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ABSTRACT

"‘The theoretical analysis and computational implementation of factori-
zation-based methods for the numerical solution of linear boundary value
problems for ordinary differential equations are presented. The methods
are optimal with respect to certain clearly defined criteria. Numerical
examples show the effectiveness of a general code based on the factoriza-

tion method.
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1 INTRODUCTION

1.1 Numerical methods for linear boundary value problems for ordinary

differential equations

The standard techniques for the numerical solution of BVP's for
ODE's can be divided into two classes. On the one hand are the "direct"
methods based on varjous versions of finite differences, finite elements,
or collocation, and on the other are the "indirect" or sequential methods
based on the numerical solution of auxiliary initial value problems.
Typical of this class are various shooting and multi-shooting approaches.

Direct methods are characterized by the solution of global (linear)
algebraic systems for the discrete solution. (In this sense multi-
shooting may be regarded as a hybrid method between the two classes. A
sophisticated recent example of multi-shooting is the BOUNDPAC package, of
Mattheij and Staarink [17]) The solution of the linear systems, which
should of course be regarded as part of the numerical solution of the
original problem, can be accomplished by an iterative method or by a
direct method based on elimination. The discretization itself may be
adaptive or non-adaptive; adaptivity, however, generally requires multiple
solutions of the problem. The well-known programs COLSYS [1] and PASVA
{16] are based on methods from this class.

‘:Indirect solution methods are characterized by the association of
th;’Bﬁﬁ“w;th ceréaia auxiliary initial value problems (IVP). The
auxiliary IVP's are generally solved uni-directionally (forward), but a
subclass of initial value based methods are based on bi-directional

(double sweep) strategies. We use the term factorization for this sub-

class, and it is to the analysis and exploitation of the underlying

structure of the methods of this class that this paper is addressed.
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Both classes mentioned above are well-represented in the litera-

ture. In (2], [3], [13] and {15] the relationship between methods of the

two classes is explored. The connection is made through the notion of the
closure of a numerical algorithm ([5], (6]). It can be shown that if one
incorporates the numerical solution of the discretized (algebraic) equa-
tions into the algorithm for direct methods, then the algorithm can be
interpreted as the application of a special sequential numerical solver
for some naturally associated initial value problems. We refer here to
{31, [11], [13], [15] and [18] for some recent papers addressing in
various ways this relationship. In this paper we explore the subclass of
indirect methods called factorizations, discuss the principles of their
adaptive construction by the computer itself, and address certain

questions of implementation. Numerical examples illustrate the

effectiveness of a general code based on the method.
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1.2 The BVP and the goals of the computations ST
‘\ . ..F' -

I

Consider the linear two point boundary value problem xf_;_}_

(1a) w'(s) = B(s)w(s) - F(s), S, $ 85 s,

(1p) U1W(S1) = U1, UZW(SZ) = u2, :.:_.

where B(+¢) 1is an n x n matrix function, w(+) and F(-) are n-vector
functions, U; and U, are ny xn and n, x n matrices, respectively,
and uy and u, are and ny- and n,-vectors, respectively.

The goals of the computations are as follows: given a set of

target points

(2) s = g, < g, < see K g, = S,

—a

o




and a tolerance, 71, °find vectors Wy such that

(3) w, = wi(oi). i=0,...,n

LAY, N ...

where Gi(-) is the exact solution of a perturbed problem

A

- (4a) Wi(s) = (B(s) +b,(s))w (s) = (F(s) + £1(s)), 8y S8 sy,
(4b) (U, + VW, (s)) = (u, +v,), a=1,2,

where the perturbations may depend on the target point, as indicated, but

satisfy K
R (5) o, (1 fe, (01 101 vl s "
. e
gt
- s
- Dy
. The norms in (5) are a-priori selected and may, in the case of bi and >
. 3
' fi, be of the type Lp, 1 £ p § ». The vector Wi is a trace of an &
i exact solution of the problem (1) with perturbed input data; the perturba- ;{'ﬂ
2
tions depend on 94 and may be different for different {. g:}ﬁﬂ
e
"s:’-s.'.

Obviously the aim of the computation is directly related to the

interpretation of the numerical solution of engineering problems where the

input data are not known precisely. That (s, the class of perturbed

E: problems (4) are, for perturbations of a known magnitude <, indistin-

,E: guishable with respect to the engineering interpretaion of their exact

;2: solutions.

.

- 1.3 Factorization methods and their adaptive construction

E; We consider a class of methods based on the bi-directional adap- &i :

55 tive solution of IVP's for certain ODE's which themselves are selected

? adaptively. If these equations were solved exactly then the exact E;f::
AT,
;:::'_:-}‘.
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solution of (1) would be obtained at each target point. Let us assume

that, in the forward direction, say, these IVP's are of the form r
(6a) 9'(s) = R(s,8(s)), sy § s,

Ny (6b) 0(51) = 9. o

We cannot obtain & exactly, but only an approximate solution & which

solves (exactly) the equation
(1) $'(s) = R(s,8(8)) + r(s)

where [r(+)| s 1, the given solution tolerance, and |+| is a suit-

i able Lp norm. In [7] it is shown how various local error control

v strategies achieve |r| s t for different L, norms using a minimal

jo
number of steps.

We study a class of methods which directly ties the norm |r] to
the perturbations of the input data of the original BVP in the sense that

b.1l, If v i, v S Cir where € 1is an a-priori known constant inde-
i i a o a-priori

B SNSRI . R

pendent of the problem (1) with C = 1. Not only are the ODE's (7) solved

adaptively in order to ensure the tolerance 11, but the ODE's themselves

are constructed adaptively in order to ensure that C = 1, It {s in this

precise sense that the methods we consider are optimal.

1.4 Outline of the paper

In Section 2 we formulate and analyze the class of methods which

.a"Q'f e

AT A

satisfy the requirements stated above. Section 3 focuses on the sub-class f{;{{

S

of factorizations which reduce to matrix Riccatl equations. We derive and e

SN

. '.-\.\r

. analyze a special solver for such matrix Ricecati equations. The Riccati -
)
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solver is the foundation of a general linear TPBVP code whose performance
is 1llustrated on a varied selection of example problems in Section 4.

The efficient and cost-effective solution of linear problems has
enabled this method to be applied also to large-scale nonlinear BVP's with
* turning points and bifurcations. The description of this approach, its

analysis, and our computational experience will be reported elsewhere.
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2 THE FACTORIZATION METHOD

2.1 The linear two—point boundary value problem

Definition 1.

(a) Matrix B is said to be of size (m,n) if it has m rows and
n columns.

(b) Matrix B of size (m,n) is said to be of type (m,n) if it has

maximal rank. -

Suppose that bounded and measurable matrix functions s + B(s) of
size (m,n) and s + F{(s) of size (n,1), n > 0, are given on the
interval [31,52] c R1. Suppose also that for a = 1,2 matrices U, of
type (na,n) and u, of size (ng,1) with ny + n, = n are given. We

seek an absolutely continuous (a.c.) vector function s + w(s) of size

(n,1) on [sy,s,] which solves the first order linear two point boundary Iﬁil?

value problem (TPBVP)

w'(s) = B(s)w(s) - F(s), a.e. 8 € [31.52],

(1)

U1w(s1) = Uy, Uzw(sz) = u,.

We will refer to the TPBVP (1) as P(B,F,Ua,ua,sa).
The separated boundary conditions in (1) are no real restriction,

for the mixed problem

w'(s) = B(s)w(s) - F(s), a.e. 8 € [31.32]
(2)
U1w(s1) + Uzw(s2) = U

can easily be cast into the form (1). The algorithms for the solution

of P that we consider are based on the integration of certain associated




Accordingly, we turn to the development of some

initial value problems.

auxiliary results concerning matrix initial value problems.

2.2 Auxiliary results for matrix initial value problems

Lemma 1. Let matrix functions s »+ B(s),F(s) of size (n,n) and size

(n,1), respectively, be given on [s1,52]. Suppose that matrix U is of

type (p,n), p $n and that u 1is of size (p,1). Suppose further that

s > v(s) of size (n,1) 1is absolutely continuous and satisfies

v'(s) = B(s)v(s) - F(s) a.e. 38 ¢ [01,(2] < [31,32]

Uv(co) = u for some g, € [01,02].

If s » &(s) of size (p,n) defined on [01,02] is a.c. and satisfies

'(s) = ~¢(s)B(s) + Z(3)e(s), a.e. s € [01,0 ]

2

0(00) = U,

and if s + @(s) of size (p,1) 1is a.c. and satisfies

'(s) = =-¢(3)F(s) + Z(sw(s), ae. 8 € [01,02]

(3) —

where s » Z(s) of size (p,p) on [01.023 is continuous, but otherwise AR

arbitrary, then,

(") o(s)v(s) = o(s) ¥s € [01’02]

Proof. Define w(s) on [01.02] by




v(s) = (ov -9 )(s).
Then

w(ao) = Uv(ao) -u = 0,

and

w' ¢lv + ¢v1 - (D'

(-9B + Z9)v + &(Bv - F) - (¢F + Z )

2(9v -~ ) = Zy, a.e. s € [o,,0,].
Since Z is continuous, ¢ = 0 by uniqueness and the lemma is proved. [

The method of factorization for BVP's is based on the propagation
of the boundary condition across the interval in a manner consistent with
the differential equation (1); Lemma ! is the formal expression of the

nature of this propagation. We use the following terminology.

Definition 1. A matrix function ¢ of size (p,n) satisfying (2) is a

ransition matrix based at ¢y. The matrix Z which induces ¢ 1s the

associated conditioning matrix on [01,02J ¢ (sy,s,]. The vector func-

tion ¢ of size (p,1) satisfying (3) is a transition vector based at

0'0- .

Lemma 2. Suppose that ¢ and VY are size (p,n) transition matrices on
[01,02] based at gy, Z and Y are continuous size (p,p) condition-

ing matrices on [01,02], that

(5) ¢' = <-¢B + 29,
(8) ' = -yB + Yy,
8
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on [01,023, and that

(1) ®a,) = K¥(g,)

with Ky of type (p,p). Then there exists a matrix function s =+ K(s)
of type (p,p) on [01,02] such that,
(8) ¢(s) = K(s) ¥(s), s € [01,02].
Proof. Let s » K(s) solve the (linear) initial value problem

K'(s ) = Z(s)K(s) - K(s)¥(s),

(9)
K(oo) = K

Then we have that on [01,02]

(10) (Ky-¢)' = ~—(Ky-9)B + Z(KY-9)
with initial condition

(1) (KY“@)(OO) = 0.

