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ABSTRACT ~

A deterrnini:tic mrixture the(ory is presented for periodic particulate composites. The model

is conistruicted bN introduciing convenient microdisplacemeiit and microstress variables. and by

usulig a MlaTteChliiqwl with mrultip)le scales. Governing equations and appropriate

bnundar", coniditionis are then~j deduced froimi llissners mixed variational principle ;25'. In orde-r

to test the a(curac% of the present mnodel, harmonic wave propagation is examined and coin-

pared %%ith a'aillbl( experinmta-l data for GIass5'Epoxy and Steel/PI'WNIA composites reported

bN Kimira and Kcr 16 . Also, the effective clastic mnoduli arc' computed. and the results comn- -

pared with othcr arialytical mothods.
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1. INTRODUCTION

Composite materials exhibit very different behavior under static and dynamic loads, as

compared to homogeneous isotropic solids. Therefore, proper assessment of the composite's ph%-

• :sical properties. such as elastic nioduli and wave dispersion spectra. is important for most

engineering application.

Different analytical methods for the determination of the effective elastic moduli of particu-

late composites have been compiled by Christensen 1. These are: (i) the variational approach

based on extremu principles !2.3.4,5. (ii) the probabilistic approach !6.7,8.9. and (iii) the self-

consistent scheme approach 10.11.12. At this moment it is safe to conclude that formulas are

available which predict accuratly the effective elastic moduli of the composites.

In order to clarify dynamic behaviors of particulate composites ultrasonic measurements of

longitudinal and sh-ar wave velocities have been recorded by Kinra. Petraitis and Datta !14. at

low frequency, and b) Kinra and Anand !15 at long and short wavelengths for random particu-

late composites. Later. Kinra and Ker j16'. again using ultrasonic devices. measured longitudi-

nal wave speeds at lov and high frequencies for periodic particulate composites. Their experi-

mental investigation revealed the existence of stop and pass bands in the periodic composites

116'. which were t.otallk absent in the random composites 14.15. To date there is no contin-

uum model %hich accounts for such wave phenomena in particulate composites with periodic

microstructure.

The dvnamic behavior of random particulate composites has been studied theoretically via

harmonic wave propagation. Mal and Bose 17. using a probabilistic approach. gave values for

the effective wave speeds for imperfectly bonded spheres randomly dispersed in the matrix.

Their analysis is corf:ned to the long wavelength range. Datta 18' obtained longitudinal wave

velocities through tih. scattering of a plane P-wave by a distribution of rigid spheroids. Later.

0. Datta !19'. using a probabilistic approach similar to that in 18. computed longitudinal and

shear wave speeds for the case of identical elastic ellipsoids. His results 19 arc howeer

A
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nondispersive, since the calculations stern from a long wavelength approximation. Dispersive

models for random particulate composites have been proposed by Beltzer et at. 1201 for a viscoe-

,_ lastic matrix, with dilute particulate concentration, and by Ben-Amoz [21] using asymptotic

expansions to derive governing equations for the macro-motion. The latter model fails to

predict the experimental data reported later by Kinra and Ker [161. Gaunard and Uberall [22]

have also presented a dispersive model for random particulate distribution at low concentrations ,

using scattering t heory.

A deterministic micromerhanical theory is proposed here for the simulation of harmonic

wave propagation through periodic particulate composites. This method has been successfully

applied to angle-ply laminates [23' and fiber-reinforced composites (241. It consists in using a

regular asymptotic technique with multiple scales to derive appropriate trial displacement and

stress fields. This procedure yields a sequence of microboundary value problems (MBVP's)

defined over a unit cell, which characterizes the periodicity of the composite microstructure.

