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ABSTRACT

In order to improve the accuracy of the in-plane responses of the shear deformable laminated

*. composite plate theories, a new high-order laminated plate theory was developed bsd upon Reissner's
6

new mixed Variational Principle 191: To this end, a zig-zag shaped CO function and Lezgendre polyno-

mials were introduced into the approximate in-plane displacement distributions across the plate thick-

ness. The accuracy of the present theory was examined by applying it to the cylindrical bending prob-

lem of laminated plates which had been solved exactly by Pagano [1). A comparison with the exact

solutions obtained for several symmetric and asymmetric cross-ply laminates indicates that the present

theory accurately estimates in-plane responses, even for small span-to-thickness ratios.
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1. INTRODUCTION

The increasing use of composite materials as thick laminates, in aerospace engineering and in

automotive engineering, has clearly demonstrated the need for the development of new theories to

efficiently and accurately predict the behavior of such structural components. The intrinsic hetero-

geneity and anisotropy of these composite structures as evidenced in the stacking of several fibrous ,- 4

layers and in the high discontinuity in material properties across the interfaces, make the classical

theories of plates and shells inadequate.

The inspiration and guidelines for the subsequent attempts have stemmed from Pagano's works

[1,2,31 where the exact elasticity solutions for the problems of cylindrical bending and simply supported

rectangular plates were given. Pagano showed the importance of incorporating the effect of transverse

shear deformations in order to accurately estimate the plate lateral deflection and the need to improve

upon the thickness variation of the in-plane displacements, which are assumed to be C1 linear functions A
in both classical plate theory (CPT) and Reissner-Mindlin plate theory (FSD).

The first attempt to develop a general linear laminated plate theory is credited to Yang, Norris and

Stavsky [4]. Their theory is an extension of the Reissner-Mindlin homogeneous plate theory as applied

to an arbitrary number of bonded anisotropic layers. Whitney and Pagano [5] extended Yang, Norris

and Stavsky's work. An important conclusion drawn from their analysis, which was also emphasized

later by Whitney [61, is that the inaccuracies of the classical plate theory at low span-to-thickness ratios

for determining in-plane stresses are not alleviated by the introduction of shear deformations. Whitney

(6) obtained in-plane displacements by integrating the transverse shear strains deduced in [5). This

resulted in a higher order approximation which accurately predicted in-plane strains, but the resulting

modified stresses did not necessarily satisfy the original plate equilibrium equations. -

Since then, other high-order laminated plate theories have been proposed that account for

transverse shear strains. Of these, the Lo, Christensen and Wu (71 and the Reddy 181 high-order

models have served as the foundation for the present theory. In their paper [7], Lo, Christensen and

Wu used appropriate higher order terms in the power series expansions of the assumed displacement

. . .. • .. ... . . ... _. . . .. . .,.. ... . . .. .. . .. .- . .,: . . . • -. . ---. . .. -
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field which was proposed by Hildebrand, Reissner and Thomas (8) On the other hand, Reddy [9) :
imposed the condition of vanishing transverse shear strains on the top and bottom surfaces of the plate.

However, this theory does not satisfy the continuity condition of transverse shear Ulmes at the inter-

faces.

The objective of the present paper is to improve the approximation of in-plane variables in lam-

,%F

* inated plate theories. In-plane displacements and bending and stretching stresses are considered pri-

* mary quantities in any approximate laminated plate analysis: transverse stresses are only of secondary

importance since they are an order of magnitude sinal er than the primary bending and stretching- 3
stresses. By using a new mixed variational principle roposed by Reissner 1101, the present theory is a

highi-order model which improves upon existing theories by including in the assumed in-plane displace-I

ment variations across the plate thickness: 1) a zig-zag shaped C function as detailed by Murakarni

1111; and, 2) Legendre polynomials. The advantage of using Reissner's new mixed variational principle

is that it automatically yields the appropriate shear correction factors for the transverse shear constitu-

tive equations. Another attractive feature of the proposed theory is that the number of equations to be

* solved is not increased as the number of layers becomes larger and larger. A comparison of the pro-

posed theory with Pagano's exact elasticity solution for symmetric and asymmetric laminated plates in

cylindrical bending, shows that in-plane displacements and stresses are accurately predicted by the inclu-

... .

siont vatons aosthhltetikes: zig-zag shaped fucto funtio the detailed Pyolurnomial"s.

