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LTihe theoretical analysis and computational implementation of actori-

problems for ordinary diffterential equations are presented. The methods

* are optimal with respect to certain clearly defined criteria. Numerical.

examples show the effectiveness of a general code based on the ffactoriza-

tion method.



1 INTRODUCTION

1.1 Numerical methods for linear boundary value problems for ordinary

differential equations

The standard techniques for the numerical solution of BVP's for 'V.

ODE's can be divided into two classes. On the one hand are the "direct"

methods based on various versions of finite differences, finite elements,

or collocation, and on the other are the "indirect" or sequential methods

based on the numerical solution of auxiliary initial value problems.

Typical of this class are various shooting and multi-shooting approaches.

Direct methods are characterized by the solution of global (linear)

algebraic systems for the discrete solution. (In this sense multi-

shooting may be regarded as a hybrid method between the two classes. A

sophisticated recent example of multi-shooting is the BOUNDPAC packageof

Mattheij and Staarink [17]) The solution of the linear systems, which

should of course be regarded as part of the numerical solution of the

original problem, can be accomplished by an iterative method or by a

direct method based on elimination. The discretization itself may be

adaptive or non-adaptive; adaptivity, however, generally requires multiple

solutions of the problem. The well-known programs COLSYS C1] and PASVA

[16] are based on methods from this class.

*Indirect solution methods are characterized by the association of

the BVP with certain auxiliary initial value problems (IVP). The

auxiliary IVP's are generally solved uni-directionally (forward), but a

subclass of initial value based methods are based on bi-directional <.*. *

(double sweep) strategies. We use the term factorization for this sub-

class, and it is to the analysis and exploitation of the underlying

structure of the methods of this :lass that this paper is addressed.
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Both classes mentioned above are well-represented in the litera- ./

ture. In C2], [3], [133 and [15] the relationship between methods of the

two classes is explored. The connection is made through the notion of the

closure of a numerical algorithm ([5], [6]). It can be shown that if one

incorporates the numerical solution of the discretized (algebraic) equa-

tions into the algorithm for direct methods then the algorithm can be ?"

interpreted as the application of a special sequential numerical solver

for some naturally associated initial value problems. We refer here to -

£3], £11], £13], [15] and [18] for some recent papers addressing in

various ways this relationship. In this paper we explore the subclass of

indirect methods called factorizations, discuss the principles of their

adaptive construction by the computer itself, and address certain

questions of implementation. Numerical examples illustrate the

effectiveness of a general code based on the method.

1.2 The BVP and the goals of the computations

Consider the linear two point boundary value problem

(1a) w'(s) a B(s)w(s) - F(s), s : , 15 s 21

(Ib) U1w(s1) = U1 , U2w(s 2) u2,

where B(.) is an n x n matrix function, w(.) and F(.) are n-vector

functions, U1  and U2  are nj x n and n2 x n matrices, respectively,

and u, and u2 are and nI- and n2-vectors, respectively.

The goals of the computations are as follows: given a set of

target points

(2) sl = a ( <  ' < =

* .*-.*.o-*'*- "

=- 0.' n 2
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and a tolerance, T, find vectors w such that

(3) w - w() 0,...,n

where wi() is the exact solution of a perturbed problem

(4ia) w'(s) = (B(s) + bi(s))wi(s) - (F(s) + fi(s)), sI 2

(4b) (U a + V Cs) ( Cu + v ), a - 1,2,

where the perturbations may depend on the target point, as indicated, but

satisfy

The norms in (5) are a-priori selected and may, in the case of bi and

fi, be of the type 5p 1 p S -. The vector wi  is a trace of an

exact solution of the problem (1) with perturbed input data; the perturba-

tions depend on ai and may be different for different i.

Obviously the aim of the computation is directly related to the

interpretation of the numerical solution of engineering problems where the

input data are not known precisely. That is, the class of perturbed

problems (4) are, for perturbations of a known magnitude T, indistin-

guishable with respect to the engineering interpretaion of their exact

solutions.

1.3 Factorization methods and their adaptive construction

We consider a class of methods based on the bi-directional adap-

tive solution of IVP's for certain ODE's which themselves are selected

adaptively. If these equations were solved exactly then the exact

71 7
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solution of (1) would be obtained at each target point. Let us assume

that, in the forward direction, say, these IVP's are of the form ...

(6a) $'(s) - R(s,0(s)), Si 9 s,

(6b) S.

We cannot obtain 0 exactly, but only an approximate solution I which

solves (exactly) the equation

(7) I'(s) . R(s,i(s)) + r(s)

where Ir(.)l -r, the given solution tolerance, and I is a suit-

able Lp norm. In [7] it is shown how various local error control

strategies achieve Ir S r for different L norms using a minimal
p

number of steps.

We study a class of methods which directly ties the norm IrJ to

the perturbations of the input data of the original BVP in the sense that

Jbil, Ifil IVI,lvl S Clrl where C is an a-priori known constant inde-

pendent of the problem (1) with C - 1. Not only are the ODE's (7) solved

adaptively in order to ensure the tolerance T, but the ODE's themselves

are constructed adaptively in order to ensure that C - 1. It is in this

precise sense that the methods we consider are optimal.

1.4 Outline of the paper

In Section 2 we formulate and analyze the class of methods which

satisfy the requirements stated above. Section 3 focuses on the sub-class

of factorizations which reduce to matrix Riccati equations. We derive and

analyze a special solver for such matrix Riccati equations. The Riccati

I4
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solver is the foundation off a general linear TPBVP code whose perfformance

is illustrated on a varied selection off example problems in Section 4.

The effficient and cost-efftective solution of linear problems has .~.

enabled this method to be applied also to large-scale nonlinear BVP's with

turning points and bifurcations. The description off this approach, its

analysis, and our computational experience will be reported elsewhere.

5
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2 THE FACTORIZATION METHOD

2.1 The linear two-point boundary value problem

Definition 1. %
(a) Matrix B is said to be of size (m,n) if it has m rows and

n columns.

(b) Matrix B of size (m,n) is said to be of type (m,n) if it has

maximal rank. -

Suppose that bounded and measurable matrix functions s * B(s) of

size (m,n) and s * F(s) of size (n,1), n > 0, are given on the

interval S c RI. Suppose also that for a = 1,2 matrices U of

type (ncn) and u. of size (naf,1) with nI + n2 = n are given. We

seek an absolutely continuous (a.c.) vector function s * w(s) of size

(n,1) on [sI s2 ] which solves the first order linear two point boundary

value problem (TPBVP)

w'(s) = B(s)w(s) - F(s), a.e. s E [sI s 11

Ulw(s I) ulf U2w(s2) u2.

We will refer to the TPBVP (1) as P(B,F,Ua,u, se).

The separated boundary conditions in (1) are no real restriction,

for the mixed problem

w'(s) - B(s)w(s) - F(s), a.e. s E [s ,s]
12

(2)

UlW(s I1 + U2w(s = u

can easily be cast into the form (1). The algorithms for the solution

of P that we consider are based on the integration of certain associated

, . .. . .
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auiir reut ocrin arxiiil au rbes
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Lemma 1. Let matrix functions s -* B(s),F(s) of size (n,n) and size

(n,1), respectively, be given on Cs 9 2 . Suppose that matrix U is of

type (p,n), p :i n and that u is of size (p,1). Suppose further that

s -"v(s) of size (n,l) is absolutely continuous and satisfies

v'(s) B(s)v(s) -F(s) a.e. s E Clt( I- C [sits I
12 1'2

Uv(a ) u for some a. E [,g

If s V~*s) of size (p,n) defined on Ea~I is a.c. and satisfies

~ (s) =-O?(s) B(s) Z a) V~s), a. e. s E [al a 2

(2)

=U,

and if s T (s) of size (p,l) is a.c. and satisfies

1(s) =-(D(s)F(s) Z(s)>P(s), a e. s E Cal, a I2

(3)G U,

where s -Z(s) of size (p,p) on [alto 2 is continuous, but otherwise

arbitrary, then,

(4I) (P(s)v (s) = )Vs E Lala 2 l

Proof. Define 1I(s) on [ a,a2 by



V(s) - Dv -P)(s).<

Then

(a)  =Uv(a O  U 0 , '-.:. *'.%.-.,.

and L

- V + -

=(-DB + ZO)v + (Bv - F) - (DF + Z )

= Z(4v -P) = Zp, a.e. s E [£1,02].

Since Z is continuous, i - 0 by uniqueness and the lemma is proved. "

The method of factorization for BVP's is based on the propagation

of the boundary condition across the interval in a manner consistent with

the differential equation (1); Lemma I is the formal expression of the

nature of this propagation. We use the following terminology. L

Definition 1. A matrix function b of size (p,n) satisfying (2) is a

transition matrix based at -.2o The matrix Z which induces D is the

associated conditioning matrix on [al2] c LsI s2 ] . The vector func-

tion (p of size (p,1) satisfying (3) is a transition vector based at

-.o.

Lemma 2. Suppose that t and T are size (p,n) transition matrices on

[l02] based at co, Z and Y are continuous size (p,p) condition-

ing matrices on [oiE 2], that

(5 I -..

(5) 0' = -IB YTZ ,."

( 6) 'i, = -'yB +y. <

T. . ."-"

.. . . . . . . . . . . . . .



on Ea1, a2 ], and that

fl(7) 0(0 0 ) K K0 '(ao)

with K0  of type (p,p). Then there exists a matrix function sa- K(s)

iof type (p,p) on Ca1,a2] such that, 4

(8) C(s) =K(s) 'Y(s), s E Ca11a2].

