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ABSTRACT

A deterministic mixture theory is presented for periodic particulate composites. The mode)
is constructed by introducing convenient microdisplacement and microstress variables. and by
using a regular asymptolic technigue with multiple scales. Governing equations and appropriate
boundary conditions are then deduced from Reissner’s mixed variational principle 25, In order
to test the accuracy of the present model. harmonic wave propagation is examined and com-
parcd with available experimental data for Glass,'Epoxy and Steel/PMMA composites reported

by Kinra and Ker 16 . Also. the effective elastic moduli are computed. and the results com-

pared with other analvtical methaods.
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1. INTRODUCTION

Cumposite materials exhibit very different behavior under static and dynamic loads. as
compared Lo homogeneous isotropic solids. Therefore, proper assessment of the composite’s phy-
sical propertics. such as elastic moduli and wave dispersion spectra, is important for most
engineering applications.

Diffcrent analytical methods for the determination of the effective elastic moduli of particu-
late composites have been compiled by Christensen (1. These are: (i) the variational approach
based on extremum principles 12.3.4,5), (ii) the probabilistic approach 6.7.8.9 . and (iii) the self-
consistent scheme approach :10.11.12. At this moment it is safe 1o conclude that formulas are

available which predict accurately the effective elastic moduli of the composites.

In order to clarify dvnamic behaviors of particulate composites ultrasonic measurements of
lengitudinal and shear wave velocities have been recorded by Kinra. Petraitis and Datta 114, at
low frequency, and by Kinra and Anand !15 at long and short wavelengths for random particu-
late composites. Later. Kinra and Ker {16,. again using ultrasonic devices. measured longitudi-
nal wave speeds at low and high frequencies for periodic particulate composites. Their experi-
mental investigation revealed the existence of stop and pass bands in the periodic composites
116.. which were totally absent in the random composites {14.15. To date there is no contin-
uum model which accounts for such wave phenomena in particulate composites with periodic

microstructure.

The dynamic behavior of random particulate composites has been studied theoretically via
harmonic wave propagation. Mal and Bose ‘171, using a probabilistic approach. gave values for
the effcctive wave speeds for imperfectly bonded spheres randomly dispersed in the matrix.
Their analysis is confined to the long wavelength range. Datta ;18 obtained longitudinal wave
velocities through the scattering of & plane P-wave by a distribution of rigid spheroids. Later.
Datta !19;. using a probabilistic approach similar to that in ‘18, computed longitudinal and

shear wave speeds for the case of identical elastic ellipsoids. His results 19 are however




nondispersive, since the calculations stern from a long wavelength approximation. Dispersive

.
Y
.
~
“
~
l models for random particulate composites have been proposed by Beltzer et al. [20] for a viscoe-
Y lastic matrix, with dilute particulate concentration, and by Ben-Amoz [21] using asymptotic
o expansions Lo derive governing equations for the macro-motion. The latter model fails to
-
. predict the experimental data reported later by Kinra and Ker {16]. Gaunard and Uberall {22]

. have also presented a dispersive model for random particulate distribution at low concentrations

using scattering theory.

. A deterministic micromechanical theory is proposed here for the simulation of harmonic

- wave propagation through periodic particulate composites. This method has been successfully

applied to angle-ply laminates {23] and fiber-reinforced composites [24]. It consists in using a

v

regular asymptotic technique with multiple scales to derive appropriate trial displacement and

'

stress fields. This procedure yields a sequence of microboundary value problems (MBVP’s)

defined over a unit cell, which characterizes the periodicity of the composite microstructure.

