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Abstract

It is demonstrated that a nonlinear Schrodinger equation with certain nonlineari-
ties allows for an existence of multi-stable singular solitons (i.e., singular solitons with
the same carried power but different propagation parameters). In nonlinear optics,

* ~these solitons may exist either in the form of short bistable pulses, or bistable self- ,

- trapping (both two- and three-dimensional).
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In this letter we demonstrate that for a certain class of nonlinearities, the soliton
solution of the (generalized) nonlinear Schrodinger equation becomes multi-stable. This
implies that more than one amplitude profile and speed of propagation of a singular sol-
iton may exist for the same amount of the total power carried by the soliton. The
existence of multi-stable solitons is related to the properties of nonlinear susceptibility :"

as a function of the intensity of light. For example, the multistable soliton waves can
not be observed in a Kerr-like nonlinear medium; they may exist only if the nonlinear
component of the susceptibility as function of intensity is either changing its sign or its
derivative has a sufficiently sharp peak (e.g. is a step-like function).

The soliton bistability can result in such effects as bistable (or multistable, in gen-
eral) self-trapping of light in media with nonlinear refractive index as well as bistable %

propagation of short soliton pulses in nonlinear optical fibers since both of them may be
described by the same nonlinear equation. Both of these effects may be viewed as an
ultimate manifestation of multistable wave propagation since they are based on the
simplest possible propagation configuration. They may also provide new opportunities
in the field of optical bistability('. Indeed, for example, a bistable self-trapping of light ..

provides a potential for optical bistable device entirely free either from any cavity or
Fabry-Perot resonators(I', single nonlinear interfaces 2 or nonlinear waveguides formed -
by the nonlinear interfaces[Ml, retrorefiection self-action effectsl~i, four-wave mixing6 l,
etc. On the other hand, since the propagation of singular pulses in a homogeneous non-
linear medium 6'7 1 and in nonlinear fiber waveguidesil is also governed by a nonlinear
Schr6dinger equation, these soliton pulses in the system with an appropriate nonlinear-
ity may provide the first (to the best of our knowledge) known opportunity to attain a
temporal (or dynamic) bistability as opposed to all known kinds of optical bistability
which were so far formulated in terms of steady-state regimes. The very notion of
steady-state optical bistability comes into the inevitable contradiction with the applica-
tions most of which assume fast pulse regime of operations. When exploited in a
dynamic regime, such effects still demonstrate hysteretic behavior which, however, can
hardly be identified with the original "adiabatic", steady-state hysteresis. The dynamic
hysteresis is more strongly affected by the relaxation processes rather than by steady-
state bistable states especially when the total switching cycle has the duration time of
the same order as relaxation times. The truly dynamic (or temporal) bistability dis-
cussed in this paper is based on bistable pulse shapes (as well as on bistable duration of "oL. "-
the pulses) and offers a way to resolve this contradiction. U .1.7

We consider the generalized nonlinear Schr'idinger equation for the complex ampli- 13
tude of field E in the form

2iOE/Oz + &2 E/x 2 + Ef(1E 2 ) =0 (1) .

where f(l El 2) is an arbitrary function of the intensity I El 2 with f(0) = 0. When
f(I El 2) = o El 2(a = const), (1) is so called cubic nonlinear Schrodinger equation 1'i Aes -

Avow sdlorDf..t SpL-ca-
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(which corresponds to Kerr-nonlinearity in optical propagation). In the case of two.
dimensional self-trapping'111, z is a normalized axis of the soliton propagation and x is

a normalized transversal axis (both of them are dimensionless and correspond to the

real coordinate i and i multiplied by the wave number k w n/c), whereas in the case

of pulse propagation (along the axis i), i is interpreted as t - i/v, v = dw/dk is a Ii
group velocity in the linear case, with the initial equation of propagation beingl - ]

2ikaE/Oi + (dv/dw)v-282E/ai2 + k2Ef(l El 2) = 0, (1')

and can readily be transformed into Eq (1) by proper scaling. In both of the cases f is .

proportional to the normalized nonlinear (i.e. intensity dependent) component A of £1
the dielectric constant c of medium. The nonlinear Schrbdinger equation is obtained

from the Maxwell equations in a conventional approximation of slowly varying envelop

(i.e. 2E <  2 1 which implies either small (quasi-optical) diffraction [Eq (1)) or2  a"_-X..

relatively small dispersion [Eq (1' )].

The stationary solutions (in particular, singular solitons) of Eq (1) have nonvarying
intensity profile, aiEl /Dz = 0, i.e. such solutions are written as

E(x,z) = u(x)exp(62/2+i4'), where 4' = const and 6 is (unknown) real speed (or propa-
gational constant) of the soliton. Thus, the equation for the real amplitude u(x) is

d2u/dx2 + u[f(u2) -o6 = 0 (2)

whose soliton solution must satisfy the condition u -- 0 as jxj -. oo in order for the

-00
-" ~~total power P - f u~dx to be limited. This provides for the first integral of Eq (2) in ",.=

. -o ,-"-- --

the form

(du/dx)2  f u[6 - f(u2)ldu (3)
0

integration of which gives the soliton amplitude profile u(x) for each particular 6 and

f(u2). In order to evaluate a total power P, however, one needs not to know an explicit
form u(x). Indeed, by making use of Eq. (3) and introducing I -u2  I El 2, one shows
that

P(6) =f d/16 - F(I), (4)
0

where

F(I) = 'f f(l)dI , (F(0) 0) (5)

0

i.e. P is determined immediately by f(I) and 6. In Eq (4), Im(b) is a peak intensity of

................. ........................................
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the soliton; it is defined as a minimal positive root of the equation F(I) = 6. The
multistability of a singular soliton is realized when the function 6(P) implicitly deter-
mined by Eq (4) becomes multivalued.

It is readily shown that a Kerr-like nonlinearity (facl) results only in a one-valued %
singular soliton (with 60(P 2), see Fig. 1, curve 5; the same is valid also for any other
nonlinearity with fNIP where p>O (but pi2). The nonlinearity fI 2 plays a special role '

P. in two-dimensional propagation in the sense that in this case the total energy carried
by any singular soliton is the same regardless of its spatial profile and preparation con-
stant. Indeed, for f 0 I2/Io where 10 = const, the intensity profile I(x) and propagation
constant 6 are defined 1121 from Eq (3):

[[ I(x) = Im/cosh(21mx/lo/3); 6 = Im/31j (6)

* where maximal intensity of soliton I. is an arbitrary constant; the total power is .''::''

P = xr/210. One may note from Eq (4) that in the general case of arbitrary f(l), a con-
stant 6 may be viewed as a first integral ("energy") of some system with a potential
F(1), Eq (5). The motion of this system in some p domain can then be described by the
equation

d2I/dp2 + 8d[F()/dl = 0 (7)

where if p is interpreted as a "time", P(6) is a total "period" of oscillation of the sys-
tem for any given "energy" of excitation 6. Particularly, one may see that the case
fol (and therefore, F I1) corresponds to a "linear oscillator", with the "period" of

oscillation P independent on its "energy" 6, i.e. dP/d6 - 0 as suggested above.

In order to demonstrate the existence of the countable set of states of the singular
soliton (with more than one state) we consider first the step-nonlinearity: -7.-

f(1)=0,ifl<Io, and f=A, if I>4 (8)

where 10 and A are some positive constants. Substituting (8) into (4) one gets

P(6) - L(.±. + arc sinv') 6

The function 8 vs P determined by (9) is a two-valued function (Fig. 1, curve 1) for any
P > Pcr1 %s3"44I/VA with 6(Pcr) r 0.21. The further example is given by the non-
linearity

f(I) 0 if I < 10, and f(I)= A(I - /I) if I > (10)

In contrast with (8), f(l) is now a continuous function, whereas its derivative df/dI is
still discontinuous. The total power (4) now is

-I°

.. .. . ........ . . ... .. . . . . . ... , -' , ''- " -. _ , . - .,"" " "" " " '"o . ' '_' ' -- ' ',_ -,'' -' '- - .. - *-.' '- -':
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P -s(- + -;rc cosvf) 6"

which essentially represents the same kind of behavior as (0), i.e. provides two-valued.'.
solution P(P) for any P > Pr2 f 4.28 I0/'A with fl(P,,} N 0.26. In these cases, the
nontrivial branches of the function P(6) tend to infinity as 6 - 0 and 6 -- A (note that
the third, "trivial", branch with b=0, P-arbitrary, corresponds to a nontrapped beam
with Im < 10). This suggests a bistability without hysteresis and is due to the fact that

nonlinearity f(l) differs from zero only for some finite I > 10. The same kind of soliton
bistability is exhibited by the system, if either (i) P (0) < 0 but f(l) becomes positive at
some I, e.g. when f = -alI + a212 - a313 where al,a 2,a3 > 0 and 0a1a3 < 24, or (ii)
f(l) > 0 in the vicinity of I = 0 but f(I) = o(12 ); e.g. f(I) = a,13 - a2I(a 1 ,a2 > 0) or -

f(l) = an1 3/(l + I/13), (a1 ,In > 0). The latter nonlinearity may result from the three-

photon resonant absorption of light by two-level systems with saturation.

In order to attain truly hysteretic bistable behavior [i.e. that characterized by the
S-shape steady-state curves (see e.g. curves 2 and 3 at Fig. 1) which causes both "on"
and "or jumps between different branches of the curvej, the function f(l) must be
positive at least in some range 0 < I < I and have a distinct peak of its first deriva-
tive i (1) in this range. The existence of hysteretic jumps is secured if db/dP = oc (or
dP/db = 0) for two (or more) discrete values of P (or 6), where dP/d6 is found from (4)
as

dP 11 Fld2 /dl 2 ) dl(
d 6 2 6 0 ( d F / d I )2  ' "" "1"

dP
A derivative --- (6) is strongly affected by F" (I) and therefore by P (I); bistability may

exist if P'(0) > 0, and if at some point I = I, there is Pi) = 0 and I(1) > ft (0). As
an example of such a function, consider

f = all + a2l- a315  (13)

where a1,a2 ,a3 > 0. S-shape behavior of P(6) (Fig.1, curve 3) is possible if the condition

is satisfied

ala 3/al < S,- 0(1) (14)

where S., is some critical quantity; the rough estimate gives S., 0.1-0.2. In general

case, the critical situation [when the curve P(6) at some point 6 6,, has

d - d2 = 0, see, e.g. Fig. 1, curve 41 corresponds to the conditionsd6 d62";:

dP/dcr = 0 and 2 (d2F/dIc,) F ( (dF/dlc,) s  (15)

(where l, is the minimal solution of the equation 6 , = F(I,)], which determines both

I. .

*..', *- •.
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6,r and the required parameters of the function F(I) land therefore, f(I)]. In the case
when f(l) = 0(12) at 1=0, the function 6(P) forms a hysteresis if d2f/dI2 > 0;
df/d 3 > 0, and d4f/dI'<0 at 1=0, e.g., f = a212 + &3 13-a 414 (a,a 3,a4  0). In such a
case, the lower (stable) branch of 6(P) corresponds to non-trapped beam (6=0), see Fig.

1, curve 2.

A stability of each of possible solitons which correspond to the same total power P
is an important issue. The detailed small perturbation analysis 1131 of the spatial stabil-
ity of multistable solitons in the case of step-nonlinearity (8) shows that the lower
branch of curve 1, Fig. 1 corresponds to the unstable solitons and the upper- to the
stable ones; the trivial solution (6 = 0) is stable for any P. This suggests a general cri-
terion for an arbitrary f(1), and therefore b(P): the stable solitons are those for which
d6/dP > 0 and vice versa (see Fig. 1, curves 1-3). In a further study, it is of consider-
able interest to study a "collision" of two solitons that belong to upper and lower
branches of the curve 6(P).

The bistable solitons may exist also in the case of three-dimensional propagation.
Stationary self-trapping of a cylindrical beam, for instance, is governed by the "non-

linear Bessel" equation (instead of (2)1:

d2u/dr2 + (1/r) (du/dr) + u[f(u2 ) - 6 = 0 (16)

where r is a radial coordinate in the plane normal to z axis. For cylindrical beams, a

Kerr-nonlinearity, fci, plays the same role as focI 2 in two dimensional case: for such a
nonlinearity, the total power of the beam does not depend of its size or its peak inten-

sity[7 . Therefore, in order to attain a nonhysteretic bistable soliton propagation of the
kind depicted by curve 1, Fig. 1, the lower required degree of nonlinearity at I --# 0 is
f*ci2 (with f attaining some maximum or saturation when I increases, e.g.
f a12/(1+12/I 12)]. Such a nonlinearity can be originated e.g. by the two-photon

* resonant absorption!"!1. Hysteretic characteristic curve 6(P)similar to curve 2, Fig. 1,
can be provided now by the nonlinearity f(I) = a1l + a212 - a3i (al,a,3 > 0), with

the critical condition in the same form as Eq (14) [but with different S,, = 0(1)).

In conclusion, we demonstrated an existence of multi-stable solitons of generalized
nonlinear Schrodinger equation. In order for those solutions to exist, the nonlinearity
must satisfy some special conditions, e.g. its dependence on the light intensity must
have a range where it increases sufficiently sharply. In nonlinear optics, these solitons
may manifest themselves either as singular pulses (e.g. in nonlinear fibers) or self-
trapped channels (both in two- and three-dimensional cases). Bistable solitons present
the ultimate case of multistable wave propagation and may find an application to the
dynamic (temporal) optical bistability and bistable resonator-free self-trapping of light.

This work was supported by the US Air Force Office of Scientific Research.
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Captions to Figure

Fig. 1. A propagation constant 6 vs the total power P carried by the soliton. Curves
1-5 corresponds to various functions of nonlinearity: 1 - step-function Eq (8); 2
- f = a212 fa313-a 414(a2,a3,a 4 >O); 3 - Eq (13) with aja3 < aSCr; 4 - Eq (13)
with ala 3 = ajScr; 5 - Kerr-nonlinearity, f x I. The broken lines at curves 1-3
correspond to the unstable solitons. In the insertion, the intensity profiles 1(x)
are depicted of solitons that carry the same power but correspond to different
branches of function 6(P) - upper branch (U) and lower branch (L).
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Multistabie Self-trapping of Light and Muitistable

Soliton Pulse Propagation

A. E. Kaplan

School of Electrical Engineering

Purdue University

W. Lafayette, IN 47907

Abstract

It is demonstrated that a nonlinear Schriidinger equation with certain nonlineari-

ties allows for an existence of multi-stable single solitons (i.e., single solitons with the

same carried power but different propagation parameters). In nonlinear optics, these

solitons may exist either in the form of short bistable pulses, or bistable self-trapping

(both two- and three-dimensional).
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1. Introduction

The most known optical bistability principles and devices il are based on Fabry-

Perot resonators filled by a nonlinear material. The entirely different principle of

switching effect has first been proposed 121 and subsequently observed in the experi-

ment (31 which does not exploit any resonant effect and is based on the reflection of light

at the single nonlinear interface formed by semi-infinite linear and nonlinear media. In I
the recent work 141 (with the earlier proposals [51) this principle has been extended to the

so-called nonlinear waveguides formed by two nonlinear interfaces (i.e. sandwich struc-

ture with a linear layer between two semi-infinite nonlinear layers 14,5) or vice versa l).

Although the nonlinear waveguides suggest new interesting opportunities, they are still

substantially based on the nonlinear interface principle.

In this paper, the feasibility of a fundamentally novel bistable and switching opti-

cal effect is demonstrated which consists in a multivalued self-trapping of light in an

interface-free nonlinear medium. For the certain class of nonlinearities the self-trapped

beam of light occurs to have more than one possible propagation constant (and respec- I
tively more than one possible intensity profile in its cross-section) for the same total

power carried by the beam.

Self-trapping and self-focusing of light in nonlinear media may be described by a

parabolic nonlinear partial differential equation I-s (the so-called nonlinear Schrklinger

equation) whose single solutions (solitons 191) correspond to self-trapped channels I-10.

We show that the existence of multi-soliton solutions of the (generalized) Schriidinger

equation is related to the properties of nonlinear susceptibility as a function of the

intensity of light. For example, the multistable soliton waves can not be observed in a

Kerr-like nonlinear medium; they may exist only if the nonlinear component of the sus-

ceptibility as function of intensity is either changing its sign or its derivative has a

sufficiently sharp peak (e.g. is a step-like function). This may be e.g. due to such

S. .•. . -.
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mechanisms as either light-induced phase transition in a material or multi-photon

saturation of resonant levels. This special requirement may probably be a reason why

the multi-stable soliton effects has not been discussed earlier.