By uniqueness of solutions to (10), (11) we have that

(12) ®(s) = K(s)¥(s), s € [o ].

1%

It remains to show that K is of type (p,p), i.e., invertible. Let

L(s) be the solution of

L'(s) = Y(s)L(s) - L(s8)Z(s),
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then KL satisfies
(13) (KL)' = Z(KL) - (XL)Z
(14) (KL)(gg) = Id.

Since the p x p identity matrix Idp is the unique solution of (13),

(14) on [01,02], the result is proved. B

Lemma 3. The rank of ¢(s) satisfying (5) is constant on [01,02].

Proof. Let s -+ E(s) of size (n,n) be the solution of

E'(s) = -E(s)B(s) s € Co1,02]
E(co) = Idn.

Clearly ¥ solving (6) with Y = 0 exists and is given by

¥(s) = W(UO)E(S).

so that by Lemma 2
(15) #(s) = K(s)?(ao)E(s).

If we show that E is non-singular for s € [o;,0,] then from (15) we

can see that

rank %(s) = rank V¥(s)

which proves the result.

To show that E(s) 1is of type (n,n), let F(s) solve

F'(s) = B(s)F(s)

(16)
F(ao) = Idn.
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It is easy to see that E(s)F(s) = Id, on [01,02]. 8

We apply Lemma 3 to show that solvability of (4) at one point

o, € [01,02] gives solvability at each s € [01,02]. In fact we can

0

prove
Corollary 4. For ¢, ¢ satisfying (2), (3), if the equation
Uwg = u
has k independent solutions, then
¢(s)w = ¢(s)
has k independent solutions for every s ¢ [01.02].

|
Proof. Apply Lemmas ! and 3 to the augmented matrix [¢1¢ﬂ which solves

‘B F
[q’:‘PJ = '[0!‘9] ’
! 0 0

Cela(s, = [UMul.

a7

By by hypothesis, rank U =n ~ k =p and u € range U. Now
rank(® 9] = p and rank ¢ = p by Lemma 3. Thus ¢ € range & and the

proof is complete. -

2.3 Definition of a factorization
Let boundary value problem P(B,F,Ua,ua,sa) be given as in Section

2.1

Definition 1. A factorization of P consists of:

it T”
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G (Fa) partitions w , a =1,2 of [sy,s,] with ::?:.:]
> R
i AN
) (m,) _ {
0, (1, 1 w§r
-~ LR 9, < 9 < < 9, S5 }‘i >
2 AT
o (my)  (m,-1) "
e . 2 2 .ee (0) .
b Ty S1 = 0, < 9, < < 9, 32,
% e
“- »"h-"n
:'. (Fb) collections Za' a =1,2 of conditioning matrices of size * +
» W
‘ (nayna) » S
) (1) . (1)
- 2, = {s~+27""(s): 3 ¢ I i=1,m}1,
where we use the notation
i [6«51-1))0“(1)]’ a =1,
o I(i)
. a . -
Vi i -1 ‘
_ [cél),o(i )]’ a=2; R
:f-'. (Fe) collections oa, a =1,2 of transition matrices of type (na,n),
d = {3 ->¢(i)(s): s -+ I(i), 1 =1,m };
a a a a
:;; (Fd) collections ¢y o= 1,2 of transition vectors of size Co
— g
i . (na,1), .:
v (1), (1) , o
3 ®, s> ""(s): s €I, 1=1,m}; e
a oS
by
. (Fe) collections K,, a = 1,2 of scaling matrices of type (na,na), AN
reg
Y
(1) el
» Ka = {K(1 , 1 =20, ma -1}
- and {-‘:i:
- 12

.
L8
»




(Ff) collections Pa’ a = 1,2 of constant similarity matrices of

type (n,n),

P = {Pii), 1= 1,m},

such that the following conditions hold for 1 = 1,ma and o =
1,2.
(e 8Pe) - () Taearpl), s e 1{t);
(=) e - )R, s 1l
(7)ol = -ela)lVis) + 2{V (a1l (e, s € (1),
I O e S C LRI O I AL SO PALLI PP s € 1{1);

(i), (i-1) (i-1) , (i~1), (i-1), (1)
(F5) &, (ca ) = Ky e, (ca )Pa

(76)  o{V eIy o I (U

In order for (F5) and (F6) to make sense for { = 1, we have used the

notational conventions
0, (@),
(W) @a (00. ) u.,
and
(0), (® -
(F8) ®, (aa ) u,-

The initial value problems (F3), (F5) and (F4), (F6) for 0(1)
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- and wil), respectively, are posed forward in s for a =1 and

backward in s for a = 2. We combine the forward and backward
factorizations into a composite factorization as follows:

Let the composite partition = = w U T be given by

1

(1) T:s, = @ ¢ s i J® L S,
and 1et 1¢1) . [0(1_1).0(1)1. i =1,m. It is obvious that
Lemma 1. There exist unique indices 1a’ a = 1,2 such that
g (1,) (i) .
- For o€ 1) . L I, 2" e define o'1(a) of size (n,n) by
: [ G ) -
§ 9, (c)(P1 )
: (1)
(2) ¢° ’
(1) (1) =1
J 2 2
Loz (o)(P2 ) |
¢(i)(o) of size (n,1) by b
] (i,) )
®1 {a) ARRCE
(3) ¢(i)(o) = , —
(1) S
2
0, ° ()] 3

and




(11) !
yA 0
- (1) (9 i Nysfly
:‘. (u) Z (0) = T = .
N | (12)
' On n : 22 (o)
N 2’1 |
Ny
&
e The definition of the composite scaling matrices is more involved. For
,! i=20,...,m define
g
: [ (1)
K | IPSRCO I S )
(5a) AR
Id otherwise,
n
“
(5b) L;l) = Id ,
n
2
and then set
(1) i
I"1 i On n
(5¢) Lu) a -+ 1. 2
On n i L (1)
2" | 2
l
Similarly, define
(6a) R -1,
1
(i) .
K2 2 if 0(1) . (12)
(1)
(6b) Ry
Id otherwise
n
2
15

L e
P S
e e e




and then set

1
¢ (1) !
: R, i Oy ,n
- (1) } 1'%
‘ (be) R = - .
. ! (1)
N On N 3 R2
. 2’ :
I i
; Finally, we set
i (1) K(i) - (R(i))"1L(i)
i and then state
:
] Lemma 2. ¢(i) is of size (n,n), ¢(i) is of size (n,1), z(1) s of
i size (n,n), L) 45 of type (n,n), R(i) is of type (n,n) (and so
Ej k(1) is well-defined), and we have
: (8) o o L e W 2 peion 1), 1.1,
v ,
‘ (9) T o LW W) e on 1)) e,
t} (1) -1 -1 -1}, (i-1)
E (10) ooty o gl (1), = 1yeee,m+l
. (an d Bt e kT (), L e 1yeen,mel,

Proof. Equations (8)~(11) follow directly from (F1)-(F6).

We also establish a notation for the composite factorization.

.j'_l"?‘.’["'.\.""
LRI D A

Definition 2, A composite factorization, F for P(B’F'Ua'“avsa) con-

sists of the sets




0-':'::{'-‘
L iy
VALY
"
R
s
3 = (s =+ ¢(1)(s) : s I(i), °(1) satisfies (8)}, N ,.é:
h&'
. S‘.:-f A
p = (3 - w(l)(s) - EI(i), (P(i) satisfies (10)}, E:«.::::ET'E:
0}‘\-‘.-
Z = {s =~ Z(i)(s) : s I(i), Z(i) as in (M)}, PN
K = [K(“ :K(“ as in (7T)}.
We write F= F(n,9,0,Z,K) = {m,¢,9,Z,K}. 8

Theorem 1. Suppose F(m,9,¢,2,K) 1s a factorization for

MB,F,U,,u,,8,) and let s > w(s) be an a.c. solution of P. Then
(12) w = o,
l The sense in which (11) is to be interpreted will be apparent from the

Proof. Let a target point g € [s,,s,] be given. Then ¢ € 1) pop

some index i, 0 $ i $ m. We must show that

;7 (13) oV aw(e) = o (a).
: W AP Gy )
Since I'l) I1 n 12 it is enough to show that
(1) (1) -1 (1) (1)
() . (s)(F‘(7 Y w(s) = ®, {8) ¥s € Ia , o o=1,2, -

We prove (1d4) by induction on igye

iy = 1: By definition of P we have that

— p——

YW & e -




(0)) NSy

an( UG a

and so
[yt
Kio)an(ciO)) - P, . Qﬁ ¥

But by (F5) and (F7) we have

o 6@y L k(@ p(M)
a a

and by (F6) and (F8)

(1), (0) (o)
®y (oa ) = Ka u,-

Now by virtue of Lemma 2.2-1, (14) holds for i, = 1. In particular, (14)

a K
holds for s = 0(1) and i, =1 Since K(j) is of type (n_,n ) this .
a a * a a’a’’ PR
i gives oA
v -
: S
: (1), (1), (1) =1 (1) (1, (1) N
: (15) K, %, (Pa ) w(oa ) K, w(aa ). N
N :1.-3.'.-.'
' ia to i, * 1: Having
(1Y (1Y (1) -1 (i) (i) (1)
a a a a a a
K, %% (Pa ) w(ca ) = K, w(oa ) .
S
and (F3)-(F6) for i = {  + 1 we again apply Lemma 2.2-1 to conclude that NSy
Yol
(14) holds for 1 =1, + 1. a R
)
The proof of Theorem 1 actually gives us a bit more than is stated
N in the theorem. The induction together with the observation that each
- (1)
] Ka 2 is of type (na,na), i.e., invertible, and an appeal to Lemma A
: 2.2-3 gives

) 18
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Corollary 2. The rank of ¢,, a = 1,2, 1is constant on [s;,s,]. That

is, @, 1is of type (n,,n) on (s;,s5]. 8

Now that we have shown that (11) holds If w sSolves P, we show
that the solvability of (11) is also inherited from P. In fact, they are

equivalent.

Theorem 3. Let F(w,%,¢,Z,K) be a factorization for P(B'F’Ua’ua'sa)‘

Then for o € [31,52], the linear algebraic equation
(15) (alw = o(0)

has as many linearly independent solutions w ¢ R? as there are linearly

independent a.c. functions s + w(s) solving P.

Proof. Equation (15) is interpreted in the sense of Theorem 1.
If s > w(s) solves P then by Theorem 1 w = w(o) is a solution
of (15).

On the other hand, let Wy be a solution of

0(31)wl = ¢(s1)

and let s » w(s) be the solution of the initial value problem
w'(s) = B(s)w(s) - F(s),s > s,
W(S1) = WT.