Proof. Let s K(s) solve the (linear) initial value problem

K'(s )=Z(s)K(s) - Ks)Ys),

(9)

Then we have that on Cal ,02J

(10) -(KY--1' = -(K'y--)B

with initial condition

(11) (KYVo) =0.

By uniqueness of solutions to (10), (11) we have that

It remains to show that K is of type (p,p), i.e., invertible. Let

L(s) be the solution off

L'(s) -Y(s)L(s) -L(s)Z(s),

L.(a) = K 1

9 0-

7--~..................... ..



then KL satisf'ies
.1

(13) (KL) (L) - (KL)

Since the p x p identity matrix Id is the unique solution off (13),4p

(14) on CaEa2 2 , the result is proved.

Lema 3. The rank of 0(s) satisffying (5) is constant on [a1,a 2 J

Proof. Let s *E(s) off size Cn,n) be the solution off

~E'(s) = -E(s)B(s) s CaE a

E(a0  Id.
0 n

Clearly TV solving (6) with Y *0 exists and is given by

Tl(s) Va)-)

so that by Lemma 2

(15) V(s) K= )~ )~)

If we show that E is non-singular for s E 1:01,02] hnfo11)w

can see that

rank O(s) =rank Ti(s)

which proves the result.

To show that E(s) is of type (n,n), let F(s) solve

F'(s) -B(s)F(s)

F(a0  Id.

10
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It is easy to see that E(s)F~s) -Idn on Ea1,a2 I.
n- 2

We apply Lemma 3 to show that solvability of (14) at one point

0 E [altoJ gives solvability at each s E Cal,.a J. In fact we can

prove

Corollary 4i. For (0, (p satisfying (2), (3,if the equation

UwO =u

has k independent solutions, then

=Ds~ p(s)

has k independent solutions for every s E [alto 2J

Proof'. Apply Lemmas 1 and 3 to the augmented matrix [0Io] which solves

I IP

By y hpotesi, rnk = -k =pand u E range U. Now

rank[O (P] - p and rank $ D p by Lemma 3. Thus (p E range 0 and the

proof is complete.

2.3 Def'inition of' a factorization

Let boundary value problem P(,,,U, be given as in Section

2. 1

Definition 1. A factorization of P consists of: U..

Att



(Fa) partitions ita a 1 12 off s 1 2  with

(O) < (1) <C. M1)
ir:1  ,1 <. 1 *., 1 29

(M1 (0)

20 1 2 < (Y2 <..<2 s 2'

(Fb) collections Z., a -1,2 of conditioning matrices of size

* (n,,n)

aL aa

UC1) i)
Ca 1

U) i

CFc) collections *a' a =1,2 of transition veatrs of typeCnn)

=P Cs (PCi C s): s I a i 1' a)m~; 1

CFd) collections K, a =1,2 of tanitices of sze (

Cn [K(A), ,M

a

Cs:s2

C e) olctosK-.,ft2ofsaln:atie fftp Can)



(Ff) collections P, a -1,2 of constant similarity matrices of

type (n,n),"N

a a a

such that the following conditions hold for i 1, ila and a

1,2.

(F) (i) = (( sE C)F1 Ba (S (aL))B(S)Pi) a

(F2) F (S (P 7(),s Ci);

(iCi) Ci i i)(F3) CD S) ..0Ci)S)B i(S) + Z Cs)O CS), SE ()aa a a a a

(F5) Cli) (C Co i- i-
a a a a a a

CF6) C)(Cl) -KC )( i)CC )."a a a (a a

In order for (F-5) and CF6) to make sense for i -1, we have used the

notational conventions

(F8) (0 (0) o 0)
a a aL

The initial value problems CF3), (F5) and (F4), (F6) for (

13
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and p ,respectively, are posed forward in s for a -1 and

backward in s f'or a =2. We combine the forward and backward '...

factorizations into a composite factorization as follows:

Let the composite partition wt w t U Wt be given by

C0) (1)C)()Irs - a < a <(...< a

and let I"i) [ a ,a 1, i 1,m. It is obvious that

Leina 1. There exist unique indices ia a =1,2 such that

I*i 1 C 2) n(i2)

For a I ICi = wCe C def'ine ,Ci Ca) of size Cn,n) by1 f12 we! Z

(2)Ci

a Cl a) C(P -
2 CaC 2  )

(p (Ca) of size Cn,l) by

(Cli
1P (a)

2

and

14&



n o
(4) z (a) 2

0 nn, C a)

The definition of' the composite scaling matrices is more involved. For

i - 0,...,m define

K 1 if aii

(5a) iL =

Id otherwise,
ni

(5b) LId,

and then set

L 0 n fl2
____ 2l1(5c) L L

Similarly, define

(6a) R(i) Id

2

(6b) RCi2

Id notherwise

15



1%

and then set

(6c) Ri)nm j

0 R

Finally, we set

(7) K~1  RiiL))I

and then state

Lemma 2. 0 * is of size (n,n), P()is of size (n,1), Z()is of

size (n,n), L()is of type (n,n), R(i) is of type Cn,n) (and so

L K i) is well-defined), and we have

p..p .) iii K~' (i) Wa Wl))

S ~ ~ (0 1 ) K p 0) =,.,n1

Proof. Equations (8)-(11) follow directly from (FT )-(F6).

We also establish a notation for the composite factorization.

Definition A2. oA posite factorization, Ffor P(BF, s con-

sists of the sets

16



is * (s) s ) satisfies (8)},

(P [s (s) s E I (P satisfies (10)},

Z i (s z(i)(s) s I Z(I) as in ()},

.

(i)K (K K as in (7)}.

We write F FCr,t, P,Z,K) fi{r,(P,Z,K}.

Theorem 1. Suppose F(n,O,cp,Z,K) is a factorization for

P(B,F,U,,u,s,) and let s - w(s) be an a.c. solution of P. Then

(12) DW - ::-

The sense in which (11) is to be interpreted will be apparent from the

Proof. Let a target point a E IsI s2] be given. Then a I(i) for

some index i, 0 S i S m. We must show that

0° °(13) @(i (a)w(a) = q( )(a). [ '[:-'

Ci ) (i2)

Since I(i)  11 n1 22 it is enough to show that

a° aCi ) Ci ) -1 Ci) Ci)-.--
(14) (s)(Pa ) w(s) - a (s) Vs E I , = 1'2.

We prove (14) by induction on ia"

i - 1: By definition of P we have that

17



(0) I *.

and so

(0) a (0)) ( 0 )
K C CLWa aK a Ua

But by (F5) and (F7) we have

a a La

and by (F6) and (F8)

Now by virtue of' Lemma 2.2-1, (114) holds f'or ia - 1. In particular, (14)

holds for s= a and 1o -1. Since K is of' type (n,,n) this
aaa a

gives

a1) a a CL( aWGO a O O

1ato 1aI 1 Having

K Pa a a( L a a PC a

and CF3)-(F6) f'or i - ja + 1 we again apply Lemma 2.2-1 to conclude that

(114) holds f'or IiC +a'.~

The proof' of' Theorem 1 actually gives us a bit more than is stated

in the theorem. The induction together with the observation that each

K Is of' type (nafn ), i.e., invertible, and an appeal to Lemma
a a a

2.2-3 gives

18
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Corollary 2. The rank of 0., a - 1,2, is constant on [SlS2]. That

is, D is of type (n.,n) on Cs1,s2 ].

Now that we have shown that (11) holds if w solves P, we show

that the solvability of (11) is also inherited from P. In fact, they are .1'

equivalent.

Theorem 3. Let F(ir,0,9,Z,K) be a factorization for P(B,F,U ,u a,s )

Then for a E s1I,s2], the linear algebraic equation

(15) €(a)w - P(;)

has as many linearly independent solutions w Rn  as there are linearly
*.

independent a.c. functions s w(s) solving P.

Proof. Equation (15) is interpreted in the sense of Theorem 1.

If s w(s) solves P then by Theorem 1 w w(a) is a solution

of (15).

On the other hand, let w, be a solution of

(s )w, - P(s1)

and let s * w(s) be the solution of the initial value problem

w'(s) = B(s)w(s) - F(s),s > s,

w(sI ) = w1 .

(0)
By the definition of 4I and (l and by the fact that K is of type

(nl,nl) we have

UIw(31) =U 1 .

19
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We must show that

(16) U2w(s2 ) - u2.

Now by Lemma 2.2-1 applied with p n = nI + n2 , U - , and

u -p(sl), we conclude that

(D~2)w32 (p"2)

from which

(D2(s2)w(s2) = q2(s2).•...''

Therefore

2~ 2w(s2)=

and since K ( ) us of type (n 2 ,n 2 ) we have (16). U

In our development above we have assumed that a factorization

for P exists. In fact, there are many, as we will show by example

below. The trivial factorization (Z 0 0, K - Idn) always exists, for

example; it is usually not numerically realizable, for it is the shooting

method. A factorization algorithm, then, should select the conditioning

matrices Z i the sealing matrices Ki) , the similarity matrices PC,

and the partitions 7r adaptively in order to ensure the numerical

stability of the computations.

