high certainty factor are "... 34444. :,'-. ..
represented by white space; lower certainty factors by"+" sym- .. . .... .....
bols of increasing, thickness. Occupied areas are represented by ... *

"x" symbols, and unknown areas by The robot positions ... 4.. * G al .....

where scans were taken are shown by circles, and the outline of .... ... "
the room and of major objects by solid lines.. ... :- ,. a .. . 4N .

Different readings asserting that a cell is EmPT-v will enhance .:... :: 4. : * - . .... . -
each other, as will readings implying that the cell may be .. -. 4, 4....
OCCUPIED, while evidence that the cell is EMP-rv will weaken the 4 - 4 ,... ... .

p certainty of it being OCCUPIED and vice-versa. The operations ....... ........

performed o. the empty and occupied probabilities are not . ..
symmetrical. The probability distribution for empty areas repre- "-.-.....-
sents a solid volume whose totality is probably empty, but the " '-. '

occupied probability distribution fora single reading represents a
lack of knowledge about the location of a single reflecting point ............
somewhere in the range of the distribution. Empty regions are
simply added using a probabilistic addition formula. The occupied Figure 6b. A two-dimensional sonar map
probabilities for a single reading, on the other hand, are reduced
in the areas that the other data suggests is empty, then normal-
ized to make their sum unity. Only after this narrowing process is able to "condense out" a comprehensive map covering a
are the occupied probabilities from each reading combined using thousand square feet with better than one foot position accuracythe addition formula. of the objects detected. Note that such a result does not violate

information theoretic or degree of freedom constraints, since
One range measurement contains only a small amount of the detected boundaries of objects tend to be linear, not quad- .. ," -.
information. By combining the evidence from many readings as ratic in the dimensions of the map. A thousand square foot map
the robot moves in its environment, the area known to be empty typically contains as little as a hundred linear feet of boundary. ."-.-.-
is expanded. The number of regions somewhere containing an
occupied cell increases, while the range of uncertainty in each Map Matching
such region decreases. The overall effect, as more readings are ap Matching
added, is a gradually increasing coverage along with an increas- We have also developed a procedure that can match two maps
ing precision in object locations. Typically after a few hundred and report the displacement and rotation that best takes one -.
readings (and less than a second of computer time), our process into the other. We begin with the maps described above, with cell A.""

/ C
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values that are negative if the cell is empty, positive if occupied, We found one further preprocessing step is required to make p
and zero if unknown. the matching process work in practice. Raw maps at standard '-:

resolutions (6 inch cells) produced from moderate numbers
A measure of the goodness of the match between two maps at a (about 100) of sonar measurements have narrow bands of cells
trial displacement and rotation is found by computing the sum labelled occupied. In separately generated maps of the same
of products of corresponding cells in the two maps. An occupied area, the relative positions of these narrow bands shift by as
cell falling on an occupied cell contributes a positive increment much as several pixels, making good registration of the occu- ' ."- ...

to the sum, as does an empty cell falling on an empty cell (the pied areas of the two maps impossible. This can be explained by
product of two negatives). An empty cell falling on an occupied saying that the high spatial frequency component of the posi-
one reduces the sum, and any comparison involving an unknown tion of the bands is noise; only the lower frequencies carry
value causes neither an increase nor a decrease. This naive information. The problem is fixed by filtering (blurring) the
approach is very slow. Applied to maps with a linear dimension occupied cells to remove the high frequency noise.
of n, each trail position requires 0(n2 ) multiplications. Each Experiments suggest that a map from 100 readings should be
search dimension (two axes of displacement and one of rotation) blurred with a spread of about two feet, while for maps made
requires 0(n) trial positions. The total cost of the approach thus from 200 readings a one foot smear is adequate. Blurring
grows as 0(n'). With a typical n of 50, this approach can use up a increases the number of cells labelled occupied. So as not to
good fraction of an hour of VAX time. increase the computational cost from this effect, only the final

raster version of the map is blurred. The occupied cell list used ,..
Considerable savings come from the observation that most of in the matching process is still mad he occunfiltered raster.
the information in the maps is in the occupied cells alone,. ntemthn rcs ssilmd rmteuflee atrThepinfoallyon0n)clls in the map , s hesonping tcll aone. With the process outlined here, maps with about 3000 six inch
Typically only' 0(n) cells in the map, corresponding to wall and cells made from 200 well spaced readings can be matched with
object boundaries, are labelled occupied. A revised matching an accuracy of about six inches displacement and three degrees
procedure compares maps A and B through trial transforma- rotation in one second of VAX time.
tion T (represented by a 2 x 2 rotation matrix and a 2 element
displacement vector) by enumerating the occupied cells of A, Results
transforming the coordinates of each such cell through T to find
a corresponding cell in B. The [A. B] pairs obtained this way are We incorporated the sonar map builder into a system that
multiplied and summed, as in the original procedure. The successfully navigatestheNeptunerobotthroughclutteredobsta-
occupied cells in B are enumerated and multiplied with cle courses. The existing program incrementally builds a single

o corresponding cells in A, found by transforming the B coordi- sonar map by combining the readings from successive vehicle

nates through T(the inverse function of 7), and these products stops made about one meter apart. Navigation is by dead .
are also added to the sum. The result is normalized by dividing reckoning we do not yet use the sonar map matching code.
by the total number of terms. This procedure is implemented The next move is planned in the most recent version of the map
efficiently by preprocessing each sonar map to give both a raster by a path planning method based on path relaxation [ 151. Since
representation and a linear list of the coordinates of occupied this method can cope with a probabilistic representation of
cells. The cost grows as 0(n4 ), and the typical VAX running occupied and empty areas and does path planning in a grid. it
time is down to a few minutes. fits natuallv into our present framework. The system has success-

fully driven Neptune the length of our cluttered 30 by 15 foot
A further speedup is achieved by generating a hierarchy of laboratory using less than one minute of computer time.
reduced resolution versions of each map. A coarser map is
produced from a finer one by converting two by two subarrays of
cells in the original into single cells of the reduction. Our existing Local Path Planning
programs assign the maximum value found in the subarray as P r t i w p l n o r b
the value of the result cell, thus preserving occupied cells. I f the Nth relaxation is a two-step path planning process for mobile

original array has dimension n, the first reduction is of size n/2, robots. It finds a safe path for a robot to traverse a field of

the second o.f n/4, and so on. A list of occupied cell locations is obstacles and arrive at its destination. The first step of path

produced for each reduction level so that the matching method relaxation finds a preliminary path on an 8-connected grid of or " x t
of the previous paragraph can be applied. The maximum num- points (Figure 7). The second step adjusts. or "relaxes." the

position of each preliminary path point to improve the path.bet of reduction levels is 1092n. A match found at one level can--.--

be refined at the next finer level by trying only about three One advantage of path relaxation is that it allows many different
values of each of the two translational and one rotational factors to be considered in choosing a path. Typical path plan-
parameters, in the vicinity of the values found at the coarser ning algorithms evaluate the cost of alternative paths solely on
level, for a total of 27 trials. With a moderate a priori constraint the basis of path length. The cost function used by Path .
on the transformation this amount of search is adequate even at Relaxation. in contrast, also includes how close the path comes
the first (coarsest) level. Since the cost of a trial evaluation is to objects (the further away, the lower the cost) and penalties for
proportional to the dimension of the map, the coarse matches traveling through areas out of the field of view. The effect is to
are inexpensive in any case. Applied to its fullest, this method produce paths that neither clip the corners of obstacles nor
brings the matching cost down to slightly larger than 0(n), and make wide deviations around isolated objects, and that prefer to
typical VAX times to under a second. stay in mapped terrain unless a path through unmapped regions
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Grid Search

Once the grid size has been fixed, the next step is to assign costs
to points on the grid and then to search for the best path along K - .

-the g*d from the start to the goal. "Best," in this case, has three r 6

conflicting requirements: shorter path length, greater margin
away from obstacles, and less distance in uncharted areas. These

f Othree are explicitly balanced by the way path costs are calculated.
2- A path's cost is the sum of the costs of the nodes through which

it passes, each multiplied by the distance to the adjacent nodes.
I - - - In a 4-connected graph all lengths are the same, but in an

C o 8-connected graph we have to distinguish between orthogonal
. and diagonal links. The node costs consist of three parts to

explicitly represent the three conflicting criteria.

L- * Costfor distance. Each node starts out with a cost of one unit, for
o. 0" - . length traveled.

-0 _*rs / Cost for near objects. Each object near a node adds to that node's
cost. The nearer the obstacle, the more cost it adds. The exact

o " -slope of the cost function will depend on the accuracy of the
.. vehicle (a more accurate vehicle can afford to come closer to

- .... - - -~0 objects), and the vehicle's speed (a faster vehicle can afford to
/ go farther out of its way), among other factors.

f Cost for within or near an unmapped region. The cost for traveling L -
"- - ! - in an unmapped region will depend on the vehicle's mission.

A... " / If this is primarily an exploration trip, for example, the cost
might be relatively low. There is also a cost added for being

- - near an unmapped region, using the same sort of function of
distance as is used for obstacles. This provides a buffer to keep .-

-" paths from coming too close to potentially unmapped hazards.
I", / ~The first step of Path Relaxation is to set up the grid, construct ----

4 . . -the list of obstacles, and determine the vehicle's current position

and field of view.' The system calculates the cost at each node,
-/ based on the distances to nearby obstacles and whether that

~ 42F~1i -4--I- 5 node is within the field of view or not. The next step is to create a
graph with links from each node to its 8 neighbors. The start

S61and goal locations do not necessarily lie on grid points, so special
i L nodes need to be created for them and linked into the graph. . -

Figure 7. Path relaxation and 8-connectedness The system then searches this graph for the minimum-cost path
from the start to the goal. The search itself is a standard A* [ 12]

is substantially shorter. Other factors, such as sharpness of search. The estimated total cost of a path, used b% A* to pick
corners or visibility of landmarks, could also be added for a which node to expand next, is the sum of the cost so far plus the
particular robot or mission. straight-line distance from the current location to the goal. This
A cost function describes how desirable it is to have a path go has the effect, in regions of equal cost, of finding the path that
through each point. This function can be thought of as a terrain most closely approximates the straight-line path to the goal.
map, with the vehicle as a marble rolling towards the goal. The " "eaation
terrain (cost function) consists of a gradual slope towards the
goal, hills with sloping sides for obstacles, and plateaus for Grid search finds an approximate path; the next step is an

unexplored regions. The height of the hills has to do with the optimization step that fine-tunes the location of each node on
confidence that there really is an object there. Hill diameter the path to minimize the total cost. One way to do this would be
depends on robot precision: A more precise robot can drive to precisely define the cost of the path by a set of non-linear
closer to an object, so the hills will be tall and narrow, while a less
accurate vehicle will need more clearance, requiring wide,
gradually tapering hillsides. Using this analogy, the first step of 'In this implementation, there are two types of obstacles: poh gonal and circular
path relaxation is a global grid search that finds a good valley for Currently. the circular obstacles are used for points found b% stereo vsion ssstem.
the path to follow. The second step is a local relaxation step that each bounded b% a circular error limit, and the polygons are used for the field of

vie%. The vision system will eventually give polygonal obstacles, at which point
moves the nodes in the path to the bottom of the valley in which both the obstacles and the field of view will be represented as pslsgons and the
they lie. circular obstacles will no longer be needed.
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equations and solve them simultaneously to analytically deter.

* mine the optimal position of each node. This approach is not, in
general, computationally feasible. The approach used here is a 14. - - - _
relaxation method. Each node's position is adjusted in turn,
using only local information to minimize the cost of the path
sections on either side of that node. Since moving one node may -
affect the cost of its neighbors, the entire procedure is repeated- - -

until no node moves farther than some small amount.

0 Node motion has to be restricted. If nodes were allowed to move
in any direction, they would all end up at low cost points, with
many nodes bunched together and a few long links between 1- - - - -"-

them. This would not give a very good picture of the actual cost
along the path. So in order to keep the nodes spread out, a r -

node's motion is restricted to be perpendicular to a line between
the preceding and following nodes. Furthermore, at any onea .-

0 step a node is allowed to move no more than one unit. . "
As a node moves, all three factors of cost are affected: distance % .

traveled (from the preceding node, via this node, to the next % I
node), proximity to objects, and relationship to unmapped 6
regions. The combination of these factors makes it difficult to 31

directly solve for minimum cost node position. Instead. a binary ., ... '.-.---.'
search is used to find that position to whatever accuracy is "-'"

C {'  desired. \,*,*e
The relaxation step has the effect of turningjagged lines into
straight ones where possible, of finding the "saddle" in the cost L --.--

function between two objects, and of curving around isolated \." "
objects. It also does the "right thing" at region boundaries. The I-- ...-
least cost path crossing a border between different cost regions
will follow the same path as a ray of light refracting at a bound- .- . ",. -

*' • ary between media with different transmission velocities. The & "a
relaxed path will approach that path. - --

Example Run
In Figure 8 we see a run using real data. Objects are represented
as little circles, where the size of the circle is the positional
uncertainty of the stereo system. The numbers are not all Figure 8. An example run
consecutive, because some of the points being tracked are on the
floor or are high off the ground, and therefore are not obstacles. .. ..
The dotted lines surround the area not in the field of view; this
should extend to negative infinity. The start position of the
robot is approximately (0, -.2) and the goal is (0, 14.5). The grid ning and problem-solving activities in several different areas
path is marked with 0's. After one iteration of relaxation, the and on various levels of abstraction.
path is marked by l's. After the second relaxation, the path is
marked by 2's. The greatest change from 1 to 2 was less than .3 These problems are aggravated by the fact that, to achieve
meters, the threshold, so the process stopped. The size of the real-time response, large amounts of processing power are L
"hills" in the cost function is I meter, which means that the robot necessary. One way of achieving this is to apply several proces-
will try to stay I meter away from obstacles unless that causes it to sors to the problem. All this, however, brings the need to develop
go too far out of its waV. new and adequate distributed control and problem-solving

mechanisms.

To face some of these concerns, we have designed a distributed
An Architecture for Distributed Control software control structure [ I ] for mobile robots equipped with a
Mobile robots pose a number of fascinating problems from the variety of sensors and actuators. In this architecture, Expert
point of view of overall software system design. A large number Modules run as independent processes and exchange informa-
of semi-independent activities are necessary to achieve autono- tion over a blackboard (Figure 9a). The modules are distributed
mous mobility. These tasks include controlling actuators, over a processor network and communicate through messages.
monitoring several qualitatively different sensors, interpreting We are now working on an experimental implementation of this
and integrating data from the sensors, and performing plan- system.
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Figure 9a. General architecture of the distributed control system

The Architecture An Example: Sonar-iased Naviption
Expert Modules are specialized subsystems used to control the To provide an experimental testbed for the proposed architec-
operation of the sensors and actuators, interpret sensory and ture, we are re-implementing our sonar-based navigation sys-
feedback data, build an internal model of the robot's environ- tern (8) as a distributed system. The main modules of the sonar
ment, plan strategies to accomplish proposed tasks, and super- system are sonar control, the scanner, the mapper, the path

* vise the execution of the plan. Each Expert Module is composed planner, and the conductor, for the distributed version we add
of a master process and a slave process, where the master process to these a guardian and a supervisor process. The functions of . .
controls the scheduling and the activities of the slave process these modules are:
and provides an interface to other modules. The master retrieves Sonar Control: Interfaces to, and controls the sonar sensors.
data from the blackboard that is needed by the slave, changes Provides range readings.
the status (run/swpend/terminate/resume) of the slave, and posts
relevant results generated by the latter on the blackboard. The Scanner: Preprocesses the incoming sonar data and
slave process is responsible for the processing and problem- catches erroneous readings. Annotates sonar
solving activities as such. readings with sensor position, generating what _ -

is called a view.One of the modules, the supervisor, dynamically abstracts sched-
uling information for the Expert Modules from a Control Plan. Mapper: Integrates the view into a sonar map.
The Control Plan provides information specific to the execution Path Planner: Using the information about free, unknown and
of a given task by specifying subtasks and constraints in their occupied areas stored in a sonar map, generates
execution. High-level information needed by the different sub- safe paths for the robot.
systems is shared over the blackboard (2]. This includes informa- Conductor: Performs the actual locomotion of the robot
tion on the robot's status, relevant interpreted sensory and vehicle along the proposed path.
feedback data, and control information. Actual access to the v os
blackboard is done only by the blackboard monitor, to insure the Guardian: Does a simple check on the sonar range data
integrity of the posted data. Ablackboard scheduler schedules the that is being acquired continuously during
master processes to interact with the blackboard, according to locomotion, to make sure that enough distance
their own priorities and the priorities of data and events being is maintained relative to objects in the robot's
recorded there. environment. This is a safety system to take care

of rapidly moving objects that were not regis-
The Expert Modules are distributed over the processor network. tered in the sonar map.
An executive local to each processor is responsible for process
scheduling. Besides using the blackboard, processes also Supervisor: Takes care of the overall behavior of the system
exchange data of more specific interest directly among and extracts scheduling information from the
themselves. The system is built on top of a set of primitives that Control Plan.
provide process handling, message-based interprocess commu- The original, monolithic version of the system worked by pass-
nication and access to the blackboard. ing control to each module in sequence. However, such a serial-
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Figure 9b. A distributed implementation of the sonar-based mobile robot navigation system

ization is inconvenient when the processes involved are logically In a typical run, sonar ranging is done continuously. All read-
distinct or when they operate on different time-scales. For ings are checked by the guardian to see whether any object is
example, the path planner certainly requires the output of the dangerously near. Selected sets of readings, taken from
mapper, but the planning activity is distinct from mapping and sufficiently distinct positions, are processed by the scanner and
there is no reason why planning and mapping should follow a the mapper to provide an improved sonar map. Path-planning
rigid pattern. They can be viewed instead as working on differ- is done, and the existing path is updated. Locomotion proceeds;
ent sides of a shared database, with one process adding to and if the guardian issues a warning, the robot stops immediately
correcting the database while the other draws inferences from and only proceeds after reassessing the situation of its
the information therein. As an example of different time-scales, environment. With this architecture, the system is able to respond
both the guardian and the scanner act on sonar readings, but in an asynchronous fashion to the various needs for data
the guardian runs continuously whereas the scanner waits until processing and problem-solving as they arise.
its views come from sufficiently different positions of the robot.

In the distributed version of the system, each of the modules New Work
described above is an expert, with a master process that watches We have begun work in a major new area; road following systems
the blackboard for conditions that warrant a change in status fo he DARPA Aonomo nd Vel roam Thelgals
(runlterminate/suspend/resume) of its slave. Information con- for the DARPA Autonomous Land Vehicles program. The goals
cerning the availability of data or results, the status of the robot, of the DARPA program begin with following well defined roads
the activities of the Expert Modules and other relevant high- with no intersections or obstacles, then progress to navigation
level data and control information is shared over the blackboard. and obstacle avoidance in road networks and eventuall to navi-
The supervisor provides additional scheduling information to gation in open terrain.
achieve an overall integrated and coherent behaviour. The bulk We are working on this in cooperation with other Robotics
ofthe data is still passed directly between the modules themselves, Institute groups led by William Whittaker and Takeo Kanade.
since it consists of information relevant only to specific routines. The vehicle for this project is the Terregator, a large mobile
Figure 9b illustrates the main flow of data control. robot built by Whittaker's group. Powered by an onboard gaso-
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line fueled generator, it is designed for long outdoor journeys Hans Moravec, Pat Muir, Gregg Pbdnar, and Chuck Thorpe;
and is equipped with a television camera and microwave TV Larry Matthies served as editor. Kevin Dowling and Mike .
link. We have written a program that drives it along benign, Blackwell participated in the work described in the article.
well-defined roads in real time, visually tracking the left and Major funding for this work has been provided by the Office of
right edges. We are extending this work to more difficult roads, Naval Research under contract number N00014-81-K-0503.
longer journeys, and faster speeds, and plan to incorporate
obstacle detection, landmark recognition and long range
navigation. The effort complements our other projects and is a
natural application of a number of the techniques we have been
developing.

Conclusion and Philosophy
ID The most consistently interesting stories are those aboutjourneys,

and the most fascinating organisms are those that move from
place to place. These observations are more than idiosyncrasies 4-...

of human psychology, but illustrate a fundamental principle.
The world at large has great diversity, and a traveller constantly
encounters novel circumstances and is consequently challenged
to respond in new ways. Organisms and mechanisms do not exist
in isolation, but are systems with their environments, and those
on the prowl in general have a richer environment than those
rooted to one place. Mobility supplies danger along with
excitement. Inappropriate actions or lack of well-timed appro-
priate ones can result in the demise of a free roamer, say over the
edge of a cliff, far more easily than of a stationary entity for
whom particular actions are more likely to have fixed effects.
Challenge combines with opportunity in a strong selection pres-- '
sure that drives an evolving species that happens to find itself in
a mobile way of life in certain directions quite different from
those of stationary organisms. The last billion years on the
surface of the earth has been a grand experiment exploring
these pressures. Besides the fortunate consequence of our own Dr. Hans Moravec (front, second from right), Director of the Mobile Robot

existence, some universals are apparent from the results to date Laboratory and Research Scientist of Robotics, with research staff.

and from the record. In particular, intelligence seems to follow
from mobility.

The same pressures seem to be at work in the technological
evolution of robots and it may be that mobile robots are the best
route to solutions for some of the most vexing unsolved prob-
lems on the way to true artificial intelligence-problems such as References
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High Resolution Maps from Wide Angle Sonar

Hans P. Moravec Alberto Elfes N

The Robotics Institute

Carnegie-Mellon University ,.. %...

Abstract Direct sonar range measurements promised to provide basic
We describe the use of multiple wide-angle sonar range measurements navigation and denser maps with considerably less computation. 'le

to map the surroundings of an autonomous mobile robot. A sonar range readily available Polaroid ultronic range transducer [9] was selcvted -"

reading provides information concerning empty and occupied volumes in and a ring of 24 of these sensors was mounted on Neptune.
a cone (subtending 30 degrees in our case) in front of the sensor. 778

reading is modelled as probability profiles projected onto a rnsterized We find sonar sensors interesting also because we would like to
map, where somewhere occupied and everywhere empty ares are investigate how qualitatively different sensors. such .as a sonar array and
represented Range measurements from multiple points of view (taken a pair of cameras, could cooperatc in building up a more complex and -

from multiple sensors on the robot, and from the same sensors after robot rich description of the robot's environmenL
moves) are systematically integrated in the map. Overlapping empty
volumes re-inforce each other and serve to condense the range of
occupied volumes. The map definition improves as more readings are 1.1. Goals
added The final map shows regions probably occupied probably We expected sonar measurements to provide maps of the robot's
unoccupied. and unknown areas. The method deals effectively with environment with regions classified as empty, occupied or unknown,
clutter, and can be used for motion planning and for extended landmark and matches of new maps with old ones for landmark classification and
recognition. This system has been tested on the Neptune mobile robot at to obtain or correct global position and orientation in formation.
cMu.

1. Introduction 1.2. Approach
This paper describes a sonar-based mapping system developed for Our method starts with a 'number of range measurements obtained

mtobil robot navigation. It was tested in cluttered environments using from sonar units whose position with respect to one another is known.
the Neptune mobile robot [8], developed at the Mobile Rojot Each measurement provides information about empty and possibly
Laboratory of the Robotics Institute, CMU. The Neptune system has occupied volumes in the space subtended by the beam (a thirty degree
been used successfully in several areas of research, including stereo cone for the present sensors). This occupancy information is projected
vision navigation [5, 10] and path planning [Ill. Other research in the onto a rasterized two-dimensional horizontal map. Sets of readings
laboratory includes the investigation of adequate high-level robot taken both from different sensors and from different positions of the
control structures, the use of distributed and parallel processing robot are progressively incorporated into the sonar map. As more
methods to improve the real-time response of the system, navigation in readings arc added the area deduced to be empty expands, and the .
outdoor environments and the design and construction of more expanding empty area encroaches on and sharpens the possibly
advanced robots with higher mobility, occupied region. The map becomes gradually more detailed.

Primarily because of computational expense, practical real-world For navigation and recognition we developed a way of convolving
stereo vision navigation systems 17. 10] build very sparse depth maps of two sonar maps, giving the displacement and rotation that best brings
their surroundings. Even with this economy our fastest system, one map into registration with the other, along with a measure of the
described in [51, takes 30 - 60 seconds per one meter step on a I mips goodness of the match. L
machine.

The sonar maps happen to be very useful for motion planning. They
ame denser than those made by our stereo vision prograis, and "-

This work has been supported in part by Denning Mobile Robotics, aed thana tose adeb o u ster v o prorams a.d
Inc., by the Western Pennsylvania Advanced Technology Center and
* hy the Office of Naval Research under contract number N00014-81- presently use them with the Path Relaxation method [11] to plan local

K-0503. The second author is supported in part by the Conselho paths for our robot. , .

Nacional de Desenvolvimento Cicntifico e Tcnolbgico -CNPq, lPrazil,
under Grant 200.986-80; in part by the Instituto Tcnolbgico de 1.3. Related Work
Aeronutica - ITA. Brazil; and in part by The Robotics Institute. Sonar is a developed technology but few applications until recently
Carnegi:-Mellon University. involved detailed map building. Traditional marine applications,

camera autofocus systems, and some simple robot navigation schemes .

The views and conclusions contained in this document are those of (2.6] rely on sparse proximity measurements to accomplish their .'f-'..
the authors and should not he interpreted as representing the official narrow go"als.
p.ol4l.cs. eithcr expreAed or implied, of the funding agencies.

CH2152-7/85000010116$01.00 © 1985 IEEE .": :"'T
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The most advanced sonar systems used in manne intelligence * Averaging: Several independent readings from the same
operations locate sound sources passively 11]. Ulr-a.und systems used sensor at the same position are averaged. The sonar
in medicine are typically active and build maps for human perusal, but readings arc subject to error not only from reflections but
depend on accurate physical models of thc environments that the sound also from other causes such as fluctuations in the effective
daerses 41e and work with 'very small beam widths. about 10 3. sensitivity of thec transducr. As a result readings show a
Narrow beam widths. formed by phased array techniques, are also used certain dispersion. Averaging narrows the spread.
in advanced side looking mapping sonar system for submersibles. An A.,.
independent CMU sonar mapping effort 13) also used a narrow beam, Clustering: A set of readings from one sensor at a given
formed by a parabolic reflector, in its attempts to build a line-based position sometimes shows a clustering of the data around ' .
description, two different mean values. This happens when different::'.-

readings are being originated by objects at staggered ,
In contrast the sonar sensors that we choose to cmolov have a wide distances. We apply a simple clustering analysis to the data,

beam, with an effective angle of about 30. and extract a mean value for each cluster for use in
subsequent procesn.,....:.".

2. The Sonar System
3.2. Representing the Sonar Beam

Because of the wide beam angle the filtered data from the above
2.1. The Sensor methods provides only indirect information about the location of the

The sonar devices being used are Polaroid laboratory grade ultrasonic detected objects. We combine the constraints from individual readings i
transducers 19). These sonar elements have a useful measuring range of to reduce the uncertainty. Our inferences are represented as0.9 to 35.0 ft. The main lobe of the sensitivity function corresponds to a probabilities in a discrete grid.

beam angle of 300 at -38 dB. Experimental results showed that the
range accuracy of the sensors is on the order of I %. We are using the A range reading is interpreted as providing information about space
control circuitry provided with the unit, which is optimized for giving volumes that are probably EMMTY and somewhere occupi.. We
the range of the nearest sound reflector in its field of view. and works model the sonar beam by probability distribution functions. Informally,
well for this purpose, these functions model our confidence that the various points inside the

cone of the beam arm empty and our uncertainty about the location of
the point, somewhere on the range surface of the cone, that caused the
echo. The functions are based on the range reading and on the spatial

The sonar array, built at Denning Mobile Robotics, and mounted on sensitivity pauern of the sonar.
the Neptune mobile robot is composed of: sit tn h a

* A ring of 24 Polaroid sonar elements, spaced 150 apart, and Consider a position P = (xyz) belonging to the volume swept by the
mounted at an height of 31 inches above the ground (see sonar beam. Let:

Fill. 1). R be the range measurement returned by the sonar sensor.

e be the mean sonar deviation error.
" A Z0 controlling microprocessor which selects and fires W be the beam aperture,

the sensors, times the returns and provides a range value. S = (x,. y., z ) be the position of the sonar sensor.
8 be the distance from P to S-

" A serial fine over which range information is sent to a VAX 8 be the angle between the main axis of the beam and SP.
mainframe that presently interprets the sonar data and
performs the higher level mapping and navigation We now identify two regons in the sonar beam:
functions.

e Empty Region: Points inside the sonar beam (8 < R-e and
3. Sonar Mapping U v0<,s/2 ). that have a probability p=f ,O of being

empty.

3.1. Obtaining Reliable Range Data from the Sonar Sensor e Somewhere Occupied Region: Points on the sonar beam
We begin our map building by preprocessing the incoming readings front ( 8[R-e,R+e] and 8s.w.,/2 ). that have a

to remove chronic errors. The following steps are used: probability p0 =f(U) of being occupied.

* Tlresholding: Range readings above a certain maximum R Fig. 2 shows the probability profiles for a sonar beam that returned a
are discarded. We observe that sonar readings caused by range reading R. The horizontal crossection of the beam is associated
specular reflections are often near the maximum range of with two probability distributions corresponding to the empty and the
the device (Row). With Ru slightly below R Me many of occupied probabilities.
these readings are discarded. The system becomes slightly I
myopic, but the overall quality of the map improves. Very ,. -.-

large open spaces are detected by analyzing the set of
distance values obtained from the sonar, and in this case the The empty probability density function for a point P inside the sonar
filtering is not done. A similar heuristic is applied for small beam is given by:
readings: values below the minimum sensor range R., are p(xjVz)=p[ position (xz) is empty .=E(5).E(9) (1)

usually glitches and are discarded.

I ~I:
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*I") ore) 3. SUPFRPOS'ON OF OCCLIPEI) AREAS: For each reading k,
shift the occupied probabilies around in response to the
combined emptyncss map using:

CANCEL: Occ,(XY): = Occ,(XY) (I - Fmp(X,V))

a. ,NOMAUZE: OcC,(X.Y):=Occ,(X,Y)/X Oc,(XY)

O e'(X Y) + O C e(X Y)- O cd X Y )x O 'Ck(X Y )". ' .. . "

4. TiiRI31iOLDNG: The final occupation value attributed to a

cell is given by a thresholding method:

T1RESIIOLD: Map(X.Y): =

j0c(XY) if Oc((XY)a Emp(XY)
(gi) pta-Emp(X,) if Occ(X.Y)<Emp(X,Y)

Figure 2: The Probability Profiles corresponding to die probably Empty 3.5. Maps

and somewhere Occupied regions in the sonar beam. A typical map obtained through this method is shown in Fig. 3. and
The profiles represent a horizontal cross section of the corresponding certainty factor distributions are shown in Figs. Fig.

4 and 5. These are the maps obtained before the thresholding step.the bea., - -.-

Ile final maps obtained after thresholding are shown in Figs. 6. 7
and 8.

The operations performed on the empty and occupied probabilities
arc not symmetrical. The probability distribution for empty areas
represents a solid volume whose totality is probably empty but the
occupied probability distribution for a single reading represents a lack.... ..
of knowledge we have about the location of a single reflecting point-*---..."...........
somewhere in the range of the distribution. Empty regions are simply
added using a probabilistic addition formula. The occupied probabilities
for a single reading. on the other hand, are reduced in the areas that the . .. ...
other data suggests is empty, then normalized to make their sum unity.
Only after this narrowing process are the occupied probabilities from:: .... " " " "
each reading combined using the addition formula.

One range measurement contains only a small amount of *:: ,4..:._,, -
information. By combining the evidence from many readings as the :
robot moves in its environment, the area known to be empty is ................ ..:::.:.::::::::::............................ .
expanded. The number of regions somewhere containing an occupied
cell increases, while the range of uncertainty in each such region Figure 3: A Two-Dimensional Sonar Map. Each symbol represents a 11-4
decreases. The overall effect as more readings are added is a gradually square area six inches on a side in the room pictured
increasing coverage along with an increasing precision in the object in Figure 1. The right edge of this diagram
locations. Typically after a few hundred readings (and less than a corresponds to the far wall in the picture. Empty
second of computer time) our process is able to "condense out" a areas with a high certainty factor are represented by
comprehensive map covering a thousand square feet with better than white space; lower certainty factors by "+
one foot position accuracy of the objects detected. Note that such a symbols of increasing thickness. Occupied areas are
result does not violate information theoretic or degree of freedom represented by "x " symbols, and Unknown areas by
constraints, since the detected boundaries of objects are linear, not Ib Te robot positions where scans were taken are
quadratic in the dimensions of the map. A thousand square foot map shown by circles and the outline of the room and of
may contain only a hundred linear feet of boundary. the major objects by solid lines.

Formally the evidence combination process proceeds along the
following steps:

1. REsEr: The whole Map is set to UNKNOWN by making 4. Matching I_ I
Emp(X,Y): = 0 and Occ(XY): = 0. Sonar navigation would benefit from a procedure that can match two

maps and report the displacement and rotation that best takes one into -.

2. SUPFJtPOSITION OF isMTY AREAS: For every sonar reading k the other.
modify the emptyness in formation over its projection by: Our most successful programs begin with the thresholded maps

FNIIANCE: Fmp(X.Y): = described above, with cell values that are negative if the cell is empty,
( E (X,Y) + Enp,(XY)- Emp(XY)xEmPk(XY) positive if occupied and zero If unknown.

I 4
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Figure 4: The Occupied Areas in the Sonar Map. This 3-D view shows Figure 7: The Occupied Areas in the Sonar Map After Thresholding.
the Certainty Factors Occ(X ,Y).

Figure 5: The Empty Areas in the Sonar Map. This 3-D view shows the Figure 8: The Empty Areas in the Sonar Map After Thresholding.
Certainty Factors Em$X.Y).

A measure of the goodness of the match between two maps at a triaW
displacement and rotation is found by computing the sum of products
ofcorresponding cells in the two maps. An occupied cell falling on an........ .. : occupied cell contributes a positive increment to the sum, as does an
empty cell falling on an empty cell (the product of two negatives). An

................ empty cell falling on an occupied one reduces the sum. and any....'.........: : empty
comparison involh ing an unknown value causes neither an increase nor
a decrease. This naive approach is very slow. Applied to maps with a

tp linear dimension of n. each trial position requires (n) multiplications.
Each search dimension (two aics of displacement and one of rotation)

. . .... .. .. . requires 0n) trial positions. The total cost of the approach thus grows" :. ;' ,.._ ... :.:. : :i. . .. .. :i i i . l-
.:as n). With a typical n of 50 this approach can bum up a good

fraction of an hour of Vax time... .. .. ..... r: V1+ .. .

