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2 1.  INTRODUCTION G 2;;:
a o Shape optimization in the‘étructure mechanics became to be in the center ;5%&?
Py of the research and applications, Many papers and books dealing with this | A

i subject appeared and special conferences dealt with these problems, The g&;ﬁf
y research is directed toward theoretical questions as existence and characteri- ﬁt;?:
fj zation of the optimal design, bounds for the optimized values, numerical

Ef treatment of the optimal design problems, etc. We will not mention here the

recent vast available literature. We mention only [10] {13] [18] [21] as

examples. 20 £

aetdy
We will address 1in this paperﬁthe problem of the reliability of the

conclusions based on the computational analysis and their relation to the

problems of the optimal design.
By reliability-we méan here that the conclusions sufficiently accurately
e
describe the physical reality.

The problem of optimal design consists—-in principle--in the comparison

of the solutions of states from the set § of admissible states (for example,

solution of the problems from the set of admissible domains) and the selection
5 S
of the "optimal" state (e.g. the domain) for the engineering design. It is

obvious that such a selection can be successful only if the solution of every
F

state is uniformly reliable with respect to the entire set S, This require~

ment creates a serious difficulty because we are used to solve in practice
A
numerically the simplified mathematical,formulation of the problem and have

f

experience only with small limited set of practical problems, Hence, it is

-~
W~

essential to analyze and to be explicitly aware of the assumptions used in the
derivation of the model and its numerical treatment and the limitations we

have to deal with,
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From what we saild, it is obvious, that we have to focus on the
reliability of the analysis of the single states and its uniformity over the
(entire) set S of admissible states. This has always to be the starting
point of the assesment of the validity of the optimal design.

The reliability of the computational treatment of the single states
depends on

a) mathematical model

b) reliability of the input data

¢) reliability of the numerical treatment,

These three aspects are of course closely related.

In this paper we will address the questions not in general, but on few

e
concrete engineering examples, We restrict ourselves to the examples which ASOSN
DS SR
SAe
are relatively simple from the engineering (although not mathematical) point -}:,:}:
PGl
of view, to present the ideas in a most clear way. A S

2. THE PROBLEM OF A TUBE WITH A STIFFENED SURFACE
Let us consider the problem of a tube (plane strain) with stiffened . e

outer surface. We shall assume that the stiffener is bending free. We are in

general interested in the design resp. the influence of the changes of the
outer surface Tj. The scheme of the problem is shown in Fig. 2.1.

We will formulate the problem as linear elasticity (plane strain)

problem., The formulation is the standard one, based on the minimization of
the (cummulative) energy of the tube and the (tension) energy of the rein-

forcement on FO.

2.1. The reliability of the mathematical model
We will analyze the case when the outer boundary Ty 1is a regular m-

polygon and T, 1is a concentric circle. See Fig. 2.2. The domain is denoted
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by 9p. The circular domain @, (see Fig. 2.3) is obviously the limiting
case when m + «, Assuming that the unit hydrostatic pressure is given on the
inner boundary and that the stiffener is infinICely rigid in tension, the
problem of linear elasticity can be formulated on one sector only with the
boundary conditions shown in Fig. 2.4. On the sides A-B and C-D the symmetry
conditions are prescribed., On the side A~D the boundary conditions describe
the behaviour of the stiffened side and on the side B-C the tractions are
prescribed.

Denote by (w,,v,) rtesp. (up,vy) the solution (displacement) on Q
resp. Qo.

From the physical grounds we have to expect that (ug,uy) =+ (uo,vo)
as m >, If (uy,vy) # (uo,vo), we have to have doubts about the relia-
bility of the model.

We have
THEOREM 2.1.

(2.1) lim (um,um) = (u,,v.) ¢ (uo,vo). a8

m->eo

For the analysis of the dependence of the solution on small changes of the

domains we refer e.g. to [1] (3] [4].

Theorem 2.1 shows that the used model of linear elasticitv is unreliable

at least if the outer boundary 1Is not smooth and hence it practically cannot

be used for optimal design when the admissible domains have not sufficiently
smooth boundary, We see here that the uniform reliability (with respect to

m) is clearly violated.
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THEOREM 2.2.

The limitcing solutions

The solutions

Denoting by ot resp.