. " 4



2. FORMULATION

Consider an N-layer laminated composite plate, shown in Fig. 1, with princioa axes coinciding

with a Cartesian coordinate system (X1,X2,03 , such that the X3-axis is perpendicular to the plane

defined by x 1 and X 2. The following notation: k )~ - 1,2,..,N will designate quantities associated

with the kth~layer. The thickness of each layer is n(k)h, where h is the total thickness of the plate.

The volume fractions nlk satisfy the relation

Unless otherwise specified, the usual cartesian indicial notation is employed where latin and greek

* indices range from 1 to 3 and I to 2, respectively. Repeated indices imply the summation convention

and (),is used to denote partial differentiation with respect to x, .

With the help of the foregoing notation, the governing equations for the displacement vector u,

and stress tensor a.(k) associated with the kth-layer are:

a) Equilibrium Equations

;j ,* oCr a(* (2)

where fj are the body forces;

b) Constitutive Equations For Orthotropic Layers

(k (k) 1(k)(k
C711ilt 2  0 ell Cl 1  (

4722 Ct 22  0 e22 j + C23 /C33 0'33(a

o'2 0 6 2e 12  0

e3(k) C1(3 2I3 '(k) el(k) lC3 0 0 (k) 173(k)

2e23C 3 0 0C3  0 L22 + 0C3  1/ " 1021 (3b)

where C,, are the elastic constants and G ij - 1,2,6) represent the reduced stiffnesses introduced by

Whitney and Pagano [51;,
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c) Strain-Displacement Relations

2jk k J~~+ut) (4) V..

d) Interface Continuity Conditions

-, W . , oW~l (jk- a>~h"k 12,.N-I;

e) Upper and Lower Surface Stress Conditions

T+ hI T~u-j~on 2- (6a)

a Ti7 on(6b)

The objective in developing a new laminated plate theory is twofold: first, to improve the assumed

* variation of in-plane displacements through the thickness of the plate and second, to include the effect

of transverse shear deformation. In order to carry out this task, Reissner's new mixed variational prin-

ciple 1101 was applied to the N-layer composite plate whose middle surface occupies a domain D in the

X1, X2-plane.

Ufj Ir 8e, W a.,k)+ [U.! U0)-2t .. 17(k + luW -e3(11(..)1873(l)r d .&C2

& , I f u/ f(k) dx d & 2 + £8u,(k) Td3d (7)

+ f 8u") (XiX 2 ,+ X- dy- I' dc2

where ODT denotes the boundary of D with outward normal v.~ on which tractions T, are specified and

A (k represents the x3-domain occupied by the kthlayer. Also el,(.. implies the appropriate right-

* hand side of (3b). Due to the nature of Reissner's mixed variational principle, Eqs. (3a) are taken to

be the definitions of ao-k used in connection with (7).
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3. TRIAL DISPLACEMENT FIELD, TRANSVERSE AND NORMAL STRESSES

The high-order laminated plate theory which takes into account the effect of transverse shear

strains, is obtained by including the Legendre polynomials of order n - 1,2,3 with respect to the x3-

coordinate to a zig-zag in-plane displacement variation of amplitude S, (x1,x2 ) across the plate thickness.

The appropriate trial functions used in connection with Reissner's mixed variational principle

Eq. (7) are taken to be:

a) Trial Displacement Field

_ J~ 2 Xjk )  :."
u1()(x 1,x,x 3)- U (x1 ,x2) + (A)*, (Xix2)P() + S (Xx 2)(- 1)k 2 (.

(S)

2X3
where g ---- and P. (C) are the Legendre Polynomials of order n. It is also understood that 03 0.

xjk) is a local x3-coordinate system with its origin at the center x ) of the kth-layer, i.e.

Xlk) X3 - X34) (9)

Eq. (8) may be regarded as a superposition of a zig-zag function and the cubic variation as proposed by

Lo, Christensen and Wu 171, with the exception that here Legendre polynomials are used instead of

single powers in x,;

b) Trial Transverse and Normal Stresses

'r1!)(x1,x 2,x 3) - Q() (xIX 2)Fl(z) + R (k) (XI.x 2)F 2(Z) + i.$() (x 1 2)F 3(z)

(lOa)
+ .( - )1(x,X )+ 2  )+ k (,xz)IF 4(:) + T.( - ) (x,,x2) Tk I(xx 2)JF5(z) ..-

TIN)(x 1 ,x2 ,x3) - Qk) (x1 ,x2)F1 (z) + R (k) (x1 ,x2)F6 (z) + J3(') (x[,x 2 )F3 (z) + Ilk) (x1 ,x2)F7(z)

(lOb)
+ T - (x,x 2) + Tjk) (x,,x2)]F4(z) + ITI-t) (x,x12) - Tk) (x1,x2)IFs(:)

where

F, () Wh 22 6 , F2(-) (n(U)h) 2

n. ... .
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105 ~ ~ ~15()-35 4 - z ;-.-(11) ,.+.) F z a

I(Z) P- - z F6(z)- (0 z - 14z16.,.