2.4 Stable factorizations

From the point of view of practical computations, the boundary

value problem P(B,F ,u ,. ) is but a model of physical reality. The

data--the arguments of P--are by definition known inaccurately, and it is

20
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only after the influences of' these inaccuracies on the solution, w,

to p are acknowledged that a reasonable interpretation of the meaning of

even the exact solution to P can be made. This interpretation is based

on our confidence both in the model itself and on the reliability of the

data supplied. We take the point of view that the exact solutions w and

w of P and a perturbed problem 1, respectively, are equivalent

if P and P are indistinguishable with respect to the goals of the

computation.

On the other hand, we do not have at our disposal the exact solu-

tion w to P, but only an approximate solution, w. However, if it is

possible to interpret w as the exact solution of a perturbed problem P,

and if P and P are acceptably close (with respect to the goals of the

computation), then w is an acceptable approximation to w.

In order to formalize this idea, let us suppose that a norm I'In

is given on Rn. Then induces a natural norm -n on

matrices of size (n,n):

JAI I(n) - sup lAvIn.
lvi =1

We will need to measure the size of various sub-matrices of A in a

consistent way. Suppose that A is a matrix of size (p,q),

I p,q S n. Then

(2) IAIpq) - IAflnn)

where A is obtained from A by augmentation by zero:
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I0

n-p

-- . .- - -

q n-q

Of' course, Ivln Ivl(nl) 1 IVrl(1,n) for v E n. 4

Now we are in a position to state

Definition 1. An approximate solution w of P(B,F,Uau ,s ) is

6-acceptable at a E [s1,s2] if w(o) is the exact solution of a

perturbed problem = P(BFU ,uas ) where

(4a) Is() - B(') (n,n) < B'

(4b) IF(.) - F(.)(n,n) 6F'

(4c) Sua - uI( ) < u = 1,2,
a

(lid) iu - ul 6 , a = 1,2,

a a (na n)

and the norms (4a) and (4b) are understood as norms in Lp,1 p S

We use the notation 6 [ L&B,6F 6 U 9 °

a a

Based on the notion of 6-acceptability of the approximate solu-

tion, we seek to formulate factorization algorithms for which we can

relate the errors introduced by the algorithms to perturbations, of an a

priori specified magnitude, to the data of P. The specific conditions

under which the perturbations in the input data are acceptable depend on

the problem and the aims of the computations, i.e., on the choice of

In fact, our theory gives more: a complete characterization of the

structure of the perturbations to the original problem (cf. the proof of

22



Theorem 1 below). Indeed, the stability of the numerical algorithm will

be related directly to the stability of the given problem P to perturba-

tions of its data.

Definition 2. A factorization F(,, ,Z,K) for problem P(B,F,U ,u )

is bounded above if there exist MI, M2 > 0 such that

(5) a ) M , - 1,2.a*In,n ) Ma-
a

1']

F is bounded below if 0 (P is invertible for every s E 1  and
aa a "7-.''s

there exist m1 ,m2 > 0 such that

(6) I( (s) (s))-(nn -, a = 1,2,.

F is bounded if it is both bounded above and bounded below.

In order for a factorization to be useful for practical computa-

tions Ma and ma should be numbers of "reasonable" magnitude. If
2 1 a

M2/ma is large the condition number of D is large: (D effectively

loses rank. Ma and ma are also related to the interpretation of the

errors associated with the numerical realization of the factorization.

Indeed, suppose that a E [aloa 2  is a target point in an interval

over which we have the forward and backward factorizations (a = 1,2)

(7a) 0'(s) = -(0 B)(s) (Zac )(s),

(7b) C (a) - U

and

. \23 __4



(8a)P'(S) (DF)C(s) Z (Z cj (s

(8b) (s 1 3  U.
(a O

Any numerical realizations Tat ~I off (7) and (8) may be viewed as theaa

exact solutions of' a perturbed problem

(9a) T'I'(s) =-('Y B)(s) (Z T' )(s) *A (S),aa aa OLa

(9b) 'C (a U + V
OLa a aL

and

(10a) l,' 1 (s) -- ('F F)(s) +(Z iJ,)(s) S6(s),

(10b) 1P a) u + V.

In (9) and (10) the matrix A aof' size (n.,n) and vector 6S of' size
CL a

(n1,1l) represent the discretization errors of' the numerical method used

to solve (7) and (8). The matrices V13 and v.3 represent the error in

realizing the boundary conditions. We claim that s *v(s) defined on

C al a I by

(11)~(S (::]S)) 2~
is a 6-acceptable solution to

(12a) W'(s) - B(s)w(s) -F(s), S E fa 1,a I

(12) t~w~ 1) u1  EJw(a2) - u2

24.



with a 6 determined solely by the conditioning of T~ and the ~

discretization errors.

Theorem 1. Suppose 'P, a =1,2 solving (6) and (7) satisfy

(13a) IF a(*I(na n S M at

(13b) ()
a ~ OLn n m

Then v defined by (11) is &-acceptable (at a E C011021) with

M -

a-1,2 a a

M
(14~b) 6 F ma m dln 11

a-=1, 2 a C&

(14~c) 6 U Va(n~n

a a

in (14a) (14b) the norms as functions of s are assumed to be of L

type.

Proof. Introduce matrix functions ba by

(15) ba(s) T ()(y (s).qT(s)) -1 (s)aa a a a

and vector functions fa by

25



-~ ~~~~~~~~~~~~ -7 -- - - h . - - .X & . -

(16) f' (S) T()j -1d(.

It Is easy to see that T. , satisfy, for a 1,2,

(17a) TIs) -( (8eb ))(s) (z (Z )(s),aL0 LC

*(17b) 'y (a )=U + V,
a at a a

(18a) t' S (= -(' (F +f OL))(s) +(Z a y )(s)

(18b) 4) a -U

an aa 1

Now for fixed a E Cal a I let

b (s, E [a, a,o

b(s;a)

1b (s), E [0,02],

and

f (s), s E Calla]

f(s;a)

-m f (s), s E [a~a 2].

Then v =v(a) satisfying (11) at s =a is the value at a of the

solution of the perturbed problem P(B+b, F+f, U +V ,U +v ,a ). The Lat a a acC a

estimates (14) follow easily from (13), (15) and (16).
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Remarks.

1. The perturbed problem P through which we interpret the

approximate solution v(Ca) depends on the target point a. The pertur-

bation is different at every target point.

2. The magnitude of the perturbation 6 - (6BaFaU '6u } is u is

independent of the coefficients of the original problem, as long as a

bound of the type (13) holds. In practice, it is the adaptive construc-

tion of the conditioning matrices Z. which will guarantee (13).

3. We assume that the effect of roundoff errors is negligible. It

could be incorporated into the matrices A and Va, and into the

vectors 6 and v . The solution of the local systems (11) at each .'-

target point also introduces roundoff errors. We assume that the effects ".'-.

of these roundoff errors can be neglected with respect to the discretiza-

tion errors which have already been made, especially if the computations --

are carried out in double precision. It is, however, possible to inter-

pret also these roundoff errors as perturbations of the input data of the

problem.

4. If we regard the errors in the realization of the boundary data

as roundoff errors we may assume that V. = 0, v1 . 0 in (9) and (10).

5. The expressions for bL (15) and f' (16) give the complete

structure of the perturbations. This is in fact a stronger result than -

the claim of Theorem 1.

This, then, is what we mean by a stable factorization: a bounded

factorization for which ma and Ma are of such a priori known

magnitudes that the approximate solution is a-acceptable when the error

tolerances of the numerical integrator for the factorization matrix/vector

initial value problems are roughly on the order of 6.

27
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N.2.5 Examples of stable factorizations

2.5.1 Continuous orthonormalization. Since in view of Theorem 2.4-1 we

T
seek to control the behavior of It, we study the properties of this

T
product. Let Q (s) *'(s)$P (s) and observe that

0,a a

Now since

(2) Qa (s -0 * O + Z 0a a a

and (b is of type (n.,n), we can solve for Z

Z -(0 BO +T-)0 1
aCa a a L aa

Then it is easy to prove_

Lemma 1. Let Z (s) be determined by (3) for s Q Q Cs) bounded,

measurable, and anti-symmetric. Then s -~ 0 (s) satisfyinga

(4a) a' (s) -0 a (s)B(s) Z. (S)o(s)

0(4ab) (D (s
OL a a

has the property that =UU

a a

T
We can assume, without loss of generality, that U aU a Idn

Indeed, we need only multiply U aby KL a aU 2 Thus we see that

the factorization induced by the conditioning ()with anti-symmetric Qa

28



maintains the constraint that the rows of the transition matrix 0 are

orthonormal.

However, in view of Theorem 2.4-1, we can expect to realize this

constraint only approximately. Indeed, Z given by (3) for B will not

do for the perturbed matrix B + b M. In practice, therefore, the approxi-

mate solution will drift away from the constraint manifold, and provision

must be made for periodic discrete re-orthonormalizations. We refer to

[19] for details and some numerical examples.

2.5.2 Stabilized continuous orthonormalization. This factorization is

also based on (1), but with Q chosen to ensure asymptotic stability of

the manifolds (D a U UT

aLa caa

Lema 2. Let Z (s) be determined by (3) for Q given by

(6) Q(s) ) c (U U T - 0 (~

a a L a (I
T Twhere <I > 0 and K 2 < 0. Then the manifold (0 0 )(s) U U is

asymptotically stable (forward in s for a 1 1 and backward in s

for a - 2).

