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ABSTRACT

./ In order to improve the accuracy of the in-plane responses of the shear deformable laminated

composite plate theories, a new high-order laminated piate theory was d:veloped besed upon Reissner’s
Gub G

new mixed Variational Pnncnple@] To this end, a zig-zag shaped Y function and Legendre polyno-

mials were introduced into the approximate in-plane displacement distributions across the plate thick-

ness. The accuracy of the present theory was examined by applying it to the cylindrical bending prob-

lem of laminated plates which had been solved exactly by Pagano [1]. A comparison with the exact

solutions obtained for several symmetric and asymmetric cross-ply laminates indicates that the present

theory accurately estimates in-plane responses, even for small span-to-thickness ratios.
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1. INTRODUCTION

The increasing use of composite materials as thick laminates, in aerospace engineering and in
automotive engineering, has clearly demonstrated the need for the development of new theories to
efficiently and accurately predict the behavior of such structural components. The intrinsic hetero-
geneity and anisotropy of these composite structures as evidenced in the stacking of several fibrous
layers and in the high discontinuity in material properties across the interfaces, make the classical

theories of plates and shells inadequate.

The inspiration and guidelines for the subsequent attempts have stemmed from Pagano’s works
{1,2,3] where the exact elasticity solutions for the problems of cylindrical bending and simply supported
rectangular plates were given. Pagano showed the importance of incorporating the effect of transverse
shear deformations in order to accurately estimate the plate lateral deflection and the need to improve
upon the thickness variation of the in-plane displacements, which are assumed to be C! linear functions

in both classical plate theory (CPT) and Reissner-Mindlin plate theory (FSD).

The first attempt to develop a general linear laminated plate theory is credited to Yang, Norris and
Stavsky [4]. Their theory is an extension of the Reissner-Mindlin homogeneous plate theory as applied
to an arbitrary number of bonded anisotropic layers. Whitney and Pagano [5] extended Yang, Norris
and Stavsky's work. An important conclusion drawn from their analysis, which was also emphasized
later by Whitney [6], is that the inaccuracies of the classical plate theory at low span-to-thickness ratios
for determining in-plane stresses are not alleviated by the introduction of shear deformations. Whitney
[6]) obtained in-plane displacements by integrating the transverse shear strains deduced in [5). This
resulted in a higher order approximation which accurately predicted in-plane strains, but the resulting

modified stresses did not necessarily satisfy the original plate equilibrium equations.

Since then, other high-order laminated plate theories have been proposed that account for
transverse shear strains. Of these, the Lo, Christensen and Wu (7] and the Reddy {8] high-order
models have served as the foundation for the present theory. In their paper [7], Lo, Christensen and

Wu used appropriate higher order terms in the power series expansions of the assumed displacement
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field which was proposed by Hildebrand, Reissner and Thomas [8] On the other hand, Reddy [9]

imposed the condition of vanishing transverse shear strains on the top and bottom surfaces of the plate.
However, this theory does not satisfy the continuity condition of transverse shear stresses at the inter-

s

faces.

The objective of the present paper is to improve the approximation of in-plane variables in {am-
inated plate theories. In-plane displacements and bending and stretching stresses are considered pri-
mary quantities in any approximaie laminated plate analysis: (ransverse stresses are only of secondary
importance since they are an order of magnitude smal er than the primary bending and stretching
stresses. By using a new mixed variational principle proposed by Reissner [10], the present theory is a
high-order model which improves upon existing theories by including in the assumed in-plane displace-
ment variations across the plate thickness: 1) a zig-zag shaped C° function as detailed by Murakami
{11]; and, 2) Legendre polynomials. The advantage of using Reissner’s new mixed variational principle
is that it automatically yields the appropriate shear correction factors for the transverse shear constitu-
tive equations. Another attractive feature of the proposed theory is that the number of equations to be
solved is not increased as the number of layers becomes larger and larger. A comparison of the pro-
posed theory with Pagano’s exact elasticity solution for symmetric and asymmetric laminated plates in
cylindrical bending, shows that in-plane displacements and stresses are accurately predicted by the inclu-

sion of the zig-zag shaped function and the Legendre Polynomials.
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2. FORMULATION

Vieele

i Consider an N-layer laminated composite plate, shown in Fig. 1, with principal axes coinciding

with a Cartesian coordinate system (x;,x,,x3), such that the xj-axis is perpendicular to the plane

defined by x; and x,. The following notation: ( )*, k=1,2,. N will designate quantities associated

with the kth-\ayer‘ The thickness of each layer is n'*’h, where h is the total thickness of the plate.

b

F'.f The volume fractions n‘*’ satisfy the relation

i

’e
I a® =l W
it "

Unless otherwise specified, the usual cartesian indicial notation is employed where latin and greek
indices range from 1 to 3 and 1 to 2, respectively. Repeated indices imply the summation convention
and ( ) is used to denote partial differentiation with respect to x; .