, (n ' h) 2  4 "

F7(z)- (n 1_ (l12z 5  40Z3 + 3z) , Fg(z) - 126z s - 35z3 + -1- z-
Fz) - l(k) h-)4  8

anct -,,-- S - z< 4:-.

Also, (Qt) ,(R), Jc)) f f (i, xW) ,xik) 2 ) X . 3 (12a)

f X3() ' 3(j ) &3 (12b)

in (10) T(k- 1 ) and Tk) are the values of 7'3i at the top and bottom surfaces of the kth layer respec-

tively. From (6)

TI T0  i and T(N)- T- (13)

The degree of the polynomials F (W), i-1-8, appearing in (la,b) is consistent with the order of trun-

cation in the assumed expansions (8) for the displacement u,(k).

.... . .
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4. LAMINATED PLATE EQUATIONS .,

Substituting (8) and (10) into (7), using Gauss' Theorem and the orthogonality property of the ,iJ. "

Legendre polynomials one obtains:

a) Equilibrium Equations:

N.,a + T+ - T,+N 0 (14a)

8~ia + -(.+ + T-) + FM - 0 (14b)

2- N5.+ -N+ -) + i F--_-
z,,-K3, -(T, -(-140)+F: ~k :":.-.

b2
L.t,. -LM'+ (T - ) + Ft - 0 (14d) --- "..--

P , (t,.+ N) T.T+ + T.-) + F:e  0 (14e) ::::
P- - 3+-4 8 N. -S

where

N.p, M, Z 0 , La, PmJ 2- f
FIN, Fjw, FZ, jFL, FP k)

[1 -P( ),( 1"~ ,L (A)2 p2 (C) ,(A)3 P3 (01()J dt (15a,b)
Wh 2 23

2" .
k-I 2 flWkh ' ,,)hX

(-k2p,; 7- dc3 ;*(150)
2

b) Constitutive Equations:

0 For Transverse Stresses
... '..%

(n) .+ W--- TJk-1) + " h (k t(kU 3.+ P,+S( ), k-
(n~k~h) 2  30 1 1. 5 I

(16a)2h2 W2, - I)(. + 3h 2 ( n (k) -  (. -- '-'
W + 3 ) + 2 (3 no no( Z ))fa 1

-(k.h 4 2

.......... . . ... ... . .... ... . .. ..
•. ~ .... . .. . ... . ... ... . . ... _.- ... -__. . . .L ._."_. """"" '" "".' .'" •. .
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h40 & a 120 _

1 (16b)
+ 3h n(k) (~

Q(kL..I 4j(k) nWkh 3+n (T.(- 1 + Tk) -L - n (0)3 ealk)(3 5) (6)
(n (k)h) 2  1240 (3a s.(6

I 1 Qk).. jk + 3Rk
el 12 3(n(k)h)2 7 fl(k)jh e(k+ 1) 112 Qk

5 ~j(k+ 1) 3 Rak+I)1(~

3(n(k+I)/h)2 -7 n (k+ I),h

- h - ()T(k-) g8 Tak(k) + ~ + (k+_ 1) k+)- _ _ 1A
16 e(k) (e(k) ec(k+) Jk+ T.

9 For Normal Stresses

Qjk &1(k) + Mk~b(Tl_, Tit I 2 (k Ci) + S3(- )k 2 +3b n(k)

(n(k)h)2 30 5 n13 C3j

-~~~ h h 1 (7a)

52 0 4 2+3-Ln 4.....~kj

_ _______ (k) 2h~i _ 2 1 k) 1n (Tik- Tik) )- h2 n(k)3 Cik)
F, 5 n(k)?F,3  10350

(17b)

+ ( I n(k) 2 + ~ 3h _ (k) 3 + -L 5h I (27-)

14 fl3k)2  _____

h R 3k) - j3-k) + - (Tjk-D - T3(k) ) Q - it lkSj(7d)
h flk 2h3 96 2688
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017e)

h ~ ~ ~ ~ ~ ~~k .(,., ,k-D ' ',*," l + 1l-L , 1 + c~)I Tj---  + n +--- 1),.'
-T3 l Q 3(k) (k+03 j33k 1 8 R k 3(3kI 55 1)J J41+J ) 4

where in (16a,b,c) and (17a,bc,d) k ranges from I to N while in (6d) and (17e) k ranges from I to

