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Density Functional Theory for Excited States

in a Quasi Local Density Approximation

Walter Kohn*

Theoretlsche Physik, Eidgendssische Technische Hochschule
Hdnggerberg, 8093 ZUrich, Swi tzerland
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ABSTRACT

The starting point of this paper is a recent extension by A.K. Theophi-

lou of the Hohenberg-Kohn-Sham (I(S) density functional theory to ensembles

of systems consisting of the N lowest efgenstates, equally weighted. As in

the HKS theory the key quantities are the exchange correlation energy,M H
En(r) ,and potentialv~ (r;[n(r')J). The present paper provides expres-

sions for these quantities, valid for systems of slowly varying density.

Even for such systems, however, there are essential non-local effects.
M MNevertheless both Exc and Vxc can be calculated in terms of quantities _

characteristic of appropriate uniform thermal ensembles. This theory is

the analog of the ground state local density approximation and allows cal-

culation of excited state energies and densities.
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In its original formulation I  general density functional theory was

a ground state theory for non-relativistic interacting electrons in an

external potential, v(r). An extension to ensembles at a finite temperature,

8, was soon developed3 '2 ) . More recently the formal theory was extended

to "equl-ensembles" consisting of the lowest M states, equally weighted

Both many-body ensembles are characterized by appropriate exchange corre-

lation functionals, Fxc Cn(r)],Ex [n(r)]. in terms of these the exchange-

correlation potential of the Kohn-Sham (KS) equations can be determined,

SFx8[n(f)]/6n(r)I8  thermal ensemble (la)
elm 6E (r)r' -(lb) Exc x[n(6)]/n(r)IM equl-ensemble (Ib)

and the ensemble average densities, n(r), free energies, 48, and average

energies, EM, respectively, can be-.calculated.
The local density approximation (LOA) of F h.,pr-s..

cussed . In the present note we develop a quasi-local approximation for

M
Exc, closely related to the LDA for thermal ensembles.

As shown by Theophllou4 ), the average density n(r) of the lowest M

6)
excited states uniquely determines the external potential v(r) and hence,

implicitly, by means of the Schroedinger equation, all elgenstates '1m_

For every n(r) and M one can then define the functional

FMn(r)] a Av(* m,(T+U) m) , (2)

where the symbol Av has the meaning

=vt I- E M-rAVOm M" Tr Omn ;(3)

l . .- .&.."

".-° o-" .'
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T and U are the kinetic and interaction energy operators; and the 0 m  ....
m

m - 1,...M) are the M lowest eigenstates corresponding to the potential

7)v(r) which reproduces the average density n(r)7,

n(r) Av nm(r) (4)

Using the functional FM one can define the energy functional

EM( )Cn'(r)] v(r)n'(r)dr + [n'Cr)], (5)

whose unique minimum is attained when n'(r) is the correct n(r) and has
the value EM E Av Em .

This minimization can be carried out by solving appropriate Kohn-

Sham (KS) equations4 ). We first define

TMEn(r)]  Av T s,mtn(r)] (6)

s

where T s is the kinetic energy of an equl-ensenble -of non-interacting

electrons in the appropriate external potential v s(r) yielding the given
8)

average density n(r)8 ); i.e.,

TM[n(r)] - Av(Es1m) " f vs(r) n(r)dr (7)

where Es, represents total single particle energy. Now we can define

the exchange-correlation energy functional as

E M[n(r)] E FM[n(r)]- {Ts[n(r)] f nfr)n(r' dr dr'} (8)Xc 2 r-r'(

and the effective potential by

4

."".... . . . . ...-- "."" ':---"--."K:K:-..:. L..L.".* ..* . -*..-.-,

i. .-."-."..,- ,- .\ ,,_ ., -, . .......... . h.'•........... -
•
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VYef f(r) v(r) + n~' d'+vM()(9)

where v M (r) is given by (lb). The appropriate KS equations are

T-~ +2 Veff~r) -i $}* (r) -0. (10)

The density of the m'th KS eigenstate is

nm(r) Z fm.I( r)I 2 ,(

where f7 I- or 0) describes the occupation of the it single particle

state in the m'th N-particle state. The average density n~r) is then

given by Eq. (4). For example, if there is no degeneracy and M 2,

N-i ~jr 2 212 24 + * .~~~ (12)

Eqs. (10) and (4) must be solvied seif-cons-Istently for n(r) and M

* using Eqs. (11), (9) and (lb). Here it is asstumed that the dependence of

EM occurring in Eq. (lb), on the density n(r) is known.

