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1. INTRODUCTION

Thick laminated plates and shells find extensive applications as structural elements. As a result,
various approximate theories have been developed in an effort to properly assess their mechanical

behavior under static and dynamic loads.

In a series of papers Paganc (1969, 1970, 1971, 1972) gave the exact solution for the problem of
cylindrical bending and simply suppo-ted plates. He pointed out the importance of considering shear
deformation effects in order to accurately predict the plate lateral deflection and the necessity of
improving the thickness variation of in-plane displacements. which are assumed to be C!-linear func-

tions in both classical plate theory (CPT) and Reissner-Mindlin plate theory (FSD).

One of the earliest attempts in deriving an approximate theory for laminates is credited to Yu
(19591 He investigated the plane strain problem of isotropic sandwich plates by assuming piecewise
linear displacement distributions. Yang. Norris and Stavsky (1966) extended Reissner-Mindlin plate
theoryv to the case of an arbitrary number of bonded anisotropic lavers. Whitney and Pagano (1970)
using this latter approach, and later Whitney (1972). concluded that the introduction of shear deforma-

tions cannot improve the in-plane stress distributions as determined from classical plate theory.

As a remedy to these difficulties, higher order theories have been proposed in which the displace-
ment assumpltions are expressed in terms of power series in the thickness variable. The number of
plate equations of such theories does not increase with the number of layers. Theories including qua-
dratic variations (Whitney and Sun. 1973, and Nelson and Lorch, 1977} and cubic variations (Hilde-
brand. Reissner and Thomas. 1949, and Lo. Christensen and Wu. 1977) of in-plane displacements
through the plate thickness belong to this category. Reddy's (1984) high-order theory is obtained by
imposing the condition of vanishing transverse shear strains on the top and bottom surfaces of the
plate. Whitney (1972) derived in-plane displacements by integraling the transverse shear strains
deduced by Whitney and Pagano (1970). This resulied in a higher order approximation which accu-
rately predicted in-plane strains, but the resulting modified stresses did not necessarily satisfy the origi-

nal plate equilibrium equations
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Another class of higher order theories employs the displacements to be continuous and piecewise
smooth functions. i.e.. smooth within each layer (Yu, 1959). Durocher and Solecki have followed this
approach to analyze transversely isotropic sandwich plates. Mau (1973). Srinivas (1973) and Seide
(1980) have considered the case of an arbitrary number of layers. No shear correction factors were
intraduced by the last two authors. In all these theories, the number of field equations and edge Soun-

dary conditions depends on the number of lavers.

Must of the theories discussed so far. which are classified as displacement-based theories. suffer
from a common deficiency: constitutive equations lead to discontinuous interlaminar stresses. This
shortcoming has been overcome in the theory proposed by Murakami (1985) which is based upon
Reissner’s (1984) new mixed variational principle. This theory is obtained by superposing a zig-zag
shaped CC-linear function to the in-plane displacements given by Reissner-Mindlin plate theory. It was
later extended by including Legendre polynomials in the displacement variations across the plate thick-

ness (Toledano and Murakami. 1985). In both these theories, the number of equilibrium equations

and edge boundary conditions are independent of the number of favers. Thus. the theories have some

limitations when applied to composite plates with arbitrary laminate configuration.

In order to improve the in-plane response of composite piates for arbitrary laminate configuration.
a new theory which accounts for transverse shear deformations, has been developed by assuming piece-
wise continuous in-plane displacement distributions. In order 1o guarantee continuity of interlaminar
stresses. Reissner’s (1984) new mixed variational principle has been invoked by taking the transverse
stresses to be quadratic functions of a local thickness coordinate across each laver. Governing equa-

tions and consistent boundary conditions are then deduced. The advantage of using Reissner’s new

mixed variational principle is that it automatically vields the appropriate shear correction factors for the
transverse shear constitutive equations. A comparison with Pagano’s (1969) exact elasticity solution for
symmetric. antisymmetric and arbitrary laminates in ¢ylindrical bending. shows that the proposed theory
can accurately predict in-plane displacements and stresses at low span-to-thickness ratios. To further
assess the range of applicability of the present theory. results previously obtained by Murakami (198%)

are also presented
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2. FORMULATION

Consider an N-layer laminated composite plate of uniform thickness 4, as shown in Fig. 1. A
cartesian coordinate system is chosen such that the middie surface of the plate occupies a domain D in
the x,. x,-plane, the x;-axis being normal to this plane. The following notation: ( )*) k=12 .. N
will designate quantities associated with the k”-layer. The thickness of each layer is n'*’h . in which

the volume fractions n'*' satisfv the relation

T n't ] (1)

Unless otherwise specified. the usual cartesian indicial notation is employed where latin and greek
indices range from | 10 3 and 1 10 2. respectively Repeated indices imply the summation convention

and U ) is used to denote partial differentiation with respect 1o x, .