(N-i). Also, no summation on a is implied in (16) and

() =8.1 CR) + 8.2 C44- xA)/h (18)

S U1 , U 2.2

- '1,.1 *2.2 WC ) (19)

S1I 2.2 I C 23

.1 f2,

By solving (16) and (17), Q'(k), R,(W, j,(k), Ik) and T,k) are obtained in terms of U,, +j, S, f, and

* and their derivatives. As a result, the quantities N3 , M3 ,, K 31 , L3 , of Eq. (15c) can be determined

as functions of these displacement variables. Such expressions will automatically include the appropri-

ate shear correction factors by virtue of the Reissner mixed variational principle.

The equilibrium equations (14) are supplemented with the following suitable boundary conditions: -. .

specify U, or N., V. , (20a)

* specify *, or Mj, a' , (20b)

specify S, or Z,, v , (20)

specify f, or L,, v. , (20d)

specify 0,. or Pfio v* (20e)

The remaining constitutive equations for N,a , M, , Z~p, L0 , and P.0 are obtained by substituting

A:;; - - - - .." - " " ." .t '.~, t .. - ~ • - - - - - - - -...
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.. -12 -

'" (3a), (4), (8) and (lOb) into (15a) to yield:

I IV
IIN I h.-,.

(NI rzj II S 1M IOUC ) VZ (21)
-3 k-1

1 -- -- li .-,.,. 1 sym m etric [hp] T 2 Jh3h1 .,;€ '

L h4 h3, '.

where N- IN,, N22 N12 1T, U- [UI U2,2 U1,2 + U2.11T with analogous expressions for M, P .... .

* •N,.... [PoJ are 3 x 3 matrices, [CI(k) is a 15 x 5 matrix an 10, VP are I x 4 vectors, which ]
are given in the Appendix. .,.,T 1

• ---.1;

.............................................-

;"
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5. CYLINDRICAL BENDING OF LAMINATED PLATES

In order to test the accuracy of the present theory, cylindrical bending of composite plates under

* ~sinusoidal loading is considered. The plate is simply supported at the ends x, - 0 and I and is infinitely.-

long in the x2-direction. The prescribed boundary conditions on the top and bottom surfaces of the

* plate are:

Tt-0,T3+-q sin- On X3 m (22a)

hTi TjT3-0 On X 3 -- . (22b)

* The boundary conditions for the simply supported ends are, from (20):

U3  *i 3  S3 -e 3  0 at x 1-0,I (23a)

N11 - Mil-Z 11 - L 11 - P11 - 0 at x,-0,I. (23b)

Using surface boundary conditions (22), the equilibrium equations (14) for cylindrical bending reduce

* ~to: --

N111 0 (24a)

N 4 13,1 + q sin --- 0 (24b)

I X

M11,1  K31 -0 (24e)*

13 (33 - q sin 1 -0(2f

LIj- 3M 31 - 0 (24g)
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h2  Irx I '-.
L3, - 3M 33 + T q sin - -0 (24h)

PT- L31 - N31 - 0 (24i)

From the boundary condition Nil 0 at x, - 0,1, Eq. (24a) implies that

Nil- 0. (25)

Next Eqs. (15a,c) are expressed in terms of the displacement variables Ul, ,3. To this end, the

constitutive equations (16) and (17), for the cylindrical bending analysis, can be rewritten in the fol-

lowing vector form:

.TJ + h ][A,JT.., (26a)

1Rl + h [BI I T 2 (26b)

A+h [AI T. (26h ..I.-.L

IT 4 h2I Q+ + h 1R. I R-l (26c)

Al 2 h2

and

3 - -1 3 + h L4IT 3-.5i  (27a)

....-: ~ . .3 _ -3 _. h 1B. I T" .52 (27b)-.-."'"
-- 7~h ! - 2

3 T4h2 J3 + h A 1T3 - 3  (27c)

1 71 1 i 5
h -j R3.7 3  12 c.,1T3-i., (27d)

1 5 1 2 35 LR3 3h.T3 (27e)[T ]+h TR ]R  2 hz I ]]24 h3 '+.

where 7-k2 i-1,3 and 3  32 ! (28)
.". n. !. . (8."-

. . . . . .

. . . . . .. . . . . . . . . . . . . . . . . . . . . .