............................. ............................................ Considerable savings come from the observation that most of the
information in the maps is in the occupied cells alone. Typically only

Figure 6: 'he Two-Dimensional Sonar Map After Thresholding. 0(n) cells in the map. corresponding to wall and object boundaries, are
labelled occupied. A revised matching procedure compares maps A and
II through trial transformation T(rcpresnted by a 22 rotation mat-ix
and a 2 element displacement vector) by enumerating the occupied cells
of A, transforming the co-ordinates of each such cell through Tto find a

I. -::::::
I°%"-
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corresponding cell in B. The JA, B] pairs obtained this way are representation of occupied and empty areas and does path-planning in
multiplied and summed, as in the original procedure. The occupied a grid, it fits naturally into our present framework. T]hc system has
cells in If are enumerated and multplied with corresponding cells in A, successfully driven Neptune the length of our cluttered 30 by 15 foot
found by transforming the I co-ordinates through T - ' (the inverse laboratory using less than one minute of computer time.
function of 7). and these products are also added to the sum. 'hc result
is normalized by dividing by the total number of terms. This procedure .
is implemented efficiently by preprocessing each sonar map to give 6. Conclusions
both a raster representation and a linear list of the co-ordinates of We have described a program that builds moderately high resolution
occupied cells. The cost growns as 0(n4), and the typical Vax running spatial maps of a mobile robot's surroundings by combining several
time is down to a few minutes. hundred range readings from unadomed Polaroid ultrasonic units. The

main innovation is an efficient mathematical method that reduces the
A further speedup is achieved by generating a hierarchy of reduced position uncertainty of objects detected by wide angle sonar beams by -

resolution versions of each map. A coarser map is produced from a combining interlocking constraints in a raster occupation probability
finer one by converting two by two subarrays of cells in the original into map. We have also developed a fast algorithm for relating two maps of

single cells of the reduction. Our existing programs assign the the same area to derive relative displacement, angle and goodness of

maximum value found in the subarray as the value of the result cell, match.

thus preserving occupied cells. If the original array has dimension n,
the first reduction is of size r12. the second of n/4 and so on. A list of We have used this mapping method in a system that navigates a
occupied cell locations is produced for each reduction level so that the mobile robot to a desired destination through obstacles and clutter, and
matching method of the previous paragraph can be applied. The are preparing a more elaborate navigation system that depends on
maximum number of reduction levels is lg 2n,. A match found at one matching of the sonar maps to recognize key locations and on higher-
level can be refined at the next finer level by trying only about three level representations to navigate over long distances.
values of each of the two translational and one rotational parameters, in
the vicinity of the values found at the coarser level, for a total of 27
trials. With a moderate a-prion constraint on the transformation this 7. Acknowledgments
amount of search is adequate even at the first (coarsest) level. Since the The authors would like to thank Gregg W. Podnar for his help in
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A Sonar-Based Mapping and Navigation System
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A b st ract To situate the Delgpm s)stem within this wider contexL we characterize
in this section some of the conceptual processing levels required for an

This paper describes a sonar-based mapping and navigation system for autonomous vehicle (see Fig. 2-1). Each is briefly discussed below: , -

autonomous mobile robots operating in unknown and unstructured
surroundings. The system uses sonar range data to build a multi-leveled
description of the robot's environment. Sonar maps are represented in the VII. Global Control
system along several dimensions: the Abstraction axis the Geographical '-Goa -ann
axis. and the Resolution axis Various kinds of problem-solving activities VI. Global Planning

- can be performed and different levels of performance can be achieved by V.'N"vg'.io
operating with these multiple representations of maps The major modules V. Navigation
of the 0*ljin system are described and related to the various mapping IV ....
representations used. Results from actual runs are presented and further IV. Real-Woild Modelling
research is mentioned The system is also situated within the wider context
of developing an advanced software architecture for autonomous mobile Ill. Sensor Integration

robots.
II. Sensor Interpretation

1. Introduction I. Robot Control L

The ZDdo system is intended to provide sonar-based mapping and
navigation for an autonomous mobile robot operating in unknown and Figure 2-1: Conceptual Activity Levels in a Mobile Robot Software
unstructured environments. The system is completely autonomous in Architecture.
the sense that it has no a priori model or knowledge of its surroundings
and also carries no user-pr.,, \ded map. It acquires data from the real
world through a set of sonar sensors and uses the interpreted data to * Robot Control: This level takes care of the physical control of
build a multi-leveled and multi-faceted description of the robot's the different sensors and actuators available to the robot. It
operating environment. This description is used to plan safe paths and provides a set of primitives for locomotion. actuator and
navigate the vehicle towards a given goal. sensor control, data acquisition, etc., that serve as the robot

interface, freeing the higher levels of the system from low-
The system is intended for indoor as well as outdoor use; it may be level details. This would include dead-reckoning motion

coupled to other systems, such as vision, to locate landmarks that would estimation and monitoring of internal sensors. Internal
serve as intermediate or final destinations. Sensors provide information on the status of the different

In the course of this paper, we will briefly identify some of the physical subsystems of the robot, while External Sensors are
conceptual processing levels needed for mobile robot software, relate the used to acquire data from the robot's environment

present system to this framework, discuss the multiple representations * Sensor Interpretation: On this level the acquisition of sensor
deseloped for sonar maps as well as their use in different kinds of data and its interpretation by Sensor Modules is done. Each " " -

problem-solving activities, describe the overall system architecture and Sensor Module is specialized in one type of sensor or even in
show some results from actual runs. We finish with an outline of further extracting a specific kind of information from the sensor
research. data. They provide information to the higher levels using a

common representation and a common frame of reference.
* Sensor Integration: Due to the intrinsic limitations of any

sensory device, it is essential to integrate information coming .,-
from qualitatively different sensors. Specific assertions

Autonomous Mobile Robot provided by the Sensor Modules arc correlated to each other

The sonar mapping and navigation system discussed here is part of a on this level. For example, geometric boundaries of an
research effort that investigates various issues inolved in the obstacle extracted by sonar can be projected onto an image
development of the softwarc structure of an autonomous mobile robot. provided by the vision subsystem and can help in identifying
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a certain object. On this level, information is aggregated and The sonar sensor array is composed of 24 Polaroid laboratory grade
assertions about specific portions of the environment can be ultrasonic transducers. These devices are arranged in a ring and
made. controlled by a microprocessor that also interfaces to a VAX mainframe.

9 Real- Horld Modellmg." To achieve any substantial degree of For experimental runs, the array was mounted on two different robots
autonomy, a robot system must have an understanding of its (Aeptune[131 for indoor runs. and the Terragator[12] for outdoors).
surroundings, by acquiring and manipulating a rich model of The mapping system processes range measurements obtained from the *- - *

its environment of operation, This model is based on sonar transducers. annotated with the positions of the corresponding "
assertions integrated from the various sensors, and reflects sensors, which are derived from the position and orientation of the . *,,""

the data acquired and the hypotheses proposed so far. On robot. Each measurement provides information about probably empty
this level, local pieces of information are used in the and possibly occupied volumes in the space subtended by the beam (a
incremental construction of a coherent global Real-World 300 cone for the present sensors). This occupancy information is

* Model: this Model can then be used for several other projected onto a rasterized two-dimensional horizontal map. Sets of
activities, such as landmark recognition, matching of newly readings taken both from different sensors and from different positions
acquired information against already stored maps, and of the robot are incrementally integrated into the sonar map, using a
generation of expectancies and goals. probabilistic approach. In this way, errors and uncertainties are reduced "

e Navigation: For autonomous locomotion, a variety of and the map becomes gradually more detailed.
problem-sohing activities are necessary, such as short-term Me sonar beam is modelled by probability distribution functions."and lThe-sonarpbeampisnmodelledsbycprobabilityedistribution"functions-
and long-term path-planning. obstacle-avoidance, detection Informally, these functions describe our confidence that the points

40 of emergencies, etc. These different activities are performed inside the cone of the beam are empty and our uncertainty about the
by modules that provide specific services, location of the point that caused the echo. The functions are based on

* Global Planning: To achieve a global goal proposed to the the range value and on the spatial sensitivity pattern of the sonar device.
robot, this level provides task-level planning for autonomous
generation of sequences of actuator, sensor and processing These sonar maps are very useful for motion planning. They are much
actions. Other necessary activities include simulation, error denser than those made by typical stereo vision programs, and
detection, diagnosis and recovery, and replanning in the case computationally at least one order of magnitude faster to produce.

C of unexpected situations or failures.
* Global Control Finally, on this level Supervisory Modules 3.3. Related Work

are responsible for the scheduling of different activities and
for combining Plan-driven with Data-driven activities in an In the Robotics area. ultrasonic range transducers have recently
integrated manner so as to achieve coherent behaviour, attracted increasing attention. This is due in part to their simplicity, low

cost and the fact that distance measurements are provided directly. Some
This conceptual structure provides a paradigm within which several of research has focused specifically on the development of more elaborate

our research efforts are situated [6, 11, 12]. It has influenced, in beam-forming and detection devices (see. for example, [81), or on the , '. --
particular, the architecture of the D bm system for sonar-based application of highly sophisticated signal processing techniques [I) to
mapping and navigation, as mentioned in Section 5. complex sonar signals.

Specific applications of sonar sensors in robot navigation include
3. Sonar Mapping determining the position of a robot given a known map of the

environment 19. 10. 5] and some ad hoc navigation schemes [2). An
independent CMU sonar mapping and navigation effort [3.4] uses a

3.1. Introduction narrow beam. formed by a parabolic reflector, to build a lie-based

The Dplt sonar system is able to build dense maps of the robot's description of the environment. . !

environment and use them for autonomous navigation. The central
representation of sonar mapping information is the Probabilistic or 4. Multiple Axis of Representation of Sonar
Sensor-Level Local Hap. which uses a medium-resolution grid (with a Mapping Information
typical accuracy of 0.5 ft). The cells of a two-dimensional array spanning
the area of interest are used to store occupancy information (EvPTp. From the Probabilistic local Maps described in the previous section.
OCCUPIED or UNKNOWN ), as well as the associated confidence factors. several other data structures arc derived. We use the following

dimensions of represcntation (Fig. 4-1):
Currently, the cycle of operation of the sonar system is as follows:

from its current position. the robot acquires a set of range measurements * T1IF ARSTRACTION AXIS: Along this axis we move from a
provided by the sonar sensor array: these readings are then interpreted sensor-based, data-intensivc representation to increasingly
as assertions concerning empty and occupied areas, and serve to update higher levels of interpretation and abstraction. Three levels
the sonar map. The map is now used to plan a safe path around are defined: the Sensor Level. the Geometric Level and the
obsticles. and the robot moves a certain distance along the path. It Symbolic Level.
updates its position and orientation estimate and repeats the cycle. * THE GEOGRAPItICAL AXIS: Along this axis we define Views.

Local Alaps and Global Ataps. depending on the extent and
characteristics of the area covered. .- ." -

3.2. Building Maps
* TIlE RtO.L1IO% AXis: Sonar Maps are generated at

The Local Map building process is discussed in detail in Ill]. and is different values of grid resolution for different applications.
reviewed here only briefly. We proceed to describe how other Some computations can be performed satisfactorily at loA . ,

representations are derived from it. levels of detail, while others need higher or even multiple
degrees of resolution. .
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4.3. The Resolution Axis

stract *o, f/ Finally. along the Resolution Axis. we again start with the Sensor- - .
As 's Level Local Map and generate a progression of maps with increasingly

less detail. This allows certain kinds of computations to be performed %..

geometric Le) either at lower levels of resolution with correspondingly less
asH computational expense, or else enables oerations at coarser levels to

guide the problem-solving activities at finer levels of resolution.
The most detailed sonar maps that can be obtained from the method. -

I .-... aLe, Le. outlined in Section 3 (considering the intrinsic limitations of the sensors) -.-.-

have a cell size of 0.1 x 0.1 ft .For navigation purposes, we have , ,

typically been using a 0.5 R grid for indoors and a 1.0 ft grid for
vis, Local map Global Nap outdoors. Nevertheless. several operations on the maps are expensive

and are done more quickly at even lower levels of resolution. For these
cases we reduce higher resolution maps by an averaging process that

Lo. taietie* produces a coarser description. One example of an application of this

Figure 4-1: Multiple Axis of Representation of Sonar Maps. technique is the Map Matching procedure described in 111, where two
Local Maps being compared with each other are first matched at a low
level of detail. The result then constrains the search for a match at the
next higher level of resolution.

4.1. The Abstraction Axis

The first kind of sonar map built from the sonar range data uses the 5. Overall System Architecture
Probibihsoc representation described earlier. A two-dimensional grid .

coicnng a limited area of interest is used. This map is derived directly To provide a context for t hese multiple descriptions, w present in this

from the interpretation of the sensor readings and is, in a sense, th Section the ovrall architecture of the Wpl Sonar-lissed Mapping and
whC Nai. igation system (Fig. 5- 1). ibe function of the major modules anddescription closest to the real world. It serves as the basis from whic their interaction with the various sonar map representations 17J isi

other kinds of representations are derived. Along the Abstraction Axis, described below:
this data-intensie description is also defined as the Selnor LevelMap. 

-"'- below:

The next level is called the Geomnetric Level. It is built by scanning the
Sensor ILesel Map and identifying blobs of cells with high OCCcPwoI1 i7IZ"
confidence factors. These are merged into uniquely labeled objects with € np I . -map
explicithl represenwd polygonal boundaries. If needed, the same can be
done with i .lrlY areas. Q,,,p ,I,. ..

The third is the Siymbolic Level, where maps of larger areas (typically Symboljc ~*sto
Global Maps) arc described using a graph-like representation. This U-,a""

description bears only a topological equi~alcncc to the real world. Nodes G,,,-ti€
represent "interesting" areas. %%here more detailed mapping information ,t-eer
is necessary or aiailable. while edges correspond to simpler or e..t,,c m ,,tche: -

"uninteresting" areas (nat igationally speaking), such as corridors. See..,r a.

Different kinds of problem-solving activities are better performed on Object ttracto,

different levels of abstraction. For example, global path-planning (such
as how to get from one building wing to another) would be done on the
symbolic level, while navigation through a specific office or lab uses the
sensor-Ict el map, where all the detailed information about objects and
free space, as wcll as the associated cenaint) factors, is stored. Path 5 "

4.2. The Geographical Axis

In order to be able to focus on specific geographical areas and to
handle portions of as well as complete maps, we define a hierarchy of
maps with increasing degrees of coverage. Progressing along the
Geographical Axis. we start with ieWS. which are maps generated from .1

scans taken from the current position and that describe the area visible
to the robot from that place. As the vehicle mol.es. several Views are c..o ,cto . -

acquired and integrated into a Local Atop. The latter corresponds to
physicall delimited spaces such as labs or offices, which define a
connected region of visibility. Global Alaps are sets of several Local Lecoftse. S a..,.,"... ."

Maps, and cover wider spaces such as a whole wing of a building, with Figure S-I: Architecture of the Sonar Mapping and Natigation --.

labs. offices, open areas, corridors. etc. System. V ,

27
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Souar Control: Interfaces to and runs the sonar sensor array. providing also tested in outdoor environments operating among trees, using the
range readings. Terragalur robot in thc context of the CMU AL.V project. The system

operated successfully in both kinds of environments, navigating the
Scanner: Preprocesses and filters the sonar data. Annotates it with the robot towards a given destination.

* position and oricntation of the corresponding sensor, based on the Ia mc g T n a t
robot's motion estimate. In Fig. 6-1, an example run is given. The sequence of maps presented

shows how the sonar map becomes gradually more detailed and how the
Mapper: Using the information provided by the Scanner, generates a path is improved, as more information is gathered. The example

View obtained from the current position of the robot. This View is then corresponds to an indoor run. done in our laboratory. A distance of
integrated into a Local Map. approximately 25 ft was covered: the grid size is 0.5 ft. Objects present in

Cartographer: Aggregatcs sets of Local Maps into Global Maps. the lab included chairs, tables, boxes, workstations, filing cabinets etc.

* Provides map handling and bookkeeping functions. Empty spaces with high certainty factors are represented by white areas: Or.- '-
lower certainty factors by "." symbols of increasing thickness. Occupied

Marcher: Matches a newly acquired local Map against portions of areas are shown using x** symbols, and Unknown areas using ".". The -. -
Global Maps for opcratons such as landmark identification or update of planned path is shown as a dotted line, and the route actually followed..
the absolute position estimate. by the robot as solid line segments. The starting point is a solid + and

Object Ixtraction: Obtains geometric information about obstacles. the goal a solid x.

Objects arc extracted by merging blobs of OCCLPItED cells and In Fig. 6-2, an outdoor run is shom n. together % ith an example of the
determining the corresponding polygonal boundaries. A region-coloring Object Extraction algorithm. [he objects arc uniquelh identificd and the
approach is used for unique labeling, polygonal boundaries arc shown. [he map corresponds to a run done

Graph Building: Searches for larger regions that are either empty or among trees. A distance of approximately 50 ft was traversed. The grid
else have complex patterns of obstacles. labeling them as "free" or size was 1.0 ft. which proved adequate for navigation. but did not allow a

"interesting" spaces. more precise description of the real boundaries of the detected objects.

Path-P'anning: Three levels of path-planning are possible: Symbolic
Poth-Planni g is done over wider areas (Global Maps) and at a higher 7. Further Research

t level of abstraction (Symbolic Maps): Geometric Path-Planning is done
as an intermediar stage, when the uncertainty in Local Maps is low; We conclude our discussion by outlining in this Section some research i

and Sensor Alap Path-Planning is used to generate detailed safe paths, lines to be further pursued.

The latter performs an A* search over the map cells. with the cost
function taking into account the obstacle certainty factors and the 7.1. Handling Position Uncertainty
distance to the goal. The planned path is provided to the Navigator.

Our current system presupposes that the position and orientation of
Navigator: Takes care of the overall navigation issues for the vehicle, the robot (and by that. of the sonar sensors) as it acquires sonar data is

This includes examining alread. planned paths to determine whether known with reasonable precision. This is crucial for integrating readings -
the) are still usable. invoking the path-planner to provide new paths, taken over shorter distances, which are combined as previously outlined.
setting intermediary goals. overseeing the actual locomotion. etc. Drifts over longer distances are inevitable, but lead only to a topological

Conductor: Controls the physical locomotion of the robot along the distortion of the map.
planned path. The latter is currently approximated by sequences of line T a c n t h ,w trsegmnts usng lie-fttig aproch.Proide anestmat ofthenew To update the current position of the robot, we presently rely on . ,"'"
segments. ustig a line-itting approach. Provides an estimate of the new dead-reckoning estimates based on wheel encoders and an onboard
position and orientation of the robot. ineral navigation system. These drift with travelling time and distance. 3

Guardian: During actual locomotion, this module checks the incoming As a result. ground truth (the real-world environment) and the sonar
sonar readings and signals a stop if the robot is coming too close to a map drift apart. This problem is characteristic of navigation without
(possibly moving) obstacle not detected previously. It serves as a "sonar access to absolute position information. In stereo vision navigation, it has
bumper". traditionally been addressed b estimating motion based on image

Supervisor: Oves the operation of the various modules and takes matching.
care of the o% erall control of the system. It also provides a user interface. We arc current] investigating two complementar, approaches to this

Comparing this architecture with the activities outlined in Section 2, problem: incorporating the uncertainty in the position of the robot into
we see that the Sonar Control and Conductor modules belong to the the map-making process and do motion sohing by matching new sets of
Robot Control level: the Scanning and Mapping modules operate on the readings against the map being incrementally built.
Sensor Interpretation level: the Object Extraction. Graph Building.
Cartographer and Matcher modules provide functions on the Real-
World Modelling level: Path-Planning. the Guardian and Navigation 7.2. Extending the Architecture
arc situated on the Navigation level: and the Supervisor belongs to the The architecture described above embodies a sequential control-flow

characteristics inherent to mobile robot softw~are. The various modules
Control level. organization, Tis, howev'er. does not reflect the problem-solving ....

involved in the problem-solving effort are frequently quasi-independent
6. Tests of the System and have a low degree of coupling: therefore, the) should conceptually

The system described here was tested in several indoor runs in proceed in parallel, interacting with each other as needed. We have

cluttered environments using the Neptune mobile robot 1131, developed recently started the mplementaion of a distributed version of 13phn
at the Mobile Robot laboratory of the Robotics Institute. CMU. It was 12 along the lines discussed in (6). where multiple agents work onconcurrent activities. ,

2.2
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Another issue we are currently investigating is the development of a 141 Crowley J.L.
task-level Global Planner that would automatically generate a Control Dynamic World Modelling for an Intelligent Mobile Robot

Plan, establishing sequences of parallel and sequential actions. We are Using a Rotating Ultra-Sonic Rangi Device.
considering a hierarchical approach similar to NOAH [14). using a graph In Proceedings of the 1985 IEEE International Conference on
to represent the plan and explicitly storing alternatives and sensor- Robotics and Automation. IEEE, St. Louis, Missouri March.
dependent conditions as part of it. The elementary operations of sensor 1985. t--
information gathering, interpretation, actuator control and specific -

problem-solving activities are the primitives used by the planner. 15] Drumheller, M.
Mobile Robot Localization Using Sonar.
Technical Report AI-M-826. Artificial Intelligence Lab,

S. Conclusions Massachusetts Institute ofTechnology, January. 1985.

We have described a system that uses a Sensor Level, probability- [6) Elfes, A. and Talukdar, S.N.
based sonar map representation of medium resolution to build several A Distributed Control System for the CMU Rover.
kinds of maps. Three different dimensions of representation are In Proceedings oft he Ninth International Joint Conference on
defined: the Abstraction Axis. the Geographical Axis and the Resolution Artificial Intelligence - IJCAI-83. IJCAI,
Axis. These maps are used by a sonar mapping and navigation system KarlsruheGermany. August, 1983.
that performed successfully in indoor and outdoor environments. We s
are now investigating motion recovery techniques and expanding the 171 Elfes. A.
system to test distributed control and global planning mechanisms. Multiple Levels of Representation and Problem-Solving Using

Maps From Sonar Data.
In Weisbin. C.R. (editor), Proceedings of the DOE/CESAR
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I Introduction p
We propose to build and use moderate resolution three dimensional space occupancy maps built from

multiple measurements from cheap sonar sensors. By cheap sonar I mean range readings obtained from

unmodified Polaroid sonar transducers driven by the original Polaroid circuit board, or by an improved

board (allowing closer minimun ranges) from Texas Instruments. This is a simple, but highly developed ,

and reliable, not to mention inexpensive, system that returns the distance to the nearest reflector in a

certain wide cone of sensitivity. Though much more information can be obtained, in principle, from single .. .

sound bursts by modifying the aperture, phase relationships, frequencies and processing, such an

approach ignores the present very good solution.

2 Past Work
In earlier work [Moravec&Elfes 19851 we described the use of multiple wide-angle sonar range

measurements to map the surroundings of an autonomous mobile robot. A sonar range reading provides

information concerning empty and occupied volumes in a cone (subtending 30 degrees in our case) in L
front of the sensor. The reading is modelled as probability profiles projected onto a rasterized map, where

somewhere occupied and everywhere empty areas are represented. Range measurements from multiple . -

points of view (taken from multiple sensors on the robot, and from the same sensors after robot moves) ..-.

are systematically integrated in the map. Overlapping empty volumes re-inforce each other, and serve to

condense the range of occupied volumes. The map definition improves as more readings are added. The

final map shows regions probably occupied, probably unoccupied, and unknown areas. The method deals

effectively with clutter, and can be used for motion planning and for extended landmark recognition. This

system was tested on our Neptune mobile robot, and recently outdoors on the Terregator robot.

3 Experimental Approach
Processing a single reading from a standard unit is computationally cheap; only one number is .

generated, limiting the computations necessary or possible. The range accuracy of a typical reading is

better than a centimeter, but because of the wide angle of the pulse, the lateral position of the reflection is

uncertain to on the order of a meter. By exercising multiple units repeatedly, readings from multiple

viewpoints may be combined to deduce the location of the reflecting surfaces more precisely. The

combining process is a kind of deconvolution - each point in the final high resolution map is a . -

consequence of many of the individual readings combined in a particular, unique way and each reading

participates in many map points.
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Our existing approach uses the idea that the interior of each sonar reading cone (bounded by the

sensitivity profile laterally, and by the range surface lengthwise) is known to be empty, and that the

reflecting point is somewhere on the range surface in this cone. The empty interiors of other readings

overlapping this range surface reduce the region of uncertainty of the location of the echoing point in a

probabilistic way, while intersecting range surfaces reinforce each other at the intersections. The

deconvolution is essentially non-linear.

The old programs work in two dimensions, collapsing the measurement cones vertically into flat pie

wedges that are combined in a two dimensional map array that ultimately holds numbers giving the

confidence that a given cell is empty or occupied. We have experimentally noted that maps with a range

of 10 meters and a resolution of 15 to 30 cm can be reliably constructed with data from a ring of 24 . -

robot-mounted transducers looking out horizontally at 15 degree intervals and pulsed at six locations a

few meters apart in the robot's travels (144 independent measurements). The sharpness of the map can

be seen to improve as more readings are added. Many readings are combined to form one map

probability point, and this process makes our method quite tolerant to the occasional range errors

encountered in the sonar data.

A highly optimized version of the program, using fixed point arithmetic, can process 144 points in -

roughly 1 second on a big Vax, 2 seconds on a Sun2 and 4 seconds on a Macintosh, building a 32x32
map of eight bit probabilities. A companion program correlates two such maps, using a coarse to fine -. -

hierarchy of reductions and a dual representation (raster and list of occupied cells) to search over X, Y

shift and angle, in similar times. Another program devises good robot paths through the probability maps.

3.1 3D mapping
Our approach generalizes very naturally to three dimensions - in fact the collapse of cones to wedges

in the 2D program is its greatest single approximation, and information waster.

The sensors must be configured differently, however. The only height information in the present planar

ring comes from the vertical divergence of the cones of sensitivity, whose symmetry makes it impossible " "

in principle to distinguish reflections from above the ring plane from those an equal distance below the

plane. Even without this ambiguity, the present arrangement could provide very little vertical resolution.

An arrangement of sensors on the surface of a partial sphere would be much better. The 15 degree

spacing of the 24 sensors on the planar ring was chosen to give some overlap of fields of view. It was

discovered that this spacing allowed multiple sensors to be fired simultaneously without serious
interference, in three, or even two, interleaved banks, greatly speeding data gathering. Using the same .

idea and spacing to fill a sphere instead of a circle leads to the following calculation.

A sphere represents 4n of solid angle. Spacing the sensors 15 degrees from each other assigns a

cone with 15 degree apex to each sensor. A cone with apex angle T subtends 2iC(1-cos(T/2)) solid angle,

and we can (glossing over packing problems) arrange about 4nJ(2n(1-cos(T/2)) - 2/(I-cos(T/2)) of them "

32-
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into a sphere. With T-15 degrees 233 transducers fill a sphere. If we content ourselves with a 90 degree
wedge (almost a fisheye if you note that the beams fan out an additional 15 degrees on all edges, for a
net coverage of 120 degrees) then this gets reduced to a more manageable 34 transducers.

If actually packed onto a spherical cap, the sensor group would greatly resemble a compound insect .

eye, each facet being a Polaroid transducer. The insect would be a monster. The transducers are

somewhat less than 5cm in diameter, which would demand a sphere radius of about 40cm. A 90 degree

cap from this sphere would be a shallow bowl 56cm in diameter and 12cm deep.

One such sensor array on the nose of a vehicle, tilted down somewhat, should be adequate for many ,-- .-. '-
tasks, but imagine getting better side coverage, say for obstacle avoidance, by placing two, one on each .'.- .-.

side of the head, enhancing the giant insect effect.

3.2 How Many Readings, How much Computation?

The 3D map we hope to derive from this array has more cells than the 2D maps we have worked with,
and will require more data. How much?

Suppose we build our maps to a range of about 10 meters in the vehicle forward direction, 5 meters
laterally and 3 meters in the vertical direction, and to a resolution of 30cm in each direction. There will be
33x17x10 cells, each holding a number, in the final map. This is 5,610 numbers. A naive degrees of
freedom analysis suggests that a similar number of readings each returning one number are necessary to

determine this many variables. Fortunately our 2D experience suggests that far fewer will suffice.

We have noted experimentally that 144 readings nicely spaced around our cluttered laboratory is just

enough to give us good 32 cell by 32 cell maps covering a square area 10 meters on a side. There are . --

1024 points in such maps, so we seem to be accomplishing the impossible, extracting 1024 unknowns
from 144 equations. Actually, the 1024 numbers are not very informative as their magnitude represents

our certainty (or uncertainty) about particular cells being occupied, not something intrinsic about the

scenery. Most of the cells in the final mape are labelled an unsurprising "unknown" (represented by 0) or
"probably empty" (represented by a negative number). The real information is concentrated in the

locations of the reflecting boundary seen by the robot, i.e. the minority of cells labelled "probably

occupied". To first approximation this boundary is a one dimensional contour embedded in the 2D map.
Its length in cells is on the order of the boundary length of the map, 4x32. The information is not in the

contents of these cells (positive probability numbers), but in their location. Each cell represents about one
number - think of the boundary expressed in polar co-ordinates - the information is in the radius at each

angle, the angle itself is just the independent variable. SO - we have 144 equations to determine about 0

4x32 = 128 variables - just about right! Mathematics is great.

In 3D the contour becomes a surface. In our example of two paragraphs ago the map size was .

33x17x10 cells. The surface of this volume has about 2,100 cells, and thus requires about 2,100 -

readings by the above analysis, or 62 full scans of the 34 transducers in the 90 degree eye. The sensors

33 -=,°,
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can be pulsed about twice per second. With two way interleaving, a full eye poll takes a second. The 62
readings would thus take about a minute. Computation times on a big Vax, extrapolating from the fast 2D
program, would also be at about 30 seconds to a minute. It is assumed that the robot travels about ten
meters during this minute (a speed of 0.6 km/hr) to give each reading set a fresh vantage point, and that " -- -

adequate dead reckoning is provided to correctly relate the 60 sets geometrically. Of course, lower
resolution maps, or simple obstacle detection, can be accomplished faster, in as little as one (half second). -

pulse gathering period. .- ,

These numbers suggest that high speed travel is best left to longer range sensors, and perhaps
simpler techniques. The sonar mapping could be very useful for slow, close in, tight maneuvering in

complicated environments and on very rough ground. The very general path passability grid route
planners demonstrated by the group extend in a natural way to the dense 3D data this approach will

provide.

4 Research Plan
All our sonar experiments so far have been conducted with early prototype sonar rings provided by our

sometime collaborator, Denning Mobile Robotics, Inc. of Woburn, Massachusetts. Because of a rather old

fashioned (small buffer) serial interface on our Vax computers, the processors on these rings can't reliably
communicate with the Vaxes in the present configuration, and this has been a serious hinderance to
sonar experimentation. We will begin the work by building new interfaces for the transducers using Texas
Instrument driver boards funneling into an MC68000 microprocessor. Denning has agreed to help in this

effort - they have been using a TI board based design successfully for six months.

A second stage is design and construction of the physical array. This will require a mathematical

optimization and an evaluation by simulations of the individual sensor placements.

The bulk, and point, of the work will be an extended series of experiments with 3D map building and
navigation programs. One small but interesting subproblem in the early stages is 3D raster fill of conically

bounded sphere surfaces and volumes. A more significant problem is the handling of position uncertainty
in the measurements made during an extended run. Our probability raster permits a very direct -.-

representation for uncertainty - it can simply be added to the probability distribution, increasing the spread

of each reading in the appropriate directions.

We'd like to try an approach that projects the incremental uncertainty of each move onto old

measurements rather than new ones. The result would be a map that is always detailed for the local area
around the vehicle, and fades to fuzziness under the cumulative effect of errors in the distance. Very old
readings that provide almost no information because of uncertainty in their location could eventually be

eliminated from the mapmaking.

The three dimensional nature of the images will permit some work in identification of large objects.
Recognition of small objects is ruled out by the coarseness (about 10cm) of the anticipated maps.
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Experiments and Thoughts on Visual Navigation

C. Thorpe, L Matthles, and H. Moravec '

Carnegie-Mellon University

Abstract 1.1 Constraints

Wsit uses a variety of constraints to improve the accuracy of ItsWe describe a second generation system that drives a camera- stereo vision and motion solutions. Most reduce the area of theequipped mobile robot through obstacle courses. The system, image to be searched by the correlator. A smaller search windowwhich evolved from earlier work by Moravec [6], incorporates a now reduces the chance of finding a false maich and improves systempath planner and has supported experiments with interest performance in several ways. First, as more points are trackedoperators, motion estimation algorithms, search constraints, and correctly it becomes easier to identify those incorrectly tracked and
speed-up methods. In this paper we concentrate on the effects of delete them. Secondly, more points (and higher precision) improve
constraint and on speed improvement. We also indicate some ofou lasfo olo-o yse.the accuracy of the motion calculations [10. inally, points can be .- , ..

ourplans forafollowonsystm. successfully tracked through more images, and over longer

. nt roduction distances, for more accurate long term navigation.

Some of the constraints arise from the known rela~tionshpFOO is a navigation and vision system for a robot rover. Using between the cameras and the vehicle. Other constraints come from
only stereo vision, it locates obstacles, plans a path around them, vehicle motion estimates: the image location of an object that hasand tracks the motion of the robot as it moves. FIDO'S main loop been stereo ranged on a previous stp is constrained by,re eae: beenpinsbyat jud eragedterefet We usa mdevailiv vte icl rnthhedrepeatedly- approximate knowledge of the vehicle's new position. .

* picks about 40 points from one member of a stereo We tested FIDo using various combinations of constraints In order• image pair to judge their effect. We usually made a live vehicle run with the

Sstereo-ranges thosepointsbya hierrchiclcorrelation current best settings, and saved all the images and position
teplnque apredictions in a file. Subsequent runs were done off-line using this" p la n s a p a th th a t a v o id s th o se p o in tsst r d d t , w t di er n o s r i t e t n g . u h r n s e e" -' "

" moves forward store data wihdifretcosran-stins Sc rn wr

compared for accuracy of the final calculated position, number oftakes wfeatures successfully tracked at each step, and occurrence of any* relocates those same points and stem ranges them catastrophic failures.again-' '--"9 deduces vehicle motion from apparent point motion. 1.2 Imaging Geometry Constraints

These constraints are the simplest to understand and to apply. . "This paper descnbes our experimental investigations and They depend only on camera and robot geometry, and Ihey are
improvements in FIDO's performance. Early versions of FIO and Its applicable to stereo point matches of both new and previously
predecessor, the Stanford Cart programs, used 9-eyed stereo, took ranged po;nts.
15 minutes or more per step, and were not always reliable. By using
additional geometric constraints, we have been able to increase the Near and For Limits. Point distances are not permitted to be

- reliability while using only 2 stereo images instead of 9. With fewer greater than infinity (by the real world) or less than a certain
images and several optimizations, we reduced the run time from 15 distance (by the nose of the robot). This determines a maximum
minutes to less than a minute per step. We also explored using and minimum stereo disparity of the feature match.
parallel hardware for further speedups. Eplpolar Constraint. This is the standard stere epipolar

Section 2 of this paper discusses the constraints used and their constraint: if the point of view moves purely sideways the image of
effects on system precision. Section 3 presents optimizations for a point will also move sideways (in the opposite direction) but not* speed and prospects for parallelism. Finally, section 4 presents up or down. In the real world of misaligned cameras and distorted .. 7,(T some extrapolations on the Fpio experience. vidicons, the Image might appear to move a little vertically, so we

The FlOe system has1 SUpported expeiments in other allow some slop (10% of the image height typical).
visual navigation, notably interest operators, used to pick points to 1.3 Motion Geometry
be tracked from image to image, and path planning. The relts The estimated motion of the vehicle from step to step piace ahave been presented elsewhere [8, 9]. We found that the simpie strong constraint on point matches. It can be used eher a priori tointerest operator used in the original Cart program worked as well limit the search area within an image, or a posteriori to gauge the ,'." "
as more expensive ones, and it was retained with only slight reasonableness of a match. The predictd position of the vehicle
changes. Fine does incorporate a new, more flexible, path planner can also be combined with the points tracked by vision in thebased on a grid combinatorial search and incremental path vehicle motion calculation. P1o uses the motion geometry
smoothing. constraints In the following 4 ways:
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Two D Motion. We usually run Our robot on locally flAt ground, in timse and ralled an dead reckoning while the latter placed too much *.'.

which case we know it will not pitch, roll, or move vertically. This reianc on snail numbers of trce points.%.
reduces the problem of determining vehicle motion from 6 degrm a ed on our experiences, we make the following observations:
of freedom to 3, smplying the Computation and tightening thet*auit. 9 The epipelar Constraint is the Single mo Powerful *

constraint
consraint. Turning it off, and all the others on,Recquire Constraint. Ginen the 3D location of a point reatv signiicantly decreases th minimum and average . ... %.

to a Previous vehicle position, and a dead reckoned new poition number of features &aked and the accuracy of Oe
and heading for the vehicle, it is possible to predict where that point motion solution. Turning it on, with all others off, e

should appear in the new stereo pair of images. If this constraint is significantly increased the number of points tracked. in %

active FIO will use the prediction to lmit the stereo matr, hers a sense, this is not surprising, since the epipolar ____

search. Three user.settable variables control the error estimates in constraint rules out 90% of the image, more than any

robot position and orientation, and consequently the size of the other constraint.

search box around the predicted image position.

