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Density Functional Theory for Excited States

in a Quasi Local Density Approximation

PSS -

Walter Kohn™

Theoretische Physik, Eidgendssische Technische Hochschule
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{

" ABSTRACT

The starting point of this paper is a recent extension by A.K. Theophi-
lou of the Hohenberg-Kohn-Sham (HKS) density functional theory to ensembles
of systems consisting of the M lowest eigenstates, equaily weighted. As in
the HKS theory the key quantities are the exchange correlation energy,
ExZEn(r)],and potential,vx: (r;(n(r‘)]). The present paper provides expres-

: sions for these quantities, valid for systems of slowly varying density.

T; Even for such systems, however, there are essential non-local effects.

- Nevertheless both Ex: and vxz can be calculated in terms of quantities
characteristic of appropriate uniform thermal ensembies. This theory is
the analog of the ground state local density approximation and allows cal-
culation of excited state energies and densities.
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In its original formulation]’z)

general density functional theory was
a ground state theory for non-relativistic interacting electrons in an
external potential, v(r). An extension to ensembles at a finite temperature,

8, was soon developed3’2).

More recently the formal theory was extended

to "equi-ensembles” consisting of the lowest M states, equally weighted4).
Both many-body ensembles are characterized by appropriate exchange corre-
lation functionals, Fxg[ﬁ(r)],Ex:[n(r)]. In terms of these the exchange-

correlation potential of the Kohn-Sham (KS) equations can be determined,

e,M( GFxg[n(r')]/Gn(r)le thermal ensemble (1a)

xc M
éExc[n(r')]/csn(r) |y equi-ensemble (1b)

e. and average

and the ensemble average densities, n(r), free energtes, ¢
energies, EM, respectively, can be:calculated.

The local density approximation (LDA) of Fxg has been previously dis-
cusseds). In the present note we develop a quasi-local approximation for
Exg, closely related to the LDA for thermal ensembles.

4). the average density n(r) of the lowest M

As shown by Theophilou
excited statess) uniquely determines the external potentia] v(r) and hence,
implicitly, by means of the Schroedinger equation, all eigenstates ¥

For every n(r) and M one can then define the functional

Fin(r)]

Av(y_,(T+0)y ) (2)

where the symbol Av has the meaning

-1 oy
Tr Omn = M

M (3)

— X
O

Avio .}

mm
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T and U are the kinetic and interaction energy operators; and the wm
(m=1,...M) are the M lowest eigenstates corresponding to the potential

v(r) which reproduces the average density n(r)7).

n(r) = Avn(r). (4)

Using the functional FM one can define the energy functional
{

| 0 (M1 = [ (ra'(rlar + P'Lar(r)] (5)
| whose'unique minimum is attained when n'(r) is the correct n(r) and has
9 the value EM 2 Av Em.

This minimization can be carried out by solving appropriate Kohn-
Sham (KS) equations®). We first define

THIn(r)] = AV T [n(r)], (6)

where Tz is the kinetic energy of an equi-ensemble of non-interacting

s TR SSPT T

electrons in the appropriate external potential vs(r) yielding the given

average density n(r)s); i.e.,

@

Mn(r)] = Av(Eg ) - [ v (r) nir)ar (7)

where Es m represents total single particle energy. Now we can define

the exchange-correlation energy functional as

\

»e
.
-

£ eln(r)] 2 Fln(r)] - (Thln(r)] + H e)atr ) ar ar') (8)

and the effective potential by
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v(r) + j ?é;%;r dr' + v:c(r) , (9)

where vzc(r) is given by (1b). The appropriate KS equations are

vare(r)

{- %-vz + v:ff(r) - ei} ¢':(r) = 0. (10)
The density of the m'th KS eigenstate is
nmir) = L ln)? (1)

where f? (= 1 or 0) describes the occupation of the it single particle
state in the m'th N-particle state. The average density n(r) is then

given by Eq. (4). For example, if there is no degeneracy and M = 2,
n(r) = N;:]Mz(r)l2 + 5 l'cb'z(r)lz + 102 (r)]|?) (12)
7 7{ N N+1 : )