TProof. It is enough to show that the solution Tf (s) - U U of

T. aaa
-'s 2Ka(UaUT - g (s))."

a a a ai.a

is asymptotically stable forward in s for a 1 1. But this is immediate

since the coefficient matrix of this constant coefficient nonhomogeneous

linear problem is -2a Id

29
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Remarks.

1. In an implementation of the continuous orthonormalization it ,

might be tempting to replace 0 T ) -1 in (3) by (U U ) - in order to

T
avoid the expense of inverting t f at every function evaluation. This

of course invites disaster, as has been noted by Meyer [20 ] in a similar

context. For a discussion of this method see also [10.]

2. On the other hand, it is possible to show that for

sufficiently large in (6), an implementation of stabilized continuous

orthonormalization can afford to commit the above-mentioned crime.

Unfortunately having IK I large exacerbates any stiffness inherent in

the problem. ".

2.5.3 Riccati factorization. The Ricatti factorization is based upon

partitioning a in order to determine a maximally nonsingular n x n.-

submatrix. We will need some notation and a few preliminary results.

For 0 < p < n we define matrices L and R of type (n,p)
p p -.

and (n,n-p), respectively, by

(7 ) L [ , .

It is easy to verify

Lema 3.

(Sa) LLT R RT Idp p pp n

(3b) L pT L id ,
p p p

30
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( 8e) RI Id ,
p p n-p

(8d) ELpIR] Id.
P p n

For a matrix A of size (n,m) and 0 < p < n we set

1, A2,

and for A of size (m,n) we set

A1  = ALp, A2  = ARp."

Evidently if A is of size (n,n) we will write A in partitioned block

form as r I .
A A

where

T T
A1 I L"AL P A1 ,2  = ARp,.

A2,1  p RAI A2,2  = pA~

Finally, if a = (ai,....o) is a permutation of the integers (1,...,n)

we denote by pO the corresponding n x n column permutation matrix;

i.e., pO is the n x n identity matrix with columns permuted by a.

Then if U is of size (p,n) we have that UPO is a matrix the columns

of which are those of U permuted by a. If U is of size (n,m)

then (pa)TU is a matrix the rows of which are those of U permuted by

a. Clearly, (Pa)TP P CP')T Id
n'
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Le a t. If U is of type (p,n) with 0 < p n, then there exists a

permutation a such that the entries of the matrix [(UP )Lp- UP are

all in absolute value less than or equal to one.

Proof. Since U is of type (p,n) there exists a permutation T such %

that UP L is invertible. Let a be such that -.
p

Idet(UP'L )I Z Idet(UP L )j
p p

for all permutations T. Then by Cramer's rule the elements of

(UP'L )-'UP' have the form
p

det(UP L )I*."
a

det(UP°Lp

for various choices of permutation T. _

We call UP L with a as in Lemma 4 a maximally nonsingular (p,p)
p

submatrix of U.

The following remarks apply both to the a - 1 (left to right)

and a = 2 (right to left) factorizations. Accordingly, we suppress the

subscript a and discuss only the left to right factorization.

We construct a solution to a problem of the following type: Given

absolutely continuous functions s B(s), F(s) on Cs1 ,s23 with B of

size (n,n) and F of size (n,1), and given a matrix U of type

(p,n) and vector u of size (p,1), determine (piecewise absolutely

continuous) functions s + O(s), p(s) on S such that 0 is of

type (p,n), (p is of size (p,l) and such that

(9) (s)w(s) - CO(s), s E [Sl.s2],
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.N

ffor any ffunction s w(s) satisfying

w'(s) =B(s)w(s) -F(s)

(10)

Uw(s) =U.

((1)

be such that v(O)Poy(1)L is maximally non-singular, a can be
p

obtained in practice by performing Gauss elimination with column pivoting

on U. The result is the matrix

(11)) 1) UM

= ld IU I.pi 2

If' the elimination is actually applied to the augmented matrix [U tu],

allowing only pivoting with respect to the first n columns, then we also

obtain, with v (0=U

(1)L (0v()

p

Step i (i > 0):

Suppose that s(1, vi1 off type (p,n), and v('-') of

size (p,1) are given. Let a~i be such that (V(i1')Pa L is~
p

maximally non-singular. Compute

W(I =((i-1)? L (i-1)P 1  
**-

p
(13) *

U [Id .*
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and *~

(14) =~i (V(i1I)PO~i L p )v~i

(iU)1 aj

let I (i, p solve the initial value problems

(15a) ~ () (S) =-(D B )(s) (Z D )()

(15b) (i) U

and

(16a) (P (S) =-Cs F )(s) (Z (p )(s),

(i) -1) (i)

(16b) ( s )

where Z()is given by

(17) z (s) -((i) B(i) + Pi B ())(s).1 1,1 2 2,1

Recall that (P ID L and (P (P R It is not hard to see
1 p 2p

that (13) and (15) imply that

(18) (D (s) Id
p

WIas long as (15a) holds. Moreover, 02 satisfiles

(79a) (s) -B + B~1 (P 4- B + B Ci)P
2 1,2 1,1 2 2 2,2 2 2,1 2

(19b) 2 (s )=U 2

34~



while (0 ( aisfi)

(i) (i-(20a) ((01 (s) u F 1  +~)~ 1 (

Equations (19a) and (20a) constitute a (coupled) system of matrix Ricatti

equations.

Of course, it may happen that the solution to (19), (20) does not

(i-1)exist on [s ,s,]. It will, however, exist on some maximal interval

(i) t), t > s(-1 We do not expect to continue the numerical

0integration of (19), (20) all the way to t. Indeed, let A > 1 be .-

an a priori given constant and set d(i)(s) kJ D i~fl
l~d (i)5)1 (p~n Le t~) =supts: d i(s) S Ad U)s -i1)) an

ldp 02 ()(~) Lt t( n

then set s~i) minfs 2,t(i)!. We propagate the solution of (19), (20)

only to s =s ,at which point we set

This completes Step i.

It is in this manner that we traverse the interval 13,2 from

left to right, adaptively constructing the (Riccati) factorization in such

a way that it remains bounded in the sense of Definition 2.14-2. Indeed,

we easily have that in the spectral norm I(ID(S)ID(3))-11 1 so that

T(DS4 s)1jpp while l~)(,)~ M Ad, where

d sup(l[Idj 1~(pn) is Of size (p,n-p) and 14 11

35
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We refer to the points s( i ) , i - 1,2,... as switching or resetting

points.

Remarks.

1. The factorization (15), (16) with the conditioning matrix

given in (17) again comprise a system of matrix ODE's on a manifold. How- --

ever, the manifold is given explicitly by (18). The advantages from a

computational point of view are striking:

2
a. We are spared the integration of n I  equations in the

2
forward direction and n2  equations in the backward

direction.

b. The constraint manifold (18) is maintained explicitly.

2. Let us emphasize the very important point that the perturbation

Aa(s) of Section 2.4 is of the type COP A]. That is, we do not have

perturbations in the first part of A because we explicitly maintain (D

in the form LId ,0]. This point is not exploited by the general analysis
p

which led to Theorem 4.1.

3. In connection with the Riccati equation approach we would like

to mention the important, but generally unknown, papers by J. Taufer. See

[22], [231.

We must, on the other hand, confront the difficulties associated

with the numerical integration of matrix Riccati equations. We have

already showed how to exploit the possibility that the Riccati solution

trajectories may "blow up" in finite time (i.e., by the use of our switch-

ing strategy). We turn in the next section to the development of a stable

implicit solver for initial value problems for matrix Ricatti equations

which exploits the special structure of the quadratic right hand side.

. . . . . . . . . . . . . . . . . . . .. .. . . . . . .. . . . . .. .. . . . . . . .



3 COMPUTATIONAL ASPECTS OF THE FACTORIZATION METHOD

Any numerical realization of the method of factorization should be

robust, efficient, accurate, and stable. Moreover, it should exploit and

preserve the special character of the particular factorizatlon being used.

These requirements pose special problems for the designer of factorization-

based codes.

We have already noted the advantages of explicit over implicit

constraint manifolds. There is also the question of the matrix character

of the initial value problems of the factorization. It is tempting to use

one of the excellent modern adaptive initial value codes now available.

This, however, means that the matrices must be "unrolled" into equivalent

vector form. This poses no special problems except in cases

--usually the ones of practical interest--in which a stiff (implicit)

solver is required. Propagation of size (n.,n) transition matrix in

unrolled form with a stiff solver requires the computation and repeated

decomposition of Jacobian matrices of size (n n,n n). This represent a

severe computational burden even for moderate n. and n (no 10 and

n 20, say).

Indeed, this computational burden is so severe that it is part of

the folklore of control engineering--where matrix Riccati equations play a

central role--that one should not integrate the matrix Riccati initial

value problem in order to determine steady-state solutions. Special

methods have been developed to solve the algebraic (steady-state) Riccati

equation instead (C141, [21)).

We will show in this section how these computational limitations

can be overcome by the design of special matrix initial value solvers

which exploit the structure of the factorizatlon equations. We analyze,
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in particular, the accuracy and numerical stability of a solver ffor matrix

* initial value problems of Riccati type. We will need the concept of a E
numerical process (cf. [4]).

3.1 Nuerical processes

Denote by M~~) the vector space of matrices of size (n,m)

endowed with a norm 1.11 and consider the matrix initial value problem

(1b) V (s) - =(s,)

with [a,b] )s 0 (s) E M(n,m) and R: M(n,m) X a,bJ ' M(n,m) a

Lipschitz continuous mapping.