The matrices A, J, [C3 1 and vectors X , 1 4 are given in the Appendix. The vector equations

" (26a,b,c) and (27a,b,c,d) have N-components, while the vector equations (26d) and (27e) have

(N- 1) components. Matrices LA 1, ..., [C3 ] depend on the volume fractions 0 ) nd elastic con-

stants Cj ), CW ) and CjW, while the vectors 1., . 5 4 contain the displacement variables U1, 3."-

Eqs. (26) are easily solved by substituting Q,, a .1 in terms of T, from (26abc) into

(26d). This yields a new equation involving T only, which can thus be solved for T. Then by back

substitution expressions for Z, and - T J in terms of k 1, 72 and A 3 are obtained. Proceeding in

-L .7, 3 and -L !'--emsO 1 2 ( adK redtr
similar manner with (27a,b,c,d) Q, -3, and in terms of h3, .K2, .c3 and .c4 are deter-

mined. These expressions are: -

i - I(-1]- [AQ,1) 4 [1]l - 2(AQ,1) x (R
31it 31112(AQJ) (29 )[I] <,- 2 , -1) -(-±, , +( - 4,- 2R.

1R [BQ, I (X. - 2 X 3 +. ( - BR I ) 2  (29b)

and

(1 1)- 4Qj) 4W -1(1,) L ',~ LAQ-J3 - -I +  t2.AR 3 &l 4 >2) (30a)

*h2

R3  '(I+BR3 1) 4 0 1 + L 1o1Q 3 1

h11 63 11 6~ 3 I I C4l _L jl Q1

,~3  1 6I+~B3  ) 64 1 2 631~ 1L8 3 1(43-! 3b

where I] is the N x N identity matrix and

[BQ, I [BR, IJ" (8l BIf7j 12, [TR] i 1,3 (31a)

with

. ,* *.... ..... .... ..... ..... ..... ....

- A..,..* : ~j~.* ~hi.ur~um~rni mii ~*.rn* r1 m.rn ,n'
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:, ~with .-"--

ITVJ- (41TQ11L4 1 + [TR11 ]1 + I,)' (31b)

17V 31 -- (4 1TQ 3I(WA11 - -C3 I TR31 1 1 + IC3])-' (310)

LAQ , [BR, I are N x N matrices, while [TV I are (N- 1) x (N- 1) matrices. By inserting (29)

and (30) into (15c) and (21) the appropriate constitutive relations for the cylindrical bending problem :. -.

in terms of the displacement variables U1, 3 and their derivatives with respect to x, are obtained.

The form of the dependence on the displacement variables U1, ... 3 of the constitutive equations

thus obtained and the nature of the applied load suggest the following expressions for the displace-

ments:

u, h] U* hU3

'3 *13 x-
S1 - h§ I cosr- and - sin- (32)

I1S hS3  I

where the "" quantities are nondimensional by definition. It is easily proven that the boundary condi-

tions (23) are satisfied when (32) are substituted therein.

Finally, inserting (32) into the constitutive equations obtained in the manner described above and

these in turn into the equilibrium equations (24) and (25) yields a system of nine algebraic equations

with the nine nondimensional quantities U,, ... , i as unknowns. This system is conveniently written

in matrix form as

JBI U- F (33)

where U- I1 S it i & U3 3 j3 rIT (34a)

'20,q,0, q 0, - q,0, q,01r  (34b) . " -

and [B) is a 9x 9 matrix.

.. . .. *, .**U **
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6. NUMERICAL RESULTS

In order to assess the accuracy of the present theory the problem of the cylindrical bending of an

infinitely long strip under sinusoidal loading is examined. The exact elasticity solution has been given

by Pagano [11, where a three layer cross-ply laminate was considered, the 00 layers being at the outer

surfaces of the laminate. The elastic properties are:

for the 0* layers -- " 25.062657 , -E 0.335570

(35a)

C33  Cs5.T" 1.071141 , -- 0.5;
ET

and for the 90° layers - - .002506 , - . 0.271141
ET ET

C33  C55C ,.1.071141 f- - 0.2 •'-:

wr ET

where Er is a reference modulus.

We follow Pagano's [1] nondimensionalization and write the displacements and stresses in the

form

-WA ET ulk) (Orj) -j(A) - ET I100h1  
(Ak) 0)(6

Ujh q U3  2 36

-( - a) (1 X3 )

x 3

Also x3" S.(37)
h h

In the various curves the solid line represents the exact solution while the results of the present theory

are shown by a broken line. Also shown, for comparison purposes, are the results given by the first

order zig-zag model [11] and Lo, Christensen and Wu's high-order theory (LCW) [71, which are

. . . ....



represented by a dashed-dotted line and dotted solid line, respectively. Symmetric 3, 5 and 9-ply lam- ,-

inates and asymmetric 4 and 8-ply laminates were examined, to test the present theory.