Furthermore, since the propagation of single pulses in a homogeneous nonlinear

medium 8 ,11 and in nonlinear fiber waveguidesl2 is also governed by a nonlinear

Schridinger equation, these soliton pulses in the system with an appropriate nonlinear-

ity may provide the first (to the best of our knowledge) known opportunity to attain a

temporal (or dynamic) bistability as opposed to all known kinds of optical bistability

which were so far formulated in terms of steady-state regimes. The very notion of

steady-state optical bistability comes into the inevitable contradiction with the applica-

tions most of which assume fast pulse regime of operations. When exploited in a

dynamic regime, such effects still demonstrate hysteretic behavior which, however, can

hardly be identified with the original "adiabatic", steady-state hysteresis. The dynamic
%" %* ,

hysteresis is more strongly affected by the relaxation processes rather than by steady-

state bistable states especially when the total switching cycle has the duration time of

the same order as relaxation times. The truly dynamic (or temporal) bistability dis-

cussed in this paper is based on bistable pulse shapes (as well as on bistable duration of

the pulses) and offers a way to resolve this contradiction.

Both of these effects (multistable self-trapping of light and multistable soliton

pulses) may be viewed as an ultimate manifestation of multistable wave propagation

since they are based on the simplest possible propagation configuration. They may also

provide new opportunities in the field of optical bistability.

2, 
f
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2. Wave Equation.

We assume that the EM field E(t) propagates in a lossless medium having

intensity-dependent susceptibility e, such that (1)f = ,L + ,&ENL(j El 2) I

and introduce f(I El 2) = ACNL/EL where f can be an arbitrary function of the intensity

I El 2 with f(O) = 0. The case of f c I El 2 corresponds to the Kerr-nonlinearity. We

assume also that the axis of the propagation is i (i.e. = ki, where k2 = w2 eL/c 2) and

introduce dimensionless coordinates z = ki, x = ki, y = ki. Then from the Maxwell

equation, in the conventional approximation of a slowly varying enveloper.-""

(492E/49z2 < < AE, where E± is a Laplacian operator in a plane normal to the z axis), __

one readily gets the (generalized) nonlinear Schr&Iinger equation governing the non-

linear wave propagation:

2i0E/8z + A.LE + Ef(1E12 ) 0 (2)

In the two-dimensional case (e.g. with c/ 8oy = 0), this equation is reduced to the form

2i8E/Oz + 02E/Ox2 + Ef(E12) 0 (3)

In the case of the one-dimensional pulse propagation along the z, axis in the slightly

dispersive medium with a nonlinearity fI(I El 2), the equation of the propagation

is 1,( I,1212l

2iaE/8zl + (dv/dw)v 2 a2E/af 2 + kEfI(j El2) = 0 (4)

where e - t-z 1 /v; v = dwl/dk is the group velocity of linear propagation. Eq. (4) can

readily be transformed into Eq. (3) by proper scaling, e.g. by assuming

zI = z/k 2(dv/dw); ( x/kv; f, = fk(dv/dw). (5)

The slow varying envelope approximation implies either small diffraction [Eqs. (2), (3)] 77-

or small dispersion [Eq. (4)].
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The stationary solutions (in particular single solitons) of Eqs. (2-4) have nonvary-

ing intensity profile, al El 2/az = 0, i.e. such solutions are written in the form

% E(x,y,z) = u(x,y)x p(i6z/2 + iO) (6)

where u -l is a real amplitude of the field, -count is a real phase and 6 is (unk-

nown) real speed (or propagation constant) of the soliton. .

3. Bistable Soliton Pulses and Two-Dimensional Self-Trapping

Both two-dimensional self-trapping and one-dimensional soliton pulses (e.g. in

fibers 1121) are governed by the same Eq. (3). Substituting Eq. (6) into Eq. (3) and bear-

ing in mind that in this case u - u(x), one gets the equation for the real amplitude u:

du/dx2 + u[f(u2) - 6) - 0 (7)

whose soliton solution must satisfy the condition u -- 0 as lxi -. oo in order for the

00

total power P - f u dx to be limited. This provides for the first integral of Eq (7) in
-00

-* the form

U

(du/dx)2 - 2 f u[p-" f(u2)ldu (8)
0

integration of which gives the soliton amplitude profile u(x) for each particular 6 and

f(u2 ). In order to evaluate a total power P, however, one needs not to know an explicit

*...' form u(x). Indeed, by making use of Eq. (8) and introducing I u2 - I El 2, one shows

that

P(6) = f dI/Ib -F(1), (O)
0

where

- ..

.,. . - .

. . . . . . . . . . .. ,
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F(I) = I-f f(I)dI, (F(O)=O) (10)
0

i.e. P is determined immediately by f(I) and 6. In Eq (9), 1(6) is a peak intensity of

the soliton; it is defined as a minimal positive root of the equation F(1) = 6. The

multistability of a single soliton is realized when the function 6(P) implicitly determined

by Eq (0) becomes multivalued.

It is readily shown that a Kerr-like nonlinearity (fool), Fig. 2, curve 1, results only . -

in a one-valued single soliton (with 6ocp 2), see Fig. 1, curve 5; the same is valid also for

any other nonlinearity with focI' where p>O (but p0 2 ). The nonlinearity focj 2 Fig. 2,

curve 2, plays a special role in the two-dimensional propagation in the sense that in this

case the total energy carried by any single soliton is the same regardless of its spatial

profile and propagation constant. Indeed, for f = 12/I. where Io  const, the intensity

profile I(x) and propagation constant 6 are definedl'3 i from Eq (8):

I(x) = I./cosh(21mx/IoV3); = I2/311 (1)

where maximal intensity of soliton Im is an arbitrary constant; the total power is

P = r/ 2I0. One may note from Eq (9) that in the general case of arbitrary f(I), a con-

stant 6 may be viewed as a first integral ("energy") of some system with a potential

F(I), Eq (10). The motion of this system in some p domain can then be described by

the equation

d2I/dp2 + 8diF(l)]/dI = 0 (12)

where if p is interpreted as a "time", P(6) is a total "period" of oscillation of the sys-

tem for any given "energy" of excitation 6. Particularly, one may see that the case

foci 2 (and therefore, FOCI2) corresponds to a "linear oscillator", with the "period" of

oscillation P independent on its "energy" 6, i.e. dP/d6 = 0 as suggested above.

. . . . . ° . .

S. .. ... . . . . . . . . . .
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In order to demonstrate the existence of the countable set of states of the single

soliton (with more than one state) we consider first the step-nonlinearity (this problem

has first been considered in 1141): z
f(I) =O, ifI<I o , and f =A, if I>10, (13)

--- Fig. 2, curve 3, where 10 and A are some positive constants. Substituting (13) into (Q)

one gets -

10 1 1 arecsinv9)~(4P(b) - (7" +  ; ,--- -. (14) "'""

The function 6 vs P determined by (14) is a two-valued function (Fig. 1, curve 1) for -:

any P > Pcri ;u3.4410/v/' with 6(Pr) w 0.21. The further example is given by the

* nonlinearity (Fig. 2, curve 4)

f(I) =0, if 1< 0, and f(I) =A(I-I/1 2 ), if I> T0. (15)

In contrast with (13), f(I) is now a continuous function, whereas its derivative df/dI is

still discontinuous. The total power (9) now is

1 1 1 ' 9- 16 )cos."

VF,

which essentially represents the same kind of behavior as (14), i.e. provides two-valued

solution 6(P) for any P > Pcr2 O 4.28 1/ " with #(Pcr) 1 0.26. In these cases, the

nontrivial branches of the function P(6) tend to infinity as 6 -. 0 and 6 --+A (note that

the third, "trivial", branch with 6-0, P - arbitrary, corresponds to a nontrapped beam

with 1m < 10). This suggests a bistability without hysteresis and is due to the fact that

nonlinearity f(I) differs from zero only for some finite I > 10. The same kind of soliton

bistability is exhibited by the system, if either (i) df(0)/dl < 0 but (1) becomes positive

at some I, e.g. when f = -all + a&2 - a&13 where a,a 2 ,a > 0 (Fig. 2, curve 5) and

9aa 3 < 2a?, or (ii) f(I) > 0 in the vicinity of I = 0 but f(I)= o(12); e.g.
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f(I) = all3 - a214(al,a2 > 0) or f(l) - a11/(l + 13/j3), (all o > 0), Fig. 2, curve 6. The

*: latter nonlinearity may result from the three-photon resonant absorption of light by

two-level systems with saturation.

In order to attain truly hysteretic bistable behavior [i.e. that characterized by the

* S-shape steady-state curves (see e.g. curves 2 and 3 at Fig. 1) which causes both "on"

and "off" jumps between different branches of the curve], the function f(I) must be

* positive at least in some range 0 < I < I and have a ,Aistinct peak of its first deriva-

tive df/dI in this range. The existence of hysteretic jumps is secured if d6/dP = oo (or

dP/db = 0) for two (or more) discrete values of P (or 6), where dP/d6 is found from (9)

as

dp- 1 f[ 1 -2  d2 F/d 2 ) d (17)

o (dF/dI)2  v {I.
dPderivative (b) is strongly affected by d2F/dl2 and therefore by df/dI; bistability

d6"d 2 F/d12

may exist if df/dI > 0, and if at some point I = i, there is d2f/d -2  0 and

df/dl > df(0)/dI. As an example of such a function, consider (Fig. 2, curve 7)

f = all + a2
3 - a 5  (18)"-

where al,a 2,a3 > 0. S-shape behavior of 6(P) (Fig.1, curve 3) is possible if the condition

is satisfied

&1&3/? < S. = 0(M) (1~)

where Scr is some critical quantity; the rough estimate gives Sr 0.1-0.2. In general

case, the critical situation [when the curve P(6) at some point 6 = 6, has

dP. -d. _ = 0, see, e.g. Fig. 1, curve 4 corresponds to the conditionsdU d62::'

dP/d6cr = 0 and 2 (d2F/d ) F = (dF/dcr)2  (20)

[where 1,r is the minimal solution of the equation 6cr = F(Ile)], which determines both

S" , *1,.
... 'L."""- """ " " " " " '"o" ." '"." -"." " " -, ." .- '-. "' "''- "''- .''" -''" . "" - """-.- """,..''" ,. "-"". ." . .''" .



-. .. . .. . . . .- .

-e -'P

b,, and the required parameters of the function F(1) [and therefore, f(1)1. In the case

when f(l) 0(12) at 1=0, the function 6(P) forms a hysteresis if d2f/d12 > 0,

dlf/dl 3 > 0, and d'f/dl 4 < 0 at 1=0, e.g., f - a2I2 + a3
3 - a414, (a2,a3 ,a4 > 0), see

Fig. 1, curve 2. In such a case, the lower (stable) branch of 6(P) corresponds to non- . \

trapped beam (6=0).

To analyze the conditions (20) on the general case of an arbitrary function f(I) is

not an easy task since the dependence P(b) is implicitly determined by the integral (0)

which is not evaluated in the analytic form for an arbitrary f(l) [and therefore F(I), Eq.

(10)]. Therefore, for the practical purpose, it is important to have a good analytic

approximation of the function P(b) at least in the range 0 < I < 1B where IB is the

point at which d2F(1)/dl 2 -= 0 [one may see from Eq. (20) that the critical point I = ICr

is located in this range, i.e. I., < IB]. For such a purpose, it is more convenient to

operate with Im rather than 6 [remember that 6 = F(Im)I. Then, if F(Im) is positive and

monotonically increasing in (0,IB), a good approximation is given by the formula

P(Im) 2C[i/, - ,/(F,-F')(Fi-Folm)/F']/F' (21)

where Fm = F(Im) b; Fm  dF(Im)/dl; F0 = dF(O)/dI, and C > 0 is some constant

of the order of unity which is determined by the type of the function F(I). For the cal-

culations related to the conditions (20), this constant is not important, since the first of

Eqs. (20) is to be replaced now by the condition dP/dlr = 0 which makes insignificant

any scaling of P(Im).

4. Stability of Two-Dimensional Bistable Solltons.

A stability of each of possible solitons which correspond to the same total power P

is an important issue. Assuming that the amplitude profile uj(x) of the particular soli-

ton [determined by Eq (8)] is known, we represent a solution of Eq (2) in the form of

perturbed soliton solution (6):

• . .. ~ . ~. . . .a
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E(x,z) = [u.(x) + Au(x,z)]exp[ibz/2 + iO(x,z)] (22)

where Au, O4/Oz and aOl/&x are small real perturbations and assume the factorization...'

of the perturbation in the form

Au= W(Z[U(x)p(x)I; 4 = tx4)f(x), (23)

where w, p, b, and [ are some unknown real functions of a single variable. Substitut-

ing Eqs. (22) and (23) into Eq. (3), linearizing Eq. (3) with respect to the small pertur- -

bations, equalizing the real and imaginary parts of the obtained equation separately to

zero, separating the terms that depend only on x or z, and making use of Eq. (7), one

finally gets the equations for the unknown functions w, p, tP, and f:

dw/dz = mp; dvb/dz = Xw (24)

(pu)' = X(u2)'1; (25)

(e U2)'= gu.2)'p, (26)

where v and X are some unknown real constants, and prime denotes now a derivative

with respect to x. Eqs. (25) and (26) can be also reduced to a single equation of the

fourth order for one variable, e.g. p:

u.2[(p'U 21)'/(u.)' ' = "u,)' p (27)

where -y = v. The eigenmodes of Eqs. (25-27) must satisfy a condition

pu 1 .. O, ' -O, as lxl -0. (28)

If these eigenmodes as well as their respective eigenvalues v and X (and therefore .-

= ) are found, the sufficient requirement for the stability of the respective soliton

Es u,(x)exp(i6z/2) is that all - must be negative. The soliton is unstable if any of -1 A

is positive (the sufficient condition); the case with 'y = 0 has to be further investigated

. ~ .b *%'.- -
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although normally it corresponds to a stable soliton. The lower order eigenmodes of

Eqs. (25-27) with -1 = 0 are readily found. These are:

(i) X =v=0, p = const 0 (i.e. Au = Cu;(x),C < 1),4) =0. This mode

corresponds to the shift of the spatial position of the soliton peak at the x axis (with all

other characteristics of the soliton being intact).

(ii) X vi = 0, c - const ? 0, p 0, which corresponds to the shift of the soliton

phase 0.

(iii) X = 0; v P 0; p " const 0 0; = (vp)x. This corresponds to the shift of the

"angle" of the soliton propagation.

(iv) X 0; P -0; - const 4 0; and

p= , f 2 dx =f f dx (29)

0~ dx 6-F(U.2)

This eigenmode corresponds to the small change of the propagation constant of the soli-

ton 6 (and therefore, the total power carried by the soliton), with conservation of the

single soliton character of the entire propagation. Analytical solution for the higher

modes in the case of arbitrary f(I) is still to be found. The detailed analysis in the case

of step-nonlinearity (13) shows that the lower branch of curve 1, Fig. I corresponds to

the unstable solitons and the upper-one to the stable ones; Ithe trivial solution (6 = 0)

is stable for any P). This suggests a general criterion for an arbitrary f(I), and therefore

6(P): the stable solitons are those for which d6/dP > 0 and vice versa (see Fig. 1,

curves 1-3). Although this statement seems to be intuitively almost obvious, it is still

to be proven. It is also of considerable interest to study a "collision" of two solitons

that belong to upper and lower branches of the curve 6(P).
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5. Bistable Three-Dimensional Self-Trapping

The bistable solitons may exist also in the case of three-dimensional propagation.

Stationary self-trapping of a cylindrical beam, for instance, is governed by the "non-

linear Bessel" equation which follows from Eqs. (2) and (6) when u(x,y) has a polar

symmetry:

d2 u/dr2 + (1/r) (du/dr) + u[f(u2 ) - 6 = 0 (30)

where r V~X-2+y2 is a radial coordinate in the plane normal to z axis. With the

step-nonlinearity (13) the solution of Eq (30) is

AJo(krvra" ), when u > uo - 4 , r < r.
u(r) "- Ko(krv ), when u < uo  r>r0  (31)

where J, and K, are i.-order ordinary and modified Bessel functions respectively; A, B,

and r0 are some constants. By requiring continuity of u(r) and du/dr at u = u0, one

gets an equation determining the radius of the beam r0 at the level u Uo:

JI(krv/'I-r)_ K1 (krov )

6 JO(krov'&T) Ko(krov') .(32)

With r0 known, A and B are determined as A = u0/Jo(krOVA-6); B = uo/Ko(krovf6).