Prune. When all points from a previous position have been * No single constraint makes the difference between a

reacquired at a new vehicle location and stereo-ranged, there is a successful and a catastrophic outcome.

pruning step that looks for points that do not move rigidly with the

rest of the points. The points that do not appear to move rigidly *In none of the runs was vision as accurate at

have probably been tracked incorrectly, and can be deleted before calculating translation as straight dead reckoning

C) the least-squares process that solves for vehicle motion. Activating based on motor commands, though in the best runs "

the Prune constraint causes the predicted vehicle position to be vision determined the rotation more correctly. It would

included as one of the points in the rigidity test, perhaps weighting have been better to use the dead reckoned motion

the selection to the correctly matched points rather than a rather than the visually determined one if the number of

coincidentally consistent incorrect set. features tracked dropped below 6 or 7, rather than 4
which was the threshold, at least for the level of ground

Motion Solution. The motion solver determines the motion that roughn and mechanical accuracy i the

minimizes the error between where points have been seen and experiments. and m n a c I

where they should have been seen given that motion. The experments

predicted vehicle position can be included as one of the points In * We noticed that even the best runs have about a 2D9
this least-squares proress, weighted more or less depending on the error in calculated translation, always n the short side.

assumed precision of the prediction. We suspect a small camera calibration error, and

1.4 Results possibly systematic errors in representing uncertainty.

We made several runs of the FIDO system on Neptune, with fairly FIDO calculated a point's 3D location by projecting rays

*consistent results. Data from June 24, 1984 was most extensively through the centers of the pixels in the stereo images,

analyzed. on that run a single large obstacle was placed a close 2 which gives a location on the nea side of the range of

meters ahead of Neptune's cameras, with the destination set to the uncertainty of distance.
far side. It was a tough test for FIDO, since it required the maximum
allowed turn (limited by the need to have significant overlap in the e There is a problem in using all the geometric

views from successive positions) on each step to get around the constraints to cut down the search area since it leaves

obstacle and back on course. We ran FIOO with each constraint in none for verification and pruning. If we had very

*what we thought to be its best state, and saved images and dead accurate motion prediction, we would have to resort to

reckoning information. Then we made a series of off-line runs On photometry instead of geometry to identify Points that

the stored data, varying settings and watching the results. Several had been occluded or otherwise lost.

runs differed in only one parameter from the original. a few others 2.Sedu M th s
changed two or three. The last group of runs began with one using

none of the constraints, followed by a series each with only one noo now takes 30 to 40 seconds per step on a Vax It fl80 under
Unix. To run in real time, we would have to reduce that to about I

constraint on. second per step, We have looked at several speed-up techniques,

Figure 6 summarizes the results. The most important measure Of including faster processors, dedicated hardware, coding hacks, .

a run's success is the (program's) calculated position at the end of and parallel processing.

the run: the nearer to the actual (manually) measured position, the F G -""Faster General Purpose Computers ,....
bettr Our VAX is about a one-Mip (Million instructions Per second)

Some cautionary notes are in order. The relative success of the machine. it is technically possible to get the required speedup by

run with only the far distance constraint iz accidental. During that simply obtaining a 30-MiP or faster computer. Budget and lo c ". -0.-'

run, there were two steps where the motion solution was completely leave this a a tantalizing future possibility.
wrong but that by coincidence nearly offset each other. Many Of

the other single constraint runs that appear worse actually had only Commercial Array Processors

one wild miscalculation. Buying a commercial arry processor is more feasible for us than

Some of the all-but-one constraint run also appear too good. i buying a faster computer. About 90 percent of the runtime in FIDO

many of theses cases the dead-reckoning information was Occurs in image array operations and geometric calculations. .- -

sometimes better than the visual tracking. The run with no epipolAr particularly the convolutions in point matching. These re done by.- -.

constraint has a better final position than the run with no reacquire small pieces of code that work on large amounts of data, and are

constraint, because, by luck, it tracked fWer points at thie right well suited to the pipelined vector arithmetic of available array

'33
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processors. We estimate, for instance, that a 100 MIP array implementation of the correlator on a 10-MHz MC68000 system,

processor could give us the desired factor of 30 speedup. We've with all the images held in integer arrays. After eliminating all

made several serious attempts to acquire one; so far, this remains floating point operations the resulting code still took 29

another tantalizing possibility, microseconds per call to the correlator, compared with 4 to 5 on the

VAX.0
Coding optimizations

Much effort has been, expended on speeding up the Vax 2.1 Parallelism

implementation. We feel there is little room for left for significant There are several ways to break FO into separate processes that

improvements in a time-shared, paged.memory environment. The can run in parallel on different machines, including pipelining on

basic routines, such as the correlator and the interest operator, fit macro or micro scales or the use of a master/slave system. .. S.: -

all the criteria for good candidates for optimization [2]: the code is Macro Pipelining
fairly well understood, stable, small, and accounts for a large One process might do the reductions, the next could do -

amount of run time. For instance, the implementation of the reacquires thenextthematch, another motion-solving, and theilst.

correlator uses the following coding techniques: path planning. This organization improves throughput but not the

" The calculations of parameters of the correlating latency. The problem with this method is the sequential nature of

window are done once, outside the main loop. 1 Og. Since all the image reductions have to be finished before the

reacquires can start, all the matches done before the path planning,

* Sums and sums of squares for consecutive columns and so forth, each pipeline stage has to wait for the previous stage.

and rows are calculated by Price's technique [7]. The Since each step takes as long as on a serial machine, and since the

next window total is calculated by adding in the total for steps are done sequentially, the time to process any one set of

the column that just entered the window and images is the same as on a single processor system.

subtracting off the total for the column that just left the Micro Pipelining

window. The processes could be subdivided more finely. For instance,

one processor might do the first level of match-for one point after
" Squares are oflsumsted bf topiel lookues, te tle another, handing its results to the process that does the next level

squares are of sums of two pixel values, the table of match. When matches are finished, the pipeline could be P

reconfigured for path planning, and so on. This approach requires

" Image windows are moved by pointer swapping, rather huge communication bandwidth between processes-

than by data transfers. Master/slave

This method has one master process and several identical slave

o Loop indices count down to 0, since the VAX hardware processes. Each slave handles every image processing task:

o has an efficient test-for-not-0-and-branch instruction, reduction, matching, and interest operator. At any time all the p
slaves work on the same task with different data. For example,

* Formulas are rewritten to eliminate extra calculations. during image reduction, each slave reduces part of the image, and

For example, during matching each slave processes its own queue of points.

2 * Z(imgl * img2) * The master process does tasks that require global knowledge such

Z((imgl + img2)t2) - -(img 1t2) - I(img2t2) as path-planning or motion-solving, and coordinates the slaves.

gives a way of calculating the sum of the products of This more flexible organization avoids several delays inherent in

* the pixel values by additions (which are cheap) and pipelines.

squares (which can be done by table lookup) ratherthan multiplications. The individual sums are also used We implemented variants of this idea in our Ethernet- connected""'"--".
thn ulipiaton. heidiidalsusar asousdmulti-Vax environment. Given the existing uniprocessor code. the , .-

in other parts of the calculation, so in this case the sum

of products comes for free. task was not difficult. The slaves required new code for

communication with the master, but the actual work is done by calls

Loop unrolling. The code in the innermost loop is to the old image processing routines. The master contains the old - -

path planning and display code, and new communication code and

loop that counts to n. This saves n increments of the dispatch tables to keep track of each slave's activities. When a .

counter and n tests for the end of tho loop. slave completes a task the master updates its dispatch table, finds a

new task and puts the slave to work again. For instance during

* Register use. The most frequently used variables are point matching each slave is initially given one point to correlate.

located in hardware registers. When a slave finishes its correlation, the master hands it a new

point to find. When all the points are handed out the master

These programming techniques reduce the run time of the redundantly hands out points that are still in process on other

correlator from 140 ms per call for a straightforward implementation slaves, and accepts the first answer to be returned, giving some

to 4 to 5 ms per call. Similar optimizations have been performed on protection against overloaded or crashed processors.

the other tight loops, such as in the interest operator and the image A version of the system that used several VAXes in parallel was

fine to coarse reduction routine. The user-level routines have been swamped, as expected, by the overhead of squeezing images

optimized to the point that the single routine that uses the most btenmcie hog h tent nte eso htue
CPU time is now an image unpacker. multiple processes on a single Vax gave us some Idea of the

Dedicated hardware performance that might be possible if faster communication.

A dedicated microcomputer running FIO with enough memory to perhaps through shared memory, were available.

store all the relevant images offered some hope. We tried an
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The single machine version uses the Sam decomposition a the * A device able to digitize images directly into the shared

multiple machine version, and the same general.purpose memory.
inderprocess communication package. Because of limitations in the

communications package, each slave calculated its own image * Caeras with less image distortion than our current

pyramid. vidicons, so image warping would not be needed.

2.2 Timings for a 28-Step Run 3. The Next System

Single Processor 978 Some simple hardware enhancements could improve FIDO'S

performance. A pan mechanism for the stereo cameras would -...-

One Slave permit larger turns while still maintaining continuity of field of view. ..- -

Master 216 Motion and heading sensors would improve navigational accuracy L

Slave I we and eliminate som catastrophic mispereptions.'

Five Slaves Navigational accuracy could also by improved by modifying the -
motion estimation algorithm. The current algorithm reacquires

Master 234 features in new a image by searching for the features withinslave 1 403 '""""

Slave 2 402 windows predicted by an a priori motion estimate. This makes poor

Sl1ve 3 403 use of the assumption that objects do not move; that is, that they

Slave4 402 appear to move rigidly from frame to frame. Since all search

Slave 5 400 windows are defined before any search begins, constraint is not
propagated from one match to another. A seemly better approach

Notes: is the iterative registration method [1], (3], [4]. In this method, 3-D
feature positions are projected onto a new image using an initial

numbermotion estimate, then the motion estimate is refined to optimize - -
slaves. some measure of match in the image. We are currently

communication package experimenting with the variation proposed by Lucas [4] and plan to
Wh go udibcaout 3e report empirical results in the near future.Coverhead the time for a single slave would be about 325

seconds or 12 seconds per step. Two bugbears in our systems to date have been the calibration of'.
camera and motor parameters and the represention of uncertainty

* Without image or communication overhead, and with in the 3.D locations of perceived objects. We are considering an

the time for picture reduction shared evenly, the time adaptive approach that calibrates the cameras (semi.)continuously
for each of the five slaves would be 65 seconds, or on the fly and adjusts the motor control parameters from

about 2.5 seconds per step. observations of past vehicle motions. A simple technique like this r
was used successfully in an early program that drove the Stanford

" The work spreads very evenly among the slaves. With Cart in straight lines 151. We are also looking at carrying along

5 slaves, the workload is balanced to within the uncertainties in feature locations and updating the uncertainty as
accuracy of our measurements. new measurements are taken. Eventually, we hope to automate the

process to the point where calibration simply requires turning on

e If the master process did not handle images, had zero- the vehicle and letting it run by itself for a while.
cost communication, and didn't have to do image Acko-ld-ee,
distortion correction, it could run in 75 to 80 seconds, Acknowledgement

or about 3 seconds per step. This work has been supported by the Office of Naval Research

" By comparison, the original uniprocessor system runs under contract number N00014.81 .K.0503.

in 978 seconds, or 35 seconds per step. With the
advantages we assumed above (no image handling
overhead) it would still have taken 503 seconds, or 18
seconds per step.

2.3 Remarks
Our experiments suggest that it is possible to decompose FIDO

into a 5 to 10 fold parallel set of efficiently cooperating parts
running on conventional processors. To realize the run times
suggested above we would need the following:

e Shared main memory large enough to hold at least two
image pyramids without swapping or data packing. (2 *

1256 + 64 + 16 + 4 + 1 . .25] . 700 KiloBytes).

Fast interprocess communication for small messages.

o At least 5 processors. It takes 5 slave processors to
bring the image processing time into the same range as
the master process' time.
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Path Relaxation: Path Planning for a Mobile Robot

Charles E. Thorpe

Computer Science Department, Carnegie-Mellon University

Abstrcit Path Relaxation is a method of planning safe paths around planner. Section 3 discusses some common types of path planners. and _. 1obstacles for mobile robots. It works in two steps: a global grid search shows how they are inadequate for our application. The Path Relaxau 'tiothat finds a rough path, followed by a local relaxation step that adjusts algorithm is cxplained in detail in Section 4. and some additions to the V..each node on the path to lower the overall path cost. The representation basic scheme are presented in Section S. Finally, Section 6 discusses .used by Path Relaxation allows an explicit tradeoff among length of shortcomings of Path Relaxation and some possible extensions.path, clearance away from obstacles, and distance traveled through
unmappd arm 2. Constraints

1. Introduction An intelligent path planner needs to bring lots of information to bear .
on the problem. This section discusses some of the information usefulPath Relaxation is a two-step path-plrarning process for mobile robots, for mobile robot path planning, and shows how the constraints for ,.It finds a safe path for a robot to traverse a field of obstacles and arrive at mobile robot paths differ from those for manipulator trajectories.its destination. The first step of path relaxation finds a preliminary path L-w imesioalit. A ground-based robot vehicle is constrained toon an eight-connected grid of points. The second step adjusts, or r. .. --relaxes", the position of each preliminary path point to improve the three degrees of freedom: x and y position and orientation. In particular. a .. ,_ 'epath. the CMU Rover has a circular cross-section, so for path planning the
orientation does not matter. This makes path planning only a 2DOne advantage of path relaxation is that it allows many different problem, as compared to a 6 dimensional problem for a typicalfactors to be considered in choosing a path. Typical path planning manipulator. "algorithms evaluate the cost of alternative paths solely on the basis ofpath length. The cost function used by PMth Relaxation, in contrast, also Imprecis ecotrol. Even under the best of circumsances, a mobileincludes how close the path comes to objects (the further away, the lower robot is not likely to be very accurate: perhaps a few inches, compared to*ithe cost) and penalties for travcling through areas out of the field of view. a few thousandths of an inch for manipulators. The implication for path "The effect is to produce paths that neither clip the corners of obstacles planning is that it is much less important to worry about exact fits fornor make wide deviations around isolated objects, and that prefer to stay mobile robot paths, If the robot could, theoretically, just barely fitin mapped terrain unless a path through unmapped regions is through a c in opening, then in prtict pr bly no aoosubsantall shrte. Oherfacorssuc asshapnes o coner or way to go. Computational resources are better spent exploring alternatevisibility of landmarks, could also be added for a particular robot or paths rather than worrying about highly accurate motion calculations. *mission. Cumulative error. Errors in a dead-reckoning system tend to

* Path Relaxation is part of Fide. the vision and navigation system of the accumulate: a small error in heading, for instancan can give rise to a large '
CMU Rover mobile robot. [7] The Rover. under Fido's control, navigates error in position as the vehicle moves. The only wa to reduce error is tosolely by stereo vision, It picks about 40 points to track, finds them in a periodically measure position against some global standard, which can bepair of stereo images, and calculates their 3D positions relative to the time-consuming The Rover, for example, does its measurement byRover. The Rover then moves about half a meter, takes a new pair of stereo vision, taking a few minutes to compute its exact %ot. So apictures, finds the 40 tracked points in each of the new pictures and slightly longer path that stays farther away from obstacles, and allowsrecalculates their positions. The apparent change in position of those longer motion between stops for measurement. may take less time topoints gives the actual change in the robot's position, travel than a shorter path that requires more frequent stops. In contrast.a manipulator can reach a location with approximately the same errorFido's world model is not suitable for most existing path-planning regardless of what path is taken to arrive there. There is no cumulativealgorithms They usually assume a completely known world model, with error, and no time spent in reorientation.
planar-faced objects. Fidos world model, on the other hand, contains
only the 40 points it is tracking. For each point, the model records its Unknown areas. Robot manipulator trajectory planners usually knowposition, the uncertainty in that position, and the appearance of a small about all the obstacles. The Rover knows only about those that it haspatch of the image around that point. Furthermore. Fido only knows seen. This leaves unknown areas outside its field of view and behind •.• "obstacles, It is usually Preferable to plan a path that traverses onlyabout what it has seen: points that have never been within its field of known empty regions but if that path is much longer tan the shortestview are not listed in the world model. Also. the vision system may fail path it may be worth looking at the unknown regionsto track points correctly. so there may be phantom objects in the worldmodel tat have been seen once but are no longer being tracked. All this Fuzzy objects. Not only do typical maiipulator path-planners know " . -"indicates the necd for a data structure that can represent uncertainty and about all the objects they know precisely &here each object is. 'Ibisinaccuracy, and for algorithms that can use such data. information might come, for instance, from the CAI) system that

Section 2 of this paper outlines the constraints available to Fido's path designed the robot workstation. Mobile robots, on the other hand,usually sense the world as they go. Fido. instead or having precise
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bounds for objects. knows only about fuzzy points. 'Me lucation of a short paths and obstacle avoidance is the Regular Grid method. This
point is only known to the precision of the sero vion system, and the covers the world with a regular grid of points, each connected with s 4
extent of an object beyond the point is entirely unknown. or 8 neighbors to form a graph. In existing regular gid implementations,

thc only in formation stored at a node is whether it is inside an object or
In smmary, a good system for mobile robot path planning will be noL Then the graph is searched. and the shortest grid path returned.

quite different from a manipulator path planner. Mobile robot path This staihtforward grid search has many of the same "too close"
planners need to handle uncertainty in the sensed world model and pth p
errors in path execution. They do not have to worry about high problem as the vertex graph appraches.

dimensionality or extremely high accuracy. Section 3 of this paper 4. Path Relaxation
discusses some existing path planning algorithms and their shortcomings.
Section 4 then presents the algorithms used by Path Relaxation, and Path Relaxation combines the best features of grid search and potential
shows how they address these problems. fields. Using the rolling marble analogy, the first step is a global grid .".

search that finds a good valley for the path to follow. The second step is ", ." "

3. Approaches to Path Planning a local relaxation step, similar to the potential field approach, that moves - ' "
i sthe nodes in the path to the bottom of the valley in which they lie. The

This section outines several approaches to path planning and some of terrain (cost function) consists or a gradual slope towards the goal, hills 4
the drawbacks of each approach. All of these methods except the . -:ptendraacksf e h approach. Alof these hse thods cp t pwith sloping sides for obstacles, and plateaus for unexplored regions.
potential fields approach abstract the search space to a graph of possible The height of the hills has to do with the confidence that there really is
paths. This graph is then searched by some standard search technique,
such as breadth-first or A* 181, and the shortest path is returned. The an object there. Hill diameter depends on robot precision: a more . , -

important thing to note in the following is the information made explicit precise robot can drive closer to an object, so the hills will be tall and
narrow, while a less accurate vehicle will need more clearance, requiring

by each representation and the information thrown away. wide, gradually tapering hillsides.

Free Space methods. 12. 3.9] One type of path planner explicitly deals This section first presents results on how large the grid size can be
with the space between obstacles. Paths are forced to run down the
middle of the corridors between obstacles, for instance on the Voronoi without missing paths. It next discusses the mechanism for assigning costmidl o te oridrsbewen bsaces fr nsane n heVoonl o the nodes and searching the grid. Finally. it presents the relaxation•.- . .
diagram of the free space. Free space algorithms suffer from two related to th nds nd srin th rd. aten hrxi
problems. both resulting from a data abstraction that throws away too ep that adjusts the positions of path nodes.

much information. The first problem is that paths always run down the Gid Size. How large can a grid be and stll not miss any possible
middle of corridors. In a narrow space, this is desirable, since it allows paths? That depends on the number of dimensions of the problem, on
the maximum possible robot error without hitting an object. But in some the connectivity of the grid. and on the size of the vehicle. It also
cases paths may go much further out of their way than necessary. The depends on the vehick's shape: in this section, we discuss the simplest -
second problem is that the algorithms do not use clearance information, case, which is a vehicle with a circular cross-section.
The shortest path is always selected, even if it involves much closer
tolerances than a slightly longer path.

Vertex Graphs. fS, 10. 61 Another class of algorithms is based on a
graph connecting pairs of vertices. For each pair of vertices, if the line Abetween them does not interisect any obstacle, that fine is added to the

graph of possible paths. Vertex graph algorithms suffer from the "too
close" problem: in their concern for the shortest possible path. they find
path% that clip the corners of obstacles and even run along the edges of 1
some objects. It is. of course, possible to build in a margin of error by
growing the obstacles by an extra amount; this may, however, block 1 2 1'2
some paths. Fiu"l Gri Size PrblmseBoth free space and venex graph methods throw away too much Figure 1: Grid Si.e Problems _

information too soon. All obstacles are modeled as polygons, all paths
are considered either open or blocked, and the shortest path is always The area to be traversed can be covered with a grid in which each node '...,

best. ]here is no mechanism for trading a slightly longer path for more is connected to either its four or its eight nearest neighbors. For a four-
clearance, or for making local path adjustnents. lhcre is also no clean connected grid. if the spacing were r, there would be a chance of missing , -"
way to deal with unmapped regions, other than to close them offentirely. diagonal paths. At left in Figure 1. for instance, there is enough room for . .- -

The Potential Fields 11. 41 approach tries to make those tradeoffs the robot to move from (1.1) to (2.2). yet both nodes (1.2) and node (2,1)
explicit. Conceptually, it turns the robot into a marble, tilts the floor are blocked. To guarantee that no paths are missed, the grid spacing
towards the goal. and watches to see which way the marble rolls. must be reduced to r" sqr(2) / 2. as in the center of igure 1. "hat is
Obstacles are represented as hills with sloping sides, so the marble will the largest size allowable that guarantees that if diagonally opposite
roll a prudent distance away from them but not too far, and will seek the nodes are covered, there is not enough room between them for the robot
passes between adjacent hills. The problem with potential field paths is to safely pass. Note that the converse is not necessarily true: just because

that they can get caught in dead ends: once the marble rolls into a box there is a clear grid path does not goarantee that the robot will fit. At this
canyon. the algorithm has to invoke special-case mechanisms to cut off stage. the important thing is to find all possible paths, rather than to find
that route, backtrack, and start again. Moreover, the path with the lowest only possible paths. I
threshold might turn out to be a long and winding road, while a path that If the grid is eight-connect-d, as in the right of Figure 1. (each node
must climb a small ridge at the start and then has an easy run to the goal connected to its diagonal, as well as orthogonal, neighbors), the problem
might never be investigated, with diagonal paths disappears. The grid spacing can be a full r, while

Another approach that could explicitly represent the conflicts between guaranteeing that if there is a pat, it will be found.

n.



God Searc. Once the grid size has been fixed. the next step is to unlikely to be exactly on a grid point. If the grid path is topologically
assign costs to paths on the grid and then to search for the best path equivalent to the optimal path (i.e. goes on the same side of each object),
along the grid from the stat to the goal. "Best". in this case, has three the grid path can be iteratively improved to approximate the optimal .*J
conflicting requirements: shorter path length, greater margin away from path (see Section 5). But if the grid path at any point goes on the
obstacles, and less distance in uncharted arcas. These three are explicitly "wrong" side of an obstacle. then no amount of local adjustment will
balanced by the way path costs are calculated. A path's cost is the sum of yield the optimal path. The chance of going on the wrong side of an
the costs of the nodes through which it passes each multiplied by the obstacle is related to the size of the grid and the shape of the cost vs.
distance to the adjacent nodes. (In a 4-connected graph all lengths are distance function. For a given grid size and cost function, it is possible to
the same. but in an S-connected graph we have to distinguish between put a limit on how much worse the path found could possibly be than the
orthogonal and diagonal links.) The node costs consist of three parts to optimal path. If the result is too imprecise, the grid siz can be decreased
explicitly represent the three conflicting criteria, until the additional computation time is no longer worth the improved

1. Cost for distance. Each node starts out with a cost of one p
uniL for length traveled. A few details on the shape of the cost function deserve mention. Many

different cost functions will work, but some shapes are harder to handle
2. Cost for near object Each object near a node adds to that properly. The first shape we tried was linear. This had the advantage of

node's cost- The nearer the obstacle, the more cost it adds. being easy to calculate quickly, but gave problems when two objects were
The exact slope of the cost function will depend on the close together. 'Ihe sum of the costs from two nearby objects was equal
accuracy of the vehicle (a more accurate vehicle can afford to to a linear function of the sum of the distances to the objects. This
come closer to object). and the vehicle's speed (a faster creates ellipses of equal cost, including the degenerate ellipse on the line
vehicle can afford to go farther out of its way), among other between the two objects. In that case, there was no reason for the path to
factors. pick a spot midway between the objects as we had (incorrectly)

O) expected. Instead, the only change in cost came from changing distance,
3. Cost for within or near an unmapped region. The cost for so the path went wherever it had to to minimize path length. In our first

traveling in an unmapped region will depend on the vehicle's attempt to remedy the situation we replaced the linear slope with an
mission. If this is primarily an exploration trip, for example, exponentially decaying value. This had the desired effect of creating a
the cost might be relatively low. There is also a cost added saddle between the two peaks. and forcinl the path towards the midpoint
for being near an unmapped region, using the same sort of between the objects. The problem with exponentials is that they never
function of distance as is used for obstacles. Ibis provides a reach zero. For a linear function, there was a quick test to see if a given
buffer to keep paths from coming too close to potentially object was close enough to a given point to have any influence. If it was
unmapped hazards, too far away, the function did not have to be evaluated. For the

exponential cost function, on the other hand, the cost function had to be
The first step of Path Relaxation is to set up the grid and read in the list calculated for every obstacle for each point. We tried cutting off the size

of obstacles and the vehicle's current position and field of view. The of the exponential, but this left a small ridge at the extremum of the
system can then calculate the cost at each node, based on the distances to function, and paths tended to run in nice circular arcs along those ridges.
nearby obstacles and whether that node is within the field of view. The A good compromise, and the function we finally settled on, is a cubic
next step is to create links from each node to its 8 neighbors. The start function that ranges from 0 at some maximum distance, set by the user,

* and goal locations do not necessarily lie on grid points, so special nodes to the obstacle's maximum cost at 0 distance. This has both the
need to be created for them and linked into the graph. Links that Pass advantages of having a good saddle between neighboring obstacles and
through an obstacle, or between two obstacles with too little clearance for of being easy to compute and bounded in a local area.
die vehicle, can be detected and deleted at this stage. Relaxatoi Grid search finds an approximate path; the next step is

The system then searches this graph for the minimum-cost path from, an optimization step that fine-tunes the location of each node on the path
the start to the goal. The search itself is a standard A* [81 search. The to minimize the total cost. One way to do this would be to precisely - " . -

estimated total cost of a path, used by A* to pick which node to expand define the cost of the path by a set of non-linear equations and solve
*next. is the sum of the cost so far plus the straight-line distance from the them simultaneously to analytically determine the optimal position of

current location to the goal. This has the effcct, in regions of equal cost, each node. This approach is not, in general. computationally feasible.
of finding the path that most closely approximates the straight-line path The approach used here is a relaxation method. Each node's position is
to the goal. adjusted in turn, using only local information to minimize the cost of the

The path found is guarantc.d to be the lowest-cost path on the grid, path sections on either side of that node. Since moving one node may
but this is not necessarily the overall optimal path. Fir, of all. even in affect the cost of its neighbors, the entire procedure is repeated until no
areas with no obstacles the grid path may be longer than a straight-line node moves farther than some small amount.
path simply because it has to follow grid lines. For a 4-connected grid, NoJe motion has to be restricted. If nodes were allowed to move in
the worst case is diagonal lines, where the grid path is sqrt(2) times as any direction, they would all end up at low cost points, with many nodes
long as the straight-line path. For an 8-connected grid, the equivalent bunched together and a few long links between them. This would not
worst case is a path that goes equal distances forward and diagonally, give a very good picture of the actual cost along the path. So in order to
This gives a path about 1.08 times as long as the straight-line path. In keep the nodes spread out, a node's motion is restricted to be
cases where the path curves around several obstacles the extra path perpendicular to a line between the preceding and following nodes.
length can be even more significant. Secondly, if the grid path goes Furthermore, at any one step a node is allowed to move no more than
between two obstacles, it may be non-optimal because a node is placed one unit.

closr tooneobstclethanto he oher.A nde pace exatlyhalfway As a node moves, all three factors of cost are affected: distance traveled ""--'
between the two obstacles would, for most types of cost functions, have a (from the preceding node, via this node, to the next node), proximity to
lower cost. The placement of the node that minimizes the overall path objects. and relationship to unmapped regions. The combination of
cost will depend both on node cost and on path length, but in any case isetsp u pd g .T c b in

these factors makes it difficult to directly solve for minimum cost node . .- ,

.....................................................................
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position. Instead. a binary search is used to find that position o Euxaile Rm. Figure 2 is a run from scratch, using real data
%hatever accuracy is desired, extracted from images by the Fido vision system. The cirles are ,, .

obstacles, where the size of the circle is the uncertainty of the stereo %" - -
The relaxation step has thc effect of turning jagged lines ino s t vision system. The dotted line surrounds the area out of the field of %

ones where possible, of finding the "saddle" in the cost function between view. The start position of the robot is approximately (0. -.2) and thetw o objects, and of curving aro u nd isolated objects It also d oes de g o l i 0 4 5 . T e g i a h fo n-sm r e y O s f e n
"right thing" at region boundaries. The least cost path crossing a bordertouc lnfc na nl14oet, The grid path fond is marked by 0=s. After one
between different cost regions will follow the same path as a ray of light iteration of relaxation, the path is marked by l's, and after the second 9"

refracting at a boundary between media with different transmission (and, in thiscase, last)relaxation, by 2"s -.. .
velocities. The relaxed path will approach that path.

5. Additions to the Basic Scheme

- -One extension we have tried is to vary the costs of individual obstacles. : -

The current vision system sometimes reports phantom objects, and
sometimes loses real objects that it had been tracking correctly. The
solution to this is to "fade" objects by decreasing their cost each step that -'-"-.- -

they are within the field of view but not tracked by the vision module.

Another extension implemented is to re-use existing paths whenever . ' "
possible. At any one step. the vehiclc will usually move only a fraction of

*[ the length of the planned path. If no new objects are seen during that
step. and if the vehicle is not too far off its planned course, it is possible \ -..-
to use the rest of the path as planned. Only if new objects have been ..
seen that block the planned path is it necessary to replan from scratch. % --

The relaxation step can be greatly speeded up if it runs in parallel on
several computers. Although an actual parallel implementation has not

, 6, [[ yet been done, a simulation has been written and tested. ,'.,..j"--

6. Remaining Work -.- - -

Path Relaxation would be easy to extend to higher dimensions. It
could be used, for example, for a 3D search to be used by underwater
vehicles maneuvering through a drilling platform. Another use for
higher-dimensional searches would be to include rotations for
asymmetric vehicles. Yet another application would be to model moving -- •-
obstacles: then the third dimension becomes time, with the cost ofa grid - , ,
point having to do with distance to all objects at that time. This would References
have a slightly different flavor than the other higher-dimensional
extensions; it is possible to go both directions in x, y, z. and theta, but i. J. Randolph Andrews. Impedance Control as a Framework for .. *, '..

only onc direction in the time dimension. Implementing Obstacle Avoidance in a Manipulator. Master Th., MIT,
1983.

Another possible extension has to do with smoothing out sharp 2. Rodney Brooks. Solving the Find-Path Problem by Representing ," . "corners. All whecls on the Rover steer, so it can follow a path with sharp Free Space as Generalized Cones. Al Memo 674, Massachusetts Lcorners if necessary. Many other vehicles, arc not so maneuverable; they Institute of'Technology. May, 1982.

may steer like a car. with a minimum possible turning radius. In order to 3. Georges Giralt. Ralph Sobek. and Raja Chatila. A Multi-Level
accommodate those vehicles, it would be necessary to restrict both the Planning and Navigation System for a Mobile Robot; A First Approach
graph search and relaxation steps. A related problem is to use a to Hilare. Proceedings of lJCAI-6. August, 1979.
smoothly curved path rather than a series of linear segments. 4. Oussama Khatib. Dynamic Control of Manipulators in Operational

An interesting direction to pursue is multiple-precision grids. This Space. Sixth CISM-IFToMM Congress on Theory of Machines and

could make it possible to spend more effort working on precise motion mechanisms, New Delhi. India. December, 1983.
through cluttered areas, and less time on wide open spaces. 5. Tomas Lozano-Perez and Michael A. Wesley. "An Algorithm for

Planning Collision-Free Paths Among Polyhedral Obstacles." CACM
Path relaxation, as well as almost all existing path planners, deals only 22.10 (October 1979).

with geometric information. A large part of a robot's world knowledge, 6. Hans Moravec. Obstacle Avoidance and Navigation in the Real
however, may be in partially symbolic form. For example, a map World by a Seeing Robot Rover. Tech. Rept. CMU-RI-TR-3. Carnegie-
assembled by the vehicle itself may have very precise local patches, each Mellon Univesity Robotics Institute, September, 1980. - "
measured from one robot location. The relations between patches. 7. Hans Moravec. The CMU Rover. Proceedings of AAAI-82,though, will probably be much less precise, since they depend on robot August. 1982.
motion from one step to the nevC Using such a mixture of constraints is 8. N. Nilsson. Problem Solving Methods in Articial Intelligence
a hard problem. McGraw-Hill, 1971.
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Modelling Uncertainty
in 3D Stereo Navigation

Larry Matthies
Computer Science Department

Carnegie-Mellon University

Abstract
0

We are studying the accuracy with which stereo vision can guide a mobile robot. In stereo
navigation, a robot uses a sequence of stereo images to estimate Its own motion as It travels through

a world of stationary objects. A set of landmarks is established by finding corresponding features in
one stereo pair. This yields an initial 3-D model of the local environment of the robot, defined in
robot-centered coordinates. As the robot moves, it periodically digitizes another stereo pair, finds the
landmarks in the new images, and computes their coordinates relative to its new location. The motion
of the robot since the last stereo pair is determined by fitting a transformation mapping between the
new and the old coordinate values.

Previous algorithms for stereo navigation have suffered from poor accuracy and low tolerance to
correspondence errors. This is partly due to inadequate models of stereo triangulation error..-
Typically, scalar reliability factors are associated with landmarks to indicate the uncertainty in their
3-D coordinates. These scalars are used to weight the contribution of each landmark In the motion
solving algorithm. This paper argues that stereo triangulation error is better modelled by treating
landmark locations as random variables with 3-D normal distributions. This leads to revised
algorithms for motion solving in which the covariance matrices weight the contribution of each
landmark. Preliminary simulation results show that the matrix weights achieve substantially more
accurate motion estimates than scalar weights. These results should carry over into applications of

3-D vision outside of navigation.

1. Introduction
Mobile robot navigation is a problem of growing interest and practical importance. A travelling

robot must be able to detect the shapes and positions of nearby objects and to monitor its own
position in a global reference frame. This requires range sensors and motion sensorm; we are

currently exploring stereo vision for use as both. '.- . --

Our paradigm for stereo navigation operates as follows [13]. For simplicity, assume that nothing In
the environment moves except for the robot. A set of landmarks is defined In a robot-centered -
coordinate system by matching features in a pair of stereo Images. The robot then takes a step, finds

4+5
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the landmarks in a new pair of images, and calculates their coordinates relative to its new location.
The motion between stereo pairs is reflected in the difference between the new and the old landmark
coordinates; an estimate of this transformation is found with least squares. The whole process is
repeated periodically to monitor robot motion over long distances.

We have previously used this paradigm in systems that were able to guide a robot through short
obstacle courses [13], [17]. In one set of experiments, the robot accumulated approximately half a
meter of error in its global position estimate over a course six meters long [11]. However, the motion
estimates were rather unstable. This Instability is reflected throughout the computer vision literature:
algorithms for visual motion estimation are generally very sensitive to noisy data [2].

Part of this sensitivity is due to inadequate modelling of stereo triangulation error. Triangulation
induces an uncertainty on 3-D coordinates that Is greater for distant points than for near points and
greater in the direction of the line of sight than perpendicular to it (see figure 2). This phenomenon
has been recognized and modelled for a long time in photogrammetry[15], but has been
comparatively ignored In computer vision. In photogrammetry it is common to model all
measurements as corrupted by normally distributed noise. 3-D positions inferred by triangulation
have an uncertainty modelled by 3-D normal distributions. In computer vision, Blostein and Huang

[2] have recently derived other probabilistic models of triangulation error, but they appear not to use
them in their algorithm for motion solving. Moravec's system [13] approximated triangulation error
with scalar coefficients used to weight the contributon of each landmark to the motion solution.
However, this does not capture the elongated and oriented nature of the uncertainty.

The purpose of this paper is to demonstrate the importance of modelling triangulation error. The
next section shows how 3-D normal distributions modelling the uncertainty in landmark positions can
be inferred from stereo data. This model is used In section three to derive new equations for
estimating motion. In these equations the covariance matrices of the normal distributions replace the
scalar weights of previous methods. Section four shows how to update the local 3-D model with
measurements from successive stereo pairs. It proposes to keep the representation in robot-centered
coordinates and shows how to use the error model to weight successive range measurements of
point locations. Only translational motion is treated. In section five we discuss the cascading of
incremental robot motion estimates to obtain an estimate of the global robot position and positional

uncertainty. The results of simulations on synthetic data are presented in section six. These compare
the new error model with a scalar weighting scheme and show substantially better performance with
the new model. Finally, the last section discusses the significance of these results, the difficulties we
expect to have in transferring them to real images, and our plans for extending the work.

I

2. Modelling Stereo Triangulation Error
The geometry of stereo triangulation is shown In figure 1. For the moment we consider just the 2-D ''.' "

case In which two dimensional points project onto one dimensional Images. Two cameras are placed
at offsets of lb from a coordinate system centered between the cameras. Given the coordinates x,
and x. of the left and right Images of the point P, the coordinates of P are given by

..: .. : : : . : . : : : : . -,.. .... .. . .. .. ..
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This estimate can be in error for several reasons. The finite resolution of the images contributes a
quantization uncertainty shown in figure 2a. A point projecting to pixels x, and x.r can lie anywhere in
the shaded region. As shown in figure 2b, this region grows with the distance to the point, becomes
more skewed with increasing distance, and is always directed along the line of sight to the point.
Besides this quantization effect, the stereo matcher can return slightly incorrect values of x, and x.
due to perspective and photometric distortions of the image. On top of this their may be geometric
distortions in the image or calibration errors between the two cameras. These errors are of a more
random nature, but they all contribute uncertainty similar to that shown in figure 2. p

Our goal is to find a model that accurately reflects the nature of this uncertainty and that can be
used conveniently to constrain algorithms for motion solving. Scalar weights can capture the "size"
of the uncertainty, but nothing of its shape. In a slightly different context, Baird [1] used polygons to
outline the border of the uncertainty region. These became constraints in a motion solving algorithm I.,
based on linear programming. In our situation the random nature of the errors makes a statistical
approach more appropriate. Motivated largely by the example of photogrammetry and the stereo -"-

calibration work of Gennery [71, we model the image coordinates as random variables with known
distributions and derive distributions on the point coordinates. For simplicity, we use linear models
and normal distributions throughout, rather than try to determine exact distributions from nonlinear
functions.

We begin by reating x and x, in equation (1) as corrupted by zero-mean, gaussian (normally
distributed) noise; that is,

xi= x1 + e! .,.'. .
XX+8X= , + Ii-- :

where e,-4 M O'l), e,- N(Oar), and x, and xare the true values of x, and x . Since (1) isnonlinear, ..
and Y will not be normally distributed. However, we will approximate them as binormal, with means
given by (1) and covariances obtained by linearization. Thus, L

e-N(V .)
and V_ = JVT.

Here P is the true value of P,A,,Is Its random component, Js the Jacobian of (1), and Vs the 2x2
covariance matrix of the image coordinates. In the model we have described, Vwill have qland a. on
the diagonal and zeroes off the diagonal, since we are assuming there s no correlation between -A

ff..
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Note that constant probability contours of the error distributions describe ellipses that approximate

the shape of both the non-random (figure 2) and the random contributions to landmark uncertainty.

The principal shortcoming of the model we have proposed is that it is not long-tailed as the true

distribution would be. Figure 2 hints at this; the uncertainty regions have a skew that isn't modelled

by a symmetric distribution. The skew is not significant for nearby points, but grows with distance.

We have not analyzed the effect of this other than by way of the simulations presented later. The

extension of this error model to 3-D points projecting onto 2-D images is straightforward.

3. Solving for Robot Motion
With the procedure above, 3-D coordinates and covariance matrices are estimated for a number of

points matched in the first stereo pair. After the robot moves and digitizes another stereo pair, we find

* the same features in the new images, triangulate, and compute new covariance matrices. This leads
to two models of the same points, with coordinates differing by the motion of the robot. If the robot

approached a landmark there will be less measurement error in the landmark coordinates, so the

terms of its covariance matrix will be smaller. The opposite will be true if the robot receded from the

landmark. See figure 3.

