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Abstract
)One of the most widely used methodologies in scientific and engineering research is the

fitting of equations to data by least squares. In caes where significant observation errors
exist in all data (independent) variables, however, the ordinary least squares approach,
where all errors are attributed to the observation (dependent) variable, is often inappro-
priate. An alternate approach, suggested by several researchers, involves miTnimiing the
sum of squared orthogonal distances between each data point and the curve described by
the model equation. We refer to this as orthogonal distance regression (ODR). This paper
describes a method for solving the orthogonal distance regression problem that is a direct
analog of the trust region Levenberg-Marquardt algorithm. The number of unknowns in-
volved is the number of model parameters plus the number of data points, often a very
large number. By exploiting sparsity, however, our algorithm has a computational effort
per step which is of the same order as required for the Levenberg-Marquardt method for
ordinary least squares. We prove our algorithm to be globally and locally convergent, and
perform computational tests that illustrate some differences between the two approaches.
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When observations are corrupted
By errors random i.i.d.
Lest Squares provides the answer
A true blue friend it be.4I
But when the independents
In addition come unclean
Nonlinearities enter
And friends desert the scene.

Now in your darkest hour
When hope is all but gone
This paper comes to show you
How estimation can go on.

What is the shining hope '-%
That beacon from afar?
Is it that new found wonder
That's known as ODR?

Yes! That's right! You've got it!
And we tell all below
From problem through solution
With codes to make it go.

So calm your pounding heart .
And mop your sweating brow.

Your data can be handled
And we will show you how.

-.- % "-

. '%

-.%'-



1. Introduction

The problem of fitting a model to data with errors in the observations has a rich history
and a considerable literature. The problem where there are also errors in the independent
variables at which these observations are made, however, has only relatively recently been
given attention. In this paper, we consider a general form of this extended problem and
provide an efficient and stable algorithm for its solution. Several names for this extended
problem have been suggested; we prefer orthogonal distance regression (ODR).

Errors in independent variables virtually always occur, but are often ignored in or-
der that classical or ordinary (linear or nonlinear) least squares (OLS) techniques can
be applied (see, e.g., [LawH74l, [Ste73I, [Mor77], [DenGW81j). Also, if these errors are
small with respect to those in the observed variables, then ignoring them does not usually
seriously degrade the accuracy of the estimates. In some fields, however, measurement
techniques are sufficiently accurate that errors in the independent variables are not in-
significant compared to those in the observations. Examples at the National Bureau of
Standards (NBS) include the calibration of electronic devices, flow-meters and calorime-
ters. Another class of examples comes from curve and surface fitting problems.

We first develop a formal statement of the ODR estimation problem and briefly discuss
its application to statistical estimation and to curve fitting. The main contributions of
the paper are the derivation and convergence analysis of a highly efficient algorithm for
solving ODR problems (Sections 2 and 3). In Section 4, the results of some computations
are shown which illustrate the performance of the algorithm and allow some comparisons
with ordinary least squares.

Observations in applied science are often thought of as satisfying a mathematical
model of the form

(1.1) =y f(z,/)

where y is taken to be the "observed" value, or independent variable; and 0 E RP is the set
of parameters to be estimated. The function f is not assumed to be linear, but is assumed
to be smooth. The data are simply the pairs (z, yi), i = 1,..., n. Typically the number of
data points, n, is far greater than the number of parameters, p.

In the classical case, only the observations yi are assumed to be contaminated with
errors. If these errors are additive and the mathematical model is exact then

(1.2) yi =f(z,,) + i i =1,...,n

for some correct value of the parameters f. Iin addition the errors are normally distributed
with mean 0 and variance oI, then maximum likelihood estimate of P is the solution to

0 the least squares problem

ra3in

If f is a linear function of then this is a classical linear least squares problem, otherwise
it is a classical nonlinear least squares problem. Even when the above assumptions on the
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model or the errors are not satisfied, problem (1.3) is the most frequently used method for
parameter estimation.

In the more general situation, the measurements of the independent variables zi are
also assumed to contain errors. If we assume that y, has unknown additive error 1i and
that zi has unknown additive error 4i, then (1.2) becomes

(1.4) Y= f(, + 6i; 0) +. 

An intuitively reasonable way to select the parameters in this case is to choose the /
that causes the sum of the squares of the orthogonal distances from the data points (z, yi)

* to the curve f (x, P3) to be minimized. (See Figure 1.) If ri is the orthogonal distance from
(xi,,yi) to the curve, then

r? ei + bi, i l.,n

where ci, and 6, solve

min(E? + 6)
subject to f(z, + 6,; 3) + e, =y.