With the help of the foregoing notalion. the governing equations for the displacement vector u, %'

and stress tensor o }* ' associated with the k™ -layer are:
a) Equilibrium Equations

at'+fM=0 1 gt =gt (2)

."\
where /. are body forces:

b Constitutive Equations for Monoclinic Layers

th) - = =, h o th
ay CH Cl: Clo e C]; o k)
Ao 2 3
on] = |Cpn Cn Cy en + [Cn (3a)
- - - kXl
o Cio Cae Coeo 2e); Cae
C th} C (ht C A a {h)
A 13 (k) 23 (&) 36 (k) 33
€33 == |70 ey — | €y — 1= 2(’]2 hall Sl (3b)
[Cn Cin Cy Cs
3 W) Co C k=1 h) ¢ ¢ Y
€ 3 a - 3 W)
2 as Cas b3 §5 as o o
- = RIS
. . T3
2e; Cis Ces a3 ~Cs Cu

where C

, are the elastic constants and C, (1j = 1.2.6) represent the reduced stiffnesses introduced by
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» Whitney and Pagano (1970). Q% s
: o3
' ¢) Strain-Displacement Relations

» * o ‘
- | :.,-.":: '
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g e = % [ut + u) @ ROA

; e
N - y Sy
l d) Interface Continuity Conditions

\." e
- u =y and oi'=ogtV L k=12, N-1 (5

.

~ .

I e} Upper and Lower Surface Stress Conditions O

- ':}'w':"\
: of! =T on x,= 2 (6a) R
§ el
- Qo
) ; RSO
* oiM'=T" on xy=-— h (6b) o
> 2 ~

The objectives in developing the present composite plate theory are : first, 1o improve the
" assumed variations of in-plane displacements through the plate thickness. second, to take into account
' the effect of transverse shear deformation and derive appropriate constitutive equations. and finally, for
- arbitraryv laminate configurations. 10 assess and compare its range of applicability with the laminated

plate theory proposed by Murakami (1985).

In order to carry out this task. Reissner's (1984) new mixed variational principle for displace-

ments and transverse stresses was applied to the N -layer composite plate:

A
> iz d [5""“0,‘,“ Flugh = 20 Tl [y - e (- )1&;5"]“*3 v d
K= '
3 4IAI -
y Vi) gt h [ h - ’
2 = fbf b3 f bu'"'f "M dx;|dx dx, + fbr Su X3 )T = 8y, (x ) xa. — <) T |dx dxs
> A=l 2 2 2
N RN
:_ N 3 )
. + f )3 8u""T/* dvylds -
. GDT A=} A :-
; T
Te e

AW e

v
where 9Dy denotes the boundary of D with outward normal v, on which tractions 7. are prescribed

and 4'*' is the x;-domain occupied by the k™-layer. Also r{*' denote the approximate transverse




A S N LY ORI L WYY 5 ' RN Y a At A s, ) 4 Dy B WA 2igmi R A ek Gy

;
! -7

Y oo -
" N
. AL 4
\ o oW
: AR
. . . . . AR
. stresses and ej*'(- - - ) are given by Egs. (3b.c). Due to the nature of Reissner’s mixed variational g
: .0'_’.-:‘-!
FRAFZAS
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3. TRIAL DISPLACEMENT AND TRANSVERSE STRESS FIELDS

The present laminated plate theory which accounts for transverse shear effects is obtained by
assuming a linear variation of the in-plane displacements across each individual layer. as shown in
Fig. 2. Transverse displacements are taken to be constant throughout the entire thickness of the plate.
Therefore shear strains are constant within each layer, but differ from layer 10 layer. This approach has
been previously adopted by Seide (1980) for the A-layer case. However no mention of shear correc-

tion factors was made in his paper.