For cylindrical beams, a Kerr-nonlinearity, fcl, plays the same role as foci 2 in the two

dimensional case: for such a nonlinearity, the total power of the beam does not depend

of its size or its peak intensity8l. Therefore, in order to attain a nonhysteretic bistable

soliton propagation of the kind depicted by curve 1, Fig. 1, the lower required degree of

nonlinearity at I 0 is fOCI 2 [with f attaining some maximum or saturation when I

increases, eg. f = a12/(1 +I2/12)] which resembles curve 6, Fig. 2. Such a nonlinearity

can be originated e.g. by the two-photon resonant absorptionll51. S-shape hysteretic

characteristic curve 6(P) can be provided now by the nonlinearity

f(1) = 11 + 9212 - 1 (a1,a2 ,a3 > 0) which resembles curve 7, Fig. 2, with the critical
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condition in the same form as Eq (19) [but with different S,, = 0(1)].

6. Conclusion.

In conclusion, we demonstrated an existence of multi-stable solitons of generalized

nonlinear Schrbdinger equation. In order for those solutions to exist, the nonlinearity

must satisfy some special conditions, e.g. its dependence on the light intensity must

have a range where it increases sufficiently sharply. In nonlinear optics, these solitons

may manifest themselves either as single pulses (e.g. in nonlinear fibers) or self-trapped

channels (both in two- and three-dimensional cases). Bistable solitons present the ulti-

mate case of multistable wave propagation and may find an application to the dynamic

(temporal) optical bistability and bistable resonator-free self-trapping of light. .- .

This work was supported by the US Air Force Office of Scientific Research.
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Captions to Figures

Fig. 1. A propagation constant 6 vs the total power P carried by the soliton. Curves

1-5 corresponds to various functions of nonlinearity: 1 - step-function Eq (13);

2 - f = a2!2 + a313 - a414, (a2 ,a3,a4  0); 3 - Eq (18) with aja3 < alSS; 4 - Eq

(18) with aa3 = ajS,; 5 - Kerr-nonlinearity, f oc I. The broken lines at curves

1-3 correspond to the unstable solitons. In the insertion, the intensity profiles

I(x) are depicted of solitons that carry the same power but correspond to .

different branches of function (P) - upper branch (U) and lower branch (L).

Fig. 2. Various functions of nonlinearity f vs. the field intensity I (see details in the

text).

A I

. . . . . .. . . . . . . . . . ..... . . . .. . ... . . . .
•



444

-~(AQ



* - . - - - ~ .~,&........h...

* .

SIINIfl AIIVILLIHIIV 0

.- ~... ~~*.*.***4..*.*.-...



Ultimate Bistability: Hysteretic Resonance of a Slightly -

Relativistic Electron

A. E. Kaplan

School of Electrical Engineering

Purdue University, West Lafayette, IN 47907

-. -, .

ABSTRACT

It was recently predicted by us that cyclotron resonance of free electrons in

vacuum and conduction electrons in semiconductors may exhibit bistable and hysteretic

behavior which is due to relativistic mass-effect (or pseudo relativistic - in semiconduc-

tors). Based on this prediction, the hysteretic cyclotron resonance of a trapped single

electron in vacuum has recently been experimentally observed by G. Gabrielse et al. In

this paper we consider this phenomenon as an ultimate bistability since it is based on

the most fundamental mechanism of nonlinearity (relativistic mass-effect), involves the

interaction of EM wave with the simplest single elementary particle, and demonstrate

the first known intrinsic bistability with no macroscopic optical feedback. We also

show that a hysteretic resonance of a single electron based on relativistic effects is feasi-

ble also in one-dimensional parabolic potential (with no magnetic field required to

attain a resonance).

..................................................
* .°. .
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Introduction

Optical bistabilityl is a rapidly expanding and promising field in nonlinear optics

which offers both new insights in nonlinear interactions of light with matter and poten-

tials for superfast switching devices for optical computers and optical signal processing. £"

Therefore, the fundamental physical problems related to that phenomenon have become

important as well. One of the most intriguing questions is: what is the ultimate physi-

cal level of bistable interaction of light with matter? It is feasible to realize (and possi-

bly, to exploit) the bistable interaction of the microscopic level?

In our recent work2 it was predicted that even a slight relativistic mass-effect of a

single free electron may result in large nonlinear effects such as hysteresis and bistabil-

ity in cyclotron resonance under action of EM wave. The predicted effect may be

regarded as the ultimate and fundamental one in many respects:

(i) it suggests the bistable interaction of EM wave with the single simplest micros-

copic physical object - an electron

(ii) the nonlinearity that makes the bistable interaction possible is based on one of

the most fundamental physical effects - relativistic change of electron mass

(iii) it was the first proposed effect that offered bistability based on the intrinsic pro-

perty of an microscopic object rather than on macroscopic optical feedback in a

nonlinear medium.

Very recently, based on the prediction2, the hysteretic (bistable) cyclotron reso-

nance of a free electron has been discovered by G. Gabrielse et al.3 in experiment in

which a simple electron has been trapped in a Penning trapp for the period of time as

long as 10 months4 .

In Ref [2] it was also suggested that the analogous effect (i.e. hysteretic cyclotron

resonance) can be expected also in semiconductors with narrow energy gap between

conduction and valence bands. This problem was later addressed in Ref [5. In sem-

iconductors, the mass-effect required for the hysteretic resonance, is provided by the
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nonparabolicity of the semiconductor conduction band which causes a pseudo-

relativistic dependence' 7 of the effective mass of conduction electrons on their momen-

turn or energy.

In the both cases (i.e. free-space electrons and conduction electrons), the hysteretic

resonance is attributed to the dependence of the cyclotron frequency of forced oscilla-

tions on the relativistic mass of the electron, and hence on its momentum (or kinetic

energy). The critical condition for bistability to occur is that the nonlinear (relativistic)

shift of the cyclotron frequency must be sufficiently greater thn the linewidth of the

resonance. To some extent, this effect resembles hysteresis in a classic nonlinear oscilla-

tor8 or in nonlinear parametric systems . -

From the electrodynamic viewpoint, one of the most important features of the new

effect is that it is based on the intrinsic properties of the microscopic components, not

on the macroscopic optical feedback. This differs fundamentally from all conventional

mechanisms of optical bistabilityI which so far have always been based on macroscopic I

nonlinear properties of the media. Nonlinear change in macroscopic susceptibility

under action of the strong EM wave provides dramatic change in the optical condition

of propagation of this wave under various special circumstances which, in turn, leads

again to the change in the susceptibility. This so-called optical feedback in nonlinear

macro-systems results in the existence of multistable (in particular, bistable) steady

states. No such optical feedback exists in the hysteretic electron resonances. One of

the consequences of this fact is that those effects exibit also so called cavityless (or

resonator-free) bistabilityl ° . Recently, some new mechanisms of optical bistability

based on the intrinsic bistability analogous to bistable cyclotron resonance (in the sense

that they are attributed to the nonlinear shift of resonant frequency of material) have

been proposed1,12 and experimentally observed" .-

In this paper we review the theory of hysteretic (bistable) cyclotron resonance of a

single free electron (Section 1) and conduction electrons in semiconductors (Section 2).



We show also that in fact the presence of a magnetic field (which is required to attain a

cyclotron resonance) is not a necessary condition for a hysteretic effect; one may attain

a bistability based on relativistic mass-effect even in any one-dimensional oscillator hav-

ing parabolic potential well (Section 3).

1. Bistable (hysteretic) cyclotron resonance of a free electron

We shall demonstrate2 this effect for the simplest case of a single electron

immersed in a strong constant magnetic field H0 and interacting with an electromag-

netic field Ein of amplitude E (E<<H). The plane EM wave propagates along the axis

z parallel to 11 . Field H0 provides a cyclotron resonance with the unperturbed fre-

quency

W eH/c(1)

where e is an electrical charge of the electron, m0 is its rest mass, and c is the speed of

light. We also assume that a small constant electric field V(z) is applied along axis z;

this field is provided by some potential to arrange a trapping of the electron 3 and to

compensate a radiation force caused by the EM wave.

We treat this problem classically. The equation of motion for the electron moving

with arbitrary velocity v is 14

d(mV)/dt (e/cWV x Hs + eP, + FP , (1.2)

m mo(o - v 2 /0})1/2 (1.)

where tI is the total magnetic field (including the EM wave component HEM, i.e.

Or" = 10 + 1EM), EE = 2ji + g(z)6e is the total electric field, and the term

represents energy losses of the electron. In the ultimate case in which the losses are

caused by EM radiation of the rotating electron (and Ivi <<c) this term can be writ-

ten as 14

p 6

........................................................ ... ... .. --.- ". -
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=(2e2/3c 2)d2V/dt 2  (1.4)

In the general case the losses may be much larger and caused by various factors, basi-

cally by collisions, so that the radiation losses could be neglected. The rorce is then

proportional to the velocity of the electron, e.g., Flo -ym~wOV, where -y is the dimen-AL

sionless width of cyclotron resonance. The radiation losses can also be represented by

this formula, since one can assume" that d2V/dt2  -w4V, which yields

2e2w° 2

'Iradreko < I ,(1.5- 5- «1,...-

3mc 3 c-)-"rdt0  (1.5)

where re es 2.8 x 101 cm is an electron radius and k wou is a resonance

wave number. Since for the plane wave

11EM = k X (1.6)

(where w is a frequency of EM field, and k w/c), Eq (1.2) governing the interaction of

the "magnetized" electron with an arbitrary propagating plane wave Encan be written

in the form:

d(mV)/dt + 2yenw0V e [n + e- n" (" in] (1.7)

where the term eVx[-kX~i1J/W is a radiation force applied to the electron. Usually this

term is neglected (see, e.g. Ref. [5), except in Ref. 16 in which, however, losses and

other possible forces like counter-potential f were not considered. However, all of these

interactions become important0 when considering excited steady states (and multi-

stability) of the electron under the action of the sufficiently intense EM wave.

We introduce dimensionless notations:
z E Uz) 1(1.8)

mOC2 k0 ' roc2  ko

All these variables (as well as -n) are supposed to be very small compared to unity:

. " . -.. -,
. . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. .-. '.'*. . . . . .



-6-.-:!

I PlI I I*1I -Y << , IlO -.''

Using these conditions, and making use of definitions (1.8) and of the fact that under

the assumed geometry the vectors U0, ', ', and -9, are parallel to each other, one can

rewrite Eq (1.7) in the form: .

++ )j + + X + "-P(z)] (1.10)

where the term / 2/2 represents a smal nonlinearity which is due to weak relativistic

mass effect. We also assume that the ,;NI wave Ei is circularly polarized (which max-

imizes the expected effect) and rotates in the same direction as the electron, i.e.

S= p[6,sin(wt - kz) + iycos(wt - kz)] . (1.11)

The required solution to Eq (1.10) can then be written in the form:

(t,z) - fl[6xsin(wt - kz + ,1 + .ycos(wt - kz + 0)] + /a~ . (1.12)

Bv virtue of conditions (1.9), the unknown variables/3,//3, and vary little in the time

W -, which allows us to use slow-varying envelope approximation, i.e. to neglect their

second-order time derivatives and higher harmonics, and to write down the set of trun-

cated first-order equations:

/o= - + pcos¢ (1.13)

w0 =3 - (A + /2/2 + psin /1) (1.14)

/3,Iwo = -/f, - p(z) + Itocos, ; (1.1)-

z c/3,, (1.16) i'i.;

Here A = (w - wo0)/lw 0 << 1; A is a dimensionless resonant detuning. The steady-state

solution (d/dt - 0) is thus determined by the relationships

. .. ..-
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2 = 1[9 + (A + 02/2)2]  (1.17)

(i ,), =0o; p(2,) = . (1.18)..,.--
p .) .) - " poZ

tan. = -(A + #8/2) y 11)

where the subscript "s" labels characteristics of the steady-state regime. It is seen from

Eqs (1.17) and (1.10) that the steady-state kinetic energy 0,2/2 does not depend on

parameters of the force p(z). This force cancels the radiation force of the incident wave

and is small compared to all the other forces in the problem; e.g., in the region of

interest p ,- 0,. It is obvious, though, that the characteristics of the transient

regime, described by Eqs (1.13-1.16) depend on the spatial behavior of the force p(z).

For example, the frequency of transient oscillations along the z axis should depend

upon gradient dp/dz in the vicinity of z = z., Eq. (1.18). However, the magnitude of

these oscillations at the onset of the hysteretic jumps can be assumed to be arbitrarily

small, provided that the amplitude (or the frequency) of the incident wave is swept

sufficiently slow to prevent the transient regime from masking the hysteretic behavior

of the steady-state regime. Under the threshold conditions

2 2A<
IL > Ati (16/3<'3), Ath -/V (1.20)

Eq. (1.17) yields a three-valued solution for fl. The plot of steady-state kinetic energy

02/2 as a function of resonant detuning A and incident intensity p2 is shown in Fig. 1.

At the threshold point this value is IL2h = 2"y/v'3 (curve 2 in Fig. 1), and the radius of

orbit is r = Oth/ko << X0. In the case of the multivalued solution the examination of

Eqs. (1.13-1.16), linearized in the close vicinity of the steady-state solutions (1.17-1.19),

shows that only those states are stable which satisfy the energy criterion

d(I,0)/d(p 2 ) > 0 (1.21)

(solid branches of the curves in Fig. 1); otherwise, they become unstable (dashed

* ... .. . .-



branches in Fig. 1). This meets the physical expectations, and leads to hysteretic

behavior of the electron under conditions (1.20).

Let us make some quantitative estimates. A magnetic field of strength

H0 = 100 kG produces the cyclotron frequency w0 = 1.7 x 1012 sec- 1 (X0 - 1.07 mm).

Then in the ultimate case of radiation losses, the resonance width is "1 - 10- 11, which

yields the threshold field amplitude to be as small as Eth 1.7 x 10- ' V/cm, and the

kinetic energy as small as 0n2/2 - 1.2 x 10-11. This is, in fact, even near a-1 times

smaller than a quantum limit of the energy of excitation which is 211w 0/mc 2 (here

a e2/I c = 1/137 is the fine-structure constant). Therefore, in the close vicinity of

the threshold (1.20), only the quantum ipproach17 can give an adequate description of

the phenomenon, whereas for sufficiently strong driving field (p >> Pth) the classical

results (and, in particular, hysteretic jumps) remain valid.

Very recently, the hysterctic cyclotron resonance of a free electron in vacuum has

been first experimentally observed by G. Gabrielse et. a3 using a single electron kept

continuously in a Penning trap for more than 10 months. The hysteresis was so pro-

nounced that it provided the best signal to noise ratio ever observed with a single parti-

cle in a trap. The cyclotron energy was measured via a second manifestation of the

relativistic mass increase. The electron was weakly confined in a Penning trap and

oscillated in a direction which is orthogonal to the cyclotron motion with a frequency

that was measureably shifted in proportion to the electron's kinetic energy. The typi-

cal hysteresis observed in the experiment 3 is depicted at Fig. 2.

2. Bistable cyclotron resonance in semiconductors

Here we shall consider a bistable (hysteretic) cyclotron resonance in semiconduc-

tors s . This effect is feasible due to the nonparabolicity of the semiconductor conduc-

tion band which causes a pseudo-relativistic behavior 6 ,7 of the effective mass of conduc-

tion electrons in the narrow-gap semiconductors such as e.g. InSb.



The main featur-.s of this effect as compared with the free-electron case, are as fol-

lows:

i) The nonlinearity of conduction electrons in semiconductors is many orders of

magnitude larger than the relativistic nonlinearity of the free electron. This

allows one to attain a fairly low critical pumping intensity (although still much

greater than in vacuum) ror observation of the effect even taking into considera-

tion the much faster relaxation in semiconductors.

ii) The effective mass of the electron in some semiconductors (e.g. InSb) is very small

which results in a considerable increase of the cyclotron frequency (up to 70-80

times) as compared to the free electron for the same magnetic field (or allows one

to correspondingly decrease the required magnetic field). In the case of InSb, this

allows one to use the 10.6 pm radiation of a CO2 laser with a magnetic field H,,

140 kG.

iii) In semiconductors, the nonlinear cyclotron resonance in the strong optic resonant

field is accompanied by some small electrostatic potential between the faces of the

semiconductor layer. This effect is due to the radiation force of the driving EM

field and to the redistribution of electric charges in semiconductor. This potential

exhibits a hysteretic behavior as well. Therefore, this effect could be the first pro- ..