With the help of the foregoing notation, the governing equations for the displacement vector %)

. and stress tensor o, ¥’ associated with the kMtayer are:
a) Equilibrium Equations
o)+ W =0 ;o mof® Q
where f; are the body forces;
b) Constitutive Equations For Orthotropic Layers L:_:
Y [z ) ) L
on L (ool en « Ci/Cx TS
#' onl =|Ci Cp 0 en] +]|Cy/Cy| off (3a) "“‘%
L ] on 0 0 Cg 2ey2 0 SR
) (k) ) ) )

en CiyCy Cy/Cyy ey VG 0 0 a3 .
23] =-— 0 0 €7 + 0 VYCu O oy (3b) - :!
2e;, 0 0 2ey; 0 0 VCs| |ou D

where C, are the elastic constants and C, (i j=1,2,6) represent the reduced stiffnesses introduced by

Whitney and Pagano [5];
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¢) Strain-Displacement Relations
ef =3 (w4 +u®) “
d) Interface Continuity Condit'i:ons
N T s S Ry L IR TR 1 Sy Y 5)

e) Upper and Lower Surface Stress Conditions

ofP =T+ on x;-% (6a)
oV =T on x,--% . (6b)

The objective in developing a new laminated plate theory is twofold: first, to improve the assumed
variation of in-plane displacements through the thickness of the plate and second, to include the effect
of transverse shear deformation. In order to carry out this task, Reissner’s new mixed variational prin-

ciple [10] was applied to the N-layer composite plate whose middle surface occupies 2 domain D in the

Xy, x3-plane:

Jf l% 1, {%}How 0 4 uf 26 CN6r 0+ W —eff) (...)15,,(;)} ax,] i, g
A

-IJ £ [ su® 5% ax, dx,dx;+df L [ 6u® T ax,| s ™
k Jw Dy | % 4w

-~

+ fbf [5":(” (xlxz.-g)T,* -84, (x) x;~- ‘g’) 7;-] dx, dx,

where 3 Dr denotes the boundary of D with outward normal », on which tractions 'T, are specified and
A® represents the x,-domain occupied by the k'Miayer. Also e, (...) implies the appropriate right-
hand side of (3b). Due to the nature of Reissner’s mixed variational principle, Egs. (3a) are taken o

be the definitions of o &’ used in connection with (7).
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3. TRIAL DISPLACEMENT FIELD, TRANSVERSE AND NORMAL STRESSES

The high-order laminated plate theory which takes into account the effect of transverse shear
strains, is obtained by including the Legendre polynomials of order n=1,2,3 with respect to the x;-

coordinate to a zig-zag in-plane displacement variation of amplitude S, (x,,x,) across the plate thickness.

The appropriate trial functions used in connection with Reissner's mixed variational principle

Eq. (7) are taken to be:

a) Trial Displacement Field

w0 x103) = U Griox) + IV, Gix)PIQ) + 5, Grioxg) DY = gt

)
+ V8 D P + (3%, ix)Py@)

=
where { = —f— and P, ({) are the Legendre Polynomials of order n. It is also understood that ¢; = 0.

x§*) is a local x;-coordinate system with its origin at the center x{§’ of the k Miayer, ie.

P =x;-x$ . )
Eq. (8) may be regarded as a superposition of a zig-zag function and the cubic variation as proposed by
Lo, Christensen and Wu [7], with the exception that here Legendre polynomials are used instead of
single powers in xj;

b) Trial Transverse and Normal Stresses

7000, x2.03) = QX (X, x)Fy(2) + RE (xyx)Fy(2) + J& (x) xp) F3(z)
' (10a)
+ [T.(k—"(xhxz) + T,,(k)klr"z)]f-‘(i-') + [T;k‘“(xl.xz) - TJ“(XlJz)]FS(Z) \

f;‘f’(xpxz.x;) - Q;“‘) by x)Fy(2) + Rg(k) 1 x) Felz) + Jj(k) (X)) F3() + I}“ (e1x2)Fa(z)
(10b)
+ [Tg(k_l) (Xlﬁz) + T;k) (X1J2)1F4(Z) + [T_;(k_” (xyxy) — T}k) (X],X))]Fg(:)
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e =105 ona4_g2, 1 o 15 2. 3
F;(z) (% h)3 (202 6z’ + 4) , Folz) = 35z 2 FAR o 16
3 105 5 an
-10- 3 o105 s 1434 3
Fs(z) = 10z 3 z , Fg2) O (362° — 142° + ‘z)
Fi@) = (—;7},},57 (112:5 — 402 + 32) . Fylz) = 12625 — 352 + lss- z
_ x¥ 1 1
and 2= m ' T3 €z 3
Also, Q% ,R® W)= [ xf xf?) ) dxy (122)
AK)
= x ) (12b)
AW