Definition 1. A one step numerical process in M(n,m) is a sequence

[(D m)and a sequence (hil c R such that

(2) 0 i+1 = P.( Oph),

where 10and the sequence [h11 are given, and where each Piis a

mapping

P1: M(n,m) x R (n,m) U

We regard the process (2) as a discrete approximation to the con-

tinuous process(1) if it is consistent; that is,

Definitiont 2. The numerical process (2) is consistent to order p with

()if
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(3a) Pi (Pi,h i) V *(s + h i) + O(h+)
i i i

for

(3b) S = + h.,

and (s) satisfies (la) with initial condition O(s.) 0 $i" If in addi- -

tion the form (2) is regular, i.e.,

IPi(Oi'hi) - Pi($i,h )I S M$i-Dil

for Pi E Mn,m with I10 - < E for all i and with M independent

of i, then (2) is a general one step method for the solution of (la,b)

which converges with the rate 0(hp ) (cf. [4 ], Section 3.3.1). I

Another way to say this is that (I) is the (order p) closure [5]

of the numerical process (2).

Definition 3. The one step numerical process (2) is bounded if there I'-

exists M > 0 such that

(4) kl S M

and finally,

Definition 4 The one step numerical process (2) is stable if there

exists L S 1 and EO > 0 such that

(5) I i 1 * l lJO ill, ..i
'1+1 1+11 Ii

whenever

(6a) 10 -o
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and

(6b) + P (. ,h
i+1-i .

If L < I then (2) is strongly stable.

Definition 4 is an adaptation of the notion of BN-stability [9]. In

contrast to the concepts of A-stability and B-stability, the definition

is made without reference to a particular test equation.

3.2 A one-step process for Ricatti equations

Consider the special case of (1) given by (cf. equations (2.5-29))

(1a) '(s) -D(s) + A(s)'F(s) - '(s)B(s) + V(s)C(s)Y(s)

(1b) V(so) 'f0"

Here T(s) E M(n,m), A(s) E M(n,n) , B(s) E M(m,m) , C(s) E M(m,n) ,

and D(s) E M(n,m ). Let us use the notation A - A(s + ah for

a E [0,1]. Then we define a one step numerical process for (1) in two

stages:

(2a) = [Id - A + TiC

-ET hi(T Bi + D ) "
*f- .:.- .

i V2 +iuB 142 1+ 142

(2b) +fu4  1/l~2  h 'h(A 1 . ' 41 -D ~,., 2b) i+1 " 1+ /1 +  1 hi A + 1/ Ti+ 24 - i+ '2 )  -q:- -

"[Id 1/2 hi (B+ - C + 1/ I

4~0

-. .'.-,



Remarks.

1. It is certainly possible to eliminate the intermediate solu-

tion T between (2a) and (2b) in order to write (2) in the form

( 3. -2) ) :-';

2. We evaluate the matrix coefficients A, B, C, D only once, at

the midpoint, s , of the step. The RHS of (1) is not evaluated at

all.

3. There are two matrix decompositions per step; one of type

(n,n) and the other of type (m,m), for an operation count of

0(n3 + M3). This is very favorable compared to the O(nm) 3  operations

required for the factorization of the Jacobian of the RHS of (la) when

written in unrolled (vector) form.

Of course, in an implementation of the Riccati factorization in

order to solve BVP's we must propagate a transition vector, t, as well

as the transition matrix, T. In addition to (1), we have (cf. equations

2.5-20)

(3a) '(s) - -F(s) A(s)P(s) - '(s)G(s) + Y(s)C(s)(s),

(3b) V0( s) = '

in which (s) EM(n,l) , F(s) E M(n,1 ) , G(s) E M(m,1 ) and A and C

are as above. The integration of (3) is done simultaneously with that of

(1) by observing that (1), (3) can be written

[I' ip]' = -CD F] + AC[I P]

(J4) B G C
I I -'.I

0 o 0

which is again of the type (1). We apply the scheme (2) to the augmented

41"""
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system (4) in practice. Of course, the zero coefficients are not stored

in the computer implementation of (2) applied to (4).

Remark.

If F E M(n,p) and G E M(m,p), then 41 E M(n,p) in equations

(3). This corresponds to solving the original BVP (2.1-1) for p right

hand sides. This can be accomodated trivially in (2) (4).

3.3 Consistency of the method

The numerical process (3.2-2) is consistent to order 2 for

(3.2-1). Indeed (3.2-1) is of the type

(1) I"' - f'(s;q','), 1
0(S 0 T0'

while the corresponding discrete process (3.2-2) is of the type

(2a) + 1/2 T 2 *f'(s.I
S i+ Y2-+-"'

h.

(2b) Ti 7 + -2f(si ;I ) ;,'

1+ i J
(2b) 'Yi+I - '1i+ 4 + -f'(si,; i Pi+1 "

1/,+ / + /.2..?

In order to analyze the one-step error of (2), it is sufficient to

consider the case i - 0; and for notational clarity we write h ho

and suppress the dependence upon s in (1) and (2). The exact
'2

solution satisfies

h2 .L% '-

(3) IF(s0*h) - TO  hT6 IF 1-- 0 (h 3 ) " "

0 ~ 0 2 0

where
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(14a) = (OT0

(34b) Ti 9,(o )(ol + g (fogy )f'Y0 IY0

(14c) (TO f 1"T
g10, 0

(4d) 92 (TOOT'0) T f ,('y t.. T-

On the other hand, f'romi (2) we have that

IF + Ef L(TOOT'0  + f g(q'i 0T(4 0 q

1 0(h2)

Thuh

+ 0(h3).

0(i,,Y, 0 rO',i 0  .~u~' 2 0 2

22 ' 1 0 21 ' 0 ) +, 92 T + g 2 f(Y

1 V2

+ 0(h

However,



Therefore, we have

(7) -h T - I.. Cg(TOOT Y)f(,OOIY +, g * g2(P0, )f(,'Y O , )

h2+ i.- Cg (Too IF 0' f YO('YIF 0 ) + g2'V'Y~ ('V0, T

2

But also, we note that

f To I f(ijP, 0 + 0(h),

1, (T I g (T:,lP 0  + 0(h),

1 P0fTO (h),

so that up to terms of order O(h), the bracketed quantities in (7) sum

to zero:

3
(8) 'i(s +h) T i. O~h )

In practice, the 2L-. order process (3.2-2) can be extrapolated to

higher order, with the order and the step size h varied adaptively based

upon comparisons of consecutive stages in the extrapolation. An

implementation at the University of Maryland uses a fixed number of

extrapolation stages, three; it is a method of type 3-34 with adaptive step

selection.

The step control is based on the usual simultaneous usage of v--
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methods of two different orders. The local error is controlled so that

the method uses the minimal number of steps when the perturbation is

measured in the norm L, or on the norm L, (see [7]). In [7] it has

also been shown that the error-per-unit step approach is optimal with

respect to the L, norm and the error per-step is optimal with respect to

the L, norm. We give some numerical examples in Section 4. But first

let us analyze the stability of the numerical processes (3.2-2,4).

3.4 Stability of the method

The boundedness and stability of the process (3.2-2) are inherited

from the continuous processes. If the solution to (3.2-1) exists on

C31S 2]  SO, then it is uniformly bounded on [5l,32]. Suppose further

that the solution is locally stable forward in s. Then it is not hard to

see that

Lemma 1. If s T '(s) satisfies (1) on [sIPs 2 ]  50O  then the trajec-

tory '(s) is locally stable forward in s if and only if

(1) Re X(s) - Re u(s) < 0

where A(s) is any eigenvalue of F(s) - A(s) '(s)C(s) and u(s) is

any eigenvalue of G(s) m B(s) -C(s)(s).

Proof. We need only observe that (1) is necessary and sufficient for the

trivial solution of the linearized problem,

(2) ('(s) - [A(s) + '(s)C(s)]s(s) - C(s)[B(s) -C(s)T()],

to be locally stable forward in s.

Indeed, writing (2) in unrolled vector form we analyze the eigen-
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values of the Kronecker sum ot the matrices F(s) and G(s) (see [81, p.

230). The eigenvalues of this sum take exactly the form (1).

Corollary 2. The trajectory T is locally stable backward in s if and

only if

(3) Re A(s) -Re Pi(s) Z 0.

This stability property is Inherited by the discrete process

(3.2-2). Indeed, let

(4) 0 T

where '1' solves (3.2-2) with initial value T'0 Then we have

(5a) EA h0 40B + V
i+ 12 2 1+4 1 '4 1 1 1 12  ii+/ 2  1+ Y2

+C

h.
(5b) 0 0 +-[$. B +' C 4$

+ 1/2 1 '4 1/ 1 Y2 1 /2 1/2 ' P

P i+ e. C 4 p

Upon eliminating 01+~ we have

(6)

0 =[Id h'(A+ + C )][Id --- (A C )
i+ n 21 1/21 n 2 +~' +1 I1+

hi hi--
-0 [ Id m 2 (B -/ C 1 /2I +/2)][Id + -(B + -/ C 1+ '/ /

Now set

......V46
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(7) F, A +T C G =B -C
ii/ i+ i 2  i+~4 1/ j 2  '/2 i+Y 2

and rewrite (6) as

h.-1 h h. -1
Id +-LF )Id - F.) P (Id - G )(Id 1-G)

We therefore have that

where

(10a) =i maxl-Y.I,

and

(1 h.