Governing equations and boundary conditions are then deduced from Reissner’s mixed varia-

tional principle {25!. The lowest order model of this MBVP method is equivalent to the "O(1) ‘.*".(;t.(-
homogenization theory." by Bensoussan, Lions and Papanicolacu [26] and Sanchez-Palencia (27]. Pt
This gives the effective elastic moduli. However, for dynamic problems where the wave length is NS

of the same order of magnitude as the inclusion’s dimensions, a higher order model is necessary

to simulate wave dispersion spectra. Such a theory is named as O(¢) (at least) homogenization
theory, where ¢ denotes a typical ratio of micro-to-macrodimensions of the composite. To date —

such a high order continuum model has not been constructed for periodic particulate compo-

sites. ;;‘:;‘{1
Propagation of harmonic waves through periodic particulate composites is examined using
‘ the approach outlined above, and the results are compared with the experimental data recorded
E by Kinra and Ker [16] for Glass/Epoxy and Steel/PMMA conmposites. Also, in the limit when
¢ — 0, the effective elastic moduli are computed and compared with Hashin’s results (2. In all
:i'%
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2. FORMULATION

Consider a volume V. whichi contains particulates periodically distributed within the

matrix. as shown in Fig. 1. This volume is referred to a cartesian coordinate system 7,, 7., Ts.

The following notation: { )*). o = 1.2 will designate quantities associated with material a.
such that a = 1 represents the particulate and a = 2 the matrix. Barred and unbarred quanti-
ties will be associated with dimensional and noudimensional variables. respectively. Unless oth-

erwise specified. the usual cartesian indicial notation is employed where latin indices range from

1 to 3 and repeated indices imply the sunmation convention. Also. { ), and ( ), are used to

denote partial differentiation with respect to 2, and time 1. respectively.

With the help of the foregoing notation. the governing equations for the displacement vec-

tor @!®) and stress tensor a‘,‘f’ associated with the alh-constituem are:
a) Equations of motion
= el | Tl - o (1)

where 5 represents the mass density:

b) Constitutive equations for isotropic constituents

Tl = Xefels,, + aite e (2)
where A1), 7#°) are Lamé's constants, ¢/ the infinitesimal strain tensor and §,, the Kronecker
delta.

¢) Strain-displacement relations

1| o |
c,S") = —2- u,l_‘,' - u,’f) (3)
d) Interface continuity conditions
M- wf L Fe s s M o A (4)

where A; denotes the particulate-matrix intetface surface.
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¢} Initial conditions at 1 = 0 and appropriate boundary conditions along the boundary 9 V.

Conditions {a) through (¢) constitute an initial boundary value problem. However. due to

KR st

the Jarge number of heterogeneities in the medium, its direct solution represents a formidable

task. The purposc of the following analvsis is to circumvent this difficulty by deriving a set of

.

. [
atateTdT

panial differential equations with constant coefficients. whose solution will thus represent an

approximation to the original problem. To this end. the basic equations are nondimensionalized

by introducing the following parameters:

I A typical macrosignal wavelength
A typical particulate spacing or cell dimension
L Cim) - Pim) reference wave velocity and macro mass density
b ]
Em) = P(m)Clm reference modulus
tim) = A/Cim) typical macrosignal travel time
' (= AN ratio of micro-to- macrodimension

’ I,
i 7, = -i- , t= -:’—
t
{m)
. (5)
1 3 —yle) (o) i‘a)
(A = —— (A7) p = =
(m) Pim)
) Equation (5) shkows that the material properties are periodic in the z,-space in which the period-

icity can be characterized by the cell. This representation implies that stress and displacement
. ficlds will vary according to two basic length scales: (1) a macro lengith characteristic of the
] body size, and (2) a micro length characteristic of cell spatial dimensions. Further, in most
applications of interest, the microscale is much smaller than the macroscale. Therefore. it

appears convenient 1o use an asymptotic technique based on the two scales involved in the

. problem. To this end. new independent micro-coordinates are introduced. such that:

g * z

o 5, = — (6)
5 €

'r
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- As a conscquence. all field variables now become functions of both the macrovariables z, and J‘Q}‘ <
A :V'.:\
. . : WOV Y.t
microvariables z, :
d
Ny . Lo
: - Wi
A F(s, t)=F (z,.z; ,t;¢€) (7a) 2o
: st

Spatial derivatives of such a function I' then take the form:

K
.