(2.2)

with

(2.3)

(2.4)

for the solution

0.3.

g

(u_,v,)

(um,v“) and (uo,vo)

e
= A
or > + B, ce
r
az, B
2.2
(1-v)a“b B

(1-v)b% + (1+#v)a®

and (uo,vo) can be found.

A

= -
3 B
r

(1+v)a2

are radially symmetric.

the stresses in polar coordinates we get:

(1-v)b2 + (1+v)a2

Table 2.1 gives the values of the stresses o, and 0y on the line C-D

We see clearly that the solutioms

tially different.

(ua,v°°

) and (uO,vo)

r

when a = 0.3, b=1,0

and v =

(u,,v ) and (uy,vy) are essen-

TABLE 2.1
(Uy V) (uO,vo)
r
Or %% Or o)
0.3 -1.000 1.000 -1.000 0.7135
0.4 -0.5635 N.5625 -0.6251 0.3387
0.5 -0.3600 0.3600 -0.4516 0.1652
0.6 -0.2500 0.2500 -0.3574 0.0710
0.7 -0.1836 0.1836 -0.3005 -0.0142
0.8 -0,1406 0.1406 -0.2637 -0.0227
0.9 -0.1111 0.1111 -0.2384 -0.0480
1.0 -0,0900 0.0900 -0.2208 -0.0609
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Before discussing the probable reason for this paradox, let us mention

THEOREM 2.3, Let (u,,v,) be the solution on 9 (i.e.,, m-sided polygon),
m > 4, Then the solution has a singularity in the neighborhood of the point A

(vertex of the polygon) (see Fig. 2.2 and 2.4) and

2
u — | (9)
m2 m
(2.5) = r + higher order terms
v v _(9)
m m
where (r,0) are the polar coordinates with the origin in A and Omr Vn
are smooth functions in 6, [ |
Theorem 2.3 shows that the solution has a strong singularity in the
4 neighborhood of A and the strains and stresses are there unbounded. This
obviously violates the basic assumptions of the linear elasticity model and
has unexpected consequences.,
I We are making the following conjecture (unproven):
1f (Gm’;m) is the solution of a nonlinear problem, then lim(GA,Gﬁ) >
(UO ,vo)u
' This leads to the following conclusion. If the set of admissible

domains has unsmooth outer boundary, then it is necessary to use nonlinear

theory of elasticity in the optimal design problems. The linear elasticity

leads to unreliable results and conclusious.

2.2. The reliability of the numerical solution

As we have seen in Theorem 2,3, the solution has a very strong singu-
larity (note that in the case of a crack the singularity of the solution is
gkl) which makes computation very difficult for larger m. The computation
we present has been make by the code PROBE which uses p and h-p version of
- the finite element method. See (23] (24]. For the theoretical aspects we

refer to [6] {7] {14]. The mesh has to be strongly refined in the area of the



singularity if reliable results have to be obtained. See [14]) [22]. For
the p-version (i.e. when there is no strong refinement at A) the energy nomm

-4/(m-2). See [6] [9]. For the h-version without

of the error is el = Cp
properly refined mesh, the situation is still worse., For the properly refined
mesh the rate of convergence in the first phase (p not large) is exponential.
See {14]. The mesh we used is shown in Fig. 2.5 (a=0.3, b =1, v =0.3).

In Table 2.2 we show the stresses in the points P, Q, R, S (see Fig.
2.5) for m = 8, 16, 32 for various degrees p of elements. We see that the
solution is close to the limiting value of m = «, Although o= O e + oy“ =
0 we see that o deteriorates from m = 16 to m = 32. The reason 1s that
the quality of the numerical solution deteriorates with m + ®», This deteri-
oration is, for example, visible from the Table 2.3 where the computed strain
energy for various p and m 1is given. We see clearly a much larger change
in the energy for m = 32 than for m = 8 when increasing the degree p.
This indicates much larger error for m = 32 than for m = 8, The strength
of the singularity is r2/ (m-2) which is so strong that without special care
no reasonable accuracy can be achieved for m = 32, For m = 16 the error in
the energy norm is expected to be 2-4%, and 7-10% for m = 32 in our
computations.