.posed all-optical nonlinear phenomenon which results simultaneously in optic as

well as opto-electronic ! .tability. This property provides for an immediate elec-

tronic indication of the effect.

We shall demonstrate the feasibilit y of this effect using a classical model for the

interaction of an optical wave with a single electron in the conduction band of a sem-

iconductor. The thin semiconductor film is immersed in the homogeneous magnetic

field 110 which is perpendicular to the layer. The semiconductor is also subject to the

action of an EM wave o of amplitude E which propagates along the same direction as

7.
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the magnetic field (axis z), the same as in the free-electron case. However, now the

small static electric field f which is directed along the z axis and compensates the radi-

ation force, is not provided anymore by the external potential, but is caused by the

background charge. This is due to a redistribution of the electron density between the

faces of the semiconductor film, i.e. the problem becomes self-consistent as far as this

potential is concerned.

In narrow-gap semiconductors which can be described by the Kane two-band

model 6 with isotropic nonparabolic bands, the conduction band energy W (which is an

analog of kinetic energy) can be written as

W(p) VM= 2v 4 + p2v (2.1)

where F is the momentum of the conduction electron, mo is its effective mass at the

bottom of the conduction band, V0 = \VG/2m* is some characteristic speed, and WG

is the band gap (the energy W in Eq. (2.1) is measured with respect to the middle of ,..

the gap). The velocity V of the conduction electron is given by 18 V( ) aW(p)/5.

By virtue of Eq. (2.1), this yields

p =m*V/ fvl - v2/V 2 ;V p/m,*TN1 -p/po2, (2.2)

where P0 - mov = m /2~j is some characteristic momentum. One can see from

Eqs. (2.1) and (2.2) that relations among W, v and p are completely relativistic, with vo

playing a role as an "effective speed of light," and W;/2 as an "effective rest energy" of

the electron. For InSb, WG = 0.24 eV, m, = 0.014 m. (where m. is the rest mass of an

electron in vacuum), so that v, - 1.15 x 108 cm/sec. Therefore, it is natural to look
for applications of this property of conduction electrons in solid state analogous to

those of free electrons. For example, since the relativistic mass-effect of the free elec-

tron in vacuum is a basic phenomenon for the cyclotron maser ("gyrotron") ,tI, it was

recently proposed to develop a solid-state cyclotron maser 2 0 by exploiting the pseudo-

................................ . ..... ... .



relativistic behavior of conduction electrons in semiconductors.

"- .'.

From Eqs. (2.1) and (2.2) one readily gets a formula for the effective mass of con-

duction electron m*(v):

m'm(I - vi 2/v 2)1/ 2 (23

IVI 0 (2.3)

which again has a relativistic form, see Eq. (1.3). Therefore, one can readily arrive at

the equation of the electron motion, Eq. (1.10), where now .-is interpreted as

% = eHo/moc, k0 = woV(/w)/c, and all the rest of variables in Eq. (1.8) are defined

through mg instead of m. This immediately leads to the truncated dynamic equations

(1.13)-(1.16), and therefore - to the equations (I.17)-(1.19) for the steady-state regime

and the threshold conditions (1.20). The only new feature is that now, since the quasi-

static electric field g (or variable p=eg/mocko) is developed by the redistribution of

electrons inside the film, these equations are to be supplemented by the equation for the

field g. Strictly speaking, the single-electron model cannot provide the required equa-

tion. The complete theory of the dynamics of the system can be developed only in a

framework of a kinetic approach which takes into consideration the distribution func-

tion of electrons in the system. llowevor, in order to get results for the steady-state

regime as well as equations for the small perturbations of that regime, one can use

these arguiments. By the analogy with other effects in which the redistribution of

charges is caused by an external force (e.g. as in Hall effect, or in the case when an

external electrostatic field is applied to the film), it is easy to understand that the dis-

tribution of electrons remains almost homogeneous inside the film such that no free

bulk charges occur while the induced charges are localized at the surfaces of the film.

The thickness of the charged surface layers is of the order of the Debye's radius rD,

which is fairly small (e.g. for 1-5 and N,-0.5°1015 cm -3 where N0 is the concentration

of electrons, one has I rD~10 - cm at room temperature). The entire film then can be

considered as a capacitor with capacitance C - per unit area (where d is its
4 ird
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thickness) whose potential U determines the field g: g = U/d q/Cd. Here, the electr-

ical charge per unit area q is related with the current J per unit area by the relation- -, a,

ship dq/dt = J = aE, where or is a conductivity of the material, and
" E, = v'E(v/clcosO-g. S.

From these relationships one gets q = Cdg = cg/41r, or, after taking time deriva-

tive, (g/41r = 4 = J = orE,. Making use of Eq. (1.15), one finally gets the required

equation for g:

rTedg/dt = mo(<Vz> + wo<v,>) = e < E, > (2.4)

where r = f/47ror is a relaxation time for the redistribution of the charge, and angle

brackets denote an averaging over ensemble of electrons. The steady-state magnitude

of g (or p), however, is still determined by Eq. (1.18), i.e. p. = -y/52, or

eg. = mock-y, 61 2 . (2.5)

The threshold conditions (1.20) with application to the amplitude of the required criti-

cal field amplitude Eth gives

I eEj > I eEth 2  WG rmo4; w 0-w> -Yv"3 (2.6)
3 4

Let us make some qualitative estimates for the threshold intensity Et2 of the

incident wave. In the case of InSb, m2 = 0.014 in, WG = 0.24 eV. The damping rate 4

-1 depends primarily on the concentration of impurities. We assume it to be 'Y 10-2

for X0 - 10.6 pm, if a CO2 laser is used , a source of the driving radiation. The mag-

netic field required to get a cyclotron resonance in the neighborhood of X - 10.6 pm is

1C 1% 140 kG, and Eq. (2.6) provides for a critical field required to observe hysteresis:

Eth - 300 V/cm. This corresponds to the incident power of about 240 W/cm2 which

can be readily attained.

Let us also estimate the quasi-static potential U = dg (d is the thickness of the

!ayer) which accompanies the phenomeon. Ftlom Eq. (2.5), one can see that the field g

,4 /-- '
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must experience hysteresis as long as the velocity # does. At the point of higher exci- %

tation where P.m,, - p/ly [see Eq. (1.13)), this gives -

ginx - eE o0%_/m.c (2.7)

In the above instance, if the pumping intensity is slightly above the threshold Et (for

instance, E = 500 V/cm), one gets gm,, 1 V/cm. For a thickness of the layer d - 0.1

cm this gives U = dg - 0.1 V which can be readily measured. The relaxation time for

the potential U is of order of 7, = £/4ro.

The presence of two different relaxation times (r, and w. . 1) in the system can

cause even more complicated behavior which depends on the ratio of these times i.e.

quantity r,'y wo0 In the limit r, --. 0, i.e. if rqy w0 < < 1, it can be shown that two

states out of the three possible steady-states (in the case of a multi-valued solution) are

stable with regard to small perturbations. These two stable steady-states must satisfy

the same condition (1.21) as for free electrons, i.e. those are the states which belong to

upper and lower branches of hysteresis. However, if 7,- w0  1, there could be some

domains on the upper branch (which are close to the onset of the reverse jump from the

upper branch to the lower one) where these steady states becomes unstable. This may

result in excitation of self-oscillations and possibly chaotic motion. Using the usual for-

mula for conductivity Is a = eNM where N is the concentration of conduction electrons ""

and M = ew./m'y is their mobility, one gets the expression for parameter rTo .

I('2
2___ ~II4f 2  11/2

r017 WO 4 re2N - P = .Em : J(.
where w is the plasma frequency 18. In the above mentioned instance of InSb with

SI0-2 this yields rwo y - 1018/N where N is expressed in cn-s. One must note,

though, that a more comprehensive theory of stability (as well as of the entire

phenomenon) has to involve consideration of cooperative motion of electrons, i.e. the

kinetics of distribution functions rather than the motion of a single electron.
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3. Bistable noncyclotron resonance of a slightly - relativistic electron

In the above sections, the bistable eftct was discussed which is based on a rotation

of a slightly - relativistic electron in a magnetic field (i.e. on a nonlinear cyclotron

effect). However, it is obvious that the presence of a magnetic field is not a necessary

condition; the only factors substantial for the bistable resonant excitation to exist are

presence of nonlinearity (in our case- relativistic mass-effect) and sufficiently sharp

resonance. The latter one can be provided by any potential well. In the simplest and

probably most characteristical case it is one-dimensional parabolic potential well (which

would correspond to a conventional linear oscillator has the electron mass not varied

due to relativistic effect). We assume that the electron oscillates along the x axis, and

is excited by the driving periodic electric field E = E cos wt, which is directed along

the same axis (for the sake of simplicity, we shall neglect here the action of the radia-

tion force, since it does not affect directly the steady-state regime, see Section 1), and

that the motion is only slightly relativistic (i.e. i 2 << c2). In such a case, the motion

of the electron is governed by the equation

x + 2ywi + xw2(1 _ i 2/2c 2) =eE sin wt (3.1)mo-

where w,, is an eigenfrequency of a respective linear oscillator in the potential well. We

use the same approximation as in Section I and look for the forced solution of Eq (3.1)

in the form

x(t) vm(t) w - sin(wt + 0) (3.2)

where the maximal speed of electron vm and its phase 4 are slow varying functions of

time. We introduce again a dimensionless variables

_ WO 0-Wo eE 1
m ; A = , p --- 0 - (3.3)c WO  mo c2  ko

and assume that all of them are much smaller than unity. Then, in the same fashion as

...........................- o °.-•-o-..- " . °. .** -.-. , ....... ,.... . . . . . . . .... . -. o.. . . . . .-• . ...o °., . o.
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in Section 1, one gets a truncated equation for their dynamics:.._

- . +l op cos 1 (3.4)

-(A' + #,,/2+ psin 0/0)(3.5)

which (with modified coefficients and 0 , = 0) reproduce respectively Eqs (1.13) and ._

" ~ ~~(1.14). The steady-state regimes (d/dt =0) follows immediately:': ,.-

2 4)312 + +A -- ]2 /321 ]  .) !:i

which again reproduces Eq (1.17) with modified coefficients. By introduction/ p//8,"-'

and 3, = fln/4, Eq (3.5) is reduced exactly to Eq (1.17) for Ai and fl, Therefore, taking...

into consideration Eqs (1.20) and (3.3), the threshold conditions required in order to i "

obs erve bistability of exitation or slightly -relativistic oscillator (3.1) are .'''i

I eEl > 32 komoC2(,y/v") 31/2  w - too > wo"y V/3. (3.7) -.:

If the damping rate -1 is again due to radiation of EM wave by the electron, the

required threshold intensity of the driving field is of the same order of magnitude as :.:i

ft.

that one discussed in Section I for the bistable cyclotron resonance, in vaccuum."-

f-.

Conclusion .=
In conclusion, we demonstrated the feasibility of hysteretic behavior and bistability

or cyclotron resonance of free electrons in vacuum and conduction electrons in semicon-

ductors under the action of sufficiently strong quasiresonant driving radiation. We

showed also that the same effect must be peculiar for a conventional (i.e. noncyclotron)

resonance of a slightly - relativistic electron in a one-dimensional potential well. Future

research should involve quantum as wel as kinetic theory of the phenomenon. Even

far from the n rate ystgai due action of the strong pumping should cause a

dramatic change in the location and the sae cylof the resonant curve of cyclotron

"- -' " '-'',- -, '.= ".2 * .- ',_. -. ..=/'.", .''.,. .- - " - ''.. " ...'' ',. "Conclusio"n." . .-"- ." ". -." .".-

.,.,.,... ..:,., .,__.,-. . ... In.. co cuso , ede o stae the. feasiilit of .. ysteretic behavior... an ,bist ,. •.iliy.."
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resonance; in particular, the dependence on the frequency (or magnetic field) should

become drastically asymmetrical. This effect may provide a new experimental method

to measure the nonparabolicity of the conduction band in semiconductors, effective

mnass, nonlinewr relacation, etc. Probably, the most attractive and fundamental feature ""-

of all these effects is that for the first time they provide an unique opportunity to

experimentally (and theoretically) study hysteretic and bistable phenomenon at a quan-

turn level.
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Captions to figures

Fig. 1. The plots of normalized kinetic energy of the electron 02/2 (a) vs normal-

ized resonant detuning A/,I for various intensities of incident EM field, and

(b) vs normalized incident intensity p2/2- for various detunings. Curves:

(a) 1, p2/2- = 1; p2/2-? = (2v3)3 ; 3, p2/29 = 3; (b) 1, A/-y = 0; 2, ..

AI -V3-; 3, A/ -3.

Fig. 2. Experimentally observed3 axial frequency shift (left vertical scale) as a func-

tion of the frequency of the driving force when this frequency is swept

downward (2a) and upward (2b) through resonance. The right vertical scale

is the kinetic energy in the cyclotron motion in eV.
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beam. The mirror is selected to be partially transmitting

NONLINEAR OPTICAL DEVICE USING in order to provide an output optical beam.
SELF-TRAPPING 01" LIGHT

BRIEF DESCRIPTION OF THE DRAWING

BACKGROUND OF THE INVENTION S The invention will be more readily understood after
The study of optically bistable devices and their ge- reading the following detailed description in conjunc-

nerc characteristics has received increased attention in tion wi(h the drawing wherein:
the scientific community. See, for example, the special FIG. I is a schematic block diagram of an apparatus
issue on optical bistability IEEE Journal of Quantum constructed in accordance with the prsent invention,
Electronics, QE-17. March 1981. Bistable optical devices 10 and
are often classified into one of two categories. In the FIG. 2 is a graph of optical output power versus input
first category are intrinsic devices which are those de- power for the device shown in FIG. 1.
vices in which the feedback required for bistability isAS
optical. In the second category are hybrid devices in DETAILED DESCRIPTION
which devices some form of electrical feedback, some- IS The basic principles upon which the new class of
times in conjunc n with optical feedback, is used. device operates can be understood from a discussion of
Intrinsic devices are of particular interest because of the apparatus shown in FIG. I. A laser beam 101 of
their potential for ultra-fast switching. power, P,.,, having a Gaussian intensity profile is fo-

Many of the intrinsic devices known in the poor art cused onto the input face 102 of a nonlinear medium 103
require resonant optical cavities. As a result of this 20 having an iqtensity dependent index of refraction. For
characteristic, these prior art intrinsic devices require self-focusing to be possible the medium must be chosen
that the input light to the device be tuned to a special such that its refractive index increases with increasing -. -

frequency. In addition, these devices are frequently light intensity. A measure of the strength of this nonlin-
sluggish in their operation due to the long lifetimes earity is called the "critical power." P, When Pi.= P~,
associated with their high-finesse cavities. It is expected 25 the input laser beam passes through the medium with no
that the operation of an intrinsic optically bistable de- change in spot size, as shown by dashed lines 104 and
vice could he improved if the device did not require a l05; this situation is referred to as "self-trapping." For
resonant cavity. Pn<Pc, the laser beam diverges less rapidly than it

would in the absence of the nonlinearity and forSUMMARY OF THE INVENTION 30 P I > P, the beam converges. For P I< < P, there is-"":

Tepresnt invention is based upon a fundamentally ~~teba ovre.FrP Pteeipe f essentially no self-focusing; the input focal spot size isnew type of intrinsic optical bistability. The operation chosen such that, for these conditions, the laser beamof devie using the present invention is based on self- coe uhtafrteecniintelsrba -- ,.::
focus v ih using onis baen slf- diverges appreciably in passing through the nonlinear

fouing of light. Self'focusing occurs when a light
beam having a nonuniform spatial profile, such as a 35 medium, as shown by the solid lines 104 and 107.
Gaussian laser beam, progagates through a nonlinear The optical field at output face I0 of the nonlinear
medium having an index of refraction that increases ,medium 103 is imaged by a lens 109 onto the partially
with increased light intensity. When the light intensity transmitting mirror III which is aligned normal to the
increases to a critical power level, Pc,, the input laser laser beam. Immediately in front of the mirror is an
beam passes through the medium with no change in 40 appropriately-sized optically absorbent disk 110 having
spot size, and this situation is referred to as self-trap- an aperture positioned to permit the self-trapped beam
ping. to pass through to the mirror III. The aperture size is