In (10) 7%~V and T,*’ are the values of 73 at the top and bottom surfaces of the kM layer respec-

tively. From (6)

T=T* and TW =T . (13)

The degree of the polynomials F, (z), i=1-8, appearing in (10a,b) is consistent with the order of trun-

cation in the assumed expansions (8) for the dispiacement u;%).
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4. LAMINATED PLATE EQUATIONS

Substituting (8) and (10) into (7), using Gauss’ Theorem and the orthogonality property of the

Legendre polynomials one obtains:

Yoo
SAES N

a) Equilibrium Equations:

N Naa+ T =T+ F¥=0 (14a)
' Mya=Ny+ 3 (T7 + )+ FM= 0 (14b)
- Zpa— Ky~ ("= DV T+ FE=0 (140)
= Loia— 3M5 + = (T'-=T)+F=0 (14d)
[ ]
g h? h3
: —(5L,,+TN,.,)+—8-(T;+T;)+F£-0 (14e)
I where
Nep, M., Zu, Log. Pap _ ¥

EN’ FiM9 F‘Izi F‘Ls EP = k=1 (3
i (k (k)
o 1, P 1©), < D* “"h (5 "y Py (4 )3P3(§)] f(k, dxy  (15a,b)
(N3, , My Ky s Z3,L3) = 2 };) [1 5 P1©.EDF =5 (k),, e (k)h 0
..__
: 1P| 80 axs (150)
f. b) Constitutive Equations:

® For Transverse Stresses
¥ 8K aWp 2 )
) K ot 30 THD + T,,""] -5 hn® Gt [u,,+\v,,+s,(— Dk

(16a)

2
At h s+ )+ A B aapr- Ly, + 2 sa0- Do,

Beabaathcadhoids a2 2o L, -
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1 n*)2p - Th? = (k) 2
RY - T (T =T ) = 5 n® R W, + Xa+ S5, D —
(16b)
J +3h 1 (€3, + 5B, )]
(k) (k) 3 -
Qa(k) - (,I,t:,)uh)z + nlzh (T,(k-l) + r‘:k) ) - — % "(k)s C,(k) (f.'!.a + 5¢°) (16¢)
N W 6 UPNPRREE 2/ 1.7 o) DS WY 6 Wyt
cH |12 <= 3(n®p)2 T T a%p CH+n |72 e
5.,‘:“'" 3 R;k“)
T3 (n®*Vp)? T 3 ey (16d)

- :.:"_(k_l T&-1 4+ 8 _;'2. + _f_(k_*.i T _ -'_'_(ﬂ T k+1)
126 C‘:k) e C,,(k) C;IH’I) o Ca(k+|) e

o For Normal Stresses

LVl n®h a2 ow 2 *x)
ofF) — PGSR T~V + T ) = 5= 0 CH§ W3+ S D* oy 3 n*) €3
(17a)
- - 2 - 3 -
+ ls"_ n® T4 n b+ hT (B2 — %)g + lz_ 5 n 03 _ % ,,°<k>]¢l
327§ 2y 11
%R}"’ -3 ,,u)szhs "140 (THD = T ) = 35 B2 nt3 O ¢,
(1)
g ok 2@ Wi 3 w2 13
+ lOSOhn v+(=1 nth+3hn,, £+ 2 (5n, 4)¢
(k) (k) 3 .
po - BT nh puen gy an 3 e g sha®g] (70
(n(k)h)z 12 40
1o 15K a®% oy = 1A s
w R g t o (T m T = g e 11
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-11 Q(k) Q{kﬂ) 15 R{ (k) R:{k-bl) 55 J(k) J§k+l)
12 | e T cE | T 2 |7y T awucgen | T 3T [Forcp T penicgen
(k) (k+D) (17e)
+
- 170 [ o _h S LA LALN (S T(""”
h3 n k)3 C;‘{{’ k13 C{f*“ 18 C33 C(k) C(kH) Cé +1)

where in (16a,b.c) and (17a,b.c.d) k ranges from ] to N while in (16d) and (17¢) k ranges from 1 to

(N—1). Also, no summation on a is implied in (16) and

CP =8, CH +8,,Cd & n =xi§/h (18
U Uy Ui
‘i_’ Vi ¥ e |®
§{ =[5 s [C23 (19)
f i €22
¢ b1 b2

By solving (16) and (17), QW, R,® J) I{¥) and T,* are obtained in terms of U,, ¥,, S,. £, and
&, and their derivatives. As a result, the quantities N3;, M3, K3, L of Eq. (15¢) can be determined
as functions of these displacement variables. Such expressions will automatically include the appropri-

ate shear correction factors by virtue of the Reissner mixed variational principle.