Table 2.4 shows the values of the maximal principle stress in the
points B-F and B-F (see Fig. 2.5). We clearly see that the stresses are
very large in the neighborhood of the vertices and with m + » the stresses
are increasing (because the strength of the singularity is increasing). This
also clearly indicates the likely reason for the paradox we mentioned above.

We see that not only the mathematical model but also the quality numer-

ical solution is very nonuniform with respect to small changes of boundary

(which does not have sufficient smoothness).
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TABLE 2.3
P n =8 m = 16 m = 32
8 0,229725 0.114518-1 0.559748-2
7 0.229723 0.114491-1 0.559199-2
6 0.229719 0.114456-1 0.5583505-2
5 0,229705 0.114402-1 0.557552-2
4 0.229651 0.114298~1 0.556082-2
TABLE 2.4
g Maximal principal stress
1 p
N = =
T o m m 32
F 8 -0,3807+0 -0.3758+0 -0.3624+0
7 -0.3814+0 -0.3767+0 -0.3670+0
6 ~-0.3802+0 =-0.3716+0 -0.,3494+0
E 8 -0.1360+1 ~0.1907+1 -0,2043+1
7 -0.,1358+1 -0.,1916+1 -0.2076+1
6 -0.1355+1 -0.1879+1 -0.1990+1
D 8 -0,4805+1 -0.9498+1 -0.1150+2
7 -0,4810+1 -0,9502+1 -0.1153+2
6 -0.4748+1 -0.9394+1 -0.1119+2
C 8 -0,1709+2 -0.4695+2 -0.6393+2
7 -0,1709+2 -0,4683+2 ~-0.,6383+2
6 -0.,1769+2 -0.4585+2 -0.6176+2
B 8 =0.5296+2 -0,1764+3 -0.2722+3
7 ~0.6709+2 -0.2762+3 -0.4340+3
6 =0,4972+2 -0.1442+3 -0.1931+3
F 8 -0.3851+0 -0.4044+0 -0.5062+2
7 ~0.3855+0 -0.,4048+0 -0.4998+0
6 -0.,3821+0 -0.394740 -0.,4767+0
E 8 -0.1356+1 =-0,2111+1 -0.3358+1
7 -0.1358+1 -0,2135+1 -0.3427+1
6 -0.1335+] -0,2083+1 -0.3351+1
D 8 -0.4818+1 -0,1130+2 -0.2136+2
7 -0,4825+1 -0.1147+2 -0.2184+2
6 =-0.,4748+] ~0,1121+42 -0.2136+2
C 8 -0,1740+2 -0.6362+2 -0.1400+3
7 -0.1747+2 -0,6459+2 -0.1435+3
6 -0.,1722+2 -0.6349+2 -0.1408+3
B 8 -0.6361+2 -0.3590+3 -0.9021+3
7 -0.6481+2 -0.3824+3 -0.,9606+3
6 =0.6437+2 -0.3636+3 -0.8924+3
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3. THE PROBLEM OF THE PLATES AND SHELLS

PP v

In Section 2 we addressed the problem of the reliability of the linear
elasticity model. Models of plates and shells are two dimensional although

obviously the original problem is three dimensional. Hence, we will assume

v g
RUNGPL LSS

that the three-dimensional linear elasticity formulation is reliable and will

1 analyze only the effects of the dimensional reduction from 3 to 2 dimensions

and the implication for the optimal design.

3.1. The problem of the simply supported plate b TA
Let us, for simplicity, assume that we are concerned with the case when

the Poisson ratio v = 0. The plate problem (with uniform thickness h) can be

' formulated in various ways. Let us mention the "projection method" when we L
assume an "ansatz” and use it in the variational principle by minimizing the

energy. This approach is sometimes called Kantorowich method (see [15]).

r Denoting u, v, w the displacement components, we shall consider two .
"ansatzes": .
1) The K (Kirchhoff) model 2
ow j
(3.1a) u(x,y,z) = -~z = (z,y), g
ow
(] (3.1b) vix,v,z) = =~z = (x,v),
, (3.1¢) wix,v,z) = wix,y). fff
o
@
Using this ansatz in the potential energy principle we get the usual s
tormulation -
(3.2) EI A w = f -

DI VR S




TS Eraw vy e s -

and the simple support is obtained by minimization of the energy with the only

constraint w = 0 on the boundary I of the domain.