(0)
K1

By the definition of & and ®y and by the fact that is of type

(“1.n1) we have




We must show that

7" (16) Upw(sy) = up.

} Now by Lemma 2.2-1 applied with p =n =ny + n,, U= ¢(s;), and

i u =¢(sq), we conclude that

@(Sz)W(Sz) = (9(52)
from which

@2(32)‘1(32) = (92(52)-

Therefore

-,

Kgo)uzw(sz) = K§°)u2

and since KEO) us of type (n,,ny) we have (16). [ |

In our development above we have assumed that a factorization
for P exists. In fact, there are many, as we will show by example
i below. The trivial factorization (Z =0, K = Idn) always exists, for

Q example; it is usually not numerically realizable, for it is the shooting

method. A factorization algorithm, then, should select the conditioning

%- matrices Zéi), the scaling matrices K;i), the similarity matrices Pii).

;? and the partitions L adaptively in order to ensure the numerical -
PE stability of the computations. .

;_.-. -

2.4 Stable factorizations

From the point of view of practical computations, the boundary

value problem P(B,F,Ua,ua,sa) is but a model of physical reality. The

data--the arguments of P--are by definition known inaccurately, and it is

PP AR A I IR A A
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only after the influences of these inaccuracies on the solution, w,

to P are acknowledged that a reasonable interpretation of the meaning of

even the exact solution to P can be made. This interpretation is based

on our confidence both in the model itself and on the reliability of the

data supplied. We take the point of view that the exact solutions w and

; of P and a perturbed problem 5, respectively, are equivalent _,ju:‘
if P and ; are indistinguishable with respect to the goals of the T
computation. - ‘#

On the other hand, we do not have at our disposal the exact solu-

tion w to P, but only an approximate solution, w. However, if it is

-

possible to interpret W as the exact solution of a perturbed problem ﬁ,
and if P and ; are acceptably close (with respect to the goals of the
computation), then ; is an acceptable approximation to w.

In order to formalize this idea, let us suppose that a norm |-|n

is given on R". Then || = induces a natural norm 11, ny o0
’

matrices of size (n,n):

(1 lAl(n,n) sup=1 fav] .

v

We will need to measure the size of various sub-matrices of A in a

consistent way. Suppose that A is a matrix of size (p,q),

1 $p,q sn. Then
(2) g, = Wan .

where A 1is obtained from A by augmentation by zero:

21
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Of course, |v] - |v|(n'1) = |vT|(1’n) for v ¢ R,

e

Now we are in a position to state

Definition 1. An approximate solution w of P(B,F,Uaua,sa) is S

§-acceptable at ¢ ¢ [31,32] if w(o) 1is the exact solution of a

perturbed problem P = P(B,F,Ua,ua,sa) where

) 1203 = 3y % 35, .

. (4p) |FCe) - F(-)I(n'n) s 8g N

e (Ye) |um-um|(n 1y S Sy w=12

X a a

- (4d) fu, - ual(n ) S S =12,

a a :

and the norms (Ya) and (Ub) are understood as norms in Lp, 1Sps = R
We use the notation ¢ = {GB,sF,GUa,Gua}.

Based on the notion of §-acceptability of the approximate solu-
tion, we seek to formulate factorization algorithms for which we can
relate the errors introduced by the algorithms to perturbations, of an a
e priori specified magnitude, to the data of P. The specific conditions
under which the perturbations in the input data are acceptable depend on

the problem and the aims of the computations, i.e., on the choice of

|-|n. In fact, our theory gives more: a complete characterization of the

structure of the perturbations to the original problem (cf. the proof of




Theorem 1 below). Indeed, the stability of the numerical algorithm will
be related directly to the stability of the given problem P to perturba-

tions of its data.

Definition 2. A factorization F(w,¢, ,Z,K) for problem P(B,F,Uo,ua)

is bounded above if there exist M1, M2 > 0 such that

T,
(5) |¢a\-)|(n,na) $ M, a=1,2.

F is bounded below if ¢G¢Z is invertible for every s € [51,52] and

there exist mq,My > 0 such that

(6) RESIROIN s = aet,2,.

'l
(na,na)

F is bounded if it is both bounded above and bounded below. ||

* . .
. ," N ,',"-" .
. . ",‘_. e e
. 7Y K P

In order for a factorization to be useful for practical computa-
tions My and m, should be numbers of "reasonable" magnitude. If
Mi/ma is large the condition number of ¢Q®Z is large: ¢y effectively

loses rank. My and m, are also related to the interpretation of the

errors associated with the numerical realization of the factorization.
Indeed, suppose that ¢ € [01,02] is a target point in an interval

over which we have the forward and backward factorizations (a = 1,2)

(7a) ®&(s) = ‘(QQB)(S) + (Za®a)(s).
(7b) ¢a(ca) = U
and




S AL T A U - - - ey RV ' S8y " ? 3 §"_-. -
. * P:::‘:..
:2. \:.‘-.:‘.‘.
' = - et e
? (8a) ¢G(S) (QaF)(s) + (Za @a)(s), o
. ."'. M
= i’. -
(8b) ¢u(sa) u,- “?ﬁﬁ
e k‘,( "-:‘ .'n'
. : o ."':t‘.'."
Es Any numerical realizations Wa, wa of (7) and (8) may be viewed as the .”ash
exact solutions of a perturbed problem
L] = - i
(9a) VG(S) (VQB)(S) + (Zavu)(s) + Aa(S)’
(9b) Wa(oa) = Ua + Va: o
R and
. . Lo
(10a) ¥ a(S) (WaF)(s) + (Zawa)(s) + Ga(s),
(10b) wa(aa) = u v,

In (9) and (10) the matrix A, of size (na,n) and vector §, of size

(na,1) represent the discretization errors of the numerical method used

to solve (7) and (8). The matrices Vo and v, represent the error in

realizing the boundary conditions. We claim that s + v(s) defined on

Ca1,02] by

w1(s) w1(s)

(11) v(s) =
Wz(s) wz(s)

- is a S-acceptable solution to

L

R LA

el A
A I ]
LS IR K I

(12a) w'(s) = B(s)w(s) - F(s), s € [0,,0,],

I4
%
o

]

P

L. (12b) Upw(oy) = uy,  Upwlos) = up o

1

f
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with a & determined solely by the conditioning of ¥y and the

discretization errors.
Theorem 1. Suppose ¥, a = 1,2 solving (6) and (7) satisfy

(13a) |wa(-)|(n S My
o

.
m ’

(13b) (AT AT PR PR
a’a a

Then v defined by (11) is §-acceptable (at ¢ € [o0q,05,]) with

(14a) §, S max [== |2 ] },

B aml,2 Uy @ @ (na,n)
MC!
(14b) §p S max {E_ [ .1 ’1)},
a=1,2 "o Q

(14c) §; € |vm|(n )
a a

(144) 5, lval(n 1)
a a

In (14a) (14b) the norms as functions of s are assumed to be of

type.

Proof. Introduce matrix functions by by

(15) b (8) = ¥i(s)(¥ ()¥ (s))7'a (8);

and vector functions fa by

,‘.'." A
27
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(16) £ (s) = ¥ (s)(¥ (8)¥ ()6 (s) N
- a a a a [ R : J\ig
. ~_'.\ ]
/i
. It is easy to see that ¥ , vy satisfy, for a = 1,2, ' "‘.P\:“
£ o
" -h.'-'Q\
."'. (1 ' ) - <B + L:h:::r::
o 7a) ¥o(s) = (¥ (B+b ))(s) + (2 ¥ )(s), R

BCACH

. __-:._J:.

R (17v) ‘l’u(ca) = UtV .-_:{_‘::

[} = -
(18a) ¥is) (\YG(F + fa))(s) + (Zu‘va)(s)

. (18b) \Pa(da) = u(!’

. on [01 , 02] . RS
- Now for fixed o€ [o, ,021 let
.' b, (s), s € [a,,0], :_:f‘_‘_‘
. b(s;q) = o
. b,(s), s € (o,0,],

and ~:

) 3

. £,(s), s € [o,,0] .

f(s;a) = . o
’ f,(s), s € [0,02]. S
- Then v = v(g) satisfying (11) at s = ¢ is the value at ¢ of the

a solution of the perturbed problem P(B+b, F+f, UytVyr Uy*Vyr 9,0+ The : f.__

estimates (14) follow easily from (13), (15) and (16). [ |
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Remarks.

1. The perturbed problem P through which we interpret the
approximate solution v(g) depends on the target point ¢. The pertur-
bation is different at every target point.

2. The magnitude of the perturbation & = {GB.GF,GU ’6u } is
independent of the coefficients of the original problem, asulon; as a
bound of the type (13) holds. In practice, it is the adaptive construc-
tion of the conditioning matrices Zu which will guarantee (13).

3. We assume that the effect of roundoff errors is negligible. It
could be incorporated into the matrices A, and VG, and into the

a
vectors aa and Ve The solution of the local systems (11) at each
target point also introduces roundoff errors. We assume that the effects
of these roundoff errors can be neglected with respect to the discretiza-
tion errors which have already been made, especially if the computations
are carried out in double precision. It is, however, possible to inter-
pret also these roundoff errors as perturbations of the input data of the
problem.

k., If we regard the errors in the realization of the boundary data
as roundoff errors we may assume that V, =0, v, =0 1in (9) and (10).

5. The expressions for b, (15) and f, (16) give the complete
structure of the perturbations. This is in fact a stronger result than
the claim of Theorem 1.

This, then, is what we mean by a stable factorization: a bounded
factorization for which m 2 and M, are of such a priori known
magnitudes that the approximate solution is d&-acceptable when the error

tolerances of the numerical integrator for the factorization matrix/vector

initial value problems are roughly on the order of §.
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2.5 Examples of stable factorizations

2.5.1 Continuous orthonormalization. Since in view of Theorem 2.4-1 we

seek to control the behavior of ¢ao§, we study the properties of this

product. Let Qa(s) = 0&(3)02(3) and observe that

T
(1 Q (s) + Qy(s) = (9 00)(s).
Now since

2) = -0 Bo! T
( Qa(S) 9 Bo_ + Z,0.9,

and °a is of type (na,n), we can solve for Za’

(3) T T -1
z, = (¢GBQG + Qa)(°a°a) .

