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ABSTRACT

In order to improve the accuracy of in-plane responses of shear deformable composite plate

theories, a new laminated plate theory was developed for arbitrary laminate configuration based upon . ,

1 Reissner's (1984) new mixed variational principle. To this end, across each individual layer, piecewise

linear continuous displacements and quadratic transverse shear stress distributions were assumed. The

accuracy of the present theory was examined by applying it to the :ylindrical bending problem of lam-

inated plates which had been solved exactly by Pagano (1969). A comparison with the exact solutions

obtained for symmetric, antisymmetric and arbitrary laminates indicates that the present theory accu-

rately estimates in-plane responses, even for small span-to-thickness ratios.
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1. INTRODUCTION

Thick laminated plates and shells find extensive applications as structural elements. As a result," ,

various approximate theories have been developed in an effort to properly assess their mechanical

behavior under static and dynamic loads.

In a series of papers Paganc (1969. 1970 1971, 1972) gave the exact solution for the problem of". " . .

cylindrical bending and simply suppo-ted plates. He pointed out the importance of considering shear

deformation effects in order to accurately predict the plate lateral deflection and the necessity of

" improving the thickness variation of in-plane displacements, which are assumed to be Ct -linear func-

itions in both classical plate theory (CPT) and Reissner-Mindlin plate theory (FSD).

One of the earliest attempts in deriving an approximate theory for laminates is credited to Yu ..

. (1959, He investigated the plane strain problem of isotropic sandwich plates by assuming piecewise

* linear displacement distributions. Yang. Norris and Stavsky (1966) extended Reissner-Mindlin plate

theory to the case of an arbitrar) number of bonded anisotropic layers. Whitney and Pagano (1970)

using this latter approach, and later Whitney (1972). concluded that the introduction of shear deforma-

tions cannot improve the in-plane stress distributions as determined from classical plate theory. -

As a remedy to these difficulties, higher order theories have been proposed in which the displace-

ment assumptions are expressed in terms of power series in the thickness variable. The number of

plate equations of such theories does not increase with the number of layers. Theories including qua-

dratic variations (Whitney and Sun, 1973. and Nelson and Lorch, 1977) and cubic variations (Hilde-

brand. Reissner and Thomas, 1949, and Lo. Christensen and Wu. 1977) of in-plane displacements

through the plate thickness belong to this category. Redd%'s (1984) high-order theory is obtained by
I

imposing the condition of vanishing transverse shear strains on the top and bottom surfaces of the

plate. Whitney (1972) derived in-plane displacements by integrating the transverse shear strains

deduced by Whitne% and Pagano (1970). This resulted in a higher order approximation which accu- "-.""

rately predicted in-plane strains, but the resulting modified stresses did not necessarily satisfy the origi- -

nal plate equilibrium equations

- I.
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Another class of higher order theories employs the displacements to be continuous and piecewise

smooth functions. i.e.. smooth within each layer (Yu, 1959). Durocher and Solecki have followed this

approach to analyze transversely isotropic sandwich plates. Mau (1973), Srinivas (1973) and Seide .,,,-

(1980) have considered the case of an arbitrary number of layers. No shear correction factors were

intr:)duced by the last two authors. In all these theories, the number of field equations and edgc boun-

dar. conditions depends on the number of layers.

Most of the theories discussed so far, which are classified as displacement-based theories, suffer

from a common deficiency: constitutive equations lead to discontinuous interlaminar stresses. This

shortcoming has been overcome in the theory proposed by Murakami (1985) which is based upon

Reissner's (1984) new mixed variational principle This theory is obtained by superposing a zig-zag

shaped C° -linear function to the in-plane displacements given by Reissner-Mindlin plate theory. It was

later extended by including Legendre polynomials in the displacement variations across the plate thick-

ness (Toledano and Murakami. 1985). In both these theories, the number of equilibrium equations

and edge boundary conditions are independent of the number of layers. Thus. the theories have some

limitations when applied to composite plates with arbitrary laminate configuration.
• .,%..%

°" . ."