- \'
i WYy

>

L nm”:pmwnfuqééngJ@zg) (7b)

v

4
l where () . is used to denote partial differentiation with respect to z, . For notational simpli-
K

v F will be writien as I' in what follows.
h Applving Eqs. (5) and (7b) to Eqs. (1) - (4) yields a new sct of "synihesized" governing
;,; equations. given by:

a) Equations of motion

)
of)+ o =l o el (8)

b) Constitutive equations for isotropic constituents

a},") = z\(°)c,s°)6,,~ ~ 2u(°)c,(‘.°‘ (9)
¢) Straiu-displacement relations

b e,S‘” -1 u'el -+ u,l‘:’ + R} vlol 4 u(")* (10)
, 2 ' ' € " I s
' ‘\.' .-
. d) Interface continuity conditions
T MW= o=, on 4 (11) -
. ARENES
The periodicity condition implies that all field variables will assumne equal values on oppusite .,~_._-“.\.
. NNV
N . .o . . . RO
- sides of the cell boundary. Therefore it is only necessary to consider a single cell in order to REAN
2
I- M * . - 3 L4
determine the dependence of these field variables on the microcoordinates 7, . As a consequence
'-l
- edge layer effects are not included in the model.
»
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The construction of the present mixture model is accomplishied by resorting 10 Reissner’s
mixed variationa) principle 25 for displacements and stresses. This variational principle.
applicd Lo the synthesized fields using the multiscale representation. takes the form:

- 2. VY ~la «( 1 o 1 a g iy ;
f Lo Jseliolt - s S Luly e wfth e = (ull c w ] - e )] ey diy d
. Jo 3 - : 2 € Ja !
y (o)

LI

L1 IlT,’(éu,""'— bult) - 8 THu ) - u,(”)]dA dr,dr,dr,
¢
1
(12)
2 ¥ X *
=.[ p) f&u,(°)(~p(°)u,"‘,’))dz, d1, d1, |d1ydrods,
a1 .

L4

d ' [ Y

0w 4 es

[ T{2gu ) dz, dr, dzy |dA

1
v e}

where V[ denotes the z; -domain occupied by constituent o (see Fig. 2). o°!®) is used for the

1
r
;f approximate stress ficld. T{? rcpresents the traction vector on the surface 8V ; where tractions
- v
. are specified and T/ is the interface traction vector defined by
T!= el on 4 . (13)
Also,
1
- Sel? = 5 [5 uo) 4+ 6uld) - (l (6".-(:)” + 6uJ("’L)] . (14)
and
. 2 e 1 ¢
o {a}( . .. P _ *la)(g - ~ (o) ]5 -
5 ) [u(ax-'zy)] T T e O (15)
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- 3. ASYMPTOTIC ANALYSIS o
The asymptotic technique starts by assuming the following expansions for the field vari- -
3 o
& ables:
‘7
{u,.0,, }("’(zk.:r‘. di) = T ™y 0 g e ) o <n ) (16)
n=0 [
> Substituting (16) into the governing equations (8)-(11) and grouping terms in equal powers of «. '.-:'.'-"_'_:
a sequence of problems is obtained. The first of these yields
[
W =0 L ol -0 (17)
i{0)y 1!'0)) o
. - . . {al . . . * . fum .
Equation (17a) implies that u,¢i are independent of the microcoordinates 1, . Together with the SRS
& zeroth order expansion of (11a). one has then oo
w8l = Uyo7e-t) (18) jjﬁ:'jf
7 The remaining sets of equations obtained from (8)-(11) are. for n> 0 =
a ,('o()"*”" y = f)(o)ulsc:ll).ﬂ Y ’(uo(n;,) .0 (ll)n] = l(;.(n) (]9) ::t.."
ol = Aelthye, - 20 eff (20
I N N N 21 o3
€5(n) 2 (U.‘nl),; Usin).s ul‘""”‘} ¥ U,('H” | ( ) :\.4:.
-~ . 3 . . 3 * . . . . . :l -‘
Equations (19)-(21) arc supplemented with interface continuity and z -periodicity conditions. .
These are. for n > 0: S
.
u,&',,), = u,ﬁ)\ . 0 e )A’(” =0 (28 )V(l) on A‘- (22) '.‘
° .
: vy and oY, v are 1 -periodic on cell boundary . (23) -
- Equations (19) through (23) generate a series of microboundary value problems (MBVP's) for ':j
ole),, and u)5} . which are to be solved sequentially. The first of the MBVP's. corresponding to -
: o toh, and wl]i. is called the O(1) MBVP's and is defined by (17b). (19b). (20). (21). (22b). (23b) el
- with n - 0 and (22a). (23a) with n - 1. D,
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Higher order terms in the asymptotic expansions for the displacement and stress ficlds
microstructures. can be computed with suvitable integrability and normalization conditions.
However. duc to the complexity of these MBVP's. a variational approach, based on Reissner’s
mixed principle (25" is preferred here in order to construct the mixture model. This construction
can be carried out by supplying Eq. (12) with appropriate trial displacement and stress fields
which must satisfy the interface continuity condition (22) and the z’-periodicity condition (23)
on the cell boundary. As a result only approximate solutions of the MBVP's are necessary.