Governing equations and boundary conditions are then deduced from Reissner's mixed varia-

tional principle 125. The lowest order model of this MBVP method is equivalent to the 'U(1) '

homogenization theory." by Bensoussan, Lions and Papanicolaou [26 and Sanchez-Palencia 271. -r

This gives the effective elastic moduli. However, for dynamic problems where the wave length is

of the same order of magnitude as the inclusion's dimensions, a higher order model is necessary

to simulate wave dispersion spectra. Such a theory is named as 0(c) (at least) homogenization

theory, where e denotes a typical ratio of micro-to-macrodimensions of the cbmposite. To date

such a high order continuum model has not been constructed for periodic particulate compo-

*sites. 7

Propagation of harmonic waves through periodic particulate composites is examined using

the approach outlined above, and the results are compared with the experimental data recorded

by Kinra and Ker [16] for Glass/Epoxy and Steel/PMMA composites. Also, in the limit when

0 0, the effective elastic moduli are computed and compared with |lashin's results 2. In all

--- --..-
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cases, good agreemcnt is observed between the available experimental data and analytical
i~' **d~**
.'

methods.
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2. FORIMULATION

Consider a volumne j.which contains particulates periodically distributed withinl tile

matrix, as sho,.%ii in Fig,. 1. This volume is referred to a cartesian coordinate system il, i., F3.

Thle follouwing notation: ( o=1.2 %ill dlesignate quantities associated with material a.

such that n I represents the particulate anid (1 2 the mrat rix. Barred and unbarred quaniti-

* ties will be associated with dinmnsional and nonidimensional variables, respectively. Unless oth-

*erwise, specified. the usual cartesian indicia) notation is employed where latin inidices range from

I to 3 and rep(eal (Id indices iniply the surnmtat ion corivent ionl. Also. ~,and are used to

denjote partial differentiationj withI respect to 2, aj~d time t. respectivel.

With the hel1p of the foregoing notation. the governing equations for the displacement v'ec-

tor iito) and stress tensor associated with til th -consituent are:

a) Equations of mnot ion

-(0 _0- 5- (a I WI

where represents the mass density:

b) Constitutive equations for isotropic constituents

-I )_ ), (2)

where X~ 4~are Larn 's constants, . :* the infinitesimal strain tensor and 6,, the Kronecker

delta.

c) Strain-displacerrient relations

=2.( (3)

* d) Interface coritinuitN conditions

,,. 1 7- Ii(1 a 1 (. 2,( i (4)

* where i; denotes the part iculateu-nat rix interfitce surface.



v ) Initial coniditioris at t 0 arid appropriate bounjdary coridit ions along the boundilry a I.

Conlditijons (a) thlroughi (e) conlstitute an initial boundary value problemn. flowever, due to

* tht Jar-u ninhtr of It rogen eities in the nmediumn, its direct solutionj represents a formidable

* ~ it ka. The( purpoc of the( following analsi ist ivent this difficult) by deriving a set of

p.1iia (lirffrcistial (quaiiit- withi cons;tant coefficients. whose solution will thus represent anl

approx\imiatioin to 1 it( originial prohlin. To tis end . tiit basic equations are nond iniensionalized

by itrod unig tile following, parameters:

3 A typ~ical rnacrosignal wavelength

typical particulate spacing or cell dimension

C(M) reference wave velocity arid macro mass density

E-, reference modulus

tt) A ,!C(,) typical macrosignal travel time

ratio of micro-to- macrodimension

W ith the help of these parameters. nondimensional variables are no%% dined, such that

I A

*Equation (5) shiows, that the material properties are periodic in the z,-space in which the period-...

icit% can be characterized by the cell. This representation implies that stress and displacement

* fields-ill var% according to two basic lenglhi scales: (1) a macro length characteristic of tile

* btd\ Sizt'. and (2) a micro length characteristic of cell spatial dimensions. Further. in most

* applications of interest, the rnicroscale is much smaller than the macroscale. Therefore. it

* appe-ars convenient to uste an asymptotic technique based on thle tw,.o scales involved ill tile *

problemn. To this end, new inidepenident micro-coordinates are introduced, such that:

At X



'Ib

As a consequence. all field variables now% become furictions of both the macrovariables z, arid

microvariahl('s z,

F(,.t= F (z, z, ;e) (7a)

Spatial derivalives of sich, a functio, I then take the form:

, ".. If

F. (r,.,t F..--- F ,(z, z e) (7b)

where ( ) is used to derote partial differentiation with respect to z, For notational sinipli-

cit, F will be writien as F in, what follows.