In order to improve the in-plane response of composite plates for arbitrary laminate configuration.

a ne%% theory which accounts for transverse shear deformations, has been developed by assuming piece-

wise continuous in-plane displacement distributions. In order to guarantee continuity of interlaminar

stresses. Reissner's (1984) new mixed variational principle has been invoked by taking the transverse

stresses to be quadratic functions of a local thickness coordinate across each layer. Governing equa-

tions and consistent boundary conditions are then deduced. The advantage of using Reissner's neA

mixed ,ariational principle is that it automatically yields the appropriate shear correction factors for the

transverse shear constitutive equations. A comparison with Pagano's (1969) exact elasticity solution for

symmetric. antisymmetric and arbitrary laminates in cylindrical bending, shows that the proposed theory A
can accurately predict in-plane displacements and stresses at low span-to-thickness ratios. To further

assess the range of applicability of the present theory, results previously obtained by Murakami (1985)

are also presented

...- ....
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2. FORMULATION

Consider an N-layer laminated composite plate of uniform thickness hi, as shown in Fig. I. A

cartesian coordinate system is chosen such that the middle surface of the plate occupies a domain D in

the xj, x:-plane, the X3-axis being normal to this plane. The following notati3n: ().k - 1,2. .1.A

will designate quantities associated with the O -layer. The thickness of each layer is n 1k h. in which

the .olume fractions n"A satisfy the relation

k-i

Unless other%%ise specified. the usual cartesian indlicial notation is employed where latin and greek

indices range from I to 3 and 1 to 2. respectively Repeated indices imply the summation convention

and 11). is used to denote partial differentiation A uth respecl to x

With the help of the foregoing notation. the go~erning equations for the displacement vector U,/A

and stress tensor o,,"' associated with the kh-.layer are:

a) Equilibrium Equations

0 .I+f-A-0 '' (2)

where f. are body forces.

b) Constitutive Equations for Monoclinic Layers

Al C11 C12 C11) II C 13
12 C12 C22 C16  ei, + C13  [~J(3a)

(Y 12 Cu,6 C26 1t66  2e 12  C36

AA) IA- el -.414 2 l f31I(b

2e23  C4. C45 a233 CV -C45  r (43II)
'a' (3c

2e31  C45 CII 31 -e"45 C44 1 3i

where C,, are the elastic constants and C, (ij 1.2.6) represent the reduced stiffnesses introduced b%
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Whitney and Pagano (1970);.

c) Strain-Displacement Relations

eWU " k + uj'. I (4)2N
d) Interface Continuity Conditions

u ( U(AI and o ~1, 3 k - 1.2., N-I1(5)

e) Upper and Lower Surface Stress Conditions

hr- on (6a)

a - T- on x 3 -- (6b)2

The objectives in developing the present composite plate theory are first, to improve the

assumed variations of in-plane displacements through the plate thickness- second, to take into account

the effect of transverse shear deformation and derive appropriate constitutive equations. and finally, for

arbitrary laminate configurations. to assess and compare its range of applicability with the laminated

plate theory proposed by Murakami (1985).

In order to carry out this task. Reissner's (1984) new mixed variational principle for displace-

ments and transverse stresses was applied to the N-layer composite plate:

f/ {e,i O>'-  + u 3"' ' - 2e ( )18r -[ul - ' . • )1873 dl] dxl d '.

I , fu"'rfI"dxj1dx , + fj ;". .. - 8u,(xI.x,. --

(7)
Buf (A " A)', dx

+ D. jA, A'AdaJd

where aDr denotes the boundary of D with outward normal v. on which tractions T are prescribed

and 4" is the x3-domain occupied by the k," -layer. Also r3," denote the approximate transverse

-. . . . . .. . . . ..-- - - - -

- . - . ,.1 ".



I .7.

stresses and e3(*( .. are given by Eqs. (3b,c). Due to the nature of Reissner's mixed variational

principle. Eqs. (3a) are taken to be the definitions of a."~' used in connection with (7). '

17-
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3. TRIAL DISPLACEMENT AND TRANSVERSE STRESS FIELDS

The present laminated plate theory which accounts for transverse shear effects is obtained by

assuming a linear variation of the in-plane displacements across each individual layer, as shown in ..

Fig. 2. Transverse displacements are taken to be constant throughout the entire thickness of the plate.

Therefore shear strains are constant within each layer, but differ from layer to layer. This approach has

been previously adopted by Seide (1980) for the N-layer case. However no mention of shear correc-

tion factors was made in his paper.