T Al
L W
»
"

&
2) The R-M (Reissner-Mindlin) model vistn

-
W e

(3.3a) u(x,y,z) = "Z(p(X,Y) b

(3.3b) vix,y,z) = -=zy(x,y)

(3.3¢) w(x,y,z) = w(x,y)

Utilizing (3.3) in the expression for the three-dimensional potential energy

and imposing the (only) constraint w =0 at T we obtain a system of three

differential equations of second order in contrast to one equation of fourth

order in the K-model.,

The dimensional reduction has been analyzed in the asymptotic way when

h » 0 and the solution is smooth. See e.g. [11] (12] {20]. 1In this

asymptotic frame we cannot distinguish between the two mentioned models.

Physically the R-M model is taking into account the shear stresses while the K

model neglects them. Let us once more assume that @ 1is the regular m—

polygon inscribed in the circle of radius a, Qg Dbe the circle with radius

a and let us consider the problem of uniformly loaded (by load p) simply

supported plate,

Denote by w, resp. wy and (wm,wm,wm) resp. (wo,wo,wo) the solution

of the K and K-M model on Qm and QO. Then we have

THEOREM 3,1.

:f (3.4a) Wy Y W F W

(3.4b) Copsbsw) * (0 00 = (0,059
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We can compute the limiting solution w, and (wm,wu,ﬁm) analytically. For

-,;~
/

NS
the K-model we have :ﬁ:jﬂj
.-..'h-.\ 4
S
- - —3— A ..1“ ",
(3.5a) w (0,0) T8 I
s - 2 a4 B
(3.5b) wO(O,O) 5% 2 T
and for the R-M model we have
5 49 _ pa
(3.5¢) w_(0,0) = wO(O,O) = " ® ETCFF

where 1 = h3/12, F = h are the moment of inertia and the thickness,
respectively, and E 1is the modul of elasticity.

Theorem 3.1 and the formulae 3,5a-3.5c show that the effects of the
shear stress in the neighborhood of the corners are essential, Although we
discussed only the problem of the polygon plate, the analysis (see [3] (5])

covers much more general solutions and clearly point to the following

conclussion: j:;_
v,
The optimal design of a plate has to be based on the R-M and not the R
R
K-model. ’ 0
e ——— et e

We will not discuss here the reliability of the numerical treatment, Similar

but more complicated situation occurs in the case of the shells.,

3.2. The problem of the plate with a variable thickness

Let us consider a plate with variable thickness, 1If the thickness is

very slowly varying with respect to the thickness of the plate, then the

derivation (dimensional reduction) can be made in the same way as for the VT

11

......................

g TLoet . ~,'_ -'.- 'r,'-h Ce o “ .h_- - " -4' -'_ . - -‘_ -“ - " - - - - - . - 0 o .1. ‘\“"‘.“-‘ '-‘.‘-". .-l
A S A A R Kl S S e S e e e R A S A R A A L WL L SR W S

.....



constant thickness. Nevertheless, if the thickness is varying rapidly, then
the classical derivation is not valid. Recently a theory has been developed
(see [16] [17]) which shows important relation between the thickness and
thickness variation and which strongly influences the reliability of the
mathematical model. We will show it in the most simple setting. Consider the
stiffened plate shown in Fig. 3.l. The main idea of the classical plate
derivation is to consider the limiting process € + 0 and apply the results
for € > 0.

AL A2

We can assume that a = Cle s, b= Cze and consider the limiting
process € »+ 0. 1In [17], Al = Az = A 1is assumed and it is shown that we get
different model for X <1, A =1, and X > 1.

In the case of XA < 1 the stiffners are far apart when ¢ + 0, in the
case A > 1 they are close together. 1In all three cases the dimensional
reduction leads to the plate formulation with effective coefficients depending
on the value of A, This example shows that optimal design based on one
model, say, A < 1 for fixed but small thickness can lead to a design when
the model is not valid (reliable) anymore. Using a proper model for this
design and redoing the optimal design once more, we can once more get out of

the range of the reliability of the model. Hence, we have to consider here

simultaneous design optimization and the model selection. For important

aspects of this problem directly related to the optimal design, we refer to

(171.