Applying Eqs. (5) and (7b) to Eqs. (1) - (4) yields a new set of 'svnthesized" governing

equations. given by:

a) Equations of motion

a t, + 0 . 0 .%.

tt(If 1(oj (8)

b) Constitutive equations for isotropic constituents

A.. 2p- .o(9)

I'".

c) Strain-displacement relations

C.. U, L )a' Vj~ ! U (10)2 (..,.,-..,

d) Interface continuity conditions

Uil U, o , , - ( , on A, (i)

The periodicity condition implies that all field variables will assume equal values on opposite

sides of the cell boundar.. Therefore it is onl. nece.sary to consider a single cell in order to

determine the dependence of these field variab-s on the microcoordinates z, . As a consequence

edge layer effects are not included in the model.

• "°.°, °" °.°o° "'."...°.,.*.*°*°.°°*°°..." •*.-*... .% , ., .,° .. .° . . . . . . . . . . .° l '. '
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The constructioyi of the present mixture model is accomplislied by resorting to Rvissner s

mixed variational p~rincip)le :25, for displacements and stresses. This variational principle.

applied to tie synithesized fields using the iriultiscale representation. takes the form:

-;W(I. .& )Idr dz., dx,

U . 6'~ V . 6 TI(t1,) - (0)]ld.41d d d x~.

iv (12)

47 ~') f 6u1  d( d d.,x

where V denotes the zi -domain occupied by constituent o (see Fig. 2). c is used for the

approximate stress field. T("! represents the traction vector on the surface 8 "T where tractionis

are specified and T' is the interface traction vector defined bN

T,'z 4v' on A, (13)

Also,

6eW h~ kU(0 1~ 6 U( (a) (14) -

and

* kA

2,u (A 2p
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3. ASYMPTOTIC ANALYSIS

The asymptotic technique starts by assuming the following expansions for tie field vari-

Substitutiig (16) into tlc governing equations (8)-(11) and groupinig terms in equal po%-ers of - %

a sequence of irchleiiis k obtaited. 'i First of these vields

~tt) - 0 o (ol = (17) -'"
0 0),

Equation (17a) implies that u, i are independent of the microcoordinates z,. Together with the

zeroth order expansion of (I1 a). one has t hen

(I-.)

The remaining sets of equations obtained* from (8)-( 11) are. for n: 0:

(a) - o -{)O" = p~ ) l.If 17 Jn, . l (n)

a A(a)ck Qn) 6,, - 21 , (20)

I o = 1 l
"" ju,'!':t. W - .+ - ° (21)

, tn - I). .1 ),, I ''

Equations (19)-(21) are supplemented with interface continuity and z -periodicity conditions.

These ar,. for ,i 0:

S, .) a (.2J )-() on A; (22)

U) arid c ,??oi') are r -periodic on cell boundary (23)

Equations (19) through (23) generate a series of niicroboundary value problems (%1BVP's) for

a and . hich are to be sol ed sequentiall1 . Thi irst of thle M BVP's. correspondirig t,,

o -1) arid u, .,is called the 0(1) .MIMI s and is defined b) (I7b). (191)), (20). (21). (22b). (23b)

"with n 0 and (22a). (23a) with, n - I.

.., - ° -
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Higher order ternis in the asymptotic expansions for the displacement andi stress flelds'

microstructures. cai, be computed kith suitable integrability and normalization conditions.

However. due to the complexity of these MBVP's. a variational approach, based on Reissner's

mixed principle 125 is preferred here in order to construct the mixture model. This construction

can be carried out by supplying Eq. (12) with appropriate trial displacement and stress field.

which must satisf\ the interface continuit\ condition (22) and th. r -periodicity condition (23)

on the cell boundary. As a result onl. approximate solutions of the MBVP's are necessary.

These trial functions are obtained b\ modeling the cell as two concentric spheres. as shown

in Fig. 2. w\here (r,0,6) are spherical coordinates, such that

1= r sin6 cosO

z2 r sino sinO (24)

is r rcose5

The volune of the cell is denoted by V , its boundary is defined by r - I and its interface sur-

face by r (n(i)"i* . The quantities nI() denote the volume fraction of material o and satisfy the

relation:

-0 In terms of the spherical coordinates (r.O,), the z -periodicity condition for the concentric-

spheres approximation can be expressed as

.~r,,.*) r,, .0. ) (2G)

-77; -- 4

- . .. * * . * . *, . . . . -.*
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4. TRIAL DISPLACEMENT AND STRESS FIELD .