We now wish to determine the motion of the robot between stereo pairs. Suppose for the moment

that the motion is purely translational. Let P, represent landmark coordinates with respect to the first
robot poiin ,rpeetthe coordinates with rsetto the second position, and T= [T7 Tz] T

be the unknown translation vector. The motion is described simply by

(2)
In (2) we have observations of P, and Q, and wish to find T. The standard method is to apply least

squares to minimize
* I

(3)
Differentiating, setting the result to zero, and solving for T we obtain

(Q- PI)

When one has information on the reliability of each point, as we do here, the terms in the sum are
typically weighted according to their reliability. For scalar weights this modifies expression (3) to be

wt((?it pJ " )(QJ- pl- 7 )_- ,

with the resulting motion solution given by

4q
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With the new error model we proceed differently. Since P and Q are treated as normally distributed
vectors, the motion equation (1.5) can be rewritten as-

(5)
where D will be a normal vector with distribution N(O, Vp-+ VQ?1)= M(O,V,). Equation (5) is a linear
statistical model whose optimal solution can be reached several different ways [5]. One of these is to
minimize the following least squares expression:

S(Q_ pi T)T V[1 (01_ Pl- T)

(6)

= ((?I- P- T)TWI(Qwr Pr. 7)

This is equation (4) with the scalar weights w, replaced by the matrix weights Wa (the inverses of the
covariance matrices V1). The solution for T is

(7)

The inverse covariance matrices in (6) have the effect of replacing the usual Euclidean distance
norm, represented by the vector dot product in (4), with new norms for each point that stretch the
space as appropriate for the error In that point. This is shown In figure 4. Without the matrix weights,
residual vectors lying on circular contours have equal contributions to the total error of fit; with the
matrices, these contours become elliptical. This effectively gives more weight to errors perpendicular
to the line of sight than parallel to it, which Intuitively is what we want. In fact, scalar weights are just

the special case of matrices in which the matrix is diagonal with all diagonal elements equal, ie.
W = wi.

Since the translation T is given as a linear combination of normal random vectors, it will Itself be a
normal random vector. The mean of Its distribution is simply the value computed by equation (7). The
covariance matrix is given by

Imi

This matrix can be analyzed to determine the quality of the motion estimate.

All of the foregoing was derived assuming that the robot motion was purely translational. This Is

convenient because the equations remain linear, allowing solutions to be obtained simply and

.5j "'''
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preserving the normal error model. In the case of general motion, the presence of rotation introduces
a nonlinearity that complicates matters. The motion is now expressed by

Q,= RP+T
(8)

where R is a 3x3 rotation matrix. The standard least squares approach would find R and T by
minimizing V.-

(9) ..- .
Since the matrix R is a complicated function of the rotation angles, the equations obtained by
differentiating are nonlinear. The original approach to solving them was to linearize and Iterate;
however, recently two methods have been found to obtain a solution directly. In first, Hebert
[10] expressed the rotation as a quatemion and found a direct solution by applying certain identities
in quaternion algebra. The other is a technique from statistics called Procrustes analysis that solves
the matrix formulation directly [14]. Both of these methods apply to equations such as (9) that involve
only scalar weights, but fail when matrix weights are used. Applying our error model to general
motion leads to minimizing

EQ,-RPI-7)T W(Q,-RP-T)

(10)
"wilh W,=(R V"-RT+ vQ-

whereP,- N(OV,)andQ, -MO, V+)
The only method we have found for solving this equation is iterative. An Initial approximation is
obtained using the Procrustes method with scalar weights, then several iterations are performed on a
linearized version of (10). Since the initial approximation is close to the solution, weight matrices W.
are calculated only once with the initial approximation for R, rather than recalculated every Iteration.

As In the purely translational cam, the computed motion parameters are random vectors, but
because of the nonlinearity of the rotation they are no longer normally distributed. A normal
approximation to the true distribution can be obtained from the converged solution to (10).

4. Updating the Local Model
The foregoing triangulation and motion solving algorithms provide a series of 3-D models defined

relative to successive robot locations. Combining these models can serve two purposes. First,
averaging landmark sightings from several views should provide more accurate estimates of the 1
landmark positions, which should in turn lead to more accurate estimates of robot motion. Second,
all of the models can be incorporated Into a single map of the entire area traversed. Previous
approaches to these tasks differ according to whether they have an Incremental or a batch nature.

One of the best examples of a batch approach is the classical photogrammetric block adjustment

52-
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[15]. The problem here is to find the 3-D coordinates of ground points from their correspondences in

a block of overlapping aerial photographs. The solution involves writing a set of simultaneous
equations relating all of the image coordinates to the unknown ground points and camera positions,
then solving for the unknowns via least squares. Typically, all of the measurements and all of the
unknowns are treated as normally distributed random variables, much as we have just done. A large
aerial survey may involve several hundred unknowns.

The drawbacks of this approach are that it is expensive in time and space, it is difficult to find errors

in the mass of data, and its off-line nature makes it inappropriate for continuous, real-time navigation.
Photogrammetrists have responded to these problems with an incremental technique called on-line
photogrammetry[B]. This method processes new measurements sequentially to update previous
estimates of camera and ground point positions, rather than first accumulating all measurements and
then estimating the unknowns. Kalman filters are used for the update process. On-line
photogrammetry is used as an automation aid when processing aerial images and as an initial screen

for erroneous measurements, but it appears that the batch solution is still used to deliver the final
values for coordinates.

In computer vision, the best example of an Incremental technique is the system developed by
Hallam [9]. This involved a 2-D world in which a moving submersible used sonar to rack moving and
stationary targets. The positions and velocities of the robot and the targets were modelled as state
vectors defined in a fixed, global coordinate system. Incoming sonar readings created a local model
of the targets in robot-centered coordinates. The current robot parameters were estimated from the
difference between the local and global target models, then added to the local target models to
update the global target positions and velocities. Kalman filters were the basis for the state updates.
Errors in the sonar data were modelled by 2-D normal distributions. This system was found to work

quite well on simulated data, but has not yet been applied to real data.

Broida and Chellappa [3] have taken a similar approach to motion estimation from a monocular
image sequence. They estimate the position and velocity of a single moving object sen by a
stationary camera. Feature correspondences are used as input to a Kalman fiter-based state update.

Chatila and Laumond have developed an Incremental navigation system for a robot equipped with a

laser range finder and an odometer [4]. The robot is modelled as travelling through 2-D world of
stationary, polygonal obstacles. The key features of their system are that It uses a scalar model of
uncertainty similar to Moravec [13] and that object models are rooted in a common global coordinate
frame. Their approach to world model update is Intermediate between classical photogrammetry and
recursive filtering; when new Information on robot position arrives, they percolate this backward to
update positions of previously seen objects. This effect "fades", so that the percolation stops after a
short time.

In our problem we are concerned with stationary points (landmarks) seen from a moving vehicle.
We adopt an update method similar to Hallam, but keep the landmark coordinates in robot-centered
rather than global coordinates. For example, consider the situation after solving for the first step of
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robot motion (figure 5). We have landmark sightings obtained from the previous robot location,
sightings from the current robot location, and an estimate of the Intervening motion. Covariance
matrices are associated with all landmark positions and the robot motion. We propose to transform

"- the previous sightings into the current coordinate frame, average the two sets of coordinates, and use
the result as a new, robot-centered estimate of the landmark locations. The trnsformation and
averaging will result in new covariance matrices for the landmarks that should represent diminished
uncertainty in their robot-centered coordinates.

The rationale for this approach lies In the uncertainty of the motion estimate. For a robot travelling
in an unknown environment, its position relative to any fixed reference frame must become more and
more uncertain. If new landmar* sightings are related back to this fixed frame, then their positions in
the fixed frame also become more and more uncertain. Thus, If we transform new measurements
back to an old frame for the sake of averaging, we inflate the uncertainty of the new measurements
and degrade their contribution to the average. Unfortunately, for a robot travelling forward the most
recent stereo measurements will be the most accurate and should be weighted the most heavily,
transforming backward will weight It the least heavily. Therefore, in what follows we transform
information forward to maintain the landmark coordinates in robot-centered coordinate frame. We
expect that this will lead to better estimates of step-by-step robot motion, although other procedures
may be preferred for mapping the area covered in several robot steps.

We will treat only translational.motion. Let Pi be the robot-centered coordinates of a landrdark at
time i and Pe1 be its updated, robot-centered coordinates t time i + 1. P, is transformed to the i- 1 t

coordinate frame by

P,'P + T
[.% .- "._.(11)

where T is the Intervening robot motion. Since we are modelling both P, and T as corrupted with %
zero-mean, gaussian noise with known covariance, P,1 will also have a zero-mean, gaussan noise

component. If the noise in P, is e,- MO. Va) and in Tis ZT~ N(O,V), then the uncertainty a' In P,1 is
distibuted N(O, V') with

*V' V, +VT
(12)

That is, transforming the point to the current coordinate frame inflates Its covarlance by the amount of
uncertainty in the transformation Itself. In this we have overlooked some correlation Induced by (11).
Our Initial assumption is that the errors in any landmark location are independent from all other
landmarks. Equation (11), by applying the same uncertain transformation to all landmark locations,
will cause the new coordinates P, to be correlated between landmarks [12]. Taking such correlations
Into account would Increase the cost of the update quadratically for a small performance
improvement, so we choose to ignore It.

Let the measurement of the landmark taken from the new robot location be Qwith covaerance V,,.
We wish obtain an updated estimate of the landmark's coordinates by combining P,1 and Q,. Treating
these as two estimates of the mean and covarlance of an unknown 3-D normal distribution and
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applying standard linear statistical theory leads to the following updated estimates of the point "-.'..::
location and Its uncertanty. ""%%

v,+= (VI + Val -

(13)

V11 V'-1 (PfiP+ VjQ)e,+,= 4,1vT/ 1 +

Recall that the V's are 3x3 covariance matrices. The intuition behind (13) is as follows. The elements
of the covariance matrices and V , will be large If the uncertainty of the corresponding estimates
P1' and Q, is large. The larger the elements of a covarlance matrix, the smaller (loosely speaking) will .. .

be the elements of its inverse. Hence, the more uncertain a measurement, the less weight it receives
In estimating P,+ V Laumond and Chatila [4] have described the analogous averaging scheme for
saar quantities.

Another way to formulate the point location update is to use Kalman filters. Taking Q, as the new
measurement and P, as the state to be updated, we obtain [8]

= + (V... + .
(14a)

P = P1 + V+,1 r97 (Q,- P)

(14b)
V,+l here is the same as in equation (6); furthermore, it can be shown that the estimates of P,+.
arrived at by (13) and (14) are identical. There is, however, a difference in the cost of the two
formulations; using (13) requires three matrix-vector products and one vector-vector add, whereas
(14) requires two matrix-vector products and two vector-vector adds. The latter is cheaper overall.
The intuition behind (14b) is fairly simple. The second term takes the difference of the new
measurement from the old state estimate (Q1 -P 1 ), weights the difference by (VI+ I V -'), and applies
It as an update to the old state estimate Pi,. Matrix V. will be "larger" for more accurate new
measurements, giving them more weight, and "smaller" for less accurate measurements, giving them
less weight. Conversely, V will be "small" for an accurate old estimate, so that the new update is
weighted less, and vice versa for an inaccurate old estimate. We have used the filter formulation of
(14) in our implementation.

5. Updating the Global Robot Position
Previous sections have dealt with estimating each step of the robot's motion and updating the local

world model. In this section we are concerned with estimating the robot's global position and

positional uncertainty. This Involves summing or integrating the step-wise motion estimates. Smith
and Cheeseman [161 have recently shown how to do this for motion in the plane, involving two

degrees of translation and one degree of rotation. They give the details of a Kalman filter formulation ..

of the problem. Hallam [9] appears to have used a similar approach, although detailed equations are
not shown. An extension to unconstrained, six degree-of-freedom motion has not yet appeared In the
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computer vision and robotics literature. We will illustrate the approach for translational motion,

summarize the Smith and Cheeseman treatment of planar motion, and discuss the difficulties with

extending this to unconstrained motion.

Suppose that after i steps the robot's position Is T, with covariance V, and that the next step is

estimated to be Twith covariance V.. The new global position is

S T, (15) T..S.

Since (15) Is linear and involves gausian variables, the error in T"+ will be gaussian with covariance

v,+1= v, + v s

* The difficulty in extending this to motions Involving rotation is that the update equation (15) is no ,_

longer linear, so the error propagation is no longer strictly gaussian. Smith and Cheeseman solve this

for planar motion by linearizing. Each step-wise motion Is represented by an uncertain translation

(X. 1) in the floor plane and an uncertain rotation 0 about the vertical axis. Given two such motions -

(X3.Y'.O,) and (X2,Y2,02), they obtain closed form expressions for the variables and of the
combined motion in terms of the variables X2, .... j. The equations are nonlinear and result In a
non-gaussian distribution for the combined motion. They approximate this with a gaussian

distribution obtained by linearizing. They also show how to use Kalman filter methods to incorporate

motion estimates from several sensors into one overall position estimate.

When the motion involves all six degrees of freedom, the linearization approach is harder to apply

because it is difficult to obtain closed form expressions for the combined motion in terms of the

component motions. We speculate that expressing the rotation as a quatemion may lead to a

manageable formulation. It seems likely that this problem has been addressed before in aerospace
applications.

6. Simulation Results
A number of simulations were rn to compare the performance of the 3-D normal error model to the

performance of scalar weights. These experiments first examined the performance on a single step of

robot motion, then the performance over several steps. The methodology attempted to mimick the

configuration of cameras, objects, and motions used In our previous experiments with a real vehicle

and real images [17J. The simulated cameras had a resolution of 512x512 pixels, a focal length of

12mm, and a field of view of 53 degrees. The baseline between cameras was 0.5 meters. The zsacene

consisted of random points uniformly distributed in a 3-D volume in front of the cameras. Typically

this volume extended 5 meters to either side of the cameras, 5 meters above and below the cameras,

and from 2 to 10 meters In front of the cameras. Image coordinates were obtained by projecting the

*" points onto the Images, adding gaussian noise to the floating point Image coordinates, and rounding
to the nearest pixel. These coordinates would be the input to the algorithms described above for

triangulation, motion solving, and model update.
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To obtain covarnance matrices for point locations, image coordinates were assigned a distribution

with standard deviations of one pixel for each of xr.y, x,yr and no correlation between any two
coordinates. These were propagated through the triangulation as described in section Z. Scalar
weights were derived by taking the Z variance from the covariance matrix. Scalars obtained by

several other methods were tried and found to give very similar results. These include the volume and
length of the major axis of the standard error ellipsoid and Moravec's half-pixel shift rule [13].,Y' .

6.1. Single step motion
Planar motion estimation was tested first. After a step of one meter directly forward, the robot

estimated its lateral translation (X axis), forward translation (Z axis), and rotation about the vertical (Y
axis). Experiments were done varying the number of points tracked and the distribution of the points
In space. For any one experiment, averages and standard deviations were calculated for the results
of 5000 trials. In this set of simulations no noise was added to the image coordinates, so that
quantization of the image was the only source of error.

When all points were 2 to 10 meters away, which corresponds to disparities of 13 to 64 pixels
(roughly 3% to 11% of the image width), the mean estimate of the forward motion was within 0.1% of

correct for both scalar and matrix weights and for anywhere from 6 to 50 points tracked. Since the
true motion was 1 meter, this implies average estimates of about 0.9995 meters. The error that did
occur showed a slight bias to underestimate the true motion.

Standard deviations of the motion estimates as a function of the number of points tracked are
plotted in figures 6 and 7. Figure 6 shows the results for rotation. Estimates based on scalar weights
have about 10 times the spread of estimates based on matrix weights. With 20 points tracked, the

standard deviation with matrix weights is about 0.03 degrees. Figure 7 shows the results for X and Z
translations. There is a factor of 10 difference In spread between the scalar and matrix cams for X,
but only a factor of 5 for Z. This is explained by the fact that lateral translations and vertical rotations
have a coupled effect on errors of fit, so that small lateral translations strongly resemble small
rotations about the vertical axis. It is significant that the coupling is reduced by using matrix weights.

With matrix weights, tracking 20 points yields standard deviations in X and Z of approximately 0.004

meters over a I meter motion, or 0.4% of the distance travelled. This compares to &.5% and 1.9% for .. * :

X and Z, respectively, with the scalar algorithm.

The results for motion solving in apace are comparable to the results for motion in the plane. The

previous experiment was re-run with the motion solver estimating all six parameters of motion. The
average solution for Z translation still underestimated the true motion by about 0.1%. Figures 8 and 9
show the standard deviations of the rotations and the translations, respectively. The pattern Is very
similar to the three degree of freedom case. The deviations are roughly the same size and the ratios
between scalar-based and matrix-based motion solving are the same. The scaler-based algorithm
shows a coupling between lateral translation and panning rotation, vertical tanslation and tilting
rotation, but not between forward translation and rolling rotation. Using full covarlance matrices
moderated this effec.
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Adding gaussian noise to the image coordinates in both of these experiments increased the

standard deviations for all curves, but did not effect the ratios between scalar and matrix results.

The next experiment tested the effect of Increasing the distance to points In the scene, or
equivalently reducing the maximum disparity In the image. Twenty points were generated in a volume

spanning 4 to 50 meters In front of the cameras (see inset of figure 10), giving disparities ranging from -...

2 to 32 pixels or 0.5% to 6% of image width. The volume was gradually shrunk by moving the near
limit from 4 meters back until all points were 50 meters away, so that all disparities were on the order

of 2 to 3 pixels. The results are shown in figures 10 and 11. The horizontal axes in both figures show .

the distance to the near limit and the equivalent pixel disparity in the 512x512 images. Figure 10
shows the average, over 5000 trials, of the estimated forward motion as a function of maximum

disparity. The matrix.based method underestimates the motion by 1% to 2% for all disparity ranges.
The scalar-based method, on the other hand, underestimates by about 1% when large disparities are -..- :

available, but overestimates by close to 30% when all disparities are near 3 pixels. The standard I, -

deviations of these estimates are shown in figure 11. The spread is tight for all disparity ranges with

the matrix-based algorithm, but grows rapidly with shrinking disparity with the scalar-based algorithm.
The breakdown with distance shown by the scalar algorithm is well-known in computer vision; this
makes the stability of the matrix algorithm come as quite a surprise.

6.2. Multi-step motion
Motion over several steps was simulated to examine the behavior of the point location update and

the effect it had on the accuracy of successive motion estimates. The simulated robot moved one *'

meter straight ahead between each stereo pair. Twenty points were used to solve for motion each p
time. These were initially generated in the volume 2 to 10 meters in front of the robot. As points fell
out of the field of view, new points were generated in the volume 2 to 10 meters in front of the current

robot position. The unknowns in the motion solver were just the three components of translation. In
this experiment gaussian noise with a standard deviation of half a pixel was added to the image

coordinates before rounding to the nearest pixel.

To test the effect of the point update, a point initially 15 meters in front of the robot, 4 meters to the
right, and at eye level was tracked until it passed out of view. The mean location for both scalar and
matrix methods was within 5 centimeters or 3% at all times, with the error being an underestimate of

the true distance. The standard deviations of the robot.centered coordinates of the point after each

step are shown in figure 12. As expected, averaging more measurements causes the standard
deviations to shrink. Note that after six steps (seven sightings), spread of the matrix-based update is
half that of the scalar-based update.

Successive estimates of the robot motion showed a steady bias of about 0.5% on the short side for

both algorithms. That is, the one meter motions were always estimated to be about 09.5 centimeters.

Figure 13 shows the standard deviations of these estimates over time. The spread of the estimates
shrinks until It reaches a plateau. The matrix-based estimates have one third to one quarter the

variability of the scalar-based estimates. This showed up In the accumulated global position I
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estimates. After 10 meters of simulated motion, the standard deviation of the matrix-based estimates

of total distance travelled was 1.6 cm, versus 4.4 for the scalar method.

7. Discussion
The goal of this paper was to show that using a model of stereo triangulation error bsed on 3-D

normal distributions would lead to more accurate motion estimation than scalar error models. The
simulations have verified this claim. Step-wise motion estimates, global position estimates, and

landmark location estimates are better with the new method than the scalar method. Other motion
solving algorithms from the literature [21, not based on probabilistic error models, had performance to

our scalar-weighted algorithm and poorer than the matrix-weighted version.

Three dimensional normal distributions model triangulation error better than do scalars, but they are
not entirely faithful to reality either. This shows up in the biased estimates obtained in the simulations.

However, these biases are small enough that it may be acceptable to ignore them.

One of the most striking aspects of the new model is the Improved performance is gives with distant
points. This implies that the new method permits shorter stereo baselines to be used without

sacrificing accuracy of the motion estimate. Since the length of the baseline directly affects the
difficulty of stereo matching, this may offer a way to alleviate the correspondence problem.

Our first priority for future work is to verify the simulation results with tests on real images. Should
the results hold up on data free of correspondence errors, the next step will be to pursue the idea of
shortening the baseline to reduce the likelihood of mismatches. This will be augmented with
statistical tests to filter any remaining mismatches. Further extensions include coping with general
rotation In the global position update, tracking lines as well as points, and estimating velocity as well

as position.
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First Results in Robot Road-Following

Richard Wallace, Anthony Stentz
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Abstract System of the CMU ALV. We then present the control algorithms,

including a simple and stable control scheme for visual servoing.

The new Carnegie-Mellon Autonomous Land Vehicle group has Finally, we discuss our plans for the future.
produced the first demonstrations of road-following robots. In this
paper we first describe the robots that are part of the CMU
Autonomous Land Vehicle project. We next describe the vision Terregator and Neptune
system of the CMU ALV. We then present the control algorithms, No mobile robot system is complete without a mobile robot. The .°

including a simple and stable control scheme for visual servoing. primary vehicle of the CMU ALV project is the Terregator, built in
Finally. we discuss our plans for the future. the Civil Engineering Department. The design and construction of

the Terregator (for terrestrial navigator) is documented in [7]. It is -
Introduction a 6-wheeled vehicle, 64 inches long by 39" wide by 37" tall. NI

wheels are driven, with one motor for the 3 left wheels and one for

CMU has formed the Autonomous Land Vehicle (ALV) group to the 3 right wheels. Shaft encoders count wheel turns, but the
develop a perceptive outdoor robot. We have produced the first vehicle skid-steering introduces some indeterminacy.
demonstrations of an autonomous vehicle able to follow a road
using a single on board black and white television camera a Its The Terregator is untethered. Power is provided by an on-board
only sensor. Our robot has made several successful runs over a generator. Communications with a host computer are via a bi-
curving 20 meter path, and 10 meter segments of staright directional 1200 baud radio link for vehicle status and commands,
sidewalk, moving continuously at slow speeds, by tracking ft and a 10 megahertz microwave link for television signal from the
edges of the road. vehicle to a digitizer. A remote VAX 11 /780 runs programs for

Symbolic processing of visual data and navigation. A Grinnell

The research described in this paper Is a first complete system, GMR 270 attached to the Vex computes low. level visual
covering everything from low-level motor drivers to the top-level operations such as edge detection. A Motorola 68000 on the
control loop and user interface. We took a "depth-first" approach Terregator translates steering commands from the VAX into wheel

o to building our testbed: we picked one rough design and built all velocities for the left and right wheels.
the pieces of a functioning system, rather than spending a lot of
time at the beginning exploring design alternatives. Earlier work also used the tethered robot Neptune, built by the

Mobile Robot Lab. Neptune is a simple tricycle, with a powered
Related research at the Unversty of Maryland [61 has focused on and steered from wheel and two passive wheels in the rear. Its

the problem of visually finding and tracking roadways. The sensors consist of two cameras (for stereo vision work), plus a %

"bootstrapping" phase of the Maryland road finding program, In ring of 24 sonars. While it was intended primarily for indoor work,
which the robot detects a road on start-up with no a priori position it has large enough wheels to run outside on gentle terrain. With
information, currently has no counterpart in our system. Our suitable modifications (an umbrella taped to the camera mast), it
vehicle is always started with an orientation more or less aligned even has limited all-weather capability.
with the direction of the road and with knowledge of an Initial road
model. The Maryland road finding module is expected to be Our first successful continuous motion road following was
tested soon on an ALV built at Martin Marietta Denver Aerospace. achieved with Neptune running in our lab on a road marked with

black electrical tape on the floor. This 5 meter road had one left

In this paper we first describe the robots that are pat of the CMU turn and one right turn, which Neptune navigated successfully. At
Autonomous Land Vehicle project. We next describe the vision the end of the road, Neptune made a sharp right turn and drove

around in circles.

Currently., this wrifct is funded I pt by C ,is-Mellon University, by this
Office of Naval Flasarch under contract number N0001-1.51-KO6OS,. by the

arch Proec Agencyby () OdC AN. -7 "
Force Av onics Laboratory undor contrat F3381!541-K-1L5, aid by Oennifg .
Mobile Robotics. Inc uchaord Wallace Onk NASA for supprt Ing him wOV 5 ."• -a
NASA Graduate Sudent Rearchers Program Felbwhip Omnt.
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The Vision and Navigation Program

*The primary task of our vision and navigation program is to keep gu*1Netn
the vehicle centered on the road as it rolls along at a constantFgue:Nptn
speed. The program accomplishes this task by repeatedly
digitizing road images. locating the road edges In the Image,
calculating the deviation from the center line, and steering to
realign the vehicle.

The program was designed to be fast yet reliable. While the
* vehicle is moving along a planned path, an image is digitzd.

7 q
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Since images are digitized frequently. the appearance of the road allow the program to project each candidate edge into a unique

edges does not change appreciably across successive images; line in the ground plane. We establish a righthanded coordinate

consequently, searching the entire image is unnecessary. In order system with the vehicle at the origin and the xy-plane on the

to constrain the search, the program maintains a model of the ground, with the positive x-axis directed to the right of the vehicle

road The model contains the position and orientation of the left and the positive y-axis directed forward. For each transformed

and right road edges seen in a recent image. The program uses edge, the program calculates the following parameters: the

these model edges to generate two small subimage rectangles in perpendicular distance r measured from the origin to the edge and

which to search for the left and right road edges. Since the the angle 0 measured from the positive x-axis. The differences in r

approximate direction of each road edge is known a priori. the and 9 between each transformed candidate edge and the N.

program uses directed curve tracing to reduce processing time corresponding model edge are calculated (call these values dr

and to preclude spurious edges. Generally the program finds and dO respectively). The quantity dr is the difference in

more than one edge in each subimage rectangle. The model is displacements of the vehicle from the model edge and from the

used to select the pair of extracted edges most likely to be road candioate edge. The quantity dO is the angle between the model

edges. This new pair replaces the old pair in the model. From the edge and the candidate edge, Test runs have shown that the

model pair. the program computes a center line, the vehicle's drift vehicle tends to remain aligned with the center line; most of the .....-...

from the center line, and a steering command to bring the vehicle error is in the form of lateral drift from this line. Hence, dr provides

closer to the center line. As the vehicle executes a steering the most information for evaluating candidate edges. The quantity

command another image is digitized and the cycle repeats. Figure d8 tends to be small (less than 10 degrees); consequently, an ...-..

3 depicts the program control flow. In the remainder of the paper early filter uses it to eliminate spurious edges. After this round of

we explain each component of the program in greater detail. edge elimination, one of three cases remains:

1. All edge candidates have been eliminated

Constraining the Search

Each time the program digitizes an image it chooses two 2. All edge candidates have been eliminated for a

subimage rectangles to constrain the search for left and right particular road edge (either left or right)

edges. The representation of the rectangle is two horizontal and 3t teg n em s b h f
two vertical bounding line segments. The vehicle always "looks" 3. At least one edge candidate remains for both the left

a fixed distance ahead; therefore, the placement in the image of and right road edge

the horizontal bounding segments is predetermined and remains .

fixed across successive images. The placement of the segments In the first case, the program obtains no new information and the

is partly determined by two parameters selected manually: the vehicle continues to execute the path planned from the previous

height of the rectangle (typically 50 to 100 pixels) and rectangle image. In the second case, only one road edge is visible. The

overlap, that is, the percentage of the road in a rectangle seen in other road edge is occluded, shadowed, or poorly defined.

the preceding image (typically 50%). These twO parameters Suppose for example the program found a set of candidate road

present important trade offs: If a large height is chosen, the edges on the right side but none on the left. From the candidate

extracted road edges will be longer, thus providing more accurate edges on the right side the program selects the one with the

information about the road; however, the processing time will be minimum dr value. t inserts this new edge into the model, retains
increased, and the road will be scrutinized less often. If a large the old model edge for the left side, and generates a new steering . . -

overlap is chosen, more information is available from the previous command. In the third case, both road edges are visible. The

image and spurious edges are less likely to deceive the algorithm; program selects one edge from each list of road edges (left and

however, the vehicle's speeo must be slowed to enable such right) by comparing each left edge to each right edge candidate

overlap. The two parameters, coupled with the vehicle's speed, and choosing the pair that minimizes the difference in their dr

the image processing time, and the camera's tilt determine the values, that is, it selects the two edge candidates that differ from

placement of the horizontal bounding segments in the image. their corresponding model edge in the same way. Figure 3
illustrates road edge selection in this case. This decision is based

The vertical bounding segments change from image to Image. on the observation that vehicle motion error and road curvature

The program selects bounding segments so that the road edges, shift the location of each edge in the image in the same way. The

based on predictions from the model and a preset error tolerance, program inserts the two new road edges into the model and plans-

will appear within the rectangle. This error tolerance arises from s now path.

two sources: First, the program obtains its estimates of the
vehicle's motion by dead reckoning, which is somewhat Line and edge extraction
inaccurate. Second, the program assumes the road is straight, At the lowest levels of the vision system for our vehicle, the edge
that is, predictions are made by linearly extending the road edges. A lie leti mles we oun th for dete d

Road curvature introduces a discrepancy between these and line extraction modules we found that for detecting road
preectins nd he ctul rad;consquetly th retanle ust edges we could rely on the principle "almost anything works in the

predictions ard the actual road: consequently, the rectange must simple cases." That is, any of a number of simple edge and line

be wide enough to see the road edge within a preset tolerance, finding techniques could be used to extract road edges in various
situations. Our approach then was to try everything. We tested

Selecting the Cest Edges various edge and line finding programs on static road images and
on images acquired by the vehicle in actual runs. Simple

The line finding routine generally returns more than one line techniques proved adequate in many situations we encountered.

from each rectangle. The program passes these lines through a t i -a-e

number of filters to determine which, if any, are road edges. The
new road edges are used to plan a path for the vehicle and to The basic approach of all the vision modules we tried was to find

update the model. The 16 best left and right edge candidates the left and right boundaries of the road and represent them as

(based on weights supplied by the line finding routine) are lines. Therefore, the task of the low level vision modules is to find

retained, and the rest are discarded. The program assumes that line segments which are plausible candidate road edges. We

the camera's calibration, position. and orientation with respect to sought to make only the most general assumptions about what

the road are known, that the ground is locally level and that all might constitute 8 road in an image. The technique used to

candidate edges arise from ground features. These assumptions extract road edges and represent them as lines depends on

.................... ..... . ;. :.•..."...
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whether we think of a road as an intensity change from 3. Temporal Edge Detector. Subtracting two P..,
background, a texture change, a color change or a combination, successive image frames is an inexpensive method for
We experimented with 7 methods for extracting road edges from detecting image features that change from one
images and three methods for fitting lines to the edges. The seven moment to the next. It a vehicle is traveling down an
techniques we used to find edges in road images were: ideal road (where the intensity of the road is uniform, - .

the intensity of the surrounding region is uniform and -
1. Correlation. Assuming that a road edge is a more or the road edges are straight and parallel) then the

less vertical feature in a subimage it can be followed difference of two successive road images is zero.
* by selecting a small sample patch of the edge and When the vehicle begins to turn left or right off the

correlating this on a row-by-row basis with the road, however, simple image differencing finds the.- .1
subimage. Where the correlation is strongest in each road edges. This strategy was used in one -

row a road edge element is assumed. The result is a experiment to servo Neptune visually down a hallway.
list of points where the road edge appears in each Here the road edges were particularly distinct so the
row. A line can be fit to these directly. The idealness assumption was more or less satisfied.
correlation approach worked very well when the
sample road edge patch was hand selected. 4. Roberts Operator. A 2x2 Roberts edge operator

was sufficient to find road edges where they were
2. DOG operator. A Difference of Gaussian edge relatively well-defined intensity step functions, such as

operator was tried at a wide range of spatial when the vehicle traveled down a hallway or when we
resolutions on road images. Road edges tend to be artificially marked the road edges with tape.
low spatial frequency signals so large DOGs were
required to find them directly. Two-dimensional DOG 5. Intensity Segmentation. A simple binary intensity
filters tended to break up the road edges even at low segmentation of the road image works in many cases
frequencies. One dimensional DOG operators applied where the road is a set of pixels most of whose
horizontally in the image produced more connected intensities are grouped together in the image I
road edge pieces, since the road boundaries were histogram. We used a simple segmentation technique

almost vertical features in the image. High spatial based on classifying all the pixels in the bottom 50% .

frequency DOG operators can be used as the basis of of the histogram as one region Rnd those in the upper . .--

a texture-based segmentation of road images, 50% as another. Standard procedures for expanding .
however. and shrinking the resulting segments to join closely

spaced segments and eliminate small ones are
applied. Road edges are assumed to lie along the
boundares of the resulting regions. ,.
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6. Texture Segmentation. Texture based A combination of three factors enabled us to reduce the image
segmentation often proves better than intensity based processing time for each image sample to about 2 seconds. First,

segmentation fo. road edges where the road is special image processing hardware in our Grinnell GMR 270

relatively smooth and the surrounding region is not, display processor was used for the low-level correlation and

such as when the road is asphalt against a grass convolution. Second. only small subimages (50 by 250 pixels)
background. A simple texture operator which we were searched for road edges by the line finding routines. Third,

have found useful in detecting road edges is one selection from among the possible set of candidate road edges of

which counts the number of edges per unit area and the actual road edges was accomplished by simple means (q.v.).

classifies all those areas where the edge count is high
as a single region. The next step in our plans for development of low-level road.

finding vision is to integrate several types of feature detectors in a L
7. Row Integration. Summing the intensities column- blackboard data structure. We want to ev-liuate the success of P...

by-column in a set of scanlines in the image results in combining intensity, texture and color edge and region features to
a single-scanline intensity image where the road is find road edges. Earlicr we said that we relied on the principle
roughly a one dimensional box function. given that the "almost anything works in simple cases". For complicated cases.
road is a more or less vertical feature and the road such as we have encountered in actual outdoor road scenes, we
and surrounding area each have fairly uniform but have found that none of the techniques we have tried always
different intensities. Finding the boundaries of the works. We believe that a combination of techniques will enable us
box amounts to finding the average position of the left to find road edges reliably in a wide range of situations.
and right road edges over the scanlines summed.
Repeating the procedure for another set of rows in the Control
image locates another pair of road edge points which
can be joined with the first to approximate the road The control procedure translates the visual measurements Into

boundaries as line segments. vehicle motor commands that, if successful, keep the vehicle
moving along the road. We evaluated a half-dozen approaches

The three line-extraction techniques we used were: experimentally with our vehicles and analytically. One approach,
servoing to keep the road image centered in the forward field of

1. Least Sqaures Line Fitting. When we had only one view, excelled in all the measures, by such a margin that we feel It
possible line in an edge image, such as the result of deserves to be considered a fundamental navigational principle
running a correlation operator over the rows or for mobile robots.
collecting a number of road edge points by row
integration, a line could be fit to the points by least
squares.

2. Muff Transform. A modified Hough (Muff) transform
was used to fit lines to edge data where the edge
extractor returned points that could plausibly be parts
of several lines. The Hough transform has been used 0

to detect road edges in other road finding programs
(611. The Muff transform uses a new
parameterization for lines in images. I he Muff

-. -transform has several implementational advantages
over the conventional p-0 parameterization. The . --.-

details and implementation of the Muff transform are -. - -.
presented elsewhere [5]. -

3. Line Tracing. Most of the subimages we processed
to find lines were bands about 50 pixels tall and 250
pixels wide. A simple raster tracking algorithm found
in [3] proved sufficient to trace the road edges.
Basically. if an edge point P above some high
threshhold d is found while scanning the subimage, %- M

then we search on scan lines below for connected
edge points above some lower threshhod f. The last . -

such point found in the subimage is called 0 and we
assume PO is a line segment. The line tracing .

procedure is much like the inverse of a Bresenham
algorithm for drawing lines, with the similar limitation

that we can find lines that are only with 45 degrees of q
vertical. We find lines more than 45 degrees from Figure 5: Processing Graphics. Here a road image is
perpendicular and lines with gaps by searching in a shown after processing to enhance intensity changes.

neighborhood below an edge point for the next The vision program selects a window in which to
adlacent edge point. Strictly speaking. our tracing search for road edges. Candiate left and right road
program returns the endpoints of a curve which may edges are lines fit to the raw edge data, shown here as

not necessarily be a line, but over thesmall distances
in the subimages we search for lines we have found black hnes. Heavy black lines indicate the left and

this fast tracing procedure yields an adequate right road edges selected by the program. The

approximation. The line tracing procedure was used computed road center line is shown as a double line

in al of the real time continuous motion runs of our
vehicle under vision control.