Thesc trial functions arc obtained by modeling the cell as two concentric spheres. as shown

in Fig. 2. where (r,8,0) are spherical coordinates. such that

sind cosf

=2
1
-

z, = r sing sinf (24)

~
o
]

r cos¢

¥
The volumne of the cell is denoted by V' | its boundary is defined by r = 1 and its interface sur-

face by r = (n")'*. The quantities n'®) denote the volume fraction of material o and satisfy the

relation:
nM g pl® o (25)

In terms of the spherical coordinates (r.f.4). the r -periodicity condition for the concentric-

spheres approximation can be expressed as

F(r,6.6)= Flr.x + 6.5 + ¢) (26)
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O 4. TRIAL DISPLACEMENT AND STRESS FIELD Rt
‘s -1.: » 7,
N The O(1) stress and Ofc) displacement fields can be determined by solving the O(1) fj'.‘,'_'-’_"‘
::: MBVP’s which are defined by (17b). (19b). (20)-(23). As shown in [26,. these MBVP’s are ::"
N excited by Uy, Therefore, the mixture formulation becomes more tractable by introducing ‘E:. E:JI :f
microdisplacement variables which represent U, o) 5 + Uyq),. such that :;{{{4
e
Slat): —— [ whfas” - L [ v as ’ (27) <03
V i V i '
5 s .
< where V' is the volume of the cell. Since u,‘f{} is excited by Usq), = Uyo), there holds
': ; .
Y S, =S, (28)
' As an O(¢) trial displacement field. the following form may be used
- N ] ( P
= ulf) = S, (2,0)g/(x ) (29a)

where

»
o)y 1 as1. 1,
gi( )(1) ) = (a) (‘l) lzn + a2 s (29b)
n 4

Considering the O(c?) difference of the average of u,®) over p e, Egs. (18) and (29) vield the
following tria! displacement field
* 3
u;‘“’(z‘,z; ) = U,(")(z.,t) + ¢ u,m(z,-‘,z, .€) (30)
where u{3] is given by (29). Eqgs. (29) and (30) show that the mixture displacement variables

, .
are UMM, UM S, subject to the constraint (28). Inserting (30) into (20) and (21) with n = 0 and
considering the O(e?) differences of the average stresses. the O(1) trial stress ficld may be writ-

ten as

ol = TN t) 4 Ll t)g o) (31)

As with displacement variables. an O(c) stress variables are conveniently introduced according