The 0(l) stress and 0(1) displacement fields can be determined by solving the 0(1) ..

MIV's which are defined by (17b). (191). (20)-(23). As shown in 126,. these MBVI"s are

exciied h. ',(o.,. Therefore, the mixture formulation becomes more tractable b\ introducing

microdisplacemnet variables which represent ,(, - ,. such that '

s,(,, =_d. °JA dA ,~tl (27)

where V is the \voluni. of the cell. Since u,lt*) is excited by Uj,10a- UI(Oi., there holds '- -

S',~ (29a

• .1'....

s,-- bs, (2b) o

follow0(,in trial displaement fieldteol,,ngor yb ue :--- "

# . 1=

C , S I, V°~z  29)"-'-"

where V.* is tive of ( ece. (inceand ( is x t at there old
- .1

A an 0f s s a () n accord.-

S,'(,} (-l)g oz, -,)° (29b) ". .'.-.

I :1

Considering the O(c2) difference of the average of u,Io) over Vt* Eqs. (18) and (29) yield the"-'"

*following trial displacement field :"""

t"o)(, ,z , ' ) - U',1°(zk ,) -t- u,I I ,1,,. a) (30) -- -

*where u, 3 is given by (29). Eqs. (29) and (30) show that the mixture displacement variables -.-

are U*111, L'1 1 S, subject to the constraint (28). Inserting (30) into (20) and (21) with n = 0 and

*considering the O(e2 ) differences of the average stresses, the 0(l) trial stress field may be writ- , :

ten as

rl,7)'! (r, ,t) -' ,, t(,,. Ia) (31) -..

As with displacement variables, an 0(e) stress variables are conveniently introduced according.-,.'-" '

................................................... . -
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C' ,* , (32)0 , I .. 1(I .

Inlegraling Eq. (8a) oyer V I, and iraking use of the z -periodicit. condition. the following

inixturc u(jlation is obtained

~(a~(a) - (1)0 ' p - ,(a) P(O) U.i.a) (3

where the average operatioin is defined by

p4

F(F) .xl, t)dx dx d, (34)
(1 V v (o i.

From (33) it is seeui that P, plays the role of an interaction body force between the two consti-

tuents through the interface.

As an O(( ) trial stress field. the follow.ing form may be used

dq*(x)( t) - P.(zk,,) 94(z)bI 0i, (35)

As a result, the trial stress field may now be written iii tlie form

AA

-o,(O)(Zk-X o) +, ,, , Xl 3

-%hr d .')) an dui) are defined by (31) and (35) respectivek.. --

. . .
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5. MIXTURE EQUATIONS 1**_

Substitutiug the trial displacement and stress fields defined by (30) and (36), respectively.

into lleissner's mixed %ariational principle Eq. (12) and using Eqs. (14) and (15). the following

governing equations art obtained

a) Equations of motion

1o1, (l _ ,(lp{O) ',! , (37a) ::

A, A,(3b
-,,,, i (-1 " n-l2"r A,. 'j

(21 -, r$!')- Ti rjA _ K, ] ' 2 ~ (37b) -::-

where

and

A () = ) ', n('-! (38b)
= -- n- 5'  i.

Also KU are constants that depend on nm and nI) only.. The non-zero values of these con-

stants are given in the Appendix. It should be noted that in Eq. (37). the superscript "a" used

to denote "average" has been dropped from r W and since these are independent of the

microcoordinates x,

b) Constitutive equations

1 Ap ' h' ,, 4 a ")( U* ! + i IT,) (39a)

II I

- "Sk 6,, p (6k, S, + 6 k S,) (39b)