77
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Let x represent the shortest distance between the center of our where g is the servo loop gain. The full behavior of the robot can

vehicle and the centerline of a straight road. 9 is the angle be found by solving (1) with (6) simultaneously. These equations _

between the heading of the robot and the road direction, i.e. when are made linear and easily solvable by the substitution 0 = sin 9. 0 .,

9 - 0 the robot is driving parallel to the road. Suppose the vehicle giving *.

travels at a constant scalar velocity v, and that control is achieved (7) -.- .. ,

by superimposing a steering rate. d9 / dt (where t is time) on top dx / dt , v - -. '.. --

of the forward motion. If there is no slippage, the following
kinematic relationship will hold: dQ/dt , g(O - x/r)

(1) By co-incidence or cosmic significance of all the servo functions
dx/dt vsin O we considered, only this one yielded a fully general analytic * 4

solution.
The general problem for continuous road following is to find a

steering function F such that by setting d9 / dt . F(x,O) *he The solution has three cases distinguished by the sign of the
vehicle approaches the road center. We tried several functions expression
and noticed a number of recurring problems. Estimating 9 and x (8)
from the image requires both a precise calibration of the camera
and accurate determination of the position and orientation of the g r - 4v - -

road edges in the image. Both are difficult to achieve in practice,
and the high noise level in these quantities made most of our In all cases the solution converges to x = 0, 0 (and 9) = 0
functions unstable. A secund problem led directly to our solution. exponentially with time. When g < 4v/r the convergence is a
The road image sometimes drifted out of the camera's 40 degree decaying oscillation - the sluggish steering causes repeated
field of view, and in the next sampling period the program would overshoots of the road center. When g > 4v/r the solution
fail to find a road, or (worse) identified some other feature, like a contains a second exponential, and the robot approaches the
door edge, as road. The obvious solution was to servo to keep the road center more slowly. When g . 4v/r, the critically damped
road image centered. Experimentally this approach was a case, we have the fastest convergence and no overshoot, and the
stunning success. Besides helping the vision, it seemed to be behavior is given by the equations 1
insensitive to even large calibration errors and misestimates of the (9)
road parameters. -'.(": .. '--x - •"2v r ( At (2Xo/r - 0o)  + xo) ---'"."-'-.

The theoretical analysis was remarkably sweet also, and bore (10)
out the empirical observations. A first order analysis, where we -"("r"- --"
assume the road image Is kept perfectly centered, gives the . ,," /r (2vt/r (2Xo/r- O) + o-
relation

(2) The gain sets the turn rate required of the robot. Note that to 9
r a sin*retain the critically damped situation while increasing v without

x / r - 51in Uchanging g, it is necessary only to increase r, i.e. arrange to have

the vision look further ahead.
where r is the distance in front of the robot where a ray through

the camera image center intersects the ground (i.e. the range at The method is successful for several reasons. It keeps the road
which we do our road finding). The parameter r can be changed in view at all times. Because the system always converges, errors
by raising or lowering the camera, changing its tilt, or by using * in g or camera calibration do not jeopardize performance.

5 different scanline as the center of the region in which road edges Because the parameter being servoed is the most robust direct ,
are sought. measurable, namely road position in the image, the noise

problems of the other approaches are almost totally eliminated. In
Equation (2) can be substituted into (1) to give particular, 9 (or 0) and x though they occupy a central position in

(3) the theoretical analysis, need never be calculated in the actual
servo loop.

dx/dt " -vx/r

Conclusions
which can be solved directly, giving

(4) We have developed a vision and control system for a mobile
X o e-vt/r  robot capable of driving the vehicle down a road in continuous

motion. The system has been tested on two mobile robots,

where xo is the initial value of x when t * 0, so to first order the Neptune and the Terregator. in both indoor (hallway and artificial

vehicle approaches the centerline of the road exponentially with road) and outdoor (asphalt paths in a park and cement sidewalk)

time. environments. In our best run to date the Terregator traversed a
20 meter outdoor path at 2 cm/sec. Image processing time haS -1

A more detailed analysis considers the actual servo loop been reduced to 2 sec/image.

behavior. The displacement of the road centerline image from the
center of the forward field of view is proportional to Failure modes of our vehicle have included driving off the road.

driving into trees and walls, and driving around in circles. Such
(5) failures were mostly due to bugs in our programs. imprecise

(sin 9 -x / r) /cOs 9 calibration procedures, and limitations of current hardware (eg..
B&W camera with narrow angle lens). not fundamental limitations

Servoing the steering rate on (5) sets of the techniques used. -

(6)
d9/dt , .g(sin9 .x/r)/cos'

28
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Future Work

There are several areas that we plan to address. First is the [6] Waxman, A. M., J. LeMoigne and B. Scrinivasan.
construction of a true testbed. This involves mostly software Visual Navigation of Roadways.
engineering. such as cleaning up and documenting the interfaces In International Conference on Robotics and Automation.
between vision and control. This will enable us to try other vision IEEE, 1985.
methods, such as texture and color operators.

[7] W. Whittaker.
Further work will require the use of a map, along with program Terregator- Terrestrial Navigator.

access to a magnetic compass and a gyro. The map will list Technical Report, Carnegie-Mellon Robotics Institute,
road direction, width, appearance, and intersections, which will 1984.
provide strong cues to both the image processing and the
navigation system. The compass, along with the map information,
will help predict road location in the image. This will become -
increasingly important as we venture onto curved and hilly roads,
and as we encounter intersections and changes in the road S ubOic .,- -...i.-
surface. Rape

The next step is obstacle avoidance, which will require limited
3D processing. Projects in the CMU Mobile Robot Laboratory
have already demonstrated obstacle avoidance with sonar [2] and Up:0

stereo cameras [4]; we intend to integrate these into the tetbed.
Later work may add a laser rangefinder and programs to handle
that data.

Partlit
Finally, as the testbed becomes more complicated, system i.terpretatio.

control will become a major issue. We plan to work on a
r. f" blackboard system with cooperating and competing knowledge ____-..

sources. All the data, from the lowest level signals to the highest .
level models and maps, will be on the blackboard and available to lv.. sfer-"
all processes. In Terrlin ..

map _____
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A Modified Hough Transform for Lines

Richard S. Wallace .

Department of Computer Science
Carnegie-Mellon Univeristy

Pittsburgh, PA 15213

Abstract The new Hough line parameterization is illustrated in fig-
ure 1. We assume for simplicity that the image is bounded

A new parameterization for lines in images is presented by a rectangle parallel to the x- and y-axes and extend- -
with application to the Htough transform. The modified ing from the origin to some (Xmaz,p,,,az). A bounding box
Hough (Muff) transform has several implementational ad- extending around the image provides the basis for the pa-
vanatages over the conventional p-G parameterization. The rameterization. A line passing through the image is pa-
Muff transform parameter space is better suited to con- rameterized by the two points where the line intersects the
puter graphics line drawing routines. The Muff transform perimeter of the bounding box. These points are given by
requires no transcendental function calls or table lookup. their distance along the perimeter of the bounding box,
The relation between the tesselation of the parameter space where distance is measured counterclockwise along the box
and the resolution of the lines represented is discussed. The starting at the origin. Thus a line has two parameters, s,
shape of the Muff space is amenable to compaction into a and 82, representing the two points where the line inter-
rectangular array. The implementation of the Muff trans- sects the box. To preserve uniqueness of the representa- "" ""
form is presented. tion, we assume s, < 82. The range of possible value are - - - - -

0 < s1 < 62 < 2(zMa + YM4.). This new parameterization
is called the Muff transform.

An immediate advantage of the Muff transform is purely
graphical. The transform parameters easily map back into ..
points on the image's bounding rectangle. The line repre-
sented by (81,32) in figure 1, for example, passes through
the image at (a,0) and (2x,... + y,... - 829, Yma). These
points can be passed directly to a computer graphics rou-

The Houagh transform can be used to find lines in images 1,2.  tine to draw the line. No clipping is needed. The cal-icH edge elcaent in the picture votes for all of the lines culation of the endpoints for a line p - 0 requires more
that could possibly pass through it. The voting takes place work. First, the peak value indecies in the accumulator ar-
in a two-dimiensional parameter space, where each line is ray must be mapped back into their corresponding p -- 0
represented as a point. This space is tesselated into a values. These are then used to write a line equation of the
grid of rectangular cells, and cach cell accumulates votes form Ax + By, + C = 0, which then must be solved for x - - -

for lines represented by values in that cell. In implemen- and p at each side of the rectangle. The Muir representa-
tations of the Hough transform the tesselated parameter tion requires at most two subtractions to determine both
space is an accumulator array. To extract the lines in an endpoints.
image, the lough parameter space is searched for peaks
which lie above some thresshhold: these are assumed to S
correspond with lines in the image. Two problems which xmax 2
arise in the implementation of the digital llough trans-
forim are the selection of the Hough parameters and the 2 ymax - " xmax+ymax
choice of granularity of tesselation for the parameter space.
The usual parameters selected to represent lines in Hough
space are p and 0, where lines are given by the expression I
p = x cos 0 -p sin 0. These parameters have the advantage I
over m and b in the y = mx+ b form that they are bounded.
It is easy to see that for an rectangular image extending
from (z.. ,, Ymon) to (Zmax, ymar) the values of p and 0 are 2 xmax +
bounded by - /4 + 7, ' < p < + y2... and 2 ymox
0 < e < 7r, whereas m and b are unbounded. This paper 1
presents a different bounded parameterization of lines in 0"
an image and several advantages of this new representation 0/ X
over the p - 0 parameters. Figure 1.

CH2145-1/85/000/0665S01.O01985 IEEE , a
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Implementations of the Hough transform for lines can suffer A peculiarity of the p - 6 form for the Hough space is
from two problems related to the use global edge informa- that, although it is bounded, it has an irregular shape (see _

tion in the image to find local lines. First, edge elements on fig. 3). Not all pairs of (p, 0) in the rectangle given by
colinear but not connected line segments vote for the same
line. Second, the transform of an image with many noisy 2 <P < , and - r/2 <9 < .
edge pcints or many irregular blobs may contain spurious represent possible lines in the image. If minimizing stor- .?, .'",

lines linking distant edge elements because the thresshhold age were an issue in a Hough transform implementation,
on peak detection in the Hough space must be sea low in the compaction of the p - 0 space would prove difficult.
order to obtain any lines. The pure Hough transform does Figure 3 shows the set of possible values in the Muff rep-
not preserve information about which edge points voted for resentation. It is clear how these could be compacted into "
a particular line and hence the transform cannot find di- a rectangular array if necessary. Also, it is simple to write
rectly the endpoints of line segments. One obvious solution an algorithm which efficiently scans only the Muff array's .

is to store in each bin of the Hough space not only the count possible cells for peaks or local maxima. For each row in
of edge elements voting for a particular line, but also a list the accumulator array, the cells can be scanned from left
of the pixel coordinates of the edge elements themselves, to right starting at the first possible value in that row.
Later processing can then fit line segments to connected
sets of pixels in peak Hough bins. Another approach is
to divide the image into a number of smaller rectangular
regions, and compute the transform for each. The Muff
transform is best suited to the latter. .

The transform is implemented by the following procedure.
Given an edge element (a,b) find the point (c,d) on the
bounding box so that (0,0), (a, b) and (c, d) are colinear.
(cd) is parameterized by a value s,.. Then for each a,
0 < sl < s,,z, and the point along the box associated with
sl, there is another point given by s2 so that s1 's point,
(a, b) and 32'3 point are colinear. The calculation of 82 is
straightforward and depends on which side of the rectangle
a line intersects. In any case the computation of s2 from s,
and (a, b) reduces to the problem of intersecting a line in

* two-point form with a horizontal or vertical line3 . Thus an &X AX
[ advantage of the Muff transform over the p - 0 transform is

that no transcendental function calls are needed. The need
for actual transcendental function calls can be eliminated in Figure 2. In the p-9 representation the resolution
implementations of the p - 0 transform algorithm by table Of lines that can be represented is a function of
lookup, however. The p-0 transform requires only divsions p and e. This diagram illustrates two lines that
and no transcendental function calls or table lookup. p ad eT ingthe tessstated tr o stacappear adjacent in the tesselated transform space.

3 The choice of tesseslation for the parameter space affects The distance between these lines where they intersect

the resoltion of the lines which can be found. Intuitively, the x-axis grows as p increases.
the finer the tesselation, the finer the accuracy of the lines
which can be represented. One measure of resolution is the
distance measured between two lines where they intersect

one side of the image. For the x-axis, let's call this distance
Ax. Figure 2 shows that for the p - 0 representation the
resolution Ax is a function of p. The further the .line from
the origin, the coarser the representation. In the Muff rep-
resentation, however, the resolution Ax is constant around
the perimeter of the image. In all fairness, the angular
resolution of lines in the Muff representation is finer near
the corners than near the center of the image. The Muff
representation, however, caputures exactly the set of lines
that can be drawn by computer graphics from one point on .JJ.
the rectangle to another, up to the resolution of the tee- : : L..
selation. The absolute upper bound on the useful size of
the Muff parameter space is (znar + tyinax) 2 , where Zma/
and y,,, are respectively the number of pixels along the AX
z-axis and y-axis sides of the image, because no more lines
than this number can be drawn by graphics from a pixel
on one side to a pixel on another side of the image. The In the Muff representation the resolution of lines
p-0 representation will not represent this entire set or rep- represented is constant throughout the space.
resent some of its elements redundantly, depending on the T m f p ea n p s ac t e
granularity of the parameter space tesselation. The muff representation captures exacity the set

of lines that can be drawn across the rectangle
by computer graphics.

2-,1
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The Muff transform has been implemented and tested on
images of roads. In the road following application, it is not
usually necessary to find the endpoints of line segments in
the image. It is the road edges which are important, and
these can be assumed to extend from one side of the image
to another. Thus neither the technique of storing pixel
locations in the Hough accumulator array nor the method
of dividing the image up into smaller rectangles is used.

Road edges tend to be strong and extend over the whole
image, so the Muff transform picks them out easily. The .- 4
design of special purpose voting hardware 4 has made the r.

use of the Muff transform more practicable for real-time
vision tasks.

j Figure 3. The set of possible values of p and e
for lines passing through a rectangular image

defines an irregular shape in the p-9 plane.

ill Duda, Richard 0. and Peter E. Hart "Use of the Hough The irregularity makes it difficult to compact

Transform to Detect Lines and Curves in Pictures" CACM the useful values into a rectangular array.
Vol. 15 no. 1, January, 1972. pp. 11-15.

12] Ballard, Dana H. "Generalizing the Hough Transform SI s2 S3 s4

to Detect Arbitrary Shapes," Pattern Recognition vol. 13
no. 2,1981. pp. 111-122.

s1
131 Bowyer, Adrian and John Woodwark A Programmer's

* Geometry, Butterworths, 1982. ..
S2

14] Sher, David and Tevanian, Avidas "The Vote Tallying
Chip: A Custom Integrated Circuit", Custom VLSI Con-
ference, Rochester, May, 1984. s3

• s4

The set of plausible pairs of parameters in the
Muff space can be easily compacted into a
rectangular array. In this diagram, s I = xmax

s2 xmax~ymax, S3= 2xmax~ymax, s4 = s(xmax.ymax).
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Progress in Robot Road-Following

R. Wallace, K. Matsuzaki, Y. Gate,

J. Crsman, J. Webb, T. Kanade

Robotics Institute, CamegleMellon University

Abstract road-following system which uses a map to navigate around a
highly stucturgd and visually simple network of sidewalks on the

We report progress in visual road following by autonomous robot CMU campus. The goal of the second effort Is to develop vision
vehicles. We present results and work in progress in the areas of routines for road-following in a less structured and visually more
system architecture, image rectification and camera calibration, complex environment in a nearby park.
oriented edge tracking, color classification and road-region 2. Sidewalk Navigation
segmentation, extracting geometric structure, and the use of a
map. In test runs of an outdoor robot vehicle, the Terregator, under The sidewalk environment at CMU Is a network of mostly straight
control of the Warp computer, we have demonstrated continuous concrete pathways joined at intersections of various shape. The .
motion vision-guided road-following at speeds up to 1.06 km/hour sidewalks have fairly uniform color and texture and are always
with image processing and steering serve loop times of 3 sec. surrounded by well-groomed grass, giving them consistent high.

contrast edges. The goal of our research in this environment is to
develop algorithms for geometric reasoning, shape-matching and

1. Introduction navigation with a map.

Research in rot3ot navigntion on roads is part of the Autonomous 2.1 Map and Blackboard
Land Vehicle Pro)-sct (ALV) at Cenegie.Mellon University. Broadly, The overall system architecture to which a vision-based road-
orur work is romed at creating .utonomous mobile robots capable of following subsystem interfaces is a blackboard (5]. a shared
Operating in structurenvironments. Tothisend, ourresearch memory structure containing a local map of the robot's - . .program invo nsj a e e ly o Sensors, prTorams and experimental environment. Other sensing processes, such as those Interpreting , -

robot vehicles. This paper is focused on recent progress In range data, and other knowledgo-based processes, such as those .. .=
detection of and navigation on roads, using a TV camera as our updating the local map, are also tied to the blackboard.
sensor and a six-wheeled outdoor autonomous robot, the 2.1.1 Dlalogue Model
Terregator (71, as our test vehicle. We present results and work in The road-following subsystem consists of four modules; Vision,
progress in the areas of system architecture. Image rectification Map, Navigator, and Motion Control. These modules communicate
and camera calibration, oriented edge tracking, color classification with each other by sending and receiving tokens through the
and road-region segmentation, extracting geometric structure. and Blackboard. In selecting this decomposition of our system Into -.
the use of a map. modules, we followed the principle of inlormallon hiding. The

For robot navigation of roads, we use a single television camera Vision module contains expertise needed for extracting features
as our primary sensor. In this application, the monocular TV from images. The Map module knows the structure of the robot's
camera is considered superior to ranging sensors such a laser environment and its position. The Navigator Is re3ponsible for
scanners or sonar for three reasons. First, roads we are interested planning paths. The Motion Control module insures that the vehicle
in following do not necessarily have prominent 3-dimensional executes navigation commands. Thus each module has a dilferent
features at their shoulders: most often there is no depth domain of expertise. For example the Vision module does not know
discontinuity between the road surface and the surrounding the robot's map or route. That Information Is kept hidden and Is
roadside. Second. we have developed one steering strategy that used only by the Map module to make predictions to the Vision
servos the vehicle based on measurements in the Image plane module.
Itself, rather than on measurements in a world coordinate frame. Communication between the various modules looks like a
Third, we have so far relied on a local ground plane assumption , dialogue. Figure I shows the dialogue model of Me road-following
that the ground around the vehicle Is locally planar, so that any time subsystem. This model reflects the Information hiding principle of . .
we do need to transform image points to world coordinates, the the design. In tHi example, the Map hides Information from the "
transformation is tnivial. vision module, except for the facts which are relevant for the "

To attain the broad goals of our project, we have split thee .- -

research Into two efforts. The goal of the first effort is to develop a current acene. The Map tells the son mule only about the--predictions it maes for the current scanso.

lctrrenty, dla polt hndod In par M Unkvl , by 0 With map data, the Map module produces the token, Predicted
(.tthe of Naval Rosearch under Contract nbt NO14a1-K-05. by the wm Object, which shows what the Vision system shal see. For
ftnnrans ,vno Tchow c e,. by oa AirsnoWo rcT example, a Predicted Object can be a road or an Intersection.
Proelts Aacncy (00n), AtPA War No, 3507, mvanltired by It Ai Forte Avloplca Using Predicted Object, Vision sees avd makes the token, Delected
Latrwatare under contract F33615411-K-15.1, rid byCvii RbotitC. n. Object, which shows te shapef Of objects in front of the vehicle.Richutd Wallace thalnits NASA Io*" supporting himt vdlh a NASA ' GrwadutudentI#7archssProgram F trlowthll!Sn mrlA. Using Detected Object, the Map decides the vehicle's Currdft .
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Position. Using Current Position and the map data, the Navigator using knowledge from map. interest segments, which are key to
suplries the token. Motion Command, which tells how to drive the decide an position of an Intersection, are found.
vehicle. Using Motion Command, the Motion Control drives the
vehie le. 2.2.1 Reproducing the Road Region

* eil.To eliminate the disturbing factor's, tw Phs Img prcssn
12 R2 13 is done; extracting high-confidence road regions and then

connecting them.

_ 
L2"" 1

The result of region cegmentation includes littr types of ,' .

segments: l)nactually road and classified ns rcad, 2)ictuaitay not
1R 3 road and classilied as not road, 31actually iond but clu.snified as not

R5 road, 4)actually not road but classified as road. At the first image
processing phase, the program selects a conservative classification
threshold so that only Ideal road surface is classified as road. This

__ result includes much type 3 region but little type 4 region, and

T I ~ R14 14 region Classified as road is confidently road. Then, to cover type 3
region, we did a combination of reducing resolution and

use r: Robot i at road Ri. 3 meters from 1t. expansion/contraction of Image.
Navigate to R3, 2 metelrsom 13f Tt
Map: Vision will see Straight road and cross-type Intes ection. -The expansion/contraction method is known as a good method

The color in the left is ... Detect them. to eliminate gaps or small holes, but calculation time is long when _.
Vision: Ok. I found them. Thdr shopes are tie size of defects are large and large number of
Navigatoc DriveonltIS metersand turn loright900egrees. expansion/contraction is needed. We have to use this method in
Molion Contol: Ok. I drive. (vehicle moves) real time during vehicle running. So, we reduced resolution before
Map: Vision will see straight road. The color on the left is ..• expansion/contraction. This method absorbs several pixels Into
Detect it. one pixel, and decides the the new pixel value by a threshold on the

nte Fig re 1: Dalogue Model of Map Interface proportion of original pixels classified as road to nonroad. We use -4
In the road-following subsystem, two kinds of coordinate systems, a reduction ratio of 8"8 to I pixel followed by 1 or 2 iterations of

World Coordinate and Vehicle Coordinate, are used. World expansion/contraction. This obtained both sufficient shape
Coordinate is an absolute coordinate. The map data is written with estimates and quick calculation.
World Coordinate. The Vehicle Coordinate frame, which is fixed on

the vehicle, is used by Vision to represent Detected Object, 2.2.2 Polygon Fitting
because it does not know where the vehicle is. Coordinate To recognize an Intersection from the reproduced shape, we fit a

transformation is done when necessary. polygon to the intersection contour. Shape analysis based on
polygon is much quicker than one based on whole pixels or run-

2.1.2 Predictions length data. The processing includes following steps. ..
The map module supplies predictions to the vision module. The

map data consists of two kinds of maps, a topological map and a 1. Extracting Straight Line. Most of roads imaged are
geometrical map. The topological map stores the topology of roads straight but If they include curves, these can be
and intersections. The geometrical map stores the shapes of roads represented as a set of segmented straight lines. So,
and intersections, we apply a polygonal approximation to original precisepolygon to extract major straght components. The ''/-•

* With these map data, the Map predicts the kinds, the shape and tolerance is set so that the intret segments can be
the image features of objects which shall be seen in a camera view. t n s h e tg a
The purpose of detecting objects is to navigate the vehicle. The picked up well.
detail of an object shape is trivial and therefore, not necessary for 2 Labeling Lines. We have developed a program which
navigation. The Map creates interest segments, which are the labels lines. At first,this program idenlilies viewing
primary edge line segments of roads and intersections. The frame edge lines by searching lines which are
interest segments are enough for Map to decide the vehicle's cteihC neov nf .en
Current Position and the object shape necessary for navigation, this program thaalfes lines fy angle and gives same ....

They are likely to be the edge segments most easily detected by lels for the similar angle lines. The Map module L-
Vision, and therefore are included in the Predicted Object. An
Interest segment is also a key for matching. We discuss this in detail produces also the description of Interest segments

below. which shows the segment attibute and the relationship
between segments. Using this description, this

2.2 Ext racting Geometric Structure program can match the classified lines to the predicted - -

Our Autonomous Land Vehicle has to not only follow single road, interest segments easily. The list showing the detected
but also to detect an Intersection and turn Into one of the segmentsa'nd their correspondence to the predicted is
intersecting roads. In this case accurate shape of roads and an returned to the Map module. Understanding of whole .I

intersection has to be extracted. This Is difficult because variations geometric structuro Is don, by the Map In next map
in camera view and Imaging conditions result in variations in the matching step. Z

shapes detected. Furthermore there are many factors which make 2.2.3 Map matching
it difficult to detect a ropd shape such as cracks, dust, gaps With the result of the Vision module and the object prediction, the
between concrete slabs. They are not noise but physical Map module can know the names and the shapes of the detected
substance. therefore even if region classification Is done perfectly, objects. In order to estimate the vehicle current position, the Map
they possibly remain. To solve these problems, we Implemented module selects crossing lines in the detected objects and
two procedures. First, the image is processed to eliminate these corresponding. lines In the map data, and calculates coordinates
disturbing factors and to reproduce the road region. Alter that. transformation which can match them. In this stage, when only

0 4
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straight portion of the road Is in the view frame. the* measurement smooth arid featureless to cracked and pot-holed, and in color from
from the Vision module' can constrain the vehicle. position and blue-gray to black. The shoulder around the path consists mostly
oriertation only perpendicular to the road. In such case, the of grass, but there are also some sections of dirt and rock.

V location along the road is calculated using the vehicle motion. The Seasonally, both road and shoulder are obscured by leaves, snow
positional error which might accumulate along the path waill be or Ice. Trees and their shadows are also present. The main goal of
corrected as the vehicle approaches to the intersection and can our research in the parki environment is to develop vision algorithms u-.,~
see tho road edges in multiple orientations. capable of steering the vehicle reliably in this unstructured%

Figure 2 shows a result of CMU campus sidewalk run. Along the environment. -- -

vehicle approaches an intersection, the vision module detects
different parts of road contour which are predicted as major line 3.1 Road-Edge Following

segmnts y te ma modle.We have developed a technique for tracing the edges of a road
segments~~ byth.pmdue using ant oriented edge defector. Like the tracker discussed in (91

R.19 our algorithm begins with an estimate of the start position from
R-18R-17which is the edge is to be traced. Unlike that tracker, ours

R-l6 Integrates or smooths the edge along the edge direction.
R-11 . - R.I5 Integrating the signal along the direction of the edge has the effect

R J1 A13 R-12R-10of smoothing and reducing noise content. Then, the position of the
1- edge Is localized by matching an ideal step edge model with the

one-dimensional cross-section.

R-9 R- R7 -6 Oriented edge detection operators have been explored in
computer vision, with perhaps the best results found in (2). We
chose an oriented operator since it is rnere reliable than an
unoriented one. For example, If the road in the image is oriented at

R5 R- A-345 degrees, then a conventional edge detector will find gradually
t..i- sloping intensity values, see fig ure 3. However, if the same detector

R-2 R-0 is oriented at 45 degrees, then the oriented detector would see a
R-2 n~i RO sharp change In Intensities, and therefore, the edge location is

_____detectable. We have implemented edge operators at a number of
different orientations so that we can obtain a reliable response

.-. -.- . .- -.. --... regardless of the orientation of the road in the Image.
Road Irnageand Edge Proile
Edge Operator

r -,straighterator

Oriented Operator

Figure 3: An Oriented Edge Operator
3.2 Implementation

The edge tracer constructs a list of road edge points in an Image
given a position (r, co) and orientation, s of a road edge. The
oriented edge operator Integrates the signal along Its columns. If
the operator does not align with the image columns, then it selects
pixel values nearest to the position of i ts columns for the

Naee tor o dedgesirnmtip~eoduntions, pable e ti mmation. This one dimensional result of the edge operator Is

Naigatio on shw esut canu foe gS mps (bside a itke n Wlnhe n vrnet"..-'"

ppfAhhil fIte rsimban 1-5. The A*ploifsl r lnn (a) reprsent, " pre ted clled the edge signature or edge profits.
view p Ow viaon. tc lft resua of rood region extacion 01 the images In (b). The Then a new road edge point, (re, is predicted to lie a distance

s~~~n~emetife nt the M P o d WeM hthe deelpe e techniqe Th f rcin egsofara

Imaes re ocllid itotheMW ~orlrt~sItO' he itige ood~ntes ~ from (r., o) at an angle of 0. A search window is created centered
Figues 2:d vA iation NO Camus... Sda using111 Map at (r , c ), oriented at the angle 0. The edge operator creates an

hedge prfile in the search window. The road edg, (ra, cQ, is
.termR•Ied to be where the an Ideal stop edge and the window3. Park Road Following profehavethie ee correspondence. The orientation of the road

Our park environment contains a I kilometer curving asphalt path Is recalculated b -s actan2( - ci.1, r1- r). This algorithm Is
pant of which Is always Illuminated directly and part of which Is Iterative 1f (ri,,n c 4 c,). This process is repeated until the
shaded by trees. The path Itself varies In texture from xostly search window falls outside of the Image bound&s

-e7

0 sopig itenityvales -e liur -.. Hwvr ftem....tr- ":,:
i l • is riented t 45 degres,-------------------------------e--------"--.
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3.4 Color
Early In our work on visual detection of roads we recognized the

importance of utilizing color vision sensors. We found in black-
and.whito Images of our test site that the perceived intensity of the
asphalt road differed very little from the Intensity of the surrounding
grass, although the color was very different. Gray-lovel histograms .. ....-

of the Images were either very flat, or they had peaks caused by
shadows and highlights, rather than road or nonroad features. N '
Histogram.1based segmentation techniques and edge operators , " .
failed for the same reason. We considered texture energy r,.I
measures to segment road and grim. since the grass has more

V edges per unit area, but the noise introduced into the images by an
Intferior TV transmission system confounded attempts to measure
high.freqniency texture information. Even In the presence ot high
spatial frequency Image noise color Information is retained.

3.4.1 Pixel Classification
-.. In color Images each pixel (x. y) has an associated color vector

9) . Figurr4: Road lidgeTracking wilh an OrifntedOperator (O, y), G(x, y) B0. yf). The set of all possible (RG,B) values forms

3.2.1 Results a color cube RGB. The RGB cube can be divided in various ways

The edge tracer has been tested on 480 X 512 grey level Images. so that pixels having certain color vector values can be classified as
The dimensins used for the search window were 64 rows by 128 road or nonroad. A simple region classification Involves selecting a

columns. Figure 4 shows a typical result of the edge tracer. The sample road region and grass region from a training image, and I "."
using the average values (pR,08,1&G6, #8,0ao)  and

initial position Is given near the bottom of the Image and the
oriented edge detector proceeds upward in the Image. The larger , .i, , as Ideal feature points in RB space. I

the covariance matrices Z and 2 are also measured thenboxes outline the search windows, and the smaller, Inner boxes the colors can be mie as =ale normal distributions
show the positions of best correlation. The edge profiles are shown tcls can e o a s tdve ora I to
inside the search windows. (TVNDs). The result of a TVNO model is to divide color space into

regions separated by quadratic surfaces. Figure 5 shows a result of
We have developed a vehicle driver system based on oriented classifying a sequence of rectified road images from the park site.

edge tracing. The Initial position and orientation of the left and " 1
right road edges are input to the system and used for the first 3.4.2 Color variation
iteration of the oriented edge tracer. After finding the road edges in Unfortunately the color of road and shoulder do not remain
the image, they are back-projected to the ground plane. The constant from one image to the next. Variation In color arises for a
vehicle motion between images is used to locate the previously variety of reasons, such as iftumination changes (e.g. shadow f
found road edges relative to the vehicle. Then the previous edges versus direct Illumination) and material changes (e.g. dry asphalt
are projected in the new image. These edge locations are used for versus wet, green grass versus yellow). Additionally, our test
the position and orientation estimations required for the edge vehicle is equipped with a TV broadcast station, through which
tracer. The 30 projection of the road edges also allow the right and Images are transmitted to a fixed-based computer. The chromatic
left road edges lo be tested for parallelism and proper separation, component of the TV signal vades depending on such factors as

This system works well on Images where there Is a'fair amount of the position of the robot vehicle with respect to the TV receiver.

contrast between the road edge and the road shoulder. We have We have begun to explore the use of adaptive color models to
been able to drive our vehicle quite reliably on gently curving roads, reduce the problems arising from color variation.
However, we have had difficulty when the edge of the road lies -. S.o and n'i color
close to obstacles or when shadows lie on the road. The edge 3.4.3 Shadows end normalized color
tracer can locate a road edge point in under one second. The Shadows cause many of the failures of our vision system. Edge.
systm can drive the vehicle at speds up to 0.3 meter/assc, based schemes for detecting road edges are fooled by high.

contrast shadow edges, as shadow edges often have a greater
We are currently working an testing the road edges found by the brightness-to-darknesa ratio than material edges. iven region

edge tracer for geometrcal conslstency. If the right and left edges classification schemes based on color are confoundod by shadows
of the road are not parallel and the proper width apart, then the .
system must decide which edge should be used to drive the vehicle. "r_ .- . v .. , ..
Measures of evaluation based on the height, width, smoothness, L.d54 <k ,

and consistoncy are currently being tested. If these measures are :_, ., ,.
reliable, the system should be able to evaluate Its performance. A'

3.3 Road-Region Segmentation Sal;

The second major aplroach to road feature detection Is region -.- - •.-r

segmentation. This dillrs from the edge-based Procedure in that -.

the road itself is extracte d, rather than Its contours. Af we
mentioned earlier, the edge Information can be used to verify and
localize the region hypqtheels. Region classification Is based on
assignment of region labels to all pixels In an image. where theassignment depends on'prperlies of that pixel such as brightness.

texture and color around tiat pixel. Our work Is focusod on color "
classification. Figu ro : Clor Sejinientation oF Roctilierl Prt k :cenes

..................... .-. o.......... .
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because Images 0f objects in shadow contain color values This transformation is more useful If it can be done quickly: we

clustered around dilferent points In RGB space. anticipate carrying out this transformation on the CMU Warp '* "

Consider an object imaged with color C, in a sunlit part of the _ _ _ _ _

scene and color C. in a shadowed region. To a first approximation,.AIHN ON
CI . kC 2 for some constant k. This is because the object reflects NS P T
the same color in shadow, it is just imaged at a different intensity.
Thus a preprocessing step is to normalize all the color vectors of an IMAGE .. ='

Image, by transforming each point (Rx. y). G(x. y). B(. y)) into (rx. PLANE

y). g(x. y). b(x. y)) such that ,
R, R/(+ G 8). g a G/(R + G + B). b - 8/(R + G + B). GROUND PLANE

Then all the color points lie on the plane R # G + 8 a 1.N

Although the transformation from RGB to rgb Is sufficient for ""
erasing shadows in many cases, it is not always successful. There VANISING POINT "-

are two factors limiting its usefulness. First, the dynamic range of a f --.

TV camera is not very large (a maximum brightness:darknoss ratio IMAGE
of 7:1) compared wilh film (a maximum brightness:darkness ratio of PLANE CAMERA. -,tsn2(vpy, f)

20:1) or the human eye (a maximum brightness:darkness ratio of at GROUND PLANE
least 1000:1). Thus TV images containing of shadowed regions F e I c ai iH na
may have splotches of maximum bright or dark, in which all spatial Fiue6 mgaetlclo o i-oeLn n
detail and color information is lost. Color normalization will not Determination of Camera Tilt

work in these areas. The second factor Is less important, but easier SIS IMAGE
to work around. Nonshadow areas in our outdoor road scenes are PNU

illuminated by direct sunlight, which has a more-or-lessi conatant OUbPA!
spectral distribution. Shadowed regions are illuminated by skylight
and by sunlight reflected off surrounding objects (such as tree _P__ __O____ _ LA_11
leaves and tree trunks In our case). Thus the reflected color of a A k
shadowed part of a region Is not quite the same as the color
reflocled from that part of the region in direct sunlight. In practice
the difference Is small enough not to matter for our classification
techniques. 