(10b) 2 2)(1 1
h h.

In (10), the maximum is taken over Y of the form (106) where X1  is

any eigenvalue of Fi and p, is any eigenvalue of Gi.

For numerical stablity of (3.2-2) we must ensure that I-Yij S 1

(I-yj < 1 for strong stability). Let us compute, then, ty~j2  We drop

the index i for notational clarity.

(1)hY h 11-) ] - h h h

(11)2 2Y 22~A( 1+~.~

Here

47



2 2(12) p (h) -2 Re(A-ui) + h(IX! + 1 - 14 Re A Re )

+ 2h 11 j Re X - j 2Re u) h3 A2 Lj

and

(13) q(h) -2 Re(ii-A) + h(IA - 14 Re X Re 4.)

+ 2 h2(JAI 2Re 41~ 112 Re A) + 
3 ,Af2142.

Stability is guaranteed whenever

Ih
(114) h l 2 1 ELpd!) q(!)] 0

with strict inequality for strong stability. Of course, the represen-

tation

(1)()+ h 2 1il2 R A 12

r215)1r Re(A-i I~I R A Re )

gives us

Lema 3. If ('yi1 and {'Y I are discrete trajectories satisfying (3.2-2)i

Uand such that Re A1 S 0, and Re pi 0 where Ai Is an eigenvalue of
A T' C and is an eigenvalue of -

1+/2  i + '2  i + '2 1+/2 +2 2
then the process (3.2-2) is stable forward (hi > 0). If Re X1 Z 0 and

Re 4, 0 then the process (3.2-2) is stable backward (h1 < 0).

Lema 4i. Let X1  and Uibe as in Lemma 1, but with the weaker hypothe-

sis Re(A -40 0. Then the process (3.2-2) is stable forward (hi > 0)

for
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(16) Re( A

min( 2i ] i12Re A -IAJ 2 Re u > 0

hi Re X 1- A2  A1 
2 Re 

"

I max

otherwise.

The process is stable backward (hi < 0) for Re(A -it) Z 0 and

(17)

4 Re(X.-i) ]2 2 2

min[ 2 1 i-uil Re X.ilej Re .-'-0
lA'l 2Re -"-l] Re X.

-h. h
I max

otherwise. a

Remarks.

1. Lemma 3 is the matrix ODE analog of A-stability in the

constant coefficient linear case (C(s) = 0).

2 IA2
2. If 1PI Re A - jlj2Re i > 0 while Re A- Re p < 0 in Lemma

4, it is interesting to examine how hMax depends on A. For example,

suppose X= au with 0 < a < 1. Then hmax = 2 12 Thus as long

as the stronger hypotheses of Lemma 1 are not violated too severely (a

near 1) the stability limit hmax on the step-size will still be quite

large.

3. For a well-posed elliptic boundary value problem it can be shown

that Re(e.v. F) 0 and Re(e.v. G) Z 0 for the forward process and

Re(e.v. F) Z 0 and Re(e.v. G) S 0 for the backward process . . exactly

the conditions of Lemma 1. This will also be the case for the Riccati

equations which arise in classical linear-quadratic optimal control. These

are usually posed backward and have the additional property that -GT

= F > 0.

49



J'-" • . , 4'

,,I... - "

S NUMERICAL EXAMPLES ..*% -j

In this section we give several examples of the performance of a 4

factorization based two point boundary value code based on the ideas

presented above. We have chosen some examples to illustrate the robustness

and effectiveness of the solver on problems stemming from engineering. We 4

include also an unstable turning point problem for which our method fails.

We have already noted how the independent and parallel structure of

the forward and backward factorizations coupled with the solution of local 4

linear systems at the target points combine to minimize storage and the

computational burden of the method. The adaptive mesh selection is based

on a single solution of the problem, in contrast to the multiple-pass .

approach to mesh refinement used in global methods such as finite differ-

ences, collocation, or finite elements. This feature also greatly reduces

the computational costs.

The numerical examples illustrate these features, but highlight the

performance of the method on problems having a singular perturbation char-

acter, i.e., problems the solutions of which exhibit boundary or interior

layers. We show that such problems car, be solved effectively without

special handling such as upwinding or asymptotic expansions. '

4. I A stable singular perturbation problem

Consider the problem

* (la) Eu"(s) + u'(s) 1

(1b) u(O) - u(l) = 0

t the solution of which is
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I-exp( ~
(2) U(S) s ~j

1 -exp(-- e

There is an 0(c) boundary layer at s 0. .y.

There are a number of ways that (1) can be cast into the first

order form 2.1-1; we explore some of the theoretical and computational A

implications of such re-formulations.

Method 1 (MI)

Le T =(,w) be defined by

(3) W1 U, w2  = l

and obtain

(4a,b) BK], F [j1

(4c,d) U1  U2  = 1 0] u =u = 0. * -

Method 2 (M2)

Let wT =C 1 w) be defined by *~~

(5) ~~w1  = U, w u

and obtain

(6a,b) F

(6c,d) U1 = U2 1 1 01, Ui u2 -0.



(Ml) and (M2) have the form

(7a) w' - Bw -F,

(7b) U1w(O) = U2w(1) - 0.

The two possibilities for the Riccati factorization (which are adaptively ALA

alternated) corresponding to (7) are factorization Fl:

(8a) I Id,

(8b) 0 -B1  + BH$0 t 5B 2  + 02B2 02

(80) q' = -F1 +B 11  -0 2F2 + 2B21

and factorization F2:

(9a) s1  = -B + B - IB + 01B(
1 21 22 1 1 11 1 1

(9b) P2 = Id,

(9c) (0' =-F 2 +B -0 F
(9 2 B22 11 112'

where 0 = [I 02 and p are the transition matrix and transition
1 2

vector, respectively.

Suppose that matrix B and vector F are perturbed by b and

f, respectively. Then the solution w to (7) is perturbed by v

satisfying

(10a) v' - Bv + (bw -f)

(lOb) U1v(O) = U2v(1) = 0.
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The matrix b and the vector if arise computationally due to the

discretization errors involved in solving (8) or (9). In the case of F1,

if the discretization error of (8b) is -b12 and that of (8c) is -fif1

then we see that ~I

( 1 a ) 
b0 b 1 2

(11b) if 2[

For the factorization F2 the corresponding perturbations are

(12a ) b - [ 2 iI
(1 2b)if=[]

where now -b2 l is the discretization error of (9a) and -if2 Is the

discretization error of (9c). (Eqns (8a) and (9b) are "solved "exactly.)

Since for M1, w2 = (1/c) in the boundary layer, we see that b12

V. O(A~) perturbations in B12  can lead to large O(A/0) errors in v. We

therefore would like to ensure that b1 O(Ae) in the layer in order to

get v - O(A). This can be done by brute force using an integration toler-

ance T Ae. This strategy will cause the adaptive solver to use more 7
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steps globally as well as in the boundary layer. The problem does not

arise in factorization F2 since the perturbation has been shifted to b21 ,

the coefficient of w, - 0() in (10a). Moreover, although the factori-

zation F1 is in effect at the start of both forward and backward sweeps due . -

to the structure of the boundary condition matrices U1  and U2 , the .

rapid growth of 02 (for E << 1) causes a switch to F2 after only a few

steps.

Now consider the effect of measuring the error by the norms ,,

(13a) Ivll - sup{1v1(,)l +

(13b) 1v12  - sup{IV 1 (S)l + Elv 2(s)l1.

These vector norms induce corresponding matrix norms on b given by
'. '

Ib1l - sup maxrIb111 + lb211' Eb121 +lb 2 I]

(14b) lb1 2  " sup maxrIbl1I + Elb 1 , E-1 lbl2  + lb221].

For factorization F1, keeping 1b1 2 < A means exactly that

jb12 1 < Ac. Consider a transformed problem

(1)w I 0] adBeww-AF O-'

for which Ibil l 1b1 2: let A [0 1 and set W AwB'
2 0 E

ABA 1,and F - AF. Then it is easy to see that if (7) is solved with B, F
- -1 b ., - ,--,,: .

replacing B and F, then b12  b Since for F1, 1b1

suplb12I - supIc 1 12 1 = lb1 2  we see that solving F1 with tolerances A, 6

for (15) is equivalent to solving (7) with tolerances EA, Ed. Of course

.--......... '....".
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and F lead exactly to problem M2.

We have shown, then, that transformations of the original problem

(1) into various Ist order forms can be interpreted as selecting a norm for

the original problem, and affect the interpretation of the perturbations of

the coefficients caused by discretization errors in the solution of the

factorization initial value problems.

We further consider four other first order problems computing w =

(wI ,w2 )T.
(w- 2

Method 3 (M3)

(16) w i  u' u, w2  = u';

Method 5 (M5).

(18) wi = u, w2  u' u; - '

Method 6 (M6)

(19) w i  u, w2  = eu' + (s - 4 ).

We are interested in the computation of u'(O) by the mentioned six

formulations. Therefore only one target point is considered, namely s -

0. Hence, only integration from right to left has to be performed by the

factorization method. The computation has been in double precision and

"per step" step selection criterion. The initial step was taken to be h

C . Table 4.1-4.6 show the error in u'(0) obtained by the method (Ml)-

(M-6) for various E and tolerances T. In addition, the number of
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integrations steps is given in the tables.