The appropriate trial functions used in connection with Reissner's mixed variational principle

Eq. (7) are chosen to be:

a) Trial Displacement Field

u"j (x,) = U.A1 (xsg (x' ) L,," (x3)g 4 ' (x") (Sa)

u (x,) = L 3(x) (8b)

1 3.

where gk) (x.1') - + )h  (9)

x," ' is a local xi-coordinate system with its origin at the center x_"' of the k' -layer , i.e.

X- x (10)
X1)  - X3-'30"

From Eqs. (8a) and (9) it is seen that U'AI (k - 1.2.. . N )-, U ° ' and L'' represent the values .-. ,

of u.' at the interface, top and bottom surfaces of the plate. respectively. Also. Eq. (8) satisfy inter-

face displacement continuit% conditions Eq (5a).

b) Trial Trans,erse Stress Field

-: k (x , ,O (x a )lF l( + T .(- i' lx ,3 F ,(: ) T ." (x i,)F 3 (: )( l a- . I

" 3 (X = 0 (lIb)

where FI(:)= 3 (1 :2) (12a)
2n h

3, :2 l _ _ - 2.3 (12b)
4- 2 4

': :1:

_-:..'5_.._ -2. ,=<<._ ,_._,'.<2 ._.':2.- . , .' . ,.,. <',".:: .;-'.-'..-...-..:= ::... -._...-........--.......'..v-......".,-.
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-~~~ ~and z n~ (z t3

Also Q.11' f 3(kI d (14)
A~k

*In Eq (Ila). T,,('- and T., k are the values of -r(k at the top and bottom surfaces of the klh layer,

respectively. From Eq. (6) one has

T"o T- and T( 17 15

Eq (I1D satisfy the interface stress continuity conditions Eq. (5b), Due to the approximation for u3"

which yields el"' =0, a3" becomes a reactive stress. Consequently. 0'3' can be determined by

integrating the third equilibrium equation.

r4
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4. LAMINATED PLATE EQUATIONS

Substituting Eqs. (8) and (11) into Eq. (7) and using Gauss' theorem, one obtains: ",

a) Equilibrium Equations

21 .a, - Mi+ " F-3+ - F.' T,, 0 (16a)
2 n "' 2 n0'

*:> . ,4 1 '"' " ° 1 - I ______ _ ____, _ , , o-' -a n A I -*~ ~ ~ A 4-11Ai ~ ~ A~t

(16b)

+ . k + " kI"h0 " k, 1.2.. N-I2, h n/ (A), , ,,- l - .- ..

I l..("i _ ___,_

, -', 1 fl43'< _ 2 -] 
"+  F2' n 1'h - T -. 0 (16c)- -"

/7,3 -1 aA~ ;3a_8 3aF T

.5.

.N + " + F i - T- 0 (16d)
A-I - " ' . .

f; 14 11 N' f 1A":where .M M.0 31, atr3 3a 3& (1 7a, b)

F' -f (l-x3A) 'dX3  F3 - 1 f3'" dx, (17cd)0tl k.]4 % . *

b) Boundary Conditions

Specify L, or , N.- + . K- I M n (1 8a)

Specify . 3 orL (18b)

Eq (18) constitute (2N + 3) conditions. It can be seen that the natural edge traction boundary condi- N

tions are coupled. i.e. force and moment resultants acting on two adjacent layers are involed.

c) Constitutive Equations for Monoclinic Layers

e45~~~~ " ,, ".=h A-,T nh 4

QIA) - TQ) Tn h (TA-I TI'' h ""(T5&- '" T"..I C ]12 12 e 4,,I "";' . -

_ I



56 [T -  U,' + n(k)h U3 .11 ( 9a)

Q 6(A ~1 ~) + niAh e45 2 W 9b)f r. f. 'A (1A 1 ),"",... ",C~ IQA~ i

1201

+ *~~~ - 4(n( A + U -(~II L" T + n'h U1 1 TAI 1c(A- h. ( k] n f (A-1IC . TA . IJ

"0 44 -4 5 + 4 5

- C6 11 - 4n + n. T- n-e"44 T ' (19d0

300L

I n qs( T1 b (A rage fro 4t n whl in eqs) A (A- d) k- range fro to (- 1 .1 9 ca

•- ~~~ ~ 45 '5 2;'  a o " - ~ "' + , '"(A -"e5 2 ...

