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ABSTRACT

The paper addresses the question of the reliability of engineering

computations. It brings a set of paradoxical, unexpected results which shows

that the common practice can lead to unreliable results and conclusions. .

The theory and implementation of the analysis of elasticity problems with

stochastic input data (loads, domain, coefficients) are outlined. Numerical

examples illustrate the ideas and results.
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1. INTRODUCTION

J
/ Shape optimization in the structure mechanics became to be in the center

of the research and applications. Many papers and books dealing with this

subject appeared and special conferences dealt with these problems. The

research is directed toward theoretical questions as existence and characteri-

zation of the optimal design, bounds for the optimized values, numerical V , %7

treatment of the optimal design problems, etc. We will not mention here the

recent vast available literature. We mention only [10] [13] [18] [211 as

examples. '. , , .

We will address in this paper/the problem of the reliability of the

conclusions based on the-computational analysis and their relation to the .

problems of the optimal design.

By reliabij --we mean here that the conclusions sufficiently accurately

describe the physical reality.

The problem of optimal design consists--in principle--in the comparison

of the solutions of states from the set S of admissible states (for example,

solution of the problems from the set of admissible domains) and the selection

of the "optimal" state (e.g. the domain) for the engineering design. It is

obvious that such a selection can be successful only if the solution of every

state is uniformly reliable with respect to the entire set S. This require- -

ment creates a serious difficulty because we are used to solve in practice

numerically the simplified mathematical formulation of the problem and have

experience only with small limited set of practical problems. Hence, it is

essential to analyze and to be explicitly aware of the assumptions used in the

derivation of the model and its numerical treatment and the limitations we

have to deal with. IN""

•'.7..
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From what we said, it is obvious, that we have to focus on the

reliability of the analysis of the single states and its uniformity over the

(entire) set S of admissible states. This has always to be the starting

point of the assesment of the validity of the optimal design.

The reliability of the computational treatment of the single states

depends on

a) mathematical model

b) reliability of the input data

c) reliability of the numerical treatment.

These three aspects are of course closely related.

In this paper we will address the questions not in general, but on few

concrete engineering examples. We restrict ourselves to the examples which

are relatively simple from the engineering (although not mathematical) point

of view, to present the ideas in a most clear way. ".'

2. THE PROBLEM OF A TUBE WITH A STIFFENED SURFACE

Let us consider the problem of a tube (plane strain) with stiffened

outer surface. We shall assume that the stiffener is bending free. We are in

general interested in the design resp. the influence of the changes of the

outer surface rO . The scheme of the problem is shown in Fig. 2.1.

We will formulate the problem as linear elasticity (plane strain)

problem. The formulation is the standard one, based on the minimization of

the (cummulative) energy of the tube and the (tension) energy of the rein-

forcement on r0 .

2.1. The reliability of the mathematical model

We will analyze the case when the outer boundary r0  is a regular m-

polygon and r is a concentric circle. See Fig. 2.2. The domain is denoted

p2
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by am . The circular domain S0  (see Fig. 2.3) is obviously the limiting r'

case when m + -. Assuming that the unit hydrostatic pressure is given on the

inner boundary and that the stiffener is infinitely rigid in tension, the

problem of linear elasticity can be formulated on one sector only with the

boundary conditions shown in Fig. 2.4. On the sides A-B and C-D the symmetry

conditions are prescribed. On the side A-D the boundary conditions describe ,

the behaviour of the stiffened side and on the side B-C the tractions are

prescribed.'"

Denote by (um,vm) resp. (u0 ,v0 ) the solution (displacement) on nm

resp. o.

From the physical grounds we have to expect that (um,um) + (uo,v 0 )

as m + co If (um,vm) k (uo,v 0 ), we have to have doubts about the relia-

bility of the model.

We have

THEOREM 2.1.

(2.1) urn (u m ,u M) (U,,,V,) #U ( 0 v 0).U

For the analysis of the dependence of the solution on small changes of the

domains we refer e.g. to [11 [31 [4].