Eqs. (10) and (4) must be solved self-consistently for n(r) and v:ff(r),
using Egs. (11), (9) and (1b). Here it i{s assumed that the dependence of

Efc, occurring in Eq. (1b), on the density n(r) is known.
It remains to find approximations for Etc and vtc, in the spirit of
the LDA, i.e., valid for systems of ‘slowly varying density. R

THERMODYNAMIC CONSIDERATIONS g

For M = 1, a non-degenerate ground state, a very simple and useful

approximation for Elc has been the so-called local density approximation
(LDA)

Elc[n(r)] = J‘ e .(n(r))dr, (13)
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where exc(") is the exchange correlation energy per unit volume of a uniform
electron gas of density n. This approximation is strictly valid only when
n(r) is a slowly varying function of r. However, in practice, it was
found to yield good results even when this condition was not satisfied.
We shall now generalize this approximation for an equi-ensemble with arbi-
trary M > 1.
In the spirit of the LDA, we shall consider systems of slowly varying
density n(r). Such systems necessarily occupy a large volume and (unless
n(r) ~ 0) contain a large number, N, of particles. We consider both the
ground state of such a system (M = 1) and equi-ensembles of the M lowest

eigenstates. Formally we may consider families of density distributions
n(r;a) = f(r/a)  a=apa,..., (14)

where f is a given function and a is a length scale parameter which becomes

sufficiently large. We denote the average excitation energy of the equi-
ensemble by

1
Av(Em) - £ .

(15).

"

As a +~ =, the spacing between excited states approaches zero. If, as
a - =, the deqree of excitation as measured by AEM/EI, remains fixed,
then clearly M + =,

In such a 1imit the systems can be described by the principles of

thermodynamics. Accordingly the differences between a canonical, and

equi-ensembleg) with the same n(r) and same mean energy become negligible.

We can write




M = e , (16)

where S is the entropy. We denote by 8 the temperature of the canonical
ensemble equivalent to the equi-ensemble with M states, both with the
same density n(r).

We now study the relationships between these two ensembles and their
corresponding non-interqcting KS ensembles. With the aid of the two appro-
priate exchange-correlation potentials, vii and v;z, Eqs. (1a), (1b), we
construct the two effective potentials veﬂf’ Eq. (9), and similarly vegf'
Next, using these effective potentitals, we solve the appropriate KS equa-
tions for ¢?, e? and ¢?. e? s respectivelj, and form the two non-interacting

ensembles carresponding to (M or S, n(r)) and (9,n(r)) respectively. These

two KS ensembles are not identical, even in the thermodynamic limit. The
situatién is presented in Tableau 1. By construction, the temperatures of
the canonical real ensemble and corresponding KS ensemble are equal, 6.
Similarly the entropies of the equi-ensemble and corresponding KS ensembie
are equal, S. However, the relations between entropy and temperature are
different for interacting and non-interacting ensembies of the same density,

n(r). This is exemplified by uniform ensembles for which we have

)
s(e) = f glg;l-de' (interacting) (17)
0
and
? c(8")
Ss(e) z [ -§§r—— de' (non-interacting) (18)
0

with unequal heat capacities C and Cs' In general, referring to the

tableau, S and 6 are related hv




PP S I T AT R R R LT RN AL VA L
. e LN
KA
l\.l\--

..................

7

P TS

s = s(e;[n(r)]) , (19)

.
"y
r-

o

where S(0) describes the interacting ensemble. Similarly SS and es

are given by

S, = Sg(8:[n(r)]) (20)

and
(

S = Ss(es;[n(r')]) (21)

where the function Ss(e') refers to the non-interacting ensemble.