Then it is easy to prove

Lemma 1. Let Za(s) be determined by (3) for s + Q,(s) bounded,

measurable, and anti-symmetric. Then s =+ ¢a(s) satisfying

(4a) ¢'a(s) = —oa(s)B(s) + Za(s)oa(s)

(4b) Oa(sa) = Ua

has the property that

T T
(5) 0(!(3)45&(8) = UaUa' [ ]

We can assume, without loss of generality, that UQUZ = Idn ’

- @
Indeed, we need only multiply UOl by Kol = (UaUz) % . Thus we see that

the factorization induced by the conditioning (3) with anti-symmetric Qa
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maintains the constraint that the rows of the transition matrix ¢a are

orthonormal.

However, in view of Theorem 2.4-1, we can expect to realize this
constraint only approximately. Indeed, Za given by (3) for B will not
do for the perturbed matrix B + ba‘ In practice, therefore, the approxi-
mate solution will drift away from the constraint manifold, and provision
must be made for periodic discrete re-orthonormalizations. We refer to

[19] for details and some numerical examples.

2.5.2 Stabilized continuous orthonormalization. This factorization is

also based on (1), but with Qa chosen to ensure asymptotic stability of

the manifolds ¢ @T = ] UT.
aa aa

Lemma 2. Let Za(s) be determined by (3) for QQl given by

T T
(6) Qa(s) = KQ[UGUQ (%%(s”

where «q >0 and «, < 0. Then the manifold (¢ @T)(s) = U UT is
aa a a

asymptotically stable (forward in s for a =1 and backward in s

for a = 2).
Proof. It is enough to show that the solution ?a(s) = Uauz of

4 T -
¢i(s) = 2¢ (U U - ¥ (s))

is asymptotically stable forward in s for a =1, But this is immediate ; ’
since the coefficient matrix of this constant coeffizient nonhomogeneous

linear problem is =2« Id. .
P a*"n, [ ]

29
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Remarks.

1. In an implementation of the continuous orthonormalization it

1 1

might be tempting to replace (@QOZ)- in (3) by (UQUE)— in order to

avoid the expense of inverting ¢a¢z at every function evaluation. This
of course Invites disaster, as has been noted by Meyer [20 ] in a similar
context. For a discussion of this method see also [10].

2. On the other hand, it is possible to show that for |[«_|
sufficiently large in (6), an implementation of stabilized continuous
orthonormalization can afford to commit the above-mentioned crime.
Unfortunately having |Kal large exacerbates any stiffness inherent in

the problem.

2.5.3 Riccati factorization. The Ricatti factorization is based upon

partitioning °a in order to determine a maximally nonsingular na x na

submatrix. We will need some notation and a few preliminary results.

For 0 < p < n we define matrices Lp and Rp of type (n,p)

and (n,n-p), respectively, by

p 0
(7 L = -—1, R = | ===
P 0 P Id
n-p
It is easy to verify
Lemma 3.
(3a) Ll +RR - Id,
pp pp n
(8b) LTL = Id_,
p P p

30
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R R = Id R
(8e) o Ry n-p

(84) [L, | BRI = Ia. »

For a matrix A of size {(n,m) and 0 < p < n we set

A, LoAs A, RyA

and for A of size (m,n) we set

A1 = ALp y A2 = ARp .

Evidently if A is of size (n,n) we will write A in partitioned block

form as
A1,1 A1,2
A =
A2,1 A2,2
where
T T
A1,1 = LpALp, A1,2 = LpARp,
T T
A2’4’ = RpALp, A2’ 2 = RDARP .

Finally, if ¢ = (01""’°n) is a permutation of the integers (1,...,n)
we denote by P% the corresponding n x n column permutation matrix;
i.e., P% is the n xn identity matrix with columns permuted by .
Then if U 1is of size (p,n) we have that UPY 1is a matrix the columns
of which are those of U permuted by ¢. If U 1is of size (n,m)

then (P°)TU is a matrix the rows of which are those of U permuted by

6. Clearly, (P%TP% = p%p%7T - 1a_.
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Lemma 4. If U 1is of type (p,n) with 0 < p $n, then there exists a
permutation ¢ such that the entries of the matrix [(UPU)Lp]-1UP° are

all in absolute value less than or equal to one.

Proof. Since U 1is of type (p,n) there exists a permutation 1 such

that UPTLp is invertible. Let ¢ be such that

|det(UP°Lp)| 2 ldet(UP’Lp)l

for all permutations <. Then by Cramer's rule the elements of

(UPOLp)-1UP° have the form

det(UPL_)
—_— P

det(UP“Lp)

| for various choices of permutation r. [ ]

We call UPOLp with o as in Lemma 4 a maximally nonsingular (p,p)
submatrix of U.
The following remarks apply both to the a = 1 (left to right)

and a = 2 (right to left) factorizations. Accordingly, we suppress the

subscript o and discuss only the left to right factorization.

We construct a solution to a problem of the following type: Given
absolutely continuous functions s + B(s), F(s) on [sq,s,] with B of ;&i?}
size (n,n) and F of size (n,1), and given a matrix U of type
(p,n) and vector u of size (p,1), determine (piecewise absolutely
continuous) functions s » &(s), ¢(s) on ([sy,s,] such that ¢ is of

type (p,n), ¢ 1is of size (p,!) and such that

(9) o(s)w(s) = o(s), s € [51.32].




for any function s » w(s) satisfying

w'(s) = B(s)w(s) - F(s)

(10)

Uw(s1) = u.

step 0: Let (9 -5, 80 a5, FO Lp w0 _y and 1et oM
be such that V(O)P°(1)Lp is maximally non-singular. 0(1) can be
obtained in practice by performing Gauss elimination with column pivoting

on U. The result is the matrix

(1) -1
(1 0 (DN G D]
gt (v(Op9 L) v p? - [U$ P uy ]

(1)

B (1)
= [Idp U, 1.

If the elimination is actually applied to the augmented matrix (U iu],

allowing only pivoting with respect to the first n columns, then we also

(O

obtain, with = u,

=1

(0 Lp) v .

(12) u = (v{Q)po

Step I (i > 0):

$(-D  yi-1)

Suppose that of type ({p,n), and v o

. P (1)
size (p,1) are given. Let o'!) be such that (v(i=1)po ! Ly) is
maximally non-singular. Compute
(1) -1 (1)
U(i) - (v(i-1)Pc Lp) e 1)Pa
(13)
- (1) (1) . [ (1)
[ tupt [1d, | U3
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’ (14) u(i) - (V(i“T)PG(i)L )—'v(i-” e
i p * LA
'..n' By
::‘::‘_'-
, (1) T .y (i) (1) T N
Now set B(1) = (p% ) g{1=1)p0 , PO 2 p? Ty FUD) apg i
. let o(i), w(i) solve the initial value problems S
: (15a) s ) = ~(eWBly(ey + (2Pl (ey,
- (150) o Vs L (), L
- and _ .
3
: (16a) o e) = e ey v (2D (e, 5
where 2z¢1) s given by .*\_\-
: R
’ (1) (1),(1) , (1) (1) v
_.. (n 27 (s) = (01 81’1 + e, 82,1)(5). z
Recall that <l>§i) = ¢(i)Lp and déi) = ¢(i)Rp. It is not hard to see -_::;
_ that (13) and (15) imply that ENNAE
() o L
; (18) o s) = 1o Lo
i"' as long as (15a) holds. Moreover, @é“ satisfies T
(i) _a(1) (1), (1) _ (D) | ()5 (1) (1)
(19a) 07" (s) = =By 5 * By ¥ =% Byt 9By 4%
g (1), (1=1) (1)
) 3 .
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while w(i) satisfies

(i (i) (i) 4(1) (i).(1) (1),(1) (1)
(20ay ¢ (s) = —F1. + 31,1¢ -0, FZ’ + 0, 82'1¢ s

(20b) o(i)(s(i_1)) - )

Equations (19a) and (20a) constitute a (coupled) system of matrix Ricatti
equations.

Of course, it may happen that the solution to (19), (20) does not
exist on [3(1'}),32]. It will, however, exist on some maximal interval
[s<i'1),t), t > s, We do not expect to continue the numerical
integration of (19), (20) all the way to t. Indeed, let A > 1 be

an a priori given constant and set alil(s) = |¢(i)(s)|(p,n)

|Idp ¢;i)(s)|(p'n). Let t{1) < supis: all)(s) s Ad(i)(s(i_1))} and
then set s(i) - min{sz,t(i)}. We propagate the solution of (19), (20)
(1)

only to 8 = s , at which point we set

ES RN ES FO ¢ S IR SR €3

This completes Step i.

It is in this manner that we traverse the interval [s,,s,] from
left to right, adaptively constructing the (Riccati) factorization in such
a way that it remains bounded in the sense of Definition 2.4-2. Indeed,
we easily have that in the spectral norm |(®(s)@T(s))-1| § 1 so that

|(¢(s)¢T(s))_1|(p o) § ;2? while |¢i<s)|($q) $ M= Ad, where

d = sup[l[Idp E ¢]|( : % 1Is of size (p,n-p) and |d>ij| s 1},

p.n)
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We refer to the points s(i), i=1,2,... as switching or resetting

points.

Remarks.

1. The factorization (15), (16) with the conditioning matrix
given in (17) again comprise a system of matrix ODE's on a manifold. How-
ever, the manifold is given explicitly by (18). The advantages from a

computational point of view are striking:

a. We are spared the integration of n2

1 equations in the “'f%

forward direction and ng equations in the backward
direction.

b. The constraint manifold (18) is maintained expliecitly.

2. Let us emphasize the very important point that the perturbation
Aa(s) of Section 2.4 is of the type [Op E Al. That is, we do not have :;33*
perturbations in the first part of AOl because we explicitly maintain ¢a
in the form [Idp,¢]. This point is not exploited by the general analysis
which led to Theorem 4.1,

3. In connection with the Ricecati equation approach we would like
to mention the important, but generally unknown, papers by J. Taufer. See
(221, [231].

We must, on the other hand, confront the difficulties associated
with the numerical integration of matrix Riccati equations. We have
already showed how to exploit the possibility that the Riccati solution

trajectories may "blow up" in finite time (i.e., by the use of our switch-

ing strategy). We turn in the next section to the development of a stable

implicit solver for initial value problems for matrix Ricatti equations

which exploits the special structure of the quadratic right hand side.
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3 COMPUTATIONAL ASPECTS OF THE FACTORIZATION METHOD

Any numerical realization of the method of factorization should be
robust, efficient, accurate, and stable. Moreover, it should exploit and
preserve the special character of the particular factorization being used.
These requirements pose special problems for the designer of factorization-
based codes.