,

Color normalization reduces the dimensionallty of color . .. ... /

classification to two. in which case a bivaiate normal distribution Is Fig rf i

used as a color feature model. ure7: Image Rectification for Fish-Eye Lens

3.5 Image Rectification 3.5.2 Camera calibration
The Image rectification process (for the pin-hole lens model) can

We have implemented programs for nonlnear warping of n be used for camera calibration. By "camera calibration" we mean
perspective of a road to trnnsform it Into a view like what we would derving'the necessary parameters for transforming image points to
see if we were flying over the road and looking down on it. This the local ground plane around the vehicle. By nring ng a pair of

transformation. called image rectification, produces a map-like lines In the ground plane around the vehicle a point on the horizon
imagc in which the structure of the road Is made explicit. The result (vanishing line) can be detected. Note that the aclubt horizon need
i. an imagj. which is In vehicle coordinates and can be used for not be In view, only a palr of lines in the local ground plane. In fact,
camera calibration. debugging of ground.plane operations, the lines need only lIe In any plane parallel to the ground plane,
detection of ground-plane features, and display of planned robot except the planes containing the camera axis. In practice we use a

* paths.pair of forward-pointing straight metal poles bolted to the side of
3.5.1 Definition the Terregator as a calibration "hood ornament". We hand-select

Figure 6 shows the process of image rectification. It is most easily these points from a calibration Image.
described by considering a rectangular grid projected onto the Oow ta

grnce thene horizo linnt can knwn theidre til oielf thecmrseslground plane. Grid poinls can be considered as pxes of the derived as in figure 6 Given the tilt of the camera and an estimate
rectified Image. Rectification consists of back-projecting the grid- ofdte amer len the transforti c m rund a e

points In the ground plane to the original image, in order to othe camera ocal length I, the transformation rom ground plane
what intensity value should be placed at that point. Once the back. pona
proiection is computed, It Is stored as a lookup table so that A second aspect of camera calibration is determining the x and V
subsequent images can be rectiflied quickly. scale factors for the image, whcre r Indicates distance along an

Figure 7 shows the Pr-cess of image rectification for a wide-angle axis parallel to the vehicle forward direction and y Is distance along a
fish-eye lens. This lena Is superior to a standard reflex lens (which an axis parallel to the wheel rotation axes. To measure these -
we usually model a a pin-hole) for Imaging the road,. because t parameters, we place meter sticks on the ground plane In camera

view, digitize and rectify a test Image, and then measure the lengths*road always remains In ie even when the vehicle makes Sharp of the meter sticks along the x and y dimensions."""""

turns off the centerline. The point (- I, IXJ,) On the ground oane of -'ta"-y,
Is first projected onto the unil phere centered at the origin, then 3.6 Warp Runs
Perpendicularly to the Image Plane which is langent 10 tho Shore t In test runs of an outdoor robot vehicle, the Terregator, under
(0.0.1 ). The overall Iranormtioo IS_______ control of the Warp computer, we have demonstrated continuou a

( I (-4 I)/V(- JA motion vision-guided road-following it speeds up to 1.08 km/hour
where A is the rectifled image and C Is the original Irage. with Image processing and steering servo loop times of 3 esec. - -

.- 7-
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3.6.1 Warp Hardware Description
The Warp machine has three cqmponents: the Warp processor HOST

array, or simply Warp, thb interface unit, and the host, as depicted
in Figure 8. We describe this machine only briefly here; more detail
is available separately (1). The Warp processor array performs the INTERFACE
bulk~ of the computation.,in this case. low-level vision routines(21.NI
The interface unil handles the input/output between the array and
the host The host has two functions: carrying out high-level

!. application routines and supplying data to the Warp processor
array. "C" CLCE

The Warp processor array is a programmable, one-dimensional
systolic array, in which all cells are replicas of each other. Data WARP PROCESSOR ARRAY 4
flow through the array on two data paths (X and Y). while addresses - AR :-
and systolic control signals travel on the Adr path (as shown In the F.-u.e-t Wn
Figure 8). The Warp cells are specialized for floating-point Figure 8: Warp machine overview
operations. The data path of a Warp cell is depicted In Figure 9. ,64%

* Each cell contains two floating-point processors: one multiplier mnd -
d1 one ALU [81. These are highly pipelnOd; they each can deliver up ,

to 5 MFLOPS each. This performance translates to a peak j
processing rate of 10 MFLOPS per cell or 100 MFLOPS for a IO-cell -"
processor array. To ensure that data can be supplied at the rate
they are consumed, an operand buffer is dedicated to each of the €".. r,"',',,,, f, . Al.

arithmetic units, and a crossbar Is used to support high Intra-cell
bandwidth. Each input path has a queue to buffer input data. A

P 4K.word memory is provided for resident and temporary data I.l -P
storage.

As address patterns are typically data-Independont and common
to all the cells, full address generation capability s factored out
from the cell architecture and provided in the Interface unit. Figureg: Warp cell datapath
Addr.cs- are generated by the interface unit and propagated from -

cell to cell (together with the control signals). In addition to replaced by the moan of this window. Two passes of
generating addresses, the interlace unit passes data and results this algorithm are executed. The effect ts to remove
between the host and the Warp array, possibly performing some noise from the Image, especially noise from the poor
data conversion in the process. quality of the TV reception in some cases.

The host is a general purpose computer. It is reoponsible for h is ake o
high-level application routines as well as coordinating all thethWapmcie
peripherals, which might include other devices such as the digitizer the Warp machine.
and graphics displays. The host has a large memory In which 4. Threshold selection. The histogram is used by the

1 images are stored. These images are fed through Warp by the host, Sut 120 to select a threshold, The threshold is
and result images from Warp are stored back into memory by the selected by starting at the 50th percentile level in the
host. This arrangement is flexible. It allows the host to do ta not histogram and then finding a local minimum by
suited to Warp, including low-level tasks, such as initializing an comparing adjacent 3-element averages of the
array io zero, a well as higher level taSks, suclh as processing a histogram.
hislogram to determine a threshold.

3.6.2 Warp Road Following Algorithm 6. Binarlzation. A gray value table translation table is
The Warp.implemented road following algorithm is very simple, constructed by the Sun using the threshold, and the

but proved to be remarkably robust. The algorithm is region-based; image in binarizdd using this table on Warp.
it searches for the road as a bright region In the blue spectrum of a
color image. A 100 x 512 band of the image is taken about halfway G. Region smoothing. The resulting binary Image Is
down the image. The algorithm then works as follows: once again subjected to two passes of edge-preserving

smoothing. The idea here is to remove small cracks in
1. Blue Filter. The gplor Image is filtered by digitizing the road, and to eliminate small regions of ones in the

only the blue band. Plue was chosen because blue Is a background. Edge-preserving smoothing was chosen
strong component In the color of the roads we are lor this step instead of a more traditional operation, like
driving on (asphalt and concrete), but less strongly a hrinking and growing, because the edge.preservIng
component of the beckground (generally gra). filtering program was available while the (simpler)

2. Edge-preserving smoothing. This is a smoothing binary operator program was not.
operation which avolds smoothing across edges It Is r Blob detection. At this point the road Is a region of
the algorithm EGPR Jn the Spider subroutine library [4L ones surrounded by a background of zeroes. Ten scan
implemented on Wpms. The algorithm takes x 5 lines, taken ten rows apart, re taken from the Image
window around oach pixel and chooes nine and each is examined to find he longet continuous
subwindows In the t x 5 window. The subwindow with sequence of ones. Each scan line thus defines a left
smallest variance 1q chosen, and the central pixel Is -nd right road edge. The left and right edges are

......................................................



avorsoed together individually to lind the estimated road-following even at the slowest speed the Terregator has run in
road edges. An earlier approach was to find the left any road-following experiment (10 cm/sec) the entire processing

edge by finding the first long sequence of ones moving loop must complete every 10 seconds.
to the right from the left side of the image and the right
edge similarly. This did not work as well as the second Warp has proved to be a useful high-speed processor for vision

approach, since the vehicle tended to steer Into the tas1s. An important advantage of Wtrp over other Image

center of forks In the road. processing computers Is its floating.point capability. Many of the
processes we have discussed, such as Image rectification, color

8. Steering. Our servoing strategy Is to steer the vehicle segmentation, and oriented edge tracking, are Implemented as %-,,. ."'

to keep the center of the road centered In the Image. floating-point algorithms and can run efficiently on Warp. Using the '. ., '-9Basically we start with a large (512 x 512) Image array Warp, we have already demonstrated one eflicient and robust road-

and reduce It as quickly as possible to a point 0, y). following algorithm.

This is the point considered to be the center of the road
some fixed distance In front of the vehicle. It is also the
point to which the vehicle steers. Assuming that the 5. Acknowledgem ents .*.
center of the Image is the point (0, 0), the steering
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Pulsewidth Modulation Control of Brushless DC Motors
for Robotic Applications

PATRICK F. MUIR, =tDENT imuas, mmE, AND CHARLES P. NEUMAN, sENIoR mtmaa, mzm

Absouu-Fnlaewdtb moed.. (PWWM otrolofI ",hi dc ratio [1], case Of Computer control, efficiency, and simple I
meoter. is hipemeated with digind uervo seedismisms for robotic drive circuitry. Semiconductor power transistors can drive the
applications. Under tIM usmptlos that the pW*t period is nu ole motor directly from a microprocessor. Power transistors
than the moctor time-costaats, the @mor Is modeled by a discrete-tisne
&"da~er Intion with the puimewisata pling the rote ofIm ~e tro, operate most efficiently in a switching mode. Velocity control
dgas. This mnodel enables the application of clascid 11near control Of a brushless dc motor is accomplished (in the switching
aslueer*n to the design of a diial position servo for the brushleas dc mode of operation) by the PWM of the stator coil voltages.---

ieulq motors on the CMUt Rover. The controller Is Implemsented with a If the motor position is measured by a digital shaft encoder, --

* microprocessor and progrnmmnabe timer to calculate Concurrenty the th feedbck coto ytm ihteecpinof temtr
ecaung sgals, time maumplig periodis, we pusw s as wel as tocotlsyemwihhexepon heoor

*provide comanstadon. Comeputer simulation and mi-time hardlwsre is digital. The brushless dc steering motors on the CMU Rover
* isaplematatlo. of the servo demiontrste i theey of the approach. (2] (described in Section ElI) exemplify such a system. The

Rover is a mobile robot which rolls on three wheels that are
J. INTRODUCTION actuated by brushless dc motors. In this paper, digital servo

controllers are designed using PWM to provide mobility. The

THEM DESIGN and implementation of digital servo control- steering motors are modeled, position controllers are de-
klers for brushless dc motors, utilizing pulsewidth mnodula- signed, and the control system is simulated and implemented

tion (PWM), has become a significant control engi- in hardware. Simulation and experimental results demonstrate
neering task because of the desirable characteristics of these that the design goals of zero overshoot and a 100-ms settling
motors for robotic applications. Brushless dc motors (using time are achieved.
siamarium-cobalt Permanent magnets) are appropriate for The PWM control of a linear analog system is assessed.
robotic applications because Of their high toqu-to-weight Under the assumption that the pulse period is much smaller

Manuacript received April 25, 1984. M&i paper was appotted by an R. K. than1 the cim-constats of the system, the system can be
Mellon Fellowabiip granted to P. F. Muir by Carnegie-Mellon Uniesity, the modeled by a linear discrete-time transfer function, with the

* Office of Naval Research tunder Cotract N00014-514503. wad the DepSut- pulsewidth playing the role of the control signal. This model
-.nto Electrical mdComputer Bulisecrlns, Canll-Melo University. enables the application of classical control engineering 131-[1Tie authors are with the Deparunent of ElectrIcal sod Computer nnpzr-

ing, Carnegie-Mellon University, Ptsburgb PA 15213. to the design of pulsewidth-modulated systems for the control

0278-0046/95/0800-M222$01 .00 Q 1985 IEEE
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MUIR AND NEUMAN: PWM CONTROL p

of brushless and conventional brushed dc motors, and electro- and current amplifiers), or, more simply, by adjusting the
magnetic solenoids. current duty cycle (using power transistors and PWM). To

This paper is organized as follows. The operation of reverse the direction of rotation, the stator windings are ,
brushless dc motors is reviewed in Section II, and their sequenced in reverse order, rather than reversing the current '.-

application on the CMU Rover is described in Section I polarity.
PWM control of linear analog systems is highlighted (in Even though the operation of a brushless dc motor is more
Section IV) and applied to model the steering motor on the complex than that of a conventional brushed dc motor,
Rover using experimental data (in Section V). This modeling practical advantages accrue. The removal of heat produced in
process and the ensuing controller design are accomplished the windings of brushless dc motors is more easily accom-
entirely in the discrete-time domain. An algorithm is then plished because the path to the environment is shorter.
presented for transforming the discrete motor model into an Problems with brushes, such as wear and brush noise, are .
equivalent model at a sampling period which is different than eliminated. Brushless dc motors require minimal interface
the sampling period of the experimental data, since the circuitry for microprocessor control. Power transistors are
sampling period of the controller is not specified at the operated in a switching mode, as coil drivers are more
identification stage. Consequently, when a low-order transfer efficient than the analog power amplifiers used with conven-
function is identified from the origial data, the modeling tional motors. Minimizing weight and power consumption is
experiments need not be repeated at the controller sampling essential for mobile robots because the capacity of self- .
period to reidentify the model, contained power sources is limited. Disadvantages of brush-

Controller design (including the choice of sampling period) less dc motors are the need for electronic commutation, its
is outlined in Section VI. The controller sampling period is high cost, and low availability. As the demand for brushless dc
specified in terms of processing time, motor response time, motors grow, these motors will become more available and
velocity resolution, and timer operational limitations. Because less expensive.
the servo execution time exceeds one-half of the sampling P
period, the processing time is incorporated (as a computational El. THE CMU ROVER
delay) in the closed-loop system model, thereby increasing the The CMU Rover [2] is a mobile robot currently being
order of the system. Nonlinearities in the control system designed and constructed in the Robotics Institute of Carnegie-
(caused by friction, motor saturation, and position quantiza- Mellon University, Pittsburgh, PA. The CMU Rover is
tion) are neglected in the controller design. Controller gains cylindrical in shape, 1-in tall, and 55 cm in diameter. Mobility

| are calculated to satisfy the design goals of zero overshoot and is provided by three wheels upon which the robot is supported.
a 100-ms settling time. The step-response of the closed-loop Three brushless dc steering motors [8] control the orientation
control system, using these gains, is simulated in the presence of the wheels and three additional brushless dc drive motors
of the aforementioned nonlinearities. The controller gai ontrol the rotation of the wheels. The motors are directly
which meet the performance specifications (in the presence of coupled to the wheels. A Motorola 6805 microprocessor [9] is
the nonlinearities) are selected for the hardware evaluation, dedicated to the control of each motor. Servo reference

* The hardware implementation of the controller is evaluated positions are communicated to the individual motor processors .
in Section VII. Motorola 6805 microprocessors execute the via a common serial line from high-level processes [2]
control algorithms, which are stored in nonvolatile read-only- executing on independent onboard processors. Power MOS-
memory. An interrupt driven routine and a programmable FET devices drive the motor coils from the microprocessor
timer enable the processor to calculate concurrently the output ports through optoisolators which protect the processor
actuating signal and time sampling periods, and to provide from electrical noise generated in the motor. The motor shaft
pulsewidth modulation. The performance of the position servo position is fed back to the processor via a digital shaft encoder I ...
is evaluated from experimental step-response data. The results [10].
are summarized and concluding remarks are advanced in
Section VIII. IV. PWM OF A INEAR SYSTEM

There are practical reasons why the dynamic models of dc
19. BRUSHLESS DC MOTORS motors cannot be applied directly to model the motors on the

A brushless dc motor has the same torque-speed characteris- CMU Rover. Although many of the characteristic parameters
tic as a conventional dc motor even though the principle of are provided by the motor manufacturer, there are parameters
operation is more complex [7]. There is no electrical connec- (e.g., the moment of inertia of the load, frictional torque, and
tion to the rotor of a brushless dc motor because the rotor damping constant) that must be obtained experimentally after
consists of permanent magnets. Samarium-cobalt permanent the motor is built into the robot. Furthermore, the input to a
magnets, which provide higher torque than conventional conventional dc motor is the voltage applied to the motor
alnico magnets, are commonly used in brushless dc motors. windings; whereas, the voltage pulsewidth plays the role of the .
Commutation of a brushless dc motor is accomplished by input for a motor controlled using PWM.
electronically switching the current in the stator windings. The The PWM control of motors is analyzed for the state-space
proper stator winding polarities (at each int) are derived model of the M-order linear time-invariant system
from the shaft position, u read from a shaft encoder, and the
desired direction of rotation. Velocity control is accomplished -i)

either by adjusting the stator currents (using D/A converters dtA._

• , ......: -.., .. .. .. :. ,. .. ,. .. ,. .. -, .. .. .. .. ,. .. . o .... ,, .. , , ... ,, . ...... , .,, ,. .. .. , , ,, , ,, .,.1., ,, :,
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sampling period r and consequently the pulsewidth s(n T) :5
T are much smaller than the system time-constants. In first-
order systems, this assumption ensures that the scalar expo-
nential exp{T/7) can be adequately approximated by 1 + T1[, where 7 is the system time-constant. By applying a LA

similarity transformation [3] to diagonalize the system matrix
OT (ft), (a.)T t A, the first-order condition generalizes for approximating the

T matrix exponentials in (5). Upon substituting the first-order
matrix approximation and retaining the linear terms in s(nT),

Fis I Pulseiddh modulaziac. (5) leads to

where the (N X 1) state vector is x and the scalar input is u. x[(n+ l)7]= (I+ATzx(nT) + Kbs(nT) (6) h.
The(N x N) motor matrix isA and the (N x 1) input vector
is b. The solution of (1) is [5] where I is the (N x N) identity matrix. The discrete state-

space PWM model in (6) is linear in the pulsewidth s(nT)

(t) =exp{A(t - t))4t0) +' exp(A(t-X))buCA) d which plays the role of the control signal. The state, and hence
the outputs (which are linear combinations of the states),
depend linearly on the pulsewidth s(nT). The only assumption
made in leading to (6) is that the sampling period is much

where exp (At) is the matrix exponential [3, 5]. smaller than the time-constants of the system. This assumption
The scalar pulsewidth modulated signal u(t) is shown in is practical because conventional digital control systems

Fig. I. The input u(t) is the constant K (volts) for the fraction operate on a sampling period which is much smaller than the
sIT of each period, and zero for the remainder of each response time of the system under control. This engineering
period. The pulsewidth is the magnitude of the control signal assumption and interpretation of the linear model in (6) lay the
and is, therefore, positive. Negative control signals reverse the foundation for the design (in Section VI) of control systems for
commutation sequence of the motor (as discussed in Section the motors on the CMU Rover.
VI). The goal is to find conditions under which (2) is linear in V. MODELING 77HE STEERING MOTOR
the pulsewidth s. The digital controller samples the states at

* discrete-time instants. Instead of the continuous state vector A. Introduction
x(t), attention focuses on the state vector x(nT) at the The framework of Section IV is applied to the practical
sampling instant nT, where T is the constant sampling period problem of modeling the brushless dc steering motors on the
and n is the iteration index. In (2), the sampling period, from t CMU Rover. The analog transfer function, from input voltage

* nTto t = (n + I)T, is divided into two subperiods. The to output velocity of a dc motor is linear [7]. Consequently, the
first runs from to = nT to t = nT + s(nT); where the motor under PWM control can be characterized by the linear
Pulsewidth s(nT) can vary from sampling period to sampling discrete-time state-space model in (6), and a corresponding
period, and the pulse height is constant. In the second, from to linear transfer function, from pulsewidth to velocity, if the.L
SnT + s(nT)tot = (n + I)T, theinput u(t)iszero. Thus samplingperiodis small comparedtothetime-constantsofthe

motor. Since the motor parameters are unknown, experimental
x[nT+ s(nT")] =exp{As(nT)}nT) data are acquired (in this section) to identify the discrete-time

1:017) model. The order of the model is chosen to ensure acceptable
-+K exp(AX) dX b (3) accuracy, without increasing the complexity of the servo

0i controller. L
and

B. Experimental Data
x[(n+)71=exp{A[T-s(nT)])x[nT+s(nT)]. (4) The velocity step-response of a steering motor is easily

Upon substituting (3) into (4), the state-vector x[(n + 1)71, at measured and sufficient to identify the transfer function (from
the (n + l)th sampling instant, is related to the state-vector pulsewidth to velocity). Velocity measurements are acquired
x nT) according to every 2 ms, since this is a convenient sampling period to

implement. Data are taken until the step-response settles (160
x[(n+ )71 =exp{AT x(nT) data points are stored for model identification). The dominant

time-constant of the motor is found to be 58 ms. The motor
x ex sexhibits nonlinear saturation at the maximum velocity (6.25

X ") revolutions per second) and a frictional dead zone at small
S exp(AX) dX b. (5) command inputs. The data used to identify the model are taken

at a command value that is within the active linear range of
To continue the development, the matrix exponentials in (5) motor operation. The transfer function selected to model the

are approximated by their first-order series expansions [4]; motor has the simplest structure which closely approximates
i.e., exp (At) - I + At, under the assumption that the the experimentally obtained step-response of the motor.

C/ 8
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NbM AND NSUMAN: FW CONTROL p
E. Sampling Period of the Model

Pulse wdth (uVse/l i ) The sampling period of the motor controllers is not
specified when experimental data are collected to model the

SFig. 2. Skering now model. .. - motors. The controller sampling period may differ from the
sampling period of the experiments. Since a discrete transfer "

C. Model Order function model of an analog system is an explicit function of **..*".*"te sampling period 1111], the discrete motor model used in the.."""::

The input-output transfer function of a conventional or controller desig must correpond to the controller sampling 
brushless dc motor, from voltage input to velocity output is period.le design mto

* second-order 7. The discrete model (6) of the motor under To change the sampling period of the motor model, the
PWM control is also second-order. One mode of the motor discrete transfer function G,(z - 1) in (7) is assumed to be the
dynamic response is characterized by its mechanical time- p-invant ansformation [11] of the first-rder analog
constant and the second mode by its electrical time-constant. anfer function
Since the electrical time-constant of the motor is much smaller
than the mechanical time-constant, a first-order model should G(s) =K(9)
be sufficiently accurate for controller design. 7S+ I 

First- and second-order discrete-time transfer functions are Thbus S
introduced to model the steering motor (from pulsewidth input
to velocity output). The first-order transfer function is P=(T)=exp{ - T/r) (10)

Kiz- ( and
, 1 -pz -, K =K(T) =K[I -p(T)]. (l)

and the second-order model is When the sampling period is changed from T to Ti, the

K -'(l + zo-') digital transfer function in (9) becomesG2(z- 1)=()-.-,-'
I-PIZ-1 ' P2Z-' K2T z - ''

A Computer program was written to simulate the step-response I -P(TI)- (12)
of these models using user-specified model parameters (i.e., where
K1, and p; and K2, Z0, p, and p2). The program calculates the
accumulated squared-error between the simulated output of p(T1)=exp{T 1/T In p(T)} (13)
each model and the experimentally obtained step-response.
The user systematically adjusts the model parameters to and
reduce the accumulated squared-error for both the first- and 1- TI) ""
second-order models. Finally, the minimum squared-error of K 1(T)=K,(T) . (14)
the first-order model is compared with the minimum squared- I -p(T)
error of the second-order model to decide whether the second-
order model is significantly more accurate to warrant the VI. CONTROL SYSTEM DESIGN

additional implementational complexity. A. Introduction
The second-order model of the steering motor produces a The objective of this section is to design a position servo for

squared-error which is only 4.7 percent less than that of the the steering motor. The linear discrete-time transfer function
first-order model. This small improvement, in our opinion, model identified in Section V enables the application of
does not warrant its corresponding increased complexity. classical linear control engineering to PWM controller design.

The design goals are zero overshoot and a 100-ms settling
D. Identifed Steering Motor Model time.

The transfer function model G(z- ) of the steering motor, Sam",
which is used in the controller design (in Section VI), is pling Period
depicted in Fig. 2. The motor velocity is measured in units of Motor characteristics and processor capabilities lead to the
shaft encoder counts (there are 212 - 4096 counts/revolution) selection of the controller sampling period. The controller
per sampling period (2 ms). The model has a dc gain of 0.187 must operate with a sampling period that is much smaller
and a pole at z = 0.966 corresponding to a time-constant of 58 (e.g., 10 times smaller) than the motor time-constants, so that
ms. The second-order model has the same dc gain, poles at z the pulsewidth-modulated motor can be modeled by the
- 0.965 and z = 0.436 (corresponding to time-constants of discrete transfer function in Fig. 2. Since the time-constant of
56 ms and 2 ms, respectively), and a zero at z - 0.397. Since the steering motor is 58 ms, the controller sampling period
the pole at z = 0.436 responds much faster than the dominant should not exceed 5.8 ms. Execution of a prototype servo
pole at z . 0.965, which matches the pole of the first-order program is timed and found to se a lower limit on the
model, the response of the first-order model closely resembles sampling period at 1.27 ms, because the program must be able
that of the second-order model. to execute within each sampling period. The minimum

. . . . , " , . . . , , ,. . - .- - . . . .• .
. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. :- _'_', _, .',_, .. '=_._. .. _.'.. . -.--- ..
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sampling period is also limited by the precision of velocity time (as explained in Section VI-B). To ensure that the,-'.',.
calculations. Velocity measurement precision is low if the actuating signal is synchronized with the sampling period, the :.-
sampling period is small, because velocities are calculated as calculated control signal is stored until the beginning of the '"'..-.'
the difference between position readings at successive sam- next sampling period, when the magnitude of the control -'- .Q

r ~piing periods. By experimentation with the prototype servo signal is used as the pulsewidth and the sign specifies the --
program, the lower limit (1.85 ins) on the sampling period is commutation sequence. The motor parameters K, and p are".1- -
found to provide sufficient velocity precision and thereby calculated at the controller sampling period of 2 ms using the !-Q.-
a void undesirable nonlinear quantization effects which result formulae in Section V-E. In this design, the controller
in jerky motor operation. The controller sampling period of 2 sampling period and sampling period of the modeling experi-"'-""-
ms is chosen because it satisfies the aforementioned con- ments coincide and the tranfer function in Fig. 2 is applied for :straints and because it is convenient to implement sampling the controller design.

periods that are multiples of 0.25 ms with the programmable D ai Clclaio I
! ~~timer. Since the pulse period of the PWM is one sampling D.an luaio",.,''
I ~~~period, the choice of 2 ms as the sampling period guarantees The closed-loop transfer function of the position servo (in.- " "".-,-:

that the linear modeling assumption of Section IV (i.e., the Fig. 3) is third-order .. ,,;
pulsewidth is much smaller than the tim constant 58 ms of the ,.-,) ,-,, ,,*, ..

t motor) is satisfied. ____-_)_______ -_____-'"_____

C. Control System Structure R'(z) ( +l -. p ,(:-KW- ,K.
The position servo (in Fig. 3) is implemented by incorporat- (16)."''" --- ".

ing position and velocity feedback. The control signal is the The controller gains K, and K, are calculated to meet the.'-".-puisewidth modulated voltage applied to the motor cils. Th design specifications of zero oversoot and a 100-ms settling-
P pflsewidth in the nth sampling period is the magnitude ofs(n), tie. t h e ( ainre.r function in (16) is fatored into the cascade ..

where of a second-order component and a first-order component

a nd where R(:-') =(1 - aV- )2 (1 -pz- )'.. "'".° -

c Rn - s) curreareferencemotorposition, ow 3 <a". (17)
P(n -i) current shaft position as read from es The objective is to force the critically damped second-order

encoder, component (with two equal real poles at = a) to dominate
En - i) current position error, the clmoed-lonp esponse. The closed-loop system is thus
V*(n - i) current velocity calculated as [t - 1) - designed to respond as fast as possible without overshoot. By

P(n - 2)], equating (16) and (17), the third system pole p , feedback""--"avoK, position gain (in Section VI-D), gains K, and K, and gain K s are computed in terms of a and
Ki velocity gain (in Section VI-D). the motor constants K, and p a ccording to iapef

The position and velocity gains K and K. control the ("-) -etransient response s of se rvo. The heigtporachbule)-2(

consat (24 v) and the pulewidth is calculated as the pia o
magnitud e ofo(ce)h sign of ( ) specifies (in Seetion VII) Kti s ()n
the coil commutation sequence. This is analogous to K,
reversing the polarity of the voltage applied to a brmshed dc K, + (20).
motor. The delay z' is introduced in the forward path to --
model the execution time of the controler program. The (1.
calculation of the control signal is not complted until 1.27 ts t" -.-.--
after the inputs are received, due to the program execution KseK o,. (21) z.e.aa.tl