The appropriate trial functions used in connection with Reissner’'s mixed variational principle

Eq. (7) are chosen to be:

a) Trial Displacement Field

() = U1 (gdg it (et )+ Ut (gt (gt ) (8a)
uit' (x) = Uslx,) (8b)

(h)
where g (x{t) = %+ (~1)a=! :j,h 9)

x1*" is a local x;-coordinate system with its origin at the center xj§' of the k" -layer. i.e.

x$t = x = xigf! (10)

From Eqs. (8a) and (9) it is seen that U (k = 1.2.- -+ N=1), U,;°" and L'}}' represent the values
of u,*' at the interface. top and bottom surfaces of the plate. respectively. Also. Eq. (8) satisfy inter-

face displacement continuity conditions Eq. (Sa).

b) Tnal Transverse Stress Field

Tia )= QN xp) Fiz) + TV g Falz) + TH (xg) Fi(2) (11a)

W) =0 (11b)

where F,(:)s—zm (1-:9 (12a)
- é -2 _]_ -_]) = = l [ =

F (2) 2 + 3 =1 : 4 i=23 (12b)
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. and 2 = n‘:’h =125 (13)
Also W = 73K dxs (14)

In Eq (11a), T~V and T *' are the values of 7{%' at the top and bottom surfaces of the k" layer,

respectively. From Eq. (6) one has

7"l(li - 7"0 and 7“1\') = T/_ ‘15)

Eqg (11} satisfy the interface stress continuity conditions Eq. (5b). Due to the approximation for u 4"’

which yields e’ = 0. o4}’ becomes a reactive stress. Consequently, o}’ can be determined by

integrating the third equilibrium equation.
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4. LAMINATED PLATE EQUATIONS

Substituting Egs. (8) and (11) into Eq. (7) and using Gauss' theorem, one obtains:
a) Equilibrium Equations

LY
+ % Fil 4 Fl s T =0 (16a)

] (R (X}
3 \B(l],,.i + mh 'Mﬂaﬁ ” ”'h

] cal ] .W(:’ M‘:’l) 1 ‘N'i:‘) .N,'(hf-t]l
2 ['\5" \L;::JJ“] -~ ’ fof _ TBaf ), 21

7k pG-1 hl a1 T pueD
(16b)
L (s for] 2| R R
+3Fa +Fa —7 ”—(‘T‘—"T‘]T =0 | k=12 - N-1i
U R S P VOSN[RS R ) (16c)
2 B8a 8 (\»h Mga g ™ 2 e ‘\'h a ¢
N A
,.E N+ F+T; -T; =0 (16d)
where (‘vgg’ .Ma’g"E f (Ix{*o s dc, . N = i dx, (17a.b)
A(Al AIA‘
» M 5 A
(Fol“ ‘Fal“, = f (l..Y;’"’_f;"df; N F;E AII f}‘“ dx; (17¢.d)
PN e PUY
b) Boundary Conditions
Mlll M“-]|
Specify U*' or [2 (NG + Ngh=11) — n [ ",", - "‘B:_“ ” vy (18a)
A
Specify U’y or k):] N, (18b)

Eq. (18) constitute (2N + 3) conditions. It can be seen that the natural edge traction boundary cond:-

tions are coupled. i.e. force and moment resultants acling on two adjacent layers are involved.

¢) Constitutive Equations for Monoclinic Lavers

p 13
Cas n't n''h C4< -
Q]u) == Q(Al - T’(A 1 Tlikll + lru 1 + Tu)
Cu 12 12 -
S At et A PR, AR AR A VORI AP AT ‘.'AA" \.}-_1“_\.‘_:F_A"A“M."_.\‘).;;\- AN N =
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o
U = U+ Uy (192)
6 C(I\l A
-’l-‘l
Cos| ™ (k) ( n®p [ Cos)™ n'“'p g
g ) so g B _h|Ss lTu—n + T(k)] _n’h [T(k-l) + TH -
[(~55 Ql Q2 12 C55 1 | 12 2 2
C.“ (v - U+ nvn Uy, (19b) A
o
] 2 . -~ - ' - v ~ - 1A= :.:“::
L [eu om = clrop) - g5 [cior + cito) o
+ _3’7_0 [n«r('-&brltk-ln _ 4'"1“&‘«2» + nu-nf‘(:-n] Tlu' + n(kol)(‘&‘li Tfk’l)] (19¢) o
- _3% [n“'f‘j_ﬁ’T;‘““ _ 4["(“6‘(?‘ + nmn('-:g*n] TR 4 pl=n@d=n T;"""’] =0
- L (ewor + caropr) + g (CRiow + o)
—_ % [ 'A‘Cl‘-' u o 4[!1‘“(24‘;’ + nu»]lc";?—l’l T;Av + n(/wl)("";*l‘rllkoll] (19d)
+ 3_’:) lnlki('*s';.)rz(ln—li —_ 4[!1'“(25(_%‘ + n(k-]»(*"l'é‘lil Tg(“ 4+ nu~lrc°'5l;‘l'7-z(ko])] =0 —'\;:
A
In Eqs. (19a.b) k ranges from 1 to N. while in Eqs. (19¢.d) k ranges from 1 to (V—1). Egs. (19) can '}::: :Z‘
be soived for Q%' and T/*' in terms of L'’ and U';,. As a result. the quantities N3;' can be deter- —
mined as functions of these displacement variables. Such expressions will automatically include :
appropriate shear correction factors by virtue of Reissner’s mixed variational principle.
The remaining constitutive equations for A 4' and M,3' are obtained by substituting (3a). (4) -
and (8) into (17a} to vield
. Th! P - C-, th) '(A—l' k)
M oy Cy Cix Coe U + U4
,\'22 -2 3 612 C;: 626 L (A "+ U(“ (20a) -.f
Nia (‘-lb 626 566 Ll(k (LS U(A R L]“ -~ U(kl A
A o € s ) Ukt v--;
M, () 1n Gz Cye 1.1 1.1
Myl = _n_lz_)__ Ci; Cu Cas Uiy = Uy (20b) o
M Cio Cro Coof LI+ UNY = U0y = U T
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5. CYLINDRICAL BENDING OF LAMINATED PLATES