Theorem 2.1 shows that the used model of linear elasticity is unreliable

at least if the outer boundary is not smooth and hence it practically cannot

be used for optimal design when the admissible domains have not sufficiently

smooth boundarv. We see here that the uniform reliability (with respect to

m) is clearly violated. ... -.

3



The limiting solutions (u,,v,) and (uo,v 0 ) can be found.

THEOREM 2.2. The solutions (u.,v.) and (u 0 ,v 0 ) are radially symmetric.

Denoting by a resp. a8 the stresses in polar coordinates we get:

r 2e=A + e _A_ B *(2.2) 0r " - 'B = 2

r r

with

(2.3) A = 2 B =0

2 2 (l v)a 2

(l-v)a b B - 2 2
(2.4) A BO = - a

0 (-v)b2 +2' 0 (1-v)b 2 + (l+v)a

Table 2.1 gives the values of the stresses ar and 00 on the line C-D

for the solution (u.,v) and (u0 ,v0 ) when a 0.3, b = 1.0 and v -

0.3. We see clearly that the solutions (u.,v.) and (uov 0 ) are essen-

tially different.

TABLE 2.1

(u.,,v) (u 0 ,v 0 )

r7r | 0r a@

0.3 -1.000 1.000 -1.000 0.7135

0.4 -0.5635 0.5625 -0.6251 0.3387
0.5 -0.3600 0.3600 -0.4516 0.1652
0.6 -0.2500 0.2500 -0.3574 0.0710
0.7 -0.1836 0.1836 -0.3005 -0.0142
0.8 -0.1406 0.1406 -0.2637 -0.0227
0.9 -0.1111 0.1111 -0.2384 -0.0480
1.0 -0.0900 0.0900 -0.2208 -0.0609

4
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Before discussing the probable reason for this paradox, let us mention

THEOREM 2.3. Let (um,vm) be the solution on S1m (i.e., m-sided polygon),

m > 4. Then the solution has a singularity in the neighborhood of the point A

(vertex of the polygon) (see Fig. 2.2 and 2.4) and V

U m  m=,'--2

(2.5) Vm ( m() + higher order terms

where (r,O) are the polar coordinates with the origin in A and om' 'm

are smooth functions in e. .

Theorem 2.3 shows that the solution has a strong singularity in the

neighborhood of A and the strains and stresses are there unbounded. This

obviously violates the basic assumptions of the linear elasticity model and

has unexpected consequences.

We are making the following conjecture (unproven):

If (mVm) is the solution of a nonlinear problem, then lim(UrmVm ;

This leads to the following conclusion. If the set of admissible

domains has unsmooth outer boundary, then it is necessary to use nonlinear

theory of elasticity in the optimal design problems. The linear elasticity

leads to unreliable results and conclusions.

2.2. The reliability of the numerical solution

As we have seen in Theorem 2.3, the solution has a very strong singu-

larity (note that in the case of a crack the singularity of the solution is

r /2) which makes computation very difficult for larger m. The computation

we present has been make by the code PROBE which uses p and h-p version of

the finite element method. See (231 (24]. For the theoretical aspects we

refer to (6] [7] [14]. The mesh has to be strongly refined in the area of the

5
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singularity if reliable results have to be obtained. See [14] [221. For

the p-version (i.e. when there is no strong refinement at A) the energy norm

of the error is leg = Cp- 4 /(m- 2 ). See [6) [9]. For the h-version without

properly refined mesh, the situation is still worse. For the properly refined

mesh the rate of convergence in the first phase (p not large) is exponential.

See [141. The mesh we used is shown in Fig. 2.5 (a =0.3, b = 1, v = 0.3).

In Table 2.2 we show the stresses in the points P, Q, R, S (see Fig.

2.5) for m = 8, 16, 32 for various degrees p of elements. We see that the

solution is close to the limiting value of m = w. Although a = a + a =

0 we see that a deteriorates from m = 16 to m = 32. The reason is that

the quality of the numerical solution deteriorates with m * . This deteri-

oration is, for example, visible from the Table 2.3 where the computed strain

energy for various p and m is given. We see clearly a much larger change

in the energy for m = 32 than for m = 8 when increasing the degree p.