In accordance with the present invention a nonlinear adjusted to satisfy two criteria. First, it must be small
medium whose index of refraction increases with in- enough that in the absence of self-focusing the fraction
creased light intensity is arranged to have input and 45 of the incident light feedback into the nonlinear medium
output faces into which and out of which a light beam by the mirror is small. Secondly, it is large enough that
having a nonuniform spatial profile can be propagated. under self-trapping conditions essentially all the light
A mirror is combined with the output face of the nonlin- passes through the aperture and is reflected back upon
ear medium so as to reflect only the light energy that itself by the mirror. This strong feedback reinforces the
propagates in an area at the output face that is approxi- So self-focusing in the nonlinear medium and it allows
mately equal to the area which the beam presents at this self-trapping to be maintained even when the input
face when the beam is propagating at the critical power power is reduced below Pep This is the mechanism
level, that is. when the beam is self-trapped. When the which gives rise to the optical bistability and hysteresis.
beam power has been increased to the critical power The aperture and mirror could be combined and depos-
level, a substantial fraction of the beam will be reflected 55 ited on the exit face of the nonlinear medium to mini-
back into the nonlinear medium. The beam intensity can mize device length and optical transit times. Clearly
then be decreased to a lower power level and the beam other arrangements can be devised by those skilled in
will remain self-trapped because of the light energy that the art which lead to optical bistability using the same
is reflected from the mirror, and the device will there- basic principles.
fore exhibit a bistable optical characteristic. 60 In the embodiment which was constructed, atomic

In the embodiment which was constructed, a lens is sodium vapor was utilized as the nonlinear medium 103.
positioned behind the output face of the nonlinear me- Sodium vapor has the virtue of having a large nonlinear
dium in order to image the light at the output face of the index for frequencies near its resonance transitions. In
medium onto a light absorbent disk having an aperture addition, steady-state self-focusing and self-trapping
approximately equal in size to the spot size that the 63 have been observed in it using cw dye lasers. See the
beam would have at the disk when the beam is self- article entitled "cw Self-Focusing and Self-Trapping of
trapped. A mirror is positioned on the side of the opti- Light in Sodium Vapor," by J. E. Bjorkholm and A.
cally absorbent disk that is opposite to the propagating Ashkin, Physical Review Letters, Vol. 32, pages 129-132,
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" Jan. 28, 1974. The sodium vapor was contained in a As will be readily apparent to those skilled in the an,

20-cm.long heated cell 120 constructed of pyrex. The a device that exhibits the bistable characteristic of the
input laser beam 101 was obtained from a single-mode type shown in FIG. 2 can function as a memory ele-
cw ring dye laser (Spectra-Physics Model 380A). The ment. For example, the device can be biased at an input
transverse mode of the laser was TEMo (Gaussian $ power level of Pb at a point substantially midway be-

mode) and its focal spot size on the input face 102 of the tween the two step changes shown in FIG. 2. At this
medium 103 was approximately 80 pm; the correspond- bias level of Pb, the output power level is dependent on

- ing confocal parameter of the laser beam was about 6.8 the previous history of input power levels. If the input
*cm so that in the absence of self-focusing the spot size power level is increased to a value in excess of 130 mW

on the output face 106 of the medium was about 480 1O and then returned to the bias level of Pb the device will
pim. A linear polarizer and a quarter wave plate situated operate at the point designated as 202 in FIG. 2 and an
between the laser and the vapor cell was used as an output power level of about 1.9 mW will be present. If
isolator; thus circularly polarized light was incident on the other hand the input power level is decreased to
onto the cell. Lens 109 was a 16-cm focal length lens a value below 95 mW and then returned to the bias level k
positioned to image the optical field at the exit face IM I of Pb the device will operate at a point corresponding to
of the medium, with unity magnification, onto flat mir- 201 in FIG. 2 and an output power level of about 0.5
ror 111 having a reflectance of 94 percent. A disk 110 mW will be present. In this way, the device remembers

having an aperture with a diameter of approximately what the previous input power level has been and can

150 tam was placed several mm in front of the mirror. therefore function as an optical memory.15 Without feedback from the mirror strong self-focus- 20 What has been described hereinabove is an illustra-

ing and self-trapping were readily observed with ap- tv moieto h rsn neto.Nmru
proximately 150 mW of light tuned roughly I GHz departures may be made by those skilled in the art with-

ehrfthe 3S(F=2)--3P out cieparting from the spirit and scope of the presentabove the resonant frequency of invention. For example, if the medium 103 has a sufli-
transition at 5896 A. The sodium density was nominally 25 ciently strong nonlinearity, the entire device may be
2 x1012 cm- 3

. To observe bistability the mirror was scalable to short lengths giving the potential for fast
aligned normal to the laser bear and the input light was
amplitude modulated at about 50 Hz with a spinning response times. By focusing the inpo laser beam ingsuch

transmission grating composed of closely spaced fine of the light, device lengths on the order of 50Xt withavelengt

wires. The input power (Pi1) of beam 101 and the power 30 corresponding transit times for the light of about 0.2 - -

of beam 112 passing through the mirror I1 (Pa*) were sec, should be possible.-- - -
monitored as functions of time using photodiodes and a What is claimed is:
dual-channel digital oscilloscope (Nicolet Explorer 11); 1. A nonlinear bistable optical device for use with an
the signals were also displayed and recorded as P"I, vs input light beam having a nonuniform spatial profile
P . 35 comprising a nonlinear medium (103) having an input

FIG. 2 presents data obtained when the parameters of face (102) and an output face (106), said nonlinear me-
the device were adjusted to exhibit bistable behavior; dium having an index of refraction that increases with

* the laser was tuned roughly I GHz above the increasing light intensity, and means (109, 110 and 111)
3S(F=2)---3P1 transition. As the input power was including a reflective central aperture positioned at the
increased upward, switching from a low-transmussion 40 output face of said nonlinear medium for reflecting light
state to a high-transmission state occurred at an input back into the medium only from a limited central area of
power of about 130 mW. At the switching point, the said output face.

* transmission abruptly increased by a factor of 4.1; the 2. A nonlinear bistable optical device as defined in
rise-time of the switch was about 20 ;saec. With input claim I wherein said limited central area has a diameter
power decreasing, a downward switch of the Same 45 approximately equal to the diameter of an optical beam
speed occurred at about 95 mW of input power. Optical propagating within said nonlinear medium at the self-
pumping of sodium undoubtedly plays a role in the trapping power level.
nonlinearity of the medium and the observed switching 3. A nonlinear bistable optical device as defined in
time may be more characteristic of optical pumping claim I wherein the means for reflecting light comprises

* than of the switching process itself. The dashed lines So an optically absorbent disk (310) having an aperture
show the calculated low and high transmission limits, approximately equal to the diameter of an optical beam
based on the measurement of 45 mW incident onto the propagating within said nonlinear medium at the self-
0. 15 mm aperture for an input power of 140 mW and no trapping power level, and a partially transmitting mir-

* feedback. The high transmission limit assumes 100 per- ror (111) positioned adjacent to said disk with the disk
cent transmission by the aperture. The upward switch 55 between said medium and said mirror.
occurs at a power level roughly equal to Pt, Visual 4. A nonlinear bistable optical device as defined in
observation of the resonance fluorescence induced by claim 3 wherein said means for reflecting light further
the laser beam showed dramatically that, at switching, includes a lens (109) positioned between said disk and
the laser beam abruptly changes from diverging props- said medium.
gation to what appeared to be self-trapping. Under 60 5. A nonlinear bistable optical device as defined in
different conditions several switching levels and several claim 4 wherein said nonlinear medium is an atomic
hysteresis loops were obtained, perhaps corresponding sodium vapor contained in a heated cell (10) con-
to oscillations of the spot size as the laser beam prop- structed of pyrex.
gated through the self-focusing medium. a "
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Extreme-Ultraviolet and X-ray Emission
and Amplification by Non-relativistic Electron Beams

Traversing a Superlattiee TL's ;s k,.4.a

A. E. Kaplan and S. Datta . .
School of Electrical Engineering A

Purdue University
West Lafayette, IN 47007 ''_11 4' iI' )

Abstract
High-energy electrons emit resonant electromagnetic radiation when pass-

ing through a spatially periodic medium. It is conventionally assumed that
ultra-relativistic electron beams are required to obtain significant emission. We
demonstrate theoretically the feasibility of exploiting solid-state superlattices
with short periods to obtain both spontaneous and stimulated emission in the
far-ultraviolet and soft X-ray range using non-relativistic beams.

Introduction

Fast-moving electrons emit electromagnetic waves when moving from one
medium into another with a different dielectric constant [1-3). This is known
as transition radiation and was predicted by Ginzburg and Frank [1. In a spa-
tially periodic medium the waves emitted at different interfaces interfere so
that a resonant emission is obtained when the following condition is satisfied

V/ cosf = c/v - nX/Q (1)

where X is the wavelength of radiation, 9 is the period of the spatially varying
dielectric constant i of medium (it is conventionally assumed that the varia-
tions are very small), v is velocity of the electrons (assumed normal to the
interfaces), 0 is the angle between the direction of wave propagation and elec-
tron motion, n is an integer, and T is a "mean" c. This condition is readily
derived by requiring that the waves emitted at different interfaces interfere
constructively at a distant point. Usually the period f >> X, so that ultra-
relativistic beams (v/c - 1) are required in order to satisfy Eq(l) for real P.
Recently the possibility of stimulated resonance radiation of ultra-relativistic
(- 50 Gev) electrons traveling through a stack of metal foils was considered [41,
with 9 - 7 cm.

In this paper, we demonstrate the feasibility of using non-relativistic elec-
tron beams in order to attain both spontaneous and stimulated emission in the
ultraviolet and X-ray range using solid-state superlattices with 9 100 A so
that 9/nX - 1. We show that the wavelength of resonant radiation and the
required energy of electrons are determined by the parameter Q = p/
where X is a "mean" plasma wavelength of the medium. If naX << (i.e. Q
<< 1), as is assumed in all previous work 12-41, then the wavelength of the
resonant radiation has an order of magnitude of X X Q, and the kinetic
(dimepsionless) energy of the electrons eU/mc2 must exceeS the critical amount
~I/VQ2"-02  1(0 < Q) which constitutes the use of ultra-relativistic
beams. On the contrary, if the period of the spatially periodic medium is
chosen so that Q >>1 (i.e. period 9 is much shorter than the plasma
wavelength, e.g. 9 50-200 A ), the wavelength of resonant radiation becomes
of the order of Xp/Q = 9/n, and the critical kinetic energy of the beam turns

*. . . . . . . .... .... ... . ....'



-2-

out to be extremely small: eU/mc2 - 1/2Q2, which may be less than a few kilo-
V volts even for very short wavelength radiation. The advantages of the pro-

posed method are: (1) the frequency of radiation can be easily tuned in a very
wide range by simply varying acceleratin potential of beam (which is very
hard to do with ultra the range of the possible angles ofthe wave propagation is almost unlimited, and (3) the cost of equipment and "

energy required for experiments with non-relativistic beams is insignificant
compared to large accelerating machines. This last consideration is perhaps the
most important.

The main requirements for non-relativistic short-wavelength resonant radi- .
ation is a periodic medium with a very short spatial period. Fortunately, the
development of molecular beam epitaxy (MBE) and other techniques in recent
years has made it possible to grow very thin films ( 100 A and less) with pre-
cise boundaries. Periodic structures composed of thin films of different materi-
als, in particular superlattices, have also been fabricated 151. Using these struc-
tures, non-relativistic electron beams with energies 20-200 KeV can be used togenerate radiation of wavelength 100-200 A and less. The concept of EM radia- .'
tion of electron beam in spatially periodic structures in general is known since

microwave traveling wave tube amplifiers (with nonrelativistic beams) and their
recent optical modification - free-electron lasers (with relativistic beams). An
important feature of transition radiation discussed in this paper is that the -.
electron beam travels through the material structure rather than in vacuum
above the structure as in traveling wave tubes), or through a spatially modu-
lated magnetic field (as in many free-electron lasers). This makes it possible to
use very short spatial periods. The problem is the energy transfer from the
electron beam to the material structure causing heating and possible damages.
This problem will be briefly addressed at the end of this paper.

In this paper, we show that resonant spontaneous emission with a total ..
power of 0.1 mW (around a wavelength - 200 A) can be obtained with a 75
KeV electron beam carrying a current of only I mA. The spontaneous emission
can be used as a narrowband source by selecting the radiation in a narrow -""
angular range. To get stimulated emission with again of 5% per pass, how-
ever, requires a significantly larger current (bxl 0  A/cm), to avoid sample
burnout it will be necessary to use pulsed operation with pukle lengths -0.1 ps,
which is a difficult task. However, it should be noted that coherent sources are
not available at these short wavelengths and getting significant stimulated
emission is a difficult problem in general.

Spontaneous Transition Emission

We will firsL obtain J.he reson.j.t wavelength of radiation from Eq(1) not-
*" ing that [3] j / O = I?,1V1 + 92V', where 1. and '2.2 are respectively the

thicknesses and dielectric constants of alternating layers forming the superlat-
tice, U = 01+92 is its spatial period. For short wavelengths p.2 < < ,2),
'1,2 = 1- ?2/Xi where \I 2 are the plasma wavelengths of the two materials
forming the superlattice, (, 2 = 4mc2/e 2N' 2 where N' is the density of elec-
trons). Thus, the mean dielectric constant may be written as

1 -),h/), where & = Q-(! 1 ) 2+, 2
2 )]. Substituting this into (1) and

solving it for X, one gets the resonant wavelengths:

X Q2  os2  : IVe~r-)-l--)-' (2)

where Q = nXp/9; (3 v/c; , = (t-/3) - , and jcr = (1+(Q 2-sin 2d)-1] 1/ 2 is the

.... . . . . . . . . . . . ..
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critical energy for the excitation of resonant radiation. For Q < 1,
X M Xp[Q I- /,r2--2). Here y,, m (Q2 "42)- 1/2 > 1, such that only an
ultra-relativistic beam can excite radiation. On the other hand, when Q >>

. 1, the critical kinetic energy turns out to be extremely low,
(eU/mc2) -= 'r-1 m 1/2Q 2, which is less than 10 KeV for all conventional
materials if 9 100 A. For sufficiently higher (but still non-relativistic) ener-
gies eU, Eq_2) ives simply

X = (-cose) e -Vmc2/2eU-cos6); eU << Mc2 = 0.51 MeV. (3).-
n il

For instance, if 9=100 A, n = 1, eU = 75 KeV, and 9 = 45, one has
X = 113.6 A; for n = 10, X = 11.3 A.

The resonant radiation (i.e. spontaneous emission in the system) can pro-
vide a narrowband source of radiation. A single electron traversing multilayer
structure with N layers radiates energy I in a solid angle dil in the frequency
interval between w and w+dw, given by 11-41

d21/dwdfn = (d21/dwdfl) 4sin 2(CQ 1/#)sin2(CN/2)/sin2C (4)

where C (~--Vcos9)r9/X, and d2Io/dfldw is a radiation produced by a single

interface. According to Ginsburg-Frank theory 11-3] for non-relativistic elec-
trons (# < < 1) and small variations of c (I AE = C1-'21 < < ) the distri-
bution of single-interface radiation is given by

d21/dfldw = e2#2[At(w)J2sin2 6/4x2c (5)

If the number N of layers is sufficiently large, (N > >I/A ) Eq(4) provides
for very narrow spectral peaks of radiation for each particular angle 0 (with
central wavelength determined by Eq(3)), which also implies that any frequency
is radiated in a very narrow intervals of angles. Noting that
&1 = X2(\1-2-X 2 ), and integrating Eq(4) over w and 0 (with dO = 2nin~dO),
one gets the total radiation in each order n

I = 16e2L9 2()\j 2--X2 2)2sin 2(nXrV /9)/33n 4 r, (6)

(where L = NO /2 is the total thickness of the struture) with the wavelengths

of radiation being in the range -(--1) < X < -(-+1). The total energy
n '

of radiation increases as speed f decreases. In order to calculate the power of
resonant radiation emitted by an electron beam with an electrical current J,
one must multiply Eqs(4)-(6) by J/e. If 9 = 100 A, 01 = 2 = 9/2, L = 1 pm,
eU = 75KeV, J = ImA, and X, u 400 (e.g. Zn, Cu, Ag or Au), \2 C-800A
(e.g. Si or Ge, see [61), the system can provide a radiation of first harmonic (n

- 1) with a total power 0.1 mW and a mean wavelength 200 A.