"
o In order 1o test the accuracy and assess the range of applicability of the present theory, cylindrical
& bending of composite plates under sinusoidal loading is considered. The plate is simply supported at
" the ends x, = 0 and /. and is infinitely long in the x,-direction. The prescribed boundary conditions on
the top and bottom surfaces of the plate are
mX
T: =0, T3‘=qsin—T]- on.\'3=g (21a)
- _ h
Tr=T; =0 onx;=- (21b)
The boundary conditions for the simply supported ends are. from (18)
Us;=0 at x;=0. (22a)
r 1 (.. e 1M MY
- 3 .\H' + \1({\ “l—-; (wa =0 at x;=0/ (22b)
For simplicity, only cylindrical bending of laminated plates consisting of orthotropic lavers will be con-
sidered in the subsequent analvsis. However. no additional restrictions are imposed on layer
thicknesses. elastic moduli and stacking sequence. In this case. there holds
oM =T = (23)
- Cd' =0 and C&' =1C¥ (29)
As a result. terms involving Q3% and T3'' will drop out from Eqs. (19a.c). while Eqs (19b.d) will not o ;Z_
- appear altogether. The remaining equations for Q{*' and 7|*  can be written 1n matnx form as RG]
Q- h[81]T1’= b (25a)
~ (DIQ + hIFIT, =0 (25b)

. where S
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=10 .0 . ..o (26a) -
L= .1 .. TNV (26b)

and {B,). [D|]) and [F,] are matrices of dimensions N x (N—1), (N—1) x N and (N-1) x (N-1), T
respectively. These matrices are only functions of n**' and C¢é'. The righi-nand side of Eq. (25a)

contains the displacement variables U[*' and U';,. Egs. (25) can be solved for Q*' and T{*' 1o vield

h Ty=— [F7'ID)Q, (27a)
Q.= (1 + BIIFT' D) b (27b) o

where [/] is the N x N identity matrix.

The remaining constitutive equations are simply. from (20}

thigy .
N =2 zh) C{?’[Ul‘,‘r“ + L’{,‘,'] (28a)
(H(Uh):’ - ‘,".;'.'r.\
! miy = AT v - ) (28b)
N N'= N =M§'=M3'=0 (28c)
.‘: u“ "
Using surface boundary conditions (21), the equilibrium equations (16) for cyvlindrical bending in the S
:L:_ absence of body forces reduce to '.::: :::
\ l \:(h + ] [Mq) — A = 0 (29a) -..‘:.
. 7 VI POTYA B IR AL B a
- tet .
1 (a wn] LM M N A . .
3 N+ N l—; POYR T t PUURTeITY =0 . k=12...N-1 (29b) ‘
. -:{.‘:1
< N - 'TIT’ [Mfl\.l' - N " =0 (29¢) T
- 2 n'*h i
: AN AT R e
o El N3i) + g sin - = 0 {29d) :.:_:::_:
- '::."{:"
2 ‘waw N
A The form of the dependence on the displacement variables L'|*' and L’; of the constitutive equations