4, THE PROBLEM OF A SUPPORTED CONSTRUCTION
Let us consider the optimal design of a supported construction (see Fig.
4,1). The problem is how to model the support in the point B. To show the

difficuley, let us consider the problem shown in Fig. 4.2 and solve the linear




elasticity (plane stress, v = 0.3) problem. The standard finite element
modeling is to make constraint v = 0 at the node located in the support,
This modeling is incorrect because the solution strongly depends on the finite
element method.

Let M be the moment at the side A-A” and My is the moment computed
by the finite element method. Assume that the size h of the maximal element

hN =max h+ 0 as N + =, We have

THEOREM 4.1,

(4.1) lim M, = M,
N
where My is the moment when there 1is no support (and hence My can be

analytically computed).

Theorem 4,1 shows that by selecting different meshes we can get
completely different results and hence optimal design will strongly depend on
the used mesh. In fact, the situation is still more complicated because My +
My slowly and we have no means to establish how reliable the solution is,

Before discussing this effect, let us show the computation by the code
PROBE., The used mesh is shown in Fig. 4.3. There is refinement in the neigh-
borhood of A-A” and especially strong refinements is in the neighborhood of B
(see Fig. 4.4). We did use two meshes A,, with smallest ring of the radius
a,, and Ag with the radius ag. Table 4,1 shows the moments on A-A” and
Table 4.2 shows the displacement v in C. Although the moments and the dis-
placement are significantly smaller than that of the unsupported beam, the
mesh dependence is obvious, Note that the difference between the values ob-
tained by the mesh 4, and Ag 1is nearly independent of p. The reason for

the effects we have shown is that the support is not correctly modeled. The
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~ reaction is a point force which leads to the infinite energy and a infinite :f:.
> wid
o displacement in the point of the reaction. The infinite displacement at the 5f§§
.- reaction point can be seen from the analytical solution on half plane with 31}?
g o
" concentrated load. Hence, reaction has to be zero and we obtain the solution P
- . [N
" .‘. -\ -
- of an unsupported beam. [,

) TABLE 4.1
- P Mesh 4, Mesh Ag
g 3 1.875 1.918
‘ 4 1.909 1.954
) 5 1.921 1.965
L 6 1.931 1.976
< 7 1,939 1.984
8 1.946 1.991
. TABLE 4,2
p Mesh A, Mesh Ag
1 - 7.92 -10.68
2 -10.94 -14.9 D
3 -13.14 ~17.31 et
B 4 -14,56 ~18.77
- 5 ~15.64 -19.85
- 6 -16,37 -20,58 e
7 -17.38 -21.21 R
8 -17056 -21076 e
In Table 4.3 we show the displacements in the points B; and Ei o
computed by the mesh A, and Ag. Realizing that the distance between B . g
- and Bg is 0.75 10-4 and the constraint in B 1is v = 0, we see numeri- =~
v AR
k cally the effect mentioned above, This clearly shows that the mathematical el
. o
.- e,
- model of the supported beam is unrealiable because it does not distinguish 4
L
between supported and unsupported beam. Hence, a more sophisticated model of -

14




TABLE 4,3
P P
0 0
Mesh Mesh Mesh Mesh

L P A A L A A

N 4 5 N 4 5

T T

Bg 8 - 9.189 §5 - 9,188
6 - 8.313 - 8,312
5 - 7.764 - 7.763

B, 8 - 9,231 -12.36 34 - 9.226 -12.36
7 - 8.818 -11.95 - 9,831 -11.95
6 - 8.352 -11.49 - 7.795 -11.48
5 - 7.801 -10.94 - 7.123 -10,.94

B, 8 ~12.43 -15.54 33 ~12.39 -15.51
7 -12.02 -15,14 ~11.98 -15.11
6 ~11.55 -14.67 -11.57 -14,64
5 ~-11.00 -14,13 -10.97 -14,10

B, 8 ~15.72 -18.80 32 -15.48 -18.61
7 -15.31 -18.40 ~15.07 -18.20
6 -14.85 -17.94 -14,05 -17.73
5 -14.31 -17.40 -13.37 -17.19

B, 8 -19.60 -22.52 Bl -18.01 -21.27
7 -19.22 -22,.14 -17.58 -20,.84
6 -18.78 -21.17 -16.52 -20.36
5 -18.27 -21.,20 -15.80 -19.79

the support is needed. Nevertheless, we will not discuss here the question of

a reliable model. [Usually it is claimed that a concrete not strongly refined
mesh models the support. It is obvious that without a reference to the proper

formulation of the support the claim has no firm meaning.]