It remains to find approximations for EMc and v ,~ in the spirit of

*the LOA, i.e., valid for systens of slowly varying density.

THERMODYNAMIC CONS IDERAT IONS

For M 1,~ a non-degenerate ground state, a very simple and useful

approximation for E has been the so-called local density approximation

CLDA)

E [cn(r)] = e, (n (r))dr, (13)

IXI
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where e (n) is the exchange correlation energy per unit volume of a uniform

xc
electron gas of density n. This approximation is strictly valid only when

n(r) is a slowly varying function of r. However, in practice, it was

found to yield good results even when this condition was not satisfied,

We shall now generalize this approximation for an equi-ensemble with arbi-

trary M > 1.

In the spirit of the LOA, we shall consider systems of slowly varying

density n(r). Such systems necessarily occupy a large volume and (unless

n(r) * 0) contain a large number, N, of particles. We consider both the

ground state of such a system (M - 1) and equi-ensembles of the M lowest

eigenstates. Formally we may consider families of density distributions

n(r;a) f(r/a) a a ,a2,..., (14)

where f is a given function and a is a length scale parameter which becomes

sufficiently large. We denote the average excitation energy of the equf-

ensemble by

" ---_ AV(Em) -E' (15)':::":

As a , the spacing between excited states approaches zero. If, as

a , the degree of excitation as measured by AE M/E , remains fixed,

then clearly M

* In such a limit the systems can be described by the principles of

thermodynamics. Accordingly the differences between a canonical, and
i i~~ensemble9 ) . i.:l

equi-ensemble with the same n(r) and same mean energy become negligible.

We can write ..

. . . . . . . . . . . . . . . . . . . . . . . . .-.. . . . .,,

- . . ... ., -. .
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S/k (16)

where S is the entropy. We denote by e the temperature of the canonical

ensemble equivalent to the equl-ensemble with M states, both with the

same density n(r).

We now study the relationships between these two ensembles and their

corresponding non-interacting KS ensembles. With the aid of the two appro-

priate exchange-correlation potentials, V and v Eqs. (la), (lb). we

Mconstruct the two effective potentials Ve~f , Eq. (9), and similarly veff.

Next, using these effective potentitals, we solve the appropriate KS equa-

66 Mtions for e c. and 01, £iM , respectively, and form the two non-interacting

ensembles corresponding to (M or S, n(r)) and (e,n(r)) respectively. These

two KS ensembles are not identical, even in the thermodynamic limit. The

situation is presented in Tableau 1. By construction, the temperatures of

the canonical real ensemble and corresponding KS ensemble are equal, 6.

Similarly the entropies of the equt-ensemble and corresponding KS ensemble

are equal, S. However, the relations between entropy and temperature are

different for interacting and non-interacting ensembles of the same density,

n(r). This is exemplified by uniform ensembles for which we have

S(e) f £ de' (interacting) (17)

0

and

C()
Ss(e) - T de' (non-interacting) (18)

0 * .*.' .

with unequal heat capacities C and Cs. In general, referring to the

tableau, S and 6 are related hv

* -A .'". ~ % A. . - ,. . . .. ,,, ".. ., "- .. '. ,. .i. . . . . ,-... ','"'/
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S S(8;[n(rf)) (19)

where S(O) describes the interacting ensemble. Similarly S and 0

S5 S (e;[n(r)]) (20)
S S

and

S Ss~ (8 ;Cn(r)]) (21)

where the function S We) refers to the non-interacting ensemble.
S

Using these relations and Eq. (8), we can write

M f tr II')