This indicates much larger error for m = 32 than for m = 8. The strength

of the singularity is r2 /(m -2) which is so strong that without special care

no reasonable accuracy can be achieved for m = 32. For m = 16 the error in

the energy norm is expected to be 2-4%, and 7-10% for m = 32 in our

computations.

Table 2.4 shows the values of the maximal principle stress in the

points B-F and B-F (see Fig. 2.5). We clearly see that the stresses are

very large in the neighborhood of the vertices and with m + the stresses

are increasing (because the strength of the singularity is increasing). This

also clearly indicates the likely reason for the paradox we mentioned above.

We see that not only the mathematic2al model but also the quality numer-

ical solution is very nonuniform with respect to small changes of boundary

(which does not have sufficient smoothness).

6
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TABLE 2.3 -

p m 8 m = 16 m 32

8 0.229725 0.114518-1 0.559748-2
7 0.229723 0.114491-1 0.559199-2
6 0.229719 0.114456-1 0.558305-2 "
5 0.229705 0.114402-1 0.557552-2
4 0.229651 0.114298-1 0.556082-2

TABLE 2.4

P Maximal principal stress
0

p

Sm =8 m 16 m 32

F 8 -0.3807+0 -0.3758+0 -0.3624+0

7 -0.3814+0 -0.3767+0 -0.3670+0
6 -0.3802+0 -0.3716+0 -0.3494+0 J

E 8 -0.1360+1 -0.1907+1 -0.2043+1

7 -0.1358+1 -0.1916+1 -0.2076+1
6 -0.1355+1 -0.1879+1 -0.1990+1

D 8 -0.4805+1 -0.9498+1 -0.1150+2

7 -0.4810+1 -0.9502+1 -0.1153+2
6 -0.4748+1 -0.9394+1 -0.1119+2

C 8 -0.1709+2 -0.4695+2 -0.6393+2
7 -0.1709+2 -0.4683+2 -0.6383+2

6 -0.1769+2 -0.4585+2 -0.6176+2

B 8 -0.5296+2 -0.1764+3 -0.2722+3
7 -0.6709+2 -0.2762+3 -0.4340+3
6 -0.4972+2 -0.1442+3 -0.1931+3

F 8 -0.3851+0 -0.4044+0 -0.5062+2
7 -0.3855+0 -0.4048+0 -0.4998+0
6 -0.3821+0 -0.3947+0 -0.4767+0

E 8 -0.1356+1 -0.2111+1 -0.3358+1
7 -0.1358+1 -0.2135+1 -0.3427+1
6 -0.1335+1 -0.2083+1 -0.3351+1

D 8 -0.4818+1 -0.1130+2 -0.2136+2
7 -0.4825+1 -0.1147+2 -0.218+2

-0.4748+1 -0.1121+2 -0.2136+2

C 8 -0.1740+2 -0.6362+2 -0.1400+3 "

7 -0.1747+2 -0.6459+2 -0.1435+3
6 -0.1722+2 -0.6349+2 -0.1408+3

8 -0.6361+2 -0.3590+3 -0.9021+3

7 -0.6481+2 -0.3824+3 -0.9606+3
6 -0.6437+2 -0.3636+3 -0.8924+3

8
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3. THE PROBLEM OF THE PLATES AND SHELLS

In Section 2 we addressed the problem of the reliability of the linear

elasticity model. Models of plates and shells are two dimensional although

obviously the original problem is three dimensional. Hence, we will assume

" that the three-dimensional linear elasticity formulation is reliable and will ,___

% analyze only the effects of the dimensional reduction from 3 to 2 dimensions

and the implication for the optimal design.

3.1. The problem of the simply supported plate

Let us, for simplicity, assume that we are concerned with the case when

the Poisson ratio v = 0. The plate problem (with uniform thickness h) can be

formulated in various ways. Let us mention the "projection method" when we L

assume an "ansatz" and use it in the variational principle by minimizing the

energy. This approach is sometimes called Kantorowich method (see (151).

Denoting u, v, w the displacement components, we shall consider two

"ansatzes":

1) The K (Kirchhoff) model

aw(3.1a) u(x,y,z) =-z x(x,y), ['j

;w
* (3.1b) v(X,y,z) = -z 7 (x,V),

(3.1c) w(X,v,z) = w(x,y).