P, = A3  2 (2 u,' 't  + AI S, k (39c)

~~~~~~~~~~~~~~~~..-...-.v.'............_........ ..... _.... ........... .... . . ................. ......... ,. ._......... .,
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c) lltuiidar% conjdititon., along~ 0 V

6 a or n(0)T-()1/ (-I)jr~i,-TP (4 Ia)

6S, =0 or A P)' ~ T. (41 b)

where

f 1"dzdd 2  (42a)

V *

T f Tc)g')r d 2 2  (42b)

e) Initial conditions

specify U,(O , ., , at t0 (43)

Equations (37), (39). (41) and (43) constitute a well-posed boundary value problem with respect

to time Iand niarrocoordinates. z,.

%-
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6. EFFECTIVE ELASTIC MODULI

Tb eff(.cti'e elastic moduii. which relate stress averages to strain averages. are defined b-

"'" the 0(I) hornogenization thcory. They can thus be obtained by letting ( 0 irt the miixtur'

. Eq. (37) and setti-ig

= 7,1
2  -, (4.1) b"' % 

"

Equation (37a) )i(,Ids .

, !7~)= at) u,,, (45)

where a _ . , .- k (46;)

0-1

P(1 Zn ( ) €° (46b) -'

w%-hile Eq. (37b) yields

* pw ' ( 2)* hN r - ' 4 , 0 (47) ..1
. This last equation can be solved for the S, by inserting therein Eqs. (39a.b). Substituting in

turn thPSe expre.ssions. for 5, into (46a). one obtains

a(m I &C~ et(') (48)

where v(m) 1 .0 2. . 0 2.23.021 0 12' (49a)

TI
e( ' 1= ! ' 2 1'*, 3 4' , 1': 1!33 2, t.'3.1 . 2 L 71 U 2 - "_'r (49b)" "i

and Cr. is the effectiv(, elastic modulus matrix. Although, the medium is heterogeneous. it is

isotropic. Cons.quent l. onk two independent constants should suffice, as is indeed thf- case.

%I

I

* , . U.'h t" * ".*



,-T
-17-

;C', is convenientl. written in the standard form:

A 211 A A 0 0 0'm'

A A -t211 A 00 0

AA 4-+2p 00 0
0 (1 0 j0 0(()
0 0 0 0 "0

0 0 0 0 0

The composite lani(:'s constants A(" ard p() are given in the Appendix.

Iit order to assess the accuracy of the presenit 0(1) mixture theory. the results for the elai-

tic constants of a tungsten carbide cobalt particulate composite are presented and compared

with those obtained [,. lashin '2*. Young's modulus E and Poisson's ratio v are.

for tungsten carbide E;" 102 10 ' psi v t
1
' 0.22 (51a) ,-.

and for cobalt E 21  30 x 10' psi 1t'2) = 0.30 (51b)

The variations in terms of the particulate volume fraction n t(I of the composite bulk modulus

,K(' ) and shear modulus o(-l are shown in Fig. 3, where verN good agreement is observed with

ltashirs results 12. For the bulk modulus K (' ), the two curves are identical. The expression

for KI-) derived by Ilashin 12 represents an exact result when the medium is completely filled

out with concentric spheres.

-°. .'°.

..................
* *.. ... ....... .... ... .... ...



7. HARMONIC WAVE PROPAGATION

*Iii order to tcst the accuracy of the preseni O(t) mixture model, phase velocity spectra

*have bee(n compared with experimental data for harmioniic wave propagation. Due to the comn-

%posite isotrop) . it is sufficicnt to consider harmuonjic waves propagatiing along, say. the 2,

* direction. 'lierefore let

S, -. (52)

where 1," anid S, represent constant amplitudes. Also. k and w denote the wave number and

the angular frequency. respect ivel)

Substituting (52) into (37) and using the constitutive equations (39). yields an eigenvalue

problern for ((.c) of the foriri:

K U =('MU (53)

1* 2 3 jo 3

where U= S~, , ,2 
3

.S U~.~,, S (54)

!K~ and M.f are (12 12) real symmetric matrices, whose elements are functions of the volume

fractions, constituents elastic properties and wave number. Furthermore, M, is a diagonal

matrix. For a given (k) a corresponding eigenvalue (ec) can be computed. The phase velocity

C, is then determined from

In the present anialysis the typical cell dimension .~was chosen t~o be the cell radius by using the

concentric-spheres model. The reference elastic modulus and density used for the nondirneisioui-

alization are:

*The dimensional frequency f(11-) is then given by



(ew) (57)
2rA

Numecrical results were obtained for two composites: Glass/epoxy and Steel/PMMA. for which