We have already noted the advantages of explicit over implicit
constraint manifolds. There is also the question of the matrix character

of the initial value problems of the factorization. It is tempting to use

Y

one of the excellent modern adaptive initial value codes now available.
This, however, means that the matrices must be "unrolled" into equivalent
vector form. This poses no special problems except in cases

~-usually the ones of practical interest--in which a stiff (implicit)
solver is required. Propagation of size (na,n) transition matrix in
unrolled form with a stiff solver requires the computation and repeated
decomposition of Jacobian matrices of size (nan,nan). This represent a
severe computational burden even for moderate n, and n (na = 10 and

n = 20, say).

Indeed, this computational burden is so severe that it is part of

the folklore of control engineering-—where matrix Riccati equations play a
central role--that one should not integrate the matrix Riccati initial
value problem in order to determine steady-state solutions. Special
methods have been developed to solve the algebraic (steady-state) Riceati - {
equation instead ({141, [21]).

We will show in this section how these computational limitations

can be overcome by the design of special matrix initial value solvers

which exploit the structure of the factorization equations. We analyze,
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in particular, the accuracy and numerical stability of a solver for matrix
initial value problems of Riccati type. We will need the concept of a

numerical process (cf. [U]).

3.1 Numerical processes
Denote by M(n m) the vector space of matrices of size (n,m)
t4

endowed with a norm ||, and consider the matrix initial value problem
(1a) $'(s) = R(e(s),s),

(1b) #(sy) = 9,

with [a,b]l 3 s » o(s) ¢ M(n,m) and R: My oy x [a,b] > My oy @

Lipschitz continuous mapping.

Definition 1. A one step numerical process in M(n,m) is a sequence

{¢i} c M(n,m) and a sequence {hi} < R such that

(2 o, = Po,n),

where ¢, and the sequence {hi} are given, and where each P; is a

mapping

Pyt Min,m) * R~ Mon,m- a

We regard the process (2) as a discrete approximation to the con-

tinuous process(1) if it is consistent; that is,

Definition 2. The numerical process (2) is consistent to order p with

(1) if
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-. (3a) Pi(¢i,hi) 0(3i + hi) + O(hi ) :;:;
J'.‘ .,‘_::.::: .
2 o
for aiadl
. N
]
& (3 5 ok
X 3b s = S + h P ) i. .1-1
N 1 0 j=0 J h)'..:c'iﬂ

2

" and ¢(s) satisfies (1a) with initial condition ¢(s;) = ¢,. If in addi-
tion the form (2) is regular, i.e.,
Jp, (o500 - P.le,n)] s Mo -o |
for o €My . with Jo, - o | <e for all i and with M independent

of i, then (2) is a general one step method for the solution of (1a,b)

which converges with the rate O0(hP) (ef. [4], Section 3.3.1). B

Another way to say this is that (1) is the (order p) closure [5]

of the numerical process (2).

e Definition 3. The cne step numerical process (2) is bounded if there

exists M 2 0 such that

o (4) o, s ™
and finally,

54 Definition 4. The one step numerical process (2) is stable if there e

;; exists L s 1 and g3 > 0 such that ey

i - - 3T
) (5) fo . — 0,1 s Lle, - ¢ | o

whenever o

o (6a) [o
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and

(6b)

If L <1 then

Definition U {s
contrast to the

is made without

" AL ! Sal wad ot e § i i R A 2

¢

1*1 = Pi(°i.hi).

(2) is strongly stable.

an adaptation of the notion of BN-stability [9]. In
concepts of A-stability and B-stability, the definition

reference to a particular test equation.

3.2 A one-step process for Ricatti equations

Consider the special case of (1) given by (cf. equations (2.5-29))

(1a) ¥ (s)

(1b) w(so)

= =-D(s) + A(s)¥(s) ~ ¥(s)B(s) + ¥(s8)C(s)¥(s)

= WO.

Here ¥(s) € M(n'm), A(s) € M(n,n)' B(s) ¢ M(m'm)’ c(s) € M(m‘n)n

and D(s) € M(n m)* Let us use the notation A

ivq T A(s1 + ahi), for

a € [0,1]. Then we define a one step numerical process for (1) in two

stages:

(2a)

(2b)

¥

¥

=1

ey, = LM %nA o, evC 0]
.[Wi - 4 hi(‘l’iB1+ Y + Di+ % )]

R A TR,

[y +% (B oy = Coy ¥,y 17"

3

-

o ‘
AP

o
A
ad

A
AL

n" o
.‘I

5

h:




Remarks.
1. It is certainly possible to eliminate the intermediate solu-

tion ?,+ between (2a) and (2b) in order to write (2) in the form
i

%
(3.1-2).

2. We evaluate the matrix coefficients A, B, C, D only once, at
the midpoint, si+ W , of the step. The RHS of (1) is not evaluated at
all.

3. There are two matrix decompositions per step; one of type
(n,n) and the other of type (m,m), for an operation count of

o(n3 + m3). This is very favorable compared to the o(nm)3 operations

required for the factorization of the Jacobian of the RHS of (1a) when

1
0
|

L
. <

written in unrolled (vector) form.

4
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Of course, in an implementation of the Riccati factorization in

’ s
.

O

order to solve BVP's we must propagate a transition vector, ¥, as well

as the transition matrix, V¥. In addition to (1), we have {(cf. equations

2.5-20)
(3a) P(s) = -F(s) + A(s)¥(s) - ¥(s)G(s) + ¥(s)C(s)w(s),
(3b) w(so) = Yy

in which (s) EM(n,1). F(s) € M(n,1)° G(s) € M(m,1)» 2nd A and C
are as above. The integration of (3) is done simultaneously with that of

(1) by observing that (1), (3) can be written

Cof vl = =00 | F1+ ALy | )
=¥} ] [-=4--] + [¥ 2 e ST

which is again of the type (1). We apply the scheme (2) to the augmented
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system (4) in practice. Of course, the zero coefficients are not stored

in the computer implementation of (2) applied to (4).

Remark.
If Fe M(n,p) and G ¢ M(m,p)' then ¢ € M(n,p) in equations
(3). This corresponds to solving the original BVP (2.1-1) for p right

hand sides. This can be accomodated trivially in (2) (4).

3.3 Consistency of the method
The numerical process (3.2-2) is consistent to order 2 for

(3.2-1). 1Indeed (3.2-1) is of the type

¥' = f(s;V¥,V¥),

(1)

\V(SO) bl ‘yol

while the corresponding discrete process (3.2-2) is of the type

h,
(2a) ¥ = Yy o+ —% f(s

1+ y i ¥ )

ey ety

h

(2b) v - + 2-1 £(s

it w1+ A ).

i+ Y% ;‘yi*1"yi+ %

In order to analyze the one-step error of (2), it is sufficient to

consider the case i = 0; and for notational clarity we write h = ho

and suppress the dependence upon s in (1) and (2). The exact e 1
solution satisfies i_i::
O

R SRS

n2 3 N

(3) - ' s — ¥" + O(h”) Tt
?(so+h) Yo * hyy o+ ¥ ( '

" - = -~ "

where
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(4a) Wé = f(vo,?o)
(4p) ws = g1(vo,wo)f(wo,wo) + ga(wo,wo)f(wo,wo)
(4e) g (v, v) = 2 r£(e,¥)
17070 3 |¢-wo.w=wo
(4q) g (¥,¥) = & £(6,¢)
2°70"70 3y ’¢-wo,w=wo'

On the other hand, from (2) we have that

h
(5) ¥ = ¥yt 3 [f(wo.w Y ) o+ f(w1.v Y )]
R I O I - SN C AP 0TI C L
0% 3 or%o) * 2 Bttt/ Tty
ey Ly ) v Rg v Ly ey Y )]
AR - A A LA A
+ o(nd).
Thus

- - -1 -8
(6) ¥(sy+h) - ¥, hf(¥y,¥,) = 5 £(¥5.¥) -5 £(¥ y Yy )

2
h
* 5 [g1(vo,w0)f(wo,w0) + gz(wo,wo)f(wo,wo)]

2

h
- — [g, (v ¥
D A T

+ o(nd).

However,

o

= =f k
£y, .Y, ) £(¥5,¥5) + 508, (¥y, ¥, (¥, ¥ Y ) g, (¥, ¥ (Y,

n

+ 0(nd).

ECY ¥ Y )+ gz(wo.wo)f(wo,w Y )]

y )]
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Therefore, we have

I . T e YT

2
h
(7) ¥sy*h) - ¥, = - = (g (¥, ¥ ) f(u,, ¥ y )+ g, (Y, ¥ 0 (Y, Y y B
; 2
i * 5 [31("’0""0)"(“’0""0) + sz(vo,wo)f(wo,vo)]
. 2
i [31(\1' Y ¥ Y YE(Y, ¥ y ) o+ gz(wo,w y )]
] + 0(nd).
But also, we note that
R, Flyg, ¥, ) - £(¥,,¥,) *+ Oh),
g1(‘{’ 3 , ¥ ‘/2) = 31(\1/0,\?0} + 0(n),
f‘(‘l’.‘,\l’ ‘/z) = f(wo,wo) + o(h),

so that up to terms of order O0(h), the bracketed quantities in (7) sum

. to zero:

: (8) ¥s ) - ¥, = o(nd).

’

}A In practice, the ond order process (3.2-2) can be extrapolated to
l; higher order, with the order and the step size h varied adaptively based
i upon comparisons of consecutive stages in the extrapolation. An

g; implementation at the University of Maryland uses a fixed number of

;E extrapolation stages, three; it is a method of type 3-4 with adaptive step
E selection.

; The step control is based on the usual simultaneous usage of

; w

oty ¥ Path f Warr b b o

2 St
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methods of two different orders. The local error is controlled so that
the method uses the minimal number of steps when the perturbation is
measured in the norm L, or on the norm L; (see [7]). 1In [7] it has
also been shown that the error-per—unit step approach is optimal with
respect to the L, norm and the error per-step is optimal with respect to
the L; norm. We give some numerical examples in Section 4., But first

let us analyze the stability of the numerical processes (3.2-2,4).

3.4 Stability of the method

The boundedness and stability of the process (3.2-2) are inherited
from the continuous processes. If the solution to (3.2-1) exists on
{sy,s5] 38y, then it is uniformly bounded on [s;,s,]. Suppose further
that the solution is locally stable forward in s. Then it is not hard to

see that

Lemma 1. If s -+ ¥(s) satisfies (1) on [51,32] 3 8p» then the trajec-

tory V¥(s) 1is locally stablie forward in s if and only if
1) Re A(8) - Re u{s) € 0

where A(s) 1is any eigenvalue of <F(s) = A(s) + ¥(s)C(s) and u(s) is

any eigenvalue of G(s) = B(s) - C(s)¥(s).