Comparing Tables 4.1 and 4.2 we see that the methods (MI) and (M2)

produce identical results if T - ET2 where by T, the tolerances used "

in method M, were denoted. This is directly related to the analysis a.

mentioned above. Methods (Ml) and (M3) are using as one of the

variables w2 - u', while (M2), (M4), (M5), (M6) are using the variable

w2  involving cu'. This leads to similar performances of these two

groups of methods. Nevertheless, there are some differences (see (M2) and

(M6)) which are caused by the different structure of the perturbations in

B and F. Results shown in Table 4.1 are heavily influenced by low

tolerances T for which the number of steps is independent of T. This .-'.

disappears for T smaller as can be seen in Table 4.2, which is, as we ..

said, essentially the method (Ml) with tolerance Te. We see in Table 4.2

that the error in u'(0) for fixed c is proportional to T. This is

because the perturbations in the input data caused by the approximate

solution of the solved ODEs are of magnitude T. ,

From (10) we thus expect that the error in u'(O) is of order .

We see this character from Table 4.2 especially for small T and -

(when we are in the asymptotic range). For a particular value of T t =

10-8) there is a (local) increase in accuracy. This is the effect of

some cancelation and was observed also for some other sequences of

tolerances. The magnitude of the error can be computed from (10) assuming
- . , -

that lb21  , IfL - nT where n is the number of steps. This

estimate is directly related to the fact that "per step" strategy leads to

the optimal distribution of steps minimizing the perturbation in the LI-

norm. See [7].

The methods (M4), (M5), (M6) show similar performance although
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method (M5) gives better results than (M
4 ), (M6). The factor common to ,.'. '

I (M4) and (M6) is the relation of u and with a negative sign in the -. '.

differential equation (for s f 0 where the boundary layer is located)

while (M5) uses the relation with opposite sign. The different character

of perturbations then affects the error in u'(O). We see that the

transformation of the original problem into the first system and the

choice of norm affects the error in u'(O) because it leads to different

characterizations of the discretization errorsas perturbations of the

input data.

Table 4.1

Method 1. Error in u'(0) and number of steps backward.

aosoluo tolerance
1. OOOE-01 1. 000E-02 1, 00DOE-03 1. OOOE-04 1- 00E-05 1. 00OE-06 I. OOOOE-07 i. OOOOE-08

epsilon
1. +O0 0o- 3. OM-6 3.00E-06 3. 0820E-0 1.024SE-07 3.9468E-08 1. 2039E-06 1.79593-09 3.0876E-10

1 1 2 3 5 7 11

1. O0OOE-01 1. 5190E-04 1. 5190E-04 1.7454-05 2.0I55E-5 1. 7975E-06 L.0358E-07 1.275%-,S 1. '35E-5 O
3 3 4 6 a 13 20 31

i. OO0E-0. 1. 1043E-03 9.7234E-06 5.4961E-0X 2. :29S-06 6.0009E-08 3.1869E-09 2.0307E-09 1. 775E-10

4 5 5 6 8 11 17 25
.Ooo0E-03 1. 8641E-02 1.8641E-02 3. 4241E-03 3. 7770E-05 2. 0772E-05 2. 2579-07 9. 4277E-08 6. 3624E-08 .

6 6 6 7 o 10 13 is
i. ho1 m-04 2.3018E-O1 2.301SE-01 2.3018E-01 3.5308E-02 1.9995E-03 7.33&E-04 1.700SE-05 1. :898E-06

7 7 7 a 8 9 11 14

*1. OOE-05 2. 2905E+0 2. 29M5+00 2. 290OE+O0 2. 2905E+oo 3. 897IE-01 2.0070E-02 7. 3669E-03 1.7051E-04

9 9 9 9 9 10 11 13
S1. OOOOE-06 2.28M+01 2.2825E+01 2.2825E+01 2..P2E+O 2.2825E+01 3. 896E+00 2. 0L0E-01 7.4113E-02

1 11 11 1 11 12

*t. OOOOE-07 2.2941E+Oe 2. ,-941E+02 2.294iE+02 2.2941E+02 2.2941E+02 2.2941E+02 3.9009E+01 2. 0208+00

12 12 12 12 12 12 12 13

10
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Table 4.2 r

Method 2. Error in u'(O) and number of steps backward.

absolute tolerance
1. 0002-01 1. OOOE-02 1. 0000E-03 1. OOOOE-04 1. 0000E-05 1. OOE-06 1. OOE-07 1. 000-06

"Milon

1.00002+00 3. 0620-06 3. 0620-06 3. 0820-06 1. 0248E-07 3. 9468E-08 1. 2039E-08 1. 7953E--09 3. 0B76E-l0N 1 1 1 2 3 5 7 11

1. OOOOE-01 1.5190E-04 1. 7454E-05 2.0155E-05 1.7975E-06 1.035SE-07 1. 2759E-08 1.1352E-10 I. 6 -O6E-10
3 4 6 B 13 20 31 50

1. 000E-02 5. 4%1E-06 2.!M52-06 6.0009E-08 3. 4869E-0 2.0308--09 1.8774E-10 2.1316E-13 3.3111E-12
5 6 8 11 17 25 38 59

.0 -0 3.7770E-05 2.0772E-05 2. 2579E-07 9. 4278E-08 6.3624E-08 6.3883-09 3.4106E-12 I. 8645E-11
7 a 10 13 18 26 39 61

1.000-04 1.9995E-03 7.33882-04 1.70082-05 . :898E-06 6.2631E-07 6.3024E-08 3.6199E-11 6.83942-10
8 9 11 14 20 28 41 62

I. 0000E-05 2.0070E-02 7.3669E-03 I. 7051E-04 1.1949E-05 6.4008E-06 6.4434E-07 3.0092-10 6. 9849E-09
10 11 13 16 21 29 43 64

1.0000E-06 2. 0208E-01 7.4113E-02 1. 7221E-03 I. i870-04 6.39832-05 6.4401E-06 3.1432E-09 7.0315E-08
11 12 14 17 23 31 44 65

I. 0000-07 2. 0208E00 7.411,-01 1. 72 -02 i.,869 -03 6.39942-04 6.4436E-05 2.7940E-08 6. 8 -07
13 14 16 19 24 32 46 67

Table 4.3

Method 3. Error in u'(O) and number of steps backward. -

absolute tolerance
1.0OOOO-01 1. O00-02 1. O000E-03 1. OE--04 1. O000E-05 1. 00OE-06 I. 000E-07 1. O000E-W ......

epsilon "'r "' '
1.-oo1E+oX 1. 93E-0 1.1734E-05 1.0766E-07 4.19E-06 6.0 -09 3.8682-09 6. 763E-10 1. 876-10

1 1 2 4 5 6 9 14 "''?"
1. 00M-01 1.5190E-04 1. 5190E-04 1.745W-05 2. 013N-05 1. 7975E-06 1. 03.S-07 1.2759E-08 1. :135E-10 -,-.

3 3 4 6 a 13 20 31
1. O000E,-m 1. 1043E-03 9. 7234E-o6 S. 4%1E-'06 2.1i W-06 6. 009E-08 3-18W E-09 2. 030?E-09 11-8764-10 .'..

4 5 5 6 8 11 17 2"

1.0000E-03 1.8641E-02 1.8641E-02 3.4241E-03 3.7770E-05 2.07722-05 2.2579E-07 9.4278E-08 6.3624E-0 .

6 6 6 7 8 10 13 1s

1.0000E-04 2.3018E-01 2.3018E-01 2.3018E-01 3.53082-02 1. 9995E-03 7.3388E-04 1.7008E-05 1.1898E-06
7 7 7 8 8 9 11 14

.O000E-05 2.2905E+00 2. 2905+00 2. 2052+00 2. 205+00 3.8971E-01 2.00702-02 7.3669E-03 i. 7051E-04
9 9 9 9 9 10 11 13

1.00002-06 2.28252+01 2.2825E+01 2.2825E+01 2.2252+01 2.2825E+01 3.8986+00 2.0208E-01 7.4113E-02
411 11 11 11 11 11 11 12 -,, .

S1.O000E-07 & 2941E+02 2.2941E+02 2.2941E+02 2.2941E+02 2.2 9041E+02 2.2941E+02 3.90092+01 2. 00 +00 .. "..,
12 12 12 12 12 12 12 13
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Table 4.4

Method U. Error in u'(0) and number of steps backward.

absolute tolerance
1. OOOOE-01 1. OO0-0 1. O00E-03 1. OOOOE-04 Io OOOO-05 1.00002-06 1. O=KOE-07 1. 0000E-06 "

epsilon
1. 000 00 2. 108E-06 L .1- K-06 L -108-06 S. 142SE-08 4. 189E-0 1.3130E-08 P-4948-09 4.113SE-10 -e

I 1 1 2 3 4 7 11
I. OOO-01 1. 47"rd-4 ,..U24E-4" 4.9107E-0 8. 4943E-06 4.4914E-07 5. 372"E-08 4. 6513-09 1.7075E-10 , ..