2"' dr dr',  (22)

r
r-

Using these relations and Eq. (8), we can write 1
E M[n(r)] = <T+>° - Tes[ (r)] - l(n 4
XC n(r), s LN 2 )

q

where g is given in terms of M by Eq. (19) with S = k log M), while 8
is given in terms of M by Eq. (21). Equivalently we can write

v e
EIa(r] = E2[n(1)] + T¥n(r)] - T 5a(r)] , (23)

where the thermal exchange correlation energy is given by

Exec[n(r)] z <T+U>r?(r), - T:[n(r)] - %f%—.)- dr dr' . (24)

For systems of slowly varying density, (23) can be rewritten as ‘
eMnr)] - ®(n(r))a r (t2(n(r)) -tes(n(r))dr (25)
xc xc r + J s s ’

where exac(n) is the exchange correlation energy per unit volume of a uniform

CR . e
electron gas of density n and remperature 9, and t (n) is the kinetic

..........
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- energy per unit volume of a uniform, non-interacting electron gas ﬁZ?
f of density n and temperature 8'. The relations determining 6 and i«;
A 84 become, for slowly varying density, BT
> k log M = /? (n(r)dr =J[as (n(r))dr, (26) o
- e

CASS
where oe(n) and ogﬁn) are, respectively, the entropy per unit volume g
of a uniform interacting and non-interacting electron gas. E}i
! e
Note that, since 8 and es depend not only on M but, implicitly, Lo
on the entire density distributions n(r) through Eags. (26) the super- .:i
scripts 8 and es appearing in (25) are highly non-local functions .
of n(r'). This must be remembered when vgc is evaluated by taking e
. the functional derivative of Egc given by Eg. (25) (cf. Eq. 1lb). ’E
- Let us re-write Eqg. (25) as L
e ,
R 2 tnie)] = [e®(n(n)dr - [e.%(ncr))a (27)
xc n(r)dr g (n(r))ar
where -

- o, . _ 8 o
3 e’ (n) = e (n) + t'(n), (28) s
@ -—

the total energy per unit volume, except for the classical electro-

static energy. Then
o Moo -
B GExc[n(r )] :

M , -
vxc(r; (n(r") 1) F Y62

89
n=n(r) + dn(r)

' ]
3 ] s
= == (e (n)"ts {n))

8 88 %s ' o
el(n(r y)dr' - ShET ts’l(n(r y)dr ]

(29)




where the subscript 1 denotes diffuentiation with respect to

the temperature argument. Thus

eg'(n) : 2, e (n) , etc. (30)

To evaluate §8/3n(r) at constant M (or S) we use eqg. (26)
which gives

9,

similarly for aes/an(:). Thus (29) becomes

8
M 3(.08 S
Vee(Ti[n(r’)] = '5'5(3 (n) = &4 (n)) n=n(r)

)

on

] s . .
30 (n)) fl(n(r )ar! +<ag s(n)> jts,l(“(r ))dr

/(@) (¥ e ar penlE) g 2

-] ' '
1 (n(r'))dr

(32)
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PROCEDURE FOR SOLVING THE KS EQUATIONS FOR AN EQUI-ENSEMBLE IN THE
UASI-LDA

For convenience I now describe the entire cycle of solving the KS
equations for an equi-ensemble of M states in the quasi-LDA (valid for
systems of slowly varyir_ng density).

Consider a system of N electrons in a given external potential, V(r).
The objective is to calculate the average density, n(r), and average

energy, E", of the lowest M eigenstatess).

1. One requires the following thermodynamic functions}o)for homogeneous
interacting and non-interacting electron gases, of the density n and

temperature 6'. (The subscript s denotes non-interacting

and the subscript 1 differentiation with respect to

temperature.)