Proof. We need only observe that (1) is necessary and sufficient for the

trivial solution of the linearized problen,
(2) ¢'(s) = [A(s) + ¥(s)C(s8)]e(s) - &(s)[B(s) - C(s)¥(3)],

to be locally stable forward in s.

Indeed, writing (2) in unrolled vector form we analyze the eigen-
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values of the Kronecker sum of the matrices F(s) and G(s) (see [8], p. A

230). The eigenvalues of this sum take exactly the form (1). |

Corollary 2. The trajectory ¥ is locally stable backward in s if and

only if
(3) Re A(s) - Re u(s) 2 0. 2
This stability property is inherited by the discrete process Dol
.z e
(3.2-2). Indeed, let N
v
(%) o = Yy -V P
i i i ~Iie
AN
where ¥, solves (3.2-2) with initial value ¥ u

i 0° Then we have Jff?:

h
(5a) ¢ - o + =12 ¢ .- ¢B +9.C ¥
i+Y% i 2[;14-1/z v i+ Yy i7i+ Y% 1+ %

+

¥ C $
it % 1+ % 1-0-1/2]

h,

(5b) ) - = [A

i+ ¢i+ % * 2 i+ 1/2°i+ 1/2— °i+1Bi+ % * \y1+ % Cj_+ Y oiv Y

+ °i+1ci+ y ?i" y, 1.

Upon eliminating °i+ Y we have

(6)
ny n, -1 Jr—
°i¢1 = [Idn+ 5 (Ai+ Y +Wi* Y C1+ y )][Idn - E_(Ai+ y +Vi+ y Ci* Y ¥yl . RONE
hy - n, - -1
*¢ [Id - — (B ~C ¥ YI(Id + — (B - .
i m 2 i+ Yy i+ % i+ Y4 m 2 ( it Y% C1+ % ?1+ A )]
Now set

u6




~':- \-‘
. i)
e
_ s
7 F, = A vy o G, = B -cC ¥ NN
) i i+ % iv % Tiv Y’ 1 i+ Tied it N
o
\‘\"n
and rewrite (6) as -
R
n, h, -t n, h, - a\*.,:_
(8) ¢i+1 = (Idn + 5 Fi)(Idn -3 Fi) ¢i(Idm -3 Gi)(Idm + 5 Gi) . i:;:‘
AN
We therefore have that
(9 fo,. 1 = 1ol
where
(10a) r, = maleil,
and
hi hi
(1 +==21.) (1 = = u,)
(10b) Y, = CH 2 i
i hi hi
(1 ‘E—\i, 1 *2—-ui)

In (10), the maximum is taken over Y; of the form (106) where Ay is

any eigenvalue of F; and u; is any eigenvalue of Gj. R

For numerical stablity of (3.2-2) we must ensure that |Y,| s 1

('Yil < 1 for strong stability). Let us compute, then, [Yilz. We drop

the index 1 for notational clarity.

(1 |v]2 -

Here
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(12) p(h) = 2 Re(A-u) + h(|A|® + |u|® - 4 Re A Re u)
L

+ 2n%(Jul%Re A - [A]% Re w + n3[A]%}y)? Ll

and . :iii
*.'-.:_

2 2 BB

(13) q(h) = 2 Re(u=A) + h(|Ar]|® + Ju|® - 4 Re A Re ) el
a X5

+2 h2(|A|2 Re u ~ |u|‘2 Re 1) + h3|/\,2|u|2.

Stability is guaranteed whenever

(%) 2r® = 20 -ad1 s o0
with strict inequality for strong stability. Of course, the represen- b{\:
tation

(15) r(%) = U Re(A-p) + h2(|u|2 Re A - |A|2 Re w)

gives us

Lemma 3. If (¥;} and {¥.} are discrete trajectories satisfying (3.2-2)

i
and such that Re Ai £ 0, and Re By 2 0 where Ai is an eigenvalue of e
N
+ ¥ o and is an eigenvalue of B -C ¥ . ARG
el 1l iey M 8 e % T ey Tiey R

then the process (3.2-2) is stable forward (h1 >0). If Re A\; 20 and

Re u; S 0 then the process (3.2-2) is stable backward (‘ni < 0). SRR

Lemma 4. Let Ay and u; be as in Lemma 1, but with the weaker hypothe~
sis Re(Ai—ui) £ 0. Then the process (3.2-2) is stable forward (hi > 0)

for
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(16)
4 Re{u,~A.) %
min{ 5 s 5 ], Iuilzﬁe Ai~lxi]2Re u, >0
[ui| Re A,- % Ail Re u,
h, £ h 2
i max
@ otherwise.

The process is stable backward ('ni < 0) for Re(Ai-ui) 2 0 and

an
4 Re(A,=-u,) %
min| 5 - 12 1. |u.[2Re x.-[x.[zﬂe u, <0
i i i i
|2 1"Re ;- u; |"Re A,
-h, s h =
i max
® otherwise. a

Remarks.

1. Lemma 3 is the matrix ODE analog of A-stability in the
constant coefficient linear case (C(s) = 0).

2. If |u|2Re x - |A|2Re u>0 while Re A - Re u <0 1in Lemma
4, it is interesting to examine how hmax depends on A. For example,
suppose X = ap with 0 < a < 1. Then hpax = T%T a % . Thus as 1long
as the stronger hypotheses of Lemma 1 are not violated too severely (a
near 1) the stability limit Npay ©On the step-size will still be quite
large.

3. For a well-posed elliptic boundary value problem it can be shown
that Re(e.v. F) £ 0 and Re(e.v. G) 2 0 for the forward process and
Re(e.v. F) 2 0 and Re{e.v. G) $ 0 for the backward process . . . exactly
the conditions of Lemma 1. This will also be the case for the Riccati
equations which arise in classical linear-quadratic optimal control. These
are usually posed backward and have the additional property that el

=F > 0.
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h NUMERICAL EXAMPLES
In this section we give several examples of the performance of a
~ factorization based two point boundary value code based on the ideas
presented above. We have chosen some examples to illustrate the robustness
and effectiveness of the solver on problems stemming from engineering. We
include also an unstable turning point problem for which our method fails.
We have already noted how the independent and parallel structure of
the forward and backward factorizations coupled with the solution of local
linear systems at the target points combine to minimize storage and the
computational burden of the method. The adaptive mesh selection is based
® on a single solution of the problem, in contrast to the multiple-pass
approach to mesh refinement used in global methods such as finite differ-
ences, collocation, or finite elements. This feature also greatly reduces
C the computational costs.
» The numerical examples illustrate these features, but highlight the

performance of the method on problems having a singular perturbation char-

acter, i.e., problems the solutions of which exhibit boundary or interior mn

layers. We show that such problems car be solved effectively without

special handling such as upwinding or asymptotic expansions.

® o
b1 A stable singular perturbation problem )
Consider the problem

§ (1a) gu"(s) + u'(s) = 1 ' M

(1b) u(0) = u(1) = 0

Ld the solution of which is -

< 50
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1-exp( 3
(2) u(s) = s - -——————fL— .
1-exp(- s

|
S

There is an 0(e) boundary layer at s = 0.
There are a number of ways that (1) can be cast into the first

order form 2.1-1; we explore some of the theoretical and computational

K
i
K
~
’-
.
N
e
.

implications of such re-formulations.

Method 1 (M1)

Let w! = (wy,w5) be defined by

(3) Wy o= ou, Wy = u'

and obtain

(ua!b) B = ’ F = .

(uc)d) U] = U2 = [1 O], U.1 = U2 = 0.

Method 2 (M2)

Let w! = (wq,w,) be defined by

(5) Wi o= u, wy, = eu'

and obtain

(6a,b)

(6c,d)

el
N
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(M1) and (M2) have the form

(7a)

(To)

w! = Bw - F,

U1W(O) = Uzw(1) = 0-

The two possibilities for the Riccati factorization (which are adaptively

alternated) corresponding to (7) are factorization F1:

(8a) o, =
(8b) ¢é =
(80) (p' =

and factorization F2:

(9a) o =
(9p) % =
(9¢) o' =

Idg

TByo * Byy®y T 98,5 * 0,8,,0,,

Fy v By T 9F, v 0B,
B, +B.0 - 0B . +&B, o

21 221 171 171271

Id,

Fyt By T F ¢ 0B,

where ¢ = [@1 ¢2] and ¢ are the transition matrix and transition

vector, respectively.

Suppose that matrix B and vector F are perturbed by b and

f, respectively. Then the solution w to (7) is perturbed by v

satisfying

(10a)

(10b)

v'! = Bv + (bw - f)

U-|V(0) = U2V(1) = 0.
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5%
The matrix b and the vector f arise computationally due to the fufuﬂ
P %
discretization errors involved in solving (8) or (9). In the case of F1, :éj;’

if the discretization error of (8b) is -by, and that of (8¢) is ~fy,

2t A
4

AL
then we see that N
E;:.‘::.
R
"0 b ek
12
(11a) b = ’ N
L 0 0
f'1
(11b) £ = .
0

For the factorization F2 the corresponding perturbations are

0 0
{12a) b = ,
b 0 VRSN
21 R
SN
-\'c':_ﬂ
- \:.\
0 R
(12b) £ = e
£ _::':
where now -b21 is the discretization error of (9a) and -f2 is the -
discretization error of (9¢c). (Eqns (8a) and (9b) are "solved " exactly.) o
Since for M1, w, = 0(1/¢) in the boundary layer, we see that 2P %{f
= 0(4) perturbations in By, can lead to large 0(A/e) errors in v. We :
therefore would like to ensure that by, = 0(Ae) in the layer in order to ‘:T
get v = 0(A). This can be done by brute force using an integration toler- ik
ance 1t = Ae. This strategy will cause the adaptive solver to use more ;ﬁ
)
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steps globally as well as in the boundary layer. The problem does not
arise in factorization F2 since the perturbation has been shifted to by,
the coefficient of w, = 0(1) 1in (10a). Moreover, although the factori-
zation F1 is in effect at the start of both forward and backward sweeps due
to the structure of the boundary condition matrices U; and U, the

rapid growth of ¢, (for € << 1) causes a switch to F2 after only a few

steps.
Now consider the effect of measuring the error by the norms
(13a) Ivl, = sup{{v ()| + [v,y(s)]},
s
(13b) vl, - s:p{|v1(s)| + elv, ()]}

These vector norms induce corresponding matrix norms on b given by

fof, - s:p max( b, | + [0, ], (o] + [0 )]
-1
(14b) Iol, - s:p max[|b .| + €|b,, [, € fo ol + [o5]1.