Using this ansatz in the potential energy principle we get the usual

formulation

(3.2) E AA w = f

9



and the simple support is obtained by minimization of the energy with the only

constraint w = 0 on the boundary r of the domain.

2) The R-M (Reissner-Mindlin) model

(3.3a) u(x,y,z) - -z 0(x,y) '

(3.3b) v(x,y,z) - -z*(x,y),.-.,.

(3.3c) w(x,y,z) w(xy)

Utilizing (3.3) in the expression for the three-dimensional potential energy

and imposing the (only) constraint w 0 at r we obtain a system of three

differential equations of second order in contrast to one equation of fourth

order in the K-model.

The dimensional reduction has been analyzed in the asymptotic way when

h + 0 and the solution is smooth. See e.g. [111 (121 (201. In this

asymptotic frame we cannot distinguish between the two mentioned models.

Physically the R-M model is taking into account the shear stresses while the K

model neglects them. Let us once more assume that Qm is the regular m-

polygon inscribed in the circle of radius a, be the circle with radius

a and let us consider the problem of uniformly loaded (by load p) simply

supported plate.

Denote by wm resp. w0  and CD, m,wm) resp. ( 0 , 0 , w 0 )  the solution

of the K and K-M model on Qm and S0" Then we have

THEOREM 3.1.

(3.4a) wm + W W

(3.4b) O + (+.,*.,w) =(P O "'"'

10



See [31 15]. ].

We can compute the limiting solution w. and ( analytically. For I -

the K-model we have

(3•5a) w (0,0) - - E- L E1

(3.5b) wo(O,O) = - a
74 El

and for the R-M model we have

2
(3.5c) w,(O,O) = w0 (O,O) 5 4 a EI a 4  E64 aEL EF.-.,.

where I = h3/12, F = h are the moment of inertia and the thickness,

respectively, and E is the modul of elasticity.

Theorem 3.1 and the formulae 3.5a-3.5c show that the effects of the

shear stress in the neighborhood of the corners are essential. Although we

discussed only the problem of the polygon plate, the analysis (see [31 [51)

covers much more general solutions and clearly point to the following

conclussion:

The optimal design of a plate has to be based on the R-M and not the

K-model.

We will not discuss here the reliability of the numerical treatment. Similar

but more complicated situation occurs in the case of the shells.

3.2. The problem of the plate with a variable thickness

Let us consider a plate with variable thickness. If the thickness is

very slowly varying with respect to the thickness of the plate, then the

derivation (dimensional reduction) can be made in the same way as for the

*.%
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constant thickness. Nevertheless, if the thickness is varying rapidly, then

the classical derivation is not valid. Recently a theory has been developed

(see [161 [17)) which shows important relation between the thickness and

thickness variation and which strongly influences the reliability of the

mathematical model. We will show it in the most simple setting. Consider the

stiffened plate shown in Fig. 3.1. The main idea of the classical plate

derivation is to consider the limiting process c + 0 and apply the results

for e > 0.

We can assume that a = Cie , b C2c and consider the limiting

process e + 0. In [171, X = 2 = X is assumed and it is shown that we get

different model for X < 1, X = 1, and A > 1.

In the case of X < 1 the stiffners are far apart when £ + 0, in the

case X > I they are close together. In all three cases the dimensional

reduction leads to the plate formulation with effective coefficients depending

" on the value of X. This example shows that optimal design based on one

model, say, X < 1 for fixed but small thickness can lead to a design when

the model is not valid (reliable) anymore. Using a proper model for this

design and redoing the optimal design once more, we can once more get out of

the range of the reliability of the model. Hence, we have to consider here

simultaneous design optimization and the model selection. For important

aspects of this problem directly related to the optimal design, we refer to

[171.

4. THE PROBLEM OF A SUPPORTED CONSTRUCTION

Let us consider the optimal design of a supported construction (see Fig.

4.1). The problem is how to model the support in the point B. To show the

difficulty, let us consider the problem shown in Fig. 4.2 and solve the linear

12
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• elasticity (plane stress, v 0.3) problem. The standard finite element

modeling is to make constraint v = 0 at the node located in the support.