5. THE PROBLEM OF THE STOCHASTIC INPUT DATA
The basic input data describing the elasticity problems are: the do-
main, the material propertis and the loads. Assume now that the data are

stochastic functions, For example, the boundary of the domain can be
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described by a stochastic function which expresses the uncertainty of fabri-
cation. Then the solution is also a stochastic function. In addition, the
failure criterium which can be basis for the optimal design {s always a
stochastic one. Hence, we have combine both stochastic characters to get
desired information, Because the uncertainty of the input data, the disper-
sion of the results can be significant. Recently we developed a theory of the
solution with stochastic input data (see {2] [19] and forthcoming papers) and
their numerical tratment by the finite element method. The implementation is

based on the code PROBE mentioned earlier.

5.1, The case of the stochastic load

Let us consider the container of the form shown in Fig. 5.1. The side
AB is loaded by a horizontal stochastic function X, = My,w), 0<y<H and
we will assume that i;T;TZY = 1 where we denoted by X (y,&) the mean. The

correlation function is assumed to be

(5.1) R(yj,yp) = 0.12 e~aly1-y2

A simulated sample of the load from a given probability field (a=0.03781)
is shown in Fig. 5.2. We will assume that the linear elasticity provides
reliable results for all loads under consideration., The solution of our model
problem is a stochastic function with the mean being the (deterministic)
solution for the mean load.

Our aim is to determine the variance and covariance of the values of
interest,

Concerning the failure criterion we will assume as example:

a) The criterion of stress intensity factor F 4in the point C (see

Fig., 5.1).

NS
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o
e
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b) The failure criterion based on the envelope of the Mohr“s circles in
the point D (see Fig, 5.1).

Knowing the stress intensity factor as random variable characterized by
its mean and standard deviation, we can establish the probability level of the
failure when the material probabilistic characterization of admissible stress
intensity factor is given.

The criterion b) is more complicated. We need here the correlation of
the components of the stress tensor which allows us to compute not only the
mean Mohr”s circles but also its perturbation in every point of the circle
which for a given probability level has an elliptic character, The envelope
of these ellipses will be compared with the admissible failure curve (see Fig.
5.3).

The concrete computation of our model problem has been computed using
the program PROBE and the mesh shown in Fig. 5.4. (The refinement in the
neighborhood of the reentrant corners is not shown.)

In Table 5.1 we show the mean values and the standard deviation Sd(F)
of the stress intensity factor F in the point C in dependence on p.

For the technique used in PROBE for the computation of the stress

intensity factor, see [8],

TABLE 5.1
P F sd(F)
1 ~-46,5958 3.,71714
2 ~51.7433 3.92931
3 -49,3796 3,94039
4 -49,0721 3.91575
17




P e B e b & Sl el i i

AR
o

»

v

.
X

4
>,

The Mohr” circles for the probability level 90% are shown in Fig. 5.5.
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5.2. The problem of stochastic boundary

7

*:..M

The problem of stochastic boundary is more complicated but it can be

transformed to the case of stochastic load, Let us consider—for simplicity

AT
<

of the exposition--the problem of a symmetric, cracked panel (plane strain, v

PN

»
S

= 0.3) shown in Fig. 5.6 and assume that the deterministic traction T at the

boundary is such that the exact stress tensor is given by the following

formulae
o, = (27r)” o cos % (1 -~ sin-g- sin -2—8-)
(5.2) cy = (21rr)-1/2 cos -g- (1 + sin -g— sin %e—)
i Ty = (27r)” g sin % cos g- cos -3—6 .

: These functions are symmetric mode functions of the stress intensity factor.

E Let us assume that the side A is perturbed by a stochastic perturbation so

! that the boundary is given by the function y = 1 + A(x,w), =1 < x <1,
A(tl,w) = 0, where A(x,w) 1is the stochastic function with the correlation
function K;(x;,%5).