For factorization F1, keeping |b], < 4 means exactly that

|by5| < Ae. Consider a transformed problem

-

(15) W' = Bw-~F

-~

1 0 -
|2: let A= [0 e]' and set W = Aw, B =
ABA™',and F = AF. Then it is easy to see that if (7) is solved with B, F

, ~ -1 i ~
replacing B and F, then b‘2 = g b12. Since for F1, |b|1 =

for which [}, = |o

sup|512| = sup|s-1b12| = o], we see that solving F1 with tolerances 4, §
s s

for (15) is equivalent to solving (7) with tolerances ¢4, €6. Of course
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B and F lead exactly to problem M2.

We have shown, then, that transformations of the original problem
(1) into various 19t order forms can be interpreted as selecting a norm for
the original problem, and affect the interpretation of the perturbations of
the coefficients caused by discretization errors in the solution of the
factorization initial value problems.

We further consider four other first order problems computing w =

(w1,w2)T:

Method 3 (M3)

(16) wy o= eu' + u, Wy = u';

Method 4 (M%)

(17) w1 = U, WZ = gu' - LV

Method 5 (M5)

(18) Wgoo= o, Wo = eu' *+ u;

Method 6 (M6)

(19) W= U, Wa eu' + (s - % ).

We are interested in the computation of u'(0) by the mentioned six
formulations. Therefore only one target point is considered, namely s =
0. Hence, only integration from right to left has to be performed by the
factorization method. The computation has been in double precision and
"per step" step selection c¢riterion. The initial step was taken to be h
= ¢. Table 4,1-4.6 show the error in u'(0) obtained by the method (M1)-

(M=6) for various € and tolerances 1. In addition, the number of
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integrations steps is given in the tables.
Comparing Tables 4.1 and 4.2 we see that the methods (M1) and (M2)
produce identical results if 1y = etr, where by Ty the tolerances used

in method Mi were denoted. This is directly related to the analysis

mentioned above. Methods (M1) and (M3) are using as one of the

St e

PO Ry
variables w, = u', while (M2), (MH), (M5), (M6) are using the variable i}%iﬁ
Wy involving eu'. This leads to similar performances of these two }:?f

' "-.. ¥

groups of methods. Nevertheless, there are some differences (see (M2) and
(M6)) which are caused by the different structure of the perturbations in
B and F. Results shown in Table 4.1 are heavily influenced by low
tolerances 1t for which the number of steps is independent of 1. This
disappears for <t smaller as can be seen in Table 4.2, which is, as we
said, essentially the method (M1) with tolerance te¢. We see in Table 4.2
that the error in u'(0) for fixed & is proportional to <t. This is
because the perturbations in the input data caused by the approximate
solution of the solved ODEs are of magnitude .

From (10) we thus expect that the error in u'(0) 1is of order é.
We see this character from Table 4.2 especially for small t and ¢
(when we are in the asymptotic range). For a particular value of t (1 =
10‘8) there is a (local) increase in accuracy. This is the effect of
some cancelation and was observed also for some other sequences of
tolerances. The magnitude of the error can be computed from (10) assuming
that

It], = nt where n is the number of steps. This

LPY |L1 ' IL1
estimate is directly related to the fact that "per step" strategy leads to

the optimal distribution of steps minimizing the perturbation in the L4~

norm. See [7].

The methods (M4), (M5), (M6) show similar performance although
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method (M5) gives better results than (M4), (M6)., The factor common to

i
77
,.0

(M4) and (M6) is the relation of u and w, with a negative sign in the

~

differential equation (for s = 0 where the boundary layer is located)

AN aadd
T d

.

""

.
N

"y ...“
' )

while (M5) uses the relation with opposite sign. The different character

-

of perturbations then affects the error in u'(0). We see that the
transformation of the original problem into the first system and the

choice of norm affects the error in u'(0) because it leads to different

|
|
'

characterizations of the discretization errorsas perturbations of the

input data.

Table 4.1

Method 1. Error in u'(0) and number of steps backward.

aosolute tolerance
1. 0000E-01 1.0000E-02  1.0000E-03  1,0000E-04  1.0000E-05  1.0000E-08  1.0000E-07  1.0000E-08

i 1.383&';‘130 30820606  3.08206-06  3.0620E-06  1,0R48E-07  3.9468E-08  1.2039%6-08  1.7953E-09  3.0876E-10
: 1, 0000€-01 1.519&5—04 1.51935—04. 1.74515—05 2.015§E—05 1.797;5-06 :.03525-07 1.27535-03 L ::%.-10
& 1.0000E-02 1. 10435—03 3 72325—05 s. @%fm 2, 12935-05 s.ooo:e-oe 3. :aégs-os 2, 0320;5-09 1.8772§E-10
[ 1. 0000E-03 1.35425—02 1.354?5-02 3. 42@?5-03 3, mge-os 2, ongs-os 2, as};e-w 9, 42;75-05 6. 36246-08
: 1. 0000E-04 e.mgs-ox a.zotgs-ox 2, 30135-01 3.53025—02 1.99925-03 7. 33;25-04 :.70335-05 .:eége-os
[

- 1.0000E-05 2 eso;&oo 2, eso;zm 2, aso;ewo 2, asogem 3. 997?5-01 2. 00725-02 7. 35%;5-03 1.7o§15-o4
P 1, 0000E-06 2. asag&ol 2, eeaz.swx 2, asegaoz a.eeegawl 2, esagsm 3. 39;2&00 2, 026;E-01 7. axige-oa
- LT LM 2 MEe LoMEE  LIMENR  LEMEKR 2 SMEE LGN 20000
Q 12 12 2 i2 12 12 12 13

¢
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n
N

» .
4

o

t:~ epsilon
¢ 1. 0000€+00
. 1. 0000E-01
1. 0000E-02
' - 1. 0000E-04
- 1. 0000E-05
1. 0000E-06
r oo
N

R'_

(%)

C-

N

'.‘::', epsilon
*-.: 1. 0000E+00
X 1. 0000€-01

1. 0000E-02

1. 0000€-03

1. 0000E-04

1, 0000E-05

1' M%

1. 0000E-07

Method 2.
1. 0000€-01  1.0000E-02
3.0820E-06  3.0820E-06
1 1
1.5190E-04 1. 74S4E-05
3 4
S.4961E-06 2. :295E-06
3 6
3. 7TTI0e-05  2.0772£-05
7 8
1.999%E-03  7.3388E-04
8 9
2.00T0E-02  7.266%-03
10 11
2.0208E-01  7.4113E-02
i e
2.0008E+00  7.4116E-01
13 14
Method 3.
1,0000E-01  1.0000€-02
1.1738E-05  1.1738E-05
1 |
1.5190E-04  1.5190E-04
3 3
1.1043E-03  9.7234E-06
4 3
1.8641E-02  1.8641E-(2
6 8
2, 30186-01  2,30188-01
7 7
2.2905E+00  2.2905E+00
9 9
2.2825E+01 2, 2825€+01
11 {11
2,29h15002  2,2941E+02
8 12

Error in u'(0)

1. 0000€-03

3. 0820€-06
1

2. 015505
6

6.0009€-08
8

2. 2579607
10

1. T008E-05
1

1. 7051E-04
13

1.7221€-03
14

1. 7ez2e-02
16

1. 0000E-03

1. 0766E-07
2

1. TASAE-OS
4

5. 4961E-06
S

3.4281E-03
6

2. 30186-01
7

2. 2305E+00
9

2, 2855E+01
1

2. 2941E+02
12

Table 4.2

apsolute tolerance

1. 0000E~04 1. 0000E-05

1.0248E-07  3.9468E-08
e 3

1.797%-06  1.0358E-07
] 13

3.1869€-09  2.0308e-09
11 17

9,4278E-08  6.3624E-08
13 18

1. .898E-06  6.2B631E-07
14 20

1, 1849E-05 6. 4008E-06
16 21

{.1870E-04 6, 3983E-05
17 23

1. 1869€-03  6.3994E-04
19 24

Table 4.3

absolute tolerance

1.0000E-04  1.0000€E-0F
4, 148%-08  3.650%-09
4 S
2.015%&-05  1.797%E-06
6 8
2.129%-06  6.0009E-08
6 8
L 7TTT0e-05  2.0772E-05
7 8
3,5308E-02  1.7995€-03
8 8
2,2905€E+00  3.8971E-01
9 9
2.2825E+01  2.2825E+01
11 11
2.2961E+02  2.2941E+02
12 12

1. 0000E-06

1.203%-08
3
1.275%-08
20
1.8774e-10
25
6. 3883E-09
26
6. 3024E-08
28
6. 4434E-07
29
6. 4401E-06
31
6. 4436E-05
R

1. 0000E-06

4, 2592£-09
6

1. 03586-07
13

3. 1868E-09
1

2.2571%-07
10

7. 3388E-04
9

2.0070e-02
10

3, 8986E+00
i

2,2941E402
12

and number of steps backward.

1. 0000E-07

1.7933E-09
7

1. 1352E-10
3t

2.1316E-13
38

3.4106E-12
39

3.819%-11
Al

3.055%-10
43

3. 143209
L)

2. 7940E-08
4

Error in u'(0) and number of steps backward. .

1. 0000E-07

6. 7639E-10
9
1.275%-08
20
2.0307E-09
17
9.4278E-08
13
1. 7008E-05
i1
7. 366%-03
11
2. 0208e-01
1
3. 900%€+01
12

1. 0000E-08

3.0876E-10
1

1. 6356E-10
0

3.3111E-12
39

1. 864E-11
61

6. 394E-10
6

6, 984%-09
64

7,0315€-08
65

6. 8545E-07
67

1. 0000E-08

1.2762€-10
14

1, 1356E-10
3

1. 8764E-10
]

6. 3624£-08
18

1. 1898E-06
14 .

1. T051E-04
13

7.4113€-02
12

2. 02086400
13



-------

epsilon
ll Mm

1. 0000E-01
1. 0000E-02
1. 0000E-03
1. 0000E-04
1. 0000E-05
1. 0000E-06

1. 0000E-07

epsilon
1. 0000E+00

1. 0000E-01
1. 0000E~02
1. 0000e-03
1. 0000E-04
1. 0000E-05
1. 0000E~06

1. 0000E-07

Method 4.
1. 0000E-01  1.0000E-02
2. 1082606 2. 1082€-06
1 1
1.4TTE-04 2. J294E-OM
3 3
S.5036E-05 4, 9A24E-09
S 5
2.0253e-03  8.9701E-05
6 7
2.0639%-02  1.172TE-03
8 8
2. 1325601 1.1697E-02
9 10
2. 13068+00  1.17328-01
1 11
2. 1335E+01  1,1833E+00
12 13
Method 5.