>

] £l ] ¥
Pint) 5 — Ia}r‘u;”u = — [a}:(’,,p,("d/a (32)
eV ! v 1
. ~ ~ 3 4 - . . . . .
Integrating Lg. {8a) over V) and making use of the 7 -periodicity condition. the following
mixture equation 1s obtained
nlelg ’(:N;) « (-1)251 P, = nlo) plo) y tae) (33)

where the average operation is defined by

1

Fleo)(a, 1) = f F(oi(z,.r,#,t)dr,!dz.‘. dz; (34)

"(0) vV v :.-(G,

From (33) it is scen that P, plays the role of an interaction body force between the two consti-
tuents through the interface.
As an Ofc) trial stress field. the following form may be used
ohnl;'()l)(zkvzl*") = Po(z,t) 9.!")(1’1*)5.', (35)

As a result, the trial stress field may now be written in the form

. (o) * « (a) * F(e) ¥
L (Ik'zl ”s‘) = 001(0)‘Ik'11 rt) + ¢ au())(zk!II vt) (36)

where o[}, and o [7}, are defined by (31) and (33) respectively.




-1 bos

5. MIXTURE EQUATIONS N

Substituting the trial displacement and stress fields defined by (30) and (36), respectively.
into Reissner’s mixed variational principle Eq. (12) and using Eqs. (14) and (15). the following '.-,'J',:;

governing equations arc obtained

a) Lquations of motion
nle)rfe) o (-2t el - (1R - eIl (37a)
£ 1 (2) {1) ) 1 (21 [ = 3 37b
. '(—2 Ty — Ty ~ “l Tk ~ nn\’ Tkh — Kty Tamt| 7 l j.l - A'.' Mott ( )
3 where
(4,,42) = T A1) (38a)
and
Alo) _ 1 _l_ (_”o‘»l (s 4 _"_(_1"_1_ _ _9_ (38b)
RT3 n ez | TN 5

Also &ny; are constants that depend on n'!) and n'® only. The non-zero values of these con-
stants are given in the Appendix. It should be noted that in Lq. (37). the superscript "a" used

to denote “average" has been dropped from H“‘ and r!3) since these are independent of the

*
microcoordinates z, .

b) Constitutive equations

SRR S I L (R (392) o
- ! l i .
N rlad - AR S 8 4wt (6 S+ 6k S,) (39b)
N
» | SAL I ALY i
. P, = Ag -+ A, Sk“ (39(’)

A
"I
]

o Wt Y

. "-.'. ._ _-."-.'_ . _*.'_-,'_~ L
S . . . R N
AR N A A S S I AL 4 V'Y




. . g g— o
A RA AL T T TR S D R it it ARt S ah i aor /i gy it e ghas Sr s sim iy s or gt g

CAaA P St el T on TR I Sl kSl el i £ solh ondb tal Sud nglh ma R s g .“*‘7‘

Aoy

s
R o

. s

where

% %

l"l
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¢) Boundary conditions along oV

~

$ULT =0 or Pl - (y) iR, - TR (41a)

s
e
AN
)
e A

65, =0 or AP, - T, (41b) o

A
»

-
»
N
SR
A, &
'

where

i
[ -

Tles) = 1 (o) dy. e, dzs
for) = 1o dr, dr, drg (42a)
¥

‘ y (e

2 v P ~ *
T,= — ¥ f Ti®) gl°Vdz, dr, dx, (42b)

: ’ *
e) Inial conditions
’
. S, at t=0 (43)

J
specify Ul® | Ufo S,

Equations (37), (39). (41) and {43) constitute a well-posed boundary value problem with respect

to time t and macrocoordinates z,.