This modeling is incorrect because the solution strongly depends on the finite

element method.

Let M be the moment at the side A-A' and MN is the moment computed

by the finite element method. Assume that the size h of the maximal element

hN = max h + 0 as N +-. We have . -

THEOREM 4.1.

(4.1) lim N =

where M0  is the moment when there is no support (and hence M0  can be

analytically computed).

Theorem 4.1 shows that by selecting different meshes we can get

completely different results and hence optimal design will strongly depend on

the used mesh. In fact, the situation is still more complicated because MN +

M0  slowly and we have no means to establish how reliable the solution is.

Before discussing this effect, let us show the computation by the code

PROBE. The used mesh is shown in Fig. 4.3. There is refinement in the neigh-

borhood of A-A' and especially strong refinements is in the neighborhood of B

(see Fig. 4.4). We did use two meshes A 4 , with smallest ring of the radius

a4 , and A5 with the radius a5 . Table 4.1 shows the moments on A-A' and

Table 4.2 shows the displacement v in C. Although the moments and the dis-

placement are significantly smaller than that of the unsupported beam, the

mesh dependence is obvious. Note that the difference between the values ob-

tained by the mesh A4  and A5  is nearly independent of p. The reason for

the effects we have shown is that the support is not correctly modeled. The

13



reaction is a point force which leads to the infinite energy and a infinite

displacement in the point of the reaction. The infinite displacement at the

reaction point can be seen from the analytical solution on half plane with

concentrated load. Hence, reaction has to be zero and we obtain the solution

of an unsupported beam.

TABLE 4.1

.-p Mesh A4  Mesh A5

3 1.875 1.918
4 1.909 1.954
5 1.921 1.965
6 1.931 1.976
7 1.939 1.984
8 1.946 1.991

TABLE 4.2

p Mesh A4  Mesh A5

1 - 7.92 -10.68
2 -10.94 -14.91

3 -13.14 -17.31
4 -14.56 -18.77 -.7 ."

5 -15.64 -19.85
6 -16.37 -20.58
7 -17.38 -21.21
8 -17.56 -21.76

In Table 4.3 we show the displacements in the points Bi  and B1

" computed by the mesh A4  and A 5 . Realizing that the distance between B

and B5  is 0.75 10- 4  and the constraint in B is v = 0, we see numeri-

cally the effect mentioned above. This clearly shows that the mathematical

model of the supported beam is unrealiable because it does not distinguish

between supported and unsupported beam. Hence, a more sophisticated model of

14
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TABLE 4.3

P p

0 Mesh Mesh 0 Mesh Mesh

pA 4  A5  I A4  A5

T T

B5  8 - 9.189 B5 - 9.188
7 - 8.777 - 8.777
6 - 8.313 - 8.312
5 - 7.764 - 7.763

B4  8 - 9.231 -12.36 14 - 9.226 -12.36
7 - 8.818 -11.95 - 9.831 -11.95
6 - 8.352 -11.49 - 7.795 -11.48
5 - 7.801 -10.94 - 7.123 -10.94

B3 8 -12.43 -15.54 R3 -12.39 -15.51
7 -12.02 -15.14 -11.98 -15.11
6 -11.55 -14.67 -11.57 -14.64

5 -11.00 -14.13 -10.97 -14.10

B2 8 -15.72 -18.80 2 -15.48 -18.61
7 -15.31 -18.40 -15.07 -18.20
6 -14.85 -17.94 -14.05 -17.73
5 -14.31 -17.40 -13.37 -17.19 . '

B1  8 -19.60 -22.52 -18.01 -21.27
7 -19.22 -22.14 -17.58 -20.84
6 -18.78 -21.17 -16.52 -20.36
5 -18.27 -21.20 -15.80 -19.79

the support is needed. Nevertheless, we will not discuss here the question of

a reliable model. (Usually it is claimed that a concrete not strongly refined

mesh models the support. It is obvious that without a reference to the proper

formulation of the support the claim has no firm meaning.]