]
a) The entropies per unit volume oa'(n) and og (n),

]
(Eqs. (26)) and their temperature derivatives,ag (n) and

el
(n).
os,l

b) The exchange~-correlation plus kinetic energy per
unit volume ee'(n) (Eq. (28), and its temperature
derivative eg'(n).

c) The kinetic energy per unit volume of a non-interacting

system, tg (n) (Eq. (25),ff), and its temperature derivative
el
ts'l(n).
2. Begin with an initial approximation to n(r). Determine the
corresponding interacting temperature 6 and non-interacting

(KS) temperature Rs by solving respectively the implicit

equations
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) es
k log # = [o®(n(x))ar; k log # = [0 ®(n(x))ar (26)
J
Construct the effective one particle potential

n(zr')

vegf(r) = vz +./ r-r

M
dr' + vxc(r:[nir')]), (9
where v:c is given by Eq. (32).
Solve the KS single-particle equations

(- 52 +vie(r) - ) of(r) = 0. (10)

Construct the M lowest non-interacting N-particle wave-functions

ws ,lll
Eq. (11) ff))

(m=1,...M) and calculate their average density n'(r)s). (See

If n'(r) = n(r), then the original n(r) was self-consistent. If not,
repeat steps 2-5, starting with a different initial density until

self-consistency is achieved.

wow determine the average energy, EM, of the equi-ensemble as
follows. Let Eg m(msl,...M) be the energies of the M lowest
’

KS states. Then
l[n(x)n(xr') M
EM=AV Es'm' rj—!?_-?-]-—drdr' -[ch(r)n(r)dr

8
+ j}ee(n(r)) - tss(n(r))}dr » (33)

We now add some remarks about the thermodynamic properties

uniform electron gases, listed in 1) above.
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;; We call a temperature, 6', "low" when k6'<<§% where EF is a ;pv:
L mean Fermi energy of the ground state EF 5<k§/2>§ % 3ﬂ2<n(r)2/3>' ;::;
OO
the bracket denoting an aprropriate average. In this regime, E%ﬁ?
the temperature dependence of all thermodynamic quantities are deter- ;Ei;
mined by the low temperature parameters y(n) and ys(n) characterizing Sg;f
the linear specific heat per unit volume: fgiz
c® ) = yme' ; Cg'(n) = yg(n)o', . -(34) :?j:
Some calculations of the thermodynamic functions of an interacting 2mf?f
uniform electron gas over various ranges of n and 8' have already been re- E
ported]1‘]2. It is generally believed that e'xc(n), for 8' = 0, has been ; A
most accurately determined (with a precision of order 0-1%) by Monte Carlo ffff
methods'3. It is hoped that similarly accurate results will soon become E}ﬁi
available for the finite temperature quantities ae'(n), eg;(n) and vié(n). ;Eﬂé
Calculation of the non-interacting quantities'cg‘(n) and tg'(n) is, of E:“
course, elementary. ‘ 'Z?é
CONCLUDING REMARKS o
The reader may be puzzled by the rather intricate interplay, in this gﬁ;
paper, between equi- and canonical ensembles of different temperatures and 'ffA
different entropies. Indeed, in principle a knowledge of the physical prop- 3;?
erties of canonical ensembles alone determines the densities n (r) (averaged §§§
over any multiplets) and energies, Em(r) of all eigenstates Vn® For example, t;;
let us write the partition function as E;;

Z(e)

m
S——
=2
P~
m
e
[1 ]
]
m
~
=
D
(=Y
m
-

—
(V)
(%)

S
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where k\
~
n(E) = & S(E-Ey) . (36) N
| RS
Then clearly n(E) is the inverse Laplace transform of Z(8) and, by Eq. (36), i;isf‘
determines the positions $and multiplicities) of all eigenvalues Em. éigié
Similarly for the densities nm(r). However such a procedure has two serious Tfiff
drawbacks. Even for M = 2 it requires a knowledge of Z(6) for all 8 and a : ig;
calculation of all single particle @1»and € Secondly, to obtain n(E) Eifi
from Z(8) requires an anlytic continuation into the complex 8-plane Since jiif
Z(e), for real 8, can be only approximately known, such a continuation may o
give entirely misleading results. . iif:
Why then do we not deal exclusively with the equi-ensemble, but express ;f?f
both Eﬂc[n(r)] and v:c[n(r)] by means of thermal quantities? The reason is iiii
that both of these functionals are, even for systems of slowly varying den- ;;;;
sities, highly non-local. There is no simple LDA for them, i.e. ;EES
s