The constraint in (1.5) ensures that the distance r, connects the point (z., yi) to the
curve. The minimization ensures that ri is the radius of the smallest circle centered at
(z,, y,) which is tangent to the curve f(z,; P). (See Figure 2). Therefore, the parameters
,6 that cause the sum of the squares of the orthogonal distances from the data points to
the curve to be minimized are found by solving

ft n :-.;.

min r? = min + i.(1.6) 1"i= =1

subject to y, = f(zi + bi; P) + ei, i= 1,..., n.

both these variables and all of the constraints thereby obtaining ,..

min - (f(z + 6,;p) - y,)2 + ] .

which is now an unconstrained minimization problem.
Two slight extensions to this form constitute the ultimate problem to be considered.

The first allows the possibility that zi E R"' rather than R 1 . Therefore, 6i E Rm and
instead of 6i in (1.7) we have bi6, = 1= 6.. (The superscript T denotes transpose.)
The second extension merely admits a general weighting scheme on the problem. The form
we have chosen results in the general nonlinear ODR problem

(ODR) Min W? [(f (, + b,; p) Y,)2 + 6TDbi]

2
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where w > 0,i =1,...,n and Di =dig{(j > 0, j= 1,.,m}i=1,. ,n,i.e., D, is
a diagonal matrix of order m. It follows that the vectors y, w E R" and z, 6 E R1, and
that 6jTDi6? = Es! 6?.d?-

While we have not assumed that f is linear, it is important to note that (ODR) is a
nonlinear optimization problem even if f is the simple linear function

Y = /31z + 02

since we then have that

y, =I(i + 6,) +132 +6,

Clearly the product of #I and 6, is an unavoidable nonlinearity.
ODR problems have been considered by statisticians, usually under the rubric errors

in variables. Most of this effort, however, has been devoted to linear models, i.e., when
f is linear in P. (See e.g.,[Mor7l], [KenSO83], [Bar74,p.67] and [Fu186J.) As in the classi-
cal nonlinear least squares case, little theory on the statistical properties of the solution
appears to exist. It is known that if both e and 6 are normally distributed with mean
zero and variances aj and a6I respectively, then the solution of (ORD) with wi = 1 and
Di= (o /o)I, = 1,... ,n is a maximum likelihood estimate of the parameters. Unfor-
tunately, as in the nonlinear classical case, no generally valid, computationally efficient,
inferential statistical tests are known. '

Independent of statistical considerations, ODR has potentially significant applications
in curve and surface fitting. Consider, for example, the problem of finding the parabola
which best fits the given set of points (see Figure 3.). (We have seen this problem arise from
a dental application.) Here it is clear that ordinary least squares will unduly weight the

top data points, while fitting in the horizontal direction would undully weight the bottom
data points. An orthogonal measure of distance alleviates these problems and provides a
reasonable fit. A related case is the problem of fitting near an asymptote as illustrated
in Figure 4. Orthogonal distances here prevent the undue influence of points close to the
asymptote. This problem is discussed further in Section 4.

The literature contains several algorithms for solving (ODR) and related problems.
For example, Golub and Van Loan [GolV83] give a singular value decomposition procedure
for the problem when f is linear. They refer to this problem as total least squares. Britt .-
and Luecke [BriL73] consider the nonlinear case as well as the nonlinear implicit case and
present an algorithm. Recently, Schwetlick and Tiller (SchT85l proposed an algorithm
similar to the one here for the nonlinear problem. Our algorithm, however, does not make
use of the singular value decomposition and it does incorporate a full trust region strategy.

2. The Algorithm

In order to solve the minimization problem (ODR),

(2.1) min W? [(f(Xi + 6,;,0) -Y)2 + 6bTDi.]

we first express it in a more convenient form and simplify the notation. Next, we give an
overview of the iteration which is based on the trust region -Levenberg-Marquardt strategy

3 ° .
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popularized by Mork [Mor77]. (See also [Heb73], [DenS83].) We then show how to modify"y
this technique to obtain an algorithm which requires the same order of work per iteration
as these algorithms applied to the same problem without allowing changes to zi. That is,
if the 6's ape held fixed at zero, ODR reduces to OLS and trust region methods require
O(np2 ) operations per iteration. Our algorithm, by exploiting the structure of (ODR),
still requires only O(np2 ) + O(nm) operations per iteration to solve the problem.