6. EFFECTIVE ELASTIC MODULI

The effccrive elastic moduli. which relate stress averages to strain averages. are defined by

the O(1) homogenization theory. They can thus be obtained by letting ¢ = 0 in the mixture

Eqg. (37) and setting

AL I A (44)

Equation (37a) yviclds

olm = ptmr (45)

2

where ol = 01_2’ nlelrlod o (- l)""r,(;;l] (46a)
2

pi™ = % plal ple) (46b)
a=]

while Eq. (37b) vields

1 1 " io -
fl(f) - 7'(11) - _"m 1’l(,vlk - :E)_ Tl(;klﬁ - Kmlk) Tl&"’ll‘ =0 (4‘)

3
This last equation can be solved for the §, by inserting therein Eqgs. (39a.b). Substituting in

]
turn these expressions for S, into (46a). onec obtains

o (™) = [Cim); ¢tm) (48)
thr(’ O(M) = lO 1101 022.033. 023. 04, O 1211 h (493) S
el = (U Uz Uygy Vg s Ugy Ugy = Uy Uy = 0T (49b) :

and C'™' is the effective elastic modulus matrix. Although the medium is heterogencous. it is

isotropic. Consequently only two independent constants should suffice. as is indeed the casc.
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::j iC!™) is convenicently written in the standard form: s
B 5y

A+ 20 A A 00 0]"™ ANTRY

> A A+ 2 A 0 0O \

N L1

o A A A+42:. 000 s Y

f.. (m) _ allr -

D:. (™) = 0 1) 0 u 00 (50) .,.i_-."-. t
\ p““- A9
. 0 0 0 0 u O -4

0 0 0 0 0 u] b e

The composite Lamic's constants A and p ™) are given in the Appendix.

In order 1o assess the accuracy of the present O(1) mixture theory, the results for the elas-
tic constants of a tungsten carbide cobalt particulate composite are presented and compared

with those obtained by Hashin (2. Young’s modulus E and Poisson’s ratio v are.

for tungsten carbide E™ = 102 » 10° psi , o' = 0.22 (51a)
.
and for cobalt  E® = 30 » 10° psi . +* = 0.30 (51b) DA
The variations in terms of the particulate volume fraction n!*) of the composite bulk modulus K '
K'™) and shear modulus ¢'™ are shown in Fig. 3, where very good agreement is observed with m
Hashin’s results (2. For the bulk modulus A"}, the two curves are identical. The expression f.:
for K'™) derived by Hashin 2] represents an exact result when the medium is completely filled ::;"
»i

out with concentric spheres.
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7. HARMONIC WAVE PROPAGATION

In order 1o test the accuracy of the present O(c) mixture model. phase velacity spectra

have been compared with experimental data for harmonic wave propagation. Due to the com-

posite isotropy. it is sufficient to consider harmonic waves propagating along. say. the zy-

TR/ S

direction. Therefore let

P I

(U z,.1) . §,(:,,r)} S (T (k)8 (52)

l 5 o4

where U and &, represent constant amplitudes. Also. k and w denote the wave number and

the angular frequency. respectively. -

Substituting (52) into (37) and using the constitutive equations (39). yields an eigenvalue

problem for (¢w) of the form:
KU = (ew) M U (53)
g . . 1% 25 83 . 25 . FEEE I
> where U= [UM, 0P, 5,5 .8 , 0,00 .5 UM . U8, s 85T (59)
i IK; and 'M. are (12 » 12) real symmetric matrices, whose elements are functions of the volume

fractions. constituents clastic properties and wave number. Furthermore, M is a diagonal

matrix. For a given (< k). a corresponding eigenvalue {¢w) can be computed. The phase velocity

C, is then determined from
C, - %’% (55)
. In the present analysis the typical cell dimension A was chosen to be the cell radius by using the
‘ concentric-spheres model. The reference elastic modulus and density used for the nondimension-
alization arc:
Y E - % pllfle) 5 & plegie
m= E n . Bmy= £ ol

The dimensional frequency f(Hz) is then given by

P R N T

e s e T, LR e
TaVariate Catatre o tiatoad et v
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Numerical results were obtained for two composites: Glass/epoxy and Steel/PMMA. for which
experimental data have been recorded by Kinra and Ker |16 for longitudinal waves. The con-
stituents” physical properties are given in Table 1. in which the values for Poisson’s ratio are
estimatces. 1o the simulation A was compnted from the particulate’s radius which was I mn for

glass and 0.55 mm for stecl.