- I) IA +

be so5e f1,r -a 4  n tr 0f 5- L-As resu l can be deter-

and ( it T 9d)n,- - 41 ''e-' + 0. -

f I" 'o . -o

InEs.(9 . ' 1age fro I 26 to& N, whil inEs U4')krnesfo o N I. (9)0an

be4 solve f-4r Q" and T,," in tem ofU ad 3,-Alrsl , tequni-ie N" anb dtr

C1 1 C 2 -C 6  , k, 1 + . (1 9d

3lC 1  4 ; C 1 C Ut Ar I -L

2'hA / l ) 2 e12  22 1 C2 2,11 §t  
-2.'2 (20a)

- 16 C26 C66, + L"-- L"

. C12. C"16... . .A.. .. . .. . . .. . .

(n- h )2 - -
C12~~~~~- C2C "('241 2b

e" 6l e2 e 6 j, I + - ' UA

.- ~~. 2'".2 .2t 2.1'2 .. *(2
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5. CYLINDRICAL BENDING OF LANfiNATED PLATES

In order to test the accuracy and assess the range of applicability of the present theory, cylindrical

* bending of composite plates under sinusoidal loading is considered. The plate is simply supported at

* the ends x, 0 and 1, and is infinitely long in the x2-direction. The prescribed boundary conditions on

*the top and botto-n surfaces of the plate are %

T -O 0 T q sin on V3 (21h

22a

hT- T- 0 on x3 =-- (21 b)

The houndar% conditions for the simply supported ends are. from (18)

U?3 0 at x= 0.1 (22a)

-~[~ + .j ]- -=0 at xj = ./ (22b)

*For simplicih%. onl% cylindrical bending of laminated plates consisting of orthotropic lavers will be con-

sidered in the subsequent analysis. However. no addiional restrictions are imposed on layer-.

thicknesses, elastic moduli and stacking sequence. In this case. there holds

QII=T,11 0 (23)

= 0and C~=I C (24)

*As a result. terms in~.oing Q(" and T"' will drop out from Eqs. (19a.c). %hile Eqs (19b~d) will not

appear altogether The remaining equations for Qj" and TI" can be %riiten in matrix form as

Q, - h (I)fT 1  b (25d):- .

(DiIQi + h [Fi Tj = 02b)

where
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[Qi) .Q12) Q(%J (26a
Ti = [T(T ) .... T26b)

and [B1]. [DI] and [Fi] are matrices of dimensions N x (N-l). (N-I) x N and (N-I) x (.V-1),

respectively. These matrices are only functions of n" and C .'. The right-hand side of Eq. (25a)

contains the displacement variables U' 1 and L';.1. Eqs. (25) can be solved for QO ' and T" ' to yield

h .Ti -- [Ff[ 1]Ql (27a)

(11 + [B11IF-lIDI)-' b (27b)

where [11 is the N x N identity matrix.

The remaining constitutive equations are simply. from (20)

' (n( h) e , -,f- .1 + V (A (28a)

N~~~ (A 1 -

M -(A I (n(kh)2 "  1-- (28b)

S12- b

1 2. =2 ' = .'0 22 0 (28c)

Using surface boundary conditions (21). the equilibrium equations (16) for cylindrical bending in the

absence of body forces reduce to

+  m 0 (29a)
2 1.1 n(1111

M 'k ,, I- IIA I N It _ _

.n- + h (Al At = 0 k=l.2.....%-1 (29b)

2 h WA' h n* - 3k=

n1"' -q sin 0 (29d)

The form of the dependence on the displacement variables L'I" and L.3 of the constitutive equalions

(27b) and (28a.b). and the nature of the applied load suggests the follo'Ang expressions for the

o-..... .

. . .. .. . . . . . . .
., ' * . .* •.-. o .a~ o .. - , .° • ". .~ '. •" . - ) .o. -.-.. ) -- . o -. ". • ). ) °'° .-. i-:
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displacements

/TXI .(. -.