hlnr] = [ efin(rnas ~_._

not possible. (37 R

M = 2 dm (r)
For, for a given M, the local contribution to Erc at r depends not only on FS;;
M and n(r) but also on the entire density distribution n(r'), which deter- g;é?
mines how the total entropy, S = k log M, is apportioned between different =3
volume elements, dr'. On the other hand thermal quantities can be expressed Egi

in the form of a simple LDA, e.q.
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SIn(r] = [ & inlr) ax, (38)

since, for a given temperature, the local contribution to Egc depend only on
the local n(r) and not on the density at other points. We can take advantage
of the convenient LDA form (38) by noting that an equi-ensemble is equivalent
to a thermal ensemble with the same n(r) and a temperature which depends on
both M and the entire density distribution n(f). This is, of course, true
of interacting real ensembles and nf non-interactina KS ensembies. The non-

M
Xc

appropriate corresponding thermal ensembles.

Tocality of E:c and v __ enters through the temperatures of the

Another possibly pgzzling issue is the following. It may
seen questionabie whether the quasi-LDA of the present paper,
derived with the aid of thermodynamic arguments pertaining to
bulk ensembles with very dense energy spectra, is applicable to
the lowest few states of the system, sayM = 1, 2 or 3. We
shall now expléin that this justified question is of the same
nature as the question whether the LDA for the ground state is
applicable to small systems of 2, 3 or 4 electrons.

The ground state LDA is logically justified only for systems

of many electrons, N>>1, with slowly varying density, n(r); &"3:
for the physical assumption underlying the integral, Eq. (13), ;3&5
for Elc [n(r)] is that,locally, the electrons can be regarded as a iﬁ?ﬁ
uniform electron gas. Nevertheless, the ground state LDA yields RS

quantitatively useful results for systems with as few as

2, 3 or 4 electrons - even 1!
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Similarly, the present quasi-LDA is logically valid only -
e
I for systems of many electrons whose density varies on a large Z'_f;'.g.i
:\ :‘:’:‘.i?‘
X enough length scale, a (see Eq. (14) and for M>>1. For such vl
- VST
. systems, as already mentioned, the spacing between excited iy
states approaches zero as a+=. Therefore, for large enough a, :“':
r;‘}:':"
there exists a value M, of M which simultaneously satisfies the R
. | '_:._,\.’
'- following two conditions: =
' r\
x 1. M>>1 2. (oz“o)/Elia 39 - - _,
> :
n

(See Eq. (15)), where & is arbitrarily small,
In view of the first conditifon , (39), thermodynamic

. considerations such as the equivalence of equi-ensembles and O
g canonical ensembles hold for M2M,. On the other hand, because <
'L of the second condition, (39) the quasi-LDA yields ‘
] \ ] . 1
‘ EXC [n(r)] = Exc [n(r)]: ch[n(r)] = vxc[n(r)]

for McM, (40)

with arbitrarily small error. This is in fact the physically

correct result under the serond condition (39).

.....................
..........

............................................................
-----------------------
------------------------------
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How useful the quasi-LDA is for excited states when the
conditions N>>1, and n(r) slowyly varying, are not well
satisfied, remains to be seen.

By successive calculations for increasing M, starting uith.
M =1, the excited state energies Em and densities nm(r)

(averaged over multiplets) can be obtained in the quasi-LDA of

the present paper. !
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Tableau 1

Temperature, Entropy, Density in Ensembles

Real(interacting) | Corresponding KS(non-
Ensemble interazting)Ensemble

Canonical Ensemble| 8,S,n(r) e.ss,n(:)

Equi-Ensemble 8,S,n(r) es,s,h(r)
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