Stimulated Emhslon (Amplification)

We will derive now an amplification caused by the stimulated emission.
This effect may be viewed in the following way. An EM wave having a wave
vector component k. = ko cosO along the axis z (which coincides with the elec-
tron trajectory) produces the higher order spatial harmonics with

= k, - 22rn/1 which is due to the periodicity of medium. The phase velo-
cities of these harmonics along the axis x are, therefore, -
v = c/V?/cos04-2=/Qk). If the resonant condition (1) for X is fulfilled, one
of these phase velocities coincides with the speed of the electron that results in
an exchange of energy between the EM wave and the electron. For some

.. . . . . . . .. . . . . . . . . . . . . . .
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frequencies in the neighborhood of resonance, the electron loses energy to the
EM wave; this results in a coherent gain of the wave, or stimulated emission.

Essentially, this resembles a common mechanism of amplification for many
kinds of microwave devices based on the interaction of electrons with "slow"
EM wave. The important point is to find the intensities of the resonant spatial
harmonics of the field. In all the previous work on resonant radiation [2-4] it is
assumed that X < < I ( which is always valid in the ultra-relativistic case, see
the introductory section). This allows one to use the WKB approximation.
This approximation is not valid in our case since X may be of order or longer
that 9. Instead we will find a solution of the exact wave equation (with
periodic parameters) based on the assumption of smallness of variations of sus-
ceptibility (i.e., I At/7-] <« 1, which is always true for short wavelengths); no
assumption is made regarding the ratio X/Q. Furthermore, the spatial variation
of e(z) is usually approximated by a cosine function [2-4). In this approach, the
relative amplitude p. of nth harmonic of the EM field is p - (A/t-)n, so that
for small AE p, is negligible for all but the smallest n ( 1). In our approach,
we can treat any arbitrary function of (z), in particular the true rectangular

* function. We show that p. falls off algebraically like the Fourier coefficients of
E(z). Significant radiation is expected even for large n provided the interfaces
are sharp enough. In this paper, we approach the problem using a single- _..

particle picture which provides direct insight into the mechanism of the
electron-EM wave interaction. The problem can also be treated using either
the Boltzmann equation [41 or a quantum mechanical formalism; we plan to .-
address these aspects in a subsequent publication [7).

We consider the exact Maxwell equation for the EM field [0 with e(z)
being an arbitrary periodic function in z. We assume a plane wave; it can be
shown that only the EM wave with its electric field 9 polarized in the plane of
incidence (i.e. plane x,z) may be amplified by the beam [8]. By virtue of the
Floquet's theorem for wave equations with periodic coe cients 191, any com-
ponent of the EM field can be written as a sum of spatial harmonics: ... *.

u = uoexp(jkf--jwt)[li + pnep(2jnxz/Q + jn)j; (7)

where -?' = koxsin0+kozcosO, and p,, is the amplitude of the nth spatial bar-
monics. We make the conventional assumption that there is no retrorefiection,
which is valid if NI Aj/?' 2 < 1, and I AE/e(o < <cos0. This assumption is
strictly true in the vicinity of 0 = 45 *(see 181). Substituting the EM field in
the !form (7) into the Maxwell equations, collecting the terms with
exp(jk.Y+2jnwz/Q) for each particular n and retaining only terms that are first
order in anL<<cosf), where the a's are the Fourie coefficients of c(z):
E(z) = T + , ancos(2nirz/f +to., one gets the amplitudes uo,p. of the spatial

harmonics of nonvanishing components of electric and magnetic fields(Ex,Hy,E,): E, = Eocosf; H. = ENVI; E, = -Eosini, and
0 I + qsinSe/cos'

a.%/2i"[ q(2cost +q) I);::;_

Pa I-qcos--q2

where Eo is the amplitude of the principal harmonic of total electric field, and
q - 2rn/1 k. )n/1 %1Z. Further calculations are based on the conventional

........................... *.. ... ** J.*.*.-..-*..**...,.o

• " " " -'.----. .-.. . . . . . -+''''+-- _; . ',,+.- +.-;.- '+'-.,+,;'_.. . . . ... .- :=.. '' ,' .,' .+L-Dx',..;.""D',. '
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model of energy exchange between the EM field and an electron which is used,
e.g. in the tiheory of free-electrn lasers (see e.g. 110)). From the Lorentz equa-
tion mc d( $'7)/dt = e(E+[3xH). one gets the equation for the energy

-= "m1c2 of electron , 9'
df/dt = ec(X) - - (9)

where E = EtNt),t] is the field at the instantaneous location of the electron, .
and E are unperturbed vetors, A is a small perturbation of electron velocity
due to interaction, and AE is a small perturbation of the field seen by the elec-
tron due its spatial displacement in respect to the unperturbed trajectory, i.e.

t
Az(t);Az = c f Afidt (10)

0
For the assumed polarization of the field, it follows from the Lorentz equation
that

t t
= -s- f (E1-#Hy)dt; A3-s-m f Endt (11)

0 0 ,....

In Eqs (Q)-(11) one has to take into account only that particular n component
of the wave which is "resonant" to the speed of electron, i.e. that one with
S-nl < < 1. After substituting z = c/it and the amplitudes (8) of the
proper resonant harmonic of E,, and ES) into (9)-(11), integrating over the
temporal interval 10,r = L/Oc, where r is a time for an electron to pass
through the superlattice, one kas to average the result over all the possible
phases 0n of the relevant field harmonic. We denote this operation by angle
brackets. Note that the term <F> in (9) vanishes, i.e. the stimulated emis-
sion is only due to changes in the electron motion caused by the field. Finally,
one gets the total averaed change of the electron energy per pass:

- EPI cos'(p coS9- )n 71"""-
= M,&c2yX * r) a IW*'U

(l-cosv.r) + t-yp 2 sin 2a(-2 + 2cosvnr+ vn minvnj)]; (12)

where vn = w[J',0 (cosO+q)-1J = #c(nr--)/1 is a resonant factor. For some v,
the change of energy <A > becomes negative which constitutes the gain of
EM field, <46EEM> = -<At> . In the non-relativistic case the main contri-
bution to the change of energy is due to z-components of A and AE i.e., in "
(12) 12 (« (an/2)1(l-#cO} 2  Replacing the term

(-2+2cosVi+vminvr)/LA 1 by its negative extremum -4/x3 (yr r), one gets
the maximal EM-wave gain per electron per pass:

= ae 2E 2L3 sin 20(1/#"coS8)2 /mcSiX (13)"-

In order to obtain an amplification r per pass in the system bombarded by an
electron beam with the density of electric current i(A/cm2 ), one has to multiply
<A1EM> by i/e and divide by the energy flux of incident EM wave per unity
area of the interface Ecos/2R, where R - 377f0 is the vacuum impedance. " "'"-
One has also to take into account that for rectangular form of
c(z), &0/2 = (At/nir) sin(nxfl/#) with AE = X-(Xjs-Xjs). Bearing in mind a """-
resonant condition (3), one finally gets the maximal EM wave amplification perpass: ... "a = 8pieRLsin2(wl/nf/ )sin2S/mc2 # r¢cose, (14)

where '-



=. . . . . . . . . . . . . . . . . . .

.- 10X _X 2 2( 1/-cos) 5n-5 = X50-'(X 2-X 2)(cos$ +nX/:).
If X 140)A, =100A I I, I = 0

2 
= 50 k , - n =1, L =lpm, Xcm40 0 A,X, m 800 A, 9 = 45 ° and i = 5x1010 A/cmf 141 (i.g. beam of 2 pm diameter

with a current -. 5x10 3 A), one gets an amplification r = 5% per pass. The
required speed of electrons is # z, 0.474 which corresponds to energy eU = 69
KeV. For larger X the amplification increases drastically. With the mirrors
situated outside the superlattice to form a Fabry-Perot resonator to provide
feedback, the system becomes a short-wave laser which may transform
significant portion of energy of electron beam into coherent radiation. It is
obvious that the amplifiers and lasers based on the proposed principle should
work in the short pulse regime of operation, with the duration of current pulse
being determined by the heating, ionization, diffusion of absorbed electrons,
etc. As a rough approximation, the per atom heating rate caused by the
energy losses of the electron beam Il], is "Lj)

(ne/Na)dE/dt = 4xiZ(mv 2)-n('j2 mv/e 2w) (15)
where ne i/ev is the electron beam density, N" is the atomic density of the
material, Z is the atomic number. For the parameters mentioned above, the
duration of the current pulse must be shorter than ~10- a sec in order for the
energy transfer per atom to be of order of -1 eV or less. One may note though
that in the case of ultra-relativistic beams (41 with energy -50 GeV for the
same current, the losses (15) are even greater, such that one needs even shorter
pulses. It will probably be hard to obtain such short and powerful pulses, but
it may prove worthwhile. However, the first step is to attain spontaneous
resonant emission as described in the beginning of this letter. The spontaneous
emission can be used as a very narrowband source of radiation by selecting nar-
row range of angles [Eq. (4)]. It should also be noted that the spontaneous
radiaton intensity depends on the total current in the electron beam unlike the
stimulated emission gain which depends on the current density. Since there is
no constraint on the current density, the conditions to obtan spontaneous emis-
sion are much more relaxed. According to Eqs. (4-6), the electrical current
required to observe spontaneous emission with the same spotsize of the beam is
-10-I0 less than that required for stimulated emission.

Conclusion

In conclusion, we have demonstrated the feasibility of generating far- ....
ultraviolet and soft X-ray radiation by electron beams with relatively low,
non-relativistic energies, traversing the solid-state superlattice composed of
very thin periodic layers. The use of low energies is a desirable feature as corn- '1
pared with ultra-relativistic beams. The proposed system can be used as a very
efficient noncoherent source of narrowband radiation, and, under special condi-
tions, as an amplifier and laser.

We thankfully appreciate very useful discussions with G. Ascarelli, R.
Gunshor, as well as with P. Kelley, A. Calawa, N. Economou, and all partici-
pants at the seminar given by A. E. K. at Lincoln Lab, M.I.T.
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Extreme-ultraviolet and x-ray emission and amplification by nonrelativistic
electron beams traversing a superlattice

A. E. Kaplan and S. Datta
School of Electrical Engineering, Purdue University. West Lafayette. Indiana 47907

(Received 17 November 1983; accepted for publication 18 January 1984)

High-energy electrons emit resonant electromagnetic radiation when passing through a spatially
periodic medium. It is conventionally assumed that ultrarelativistic electron beams are required
to obtain significant emission. We demonstrate theoretically the feasibility of exploiting solid-
state superlattices with short spatial periods to obtain both spontaneous and stimulated emission
in the extreme-ultraviolet and soft x-ray range using nonrelativistic beams.

PACS numbers: 78.45. + h, 79.20.Kz, 41.80.Dd

Fast-moving electrons emit electromagnetic waves ing machines. This last consideration is perhaps the most
when moving from one medium into another with a different important.
dielectric constant."- This is known as transition radiation Fortunately, the development of molecu!ar beam epi-
and was predicted by Ginzburg and Frank.' In a spatially taxy IMBE) and other techniques in recent years has made it
periodic medium the waves emitted at different interfaces possible to grow very thin films (- 100 A and less) with pre-
interfere so that a resonant emission is obtained when the cise boundaries. Periodic structures composed of thin films
following condition is satisfied- 2: of different materials (in particular, superlattices) have also

Scos 6 = c/u - nAI, ( 1 ) been fabricated.' Using these structures, nonrelativistic elec-
tron beams with energies 70-200 keV can be used to generate '

where A is the wavelength of radiation, 1 the period of the radiation of wavelength 100-200 , and less. An important
spatially varying dielectric constant c of medium (it is con- feature of transition radiation is that the electron beam tra-
ventionally assumed that the variations are very small), v vels through the material structure rather than in vacuum
velocity of the electrons (assumed normal to the interfaces), 0 above the structure (as in traveling wave tubes'), or through a
the angle between the direction of wave propagation and spatially modulated magnetic field (as in many free-electron
electron motion, n an integer, and Z a "mean" c. Usually the lasers"). This makes it possible to use very short spatial per-
period l>A, so that ultrarelativistic beams (v/c -= 1) are re- iods.
quired in order to satisfy Eq. (1) for real 0. Recently, the We will first obtain the resonant wavelength of radi-
possibility of stimulated resonance radiation of ultrarelati- ation from Eq. (1) noting that / = 1, v e, + [, s., where
vistic (- 50 GeV) electrons traveling through a stack of met- 1,, and e., are, respectively, the thicknesses and dielectric '"

al foils was considered,4 with l- 7 cm. constants of alternating layers forming the superlattice;
In this letter we demonstrate the feasibility of using / 1, is its spatial period. For short wavelengths

nonrelativistic electron beams in order to attain both sponta- I= 1, = i its /t p . Fh or t waveare gths

neous and stimulated emission in the extreme ultraviolet and ' -e
x-ray range using solid-state superlattices with 1- 100 so ~ wavelengths of the two materials forming the superlatticex-a rne sngsli-taespelttcs ih -10 s 2 2 e

that I/nA - 1. We show that the wavelength of resonant radi- (A 1. =4rmc /e NT.2, where N is the density of electrons).

ation and the required energy of electrons are determined by Thus, the mean dielectric constant may be written as

the parameter Q= nAp/l, where AP is a "mean" plasma - p  = 1 -(I, i + lA 2 ). Sub-
wavelength of the medium. If Q.< 1, as is actually assumed in stituting this into Eq. (1) and solving it for A, one gets the

all previous work," - then the wavelength of the resonant resonant wavelengths:
radiation has an order of magnitude of A -A, Q, and the ki- Q [1 cos0
netic energy oftheelectronseU/mc must exceed thecritical A = A, Q ±
amount - / --- > 1(0 < Q) which constitutes the use + cos'

of ultrarelativistic beams. On the contrary, if the period of X -y
the spatially periodic medium is chosen so that Q>l, the X/(r- 1 '- -lV (2)
wavelength of resonant radiation becomes of the order
- /Q =!/n, and th criticalkineti energyofthebeam where 6 =v/c, y'=( - 13'- , and y ,
turns out to be extremely small: eU/mc 2 -l/2Q'. The ad- = I1 + (Q - sin' 0)-' "' isthecriticaenergyrequiredfor
vantages of the proposed method are (1) the frequency of the excitation of resonant radiation. For Q<1, A-_A,.
radiation can be easily tuned in a very wide range by simply (Q ± 4id - . Here, , >. !, such that only an ultrare- ,'..:.'

varying accelerating potential of beam (which is very hard to lativistic beam can excite radiation. On the other hand, when
do with ultrarelativistic beams), (2) the range of the angles of Q> 1, the critical kinetic energy turns out to be extremelythe radiated emission is almost unlimited, and (3) the cost of low, r , - 1I 1/2Q 2, which gives less than 10 keV for all ....'

equipment and energy required for experiments with nonre- conventional materials if 1- 100 A. For sufficiently higher
lativistic beams is insignificant compared to large accelerat- (but still nonrelativistic) energies eU, Eq. (21 gives simply
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Quantum Theory of Spontaneous and Stimulated ;'1.

Resonant Transition Radiation

S. Datta and A. E. Kaplan,

School of Electrical Engineering,

Purdue University,

W. Lafayette, IN 47907

ABSTRACT

Resonant transition radiation, generated by high energy electron beams traversing

a periodic medium, has been considered by many researchers as a potential source of

both spontaneous and stimulated emission at short wavelengths. To our knowledge,

this problem has only been treated classically. This paper presents a quantum mechan-

ical theory that leads to a unified description of both spontaneous and stimulated emis-

sion and establishes a simple relation between them.

. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .



-2-

I. Introduction:

Electrons traveling at high speed emit electromagnetic waves when they move -

from one medium to another with a different dielectric constant. This is known as

transition radiation'. In a spatially periodic medium there is an interference of the
waves emitted at different interfaces producing a resonant transition radiation when the

following condition is satisfied (Fig. 1)2-4.

coso - c nX (--v 9

where

X is the wavelength of radiation in free space

9 is the period of the spatially varying dielectric constant E(z) [the variations are

usually assumed to be small],

is the 'mean' dielectric constant,

v is the velocity of the electrons in the z-direction perpendicular to the interftces,

0 is the angle between the direction of wave propagation and the z-axis,

and n is an integer

Resonant transition radiation has been considered by a number of workers as a

possible source of short wavelength radiation. Usually the period 0 is much greater

than X so that ultra-relativistic electron beams with v/c _, I are required to satisfy Eq.

14. The possibility of using non-relativistic electron beams with short period solid state

superlattices has also been considered recently5 .