While we have designed and implemented the algorithm to handle the full generality
of (2.1), the notation is considerably simplified by assuming xi E R'. We temporarily make
this assumption and rewrite (2.1) into the form of an OLS problem by the following device.
Let

(2.2) g,(?,6) = J{ wi(f(xi + 6,;,) - i), i=l,...,n n;(2.2)( ) i-ndi-ni-n, i=n+l, ... , 2n.

Also let G RP+n - R 2 n have component functions g,(q) where 77 = (i). Now (ODR)
becomes

2n
(2.3) min iG(,i)I1 =2 min ('0&3, 6)) 2

which is an OLS problem with (p + n) parameters and 2n equations. (In all cases in this
paper, 11'11 denotes the t2 vector or matrix norm.) Direct application of trust region meth- .-
ods to (2.3) would require O(2n(n + p)2 ) operations per iteration which rapidly becomes
prohibitive if n is large. (Recall that n is usually far greater than p in practice.)

The basic idea of a trust region strategy is to choose as the step that vector which mini-
mizes a linear approximation to G over a region in which the linearization is a"reasonable"
approximation to G . Specifically, if G'( c) E R 2 nx(n+p) is the Jacobian matrix of G
evaluated at the current iterate, tic, then the step z is chosen by solving

rain JIlG (t. )  + G (17c)Z11 2 --
(2.4) i "iGi: =

subject toliZzil _ r

where Z is a nonsingular (usually diagonal) scaling matrix and r is the trust region radius.
It is easy to show that the solution to (2.4) is given by the z(a) satisfying

(2.5) (G(,c)TG'(,,c) + aZTZ) z(a) =_,(,,)TG(,-.

where a > 0 is the Lagrange multiplier for the inequality constraint. Note that if 1jz(O)jj <
r, a = 0 and the constraint is inactive. Otherwise a > 0 and the constraint is active.
Equation (2.5) is the famous Levenberg-Marquardt formula, but this derivation has given
rise to more stable and robust implementations. (See, e.g., [Mor771 and [DenS83]). Clearly
(2.5) can be regarded as the"normal equations" for the extended least squares problem,

(2.6) ZG=2 [G

4..............................................
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where"-- 2" means"equal in the least squares sense."

Our implementation is based on the careful exploitation of the structure of the ex-

tended Jacobian matrix in (2.6). From (2.2) we have that

a (tic )  =
e.0 D

(i V)

where
nx gi (.3, 6) _~ f(xi + b;~3
i=1,...,n, 3= 1 ,...,p;

n, 86,"4
ag (3, b) _~ f(xi + bi; )"-'" "V E R nxn V , = 0- , 06 -":- "

a=,...,n j=,...,n;
D E Rnxn :D=diagwidi,i=1...,n}."

Here, we have omitted the arguments of J and V for the sake of clarity. Observe that
since gi only depends on 6i, i 1,..., n,

V =diag 1,g .. ,n .

SThe structure of G'(tc), therefore, is

mrwalb G'(77) = -

Commensurate with this partitioning of G'(irf), 7c is naturally partitioned into com-

ponents (0'c,6 c)T and the step z into a step in i3 , say a , and a step in 6 , say t. Further-
.more, we allow for . to be scaled by a nonsingular diagonal scaling matrix S and t by a

nonsingular diagonal matrix T. Thus (2.6) becomes
- I

-- 0 D s G
(2.7) as 0 ] =2 0[

0 aT.

where G, is the first n components of G and G 2 is the last n components.

Now, if zi E R', then (2.7) will have the same form except that V E Rnxnm; T, D E
R "m xnm are still diagonal; and V , instead of being diagonal, has the"staircase" structure

" wb;-h is illustrated for n = 4 and m = 3 as follows:

XXX V1

1 X.1 x V41-

5= V . • ..'.

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. *.. . . .
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where V, E R' x m The rest of the development now allows xi E R ' .  J.

To derive an efficient procedure for solving (2.7), we first form the normal equations
associated with (2.7):

(jTj+ aS2 JV() ( JG
(2.8) VT j  vT V + D2 + o:T2 -VT

TG, +DG 2

Let P V TV + D 2 + aT 2 . Solving the bottom equations of (2.8) for t in terms of s yields

(2.9) t -P-l(VTGI + DG 2 + VTJIS)

and then substituting (2.9) into the top equations of (2.8) gives

(2.10) [JT(I- VP-VT)J + as 2] - + JTVp-l(VTGI + DG 2).

Thus s is the solution to the least squares problem.