(27b) and (28a.b). and the nature of the applied load suggests the following expressions for the
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displacements

mXy

!

mX,

] (30)

U = h U™ cos and Uy=h U, sin

where [/{*' and {'; are nondimensional quantities by definition. It is easily proven that the boundary

conditions (22} are satisfied when (30) are substitited therein

Finally. inserting (30) into the coastitutive equations ;27b) and (28a.b). and these in turn into
the equilibrium equations (29), vields a system of (N+2) algebraic equations with the (N + 2) nondi-

mensional amplitudes L'{*' and U’ as unknowns. This system is conveniently written in matrix form

as
X1 {=F 31
L where U= [[{. UM, - TN, 0) (32a)
F=10.0....0.q7 (32b)

and [X]isa (N + 2) x (N + 2) matrix.
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6. NUMERICAL RESULTS AND DISCUSSION

In order 1o test the accuracy of the present theory, the problem of cylindrical bending of an AL
S

l\ 5\‘5\

infinitely long strip under sinusoidal loading is re-examined. The exact elasticity solution has been RO
SRS

; ; : RS A

given by Pagano (1969). where a symmetric three layer cross-ply laminate was considered. the 0° layers NTas

being at the outer surfaces of the plate. The elastic properties are

c C
for the 0°layers ——+ = 25062657 . —— = 0.5 (33a)
E; E;
¢
and for the 90° layers — = 1.002506 . S Lo (33b)
Er Er

where E; is a reference modulus.

Following Pagano’s (1969) nondimensionalization. the displacements and stresses are written in

the form
_ Er| ul*' (0.x3) - Er] 100 A} l
T ol et i LR Pd A
u] q h 3 q [‘ u; (2 .0) [CS—
(34)
(—rul=la(kv(_l xX3)
i} PRI TR
_ X3 ] -
Also X, p and S p (35)

In the various curves the solid line represents the exact solution while the results of the present

theory are shown by a broken line. Also shown, for comparison purposes. are the results given by the
laminated plate theory proposed by Murakami (1985) which are represented by a dashed-dotted line. It
is a shear deformable theory obtained by superposing 1o the linear variations of the Reissner-Mindlin

theory a zig-zag in-plane displacement variation across the plate thickness. For brevity. this theory will

be called here “The First-Order Zig-Zag Theory" and abbreviated as ZZ
For a symmetric 3-layer cross-ply laminate (0/90/0) with layers of equal thickness. Table 1 shows .
the values of the central deflection i; obtained from the different theories for a span-to-thickness ratio ..__

S =4 As observed. the present theory and the First-Order Zig-Zag theory vield exactly the same
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numerical result. This is also true for the thickness variations of the in-plane displacement #;*' and
normal stress &}'. As shown in Figs. 3a.b, very close agreement is found between both theories and
Pagano’s exact solution. 1t should be pointed out that the numerical results obtained by Seide (1980)

differ slightly from those given here since no shear correction factors were introduced by him.

The present theory was next tested for a symmetric S-layer cross-ply laminate (0/90/0/90/0) with
lavers of equa! thickness. The central deflection u&; for § = 4 is shown in Table 1. where closer agree-
ment between the present theory and the exact solution is observed as compared to the first-order zig-

*! and &,}' are com-

zag theory. The distributions across the plate thickness of in-plane variables u;
pared in Figs. 4a.b. It is seen that the present theory has improved upon ZZ . especially in the interior

lavers of the plate.

An antissmmetric 4-layer cross-ply laminate (0/90/0/90) with layers of equal thickness. was also
examined. In this case. the error in the central deflection between the exact solution and ZZ is quite

large (— 21%). while the present theory still gives a satisfactory value (see Table 1). The variations

k1 A}

across the plate thickness of the in-plane displacement #*' and normal stress &} are shown in
Figs. 5a.b for § = 4. respectively. From the curves for "', it is seen that the first-order zig-zag
theory deviates significantly from the exact solution at the bottom layer of the plate. On the other

hand. the present theory is in very good agreement with the exact solution.
To further assess the range of applicability of both the present theory and the first-order zig-zag
model. arbitrary laminate configurations consisting of 3. 4 and § lavers were tested. Three differem

materials were used. with the following elastic properties

Material | S 1.002506 . Cs 02 (36a)
E; E;
N &1] C«
h — = 32 . — =8 { )
Material 2 , 2631 A 821 36b
Material 3 S _ 25062657 . S o (360
Er Er
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The laminate configurations corresponding to the three cases examined are shown in Table 2. In all

cases. S = 4.