1. 0000€-01 1. 0000E=~02
1.1738E-05  1.1738E-~03
1 1
8.5646E~05 7, 5S4SE~05
3 ]

1. 1688E~03  3.0201E-06
7 7
4,6703e~04  4,0119E-05
8 9
4,7695E-03  3.8288E-04
10 11
4,9322E-02 4, 5B68E-03
i 4
4.9322E-01  4,6883E-02
13 14
4,9335E+00  4,6923E-01
14 15

1. 0000E-03

2. 1082E-06
1

4. 9107e-05
-]

1. 69307
7

2. 2672£-05
8

2.2109€-04
10

2.2562E-03
it

2.2541E-02
13

2.1307e-01
15

1. 0000E-03

1. 0766E-07
2

2.81186-05
7

S. 3T90E-08
10

1. S490E-06
11

1+ 4605E-0%
13

1. 4541E-04
15

1. 4820E-03
16

1, 4820€-02
18

Table 4.4

absolute tolerance

1. 0000E-04

8. 1426E-08
2

B. 4943606
7

8. 2960€-08
9

1. 7898E-06
1

2. 740%-05
12

2. TA3TE-0h
14

2.5884€-03
15

2.65456-02
17

Table 4.5

1. 0000E=05

4.189%-08
3

4. 914607
10

1. 187%-09
13

3.6016E-08
15

3. 6452E-07
17

2. 4374606
18

1. 27A1E-04
20

2. 8526E-03
21

absolute tolerance

1. 0000E-04

4, 148%E-08
4

2, 3343E-06
1

1.0821E-09
14

4, 7685608
16

9. TT43E-07
17

5, 7367E-06
19

3. 7360€-05
21

5. THATE-OM
22

59

...........

1. 0000E-05

8.6509-09
S

1. 1942807
15

4, J633E-10
19

1.2338E-09
2l

1. 0795807
2

1.0817e-06
24

1. 0935E-05
rs]

1. 0935E-04
27

......

1. 0000E-06

1, 31306-08
4

S, 3726E-08
16

8, 3691E-10
20

2, 8657E-09
2

1.9823-07
a3

1.679%-06
]

7. 3228E-05
6
8.6018E-04
28

1. 0000E-06

4, 2592£-09
)

9. 62B4E-09
22
3.8582¢-11
21
9. 9431E-10
28
9.3514£-09
30
9.3336E-08
k"

9. 4832£-07
3
9. 4790E-06
k]

Error in u'(0) and number of steps backward.

1. 0000E-07

2. 4948E-09
7

4.6513e-09
2%

3.0013e-11
3

4. 4143E-10
2

7. 1304E-10
3

7.3808E~07
k-]

1. 5972£~05
36
5.289%€-07
3

Error in u'(0) and number of steps backward.

1. 0000E-07

6.763%-10
9

9.8280e-11
4

6.6507E-12
41

1. 7144E-10
2

1. 622309
&4

1.6196E-08
L

1. G438E-~07
47

1. 6540E-06
L]

Reproduced |
best availob'eroc’:py. D

1. 0000E-08

4. 1136E-~10
1

1. 707%-10
3

3, 339%6&-12
&7

6. 1846E~11
8

1. 5270608
50

1.8963E-07
Se

2.176%-05
3

2, 94TBE-03
5

1. 0000E-08

1.2762E-10
14

1.5913-10
S4

1. 4211E-14
64

4.4793-11
65

§, 5657E-10
67

4.6712€-~09
68

4,6915E~08
70

4, 7311E~07
n

.......
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Table 4.6 A
Method 6. Error in u'(0) and number of steps backward. )
=N,
Lt
absolute tolerance :;:_-:.:;:.
1,0000E-01  1.0000E-02  1.0000E-03  1,0000E-04  1,0000E-05  1,0000E-06  1.0000E-07  1.0000E-08 ﬁﬁﬁxj
epsilon N ,-'
1, 00006400  6.27926-03  6.2792E-05  3.674E-06  1.13086-08  3.2130E-08  6.5043E-09  1.4241E-09  2.3792E-10 AL
1 1 2 3 S 7 1 17
1.0000E-01  2.0A7BE-O4  2,0B0AE-O4  2.2192E-05  2.1450€-06  1.7908E-07  5.23196-08  2.2538E-09  4.2261E-1]
3 5 & 10 13 23 % 5
1.00006-02  2.11166-05  1,2709€-05  2.70526-07  6.1835E-08  1.3A3SE-09  6.4652E-10  7.4323E-12  9.805%-12
) 7 9 13 19 7 42 63
1.0000E-03  2.95BGE-04  6.2853E-05  2.4616E-05  3.0131€-07  4,6717E-08  :,5789E-08  B8.5493E-11  7.4124E-11
8 8 10 14 20 28 43 ] O
1,0000E-04  3,7127E-03  6.1SB0E-04  2.4863E-04  2,81676-06  7.0509€-07  1.7281E-07  3.22326-09  1.3843E-09 N
9 10 12 16 3 3 & 67 i
1,00006-05  3.6951€-02  S5.6695E-03  2.558%€-03  3.509%-05  7.i716E-06  2.0176E-06  {.2621E-07  2.0873%¢~07 K
11 12 13 17 a3 3 4 68 :;ﬁ R
1,0000E-06  3.6824€-01  6,2807E-02  2.5587€-02  3.4530€-04  7.8466E-05  1.1818E-05  1.3631E-05  1.067SE-05 i B
13 13 15 19 24 k&) & 70 RUSOORA
1,00006-07  3.7011E+00  6.2B796-01 2, 5754€-01  2.11436-03  5.4721E-04  0.2971E-04  1.3391E-03  1.5071E- . -
14 15 16 20 26 34 49 n o
4.2 An unstable singular perturbation problem

Consider the singular perturbation problem of turning point type

(1a) ew" + gsw' = 0, -a < 8 <b,

(1b) W) = 1,  w(b) = 2.

For ¢ =1 the problem is stable and has an interior layer (shock) at s

=0 (Fig. 4.1) for all a,b > 0. The solutions shown in Fig. 4.1 were

computed with the tolerance 1t = 107" for all shown e.
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In the case ¢ =-1 a boundary layer occurs at s = -a if a >b and s
=b {f adb. If a =Db, then there is a boundary layer at each end.

The solution in this case (a = b) is unstable with respect to the data

as € + 0. The exact solution is antisymmetric with respect to the

value 1.5. It can be computed for s > O by solving the (stable)

problem
(2a) eEW" - sw' = 0
(2b) w(0) = 1.5, w(1) = 2.

Fig. 4.2 shows the solution for various e computed by the factorization
method with tolerance Tt = 10'". Solving the original problem (1) with

a =b =1, one has to expect that the results will be very poor for ¢
small because of the instability of the problem (1). Fig. 4.3 shows that
in faect for e small the factorization method completely fails. This
example shows that the stability of the problem is a necessary condition
for the factorization method to give high quality results. This condition
is directly related to the interpretation of the numerical solution as the

exact solution of a perturbed problem.
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where Lk is the Legendre polynomial of degree k. Symmetry about y =
0 in the problem (1), (2) suggests an approximation for w of the form
N
(5) wix,y) = Y w. (x)% _(y)
J 23

J=0
for (x,y) Q. The convergence and approximation properties of this
method, called dimensional reduction, are discussed by Vogelius and
BabuSka [22]. The relevance of (5) for our purposes is that it reduces

the PDE (1),(2) to a system of ODE's for the vector function
(6) WE) = (o)W, () aee i (o)
0 ' R |

mapping [0,1] into RN+’. The function W is the solution of the two

point boundary value problem

2, )

(7a) na XL M e = o), X € (0,1)
dx

(75) W) = W(1) = 0

where G(x) = (Zg(x),o,...,O)T, and the (N+1) x (N+1) matrices A and
B are the mass and stiffness matrices, respectively, of the basis

{lzj}. That is,

1 I
(8) Ay = [ () 2, (y)ay, L
i 0 2] 2] !
and
1 dQ de
(9) Bi; = | —2 (y) ==L (y)ay.
1J 0 dy dy
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We note that the presence of the parameter h 1in (Ta) gives the TPBVP (7)

1. ;'r’f' A~
O R N
A g
»
[4
.

a singular perturbation character if h << 1. "

Nod
{

Figures 4.4 and 4.5 are plots of the solution components

- {w, }
':~ k k=0,.-.,N

with g given by

and {wﬁ}k for the case N =4 and h = 0.5,

- 1, 0.475 $ x § 0.525
- (10) g(x) =

= 0, otherwise.

Only the solution on 0 £ x § 0.5 1is plotted since w(x,y) in this case

is symmetric about x = 0.5 and y = 0. Evidently the component wo

- dominates the solution except in the interior layer caused by the flux,
;i g. A contour plot of w obtained from expansion (5) for h = 0.5 and
;f N =4 is shown in Figure U4.6. The singularity at the corner due to the
;

step in the flux is evident.
The computations were done with tolerance of 1t = 10‘". In view
. of (3.2-4), this amounts to computing the exact solution to the first

order system

.' (11a) g—x Wy () = [Idy + b(x)JW,(x) = £(x)

K (11b) -hA S wo(x) + n BN, (x) = G(x) R
dx 2 1

- (11¢) Wi(0) = W(1) = 0

where W, * W and the perturbing matrix b(x) and vector f(x) are

unknown but satisfy

(12) by, el < 1, 1,3 = 0,N, x €(0,1).
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This in turn implies that the numerical solution W; 1is the exact

solution for problem (1) in which the flux G is replaced by the flux \
-

3y 8

a_rf i,

G(x) - ha %(— (bW, (x) + £0x)). .
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

. * To conduct research in the mathematical theory and computational

. implementation of numerical analysis and related topics, with emphasis

i on the numerical treatment of linear and nonlinear differential equa-~
tions and problems in linear and nonlinear algebra.

- To help bridge gaps between computational directions in engineering,
physics, ete., and those in the mathematical community.

I . To provide a limited consulting service in all areas of numerical ;;;:;
’ mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington Y
Metropolitan area. -

« To assist with the education of numerical analysts, especially at the 4
- postdoctoral level, in conjunction with the Interdisciplinary Applied .{T
Mathematics Program and the programs of the Mathematics and Computer -
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

B,
P

« To be an international center of study and research for foreign T
i students in numerical mathematics who are supported by foreign govern- RRER
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuska, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742,
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