The equilibrium equations (14) are supplemented with the following suitable boundary conditions:

specify U, or Ny ve (20a)
specify ¥, or M, v, , (20b)
specify S, or Z, v, . (20c)
specify &, or L, ve (20d)
specify &, or Pg,vg . (20e}

The remaining constitutive equations for Nz, Mag. Z,g, Log and P,g are obtained by substituting

\_ - ‘. N e e T e e ._"._"-_'. CURTE P '. s ,"“_'-‘ o '~
. & .

s ans Ao - N ¥ VOLAY
PRGNV ITAL Al A e e e e i 2 R A e a ittt e ar ae

S A
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: (3a), (4), (8) and (10b) into (15a) to yield:
1
e 2N
"t h -
: | [ w0 e Y I s |
ik My] M1 M) ML) |h v hMIL R
N h
1z|- T zg 2| s [+ £ el v || , @
x =
v 1| |symmetic (L] (Lel|[n2e n2i| 1427
x K- P} .5 3 1 /
~ 1 h’¢ V| 3
[ W
where N= [N}, Ny Na17, U= (U, Uy U, 2+ Uy )7 with analogous expressions for M, ¥, ..., P,
" ¢ - [N1...., [P,) are 3 x 3 matrices, [C]*’ is a 15 x § matrix an V¥, ..., ¥ are 1 x 4 vectors, which
- are given in the Appendix.
t
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5. CYLINDRICAL BENDING OF LAMINATED PLATES

In order to test the accuracy of the present theory, cylindrical bending of composite plates under
sinusoidal loading is considered. The plate is simply supported at the ends x, = 0 and / and is infinitely
long in the x,-direction. The prescribed boundary conditions on the top and bottom surfaces of the

plate are:

T} =0, T} = g sin —2 on x;= 2 (22a)

h
l 2
h
TT-TJ_-O OﬂX3--3- (22b)

The boundary conditions for the simply supported ends are, from (20):

Usm Wy= Sy= ;=0 at x; =0,/ (23a) RO

Ny=M;=2Zy=L,=P;=0 at x;,=0,/ . (23b)

Using surface boundary conditions (22), the equilibrium equations (14) for cylindrical bending reduce

to:
Nur=0 (24a)

Nisy + g sin "—f‘ -0 (24b) -——-i
M= 0 ” .
My~ Ny + % q sin "Tx‘ -0 (24d) L
2y, - Ky =0 (24e) :
le.n"Ks;—qsin"Tx'-o (240 ___f

Ly - 3M; =0 (24g) S

...............................
...........
...........
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NP

uded I
]

‘
L S

Ly - My + '; ¢ sin 22 (24h)

L

I.- CR} .l »
2L W

2
Py~ 5Ly — %‘ Ny=0 (24i)

A

»
"‘l
v

v vy
I.J

From the boundary condition N, = 0 at x; = 0,/, Eq. (24a) implies that

~ =
e
’» ¥

L/

} .'-'i;_f:';'.";j:?:"-':I F /

N"-O . (25)

Next Eqs. (15a,c) are expressed in terms of the displacement variables U, ..., £;. To this end, the
constitutive equations (16) and (17), for the cylindrical bending analysis, can be rewritten in the fol-

fowing vector form: , A

N ]
o
4
Ay g By
D)

T
e}

BT,
DL
RIS
M &y ety '

01— 7 B+ AL ITi =, (260 5
%g,mw,m-g, (26b) T
Q-3 R+ ShUIn=) (260)
10,10+ 4 TR\ IRy - § o 110,13, = hIC) T, (26d)
and

93—71-173+HA|]_TJ“51 (279)
TR-Lh-2hBIn-x @) i
QS‘%l.J‘*';‘“Al].TJ"Ss (270)

Ry - 5L _ -3 h(B\ 1Ty =k, (27d) T

Y -/.." f

v
R A

(10,10, + + TR 1Ry = 3 L 110,155 - 33 -5 TR, 1T~ 41G,) T3 27e)

‘e
o
o,

84

where J = i=1,3 and _7,_=_—32—— : (28)

T
k32 § nk2 5
Pl

C— . — = emm— ——— . -,

R R T PR T T T T TR N R P S N T N PP P L
-._.n_...‘-l_.--“‘l_._.-‘;t_.; P RIS PR PRI U W, P Y Y PR 2. s " a
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The matrices [4,], ..., [C;] and vectors Ay, ..., x4 are given in the Appendix. The vector equations
(26a,b,c) and (27a,b,c,d) have N-components, while the vector equations (26d) and (27¢) have
(N—1) components. Matrices (4,1, ..., [C;] depend on the volume fractions #%) and elastic con-
stants C&’, C{§) and C{§’, while the vectors A, ..., k, contain the displacement variables U, ..., ;.
Eqs. (26) are easily sofved by substituting @, % R, and;lz- Jy in terms of T, from (26a,b,c) into
(26d). This yields a new equation involving 7; only, which can thus be solved for 7;. Then by back
substitution expressions for @), % R, and 7'17 ._71 in terms of Ay, A, and A; are obtained. Proceeding in

a similar manner with (27a,b,c.d) Qs, % R;, % J; and # Ty in terms of «;, &), x3 and k, are deter-

mined. These expressions are:

7 4
l Qxl (U1- U - G- 2u0D| A, +[[AR|]]A -
ll-l Gui-2uo - Gui- sy M 2l4R))] 22
W
1 ri= 180,10, - 20,) + W1 BR D, (29b)
and
7 4
QJ (3""“03}) —(3‘[1]-2“03]) Xi +] (AR;] (8‘( SK) (3oa)
L G- 2040, - Gu-auonf ] 3 214R,)) R4 R
F_J
%83 ("';%[”'l"z—g‘[BR;]) —(—i‘%U]+%[BR3]) l_(z] 1 [10[303]] . ) Gob)
U1 B PN XTI YL kg T 21 [161BQs)f T
s b |GT+ g BRD - GTUI+ = [BR,)| | }

where [/] is the N x N identity matrix and

uol WRY [l4))
o] 18R] = ia] 7W1 [0 ITRY] i=1.3 G1a)

with
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with
[TV, = 4ITQ,][4,] + (TR,)1B,} + [Cll)_‘ (31b)
(TV;] = @1 }14,] - %‘;— (TR JIB] + [C5D! (10

40 ), ..., [BR,] are N x N matrices, while [TV, ] are (N—1) x (¥—1) matrices. By inserting (29)

and (30) into (15¢) and (21) the appropriate constitutive relations for the cylindrical bending problem

in terms of the displacement variables U, ..., £; and their derivatives with respect to x, are obtained.
The form of the dependence on the dispiacement variables U, ..., £; of the constitutive equations

thus obtained and the naturé of the applied load suggest the following expressions for the displace-

ments:
U, h‘Ul 03 hil_;
¥ .
5 hS‘l a1 =5 sing 2 (32)
S| - ol cosw - and o f= ns, sin 7 =~ 2
él f[/h 63 El/h
1] loyn?

where the """ quantities are nondimensional by definition. It is easily proven that the boundary condi-

tions (23) are satisfied when (32) are substituted therein.

Finally, inserting (32) into the constitutive equations obtained in the manner described above and
these in tum into the equilibrium equations (24) and (25) yields a system of nine algebraic equations
with the nine nondimensional quantities U Iy wovs 2 ;3 as unknowns. This system is conveniently written

in matrix form as

BIU~F (33)

where y- [01'@‘ §|E‘$| 03@33‘3&3]1‘ (34a)
i 1 T

F=104,0,59.0,-4.0,74.0] (34b)

and [B] is a 9 x 9 matrix.




6. NUMERICAL RESULTS

In order to assess the accuracy of the present theory the problem of the cylindrical bending of an
infinitely long strip under sinusoidal loading is examined. The exact elasticity solution has been given
by Pagano (1}, where a three layer cross-ply laminate was considered, the 0° layers being at the outer

surfaces of the laminate. The elastic properties are:

for the 0° layers Su_ 25.062657 , Li _ 0335570
Er Er
(35a)
Cx Css .
E, 1.071141 , i 0.5,
and for the 90° layers & = 1.002506 , -9—3 = (.271141
Er Er
Cy Css
E; 1.071141 i 0.2

where £7 is a reference modulus.

We follow Pagano's [1] nondimensionalization and write the displacements and stresses in the

form
Er | u* (0x;) Er | 1004’ !
- T ] 3 - T
"‘“"lq] it el bl e L (36)
s 1wl
o1 qO'n (2 y X3)
Also i,--%— . S-—'I' (37

In the various curves the solid line represents the exact solution while the results of the present theory
are shown by a broken line. Also shown, for comparison purposes, are the results given by the first

order zig-zag model [11] and Lo, Christensen and Wu’s high-order theory (LCW) (7]. which are
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represented by a dashed-dotted line and dotted solid line, respectively. Symmetric 3, 5 and 9-ply lam-

inates and asymmetric 4 and 8-ply laminates were examined, to test the present theory.

For a symmetric 3-ply laminate (0/90/0) with layers of equal thickness, Table 1 shows the values
of the central deflection 7, obtainea from the different theories for a span-to-thickness ratio § of 4 and
6. As observed the present high-order theory correctly predicts the central deflection 4; to the first two
decimal digits, while the first order zig-zag model gives a better result than LCW. The variation of the
in-plane displacement % across the plate thickness is compared in Fig. 2a for § = 4, where it is seen
that the curves for the present theory and the exact solution are almost identical. This improvement is
aiso reflected in the variation of the in-plane stress oy, across the plate thickness, as shown in Fig. 2b.
Very close agreement is found between Pagano’s exact solution and the present theory, which has
ifnproved upon Lo, Christensen and Wu'’s high-order theory, especially at and in the neighborhood of

the interfaces.