E[n(r)] <T+ r) T T5 [n(r)] - ~.Jfj~L4.L r dr', (22)
xc nr), 2 j-r-

where e is given in terms of M by Eq. (19) (wIth S *k log M), while 8
s

is given in terms of M by Eq. (21). Equivalently we can write

E n(r)] - E [ n(r)J + Tenr]- T, ~~) (23)xc xc s

Whlere the thermal exchange correlation energy is given by

Ee [n(r)] TU - To En(r)) lfnlr r....Ldr dr' (24)xc n(r), s 2 I '

For systems of slowly varying density, (23) can be rewritten as

M ~0
Exc[n(r)] = exc(n~r))dr + I(te(n(r)) -t's(n(r))dr ( 25)

where e x(n) is the exchange correlation energy per unit volume of a uniform

electron gas of density n ati~ tPiiuerature ',and t~ (n) is the kinetic

- . . . . .
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energy per unit volume of a uniform, non-interacting electron gas

of density n and temperature 8'. The relations determining 8 and

es become, for slowly varying density,

k log M f (n(r)dr a S(n(r))dr, (26)

f s

where a8 (n) and a 8(n) are, respectively, the entropy per unit volume
s

of a uniform interacting and non-interacting electron gas.

Note that, since 8 and 8s depend not only on M but, implicitly,

on the entire density distributions n(r)through Eqs. (26) the super-

scripts 8 and 8 appearing in (25) are highly non-local functions
sH

of n(r'). This must be remembered when vxc is evaluated by taking ,'

Mthe functional derivative of Exc given by Ea. (25) (cf. Eq. ib).

Let us re-write Eq. (25) as

(n(r)] = je(n(r)dr - Jts (n(r))dr (27)

where

e e

e (n) e (n) + t (n), (28)
xc

the total energy per unit volume, except for the classical electro-

static energy. Then

. 6EM [n(r')]M xcv (r;[n(r')])xc Sn(r)

(e (n)-t (nnn(r) + 6nr ea(n(r'))dr' - s,l(n(r'))dr

(29)

7."7 7
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where the subscript 1 denotes diffuentiation with respect to

the temperature argument. Thus

e 1 i - re (n) , etc. (30) '

To evaluate 6e/5n(r) at constant M (or S) we use eq. (26)

which gives

= - n-n (r) a(n(r')dr; (31)

similarly for 6e8/n(r). Thus (29) becomes

vc (r [n (n) -(e () n-n (r)

e/ e (n(r'))drs(n) ts (n(r))dr
-(a (n)) fl)t 5\ n -nn (r) 3n (nlz) i + nn (r) :::--

aJa 1 (nrr'))dr

(32)

,,.:..-.,.'

• .. .]

. . . ... . . . . . . . -1,.. . . . . . .

• .-. '- . * . *• . , . . . .. .. .. ,. . .. . ..... .... "4 ,t ".Z .4-.. .* .. ,
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PROCEDURE FOR SOLVING THE KS EQUATIONS FOR AN EQUI-ENSEMBLE IN THE

QUASI-LOA

For convenience I now describe the entire cycle of solving the KS

equations for an equi-ensemble of M states in the quasi-LOA (valid for r-v.-

systems of slowly varying density).

Consider a system oiV N electrons in a given external potential, v(r).

The objective is to calculate the average density, n(r), and average

energy, EM, of the lowest M etgenstates6)

the olloingtherodynmic10)
1. One requires the following themodynamic functions, for homogeneous

interacting and non-interacting electron gases, of the density n and

temperature 8'. (The subscript s denotes non-interacting

and the subscript 1 differentiation with respect to

temperature.)

a) The entropies per unit volume a6 (n) anda (n),

(Eqs. (26))and their temperature derivatives,a (n) and

ae (n).
s'l

b) The exchange-correlation plus kinetic energy per

unit volume e (n) (Eq. (28), and its temperature -

derivative el (n).

c) The kinetic energy per unit volume of a non-interacting8'

system, ts (n) (Eq. (25),ff), and its temperature derivative 7-7..