We use in our model problem

|x1—x2| X+,
(5.3) K1(x1,%9) = f[——z——-) - f( =+ 1}, %] <1, 1=1,2,
E where
j £(g) 8-1562(2~E)2
. 720 '

18




A simulated sample of the perturbance is shown in Fig. 5.7. Our aim is to
find the stress intensity factor F and its standard deviation Sd(F) caused
by the random boundary and the stresses and their variances and covariances
in (0.1, 0.9).

Before addressing this problem, we have to know how the traction will
change when the domain is changing so that the equilibrium is always guaran-
teed, We will assume to this end that functions G©,(x,y), ?xy(x,y) and

Ey(x,y) are defined in the neighborhood of the side A-B such that

30, a?x
ax * dy =0
(5.4)
T 3
X, _J - 9
ax dy
and o, = g and Ty = Txy O A-B where (Txy’oy) is the given traction

vector at A~B. If now point D lies on the perturbed boundary, then the

traction vector T is

x? Xy
(5.5) T =

2l

Xy’ y

where (nl, n2) is the outer normal to the perturbed boundary. This
guarantees the equilibrium condition for every perturbation.

Assume that the magnitude of the perturbance is XA. Then we have

THEOREM 5,1, The solution of (up to higher order terms in A) the perturbed

problem is the solution of the original domain with the modified load T

19
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-t + T 6+
Xy Xy x x
(5.6) T = Ty -faGee) 3= + A (x,0)
-6+ 0 -1+
y y Xy Xy
where Tg = (txy,cy)T is the traction on A-B. ll

Theorem 5.1 gives us immediately the possibility to solve the problem in the
same vein as in the previous section.

We have used in our model problem

8x(x,y) ax(O,l)

?xy(x,y) txy(x,l)

at
76y = o (k1) = (=) = Gl

We used the program PROBE and for p = 8 we obtained

a) The stress intensity factor F:
the mean value F = 0,99830 (exact value F = 1)
the standard deviation sd(F) = 2,54(-4).,

b) The stress in the point A = (0.1, 0.9):
the mean value: 5x = 0.1426, By = 00,4821, ?xy = 0,1206
the standard deviation sd(cx) = 0.48418(-2), sd(cy)= 0.35178(-2),

sd(rxy) = 0.,2088(-2)

the covariance c(ox,cy) = 0.1697(=4), c(o_, 1. ) =

x’ Xy

0.9493(-5) C(oy,rxy) = 0,7019(~5)
the normalized covariance p(cx,oy) = 0,9966, p(cx,rxy) = 0,9389,

p(dy,rxy) = 0,9555.,
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We see that the variance of F 1is much smaller than the variance of the

stress in the point A, If the failure criterium is based on the stress
intensity factor F, then it is (in our case) practicaly uninfluenced by the
uncertainty of the boundary. If the failure creterium is based on the Mohr
circle in A, then it is much more sensitive to the uncertainty of the
boundary., This shows very clearly that the same uncertainties can lead to the
uncertainties of different magnitude in the failure criterium parameters.

Let us mention that we need in (5.6) the derivatives of the stresses of
the (deterministic) solution which is computed by the finite element method.
This, of course, needs a special care and the computation can be made by the
postprocessing technique (see {8]).

The selection of functions Ex' Oys ?xy does not make usually any
problems. Many times we have a traction free surface and then, of course,

EX = Ey = ?xy = 0 1is the proper choice.
We have assumed that the tractions are not stochastic. We can also
treat the combined case when both the domain and the traction are stochastic.

We have shown here only illustrative examples of relatively simple
structure. The theory and implementation principles were developed for the
general case. It is possible to compute also higher correlation functions and
obtained, e.g. the skewness of the distribution of the stress intensity
factors, etc,

In the case of stochastic material coefficients, we can proceed
similarly and get by an iterative technique the desired data for small
variation of the material coefficients,

The optimal design should in general take into account the stochastic

character of the input data.

21
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6. CONCLUSIONS

Solving the problems of the optimal design and the engineering problems
in general one has to take into account various aspects of the mathematical

model and its numerical treatment for getting reliable results, Detailed a-

priori mathematical analysis is of utmost importance for the reliable

conclusions.
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

. To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear aad nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

] To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

® To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

. To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern~-
ment agencies such as the National Bureau of Standards.

® To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-—
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babulka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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