ILL

---:-_'. .-_- ::.,: :..:,,,:.:., . .- *. :" ..,:.', .'..'...'-.'' ', -':-.-"...................-..'.....-....,.,...,,..............,........
~~~~~~~~~~~............................"..................."..: "'........ ".......-.' -'.--.-,'''.v.....;

s~n = p(R~n 1)- Pn -1))- K P*( -. 1) (15 - .1) ,z- Z* 4-1.

T-T)(-Z')(-3_)
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. oO - ................ .
MU3 ND NUMANwidth), uid requires approximately 1.27 ma of each 2-ms

IL sampling period to execute. The interrupt routine handles only ..
those functions that require accurate ming, such as reading r ?
the shaft encoder, sendin signals to the mtors, and control-
ling the timer. The software is structured so that the mot
urgent tasks (those serviced in the interrupt routine) are

,o , 0 i.o.. processed when necessary, and the tks for which timing is
not critical (those serviced in the main routine) use the

FiS. 4. Siamlmed step-mepomae of swering mola posdw swvo. enigpoesn ie :
The programmable timer is used to time the pulsewidth and

The settling time of the closed-loop system is then calculated sampling period, and synchronize dhe control signals in the
from (17) for different values of a. The servo gains K, and K following manner. The timer is loaded with the pulsewidth
are calculated from (19) and (20) for values of a which (which was calculated by the main routine in the previous
produce settling times less than 100 ms. The choice of gains is sampling period); and the poper motor coils are energized by
finalized by simulating the control system, with the calculated loading the microprocessor output port with the excitation
gain combinations, on a computer in the presence of nonlinear pattern (the excitation pattern was also determined by the main
motor saturation and quantized position feedback values. The routine in the previous sampling period); and the position of
feedback gain values the motor shaft is stored. The timer counts down the

pulsewidth, while the main routine calculates the pulsewidth
K, = 32 and K, = 3 (22) and coil excitation pattern for the next sampling period. When

the pulsewidth has elapsed, the timer generates a hardware
k provide acceptable simulated response characteistics and interrupt the processor. The processor immediately stores'.

satisfy the design constraints in computer simulation. The the present state of execution of the main routine and begins
value ofa = 0.838 (correspondingtoatime-constant of 11.3 executing the iterrupt routine. The inerrupt routine calcu-
ms) is substituted into (18) to calculate the location of the third Iot the time remain otin. the ampling period, loads this
pole p3 = 0.290 (corresponding to a time-constant of .6 ns). value in the timer, and turns off all of the motor coils by
The third pole thus responds much faster tha the two equal storing a 0 in the output port. Control is then returned to the

* dominant poles, as desired, main routine, which resumes execution at the point at which it -

E. Control System Simulation Results was interrupted. After the programmable tiner has counted
down the remaining time in the sampling period, a second --

The simulation program implements the block diagram of interra is generated. By this time, the main routine has -,
Fig. 3 to calculate (at discrete time instants) the 5tep-respofle completed its calculations, and the cycle repeats each succeed- %
of the steering motor servo. The simulated step-response of
the steering motor position servo controller, using the gains in i of p erias

(22) isshow inFig 4. e ies-.emioot Implementationl of the multiplication operation in assembly(22), is shown in Fig. 4. The step-respose does not overshoot language code is accomplished using shift and add instruc-and displays a 100-m settling time, and thus satisfies the tiom. Addition and subtraction of 12-bit quantities on the 8-bit
design specifications (with zero steady-state error). processor is achieved by double-precision calculations. Calcu-

VII. HARDWARE IMPLEMENTATION AND lations involving cyclical shaft position readings must be
EXPERIMENTAL RESULTS checked and corrected for wraparound errors. Position read-

A. HadwrOevings must lie within the range 0-4095. If the calculated
A. Hardware Olvriew position error is outside this range, a multiple of 4096 must be

The steering motor controller is implemented as an assem- added to or subtracted from the value (as appropriate), to bring
* bly language program running in real time on a Motorola 6805 the result within the allowable range. A similar correction

micopr~cesr. Reference positions are communicated (over procedure must be executed if the calculated velocity value is
a serial communication link) to the processor from high-level outside of the range - 2048 to 2048.
processors. The processor communicates, the pulsewidth- The main program implements electronic commutation of
modulated control signal to the motor via anoutput port to the the motor coil voltages by a table look-up to determine the
motor coil drivers. The motor shaft position is fed back to the excitation pattern which produces the maximum torque in the
input port of the processor from an optical shaft encoder. In desired direction for the present shaft position. The table is a
each sampling period, the program calculates the pulsewidth list of ranges of shaft positions; each with two associated
and the motor coil excitation pattern, and produces a pulse- motor-coil excitation patterns. The first excitation pattern
width-modulated signal to control the motor. produces maximum motor torque in the clockwise direction if

the motor position is within the range. The second produces
B. Controller Program imaximum torque in the counterclockwise direction. The

Two independent programs are shown in the flowchart of range in which a shaft position occurs is identified by
the servo program in Fig. 5. The main routine implements the comparing the shaft position with the range boundary posi-
calculations and logic which produce the motor coil excitation dons. I the shaft position is greater than or equal to the lower
pattern (i.e., commutation) and actuating signal (i.e., pulse- boundary of a range and less than the upper boundary, then

c/s
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(A Summary)
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Abstract

We summarize our methodology for formulating the kinematic equations-of-motion of a wheeled

mobile robot. The complete paper[1], which is currently being prepared for publication, is over

one-hundred pages in length. Wheeled mobile robots having conventional, omnidirectional, and

ball wheels are modeled. While our approach parallels the kinematic modeling of stationary ma-

nipulators, we extend the methodology to accommodate such special characteristics of wheeled

mobile robots as multiple closed-link chains, higher-pair contact points between a wheel and a

surface, and unactuated and un.ensed degrees-of-freedom. We apply the Sheth-Uicker convention *.-'*.-

to assign coordinate axes and develop a matriz coordinate transformation algebra to derive the

equations-of-motion. We calculate the forward and inverse solutions and interpret the conditions

which guarantee their existence. Applications of the kinematic model are also described.

tGraduate student, Department of Electricmi ad Computer Engineering; and Member, Autonomous Mobile

Robots Laboratory, The Robotics Institute.
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1. Introduction

The wheeled mobile robot literature shows that the documented investigations have concen- -.

trated on the application of mobile platforms to perform intelligent tasks rather than on the develop-

ment of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved

mechanical designs and mobility control systems will enable the application of WMRs to tasks were

there are no marked paths and for autonomous mobile robot operation. A kinematic methodology

is the first step towards achieving these goals.

Even though the methodologies for modeling and controlling stationary manipulators are appli-

cable to WMRs, there are inherent differences which cannot be addressed with these methodologies,

such as:

1.) WMRs contain multiple closed-link chains; whereas, manipulators form closed-link chains

only when in contact with stationary objects. -

2.) The contact between a wheel and a planar surface is a higher-pair, whereas, manipulators

contain only lower-pair joints.

3.) Some degrees-of-freedom of a wheel on a WMR are not actuated or sensed; whereas, all -

degrees-of-freedom of each joint of a manipulator are actuated and sensed.

Wheeled mobile robot control requires a methodology for modeling, analysis and design which -

extends the principles applied to stationary manipulators. In this paper, we advance the kinematic

modeling of WMRs, from the motivation of the kinematic methodology, to its development and

applications. In Section 2, we present the three wheels (conventional, omnidirectional and ball

wheels) utilized in all existing and foreseeable WMRs. We present a definition of a wheel mobile

robot and enumerate our assumptions in Section 3. Coordinate systems are assigned to prescribed -

positions on the the robot (Section 4). We develop transformation matrices to characterize the

translations and rotations between coordinate systems (Section 5). Matrix coordinate transforma-

tion algebra is developed as a means of calculating position, velocity, and acceleration relationships -

between coordinate systems in Section 6. We apply the axioms and corollaries of this algebra to

model the kinematics of WMRs.

The equations-of-motion relating robot positions are developed in Section 7, and we develop -.

the velocity and acceleration relationships in Section 8. We relate the motion of a wheel to the

motion of the robot body by calculating a wheel Jacobian matrix. From the simultaneous motions - -"I

of the wheels, we obtain the motion of the robot in Section 9. Specifically, we obtain the inverse

solution, and the forward solution. We discuss the application of the kinematic methodology in

C2]/ 0 2. I-::- -
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Section 10 and summarize the kinematic modeling procedure in Section 11. We outline our plans

for continued research in Section 12. .'

Many sections and details of the original paper had to be omitted from this summary for

brevity. The full paper contains: a survey of documented WMRs, detailed derivations of the

inverse and forward solutions, detailed applications, the development of the kinematic model of

several example WMRB, and a nomenclature and symbolic representation for WMRs. Further

details on the topics presented in this summary are also included.

0
2. Wheel Types

Three basic types of wheels are used in WMPs: conventional, omnidirectional, and ball wheels.

In addition, conventional wheels often are mounted on a steering link to provide an additional

degree-of-freedom. The degrees-of-freedom of each wheel are indicated by the arrows in Figure I.

The kinematic equations relating the angular velocity of the wheel to its linear velocity along the

surface of travel are also compiled in the figure.

"* The nonsteered conventional wheel is the simplest to construct having two degrees-of-freedom.

It ajlows travel along a surface in the direction of the wheel orientation, and rotation about the

point-of-contact between the wheel and the floor. We note that the rotational degree-of-freedom is

slippage, since the point-of-contact is not stationary with respect to the floor surface. Even though

we define the rotational slip as a degree-of-freedom, we do not consider slip transverse to the wheel

orientation a degree-of-freedom, because the magnitude of force required for the transverse motion

is much larger than that for rotational slip.

The omnidirectional wheel has three degrees-of-freedom. One degree-of-freedom is in the di-

rection of the wheel orientation. The second degree-of-freedom is provided by motion of rollers

mounted around the periphery of the main wheel. In principle, the roller axles can be mounted

at any nonzero angle 7 with respect to the wheel orientation. The third degree-of-freedom is rota-

tional slip about the point-of-contact. It is possible, but not common, to actuate the rollers of an

omnidirectional wheel, with a complex driving arrangement.

The most maneuverable wheel is a ball which is actuated to posses three degrees-of-freedom

without slip. Schemes have been devised for actuating and sensing of ball wheels, but we are

unaware of any existing implementations. An omnidirectional wheel which is steered about its point-

of-contact is kinematically equivalent to a ball wheel, and may be a practical design alternative.

. . . *..
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V and U a x and y components of the linear velocity of the wheel at the point-of-contact .

W z component of the angular velocity of the wheel at the point-of-contact

IS angular velocities of the roller about their ales

Wwx , Uw = x. y. and 2 angular velocities of the wheel about its center

11 a angle of the roller axles with respect to the wheel orientation

R and r. * radii of a wheel and a roller
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3. Definitions And Assumptions

We introduce an operational definition of a WMR to specify the range of robots to which the .

kinematic methodology presented in this paper applies. '

Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the

actuation of wheel assemblies mounted on the robot and in rolling contact with the surface. A wheel

assembly is a device which provides or allows relative motion between its mount and a surface on

which it is intended to have a single point of rolling contact.

Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot body
and the wheel constitute a wheel assembly. We introduce the following practical assumptions to

make the modeling problem tractable. k

Assumptions
1.) The WMR does not contain flexible parts.

2.) The WMR moves on a planar surface. ..

3.) There is zero or one steering link per wheel.

4.) All steering axes are perpendicular to the surface.

5.) The translational friction at the point of contact between a wheel and the surface is large

enough so that no translational slip may occur. U:

6.) The rotational friction at the point of contact between a wheel and the surface is small
enough so that rotational slip may occur.

4. Coordinate System Assignments

Coordinate system assignment is the first step in the kinematic modeling of a mechanism.

Lower-pair mechanisms' (such as revolute and prismatic joints) function with two surfaces in

relative motion. In contrast, the wheels of a WMR are higher-pairs; they function ideally by point

contact. Because the A-Matrices which model manipulators depend upon the relative position

and orientation of two successive joints, the Denavit-Hartenberg convention leads to ambiguous
assignments of coordinate transformation matrices in multiple closed-link chains which are present .. "

Lower-pair mechanisms are pairs of components whose relative motions are constrained by a

common surface contact; whereas, higher-pairs are constrained by point or line contact.

. ... .. .......... ,,..-.... . ... .. .. .- . -- -



- -~-~* -. ,-. - ---. ]

* in WMRs. We apply the Sheth-Uicker convention to assign coordinate systems and model each

wheel as a planar pair at the point of rolling contact. This convention allows the modeling of the

higher-pair wheel motion and eliminates ambiguities in coordinate transformation matrices. The

planar pair allows three degrees of relative motion: x and y translation, and rotation about the ..

* point-of-contact as shown in Figure 2.

o >2

Planar Pair Conventional Wheel .

Figure 2

Planar Pair Model of a Wheel

1This modeling of a WMR leads to the coordinate system assignments defined in Table I. The

floor coordinate system is a reference frame for robot motions. The robot coordinate system is

assigned to the robot body so that the position of the WMR is the relative translation from the

* floor coordinate system to the robot coordinate system. The hip coordinate system is assigned at

a point on the robot body which intersects the steering axis. The steering coordinate system is

assigned at the same point along the steering axis, but is fixed relative to the steering link. We

assign e .ontact point coordinate system at the point-of-contact between each wheel and the floor.

We define an instantaneously coincident robot coordinate system for describing motions (i.e., L

velocities and accelerations) of the robot relative to its own position and orientation. We also

define a function R(t') which returns a coordinate system that is stationary relative to the floor

coordinate system and coincident with the robot coordinate system at the time t - t:

NO = R ..
.-

I ,
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Table 1: Coordinate System Assignments

N Number of wheels on the robot.

F Floor : Stationary reference coordinate system with the z-axis orthogonal to the surface of

travel.

R Robot: Coordinate system which moves with the WMR body, with the z-axis orthogonal to

0 the surface of travel.

Hi Hip (for i = 1, ... , N) : Coordinate system which moves with the WMR body, with the z-axis

coincident with the axis of steering joint i if there is one; coincident with the contact point

of coordinate system i if there is no steering joint.

Si Steering (for i = 1, ... , N) : Coordinate system which moves with steering link i, with the

z-axis coincident with the z-axis of Hi, and the origin coincident with the origin of Hi.

* •  Ci Contact Point (for i = I,..., N) : Coordinate system which moves with the steering link

i, with the origin at the point-of-contact between the wheel and the surface; the y-axis is I_

parallel to the wheel (if the wheel has a preferred orientation; if not, the y-axis is arbitrarily

assigned) and the x-y plane tangent to the surface.

• -R Instantaneously Coincident Robot : Coordinate system instantaneously coincident with the

R coordinate system at the time t" and stationary relative to the F coordinate system (i.e.,

is the value of R at the time t*: R .

- Instantaneously Coincident Contact Point (for i = 1, ... , N) : Coordinate system instanta-

neously coincident with the Ci coordinate system at the time t* and stationary relative to

the F coordinate system (i.e., C = Ci t=t.).

The instantaneously coincident robot coordinate system is thus a discrete sample of the con-

tinuous robot coordinate system at the time t. Similarly, the instantaneously coincident contact

point coordinate system is coincident with the contact point coordinate system at the time t = t',

and stationary relative to the floor coordinate system.

Placement of the coordinate systems is illustrated in Figure 3, where we show a pictorial view

of a WMR. For a WMR with N wheels, we assign 4N+2 coordinate systems to the robot and one

stationary reference frame.

S07
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WMR Model Showing Placement of Coordinate Axes

5. Transformation Matrices

Homogeneous (4 x 4) transformation matrices are conventionally defined to express the position

and orientation of one coordinate system relative to another. The transformation matrix An B •

transforms the coordinates of point -r in coordinate frame B to the corresponding coordinates Ar

in the second coordinate frame A.

We adopt the following notation. Scalar quantities are denoted by lower case type (e.g., to). --- '

Vectors are denoted by lower case boldface type (e.g., r). Matrices are denoted by upper case

boldface (e.g., n). Pre-superscripts denote reference coordinate systems. The pre-superscript may
be omitted if the defining coordinate frame is transparent from the discussion. Post-subscripts may S

be used to denote coordinate systems or specific components of a vector or matrix.

Before we define the transformation matrices between the coordinate systems of our WMR
- .% . "
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S model, we define in Table 2 nomenclature for rotational and translational displacements, velocities

and accelerations.

Table 2*
Scalar Rotational and Translational Variables

A OB The rotational displacement (counterclockwise by convention) between the x-axis of the A

S coordinate system and the x-axis of the B coordinate system about the z-axis of the A

coordinate system. AiB = AVE and AiE - AaB.

AdE: (for j E [z, y,z]) : The translational displacement between the origin of the A coordinate

system and the origin of the B coordinate system along the i-axis of the A coordinate

system. AdEB - AW B and AjBj - AOB.

A transformation matrix in our WMR model embodies a rotation AGB about the z-axis of

coordinate system A and translations Adaz, AdEy and AdB. along the respective coordinate axes

as shown in (5.1).
(cosAD @in AqB 0 AdBs - -'-

IinAqE Cog AE 0 AdDI
AfD I 1A (5.1)

*k0 0 0 1

The assignment of coordinate systems results in two types of transformation matrices between

coordinate systems: constant and variable. The transformation matrix between coordinate systems

fixed at two different positions on the same link is constant. Transformation matrices relating

the position and orientation of coordinate systems on different links include joint variables and

thus are variable. Constant and variable transformation matrices are denoted by ATB and AOB,

respectively.

6. Matrix Coordinate Transformation Algebra

The kinematics of stationary manipulators are conventionally modeled by exploiting the prop- ..

erties of trnsformation matrices. We formalize the manipulation of transformation matrices in

the presense of instantaneously coincident coordinate systems by defining matriz coordinate trans-

Jormation algebra. An algebra consists of a set of operands and a set of operations which may be

.-. .....-.: .:. ... ,-, .. :. :,. .. .-, , -. - .. .. ,, .- , .... ,,~* :. .., , ., . . . .. ,- . . , . .. ....



applied to the operands. The operands of matrix coordinate transformation algebra are transforma- V

*[  tion matrices and the operations are matrix addition, multiplication, differentiation and inversion.

Matrix coordinate transformation algebra allows the calculation of the relative positions, velocities ' "

and accelerations of robot coordinate systems (including instantaneously coincident coordinate sys-

tems) without physical insight. The following axioms define the special properties of transformation

matrices (i.e, those properties which arbitrary matrices do not posses).

Axioms

Cascade: AiC - AIB BrIC

Inversion: A 1 1  A ~

Identity: A IA = I

Instantaneous Coincidence: (AilA)It=t. = I

The matrix coordinate transformation axioms lead to the following corollaries which we apply

to the kinematic modeling of WMRs.

Corollaries 4 4-.

Cascade Position: At
1  

_ A 8 Bi Cl[D ... YIIZ

Cascade Velocity: Aljz = Alft B nz + A iB Bilc Co z + + A11 y Y ii,

We make extensive use of the axioms and corollaries of matrix coordinate transformation

algebra for deriving the wheel equations-of-motion.

7. Position Kinematics

We apply the transformation matrices and matrix coordinate transformation algebra to calcu-

late the following positional kinematic relations:

. . . . . . . . . . . ... . .. " -
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1.) the position of a point r relative to one coordinate system A in terms of the position of

the point relative to another coordinate system Z, and

2.) the position and orientation of a coordinate system Z relative to another coordinate system

A.

Problem I is solved in (7.1) by applying the property of matrix transformation.

Ar = A z r (7.1) 3,

When the transformation matrix A'11 z is not known directly, we apply the cascade position corollary

to calculate it from known transformation matrices in (7.2).

Ar n AB BIc C D ... Y11Z (7.2)

0 We must determine whether there is a complete set of known transformation matrices which can be

cascaded to create the desired transformation matrix. We apply transformation graphs to resolve

this problem. In Figure 3, we display a transformation graph of a WMR with one steering link per

wheel.

The origin of each coordinate system is represented by a dot, and transformations between .

coordinate systems are depicted by directed arrows. The transformation in the direction opposing

an arrow is calculated by applying the inversion axiom. Finding a cascade of transformations to

calculate a desired transformation is thus equivalent to finding a path from the reference coordinate

system of the desired transformation A to the destination coordinate system Z. The matrices to

be cascaded are listed by traversing the path in order. Each transformation in the path which is

traversed from the tail to the head of an arrow is listed as the matrix itself, while transformations

traversed from the head to the tail are listed as the inverse of the matrix.

We solve problem 2 by equating components of the matrices on both sides of matrix equation

(7.2), and solving for the position Adz., Adzy and Adz. and the orientation AOZ 8 of coordinate

system Z relative to coordinate system A.

I'-
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Transformation Graph of a WMR

8. Velocity and Acceleration Kinematics

We relate the velocities of the WMR by differentiating the position equations in Section 7.

The wheel Jacobian matrix is developed by applying the cascade velocity corollary. The wheel

Jacobian matrix, analogous to a manipulator Jacobian matrix, relates the component velocities of

the robot RvRZt, R vR,, and R-Kwp to the velocities of the steering link H'w$, and the wheel contact

point U*_vC,z, L4vC,V, and U7c,.. Some wheels do not have steering links and some do not allow

motion perpendicular to the wheel orientation; thus, the number of degrees-of-freedom for wheel i

* is m < 4. The Jacobian matrix for wheel i is of dimensions (3 x mi).

.. ... ... . ............
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We begin development of the Jacobian matrix by applying the cascade position corollary to

write a matrix equation with the unknown dependent variables (i.e., robot coordinates, RR)

the left-hand side, and the independent variables (i.e., wheel i coordinates, "*its, and #Oc) on

the right-hand side:

jtn = " T - ec, 8'T-, H'e-I RT-.

To introduce the velocities, we apply the cascade velocity corollary. We apply the axioms and

corollaries of matrix coordinate transformation algebra to solve for the robot velocities in term of
the wheel velocities: OL :

'RVRt coosROC. in R9c. Rd0 y -RdRi

RVV gnRCCoR. _Rcj Rtdq t C: J i (82
RWX0 0 1 -1 W

sin R1( 904 c,-.n'c, " .- ll =iai3,,, (8.2)

where i = 1... N is the wheel index, 1p is the vector of robot velocities in the fobot frame, 3, is

thepseudo-Jacobian matrix of wheel i, and q,1 is the pseudo-velocity vector for wheel i. The actual

velocity vector for typical wheels does not contain the four component velocities in (8.2). Typical

wheels posses fewer than four degrees-of-freedom and thus fewer than four elements in the velocity

vector. Further, since all actual wheel motions are rotations about physical wheel axes, the wheel
velocity vector contains the angular velocities of the wheels rather than the linear velocities of the

point-of-contact along the surface of travel. We relate the (4 x 1) pseudo-velocity vector to the

(mi x 1) actual velocity vector i by a (4 x mi) wheel matrix Wi:

q. = w, q,. (8.3)

We substitute (8.3) into (8.2) to calculate the robot velocities in terms of the wheel velocity vector
in (8.4). - "

p 3, W, a.j (8.4)

The kinematic wheel equation-of-motion (8.4) is of the form:

, . , q (s. 4 "-A:'

where 3, = 1 W is the (3 x mj) wheel Jacobian matrix for wheel i.

The accelerations of the WMR are calculated by applying the cascade acceleration corollary

* (13 .. .-- *. *.
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to write the second derivative of the position equations in Section 7.

, = -sRoc cosDc, _.Rdc. JR ,,

*ajt, 0 0 1 -1

R~ ~df:; ~(8.8)

The robot accelerations in (8.6) are composed of three acceleration components: the wheel acceler-

ations (U-ach,, L"ac, and L-ac); the centripetal accelerations (V& and N'iw,) having squared

velocties; and the coiolis accelerations (Uwc. Hw8.) having products of different velocities.

9. The Composite Robot Equation-of-Motion

We combine the equations-of-motion of each wheel on a WMU to form the composite robot

equation. Two solutions of the composite robot equation have practical applications. The inverse

solution computes the actuated wheel velocities in terms of the robot velocity vector. The forward

solution is the least-squares solution of the robot velocity vector in terms of the sensed wheel
velocities.

The inverse solution is calculated independently for each wheel on a WMR by applying the

inverse Jacobian matrix. The actuated velocities are extracted from the solution for application to

robot control.

The least-squares forward solution provides the optimal solution of the robot velocities in the

presense of sensor noise and wheel slippage in the sense that the sum of the squared errors in the

velocity components is minimized. We may insure that the solution can be calculated by proper

WMR design. We find that the forward solution may be simplified by eliminating the eqilations-

of-motion of any wheel having three non-sensed degrees-of-freedom (e.g., a castor) because they do

not change the solution.

A study of the nature of the solutions of the composite robot equation illuminates robot

motion, actuation and sensing characteristics. Of particular importance are the conditions under

which actuation of a set of the wheel degrees-of-freedom causes undesirable overdeteruiined and

undetermined solutions. We prefer determined actuation structures because they allow control over

C
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all robot degrees-of-freedom and do not cause undesirable actuator conflict. We also propose that

overdetermined sensing structures are preferable because the least-squares forward solution tends

to reduce the effects of sensor noise with redundant measurements.

We calculate the inverse and forward solutions by applying the kinematic equations-of-motion

of each wheel in three dimensions z, y, and 0. If a WMR is constrained by the wheel arrangement

to move in only two dimensions, we may calculate the inverse and forward solutions in an analogous -

manner by eliminating the third dimension from the wheel Jacobian matrices.

10. Applications

The kinematics of WMRs play important roles in modeling, design and control. We introduce

five practical applications of our kinematic methodology in this section. We apply the results of our

C study of the composite robot equation-of-motion to the design of WMRs. WMRs can be designed

to satisfy desirable mobility characteristics such as two and three degrees-of-freedom and the ability .

to actuate and sense the degrees-of-freedom. Dead reckoning is the real time integration of the robot

velocity calculated from wheel sensor measurements. Kinematics-based WMR control systems are
implemented by applying the inverse solution in the feedforward path and dead reckoning in the

feedback path such that the error between the actual robot position and desired robot position

is continually reduced. An improved controller is possible by applying knowledge of the robot

dynamics. Our kinematic methodology is the foundation of dynamic modeling of WMRs. Accurate

robot control systems rely on both kinematic and dynamic models. We also apply the kinematic

equations-of-motion to the detection of heel slip. When a WMR detects the onset of wheel slip the

current robot position is corrected by utilizing slower absolute locating methods such as computer

vision before continuing motion. The control system is thus able to track desired trajectories more

accurately by continually insuring an accurate measure of robot position.

11. Summary of Kinematic Modeling Procedure

We have formulated a systematic procedure for modeling the kinematics of a WMR. In this

section we summarize the modeling procedure to outline a step-by-step enumeration of the method-

ology to facilitate engineering applications. .-

1.) Make a sketch of the WMR. Show the relative positioning of the wheels and the

steering links. The sketch need not be to scale. A top and a side view are typically sufficient. _ A"

2.) Assign the coordinate systems. The robot, hip, steering, contact point and floor

-.5
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coordinate systems are assigned according to the conventions introduced in Table 1.

p0.3.) Assign the (4 x 4) coordinate transformation matrices. The robot-hip, hip-steering,

and steering-contact transformation matrices are assigned as described in Section 5. '- -

4.) Formulate the wheel equations-of-motion. The position, velocity and acceleration

wheel equations-of-motion are developed by applying transformation graphs and matrix coordinate P-.
transformation algebra. The specific equations required wil depend upon the application.

5.) Formulate the composite robot equation-of-motion. The individual wheel equations
are combine to model the motion of the robot.

6.) Solve the composite robot equation. The inverse solution and the forward solution .

may be calculated depending on the application.

The reader is refered to the full paper for further details. ,.

12. Continuing Research

Our study of wheeled mobile robots is motivated by the need for designing robust feedback

control algorithms for their accurate motion control. We are proceeding by paralleling the de-

velopment of robust dynamic manipulator control systems. The first step, that of developing a

kinematic model, is documented in this paper[1]. We are applying the kinematic model to develop

dynamic models of WMRs. The composite kinematic-dynamic WMR model will lay the foundation .
for WMR control. We will apply the robot models in simulation to facilitate the design of control

systems. The performance of candidate WMR control systems will be evaluated in simulation prior

to time-consuming hardware implementation. In parallel with our engineering activities, we are

implementing a practical control system for the newly constructed WMR Uranus. The theoretical

and practical studies are proceeding concurrently, each reinforcing the the results of the other.

[I] P. F. Muir and C. P. Neuman, "Kinematic Modeling of Wheeled Mobile Robots,* Technical

Report, The Robotics Institute, Carnegie-Mellon University, Schenley Park, Pittsburgh, PA. 15213,

January 1986.
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Feasibility of Dynamic Trajectories
for Mobile Robots

Dong Hun Shin

Department of Mechanical Engineering
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Pittsburgh, PA 15213
November 1985

Abstract

Constraints for the feasible dynamic trajectories of the mobile robot are considered and conditions

on the slippage between wheels and terrain are presented for testing the feasibility of dynamic

trajectories. Slippage constraints are devided into two cases, the translational slippage and the loss

of the traction and each case is investigated using newtonian mechanics and coulomb's friction law.
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1 Introduction

This paper concerns the feasibility of the dynamic trajectories used for the supervisory steering

control of the wheeled mobile robots. The steering control objective is to navigate the robot among ,

obstacles to reach the specified destination. A usual steering control problem of a mobile robot ,

consists of three hierachical structures [4] [5] [1] which are illustrated in Fig 1. .

tDyn^v..iu Tro-jec+orly
qn e ratr o-'

Servo -z w-ro ter

The first level of the control hierachy is to plan a collision free path which is usually a sequence of
nodes from the current positin to the destination. A dynamic trajectory is then generated which takes

into consideration system dynamics and limits on control inputs. This trajectory is converted into

reference control trajectories for the servo-controlled actuator inputs.

The issues addressed in this paper is the feasibility condition of the dynamic trajectories of the
mobile robot Since the feasibility of the trajectories depend on the constraints of the control system,

constraints of the mobile robot are discussed and especially, slippage constraints which are the

crucial and characteristic constraints for the feasible trajectories of the mobile robot are investigated.

The remainder of this paper is organized as follows. The feasibility problem of the trajectory is

formulated in section 2. The potential sources of infeasibility are discussed in section a Section 4

presents the feasibility condition due to slippage constraints. The concluding section Identifies

several directions for future research.

2 Problem Formulation -

The dynamics of a mobile robot with n degrees of freedom can be represented by n coupled second

order differential equation (1).

f; ,,) : 0 (1)-. ..
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where

=... n generalized coordinates
= n generalized velocities

.. "-, n. n generalized acceleration
T:I ..... .rJ •n generalized forces

If we let Q be the 2n dimensional set of feasible generalized coordinates and velocities, physical

operating region of system is expressed as

(q,~)~ ~(2)

Since the generalized forces are combination of components of control input forces/torques, they

are also limited as

,~ ~ (3)

where, i=l....n

The task of the mobile robot is normally specified in the global coordinate frame where the

destination and the obstacles can be most easily represented. Thus computation of the steering

control in terms of the generlaized coordinates requires mapping the destination and the obstacles

into the generalized coordinate frame and solving a nonlinear control problem with state variable L

constraints. But it is not easy. A tractable approach to steering control is to plan the collision free.- -

path in the global coordinate frame independently of the dynamic constraints. A dynamic trajectory is

then generated in global coordinates as a function of time with respect to the specific point of the

robot.

X = A l) (4 ) "' ' ..
where, X=[X .... ,X : trajectory In global frame :"

These dynamic trajectory are then converted into the generalized coordinates as reference input for

the lower level servo controller.

q t ~q'Q)(5)

wheom
i=1, ....n . . .

trajectory in generalized frame

These dynamic trajectories must satisfy the equation of motion under the constraints (2) and (3).

... .: ..:.
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As an example, we consider a simplified model of a tricycle which moves on a planar surface and is

configured in Fig 2. It goes only forward and has one steered and driven front wheel and two rear idle

S wheels with same radius. - '

* -JC F71
where,

X,,,z are the inertial global coordinates
Xyz are the body coordinates which is fixed to the mass center of the robot

and translates with velocity V and yaws with angular velocity 9-
with respect to the inertial coordinate frame.

steering angle of the driven wheel
9> rolling angle of the driven wheel
T :torque to steer the wheel
77 torque to turn the wheel

1IL

If we consider the degrees of freedom for the tricycle model, the three coordinates X, Y and 0.

constitute a complete set to express the position and the orientation of the robot. The variation dY" -

and dO2 are not, however, independent, since the requirment that any translation must be in the

heading direction implies the constraining relation.

dY-=tane ,9''.'-

In other words, there is one nonholonomic constraint. Thus the degrees of freedom of the tricycle

model for the planar motion Is two, which is known as the minimum degree of freedom for the two

dimensional planar motiojn [6], as the conventional steered vehicle has two degrees of freedom.

12. .. ..
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Then, two generalized coordinates and forces for the tricycle model can be taken as

Sq=i '_.%

The simple operating region of the tricycle can be represented as

0, .(6)

9)1 IF *Qn 1'FZ1 S ____

And the limit on control inputs can be specified as

ITI s T s T

The dynamic trajectory with respect to the mass center of the tricycle can be generated in the

inertial coordinate frame as

Y~fP

and these trajectories can be converted into the generalized coordinates as

T.'-. Z (1

=Z f '()

3 Potential Sources of Infeasibility

This section gives a brief discussions of each major potential source of the infeasibility of the

dynamic trajectory. Major potential sources are as follows.

1. Kinematic constraints

2. Vehicle stability S

3. Limits on control input force/torque

4. Slippage of wheels

The first, kinematic constraints, can be thought as equation (2) or (6), feasible generalized

.- -.,-
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coordinates and velocities. This is one of the major constraints problem for the steering control of

manipulator because it limits the working space and velocities in terms of the generalized coordinates

C! and constraints are coupled with each generalized coordinates and velocities. But, generally there is

no significant problem to deal with these constraints of the mobile robot because they are not

coupled seriously like the constraints of the tricycle model (6). The overturn of the mobile robot

during turning around or acceleration would be thought as another constraint from the view point of - -

11 the vehicle stability. This constraint depends on the height of mass center, geometric composition of
wheels, angular velocity and acceleration, etc. " -

The control input forces/torques are limited by the servo motor which is specified in the local

generalized coordinate frame as equation (3). If the input forces/torques required by the trajectory -

(4) or (5) exceed the limit on control input, the trajectory will not be feasible. Control input constraint

problem is very important to enable the robotic manipulators to perform their maximum capability and

efficiency, which lead to high productivity. So the industrial manipulator control problem against

these constraints has been the issue and trajectories even optimized with respect to time and energy

was reported [2] [31.

- Last, slippage constraints are the characteristics of the mobile robot problem. A wheel rolls due to

the driven torque and frictional force between the wheel and terrain. If the actual frictional force is

not sufficient, the wheel will slip. Thus the slippage constraint of a wheel is expressed as (using

Coulomb's friction law)

F p pN (7)

where, F : frictional force L.A
S(m) friction coefficient
N normal force

If the wheels of the mobile robot slip, the robot will slip and leave the given dynamic trajectory, that

is, the trajectory will not be feasible. Thus the dynamic trajectory must be constrained to guarantee

no slip of the wheel of the robot. Slippage constraint problem is thought as the most important for the

feasible dynamic trajectories of the mobile robots because of the following reasons.

1. Kinematic constraints are the most. crucial for the feasible trajectories but generally can
be represented easily because they are not coupled seriously in the mobile robot E
problem. Also It can be easily checked.

2. Vehicle stability constraints, i.e. the overturn of the robot, would not be serious, If it Is
taken care of at the design of the robot. Then, slippage of wheels will occur before a
overturn as the conventional vehicle does.

I, ,."
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Next section will present a approach to deal with the slippage constraints.

4 Slippage Constraints

It is difficult to solve the general slippage constraint problem and to obtain the required frictional

force of each wheel for the feasible dynamic trajectory. If the trajectory is feasible, there is no slip at

the point of contact between any wheel and terrain. In other words, the point of contact is

momentarily at rest. Then, since no work is done by the frictional forces, there is no explicit term of

the frictional forces in the equation of the motion (1). Hence, the frictional forces can not be

computed with the equation of the motion (1) and the given trajectory (4) or (5). Those forces would

* be obtained complicatedly with the geometric constraints of the robot and the equations of the motion

of the subsystems. To make the problem tractable, slippage constraints are divided into two cases

under the following assumptions.

1. The robot does not have any flexible part.

2. The robot moves on a planar surface with no Irregulitles.

3. The frictional coefficient, it, is constant. L.

4.1 Translational Slippage

We first consider the translational slippage of the wheel when there is no slip due to the loss of

traction. A general m wheeled mobile robot with the frictional forces required by the trajectory are

simply configured in Fig 3.

v~,*-* F -*"

FTI 3Wkeeld (0.-70 roI-ot &-A ..."

Since all the wheels are fixed to the robot, It can be thought as a rigid body under external force

F1 J=1, .... m, and driven torques. Thus any part of a rigid body can not slip unless the whole body,

or mass center, slips. So, we make assumption 4 as

-2-3
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4. Any wheel do not slip trans/at lonally unless the mass center of the robot slips.

In other words, the required frictional force of any wheel, Fwill not exceed 1L.unless the total
sum of F exceeds the total sum of #NIt there is no translation slip, the next equation should be
satisfied.

1 N (8)

Since the positions and orientations of the mass center of the robot in the body coordinate frame
* can be computed from by the dynamic trajectory, we obtain velocities o{ AA~ rn&ss cenfter

And we can obtain relations from the equations of the motion of the m wheeled mobile robot

ES F,,=M(V-VE).

* ~~EN-Mg=O

where M is the mass of the robot.
g is the gravitational constant.

* Then, the equation (8) becomes

KV1-V,9+(V+ V9/ (9)

As examples, we consider simple circular motions of the tricycle model In section 2. First, if a
circular motion with constant angular velocity, W~ , is considered as in Fig 4 .

Then,

Fr; * Trt~ CTrCjoc, M*ovTo of ~tt- yC.

I2t
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V =WR V=O
v,=o v=o..-'.

ex 7

We obtain th relation from equation (9) .

02,R S ,-,

* which agrees with the physical understanding.

Second, if a circular motion with constant angular acceleration, 69= at, is considered, then

=aiR V=O

And we obtain the relation from equation (9)

e ~a~

4.2 Loss of Traction

Next, we consider the slippage of one driven wheel due to the loss of traction. A simplified driven

wheel under torque Tis figured.

*X
C"--

The frictional force required by the trajectory can be decomposed into the longitudinal and the

traverse force with repect to a wheel; F, and from equation (7), the wheel slips If next equation is

not satisfied.

2 . ._



As the driven torque is increased for the ecceleration, the frictional force F will be increased and

eventually become the maximum feasible frictional force pN. Then the torque is increased more and

the wheel, however, does not slip until F, alone exceeds the #N if.the assumption 4 holds: there is no I.,
movement of the wheel due to slippage without the slippage of the whole robot. Physicallyas F, is

increased, F will be decreased while Fis FiN. Thus if there is no translational slippage of the robot,

* any wheel does not slip provided

(11)

From the Fig 5, the equation of the motion is

ID = T-Fr

Then, equation (11) becomes

T-I 
s tiN (12)

r

So, the mobile robot will not slip as long as equation (9) and (12) hold. ... '

5 Conclusion and Future Research

In this paper, we have discussed the constraints for the feasible dynamic trajectory and presented

an approach for a slippage constraints which are the most important and characteristic contraints to

the mobile robot dynamic trajectory. Directions for future research include

9 e Derivation of constraints on vehicle stability.

o Methods for the generation of the feasible dynamic trajectory considering constraints
discussed in section 3.

*Implementation of feasibility constraints to the dynamic steering control of the mobile
robot. ft._

• Modification of the dynamic steering algorithm so that It may be applied to the navigation
of the current mobile robot.

* Integration of the dynamic steering algorithm with higher level planning or previous
information.

Navigation of the mobile robot using the dynamic steering control. .

12- .---..
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The NEPTUNE Mobile Robot

S Gregg W. Podnar
Robotics Institute

Carnegie-Mellon University
Pittsburgh, PA 15213 ',.

Neptune is a functional vehicle for autonomous mobile robot research. As a reliable mobile base, it supports".

experiments in perception, real-world modeling, navigation, planning and high-level control. It is self-propelled,
with computer control of direction and motivation.

One of the prime design goals was the minimization of the number of subsystems. By doing so, reliability was

enhanced.

Structure

Neptune's basic structure is best likened to a child's tricycle. The three 10-inch (25cm) pneumatic tires are used to I-
provide spring, compliance, and traction on soft ground.

Steering of the fork is accomplished by one motor. The fork-mounted wheel is driven by a second motor. This
f allows sharp turning which facilitates navigation in cluttered environments. The other two wheels are parallel and

rotate freely. The fork can turn at least 900 left and right, and the wheel can be driven forward or back. Together,

these two features enable the vehicle to rotate about a vertical axis through a point located directly between the two .-

passive wheels. The overall width is 22.5 inches (57cm), and the length is 32.5 inches (83cm). The turning length . - -

'curb-to-curb' is only 42 inches (107cm). ... .-,

Power

To eliminate on-board power storage and recharging, mains power is supplied through an umbilical. This 120vAc is .-..
distributed for all on-board electrical equipment via outlets mounted in the vehicle frame. Each piece of equipment

provides its own power conversion/protection.

Motors

Using 120VAC motors eliminates the need for massive power conversion equipment. Synchronous motors were
chosen for drive and steering as this replaces a feed-back and servoing system (Run a motor for a length of time, and
calculate the revolutions.). The elimination of optical encoders or resolvers enhances reliability.

* , ° , -. S
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Control

An on-board processor accepts commands from a serial data link through the umbilical. This processor controls the
motor relays and monitors fork position. It also provides control and monitoring for other vehicle-mounted

equipment (such as switching between two television cameras).

S%'

Communication

Together with the Power, the umbilical carries cables for digital and video signals to and from off-board computers.

Construction "

Neptune is made from two basic assemblies, the Fork and the Frame. Both parts were designed to have an excess

of structural fortitude to withstand abuse and provide secure mounting points for auxiliary experimental equipment.

The frame is made of four pieces of four inch square aluminum tubing which are are welded together. Likewise, the

four major fork pieces are aluminum and are welded. This was done mainly for strength but it also reduced the
required machining. Once all the pieces were made, assembly of the mechanical parts took less than a week.

Prefabricated Components ...

For mounting the rotating shafts (two axles and the fork neck), off-the-shelf, housed bearings are used. In the same

way, the chains and sprockets for driving and steering are standard components. The wheels and tires are units
D manufactured for handtrucks. Delivery time on these items is short, on the order of one to three weeks. By 'L_

employing pre-fabricated components, shop time was minimized. It took one machinist about one full week to make

all the other parts. -

Performance :-.:-

The Drive motor provides 1800 oz.in. of torque. With the 4:1 reduction gearing, about 90 pounds of pull is

developed at the drive wheel. Fully loaded with cameras and a ring of 24 sonar sensors, Neptune weighs about 200

pounds and easily manages a 100 slope. It travels at about nine inches per second; about 1/2 MPi.

Neptune has had different configurations of sensor systems mounted on it to perform a variety of experiments. It

has navigated in hallways, cluttered labs and sidewalks. It was even used in the rain with the addition of an

umbrella to protect the electronics. It has reliably served our research purposes since early in 1984.

l3c-
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The URANUS Mobile Robot

Gregg W. Podnar
Robotics Institute

Carnegie-Mellon University
Pittsburgh, PA 15213

Uranus is a sophisticated vehicle for autonomous mobile robot research. As an onmi-directional mobile base, it
makes possible experiments in perception, real-world modeling, navigation, planning and high-level control. It is
self-propelled and can support a wide variety of sensor and manipulator packages. True autonomy is possible as
electrical and computing power are carried on-board.

The most unique feature of Uranus is its four wheels. Developed by a Swedish company, MECANUM, for
omni-directional movement of factory floor pallets and wheel chairs, we have adapted them for use in mobile robots.
With respect to the wheels' Swedish origin, we pronounce Uranus: Oo-ron'-oos.

Wheels

Each wheel has twelve free-spinning rubber rollers around its circumference. The axle of each roller is at a 450
angle to a line parallel to the wheel's axle. When viewed from the side, the end of each roller overlaps the
beginning of the next, and due to the barrel shape of each roller, the wheel presents a circular silhouette. As a wheel
rolls, its contact with the ground changes from one roller to the next smoothly.

There are right-handed and left-handed wheels which can be thought of as working in pairs, with each pair on a
common axis. When both wheels are rotated in the same direction, the sideways components generated by the
rollers cancels and the wheels move forward or back. However, when the wheels are rotated in opposite directions,
the sideways components add and the wheels move sideways.,-,-

Structure