8'1
:." e't In)..'-

2. Begin with an initial approximation to n(r). Determine the

corresponding interacting temperature 0 and non-interacting

(KS) temperature A by solvinq respectively the implicit

equations

............................-...........
"- , .. -. - .-- .- - . - . - L .... .. '"- ''" '''..-.' . .''" -". --" - ,"." ,--- ,- , " -" - ,.* '-, -.,''r, - ,-,

-



k log 1 -. a0(n(r))dr; k log 4 r f (nr))dr (26) .Nle,
s

j~

3. Construct the effective one particle potential "I,-.

v eff(r) v (r) dr' +v (r;n (r')]), 1 9)

where v is given by Eq. (32).

4. Solve the KS single-particle equations

c V2 + ve,r) - , ) *(r) 0 0. (10)

5. Construct the M lowest non-interacting N-particle wave-functions
sm-1,...) and calculate their average density n(r) (See

Eq. (11) ff.)

6. If n'(r) = n(r), then the original n(r) was self-consistent. If not,

repeat steps 2-5, starting with a different initial density until

self-consistency is achieved.

7. 1;ow determine the average energy, EM, of the equi-ensemble as

follows. Let E (m=l,...M) be the energies of the M lowests.m

KS states. Then

EM-Av E - n(r)n(r))dr

EM  7 AVjr-r-j f -1

J+ ee(n(r)) - t S(nlr))}dr ,(33)

We now add some remarks about the thermodynamic properties

of uniform electron gases, listed in 1) above.

.. . . . . .-.. . .
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We call a temperature, 8', "low" when ke'< where E is a

mean Fermi energy of the ground state E F -<k/2>- 1 31r2 <n(r)2/3 L.

- the bracket denoting an aorropriate average. In this regime,

the temperature dependence of all thermodynamic quantities are deter-

mined by the low temperature parameters y(n) and ys(n) characterizing ,

the linear specific heat per unit volume:

9'

C6 (n) y y(n)6' ; Ce (n) - (n)e' (34)

Some calculations of the thermodynamic functions of an interacting

uniform electron gas over various ranges of n and e' have already been re-

ported11 "1l . It is generally believed that exc (n), for e' = 0, has been

most accurately determined (with a precision of order 0-1) by Monte Carlo

methods 3 It is hoped that similarly accurate results will soon become

available for the finite temperature quantities a (n), e (n) and v-(n).
xceI

Calculation of the non-interacting quantities a (n) and ts (n) is, of

course, elementary.

CONCLUDING REMARKS

The reader may be puzzled by the rather intricate interplay, in this

paper, between equi- and canonical ensembles of different temperatures and

different entropies. Indeed, in principle a knowledge of the physical prop-

erties of canonical ensembles alone determines the densities nm(r) (averaged

over any multiplets) and energies, Em(r) of all elgenstates Om . For example,

let us write the partition function as

Z(e) J n(E) e"E/ke dE , (35)

....- ,.- .°.,-..--..- ".-".-_.**,..."*-,- .;*. ,. • .. ,.
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1.

where

n(E) - (E-Em)  (36)

Then clearly n(E) is the inverse Laplace transform of z(e) and, by Eq. (3;),

determines the positions (and multiplicities) of all elgenvalues Em.

Similarly for the densities nM (r). However such a procedure has two serious

drawbacks. Even for M - 2 it requires a knowledge of Z(e) for all e and a

calculation of all single particle *0 and ei" Secondly, to obtain n(E)

from Z(e) requires an anlytic continuation into the complex 0-plane Since

Z(8), for real 8, can be only approximately known, such a continuation may

give entirely misleading results.