5. THE PROBLEM OF THE STOCHASTIC INPUT DATA

The basic Input data describing the elasticity problems are: the do-

main, the material propertis and the loads. Assume now that the data are

stochastic functions. For example, the boundary of the domain can be

15



described by a stochastic function which expresses the uncertainty of fabri-

cation. Then the solution is also a stochastic function. In addition, the

failure criterium which can be basis for the optimal design is always a

*' stochastic one. Hence, we have combine both stochastic characters to get

desired information. Because the uncertainty of the input data, the disper-

sion of the results can be significant. Recently we developed a theory of the

solution with stochastic input data (see (21 (191 and forthcoming papers) and

their numerical tratment by the finite element method. The implementation is

based on the code PROBE mentioned earlier.

5.1. The case of the stochastic load

Let us consider the container of the form shown in Fig. 5.1. The side

AB is loaded by a horizontal stochastic function X. A(y,w), 0 < y < H and '. -*

we will assume that Xx(y,w) 1 1 where we denoted by Xx(y,w) the mean. The
xI x

correlation function is assumed to be I.-..

(5.1) K(y1 ,y2) 0 .12 e-IYlY2 "

A simulated sample of the load from a given probability field (a=0.03781)

is shown in Fig. 5.2. We will assume that the linear elasticity provides

reliable results for all loads under consideration. The solution of our model

problem is a stochastic function with the mean being the (deterministic) N.,

solution for the mean load.

Our aimn is to determine the variance and covariance of the values of

interest.

Concerning the failure criterion we will assume as example:

a) The criterion of stress intensity factor F in the point C (see

Fig. 5.1).

16
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b) The failure criterion based on the envelope of the Mohr's circles in

the point D (see Fig. 5.1).

Knowing the stress intensity factor as random variable characterized by

its mean and standard deviation, we can establish the probability level of the

failure when the material probabilistic characterization of admissible stressi'N-
intensity factor is given.

The criterion b) is more complicated. We need here the correlation of

the components of the stress tensor which allows us to compute not only the

mean Mohr's circles but also its perturbation in every point of the circle

which for a given probability level has an elliptic character. The envelope

of these ellipses will be compared with the admissible failure curve (see Fig.

5.3).

The concrete computation of our model problem has been computed using

the program PROBE and the mesh shown in Fig. 5.4. (The refinement in the

neighborhood of the reentrant corners is not shown.)

In Table 5.1 we show the mean values and the standard deviation Sd(F)

of the stress intensity factor F in the point C in dependence on p.

For the technique used in PROBE for the computation of the stress

intensity factor, see [8].

TABLE 5.1

p F sd(F)

1 -46.5958 3.71714
2 -51.7433 3.92931
3 -49.3796 3.94039
4 -49.0721 3.91575

17
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The Mohr' circles for the probability level 90% are shown in Fig. 5.5.

5.2. The problem of stochastic boundary

The problem of stochastic boundary is more complicated but it can be %

transformed to the case of stochastic load. Let us consider-for simplicity

of the exposition--the problem of a symmetric, cracked panel (plane strain, v

= 0.3) shown in Fig. 5.6 and assume that the deterministic traction T at the

boundary is such that the exact stress tensor is given by the following

formulae

a (27rr) 1/2 cos . (1 - sin . sin 38)x 2 2 2

(5.2) a (21rr) 1/2 cos (1 + sin i sin 2)
y2 2

8 8 38 ";1 '

ry (2wr) 1 sin cos cos -

These functions are symmetric mode functions of the stress intensity factor.

Let us assume that the side A is perturbed by a stochastic perturbation so

that the boundary is given by the function y = 1 + A(x,w), -1 < x <,

A(±l,w) = 0, where A(x,w) is the stochastic function with the correlation

function Kl(x I x2 ).

We use in our model problem

I~ ~ Iix2 x+x? .'
(5.3) K1 (Xl'X 2 ) f( 2  - + I), 1xil < 1, i 1,2,

where

2 28-15g2(2-E) 2  
.- '.

720
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A simulated sample of the perturbance is shown in Fig. 5.7. Our aim is to N

find the stress intensity factor F and its standard deviation Sd(F) caused

by the random boundary and the stresses and their variances and covariances

in (0.1, 0.9).