For a symmetric 3-ply laminate (0/90/0) with layers of equal thickness, Table I shows the values

of the central deflection 1i3 obtained from the different theories for a span-to-thicknes ratio S of 4 and

6. As observed the present high-order theory correctly predicts the central deflection i3 to the first two

decimal digits, while the first order zig-zag model gives a better result than LCW. The variation of the

in-plane displacement 51 across the plate thickness is compared in Fig. 2a for S - 4, where it is seen j
that the curves for the present theory and the exact solution are almost identical. This improvement is

also reflected in the variation of the in-plane stress &I across the plate thickness, as shown in Fig. 2b.

Very close agreement is found between Pagano's exact solution and the present theory, which has 11
improved upon Lo, Christensen and Wu's high-order theory, especially at and in the neighborhood of

the interfaces.

The present theory was next tested for a symmetric 5-ply laminate (0/90/0/90/0) with layers of

equal thickness. The central deflection i3 for span-to-thickness ratio S of 4 and 6, is shown in

Table I where close agreement with the exact solution is observed. The variations across the plate

thickness of in-plane variables ( k) and rl If are compared in Figs. 3 and 4. The curves for the present

high-order theory and the exact solution are again almost identical. In particular, it is seen that the

present theory has considerably improved upon Lo, Christensen and Wu's model in the interior layers

of the plate.

To further assess the accuracy of the present high-order theory the more difficult case of a sym-

metric 9-layer cross-ply laminate (0/90/0/90/0/90/0/90/0) was considered. The 0* layers have equal

thickness h/10 while the 90* layers have equal thickness h/8. The results for the central deflection D3

are given in Table I for S - 4 and 6 where again close agreement with the exact solution is observed.

The variations across the plate thickness of the in-plane displacement 51 and normal stress 5:1 are

shown in Figs. 5 and 6, for S - 4 and 6 respectively. There the discrepancies between the first order

zig-zag theory and the exact solution are more pronounced than in the 3- and 5-layer cases, as

. - . . . . . .... • .. . . . . . . . .

. . . . . . . . . * *:*. .,:.* .. :- .* *~****.* *
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expected. However, the results of the present theory are still very good when compared to the exact

solution.

Finally, asymmetric 4 and 8 cross-ply laminates, with layers of equal thicknew, were examined.

The present theory predicts accurately the central deflection 53. These results are given in Table 2 for

span-to-thickness ratio S of 4 and 6. The variation across the plate thickness of the in-plane displace-

ment P k) and normal stress are shown in Figs. 7, 8 and 9 for S - 4 and 6. From the curves for

iik), it is seen that the first-order zig-zag theory deviates significantly from the exact solution at the

bottom layer of the plate. On the other hand, the discrepancies between LCW and the exact solution, ... -

for both i i') and 1) are more pronounced in the interior layers of the plate, while the present high-

order theory is still in very good agreement with the exact solution.

. .. .. . . . . . . . . .
. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
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7. CONCLUSION

A high-order laminated plate theory, which accurately predicts in-plane respones of symmetric

and asymmetric laminates, was developed with the help of Reissner's new mixed variational principle ".-

[101. The improvement was achieved by including a zig-zag shaped Co function in the in-plane dis-

placement variations across the plate thickness, as proposed by Murakami 1l1, while the non-linear

variation is accounted for by using Legendre Polynomials. The accuracy of the theory was examined

for the case of cylindrical bending of an infinitely long strip and compared with the exact elasticity solu-

tion given by Pagano [1]. The results for the central deflection and in-plane displacements and normal

stresses for several symmetric and asymmetric cross-ply laminates indicate that the theory very accu-

rately predicts these in-plane responses even for small span-to-thickness ratios. In all the cases con-

sidered, the proposed theory gave better in-plane responses than the Lo, Christensen and Wu high-

order theory, especially in the interior layers of the plate. It was also observed that for symmetric lam-

inates, the first order zig-zag modes (111 predicts more accurately the central deflection than the Lo,

Christensen and Wu high-order theory.
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APPENDIX

o Matrices LNUI, ... , [P4 in Eq. (21):

D2 D2' 0 C, CI' 0
iuI D 21 D2" , [N,!- C' C,-

10 0 D2"'J 0 C,

jCS CS' o0 [c9 C, 0l
LVII - CS' C8" 0 , , Cg" 0

0 0 cj 0

[C2 C2' 01 [C3 C3' 01
LMUIV C2' C2" 0 E'MI- C3' C3

1' 0 f,(Al)
0 0 C2'1 10 0 C3"