To our knowledge the problem of resonant transition radiation has only been

treated classically. In classical theory spontaneous and stimulated emission are two

different problems. Spontaneous emission is obtained from Maxwell's equations, treat-

ing the electron beam as a fixed current source. To obtain stimulated emission, how-

ever, we must consider the effe.ct of the electromagnetic wave on the electron beam.
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This can be done using either a collective approach 4 (Boltzmann equation) or a single

particle approach 5. There is some discrepancy in the two results.

In this paper we will present a quantum mechanical treatment of resonant transi- ..-

tion radiation. In the quantum mechanical approach, the electrons and the electromag-

netic wave are treated simultaneously and both spontaneous and stimulated emission

come out from the same formalism. A simple fundamental relation is established

between the spontaneous emission rate and the stimulated emission gain. The spon-

taneous emission intensity obtained quantum mechanically agrees exactly with the clas-

sical results3 . However, the stimulated emission gain obtained quantum mechanically

differs from both Refs. 4 and 5.

In the quantum mechanical theory we consider the interaction between the elec-

tron beam and the electromagnetic normal modes of the periodic medium. These uor-

mal modes consist of an infinite number of spatial harmonics with wavequmbers

2n 7r
ko + (n = integer, ko = 2r/X' X' = X/v/E whose amplitudes depend on the

Fourier components of E(z). The spatial harmonic,, have phase velocities less than that *

of the fundamental (n =0) by the factor (1 + nX'/P). Consequently it is possible for

the electron beam to Cerenkov radiate into the higher spatial harmonics even if v<c.

Resonant transition radiation can equivalently be viewed as a process of Cerenkov

emission into the higher spatial harmonics. The results for both spontaneous and

stimulated resonant transition radiation are the same as those for ordinary Cerenkov

radiation multiplied by the squared amplitude of the nth spatial harmonic of an

appropriate field component.

Section II gives a brief summary of the classical results for spontaneous resonant

transition radiation. In Section [I we describe the quantum theory of ordinary Ceren- -.

kov radiation; both the spontaneous emission rate and the stimulated emission gain are

discussed and a simple fundamental relationship is established between them. These

• -
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results are modified in Section V for resonant transition radiation using the spatial har-

* monic amplitudes obtained in Section IV.

Hi. Classica Theory:

The energy U0 radiated in a frequency range dwj in a solid angle dO) by at] electron .

traversing an interface between two media with dielectric constants Cl and C2 is given

by 6

d2 U0  e e2  sin 2 0 1C 4E2 '21 i-dcos&-#' 2  2

dwdf) 4irCocv/ 47r2  E I e'os8)(1-/3 2cos28)

where

AE = I E21 /Eo

=(C, + E2,/2C0

Co =permittivity of vacuum

=v/c

IE~/

Using Equation (1), we can rewrite Equation (2) as,A

d 2u, _ 
2  s 2e AC 12 2 q (2)

dwdO- 41rECcvE 4x 2  If E2n

* where q =X/P lE -

In a periodic medium with multiple interfaces the total radiated energy U is given

by
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dU d dU 0  4 sin(V 1/2Q )sin( N)
dwdQ dwdfl sin 2( /2)(3

where 9 is the length of one of the layers, 2N is the number of layers and

2= v.(±- /&os8). If N is sufficiently large, the radiation shows very narrow spec-
X 3

tral peaks around values of 0 for which is an integer multiple of 27r. The location of

the peaks is given by

=2;r -n

or,

- cos9

which is identical to Equation (1). The narrow spectral peaks can be approximated by

delta functions to give for a particular value of n.

dU _d
2U0 Orj

dwdO - dwdf] 8rsin2 -- J(2n7)

- ddO4Nq sin2 ~- 6 cosG + nq- (4)

Integrating over the solid angle we get the energy U radiated into the frequency inter-

* val dw for a particular value of n.

2 12
dU _ e2  sin 2o A__I 2Ng . n2rQ n (5)
dw -4irEoc\/E' s1n - 2q2 (2-nq3 (5

0 where coso = - n

Here we have used Equation (3) for d 2 U/dwdfl and assumed that it varies slowly com-

pared to the delta function. Equation (5) gives the total energy radiated by one elec-

tron; multiplying by J/e (J =current density) we get the radiated power per I unit
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area.

dl eJsinO 2N12 zE n'{ -

dw 4,rE0 cv'/ 7' - s n2q2(2 nof ) (-)

I. Quantum Theory of Cerenkov Radiation:

In this section we will describe spontaneous and stimulated Cerenkov radiation

using a quantum mechanical formalism. As we have mentioned in the introduction, the

results for Cerenkov radiation are readily adapted to resonant transition radiation sim-

ply by multiplying with the squared amplitude of the spatial harmonic of an appropri-

ate field component; this is done in Sections IV and V.

Consider a free non-relativistic electron (relativistic effects are incorporated later

with a simple modification) interacting with a radiation field.

Ho = + E tWk aj,.aW,, (7a) "
2 m

Hilt= EKV.,aj. + Kj,.ak,, (7b)

elK~~i'_L =- 0 mP~e-iN'g + e-9lP (7c) ::'-

where

Vv represent the wavevector and polarization of the photon mode,

Wk ck/V,

V is the volume of normalization, '-

p is the momentum operator for the electron,

m is the electron mass,

1 is the electronic position operator.

S. .. . . . .. . . . . . . . . . . . . . . . . . . ..



The initial state Ii> has the photon modes in harmonic oscillator states nk,,> and

the electron in the state 7 ,> [ (V)-'/ 2 exp i(jf - Ei/) E1  t 2I3;/2mJ

I> j H1 Inj> (8)

We consider transitions to a final state F> with the electron in state Jr> and one

more (or one less) photon in mode f~v corresponding to photon emission (or absorp- -

tion). The first-order matrix element M for this transition is given by

M -< rj Kj,. > (emission) (9a)

<7h1 K:kI lii> (absorption) (9b)

*Assuming that the length of the interaction region is LYPSin the x,y,z directions

* and that the time of interaction is T, we get from Equation (g),

2 VEohw~2~IuFet ~ / 1 +~ LxLyL 1.T

inOL/ sin(fl.,L,,/2) sin(f] L2/2) sin(OT/2) (0

(flxLx/2) (n Ly/2) (OxL 1/2) (ClT/2) (0

where

0 = (E - Er F k1k)

and the upper (lower) sign is for emission (absorption).

* The total transition probability is given by I MI 2 integrated over the possible final elec-

*tronic states d~f If LX, L , are sufficiently large we can treat the sin 2x/x 2 factors as

* delta functions in this integration.
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l4+flj (nj + L) L jLe% sin2O sinOfTI2 (1
2 2 V 2EOVm2&k'k JT/

The electron couples only to the photons which are polarized in the plane containing 7

and i~(Fig. 2). To account for relativistic effects we should use the Dirac equation

* rather than the Schrodinger equation for the electrons, However, since electron spin

* does not play any role in Cerenkov emission, we can use the Klein-Gordon equation 7' 8.

It is shown in Ref. 7 that using the Klein-Gordon equation we get m(-t, + Yf)/2 in place

of m in the expression for IMI (Equation 10) where

E~ymc 2 (12)

Consequently Equation (11) is modified to

ILLy LZ e2v2sin20 2,jjTlsnl/2(3
£ 2 2 V 2EoV"Wk 7i+f N nfT/2J

where we have used the relation v = 1t3/m-yj. Using the momentum conservation con-

dition (0.,.x 0) and the relativistic energy-momentum relation (E2  P2 p 2 +M2C4) we

can write,

0 :Fkvcos -F Wk +

* = kv- 2,icoso - '7f+'i (14)
'1i +7fVE 2-1i 20

Usually the energy tL'k of the emitted photon is a very small fraction of the electron

energy so that Ef ne E1 and yf -= -. Also we can assume LL 2L = V so that the

* wavefunctions are normalized to the interaction volume. With these assumptions we

can simplify Equations (13) and (14),

* . . . . . . . .7.. .



±Ar n e2 v2sin 2G T21 sin OT/2f2 12 2J EOVTkk IIfT/2J UG

where f) = TFkvcose k ~+t2 2

= :kvcs -± T.i (15b)

The total spontaneous emission U, by an electron is obtained by integrating Equa-

tion (15a) (taking the upper sign with nK 0) over all photon modes i.If the time of

interaction T is long enough we can treat the sin2x/x 2 as a delta function in this

integration to get

dU e2wv
dw 4irE~c2 sie

To obtain the gain per pass we need the difference between stimulated emission

and absorption which arises from the small difference in (I for the two cases (Equation

15b).

Ank e2wv2sin29
T - T F (17)

nV 4E0oYrc 2V

where

F A(snJ 16 (maximum)

0 [T/2

Equations (16) and (17) give the spontaneously radiated energy in a frequtency interval

w to w+dw and the gain per pass at a frequency w due to a single electron traveling at

a velocity v. For a beam of electrons with a current density

J(=- env ,n =electron density) we should multiply Equation (16) by J/e to get the
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intensity, l(W/m 2) and Equation (17) by nV to get the total gain, r.

dl eJwvsin2 G (1a= T __ (18a) ...
dw 4wE 0c2

r T3 eJwvsin 2 • F (18b)4Eo0'mc 2

Equations (18a) and (18b) apply to ordinary Cerenkov radiation; it is shown in

Sections IV and V that the results for resonant transition radiation are identical except -

for a multiplying factor depending on the relative amplitude of the appropriate spatial

harmonic. From Equations (18a) and (18b) we can derive a simple relationship between

the spontaneous emission intensity and the stimulated emission gain which will hold

- true even for resonant transition radiation.

r l .(F r). m 19 i-Idli
,I

IV. Electromagnetic Waves in a Periodic Medium:

Consider an electromagnetic wave propagating at an angle 8 to the z-direction

which is perpendicular to the plane of the layers (Fig. 2). The coupling of the wave to

the electrons is proportional to the component of the electron momentum along the

direction of the electric field (Equation 10); consequently the electrons couple only to

the waves polarized in the plane containing , and i. For this polarization the field

components are E1 ,E, and Hy; the component that determines the coupling strength is

E. since the electron current is along z. By Floquet's Theorem E. can be written as

E2  Ejoexpji(kV--wt)[ + >jpnexp Iir-- + On (20)

noo 
%.-V-

ci vO 11-

.U °
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Starting from Maxwell's equations, assuming an arbitrary periodic dielectric con-

stant E(z), we can show that for small AK,

an(nq-AI)
P- 2nq 2- njJJ (21)

where

00 2nirz
E(z) =E + r an cos( + P1.

n=1

-' V. Quantum Theory of Resonant Transition Radiation:

The results (Equations 18) in Section III have to be multiplied by p. 12 in order to

get the results for resonant transition radiation.

dl eJwvsin2O na 2 nq- .d -T ----- (22)
d 47rE 0c2  4 nq(2 - nqj)

Assuming E(z) has a rectangular form we can readily calculate its Fourier coefficients

an*

n  2 - sin (23)

nir E

Using Equation (23) in Equation (22) we get

dl_ eiwvsin29 A 2 r'- 1  2g -
=- T - sin2  (24)

dw 4rEoc2  E F r2 n 2q2(2 - nq).

= eJsin26 2Nq AE sin2 T  i

4rE0cVE j" 1 ( n2q2(2 - qf) .5•'-.
"

using the relation VT = NO. This is in agreement with the classical result quoted ear-

lier (Eq. 6). The stimulated emission gain r is readily obtained using the relationship

between r and -i- derived earlier (Eq. 19) for Cerenkov radiation. Since both
dw 

'

.6 .'L ' ..-.
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quantities are multiplied by p.2 (for resonant transition radiation) the relationship is

still valid.

IV. Conclusions
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and Amplification by Non-relativistic Electron Beams

Traversing a Superlattice

A. E. Kaplan and S. Datta
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Abstract
High-energy electrons emit resonant electromagnetic radiation when pass-

ing through a spatially periodic medium. It is conventionally assumed that
ultra-relativistic electron beams are required to obtain significant emission. We

- demonstrate theoretically the feasibility of exploiting solid-state superlattices
with short periods to obtain both spontaneous and stimulated emission in the
far-ultraviolet and soft X-ray range using non-relativistic beams.
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Fast-moving electrons emit electromagnetic waves when moving from one
medium into another with a different dielectric constant (1-31. This is known
as transition radiation and was predicted by Ginzburg and Frank [11. In a spa-
tially periodic medium the waves emitted at different interfaces interfere so
that a resonant emission is obtained when the following condition is satisfied .,%.-
[2-41: vF cos8 = c/v - nX/V (1)

where X is the wavelength of radiation, I is the period of the spatially varying
dielectric constant i of medium (it is conventionally assumed that the varia-
tions are very small), v is velocity of the electrons (assumed .normal to the
interfaces), 9 is the angle between the direction of wave propagation and elec-
tron motion, n is an integer, and T-is a "mean" e. This condition is readily
derived by requiring that the waves emitted at different interfaces interfere
constructively at a distant point. Usually the period 9 >> X, so that ultra-
relativistic beams (v/c n, 1) are required in order to satisfy Eq(1) for real 0.
Recently the possibility of stimulated resonance radiation of ultra-relativistic
(-,, 50 Gev) electrons traveling through a stack of metal foils was considered [41,
with 9 7 cm.

In this paper, we demonstrate the feasibility of using non-relativistic elec-
tron beams in order to attain both spontaneous and stimulated emission in the
ultraviolet and X-ray range using solid-state superlattices with 9 100 A so
that I/nX - 1. We show that the wavelength of resonant radiation and the
required energy of electrons are determined by the parameter Q - nX,/9,
where Xp is a "mean" plasma wavelength of the medium. If nX, < < 9 (i.e. Q
<< I), as is assumed in all previous work [2-41, then the wavelength of the
resonant radiation has an order of magnitude of X - X Q, and the kinetic
(dimen g ssa energy of the electrons eU/mc2 must exceeS the critical amount

p~I/nQ ss2> > 1 (9 < Q) which constitutes the use of ultra-relativistic
beams. On the contrary, if the period of the spatially periodic medium is
chosen so that Q > >1 (i.e. period I is much shorter than the plasma
wavelength, e.g. 9 50-200 A ), the wavelength of resonant radiation becomes

" " of the order of - Xp/Q = 9/n, and the critical kinetic energy of the beam turns
out to be extremely small: eU/mc2 - 1/2Q2, which may be less than a kilovolt
even for very short wavelength radiation. The advantages of the proposed
method are: (1) the frequency of radiation can be easily tuned in a very wide
range by simply varying accelerating potential of beam (which is very hard to
do with ultra-relativistic beams) (2) the range of the possible angles of the wave
propagation is almost unlimited, and (3) the cost of equipment and energy
required for experiments with non-relativistic beams is insignificant compared
to large accelerating machines. This last consideration is perhaps the most
important.

The main requirements for non-relativistic short-wavelength resonant radi-
ation is a periodic medium with a very short spatial period. Fortunately, the
development of molecular beam epitaxy (MBE) and other techniques in recent
years has made it possible to grow very thin films (- 100 A and less) with pre-
cise boundaries. Periodic structures composed of thin films of different materi-
&s, called superlattices, have also been fabricated (5]. Using these superlat-
tices, non-relativistic electron beams with energies 20-200 KeV can be used to
generate radiation of wavelength 100-200 A and less.

We will first obtain e reson.Apt wavelength of radiation from Eq(1) not-
ing that [3) 9 V #,VI +2 2 , where 912 and £2 are respectively the
thicknesses and dielectric constants of alternating layers forming the

. . . *. . . .. *. - .. %*.* _ * * -, ,-..
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superlattice, 9 01+12 is its spatial period. For short wavelengths
(\ << '\!2), t1, 2 = 1-.\2/\? 2 where X, 2 are the plasma wavelengths of the
two materi'ls forming the superlattice, 'X\,2 = 4T e2N ,2 where Ne is the
density of electrons). Thus, the mean dielectric constant may be written as

2 /.\ 2 -22 2
" 1 - X2/X , where'X.p - (Q1XI- +1 2 )2. Substituting this into (1) and

solving it for X, one gets the reson ant wavelengths:

X X Q2+cos 20 I.I Q(2)r~~2 0  a, ,

where Q = nXp/9;/3 - v/c; _y - (1-/#2 - , and "ycr = [1+(Q 2-sin 20)-1J]/ 2 is the
critical energy for the excitation of resonant radiation. For Q « 1,

! w XP(Q -k _. sf 2 ). Here " '(Q2-92) -'I 2  I, such that only an
ultra- relativistic beam can excite radiation. On the other hand, when Q >>
1, the critical kinetic energy turns out to be extremely low,
(eU/mc cr = Pcr- i- 1/2Q2, which is less than 500 eV for all conventional
materials if 9 100 A. For sufficiently higher (but still non-relativistic) ener-
gies eU, EqV2) fives simply

X U -'('-cos0) -me (VCc/2eV-cosO); eU « mc2 -0.51 MeV. (3)
n n

For instance, if 0=100 A, n = 1, eU - 75 KeY, and 0 - 45 one has
X = 113.6 A; for n = 10, X = 11.3 A.