The present theory was next tested for a symmetric 5-ply laminate (0/90/0/90/0) with layers of
equal thickness. The central deflection #%; for span-to-thickness ratio S of 4 and 6, is shown in
Table 1 where close agreement with the exact solution is observed. The variations across the plate
thickness of in-plane variables @ ¥’ and & {§’ are compared in Figs. 3 and 4. The curves for the present
high-order theory and the exact solution are again almost identical. In particular, it is seen that the
present theory has considerably improved upon Lo, Christensen and Wu’s model in the interior layers

of the plate.

To further assess the accuracy of the present high-order theory the more difficult case of a sym-
metric 9-layer cross-ply laminate (0/90/0/90/0/90/0/90/0) was considered. The 0° layers have equal
thickness #/10 while the 90° layers have equal thickness /#/8. The results for the central deflection &,
are given in Table ] for S = 4 and 6 where again close agreement with the exact solution is observed.
The variations across the plate thickness of the in-plane displacement #, and normal stress &,, are

shown in Figs. 5 and 6, for § = 4 and 6 respectively. There the discrepancies between the first order

Zig-zag theory and the exact solution are more pronounced than in the 3- and S-layer cases, as
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expected. However, the results of the present theory are still very good when compared to the exact
solution.

Finally, asymmetric 4 and 8 cross-ply laminates, with layers of equal thickness, were examined.
The present theory predicts aocuraiely the central deflection 4;. These results are given in Table 2 for
span-to-thickness ratio S of 4 and 6. The variation across the plate thickness of the in-plane displace-
ment % ¥’ and normal stress &’ are shown in Figs. 7, 8 and 9 for S = 4 and 6. From the curves for
a{®, it is seen that the first-order zig-zag theory deviates significantly from the exact solution at the
bottom layer of the plate. On the other hand, the discrepancies between LCW and the exact solution,
for both @ (¥ and & {}’ are more pronounced in the interior layers of the plate, while the present high-

order theory is still in very good agreement with the exact solution.
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7. CONCLUSION

A high-order laminated plate theory, which accurately predicts in-plane responses of symmetric
and asymmetric laminates, was developed with the help of Reissner’s new mixed variational principle
(10]. The improvement was achieved by including a zig-zag shaped C° function in the in-plane dis-
placement variations across the plate thickness, as proposed by Murakami [11], while the non-linear
variation is accounted for by using Legendre Polynomials. The accuracy of the theory was examined
for the case of cylindrical bending of an infinitely long strip and compared with the exact elasticity solu-
tion given by Pagano [1]. The results for the central deflection and in-plane displacements and normal
stresses for several symmetric and asymmetric cross-ply laminates indicate that the theory very accu-
rately predicts these in-plane responses even for small span-to-thickness ratios. In all the cases con-
sidered, the proposed theory gave better in-plane responses than the Lo, Christensen and Wu high-
order theory, especially in the interior layers of the plate. It was also observed that for symmetric lam-
inates, the first order zig-zag mode: {l11] predicts more accurately the central deflection than the Lo,

Christensen and Wu high-order theory.
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APPENDIX
o Matrices [N, 1, ..., [P,] in Eq. 1):
Dy Dz' 0 ) G ¢ 0
IN=|D, Dy 0 |.INJI=|C)' C" 0},
0 0 D 0 0 C"
. Cs G O Cy Cy O
Nel=|Cy G 0|, INJ=]|Cy Co" 0
0 0 ¢ 0 0 G
C; G 0 C; Gy 0
Mel=|Cy Cy" O0f,.IM]=ICy C" O], (AD)
0 0 C; o o0 ¢
C; Cy O Ce C¢ O
M=[cy ¢ 0], IM]=]|Cs C" O
0 0 ¢ 0 0 Cg
D; Dy 0 D, D|' 0
[Zgl- DJ' Dgn 0 ’ [20]- Dl' D|" 0 N
o o D’"' 0 0 DlI"
Ds Dy 0 Fy Fy 0
(Lfl- Dsl Dsn o . [L"- Fj' an O
0 0 D 0 0 F
Fy F 0
[P‘)- F(' F4" 0
0 0 FS
where
C n,"" n® D, g ®)
C2 -&C'vl(f) n(k)3/12+no(k)2n(k) , -Eel(f)
s ~ 1% a0 D; D n,® a2