C7 C7' 01 IC 6 C6' 01
[AffI - C7' C7"' 0 14, f C6# C6" 0

0 0 c"'0 0 C6

jD3 D3 ' 01 jDIDI' 01
(zeJ-D 3' D3" , [Zl -D' DI- 0,

00 D3" 10 0D

[DS Ds' 01 [F3 F3' 01
I/) + Ds' Ds" 0 .,- jF 3' F3" o

S0Ds" 00 F 3 "--

[P.. .. "F4 F4" 0

where INIlID I :":
II )(2C2 Z(k) 0112n (k) -: e Cit

and
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C6- - C5- - C2, C7- C4- CI, C1-- C2- D2Oa C9- C4- -iC, I"

3 9 3 1 5 3
DI - D4 - C63, Ds - Cs6" - -i C2 + A- W (A) •.-F3 -L -- rr

where

ic~l -- ~ .j. 11 k) n(k)3 + 1 k)3 fl(k) 1
(k ) (k)J1 k 16 (41c1=() "l 0  " +nk ....-~~P(..1) A iink2 lk?

4A4

C4- W 0- 6 W 1 n),, (04k) + 5(k ,S nk).

[F2J I 05+I n,(k) n03 k) (k) W(k)6 (k,f -2- . - ,. . - n*

F,16- + 70(k)3 ifn(~nk n*

The ( )', ( )" and ( ). quantities can be obtained from (A1,2,3,4) by replacing therein CII by 12V,

C12() and C6(6) respectively, where k ranges from I to N.

* Matrix [C](k) and Vectors V, . in Eq. (21):

(k) :-' OJ

[J(k) - c where ck ) - C13C33 C23/C 33 0 ]r  (AS)
IS x 4) "

0 c

- ,0,0,0] • [n(k,1,0,0 ]  • - [0,(- 1)k 0, 0)

(A6)
! (3n(k)2 - 3 n.(k) 01 I 1 5 3 3 (k) 3(5n( 2 -  _ n(k)

S' - 2 4 '4 2 2

* Matrices [41 , ... I C31 in Eqs. (26) and (27):

0 40L4n n ) n (02 (02,

30 40
LN~~~~~, X°' 1 (XV-1
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0

(-Ix - -. H..

0

0 0
--1 3 -1 1

W - 1) x N 12 C1 x .N- V) 
-..) .c.

0 0

0
11

[7Q3] - 1 1 --

(CV- 1) x N 12 '" C3

0

00 0

W() 0 1 k) + (+) f(k+ 1
[T j 15 1 1 [13 - - _j 7(+ ) nj- '''''

(N- n) 2 n(k)CJV n(k+l)Cj++l) - Ill.) C4 3 + 1.1

0 0

0 Vectors Xj1 ...1, 4 in Eqs. (26) and (27):

. - h(U 3 1+*') a, + S, b + h2 (* 3 1+ 3M1)Cl + h3f 3,1 .1 + h3- 1 el

X 2.- h2 *3.1+ 3Of) + hS3,1 1 + h3( 31+ 5 t )PI

-9
- h' (f3.1 +50). (A8)

!I hU1 . q2 + h*4' 3 a3 + S 3 b3 + h 2f 3 2 + h2l, F3 + h 3 , d3 + h4. 1 ., e3

L - h2f3, 2 + h2*' 1 f hS,'+ g3 + h 3f 1 . ' + h4 .-1,1 P3

315 525 --
e c -- h 3  1 ,1  [ 3- / % , h, 1~ • : -

3 - -

The kth component of the vectors at, .... s3 appearing in (A8) are given by

II

-. 
. . -. -



-25 -

a _ (k (k) c~l , k) - )k C41) CIk - ,knkCI 2jk -1.(3 n )2- ...
5 51 115'~ 5 4f

,Ik 1 (5 ,,.(k)2 I~ ~k Ce4V f 1k) - ...2....1(k)3 C 4gf) )k n () 2 C ) ,P) n (k P03bI

-i(k) C Wjk) (ka)k) - ) 3(k) I, k) 6 WnkCR) jn(k Wk))

.j~k) -1 i(3n,(k )2... -1)(k) C1k) elk) l( 11 d 3i (k))(k) Cjk) f~k) n W11 ~k) A)
"313 3 ~5 4110 350

f(k) n n(k)3 C~k) gO(k) -L I~ k)2I~Ck -2k - Wo1 1 3 c~l

1050 13'3 525 ,2 350

p~k) - (5 ,(k):t -I)nk)3 3''11(k)Sn(0 CJ)
70 4 13~j sk 2688

.0
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TABLE HEADINGS

Table 1 Central Deflection u3 for Symmetric Cross-Ply3
Laminates in Cylindrical Bending Under Sinusoidal
Loading

Table 2 Central Deflection u3 for Asymmetric Cross-Ply
Laminates in Cylindrical Bending Under Sinusoidal
Loading
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Table 1 Central Deflection ui3 for Symmetric Cross-Ply Laminates in Cylindrical Bending Under -

Sinusoidal Loading

S-4 S-6 *.