Uranus describes a rectangular envelope which is 30" (76cm) long by 24" (61cm) wide by 12"(30cm) high, with
additional height of 0.5"-2.5" (1.3-6.3cm) due to ground clearance. The primary frame components are 3"x6" ft.
(7.6x 15.2cm) rectangular aluminum tubing. The suspension components are all stainless steel.

The vehicle has three layers. The first six inches (15cm) includes the wheels, drivetrain, motors, batteries and power
control. As this is the majority of the weight, the center of gravity is very low.

The second six inches (15cm) includes computers and control electronics along with their associated power supplies.
The four corners of this level are for springs and dampers of the suspension.

The third level consists of the top plate or deck. It is 23" (58cm) by 27" (69cm); slightly smaller than the vehicle
envelope. This allows the wheels to contact a vertical obstacle first. The deck provides structural support for up to
250 pounds ( 1!3kg) oi additional equipment. It is full of 1/4"-20 holes on a grid of one inch (2.5cm) centers.

/,33 "":
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Motors

Each of the four wheels is driven by a samarium-cobalt brushless D C. motor. An on-board computer controls
motor position, speed and rotation by monitoring shaft position with an optical encoder. The motors are mounted in

the side frame pieces of the first layer between the wheels. The shaft end of the motor protrudes into the frame and
connects with the drivetrain. The power electronics for switching a motor's coils is housed in a heat sink mounted r
directly to the outboard side of the motor housing. This is to minimize EMI and allow convection cooling. . . .

Suspension

Each wheel is mounted on what can most easily be described as a trailing-arm. Vertical movement of two inches

(5cm) maximum is possible. Initially, the vehicle is suspended on stiff coil springs which allow just enough

compliance to ensure that all four wheels have adequate contact with the ground. Space is available for the option of
an active suspension. By computer control of pneumatic or hydraulic actuators, the vehicle can be leveled, raised

and lowered to facilitate certain environments.

Power

Power is supplied by an on-board sealed lead-acid battery. The motors operate directly from the 24vDc battery
power, whereas the computers and other equipment convert and condition power through dedicated switching power

supplies.

An umbillical provides 24vDc from an off-board supply. This supply is capable of powering the entire vehicle and

simultaneously charging the batteries. In this way, experimentation which does not require full wireless operation

and indefinite operating times are facilitated.

Performance

Four motors, developing peak torque of 3.5 ft.lbs. (4.7nm) drive the wheels through a 4:1 reduction. With a 9"
(23cm) wheel diameter, about 150 lbs. (660nt) of thrust is developed. This is the theoretical maximum; about half

this number is a practical value.

With these motors the maximum speed is about three feet (lm) per second or 2MPH (3.2KPI) which is adequately

fast for a cluttered environment. This can be increased if need be.

With on-board batteries, about four hours of wireless operation is possible. This estima.te must be reduced if the
vehicle requires more power for rough terrain or interaction with objects in the environment. Similarly, more time is

available for a single experiment if the movements are more sedate. -.-. ,
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Robots That Rove

* Hans P. Moravec
Robotics Institute

Carnegie-Mellon University * .
Pittsburgh, PA 15213 . ,

August, 1985

The most consistently interesting stories are those about journeys, and the most fascinating organisms .' ..

are those that move from place to place. I think these observations are more than idiosyncrasies of
human psychology, but illustrate a fundamental principle. The world at large has great diversity, and a
traveller constantly encounters novel circumstances, and is consequently challenged to respond in new

0 ways. Organisms and mechanisms do not exist in isolation, but are systems with their environments, and g .

those on the prowl in general have a richer environment than those rooted to one place.

Mobility supplies danger along with excitement. Inappropriate actions or lack of well-timed appropriate

C ones can result in the demise of a free roamer, say over the edge of a cliff, far more easily than of a
stationary entity for whom particular actions are more likely to have fixed effects.

Challenge combines with opportunity in a strong selection pressure that drives an evolving species that
happens to find itself in a mobile way of life in certain directions, directions quite different from those of

* stationary organisms. The last billion years on the surface of the earth has seen a grand experiment I
exploring these pressures. Besides the fortunate consequence of our own existence, some universals are
apparent from the results to date and from the record. In particular, intelligence seems to follow from

* mobility.

I believe the same pressures are at work in the technological evolution of robots, and that, by analogy,
mobile robots are the most likely route to solutions to some of the most vexing unsolved problems on the

way to true artificial intelligence - problems such as how to program common sense reasoning and
learning from sensory experience. This opportunity carries a price - programs to control mobile robots are

more difficult to get right than most - the robot is free to search the diverse world looking for just the ..

combination that will mess up your plan. There's still a long way to go, but perhaps my experiences thus
far pursuing this line of thought will convince you as they have me. Among the conclusions that surprised
me is that future intelligent robots will of necessity be more like animals and humans that I used to
believe, for instance they will exhibit recognizable emotions and human irrationalities. On to cases.

Mobility and Intelligence In Nature

Two billion years ago our unicelled ancestors parted genetic company with the plants. By accident of
energetics and heritage, large plants now live their lives fixed In place. Awesomely effective in their own
right, the plants have no apparent Inclinations towards intelligence; a piece of negative evidence that
supports my thesis that mobility is a parent of this trait.
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Animals bolster the argument on the positive side, except for the immobile minority like sponges and

clams that support it on the negative.

A billion years ago, before brains or eyes were invented, when the most complicated animals were

something like hydras, double layers of cells with a primitive nerve net, our progenitors split with the
invertebrates. Now both clans have intelligent members. Cephalopods are the most intellectual
invertebrates. Most mollusks are sessile shellfish, but octopus and squid are highly mobile, with big brains

and excellent eyes. Evolved independently of us, they are different. The optic nerve connects to the back I..

" of the retina, so there is no blind spot. The brain is annular, a ring around the esophagus. The green
* blood is circulated by a systemic heart oxygenating the tissues and two gill hearts moving depleted blood.

Hemocyanin, a copper doped protein related to hemoglobin and chlorophyll, carries the oxygen.

Octopus and their relatives are swimming light shows, their surfaces covered by a million individually
controlled color changing cells. A cuttlefish placed on a checkerboard can imitate the pattern, a fleeing

octopus can make deceiving seaweed shapes coruscate backward along its body. Photophores of deep

sea squid, some with irises and lenses, generate bright multicolored light. Since they also have good
vision, there is a potential for high bandwidth communication.

Their behavior is mammal like. Octopus are reclusive and shy, squid are occasionally very aggressive.

Small octopus can learn to solve problems like how to open a container of food. Giant squid, with large
k Inervous systems, have hardly ever been observed except as corpses. They might be as clever as

whales.

Birds are vertebrates, related to us through a 300 million year old, probably not very bright, early reptile.

Size-limited by the dynamics of flying, some are intellectually comparable to the highest mammals.

The intuitive number sense of crows and ravens extends to seven, compared to three or four for us. Birds
outperform all mammals except higher primates and the whales in "learning set" tasks, where the idea is

to generalize from specific instances. In mammals generalization depends on cerebral cortex size. In

r birds forebrain regions called the Wulst and the hyperstriatum are critical, while the cortex is small and

unimportant.

Our last common ancestor with the whales was a primitive rat-like mammal alive 100 million years ago.
Some dolphin species have body and brain masses identical to ours, and have had them for more
generations. They are as good as us at many kinds of problem solving, and can grasp and communicate

complex ideas. Killer whales have brains five times human size, and their ability to formulate plans is

better than the dolphins', who they occasionally eat. Sperm whales, though not the largest animals, have
the world's largest brains. Intelligence may be an important part of their struggle with large squid, their
main food. Elephant brains are three times human size. Elephants form matriarchal tribal societies and
exhibit complex behavior. Indian domestic elephants loam over 500 commands, and form voluntary L
mutual benefit relationships with their trainers, exchanging labor for baths. They can solve problems such

1383
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as how to sneak into a plantation at night to steal bananas, after having been belled (answer: stuff mud
into the bells). And they do have long memories. ,.,,.

Apes are our 10 million year cousins. Chimps and gorillas can learn to use tools and to communicate in
human sign languages at a retarded level. Chimps have one third, and gorillas one half, human brainsize.

0 Animals exhibiting near-human behavior have hundred billion neuron nervous systems. Imaging vision
alone requires a billion. The smartest insects have a million brain cells, while slugs and worms make do
with a thousand, and sessile animals with a hundred. The portions of nervous systems for which tentative
wiring diagrams have been obtained, including nearly all of the large neuroned sea slug, Aplysia, the flight
controller of the locust and the early stages of vertebrate vision, reveal neurons configured into efficient,

* clever, assemblies.

Mobility and Intelligence around the Lab

The twenty year old modem robotics effort can hardly hope to rival the billion year history of large life on
earth in richness of example or profundity of result. Nevertheless the evolutionary pressures that shaped

life are already palpable in the robotics labs. I'm lucky enough to have participated in some of this activity
and to have watched more of it at first hand, and so will presume to interpret the experience.

40The first serious attempts to link computers to robots involved hand-eye systems, wherein a computer-
interfaced camera looked down at a table where a mechanical manipulator operated. The earliest of these" ',

(ca. 1965) were built while the small community of artificial intelligence researchers was still flushed with
the success of the original Al programs - programs that almost on the first try played games, proved
mathematical theorems and solved problems in narrow domains nearly as well as humans. The robot -
systems were seen as providing a richer medium for these thought processors. Of course, a few minor
new problems did come up.

A picture from a camera can be represented in a computer as a rectangular array of numbers, each
representing the shade of gray or the color of a point in the image. A good quality picture requires a
million such numbers. Identifying people, trees, doors, screwdrivers and teacups in such an
undifferentiated mass of numbers is a formidable problem - the first programs did not attempt it. Instead
they were restricted to working with bright cubical blocks on a dark tabletop; a caricature of a toddler
learning hand-eye co-ordination. In this simplified environment computers more powerful than those that
had earlier aced chess, geometry and calculus problems, combined with larger, more developed,
programs were able to sometimes, with luck, correctly locate and grab a block.

The general hand-eye systems have now mostly evolved into experiments to study smaller parts of the
problem, for example dynamics or force feedback, or into specialized systems aimed at industrial
applications. Most arm systems have special grippers, special sensors, and vision systems and
controllers that work only In limited domains. Economics favors this, since a fixed arm, say on an

.3ct .:
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assembly line, repetitively encounters nearly Identical conditions. Methods that handle the frequent

situations with maximum efficiency beat more expensive general methods that deal with a wide range of

circumstances that rarely arise, while performing less well on the common cases.

Shortly after cameras and arms were attached to computers, a few experiments with computer controlled
mobile robots were begun. The practical problems of instrumenting and keeping operational a remote ,e

* Icontrolled, battery powered, camera and video transmitter toting vehicle compounded the already severe
practical problems with hand-eye systems, and conspired to keep many potential players out of the game. I k .

The earliest successful result was SRI's Shakey (ca. 1970). Although it existed as a sometimes functional

physical robot, Shakey's primary impact was as a thought experiment. Its creators were of the first wave

* "reasoning machine" branch of Al, and were interested primarily in applying logic based problem solving L
methods to a real world task. Control and seeing were treated as system functions of the robot and

relegated mostly to staff engineers and undergraduates. Shakey physically ran very rarely, and its blocks

. world based vision system, which reqired that its environment contain only clean walls and a few large

smooth prismatic objects, was coded inefficiently and ran very slowly, taking about an hour to find a block

and a ramp in a simple scene. Shakey's most impressive performance, physically executed only

piecemeal, was to "push the block" in a situation where it found the block on a platform. The sequence of

actions included finding a wedge that could serve as a ramp, pushing it against the platform, then driving

up the ramp onto the platform to push the block off.

The problems of a mobile robot, even in this constrained an environment inspired and required the

development of a powerful, effective, still unmatched, system STRIPS that constructed plans for robot

tasks. STRIPS' plans were constructed out of primitive robot actions, each having preconditions for

* applicability and consequences on completion. It could recover from unexpected glitches by incremental
l replanning. The unexpected Is a major distinguishing feature of the world of a mobile entity, and is one of

the evolutionary pressures that channels the mobile towards intelligence.

.. Mobile robots have other requirements that guide the evolution of their minds away from solutions

seemingly suitable for fixed manipulators. Simple visual shape recognition methods are of little use to a

machine that travels through a cluttered three dimensional world. Precision mechanical control of position

can't be achieved by a vehicle that traverses rough ground. Special grippers don' pay off when many

different and unexpected objects must be handled. Linear algorithmic control systems are not adequate

for a rover that often encounters surprises in its wanderings.

The Stanford Cart was a mobile robot built about the same time as Shakey, on a lower budget, From the

start the emphasis of the Cart project was on low level perception and control rather than planning, and

the Cart was actively used as a physical experimental testbed to guide the research. Until its retirement in

1980 it (actually the large mainframe computer that remote controlled it) was programmed to:
* Follow a white line in real time using a TV camera mounted at about eye level on the robot.

The program had to find the line in a scene that contained a lot of extraneous imagery, and
could afford to digitize only a selected portion of the Images it processed.
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" Travel down a road in straight lines using points on the horizon as references for its compass
heading (the cart carried no instrumentation of any kind other than the TV camera). The
program drove it in bursts of one to ten meters, punctuated by 15 second pauses to think
about the images and plan the next move.

" Go to desired destinations about 20 meters away (specified as so many meters forward and
so many to the left) through messy obstacle courses of arbitrary objects, using the images
from the camera to servo the motion and to detect (and avoid) obstacles in three dimensions.
With this program the robot moved in meter long steps, thinking about 15 minutes before
each one. Crossing a large room or a loading dock took about five hours, the lifetime of a
charge on the Cart's batteries. 'V W.,

The vision, world representation and planning methods that ultimately worked for the Cart (a number were
tried and rejected) were quite different than the "blocks world" and specialized industrial vision methods
that grew out of the hand-eye efforts. Blocks world vision was completely inappropriate for the natural
indoor and outdoor scenes encountered by the robot. Much experimentation with the Cart eliminated
several other initially promising approaches that were insufficiently reliable when fed voluminous and
variable data from the robot. The product was a vision system with a different flavor than most. it was "low
level" in that it did no object modelling, but by exploiting overlapping redundancies it could map its
surroundings in 3D reliably from noisy and uncertain data. The reliability was necessary because Cart
journeys consisted of typically twenty moves each a meter long punctuated by vision steps, and each step
had to be accurate for the journey to succeed.

At Carnegie-Mellon University we are building on the Cart work with (so far) four different robots '.: -
optimized for different parts of the research.

Pluto was designed for maximum generality - its wheel system is omnidirectional, allowing motion in any
direction while simultaneously permitting the robot to spin like a skater. It was planned that Pluto would
continue the line of vision research of the Cart and also support work in close-up navigation with a
manipulator (we would like a fully visually guided procedure that permits the robot to find, open and pass
through a door). The real world has changed our plans. To our surprise, the problem of controlling the
three independently steerable and driveable wheel assemblies of Pluto is an example of a difficult, so far
unsolved, problem in control of overconstrained systems. We are working on it, but In the meantime Pluto
is nearly immobile.

When the difficulty with Pluto became apparent, we built a simple robot, Neptune, to carry on the long
range vision work. I'm happy to announce that Neptune is now able to cross a room in under an hour, five
times more quickly than the Cart.

Uranus is the third robot in the CMU line, designed to do well the things that Pluto has so far failed to do.
It will achieve omnidirectionality through curious wheels, tired with rollers at 45 degrees, that, mounted
like four wagon wheels, can travel forward and backward normally, but that screw themselves sideways
when wheels on opposite sides of the robot are turned in opposite directions.
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Our fourth mobile robot Is called the Terragator, for terrestrial navigator, and is designed to travel
outdoors for long distances. It is much bigger than the others, almost as large as a small car, and is

• powered by a gasoline generator rather than batteries. We expect to program it to travel on roads, avoid
and recognize outdoor obstacles and landmarks. Our earlier work makes clear that In order to run at the .-
speeds we have in mind (a few kmhr) we will need processing speeds about 100 times faster than our ...

medium size mainframes now provide. We plan to augment our regular machines with a specialized
computer called an array processor to achieve these rates.

Our ambitions for the new robots (go down the hall to the third door, go In, look for a cup and bring it
back) has created another pressing need- a computer language in which to concisely specify complex j
tasks for the rover, and a hardware and software system to embody it. We considered something similar
to Stanford's AL arm controlling language from which the commercial languages VAL at Unimation and -"

the more sophisticated AML at IBM were derived.

Paper attempts at defining the structures and primitives required for the mobile application revealed that :-.:
the linear control structure of these state-of-the-art arm languages was inadequate for a rover. The

( essential difference is that a rover, in its wanderings, Is regularly "surprised" by events it cannot .
anticipate, but with which it must deal. This requires that contingency routines be activated in arbitrary
order, and run concurrently. We are experimenting with a structure where a number of specialist
programs communicating via a common data structure called a blackboard are active at the same time,
some operating sensors, some controlling effectors, some integrating the results of other modules, and '
some providing overall direction. As conditions change the priority of the various modules changes, and
control may be passed from one to another.

The Psychology of Mobile Robots

Suppose we ask Uranus, equipped with a controller based on the blackboard system mentioned in the -4
last section to, in fact, go down the hall to the third door, go in, look for a cup and bring it back. This will
be implemented as a process that looks very much like a program written for the arm control languages
(that in turn look very much like Algol, or even Basic), except that the door recognizer routine would
probably be activated separately. Consider the following caricature of such a program.

MODULE Go-Fetch-Cup
Wake up Door-Recognizer with instructions

(On Finding-Door Add 1 to Door-Number
Record Door-Location)

Record Start-Location -
Set Door-Number to 0
While Door-Number < 3 Wall-Follow
Face-Door
IF Door-Open THEN Go-Through-Opening

ELSE Open-Door-and-Go-Through
Set Cup-Location to result of Look-for-Cup
Travel to Cup-Location
Pickup-Cup at Cup-Location
Travel to Door-Location

I 4

V.~~~.. .... ....... . . . . . . . . . . . . . ...

. . . ... . .. . -. -. . - . ..



Face-Door'
IF Door-Open THEN Go-Through-Opening

ELSE Open-Door-and-Go-Through
Travel to Start-Location
End

So far so good. We activate our program and Uranus obediently begins to trundle down the hall counting
doors. It correctly recognizes the first one. The second door, unfortunately Is decorated with some garish
posters, and the lighting in that part of the corridor is poor, and our experimental door recognizer fails to
detect it. The wall follower, however, continues to operate properly and Uranus continues on down the
hall, its door count short by one. It recognizes door 3, the one we had asked t to go through, but thinks it
is only the second, so continues. The next door is recognized correctly, and is open. The program,
thinking it is the third one, faces it and proceeds to go through. This fourth door, sadly, leads to the

stairwell, and poor Uranus, unequipped to travel on stairs, is in mortal danger.

Fortunately there is a process in our concurrent programming system called Detect-Cliff that is always
running and that checks ground position data posted on the blackboard by the vision processes and also
requests sonar and infrared proximity checks on the ground. It combines these, perhaps with an a-priori

expectation of finding a cliff set high when operating in dangerous areas, to produce a number that
indicates the likelyhood there is a drop-off in the neighborhood.

A companion process Deal-with-Cliff also running continuously, but with low priority, regularly checks this

number, and adjusts its own priority on the basis of it. When the cliff probability variable becomes high
enough the priority of Deal-with-Cliff will exceed the priority of the current process in control, Go-Fetch- .-..-.

Cup in our example, and Deal-with-Cliff takes over control of the robot. A properly written Deal-with-Cliff
will then proceed to stop or greatly slow down the movement of Uranus, to increase the frequency of

sensor measurements of the cliff, and to slowly back away from It when it has been reliably identified and
located.

Now there's a curious thing about this sequence of actions. A person seeing them, not knowing about the
internal mechanisms of the robot might offer the Interpretation "First the robot was determined to go
through the door, but then it noticed the stairs and became so frightened and preoccupied it forgot all
about what it had been doing". Knowing what we do about what really happened in the robot we might be
tempted to berate this poor person for using such sloppy anthropomorphic concepts as determinination,
fear, preoccupation and forgetfulness In describing the actions of a machine. We could berate the person,
but it would be wrong. R_ --

I think the robot came by the emotions and foibles Indicated as honestly as any living animal. An octopus 7
in pursuit of a meal can be diverted by hints of danger in just the way Uranus was. An octopus also
happens to have a nervous system that evolved entirely independently of our own vertebrate version. Yet
most of us feel no qualms about ascribing concepts like passion, pleasure, fear and pain to the actions of . "
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the animal. .

We have in the behavior of the vertebrate, the mollusc and the robot a case of convergent evolution. The
needs of the mobile way of life have conspired in all three Instances to create an entity that has modes of%
operation for different circumstances, and that changes quickly from mode to mode on the basis of

uncertain and noisy data prone to misinterpretation. As the complexity of the mobile robots increases I
expect their similarity to animals and humans will become even greater.

Among the natural traits I see in the immediate roving robot horizon is parameter adjustment learning. A
precision mechanical arm in a rigid environment can usually have its kinematic self-model and its dynamic

control parameters adjusted once permanently. A mobile robot bouncing around in the muddy world is
likely to continuously suffer insults like dirt buildup, tire wear, frame bends and small mounting bracket
slips that mess up accurate a-priori models. Our present visual obstacle course software, for instance,
has a camera calibration phase where the robot is parked precisely in front of an exact grid of spots so
that a program can determine a function that corrects for distortions in the camera optics. This allows
other programs to make precise visual angle measurements in spite of distortions in the cameras. We
have noticed that our present code is very sensitive to mis-calibrations, and are working on a method that I.
will continuously calibrate the cameras just from the images perceived on normal trips through clutter. -

With such a procedure in place, a bump that slightly shifts one of the robot's cameras will no longer cause
systematic errors in its navigation. Animals seem to tune most of their nervous systems with processes of
this kind, and such accomodation may be a precursor to more general kinds of learning.

Perhaps more controversially, I see the begininnings of self awareness in the robots. All of our control
programs have internal representations, at varying levels of abstraction and precision, of the world around
the robot, and of the robot's position within that world. The motion planners work with these world models

in considering alternative future actions for the robot. If our programs had verbal interfaces we could ask
questions that receive answers such as "I turned right because I didn't think I could fit through the
opening on the left". As it is we get the same information in the form of pictures drawn by the programs.

So What's Missing?
P.

There may seem to be a contradiction in the various figures on the speed of computers. Once billed as
"Giant Brains" computers can do some things, like arithmetic, millions of times faster than human beings,
"Expert systems" doing qualitative reasoning in narrow problem solving areas run on these computers

approximately at human speed. Yet it took such a computer five hours to simply drive the Cart across a
room, down to an hour for Neptune. How can such numbers be reconciled?

The human evolutionary record provides the clue. While our sensory and muscle control systems have
been in development for a billion years, and common sense reasoning has been honed for probably

about a million, really high level, deep, thinking is little more than a parlor trick, culturally developed over a

few thousand years, which a few humans, operating largely against their natures, can learn. As with -. . -
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Samuel Johnson's dancing dog, what is amazing is not how well it is done, but that it is done at all. .

Computers can challenge humans in intellectual areas, where humans perform inefficiently, because they
can be programmed to carry on much less wastefully. An extreme example is arithmetic, a function
learned by humans with great difficulty, which is instinctive to computers. These days an average
computer can add a million large numbers in a second, which Is more than a million times faster than a ,
person, and with no errors. Yet one hundred millionth of the neurons in a human brain, if reorganized into
an adder using switching logic design principles, could sum a thousand numbers per second. If the whole j
brain were organized this way it could do sums one hundred thousand times faster than the computer.

Computers do not challenge humans in perceptual and control areas because these billion year old -" "
functions are carried out by large fractions of the nervous system operating as efficiently as the p
hypothetical neuron adder above. Present day computers, however efficiently programmed, are simply
too puny to keep up. Evidence comes from the most extensive piece of reverse engineering yet done on
the vertebrate brain, the functional decoding of some of the visual system by D. H. Hubel, T. N. Weisel
and colleagues.

The vertebrate retina's 20 million neurons take signals from a million light sensors and combine them in a
series of simple operations to detect things like edges, curvature and motion. Then image thus processed
goes on to the much bigger visual cortex in the brain.

Assuming the visual cortex does as much computing for its size as the retina, we can estimate the total
capability of the system. The optic nerve has a million signal carrying fibers and the optical cortex is a
thousand times deeper than the neurons which do a basic retinal operation. The eye can process ten
images a second, so the cortex handles the equivalent of 10,000 simple retinal operations a second, or 3

million an hour. 1-t

An efficient program running on a typical computer can do the equivalent work of a retinal operation in
about two minutes, for a rate of 30 per hour. Thus seeing programs on present day computers seem to be
100,000 times slower than vertebrate vision. The whole brain is about ten times larger than the visual
system, so it should be possible to write real-time human equivalent programs for a machine one million
times more powerful than todays medium sized computer. Even todays largest supercomputers are about
1000 times slower than this desiratum. How long before our research medium is rich enough for full
intelligence?

Since the 1950s computers have gained a factor of 1000 in speed per constant dollar every decade.
There are enough developments in the technological pipeline, and certainly enough will, to continue this -'

pace for the forseeable future.
| -.

The processing power available to Al programs has not Increased proportionately. Hardware speedups
and budget increases have been dissipated on convenience features; operating systems, time sharing,
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high level languages, compilers, graphics, editors, mail systems, networking, personal machines, etc. and
have been spread more thinly over ever greater numbers of users. I believe this hiatus In the growth of
processing power explains the disappointing pace of Al in the past 15 years, but nevertheless represents
a good investment. Now that basic computing facilities are widely available, and thanks largely to the
initiative of the instigators of the Japanese Supercomputer and Fifth Generation Computer projects,
attention worldwide is focusing on the problem of processing power for Al.

The new interest in crunch power should insure that Al programs share in the thousandfold per decade 19

increase from now on. This puts the time for human equivalence at twenty years. The smallest
vertebrates, shrews and hummingbirds, derive Interesting behavior from nervous systems one ten
thousandth the size of a human's, so we can expect fair motor and perceptual competence in less than a
decade. By my calculations and impressions present robot programs are similar in power to the control

systems of insects..-

Some principals in the Fifth Generation Project have been quoted as planning "man capable" systems in
ten years. I believe this more optimistic projection Is unlikely, but not impossible. The fastest present and
nascent computers, notably the Cray X-MP and the Cray 2, compute at 109 operations/second, only 1000

times too slowly.

As the computers become more powerful and as research in this area becomes more widespread the rate
of visible progress should accelerate. I think artificial intelligence via the "bottom up" approach of

technological recapitulation of the evolution of mobile animals is the surest bet because the existence of
independently evolved intelligent nervous systems indicates that there is an incremental route to
intelligence. it is also possible, of course, that the more traditional "top down" approach will achieve its
goals, growing from the narrow problem solvers of today into the much harder areas of learning, common-
sense reasoning and perceptual acquisition of knowledge as computers become large and powerful
enough, and the techniques are mastered. Most likely both approaches will make enough progress that

they can effectively meet somewhere in the middle, for a grand synthesis into a true artificial sentience.

This artificial person will have some interesting properties. Its high level reasoning abilities should be - -

astonishingly better than a human's - even today's puny systems are much better in some areas - but its
low level perceptual and motor abilities will be comparable to ours. Most interestingly it will be highly
changeable, both on an individual basis and from one of its generations to the next. And it will quickly
become cheap.

The Future

What happens when increasingly cheap machines can replace humans in any situation? What will I do
when a computer can write this article, and do research, better than me? These questions face some
occupations now. They will affect everybody In a few decades.

.............................................. .. ..... ..-..:--
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By design, machines are our obedient and able slaves. But Intelligent machines, however benevolent,
threaten our existence because they are alternative Inhabitants of our ecological niche. Machines merely
as clever as human beings will have enormous advantages in competitive situations. Their production
and upkeep costs less, so more of them can be put to work with given resources. They can be optimized
for their jobs, and programmed to work tirelessly.

Intelligent robots will have even greater advantages away from our usual haunts. Very little of the known
universe is suitable for unaided humans. Only by massive machinery can we survive in outer space, on
the surfaces of the planets or on the sea floor. Smaller, intelligent but unpeopled, devices will be able to
do what needs to be done there more cheaply. The Apollo project put people on the moon for forty billion -

dollars. Viking landed machines on Mars for one billion. It the Viking landers had been as capable as
humans, their multi-year stay would have told us much more about Mars than we found out about the -

moon from Apollo.

As if this weren't bad enough, the very pace of technology presents an even more serious challenge. We
evolved with a leisurely 100 million years between significant changes. The machines are making similar
strides in decades. The rate will quicken further as multitudes of cheap machines are put to work as
programmers and engineers, with the task of optimizing the software and hardware which makes them
what they are. The successive generations of machines produced this way will be increasingly smarter - -

and cheaper. There is no reason to believe that human equivalence represents any sort of upper bound. -.-

When pocket calculators can out-think humans, what will a big computer be like? We will simply be
outclassed.

Then why rush headlong into the intelligent machine era? Wouldn't any sane human try to delay things as
long as possible? The answer is obvious, if unpalatable on the surface. Societies and economies are as . -.

surely subject to evolutionary pressures as biological organisms. Failing social systems wither and die, to
be replaced by more successful competitors. Those that can sustain the most rapid expansion dominate .--

sooner or later.

We compete with each other for the resources of the accessible universe. If automation is more efficient - ..-

than hand labor, organizations and societies which embrace it will be wealthier and better able to survive .
in difficult times, and expand in favorable ones. If the U.S. were to unilaterally halt technological
development, an occasionally fashionable idea, it would soon succumb either to the military might of the -

Soviets, or the economic success of its trading partners. Either way the social ideals that led to the
decision would become unimportant on a world scale. -

If, by some evil and unlikely miracle, the whole human race decided to eschew progress, the long term
result would be almost certain extinction. The universe is one random event after another. Sooner or later
an unstoppable virus deadly to humans will evolve, or a major asteroid will collide with the earth, or the .*,,..

sun will go nova, or we will be invaded from the stars, or a black hole will swallow the galaxy.

1+7
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The bigger, more diverse and competent a culture is, the better It can detect and deal with external

dangers. The bigger events happen less frequently. By growing sufficiently rapidly It has a finite chance of
surviving forever. Even the eventual collapse or heat death of the universe might be evaded or survived if

an entity can restructure itself properly. -,

The human race will expand into the solar system soon, and human occupied space colonies will be part
of it. But the economics of automation will become very persuasive in space even before machines

achieve human competence.

I visualize immensely lucrative self-reproducing robot factories in the asteroids. Solar powered machines
would prospect and deliver raw materials to huge, unenclosed, automatic processing plants. Metals,
semiconductors and plastics produced there would be converted by robots into components which would
be assembled into other robots and structural parts for more plants. Machines would be recycled as they
broke. If the reproduction rate is higher than the wear out rate, the system will grow exponentially. A small
fraction of the output of materials, components, and whole robots could make someone very, very rich.

The first space industries will be more conventional. Raw materials purchased from Earth or from human

space settlements will be processed by human supervised machines and sold at a profit. The high cost of
maintaining humans in space insures that that there will always be more machinery per person there than

on Earth. As machines become more capable, the economics will favor an ever higher machine/people
ratio. Humans will not necessarily become fewer, but the machines will multiply faster.

When humans become unnecessary in space industry, the machines' physical growth rate will climb.
When machines reach and surpass humans in intelligence, the intellectual growth rate will rise similarly.
The scientific and technical discoveries of super-intelligent mechanisms will be applied to making

themselves smarter still. The machines, looking quite unlike the machines we know, will explode into the I.
universe, leaving us behind in a figurative cloud of dust. Our intellectual, but not genetic, progeny will
inherit the universe. Barring prior claims.

This may not be as bad as it sounds, since the machine civilization will certainly take along everything we

consider important, including the information In our minds and genes. Real live human beings, and a
whole human community, could be reconstituted if an appropriate circumstance ever arose. Since we are

biologically committed to personal death, immortal only through our children and our culture, shouldn't we
rejoice to see that culture become as robust as possible?

I

An Alternative

Some of us have very egocentric world views. We anticipate the discovery, within our lifetimes, of
methods to extend human lifespans, and look forward to a few eons of exploring the universe. We don't .- : .- ,:-

take kindly to being upstaged by our creations.
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The machines' major advantage is their progress rate. Our evolution is largely cultural, but is tightly
constrained by our Darwinianly evolving biological substrate. Machinery evolves 100% culturally, culture
itself being a rapidly evolving process that feeds on and accelerates itself. How can we, personally,
become full, unhandicapped, players in this new game?

Genetic engineering is an option. Successive generations of human beings could be designed by
mathematics, computer simulations, and experimentation, like airplanes and computers are now. But this
is just building robots out of protein. Away from Earth, protein is not an ideal material. It's stable only in a
narrow temperature and pressure range, is sensitive to high energy disturbances, and rules out many
construction techniques and components. Anyway, second rate superhuman beings are just as
threatening as first rate ones, of whatever they're made.

What's really needed is a process that gives an individual all the advantages of the machines, at small
personal cost. Transplantation of human brains into manufactured bodies has some merit, because the
body can be matched to the environment. It does nothing about the limited and fixed intelligence of the
brain, which the artificial intellects will surpass.

Transmigratlon

You are in an operating room. A robot brain surgeon is in attendance. By your side is a potentially human
equivalent computer, dormant for lack of a program to run. Your skull, but not your brain, is anesthetized.
You are fully conscious. The surgeon opens your brain case and peers inside. Its attention is directed at a
small clump of about 100 neurons somewhere near the surface. It determines the three dimensional

: structure and chemical makeup of that clump non-destructively with high resolution 3D NMR holography,
phased array radio encephalography, and ultrasonic radar. It writes a program that models the behavior

* of the clump, and starts it running on a small portion of the computer next to you. Fine connections are It ""

run from the edges of the neuron assembly to the computer, providing the simulation with the same inputs
as the neurons. You and the surgeon check the accuracy of the simulation. After you are satisfied, tiny
relays are inserted between the edges of the clump and the rest of the brain. Initially these leave brain
unchanged, but on command they can connect the simulation in place of the clump. A button which
activates the relays when pressed is placed in your hand. You press it, release it and press it again.
There should be no difference. As soon as you are satisfied, the simulation connection is established
firmly, and the now unconnected clump of neurons is removed. The process is repeated over and over for
adjoining clumps, until the entire brain has been dealt with. Occasionally several clump simulations are
combined into a single equivalent but more efficient program. Though you have not lost consciousness, or
even your train of thought, your mind (some would say soul) has been removed from the brain and

* transferred to a machine.

In a final step your old body is disconnected. The computer is installed in a shiny new one, in the style, :.
color and material of your choice. You are no longer a cyborg haifbreed, your metamorphosis is complete.

................... . . .. . ..... ... .



For the squeamish there are other ways to work the transfer. The high resolution brain scan could be
done in one fell swoop, without surgery, and a new you made, "While-U-Wait". Some will object that the
instant process makes only a copy, the real you is still trapped in the old body (please dispose of
properly). This is an understandable misconception growing from the intimate assocation of a person's .. .:-
identity with a particular, unique, irreplaceable piece of meat. Once the possibility of mind transfer is .- -

accepted, however, a more mature notion of life and identity becomes possible. You are not dead until
the last copy is erased; a faithful copy is exactly as good as the original.

If even the last technique is too invasive for you, imagine a more psychological approach. A kind of
pocket computer (perhaps shaped and worn like glasses) is programmed with the universals of human
mentality, with your genetic makeup and with whatever details of your life are conveniently available. It
carries a program that makes it an excellent mimic. You carry this computer with you through the prime of
your life, and it diligently listens and watches, and perhaps monitors your brainwaves, and learns to
anticipate your every move and response. Soon it is able to fool your friends on the phone with its
convincing imitation of you. When you die it is installed in a mechanical body and smoothly and
seamlessly takes over your life and responsibilities.

What? Still not satisfied? If you happen to be a vertebrate there is another option that combines some of
the sales features of the methods above. The vertebrate brain is split into two hemispheres connected by
a very large bundle of nerve fibers called the corpus callosum. When brain surgery was new it was
discovered that severing this connection between the brain halves cured some forms of epilepsy. An

amazing aspect of the procedure was the apparent lack of side effects on the patient. The corpus t
callosum is a bundle far thicker than the optic nerve or even the spinal cord. Cut the optic nerve and the
victim is utterly blind; sever the spinal cord and the body goes limp. Slice the huge cable between the
hemispheres and nobody notices a thing. Well, not quite. In subtle experiments it was noted that patients

* who had this surgery were unable, when presented with the written word "brush", for instance, to identify
the object in a collection of others using their left hand. The hand wanders uncertainly from object to
object, seemingly unable to decide which is "brush". When asked to do the same task with the right hand,
the choice is quick and unhesitating. Sometimes in the left handed version of the task the right hand,
apparently in exasperation, reaches over to guide the left to the proper location. Other such quirks
involving spatial reasoning and motor co-ordination were observed. L

The explanation offered is that the callosum indeed is the main communications channel between the
brain hemispheres. It has fibers running to every part of the cortex on each side. The brain halves,
however, are fully able to function separately, and call on this channel only when a task involving co-
ordination becomes necessary. We can postulate that each hemisphere has its own priorities, and that
the other can request, but not demand, information or action from it, and must be able to operate

effectively if the other chooses not to respond, even when the callosum is intact. The left hemisphere
handles language and controls the right side of the body. The right hemisphere controls the left half of the

body, and without the callosum the correct interpretation of the letters "b r u s h" could not be conveyed to
the controller of the left hand.
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But what an opportunity. Suppose we sever your callosum but then connect a cable to both severed ends"S
leading into an external computer. If the human brain is understood well enough this external computer
can be programmed to pass, but also monitor the traffic between the two. Like the personal mimic t can
teach itself to think like them. After a while t can insert its own messages into the stream, becoming an
integral part of your thought processes. In time, as your original brain fades away from natural causes, it
can smoothly take over the lost functions, and ultimately your mind finds itself in the computer. With
advances in high resolution scanning it may even be possible to have this effect without messy surgery -
you would just wear some kind of helmet or headband.

Whatever style you choose, when the process is complete advantages become apparent. Your computer
has a control labelled speed. It had been set to slow, to keep the simulations synchronized with the old

* brain, but now you change it to fast. You can communicate, react and think a thousand times faster. But
wait, there's more!

The program in your machine can be read out and altered, letting you conveniently examine, modify,
improve and extend yourself. The entire program may be copied into similar machines, giving two or more
thinking, feeling versions of you. You may choose to move your mind from one computer to another more
technically advanced, or more suited to a new environment. The program can also be copied to some
future equivalent of magnetic tape. If the machine you inhabit is fatally clobbered, the tape can be read
into an blank computer, resulting in another you, minus the experiences since the copy. With enough

* copies, permanent death would be very unlikely. '

As a computer program, your mind can travel over information channels. A laser can send it from one
computer to another across great distances and other barriers. If you found life on a neutron star, and
wished to make a field trip, you might devise a way to build a neutron computer and robot body on the

• surface, then transmit your mind to it. Nuclear reactions are a million times quicker than chemistry, so the
neutron you can probably think that much faster. It can act, acquire new experiences and memories, then
beam its mind back home. The original body could be kept dormant during the trip to be reactivated with

* the new memories when the return message arrived. Alternatively, the original might remain active. There

would then be two separate versions of you, with different memories for the trip interval.

Two sets of memories can be merged, if mind programs are adequately understood. To prevent
confusion, memories of events would indicate in which body they happened. Merging should be possible
not only between two versions of the same individual but also between different persons. Selective
mergings, involving some of the other person's memories, and not others would be a very superior form
of communication, in which recollections, skills, attitudes and personalities can be rapidly and effectively
shared.

Your new body will be able to carry more memories than your original biological one, but the accelerated
Information explosion will insure the Impossibility of lugging around all of civilization's knowledge. You will
have to pick and choose what your mind contains at any one time. There will often be knowledge and
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skills available from others superior to your own, and the Incentive to substitute those talents for yours will
be overwhelming. In the long run you will remember mostly other people's experiences, while memories
you originated will be floating around the population at large. The very concept of you will become fuzzy,
replaced by larger, communal egos.

Mind transferral need not be limited to human beings. Earth has other species with brains as large, from ' C'

dolphins, our cephalic equals, to elephants, whales, and giant squid, with brains up to twenty times as
big. Translation between their mental representation and ours is a technical problem comparable to
converting our minds into a computer program. Our culture could be fused with theirs, we could '.,
incorporate each other's memories, and the species boundaries would fade. Non-intelligent creatures
could also be popped into the data banks. The simplest organisms might contribute little more than the
information in their DNA. In this way our future selves will benefit from all the lessons learned by terrestrial
biological and cultural evolution. This is a far more secure form of storage than the present one, where
genes and ideas are lost when the conditions that gave rise to them change.

Our speculation ends in a super-civilization, the synthesis of all solar system life, constantly improving

and extending itself, spreading outwards from the sun, converting non-life into mind. There may be other
such bubbles expanding from elsewhere. What happens when we meet? Fusion of us with them is a
possibility, requiring only a translation scheme between the memory representations. This process, .

possibly occuring now elsewhere, might convert the entire universe into an extended thinking entity, a
probable prelude to greater things.
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