3 3 5 7 10 16 25 39
i. o0o0E-. 5. 5036-.5 4.9424E-09 7.693E-07 S .2960E-06 1.1879E-09 8.3691E-10 3.0013E-11 3.3396E-12

5 5 7 9 13 20 30 47
I. 0000E-03 2.0E-03 S. 97012E-05 ?.2672E-05 1.7898-06 3.6016E-08 2. 86,7-09 4. 4145E-10 6.-1846E-11

6 7 8 11 15 22 32 49
i. ODOOE-04 2. 0639E-M 1. 1727E--03 2. 2109E-04 2.7409E-05 3.6452E-07 i. Q,,W-07 7.1304E-10 1. 5270E-08 ...

a a 10 12 17 23 33 50
1. 000-'0 P, 1325E-01 1,1697E-2 2 2 .609 2,7437E-04 2.4974E-06 1.6795E-06 7.73* -07 1. j -07

91t 11 14 18 25 33 52''.Y'

I11 11 13 15 20 26 36 53

I.000E-07 2.1335E+01 1.1833E+00 .1307E-01 2.6545E-02 2.8526E-03 8. 6018E-04 5.2899E-07 2.9476E-03
12 13 15 17 21 28 38 55

Table 4.5

Method 5. Error in u'(O) and number of steps backward.

absolute tolerance
I. ooOE-o1 1.00002-02 1.0000E-03 1.0000-04 1.0000-05 1.0000E-06 1.00002-07 1.00002-08

epsilon
.00000E+0 1.1738E-0 1.1738E- 1. 0766E-07 4.1489 -08 8. 65092-09 4. 5 -09 6. 7639-10 1.276"-10 .

1 1 2 4 5 6 9 14

I. 000E-01 8. 5646E-45 7.554SE- 2.81182-05 2.3343E-06 1. 1942E-07 9.62W4-09 9. 8.O- 1 I 1.5913E-10
5 5 7 11 15 22 34 54

i. 0000E-02 1.1686E-05 3.02O1E-06 5.2790E-08 1. 02IE-09 4.3633E-10 3. 858 -1 1 6. 6507E-12 1.411E-14
7 7 10 14 19 27 41 64

1.00002-03 4.6703E-04 4.01192-05 1.3490E-06 4.76852-08 1. 233K2-09 9.9431E-10 1.71442-10 4.4793E-11
a9 11 16 21 28 42 65

1. 00002-04 4.7695E-03 3.828E-04 1.46052-05 5.7743E-07 1.0795E-07 9.351AE-09 1.65E-09 4.5657E-10
10 11 13 17 22 30 44 67

1.00002-05 4. 9322E-02 4.686M-03 1. 4541E-04 5. 7367E-06 1. 0817E2-06 9.3336E-08 1. 6196E-08 4.67122-09g
11 2 15 19 24 32 46 68

1. 000E-06 4. 93E-01 4.68832-O 1. 48OE-03 5. 7360E-05 1. 0935E-05 9.4832E-07 1.6438E-07 4.69152-08
13 14 16 21 25 33 47 70

1.000E-07 4.9335E+.00 4.6923E-01 1. 4820-02 5.7447E-04 .0935-04 9.4790E-06 1. 6340-06 4. 7311 E-07 .- '..

14 15 i 22 27 35 49 71
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Table 4.6

Method 6. Error in u'(0) and number of steps backward.

adsolute toleran. "

1.ooooe-01 1.0oo0E..oe 1.00006..,03 1.OOOOE-04 1.0000E-05 1.0000E.06 l.0000E-07 1.O,
epsilon 

-OO06 1oo 07 10OEg

I 00006.00 6. ZISE-05 6. 279M-05 3.6794-06 1. 1301E-06 I 2130E-06 6. 604N-09 1. 4241E-09 a .7, -
1 1 2 3 5 7 11 17

1. 000E-01 2.0477E-04 2.0604E-04 2.2192E-05 .1456E-06 1.7906-07 S. 2319E-06 2.25N3-09 4.22 - ".-11
3 5 6 to 15 23 36 57

L.00006-02 2. 1116E-05 I. 2709E-05 2.7052E-07 6L I35-06 I. 3435E-09 L 4M52-10 7.4323E-12 9.8M55-12
6 7 9 13 15 27 42 65

1.00006-03 2.9586E-0 6.2853-05 2.4616E-05 3.0131E-07 4.6717E-08 .578%6-N S. 5493E-11I 7.4124E-11
a 10 14 20 28 43 65

1.00006E-04 3. 7127E-03 6.15806-0 2. 4M6-04 2. 6167E-06 7.050M-07 1. 72BIE-07 3.2232E-0 1. 384X6-09
9 10 12 16 21 30 44 67

1.00006-05 3.69516-0 5. 6695E-03 2.5589E-03 3.5099E-05 7.1716E-06 2. 0176 -06 12. 2 1-07 2.0675E-07
11 12 13 17 23 31 46 66

1.00006-06 3.6824E-01 6.2807E-02 2.5587E-02 3.453S6-04 7. 8466E-05 1. 181SE-0 1.3631E-05 1.0675E-05
13 13 15 19 24 33 47 70

1.000E-07 3.7011E+00 6.2879E-01 2.5754E-01 4.1 14E-03 5.4721E-04 8.2971E-04 1. 3391E-03 1. 5071E- - .
14 15 16 20 26 34 49 71

4.2 An unstable singular perturbation problem

Consider the singular perturbation problem of turning point type

(la) ew" + asw' . 0, -a < s < b,

(1b) w(-a) - 1, w(b) = 2.

For c = 1 the problem Is stable and has an interior layer (shock) at s

= 0 (Fig. 4.1) for all a,b > 0. The solutions shown in Fig. 4.1 were

computed with the tolerance T - 10-  for all shown e.

S. ,. -.

...... ...... ...... ...... ...... ......
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In the case a --1 a boundary layer occurs at s - -a if a > b and s

- b if a < b. If a - b, then there is a boundary layer at each end.

The solution in this case (a - b) is unstable with respect to the data

as e 0 0. The exact solution is antisymmetric with respect to the

value 1.5. It can be computed for s > 0 by solving the (stable)

problem

(2a) ew" - sw' - 0

(2b) w(O) - 1.5, w(1) - 2.

Fig. 4.2 shows the solution for various e computed by the factorization

method with tolerance T - 10. Solving the original problem (1) with

a b 1 1, one has to expect that the results will be very poor for E

small because of the instability of the problem (1). Fig. 4.3 shows that

in fact for e small the factorization method completely fails. This

example shows that the stability of the problem is a necessary condition

for the factorization method to give high quality results. This condition

is directly related to the interpretation of the numerical solution as the -.

exact solution of a perturbed problem.

62
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where Lk is the Legendre polynomial of degree k. Symmetry about y =

0 in the problem (1), (2) suggests an approximation for w of the form

(5) w(x,y) =O w (x)% 2 (Y)

for (x,y) 0. The convergence and approximation properties of this

method, called dimensional reduction, are discussed by Vogelius and

Babuska C223. The relevance of (5) for our purposes is that it reduces

the PDE (1),(2) to a system of ODE's for the vector function

T(6) W(.) - (w0(.) ,w1(-), ... ,WN( f>'

mapping C0,1] into R"+ ' The function W is the solution of the two-- -

point boundary value problem

2
(7a) -hA dW) *h-Bw(x) -- G(x), x E (0,1) --.- '

dx2  -'-'-'

(7b) W(O) = W(1) 0

where G(x) = (2g(x),O ..... )T, and the (N+I) x (N+1) matrices A and

B are the mass and stiffness matrices, respectively, of the basis

12j}. That is,

(8) Aij = f 02j(Y) 2j(y)dy,0
and

L 1 di d
(9) Bd (Y) d2j (y)dy.(9)~ ~ j d--7 dy"--'
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We note that the presence of the parameter h in (7a) gives the TPBVP (7)

a singular perturbation character if h << 1.

Figures 4.4 and 4.5 are plots of the solution components

.CWk~k O and [W}k.O, N for the case N- 4 and h - 0.5,

with g given by

g1, 0.475 S x S 0.525

['[" (10) g(X) "'""'

(100, otherwise.

Only the solution on 0 S x S 0.5 is plotted since w(x,y) in this case

is symmetric about x - 0.5 and y - 0. Evidently the component w0

dominates the solution except in the interior layer caused by the flux,

g. A contour plot of w obtained from expansion (5) for h - 0.5 and

N - 4 is shown in Figure 4.6. The singularity at the corner due to the

step in the flux is evident.

The computations were done with tolerance of T - 10-. In view

of (3.2-4), this amounts to computing the exact solution to the first

order system

(11a) x ) lId + b(x)]W2(x) fx)"
(ha) dx 1x N 2 fx

d h-+ "
(11b) -hA !- W (x) + BW Cx) - G(x)

Cub)dx 2 1

C11c) W1(0) - W1(1) - 0

where W1 - W and the perturbing matrix b(x) and vector f(x) are

unknown but satisfy

(12) Ibij(x)I, Ijf (X)I < T, i,J - 0,N, x E (0,1).

ij •
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This in turn implies that the numerical solution W is the exact

solution ffor problem (1) in which the f'lux G is replaced by the flux

G (x) -hA dL (b x xdx (b 2()'±().-
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland, --

under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals: -

* To conduct research In the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

* To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

* To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuska, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.

. .. . . . . . . . . ... -..

...... ~ ~ ~ ~~~~~~... . . .. . . . .. . . ... . . . .. . . .

.. . . . . . . . . ... . . . . . . .. . . . . . . . . . . . . . . . . .



!~ * - -'-V.

FLMED

I.. . • • ' ,~

* - . 4'. .

, 

.. 

"

p" 
.4. 

._