(xJperinvrital (dthi.vc been recorded by Kinra and Ker 116 for longitudinal waves. Thel( con- q -

st It iienis' physical properties arc given in Tablv 1. in which the value., for Poisson's ratio are

estirlitale. III thw siiliulat ion %%was conmplited froin the particulatv&s radius which was I nin for

glass and (0.55 rnni for si 1(1.

Phase velocity profiles for each composite are shown in Figs. 4 and 5. where two distinct

mjodes, are displa~ed: a longitudinal (P~- riiode) wave arid a shear (.S- mode) wave.

The first two branches in thle spectrum for the P- mode. which are believed to be suff-
Fo! -

ciently accurate within the present calculation, are plotted as functions of frequency. Figures 4

and 5 clearly bring out the dispersion characteristic of thle composite. The experimental data

correspond to the longitudinal mode. and it can be seen that the correlation with the present

results is quite satisfactory. In their paper. Kinra and Ker 116' have predicted, at higher fre- ~J

*qunCDics where thle wavelength approaches the particulate's radius, additional second

(f= 1.4 MHz) and third (f7-2.0 Mll1z) stop bands for Glass/Epox> . and additional third

* (f= 1.5 MHz) arid fourthi (f= 1.9 Mllz) stop bands for Steel/PIMA. Their experiments however

*did niot reveal these higher stop bands. They have conjectured "that trhis is probably due to the

excitation of resonances of the spherical inclusions which, at higher frequencies. tend to domn-

mnate the resonances of thre unit cell." Figure 4 (Glass;/Epoxy) shows an additional stop band at

* f=1.53 Mllz. %hich is in fairly close agreement with the value predicted by Kinra and Ker :16'.

Finally. for completeness. the first branch of thle shear wave velocity spectrum is also

shown in Figs. 4 and 5. for each composite. Due to the composite isotropy, the vertical)%y (S V)

and horizonitally (SII) polarized wave speeds are identical.

.

%9 9
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8. CONCLUSION

A microriwchanical mixture model for periodic particulate composites was presented based

on a two-scale asymptotic expansions. Governing equations and appropriate boundary condi- .-.• ..

tions were, deduced from Ruissricr's mixed variational principle .25. Expressions for the effective

elastic moduli were derived arid compared with Ilahin's results 2 Also. harmonic wave

dispersion spectra were obtaiied. and a good correlation with the experimental data of Kinra

and lier 16 for (;as- Epoxy and Steel PMNIA composites was observed.
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APPENDIX

A. Non-Zero Values of Constants i,,Ikj appearing in Eq. (37b):

[ -i ] (A )),i..
Kno Sum On (Al)

(. no sum on and j (A2)

K,-, K, -K KJ . - i no sum o n i arid j( )

B. Expression for Composite Lamn's Constants A1"' and p,l' appearing in Eq. (50):

S
= , (3a, 2a 2 )pI -t 2 alp.-

"2a/, (BI)

where ( ) n (A(-), )

S ( 1 -(2) a,

P - o, - (a3  - ( 02-(B2)
02 -'=± , P2 -

arid

(B3)

o=, I. ']25n ") l

I, i

- .
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Table 1. Physical Properties for (lass'Epoxy and Steel P.MMA Composites 45.

Volurme Young's Modulus Poisson's Mass Densitv

fraction" f'a t1° (GPa) ratio jc() pa (g'cm. )

~"Ga~0.256 62.784 0.20 2.492

2)Epoxy 0.744 4.541 0.43 1.18

S(1)Stel 0.152 113.534 0.292 7.8

(2)PMIMA 0.848 3.032 0.30 1.16

. . .. .--. .
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Figure 2. Typical Cell ans Concentric-Spheres Model.
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4.5
GLASS/EPOXY

Mixture Model
40*Experimental Data [16]
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* Figure 4. Phase Velocity as a Function of Frequency in Glass/Epoxy

Composite. .
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STEEL/PMMA ',

S3.5 - Mixture Model
Experimental Data [16]
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Figure 5. Phase Velocity as a Function of Frequency in Steel/PMrIA

Composite.
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