Before addressing this problem, we have to know how the traction will

change when the domain is changing so that the equilibrium is always guaran-

teed. We will assume to this end that functions '6(X,y) , ?xy(x,y) and

axx

'dy(x,y) are defined in the neighborhood of the side A-B such that "%.%,'

(5.4)
a' + 2_= 0 ..

ax ay

and '6y a and 7 =Ty on A-B where (T ao is the given tractionx y xy y

vector at A-B. If now point D lies on the perturbed boundary, then the

traction vector T is

a T.' n

[al zXY'

(5.5) T',,-

Txy+ a._ on2_ "

where (n , n2 ) is the outer normal to the perturbed boundary. This

guarantees the equilibrium condition for every perturbation.

Assume that theB.gnituDe of the perturbance is X. Then we have

THEOREM 5.1. The solution of (up to higher order terms in X) the perturbed

problem is the solution of the original domain with the modified load T

19



V7~a. %-- lo 1 .

-y +  "Ty + a L''..

(5.6) T = T (x,) + A'(x,w0 a~
L L' L "

T
where To  T xy,a ) is the traction on A-B.

yy

Theorem 5.1 gives us immediately the possibility to solve the problem in the -

same vein as in the previous section.

We have used in our model problem

(x,y) - a (0,I)..-.-. .,

Txy(X'Y) -xy(X'I)

aT
V y(X,y) a Oy (X,) - (y-1) ax (x,l)..---

We used the program PROBE and for p - 8 we obtained

a) The stress intensity factor F: '

the mean value F = 0.99830 (exact value F = 1)

the standard deviation sd(F) = 2.54(-4).

b) The stress in the point A (0.1, 0.9):

the mean value: U = 0.1426, U = 0.4821, T = 0.1206x y KY

the standard deviation sd(a x) = 0.48418(-2), sd(a )- 0.35178(-2),
K Y

sd(T) 0.2088(-2)

the covariance C(a xa) = 0.1697(-4), c(ax, r) T- -

0.9493(-5) C(a ,T) 0.7019(-5)
y x

the normalized covariance p(ay) a 0.9966, p(a ,T ) 0.9389,
Xy K y V..

p(ay Ty) = 0.9555.
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We see that the variance of F is much smaller than the variance of the 1. J.

stress in the point A. If the failure criterium is based on the stress

intensity factor F, then it is (in our case) practicaly uninfluenced by the

uncertainty of the boundary. If the failure creterium is based on the Mohr

circle in A, then it is much more sensitive to the uncertainty of the LA,

boundary. This shows very clearly that the same uncertainties can lead to the

uncertainties of different magnitude in the failure criterium parameters.

Let us mention that we need in (5.6) the derivatives of the stresses of

the (deterministic) solution which is computed by the finite element method.

This, of course, needs a special care and the computation can be made by the

postprocessing technique (see [81).

The selection of functions ' ay, Txy does not make usually any

problems. Many times we have a traction free surface and then, of course,

ax= oy = T = 0 is the proper choice.

We have assumed that the tractions are not stochastic. We can also

treat the combined case when both the domain and the traction are stochastic.

We have shown here only illustrative examples of relatively simple

structure. The theory and implementation principles were developed for the

general case. It is possible to compute also higher correlation functions and

obtained, e.g. the skewness of the distribution of the stress intensity

factors, etc.

In the case of stochastic material coefficients, we can proceed

similarly and get by an iterative technique the desired data for small

variation of the material coefficients.

The optimal design should in general take into account the stochastic

character of the input data.

21
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6. CONCLUSIONS

Solving the problems of the optimal design and the engineering problems

in general one has to take into account various aspects of the mathematical

model and its numerical treatment for getting reliable results. Detailed a-

priori mathematical analysis is of utmost importance for the reliable

conclusions.

22
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

0 To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis J
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

* To help bridge gaps between computational directions in engineering, - ,

physics, etc., and those in the mathematical community.

0 To provide a limited consulting service in all areas of numerical I
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

* To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied

Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards. ......

* To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor 1. Babutka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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