and
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- - n J
L s
. & _h.'
: 3 1 3 1 5 3 N
N Cs";'cs-%cz,a-‘iC4—§Cl,Ca'jcz‘iDz.C9'3C4-§C| ‘:‘;::.‘-
- JaN
AN
! _3 23 1 o
: : i
Y
15 7 3 25 15 9 N
; F;-—;Fl'——s'C4+'6—4'C|,Fg-sz—Tcsi'aC; "":“'; ::
l" where *
1w (k).J )3 k)
= n K pk3 4 g 63 RO
s Aoz cw 47 Do & - F |20 4 3 02 yoen
l Gl & ™" L wsy 1, w2y 080! x 16 47 -
; 80 2
(A%)
®) (k)5
n,"' n 5
) [f'n] " s n 63 g3 4 g 5 () |
; =ICh w? -
) F % ”743- + _11% n S @S % n M n®)3 4 p K6 k) -
The ( ), ( )" and ( )™ quantities can be obtained from (A1,2,3,4) by replacing therein C{¥’ by C¥’,
i C¥ and C& respectively, where k ranges from 1 to N. S

® Matrix [C]%®’ and Vectors ¥V, ..., ¥ in Eq. (21):

k)

. s
s
s
r

bl s )
o
’

1® -

e where _CU‘)"'[Cu/C_;; C;_;/C” O]T (AS)

o

W= (1,000 ; M = [n® 100] ; V2= [0,(= 1)* n—fﬁ ,0,0]
| (A6)

) )

sl 1 0 3 ol vpailspws_ My 3 wa_1y 15 w S

:: _V' ‘2 (3"0 4 ) [ 3"0 y 2 Y 0] + _W l2 (sno 4 ) * 2 (sno 4 ) * 2 "o * 2]

e Matrices [4,], ..., [C;] in Eqgs. (26) and (27): ::::_.‘é:.
' . .
2_: 0 0 <

'.' e Ll w0 2w un

- (1)} el L I (8,1 20 [

. wxN-D] O (Nx N=1) 0

g
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0 0 B
0 i
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0 0 =~
i ® Vectors A, ..., k4 in Eqgs. (26) and (27):
Et.‘ M=hU+¥)a + Sy b+ B2+ 36))ey + 165 di + Ry f:::;::ji
. NN
- Ay= h20W3,+ 36 f1 + hS3) g1+ BE+560p T
Ay = :7—9' h3 €50+ 560, ‘ (A8)
»
) xi=hUy g+ hWyay+ Sy 03+ ks + bWy o+ b6y dy+ hidy, e
ky= WL+ B 3+ hS1 @+ WE b+ k' g
;“ 315 525
'53'-—4;"351,1./3—*47 h*b,1 2 T
ko= —h'd1 15 ZQE:'.-_ 2

The kth component of the vectors g, ..., §; appearing in (A8) are given by
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el(k) - ? (Sno(k)l_ .Z)"(k) C%) vfl(k) - Tﬁ"ms C&) 'gl(k) - E(_ l)kn(k)ZCg) "P) - 40"0 k)3 Cg)

i

2
aft) = %,,(k)cg) ol - %,,mcg) b = %(_ DECE L e - %no(k)n(k)cﬁ) cef = 2noncp)

g = %(3,,0(/()2_ _:1‘_),,(:() CH el = (5,,0«)3_ %,,(k)),,ua c¥ [P - _31_5% n3 CH (A9)

0 - 1050 nh3 CH g o _%(_ DEn®ICE | pfo = _315_10 n & n %23 Cp
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Number of Layers N 3 5 9 | 3 5 9 T

Exact Solution (1] 2887 | 3.044 | 3.324 || 1.635 | 1.721 | 1.929
Present Theory 2.881 | 3.032 | 3313 || 1.634 | 1.716 | 1.921
First-Order Zig-Zag [10] | 2.907 | 3.018 | 3.231 || 1.636 | 1.702 | 1.875
LCW (7] 2,687 | 2.597 | 2.835 || 1.514 | 1.507 | 1.708
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- ' Table 2 Central Deflection %; for Asymmetric Cross-Ply Laminates in Cylindrical

. Bending Under Sinusoidal Loading

- Number of Layers N 4 8 4 8

Exact Solution [1] 4.181 3724 2.562 2224 =
Present Theory 4.105 3.625 2519 2.181 =
First-Order Zig-Zag [10] 3.316 3.225 2.107 1.934 ‘
LCW (7] 3.587 3.189 2.242 1.979
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Thickness variation of in-plane displacement ﬁl‘k) ‘
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Thickness variation of normal stress o4 'K) of a
symmetric 3-layer cross ply laminate for's = 4.

Thickness variation of in-plane displacement u (k) '“3f
of a symmetric 5-layer cross-ply laminate for :
S =4,

Thickness variation of normal stress oy, K) of a e
symmetric S5-layer cross-ply laminate for §'= 4.

Thickness variation of in-plane displacement U (k)

of a symmetric S5-layer cross-ply laminate for
S = 6.