U ="
) - h 1"' cos --. and U3 - h & 3 sin (30)

where UI' and t 3 are nondimensional quantities by definition. It is easily proven that the boundary

conditions (221 are satisfied when (30) are substitmed therein

Finalh. inserting (30) into the coistitutive equations '27b) and (28ab). and these in turn into

*-. the equilibrium equations (29), yields a system of (N+2) algebraic equations with the (N + 2) nondi- ." .

mensional amplitudes Ul' and LU3 as unknowns. This system is conveniently written in matrix form

as

[AX U- F (31)

where (( [ t"111 -O) II .1 3 T (32a) t',,7

F= [0.0 0. qVT (32b)

and [X] is a (N + 2) x (N + 2) matrix, .

* ** * ,1 -°.-...
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6. NUMERICAL RESULTS AND DISCUSSION

In order to test the accuracy of the present theory, the problem of cylindrical bending of an

infinitel> long strip under sinusoidal loading is re-examined. The exact elasticity solution has beenp gi,.en b% Pagano (1969), where a symmetric three layer cross-ply laminate was considered, the 0' layers r

being at the outer surfaces of the plate. The elastic properties are

for the 00 layers 25.062657 -= 0.5 (33a)
ET.-Er

and for the 900 layers T- 1.002506 . - 02 (33b)
Er E T

where ET is a reference modulus.

Following Pagano's (1969) nondimensionalization. the displacements and stresses are written in "

the form

)(A kr. 1 k(0-X3) T~r (1 0)
Ui~~_ =L U33 q , &

(34)

U- 1 I' X3)

q 3  2

Also R 3  and S (35)
h h

In the various curves the solid line represents the exact solution while the results of the present

theory are shown by a broken line. Also shown, for comparison purposes, are the results given b% the

laminated plate theor. proposed by Murakami (1985) which are represented by a dashed-dotted line. It

is a shear deformable theory obtained by superposing to the linear variations of the Reissner-Mindtin

* theory a zig-zag in-plane displacement variation across the plate thickness. For brevity, this theor. will

be called here "The First-Order Zig-Zag Theor%" and abbreviated as ZZ

For a symmetric 3-layer cross-ply laminate (0/90/0) with layers of equal thickness, Table I shos

the ,,alues of the central deflection u 3 obtained from the different theories for a span-to-thicknes,, ratio

S -4. As observed, the present theory and the First-Order Zig-Zag theor% yield exacTlN the same
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numerical result. This is also true for the thickness variations of the in-plane displacement i and

normal stress . As shown in Figs. 3a.b, very close agreement is found between both theories and

Pagano's exact solution. It should be pointed out that the numerical results obtained by Seide (1980)

differ slightly from those given here since no shear correction factors were introduced by him.

The present theory was next tested for a symmetric 5-laver cross-ply laminate (0/90/0/90/0) with

layers of equal thickness. The central deflection D. for S - 4 is shown in Table 1. where closer agree-

ment between the present theory and the exact solution is observed as compared to the first-order zig-

zag theory. The distributions across the plate thickness of in-plane variables D ' ) and are corn-

pared in Figs 4a.b. It is seen that the present theory has improved upon ZZ. especially in the interior

layers of the plate.

An antisymmetric 4-laver cross-ply laminate (0/90/0/90) with layers of equal thickness, was also

examined In this case. the error in the central deflection between the exact solution and ZZ is quite

large (- 2116). while the present theor\ still gives a satisfactory value (see Table 1). The variations

across the plate thickness of the in-plane displacement i, and normal stress ir,'' are shown in

Figs. 5a.b for S f 4. respectively. From the curves for i,"', it is seen that the first-order zig-zag

theory deviates significantly from the exact solution at the bottom layer of the plate. On the other

hand. the present theory is in very good agreement with the exact solution.

To further assess the range of applicability of both the present theory and the first-order zig-zag

model, arbitrary laminate configurations consisting of 3. 4 and 5 layers were tested. Three different

materials %,ere used. with the following elastic properties

Material 1i -- 1.002506 0.2 (36a)ET ET , ,.

Material 2 ---- = 32.631 . f 8.21 (36bET ET"""

Material 3 C' 25.06265" C55 0.5(6ET ET

..........................................................-'- ..

. L. ."'
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The laminate configurations corresponding to the three cases examined are shown in Table 2. In all

cases. S = 4.