Why then do we not deal exclusively with the equi-ensemble, but express

both EcCn(r)] and v [nr)] by means of thermal quantities? The reason is

* that both of these functionals are, even for systems of slowly varying den-

sities, highly non-local. There is no simple LDA for them, i.e.

cEVI(r) s f exc(n(r)•) dr

not possible. (37)

Vc(r) L (n) nn(r)

M
For, for a given M, the local contribution to Exc at r depends not only on

M and n(r) but also on the entire density distribution n(r'), which deter-

mines how the total entropy, S = k log M, is apportioned between different

volume elements, dr'. On the other hand thermal quantities can be expressed

in the form of a simple LDA, e.q.

....................... .. ...... .... .. .... .--.-. :.-. .. .... ... :....,
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%

Exc[n(r)] - exc(n(r)) clr, (38)

since, for a given temperature, the local contribution to Ec depend only onxc
the local n(r) and not on the density at other points. We can take advantage 4

of the convenient LOA form 03")by noting that an equi-ensemble is equivalent

to a thermal ensemble with the same n(r) and a temperature which depends on

both M and the entire density distribution n(r). This is, of course, true

of interacting real ensemblo.s and of non-interactine KS ensembles. The non-

locality of EM and vc enters through the temperatures of thexc x:c
appropriate corresponding thermal ensembles. -

Another possibly puzzling issue Is the following. It may

setvt questionable whether the quasi-LOA of the present paper,

derived with the aid of thermodynamic arguments pertaining to 171
bulk ensembles with very dense energy spectra, is applicable to

the lowest few states of the system, say 14 1, 2 or 3. We

shall now explain that this justified question is of the same

nature as the question whether the LDA for the ground state is

applicable to small systems of 2, 3 or 4 electrons.

The ground state LDA is logically justified only for systems

of many electrons, N>>I, with slowly varying density, n(r);

for the physical assumption underlying the integral, Eq. (13),

for xcl Cn(r)] is that, locally, the electrons can be regarded as a

uniform electron gas. Nevertheless, the ground state LDA yields

. quantitatively useful results for systems with as few as

2, 3 or 4 electrons -even 1!

::4 ..
. . -.. . . . . .- -.

. . . . . . . . . . . . . . . . . - , , - •- . ° . •" - • , . , ,.. - , ,, ..

... .... .. .,. ' .. ...... ......-... . '.-:.':.. .. % ' .4%-' .. %:....,.4.' ' .'.-.--. . . . . .
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Similarly, the present quasi-LDA is logically valid only

for systems of many electrons whose density varies on a large

enough length scale, a (see Eq. (14) and for M>>I. For such

systems, as already mentioned, the spacing between excited

states approaches zero as a-, . Therefore, for large enough a,

there exists a value M 0 of M which simultaneously satisfies the

following two conditions:
.'- ..-

1. Mo>>l 2. (EMO)/E6 -(-39) "

°.

U0

(See Eq. (15)), where 6 is arbitrarily small.

In view of the first condition , (39), thermodynamic

considerations such as the equivalence of equi-ensembles and

canonical ensembles hold for M>M o  On the other hand, because

of the second condition, (39) the qua;1-LDA yields

EM In)[n*r1 M - (n(r)] "
Ex Cn(r)] Exc En(r)]; vx "n(r Vx .- '--

for M<M 0  (40)

with arbitrarily small error. This is in fact the physically

correct result under the sp,-nnd condition (39)

1"o°"4
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How useful the quasi-LOA is for excited states when the
z ?

conditions N>>], and n(r) slowyly varying, are not well

satisfied, remains to be seen.

By successive calculations for increasing M, starting with

Ii 1, the excited state energies E, and densities n (r)
.5.

(averaged over multiplets) can be obtained in the quasi -LDA of

the present paper.
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Tableau 1

Temperature, Entropy, Density in Ensembles

Real(interactinq) Corresponding KS(non-
Ensemble interactng) Ensemuble

Canonical Ensemble e,s,n(r) Os~ nr

Equi-Ensemble 8,S,n(r) 8 51Sfn(r)

s'
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