Phase velocity profiles for eaclhi composite are shown in Figs. 4 and 3. where two distinct
miodes are displayed: a longitudinal (P- mode) wave and a shear (S- mode) wave.

The first two branches in the spectrum for the P- mode. which are believed to be suffi-
ciently accurate within the present calculation. are plotted as functions of frequency. Figures 4
and 5 clearly bring out the dispersion characteristic of the composite. The experimental data
correspond to the longitudinal mode. and it can be seen that the correlation with the present
results is quite satisfactory. In their paper. Kinra and Ker {16, have predicted. at higher fre-
quencies where the wavelength approaches the particulate’s radius, additional second
(f=1.4 MHz) and third ({--2.0 MHz) stop bands for Glass/Epoxy. and additional third
(f=1.5 MHz) and fourth ({=1.9 MHz) stop bands for Steel/PNMMA. Their experiments however
did not reveal these higher stop bands. They have conjectured "hat this is probably due to the
excitation of resonances of the spherical inclusions which, at higher frequencies. tend to dom-
inate the resonances of the unit cell.” Figure 4 (Glass,/Epoxy) shows an additional stop band at

f=1.53 MIlz. which is in fairly closc agreement with the value predicted by Kinra and Ker '16.

Finally. for completeness. the first branch of the shear wave velocity spectrum is also
shown in Figs. 4 and 5. for each composite. Due to the composite isotropy. the vertically {SV)

and horizontally (SH) polarized wave speeds are identical.
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8. CONCLUSION

»
r
»

A micromechanical mixture modcl for periodic particulate composites was presented based
on a two-scale asymptotic expansions. Governing equations and appropriate boundary condi-
tions were deduced from Relssner’s mixed variational principle 25, Expressions for the effective
clastic moduli were derived and compared with Hashin's results 2. Also. harmonic wave
dispersion spectra were obtained. and a good correlation with the experimental data of Kinra

and Ker 16 for Glass Epoxy and Stee] 'PNMMA composites was observed.
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APPENDIX

A. Non-Zero Values of Constants «,,,; appearing in Eq. (87b):

1 .
Kiw © 75, - hosumon (A1)
5ntiint
1 . . . .
Ky = Kyw © == + % j . nosumon i andj (A2)
Ton on's

o N
Koy = Ky Kyny Kup 5"“]"‘.‘,. t ¥ 37 . hosumon 1 and ] (A3) .:‘_
ottt

B. Expression for Composite Lamé’s Constants A'™ and »'™ appearing in Eq. (50):

Mmi= X+ (3a; + 2a5)p) + 20,03

P(m) =4 + 2a9p, (Bl) e

where (A, 4) = > nl@(ale) | ylely
=1

— a8 ~ (a; ~ 2a,)y - a, AR

P = l-, "l s P2 = (82) e

g°~ 23+ 3y -1 AR

and '.'::ﬁ‘:

P ;: Afel 2”(0) 2(2/\(1‘.‘ _ "-p(?),
T en nlel . 5nilinl® AR
. (B3) —
S P Gl IR Yl ¥
o=1| nl@ 5n'pt® w
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Table 1. Physical Properties for Glass/Epoxy and Steel ’PMMA Composites

5
.:' r- - T ; !
:: ! Volume Young's Modulus " Poisson’s l Mass Density
3 | - | |
’ fraction nl®) | E'®) {GPa) o oratio ) 5 (grem?)
) j ; !
: 1 : ! :
(1) | 5 : i | .
- WGlass 0.256 62.784 o | 2.492 |
@ Y : | | i
| Epoxy | 0.744 4.541 0.43 ‘ 1.18
i : ! l
! ! I ; :
: L (1)e : " - ' | . |
' Steel \ 0.152 113.534 \ 0.292 7.8 i
- ; | ; : ;
- ' Oppia 0.848 3.032 ' 030 | 1.16
. I v !
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A Periodic Particulate Composite.

Figure 1.
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