The resonant radiation (which may be regarded as spontaneous emission in
the system) can provide a narrowband source of radiation. A single electron
traversing multilayer structure with N layers radiates energy I in a solid angle
dlf in the frequency interval between w and w+dw, given by [1-41

d21/dwdfl = (d21o/dwdf1) 4sin ( Q/#)sin2(.fN/2)/sin2  (4)

where -= (-V'r~cos8)wf/X, and d2l1/dOdw is a radiation produced by a single

interface. According to Ginsburg-Frank theory .1-31 for non-relativistic elec-
trons (0 << 1) and small variations of c (I A I = f'ElE2I < <i) the distri-
bution of single-interface radiation is given by

d21/dfldw e2/02IA( )J2sin 20/4xr2c (5)

If the number N of layers is sufficiently large, (N > > I/ ), Eq(4) provides
for very narrow spectral peaks of radiation for each particular angle 9 (with
central wavelength determined by Eq(3)), which also implies that any frequency
is radiated in a very narrow intervals of angles. Noting that
Ac = X(Xj-LX~j), and integrating Eq(4) over w and f0 (with d) = 2rsin~dO),
one gets the total radiation in each order n

I " I6e2L#2(Xj-2-X 2 )2sin 2(nf 91/9)/3in1, (6)

(where L = NP/2 is the total thiikness of the struture) with the wavelengths

of radiation being in the range (-1) < X < +-(- 1). The total energy

of radiation increases as speed P decreases. In order to calculate the power of
resonant radiation emitted by an electron beam with an electrical current J,
one must multiply Eqs(4)-(6) by J/e. If 9 = 100 A, 91 = 12 = 9/2, L = Ipm, . U'"-"

eU = 7SKeV, J = imA, and X, zg 400 A (e.g. Zn, Cu, Ag or Au), \ 2 0-800A
(e.g. Si or Ge, see [6]), the system can provide a radiation of first harmonic (a

1) with a total power - 0.33 mW and a mean wavelength - 200 A.
We will derive now an amplification caused by the stimulated emission.

This effect may be viewed in the following way. An EM wave having a wave

U' U- .. . . .................. U
-o '.. . - .. " ." - " '.- -. -. . . . . -, -. . . . .' . ". ",,j . ,'.. .% .. . . - • . . .' ." .'- . -.. ., .' .' " ,* .'. .. ... '. "- .-, U .,... ',
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vector component ka = k. cose along the axis z (which coincides with the elec-
tron trajectory) produces the higher order spatial harmonics with
k,= k, 2rn/I which is due to the periodicity of medium. The phase velo- K

cities o]. these harmonics along the axis x are, therefore,
v n = c/ 1(cos9-'2irn/Qko). If the resonant condition (1) for X is fulfilled, one
of these phase velocities coincides with the speed of the electron that results in
an exchange of energy between the EM wave and the electron. For some fre-
quencies in the neighborhood of resonance, the electron loses energy to the EM
wave; this results in a coherent gain of the wave, or stimulated emission.

Essentially, this resembles a common mechanism of amplification for many
kinds of microwave devices based on .the interaction of electrons with "slow"
EM wave. The important point is to find the intensities of the resonant spatial
harmonics of the field. In all the previous work on resonant radiation [2-41 it is
assumed that X < < ( which is always valid in the ultra-relativistic case, see
the introductory section). This allows one to use the WKB approximation.
This approximation is not valid in our case since X may be of order or longer
that P. Instead we will find a solution of the exact wave equation (with
periodic parameters) based on the assumption of smallness of variations of sus-
ceptibility (i.e., At/T1 << 1, which is always true for short wavelengths); no
assumption is made regarding the ratio X/P. Furthermore, the spatial variation .

of e(z) is usually approximated by a cosine function [2-41. In this approach, the
relative amplitude Pn of n h harmonic of the EM field Is pn (AfgE/, so that
for small At Pn is negligible for all but the smallest n (= 1). In our approach, -''-
we can treat any arbitrary function of c(z), in particular the true rectangular
function. We show that p. falls off algebraically like the Fourier coefficients of .7,
E(z). Significant radiation is expected even for large n provided the interfaces
are sharp enough. In this letter, we approach the problem using a single-
particle picture which provides direct insight into the mechanism of the
electron-EM wave interaction. The problem can also be treated using either
the Boltzmann equation [41 or a quantum mechanical formalism; we plan to
address these aspects in a subsequent publication [71.

We consider the exact Maxwell equation for the EM field with e(z) being
an arbitrary periodic function in z. We assume aplane wave; it can be shown
that only the EM wave with its electric field E polarized in the plane of
incidence (i.e. plane x,z) may be amplified by the beam 181. By virtue of the
Floquet's theorem for wave equations with periodic coefficients [90, any com-
ponent of the EM field can be written as a sum of spatial harmonics:

u = Uoexp(jk'-jwt)[l + Epnexp(2jnrz/ + j 0 ])]; (7)

where V.' = koxsinG+kozcos0, and pn is the amplitude of the nih spatial har-
monics. We make the conventional assumption that there is no retrorefiection,
which is valid if NI Aj/ZJ 2 < < 1, and I A/to < < cosg. This assumption is
strictly true in the vicinity of e - 45 (see (8). Substituting the EM field in
the _form (7) into the Maxwell equations, collecting the terms with
exp(jk'1'+2jnxz/#) for each particular n and retaining only terms that are first
order in aLZ<cosf), where the a 's are the Fourie coefficients of t(z):
t(z) = " + - acos(2nrz/1 + ), one gets the amplitudes uo,p. of the spatial

harmonics of nonvanishing com oents of electric and magnetic fields
(E.,Hy,E,): E. = Eocos0; H = E E -EoSinO, and. . . . ....-...

• ::~... .. . . . . . .";;.". -;;:-;.::;;-;
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I + qsin20/CoS9

a a./2
- q(2cOS+Iq) l+qcosO , (8). ".

[P's 1-qcosO-q 2
where E0 is the amplitude of the principal harmonic of total electric field, and
q = 2 n/ekr = Xn/Q /. Further calculations are based on the conventional field,-.nd
model of energy exchange between the EM field and an electron which is used,
e.g. in the tl o eory of free-electron lasers (see e.g. 1101). From the Lorentz equa-

tion mc do)/dt = e(E+[xh]). one gets the equation for the energy= yMC2 o f electron "~~_ ~

dF/dt = ec(Q) -ec( +PA +A); (0)
where J t = t),tJ is the field at the instantaneous location of the electron, -
and V are unperturbed vestors, AJ is a small perturbation of electron velocity
due to interaction, and AE is a small perturbation of the field seen by the elec-
tron due its spatial displacement in respect to the unperturbed trajectory, i.e.

Al- Az(t);Az = c f Afdt (10)D z o: : .

For the assumed polarization of the field, it follows from the Lorentz equation
that

tt
Aflx e f (E.-.He)dt; A#2 = f Edt

In Eqs (9)-( 11) one has to take into account only that particular nib component
of the wave which is "resonant" to the speed of electron, i.e. that one with
If-n r << 1. After substituting z = c/it and the amplitudes (8) of the
proper resonant harmonic of E ,H , and E, into (9)-(11), integrating over the
temporal interval [0,i = L/ilcJ, where r is a time for an electron to pass
through the superlattice, one has to average the result over all the possible
phases On of the relevant field harnonic. We denote this operation by angle
brackets. Note that the term <JE> in (9) vanishes, i.e. the stimulated emis-
sion is only due to changes in the electron motion caused by the field. Finally,
one gets the total averaed change of the electron energy per pass:

<4 = . -.- cos(p. cos#--#Vrp ) X
m#Ic2Z1 (Vnr)I)3  .a a

(1-coswr) + f 2 sin29(-2 + 2cosvnr+ vsinvn')J; (12)
0

where n- w[i v7(cos8+q)-lJ = flc(nr-f)/# is a resonant factor. For some Pn,
the change of energy <Af> becomes negative which constitutes the gain of
EM field, <AEpt> - -<AF>. In the non-relativistic case the main contri-
bution to the change of energy is due to z-components of 20 and A9 i.e., in
(12) - (pr, Pxti) «4 (a0/2)2 (1-/csG)2 . Replacing the term

(-2+2c0evr+Prsinvr)/1P3 by its negative extremum -4/0 (Pr ! r), one gets
the maximal EM-wave gain per electron per pass:

<AEEM> = an2e2E 2L3 sin 2 (1//i-cos0)2/mc 2 iX (13)" "

In order to obtain an amplification r per pass in the system bombarded by an
electron beam with the density of electric current i(A/cm2), one has to multiply -

. . . . . . . -. . . . . . . . . - , , - : - . . - , . . . , . . . . ,. ., . , . .. , - :
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< AEEM> by i/e and divide by the energy flux of incident EM wave per unity
area of the interface Eo2cos8/2R, where R = 3770" is the vacuum impedance.
One has also to take into account that for rectangular form of
E(z), an/2 = (A/nr) sin(nir9 1/9) with A = X2()j 2- 2). Bearing in mind a
resonant condition (3), one finally gets the maximal EM wave amplification per .Z
pass:,.-.., r = 8pieRL 3sin2(rnQ t/9 )sin20/mc 2 r4cosg, (14)

where
p = T--Q4( 2-X 2 )2 ( If-coso) 5n-5 = X2- (Xj 2-X 2 )2(cos0+nX/Q).

If X =14 A, V =o100A, 91  92 =5 0A, n=l, L =lpm, X- 1L-,400 A,
X -w 800 A, 0 =45 , and i = 5x 1011 A/cm2 [41 (i.g. beam of 2 pm diameter
with a current 1.hx 1 A), one gets an amplification r ,U 5% per pass. The
required speed of electrons is I 0.474 which corresponds to energy eU = 69
KeV. For larger X the amplification increases drastically. With the mirrors
situated outside the superlattice to form a Fabry-Perot resonator to provide
feedback, the system becomes a short-wave laser which may transform
significant portion of energy of electron beam into coherent radiation. It is
obvious that the amplifiers and lasers based on the proposed principle should
work in the short pulse regime of operation, with the duration of current pulse
being determined by the heating, ionization, diffusion of absorbed electrons,
etc.

In conclusion, we have demonstrated the feasibility of generating far-
ultraviolet and soft X-ray radiation by electron beams with relatively low,
non-relativistic energies, traversing the solid-state superlattice composed of
very thin periodic layers. The use of low energies is a desirable feature as com-
pared with ultra-relativistic beams. The proposed system can be used as a very
efficient noncoherent source of narrowband radiation, and, under special condi-
tions, as an amplifier and laser.

This work is supported by AFOSR grants.
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We consider the cyclotron resonance in a semiconductor which has a band with a relativistic energy-momentum disper-
sion and show that, when subject to quasi-resonant radiation, the energy of a free carrier in this band and the relative po-
tential drop between the two surfaces of the semiconductor facing the radiation exhibit bistability under classical single
electron approximation.

In a previous work by one of the authors [1I, it quite small in semiconductors. For instance, in narrow
was shown that cyclotron resonance of relativistic gap semiconductors they are nearly two orders of
electrons exhibits bistability due to energy dependence magnitude smaller than the bare electron mass in the
of the relativistic cyclotron frequency. In the present vicinity of the band edge [5]. This increases the cy-
letter, we consider the possibility of bistable cyclotron clotron frequency, making it possible to pump carriers
resonance in a semiconductor which has a nonparabolic with optical or near optical frequencies. For example,
band with a relativistic momentum dispersion in at if the semiconductor is n-type InSb and B0 - 140 kG,
least part of the first Brillouin zone 12-41. By means one can use C02-laser at 10.6 p. Third, the nonlinear
of a classical analysis, we demonstrate that the cyclo- cyclotron resonance in semiconductors is accompanied
tron of free carriers in the semiconductor exhibits by the appearance of a voltage drop between the two
bistability if the semiconductor is immersed in a surfaces of the sample facing the radiation. The voltage
homogeneous magnetic field So and irradiated by a drop arises from the redistribution of rotating carriers
circularly polarized light propagating along B0, under the influence of the radiation pressure and ex-

The present analysis is similar to that of ref. (1 . hibits bistability. Therefore, the proposed effect could
However, there are a number of novel features in the be the first known all-optical nonlinear phenomenon
present problem. First, the nonlinearity of free carriers which yields an opto.electronic bistability.
in semiconductors are several orders of magnitude larger Consider a semiconductor with a conduction band '

than the nonlinearity of relativistic electrons in vac- which has a relativistic momentum dispersion as in
uum. This lowers the threshold intensities for the Kane's isotropic two-band model * [2],
onset of hysteretic jumps in semiconductors, despite
rapid thermal relaxation which broadens the cyclotron
resonance. In contrast to ref. [I], the strength of the * The argument is easily generalized to holes of a valence
nonlinearity does not allow one to neglect the veloc- band with a relativistic momentum dispersion.
ity terms higher than the fourth order and the har- 2 This type of semiconductors have been discussed exten-

sively for the purpose of obtaining a cyclotron maser. See
monics higher than the first. We give an exact result rets. 3, 41.
in the steady state. Second, effective masses can be

0.031-9163/83/0000-0000/S 03.00 © 1983 North-Holland 305
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upper branch and moves along the upper branch with
100 increasing!. Prior to the jump at 12, the momentum is

approximately given by " -

8.0 p(4 "/w)
2 /3  1/2

2 If! is decreased now, the system moves down the
upper branch past 12 to 11. At I =11, the system

S, jumps to the lower stable branch. Prior to the jump,
40 b the momentum is

p1  [W*/w) 2 _ 111/2
2.0 " c

' d After the jump, the momentum is
00, 8' 100 123 _ (Por/c)(c + c~/(o o-/ -.-

00 20 40 6.0 80 10.0 120
• [+ 'l 2 (- - 1-Note that the hysteretic jumps at 11 and 12 are con-

tingent upon the charge distribution being in steady
Fig. 1. (p/po)2 versus 1/1o for wc = 10r: (a) w = 4r; (b) w state, at least relative to cyclotron transitions. InP sr; (c) w : 6r; (d) w = 7r. other words, the charge relaxation must be fast such

that Tor - 1. Furthermore, variations in ! must be
+ 1] [(o/o)2/3 - 11-2 slow such that drod/dt 4!. Using the expression for

mobility M = elm*l" and the conductivity a = eNp,

(WIP) 2 <(w*Ip) 2  where N is the free carrier density, one can write<(ot)<(c:r 2  (6) 7o ~*r(7eN-I=(oe)rw) C1
Of course, to observe the cyclotron resonance, one T°P = eom*lI 2(4ne2N- I = (e0/e.)([,/co) 2 , 1.
must have F'r CWc, W. W.o, is the plasma frequency. This condition puts a

It is seen from fig. I that, as! is increased from lower limit on the carrier density such that ' "
zero, the system moves along the lower branch of a N N1 = eom* 2 4ne 2 )- 1
curve corresponding to w until I reaches 12. At I -"" ""

=12, the system makes a hysteretic jump to the stable lfN < N1 , which corresponds to r0F 1, then
charge oscillations may be excited and the system
may not reach a stable steady state.

There is also an upper limit on the free carrier den-40- sity N. This comes about from the fact that at low
temperatures, band states are filled up to a Fermi mo-
mentum PF and cyclotron transitions should excite

3.0-
0 the electron to states for which p >PF- One can see

. - from the curves in fig. 1 that the transition from the
higher branch to the lower cannot occur if P3 < PF"

O ATherefore, in order to observe the bistable behavior
0 in full, one must have P3 > PF, and since PF, =(3f 2N) 1 3 as temperature goes to zero, I

( 2 )- 1, om r*(4?re 2)  = N I A N " ")

oo ' < 2  (3ff lh3)-l1p3 [(o*/Wo) 2/ 3  11 3/2  (7) . .
Jo 20 40 60 80 100 120

Fig2. g/go versus II o for w : 10r. a, b, c and d are the *3 m* here is the appropriate effective mass near the Fermi
ame as in fig. I. surface. Typically m* 4m,
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