The values of the central deflection for the three laminate configurations are given in Table 3. It

can be observed that the discrepancies with the exact solution are larger in the case of the first-order I
zig-zag theory than in the case of the present theory. In particular, the error in i3 for N - 5 is as high

as 491,.. The variations across the plate thickness of the in-plane displacement i5 A and normal stress

&I', are shown in Figs. 6. 7 and 8 for N - 3.4 and 5. respectively As expected. the symmetric distri-

butions obtained by the present theory and ZZ for N - 3 and 5 no longer hold for arbitrary lami'ate

configurations. In all the cases considered, the present theory is still in good agreement with the exact

solution. except possibly at the top layer of the 4-ply laminate (see Fig. 7). On the other hand, it is 12
seen that the first-order zig-zag theory deviates considerably from the exact solution.

Some important points are now discussed. The accuracy of the present theory can be improved by

dividing each ply into a finite number of sub-layers. but at the expense of increasing computer storage.

Also. the proposed theory possesses two main drawbacks, which are first, the number of equilibrium

equations and edge boundary conditions increases with the number of layers. and second, due to the

coupling of the natural edge boundary conditions (see Eq. (18)). no clear physical meaning seems to be

associated with them.

Next. as a possible explanation for the increased discrepancies in the case of arbitrary laminates

between the exact solution and the first-order zig-zag theory, the following argument is proposed The

inclusion of the zig-zag shaped CO-function was moti~ated by the displacement microstructue of

periodic laminated composites (Murakami, Maewal and Hegemier. 1981) Obviousl., for arbitrary lam-

inate configurations. this periodicity is destroyed. Therefore. the first-order zig-zag theory should be

expected to break down in these particular cases.

Finally. it is worth mentioning that an advantage of the zig-zag model is that the number of equa-

tions to be solved for the displacement-type variables are independent of the number of layers This is

certain]% not true for the present theory. In design problems inoling laminates %ith a large number

of la)ers, these considerations should be taken into account.

7I
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7. CONCLUSION

A composite plate theory, which accurately predicts in-plane responses of arbitrary laminates, was

developed by assuming a linear variation of in-plane displacements and a quadratic variation of

.h
transverse stresses across each individual lamina. Transverse displacements were kept constant ,.,

throughout the entire plate thickness Governing equations and appropriate boundary conditions were

then deduced from Reissner's (1984) ne\ mixed variational principle. The accuracy of the theory was

examined for the case of cylindrical bending of an infinitely long strip and compared with the exact

solution given by Pagano (1969). The results obtained by the laminated plate theory proposed by

Murakami (1985). and called "The First-Order Zig-Zag Theory" were also shown. Values for the central

deflection and in-plane displacement and normal stress for symmetric. antisymmetric and arbitrary lam-

Sinates \%ere presented. It was observed that the first-order zig-zag theory gave satisfactorN results only

for symmetric cross-ply laminates. The discrepancies between this theory and the exact solution were

more pronounced for laminates of arbitrary configuations than for antisymmetric cross-ply laminates.

On the other hand. in all the cases considered. the present theory was in close agreement with the exact

solution Despite certain shortcomings. the good correlation with the exact elasticit3 solution indicates

that the proposed theory may prove useful in the investigation of the mechanical response of arbitrary

laminates.

-A' . " -
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Table 1. Central Deflection ii3 for Symmetric 3 and 5-Layer and Antisymmetric 4-Layer Cross-

Ply Laminates (S -=4)

N~ N-3 N- 5 N -4

i(0/90/0) (0/90/0/90/0) (0/90/0/90)

Exact Solution 2.887 3.044 4.181

Present Theory 2.907 3.059 4.202

I s -Order Zig-Zag 2.907 3.018 3.316
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Table 2. Geometric and Physical Properties of Arbitrary 3, 4 and 5-Layer Laminates (S - 4)

Number of Layer Volume Material

Layers N Fraction n('

I 0.25 3

3 2 0.40 1

3 0.35 2

1 0.25

4 2 0.35 3

3 0.30 2

4 0.10 1

1 0.10 I

2 0.25 2

5 3 0.15 3

4 0.20 I

5 0.30 3

-..- C.
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Table 3. Central Deflection 5~3 for Arbitrary 3. 4 and 5-Layer Laminates (S - 4) .- ~

N -3 N -4 N- 5

Exact Solution 2.341 1.665 2.456

Present Theory 2.364 1.644 2.467* ~ Order Zig-Zag 1.992 1.303 1.261.
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