Number of Layers N 3 5 9 3 5 9

Exact Solution [11 2.887 3.044 3.324 1.635 1.721 1.929

Present Theory 2.881 3.032 3.313 1.634 1.716 1.921

First-Order Zig-Zag [101 2.907 3.018 3.231 1.636 1.702 1.875

LCW [71 2.687 2.597 2.835 1.514 1.507 1.708.
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Table 2 Central Deflection F43 for Asymmetric Cross-Ply Laminates in Cylindrical ~-

Bending Under Sinusoidal Loading __

S-4 S-6
S~ S

Numnber of Layers N 4 8 48

Exact Solution [11 4.181 3.724 2.562 2.224

Present Theory 4.105 3.625 2.519 2.181

First-Order Zig-Zag 110] 3.316 3.225 2.107 1.934

LC W [71 3.587 3.189 2.242 1.979
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FIGURE LEGENDS

FIGURE 1: Plate geometry, coordinate system and trial in-
plane displacements.

, FIGURE 2a: Thickness variation of in-plane displacement U1iW
of a symmetric 3-layer cross-ply laminate for
S = 4.

FIGURE 2b: Thickness variation of normal stress (k)of a
symmetric 3-layer cross ply laminate for S= 4.

FIGURE 3a: Thickness variation of in-plane displacement Ul(k)
of a symmetric 5-layer cross-ply laminate for
S =4.

FIGURE 3b: Thickness variation of normal stres - (k) of a
symmetric 5-layer cross-ply laminate forl = 4.

FIGURE 4a: Thickness variation of in-plane displacement -l(k)

of a symmetric 5-layer cross-ply laminate for
S = 6.

FIGURE 4b: Thicknesz variation of normal stress d(k) of a
symmetric 5-layer cross-ply laminate for-i = 6.'

- (k) ".:

" FIGURE 5a: Thickness variation of in-plane displacement U W
of a symmetric 9-layer cross-ply laminate for
\S = 4.

FIGURE 5b: Thickness variation of normal stress Bll(k)4of a
symmetric 9-layer cross-ply laminate for S 4.

*". FIGURE 6a: Thickness variation of in-plane displacement -1(k)

of a symmetric 9-layer cross-ply laminate for
S=6.

FIGURE 6b: Thickness variation of normal stress cll(k) of a
symmetric 9-layer cross-ply laminate for SJ =6.

FIGURE 7a: Thickness variation of in-plane displacement U1 (k)

of an asymmetric 4-layer cross-ply laminate for
S = 4.

FIGURE 7b: Thickness variation of normal stress ;.1  of an
asymmetric 4-layer cross-ply laminate for S - 4.
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P, %

FIGURE 8a: Thickness variation of in-piane displacement u(k)
of an asymmetric 4-layer cross-ply laminate for
S = 6.

FIGURE 8b: Thickness variation of normal stress ai1  of an
asymmetric 4-layer cross-ply laminate for S = 6.

FIGURE 9a: Thickness variation of in-plane displacement u (k)
of an asymmetric 8-layer cross-ply laminate for S

)4.

FIGURE 9b: Thickness variation of normal stress W of an
asymmetric 8-layer cross-ply laminate for S = 4.
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Fig. 2a Thichness variation of in-plane displacemet U

73
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Fig. 2b Thichness variation of normal stress c,, of a

symmietric 3-layer cross ply laminate f S=4.
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* Fig. 3b Thichness variation of normal stress :()of a

symm~letric 5-layer cross-ply laminate 4r1 S=4.
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X3
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BFig. 4a Thichness variation of in-plane displacement u~k
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Fig. 4b Thichness variation of normal stress ;(k) of a
symmnetric 5-layer cross-ply laminate f S=6.
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S=4
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Fig. 5a Thichness variation of in-plane displacement u(k

0.5-
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Fig. 5b Thichness variation of normal stress ;(k) of a

symmnetric 9-layer cross-ply laminate f; S=4.
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SFig. 8b Thichness variation of normal stress 0(k) of an
asymmetric 4-layer cross-ply laminate 4~r S=6.
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