The values of the central deflection for the three laminate configurations are given in Table 3. It
can be observed that the discrepancies with the exact solution are larger in the case of the first-order
zig-zag theory than in the case of the present theory. In particular, the error in &; for N = § is as high
as 49%. The variations across the plate thickness of the in-plane displacement u;*' and normal stress
7,1 are shown in Figs 6. 7 and 8 for N = 3.4 and S. respectively. As expected. the symmetric distri-
butions obtained by the present theory and ZZ for N = 3 and 5 no longer hold for arbitrary laminate
configurations. In all the cases considered. the present theory is still in good agreement with the exact
solution. except possibly at the top laver of the 4-ply laminate (see Fig. 7). On the other hand. it is

seen that the first-order zig-zag theory deviates considerably from the exact solution.

Some important points are now discussed. The accuracy of the present theory can be improved by
dividing each ply into a finite number of sub-lavers. but at the expense of increasing computer storage.
Also. the proposed theory possesses two main drawbacks. which are . first. the number of equilibrium
equations and edge boundary conditions increases with the number of lavers. and second. due to the
coupling of the natural edge boundary conditions (see Eq. (18)). no clear physical meaning seems to be

associated with them.

Next. as a possible explanation for the increased discrepancies in the case of arbitrary laminates
between the exact solution and the first-order zig-zag theory. the following argument is proposed The
inclusion of the zig-zag shaped C?-function was motivated by the displacement microstructue of
periodic laminated composites (Murakami. Maewal and Hegemier. 1981). Obviousls. for arbitrary lam-

inate configurations. this periodicity is destroyed. Therefore. the first-order zig-zag theory should be

expected to break down in these particular cases. e e

Finally. it is worth mentioning that an advantage of the zig-zag model is that the number of equa-
tions 1o be solved for the displacement-type variables are independent of the number of layers This is
certainly not true for the present theory. In design problems involving laminates with a large number

of layers, these considerations should be taken into account.
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7. CONCLUSION

A composite plate theory. which accurately predicts in-plane responses of arbitrary laminates. was
developed by assuming a linear variation of in-plane displacements and a quadratic variation of
transverse stresses across each individual lamina. Transverse displacements were kept constan!
throughout the entire plate thickness. Governing equations and appropriate boundary conditions were
then deduced from Reissner’s (1984) new mixed variational principle. The accuracy of the theory was
examined for the case of cylindrical bending of an infinitely long strip and compared with the exact
solution given by Pagano (1969). The results obtained by the taminated plate theory proposed by
Murakami (19851, and called "The First-Order Zig-Zag Theory" were also shown. Values for the central
deflection and in-plane displacement and normal stress for symmetric. antisymmetric and arbitrary lam-
inates were presented. It was observed that the first-order zig-zag theory gave satisfactory results only
for symmetric cross-ply laminates. The discrepancies between this theory and the exact solution were
more pronounced for laminates of arbitrary configuations than for antisymmetric cross-ply laminates.
On the other hand. in all the cases considered. the present theory was in close agreement with the exact
solution. Despite certain shoricomings. the good correlation with the exact elasticity solution indicates
that the proposed theory may prove useful in the investigation of the mechanical response of arbitrary

laminates.
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Table 1.  Central Deflection 4; for Symmetric 3 and 5-Layer and Antisymmetric 4-Layer Cross-

Ply Laminates (S = 4)

(0/90/0) (0/90/0/90/0) (0/90/0/90)
Exact Solution 2.887 3.044 4.181
Present Theory 2.907 3.059 4.202
15\.Order Zig-Zag 2.907 3.018 3.316
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Table 2. Geometric and Physical Properties of Arbitrary 3. 4 and 5-Layer Laminates (S = 4)

. Number of Layer Volume Material
3
- Layers N Fraction n ¢!
1 0.25 3
3 2 0.40 1
3 0.35 2
2 ] 0.25 ]
5 4 2 0.35 3
R 3 0.30 2
P |
_: 4 0.10 1
I 0.10 1
»
i 2 0.25 2
<
N s 3 0.15 3
r_:‘
$ 4 0.20 !
! 5 0.30 3
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Table 3. Central Deflection &, for Arbitrary 3. 4 and 5-Layer Laminates (S = 4)

N=3 N=24 N=3§
Exact Solution 2.341 1.665 2.456
Present Theory 2.364 1.644 2.467
1..0rder Zig-Zag 1.992 1.303 1.261
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