Thickness variation of normal stress ¢&- (k) of a
symmetric 5-layer cross-ply laminate for g = 6.

Thickness variation of in-plane displacement u (k)

\of a symmetric 9-layer cross-ply laminate for
s = 4,

Thickness variation of normal stress 5,4 'K) of a
symmetric 9-layer cross-ply laminate for & = 4. |
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Thickness variation of normal stress §;; k) of a -
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Thickness variation of in-plane displacement u. k!
of an asymmetric 4-layer cross-ply laminate for

S = 6.

Thickness variation of normal stress 511‘*’ of an
asymmetric 4-layer cross-ply laminate for S = 6.

Thickness variation of in-plane displacement u, ‘K)
of an asymmetric 8-layer cross-ply laminate for S

Thickness variation of normal stress o k) of an
asymmetric 8-layer cross-ply laminate for S = 4.

-
. .-. "—. - ‘.‘ - . -\‘ 3,
RIS ] U PRl I Y . s -
A e A e T

taned
. .‘-#




“\ : .u. g .. .4 . ..... v -... ....s..'.\.\n‘.h *
g e TS
,“ *sjuswade|dsip aue(d-ul [et4} pue ¢ uwd3SAS 33euLpso0d ‘Aujawodb djeld | *bi4
2
”. % — ¢/4- -
b [ _ ~ ; N
“ — ——— -1 Y
” </ .
) nﬂ% .
- 0t
o th .
[ Vel

: LA _ =/ ~ S 3 Yo
. R o /) (4)
.” ,..“.. ox % 4 ~ - - 0 7 :C:c

o \ RN |
. I8 _lh= ¢
. yg ~A=0dois \ E; .
v. o—mVx X L ]
g o¢) +—- V\WMP/ - - (97§ Yol
() \ /S _ _ 2/ w
; ) /. i \ ¢ @
-.4 \ - \ ﬂ\’ _— - :\M k —.— C
. - AN Ty

3 £
Sx Ex‘.




- 31 -
§%s

4

w
"

[

"
-10 -075 -05 -0235

] L 1 - U|

|
1 ] ) L
025025 05 075 10

E xact
———— Present ~ ~037%
Theory -05

Fig. 2a Thichness variation of in-plane displacemet ﬁ](k)

‘ E =

05+
5=4 0375+

_~
20 -5 -0 -5 on.ms _
B — —t——+ -

e Ref [7]

—-—-—1st-Order
2 Zig Zag

Fig. 2b Thichness variation of normal stress E(k) of a
symmetric 3-layer cross ply laminate fM' S=4,




et A 25 0 e e 0“2 S S4hm A e M ue e e G A e M T

»

d

B AU

W

......

................
---------

R NN S P A I A N I R kel

- 32 -

210 -08 -06 -04 -0.2 04 06 08 1o U

-01251

Exact -0.25+

T oy
Y —ost

(k)

Fig. 3a Thichness variation of in-plane displacement G]

X3

05
5=4 037 /

0.25
0125
20 -5 -10 -5 =

T T —T 1 $ —t —— O"
///{T 5 10 15 20 I

-0.125
1-0.25

/ 1-0375
1-05

Fig. 3b Thichness variation of normal stress tiﬁ) of a
symmetric 5-layer cross-ply laminate for S=4.

~—— Ref [7]

—-—-—1st-Order
Zig Zag

------
...................
2.3 s




% e v

. LN

- 33 - :'.“\:‘

.\-“-

LY 3

:s

."-‘\1
(af SR

WA

"
|
w
st
2y
AL

-2
fl"

ﬁ
o
w

A

oo REE

L LI % = 1l T — U [
25 20 -15 -10 -05 | ' pRs
-0125 2
Exact -0.25- o
— — — — Present —0.375+ -
| Theory 05t "

(k)

i Fig. 4a Thichness variation of in-plane displacement G] T

§ %,

: 051 Y
. S=6 0.375¢ / RSO

0251

01254

=30 -20 -0 |4 _

—+—t e — T,
0 20 30

1-0.125
$-0.25

/ }_o3rs  ———— Ref [7] RS
1-05 —-—-—{st-Order ™

Zig Zag

Fig. 4b Thichness variation of normal stress 5{) o a
symmetric 5-layer cross-ply laminate f“‘ S=6.

..............................

............................




OIS R AL SV TR A AR AR AP o i ol il > . Adrtu it b’ e JAam deaiose e B v

A T S T Y T R E R N R  p T A N T V. WOy P OwroTw % NN TR U TR R T W
)

-~ 34 -

-10 -08 -06 -04 0.2
-0I125¢1

Exact ~0.25-
— — — — Present '

Theory -0.375¢
-0.571

Fig. 5a Thichness variation of in-plane displacement ﬁ(k)

~——— Ref [7]

—-—-—1st-Order
Zig Zag
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