* (I- Vp'IVT )1/ 2 J(al/2
~~(2.11) ::

(1 (I Vp-IVT)-/2 [-G, + VP-(VTG, + DG2 )]).
"=2 0 :'

The following propositions provide the necessary tools for the accurate and efficient

solution of (2.9) and (2.11).

Proposition 2.1. Let E D2 + aT2. Then, diag i, 1,... n where

m V 2.

Proof. We have that E is a nonsingular diagonal matrix and that VTV is block diagonal
where the blocks are m x m rank 1 matrices. Thus P-1 can be calculated by the Sherman-
Morrison-Woodbury formula, (see, e.g., [DenS83, page 1881 or [OrtR70, page 501) as

p- = (VTV+ E)-"
(2.12) = E -' - E- VT(I + VE-VT)- 1 VE-1 .

By direct calculation, VE-IVT = diag{w,, i =)1,. m} with wi as defined above. The
K: calculation of VP-' VT follows directly from (2.12).

Proposition 2.2. (I-VP-IVT)1/2 diag [ ] 2 i 1,... ,n wherew, is as above.

Proof. The result follows immediately from Proposition 2.1.

6
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Proposition 2.3. With wi as above

VP - 1 = diag{ + 1  1..n}VE1

and

P-VT E-IVTdiag 1 + w I

Proof. The results follow directly from (2.12) and Propositions 2.1 and 2.2.

Proposition 2.4. The right hand side of (2.11) is given by

(I- Vp 1 VT)-1/ 2 [-G + Ve-P(VTGI + DG2 )]

diag 
1/2

'

-~~ da{1 .]i 1...,n G, -VEDG 2.

Proof. We have that

G, + VP-(VTG, + DG2)

= -(I - VP-VT)GI + VP-DG2

= diag ij ,..n G, +VP-'DG.

Now the result follows immediately from Propositions 2.2 and 2.3.

With the above formulas, we can solve (2.11) for . by first calculating E and w in
O(nm) operations and then forming

i=diag {[-.. i= I,,n} J

and y=-diag [1+W],j i = ,... ,n (G, - VE-'DG2). ::::?

Now rewrite the least squares problem (2.11) as

(2.13) s =2a:-'
1/2' 0

which requires O(np + nm) operations. The solution of (2.13) then involves a QR de-
composition of i (accomplished by Householder transformations with column pivoting)
and then a sequence of plane rotations to eliminate al/2S. The cost is for this phase is .7--
dominated by the O(np2 ) operations for the QR decomposition of J.

7
Zs.
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Using Proposition 2.3 and (2.12), it is easily verified that

t = -E - 1 IVrdiag 1. + S--- "" 1,., G a E'G)+D

which is dominated in cost by the O(np) operations needed to form Js and several O(nm)
terms. Thus the leading cost of calculating a step for ODR is the same O(np2 ) operations ,-_
needed to do the factorization of an n x p matrix as in OLS. The only additional costs are
a small number of calculations costing O(nm) or O(np) operations.

It may occur to the reader that an efficient QR factorization of the matrix in (2.7) 4might yield a procedure with the same order of work. By re-ordering the upper 2 x 2 blocks,
one can, indeed, do the factorization of this part in O(np2 ) operations. The subsequent
elimination of the aS and aT blocks, however, would require O((nm + p)2 ) operations
for each a. It is for this reason, as well as others, that Schwetlick and Tiller [SchT85] do
only a"partial" trust region strategy, i.e., their trust region only applies to the step in the
83 variables. In some badly scaled problems, however, (e.g., Example 3 in Section 4) the
ability to scale and constrain the step in 6 is essential to solve the problem.

The above formulas for a and t are used for each a value in (2.5). Thus in order to
complete the specification of the algorithm, we need to provide the procedure for computing
the trust region parameter a to satisfy (2.4) and to discuss a few miscellaneous details.

Mor6 [Mor77], following Hebdon [Heb73 (see also [DenS83]), suggested a procedure
for computing a in (2.5) so that

I1 ( )1111
when I1z(O)11 > r. This procedure is based on approximating the function

OM 11 )11-, .-

by a rational function 0(a) = a/(s - a) where the constants -y and 1 are chosen by making
0(ac) = 4,(ac) and 0'(ac) = I(ac). This results in the iteration

a+a (ac) -(ac) ,r

which is a modified Newton step for the equation 0(a) = 0. In our case, the derivative
of O(a) is not as simple to compute as in OLS and thus we opt to compute -y and u by
making 0(ac) = O(a) and (a-) = (a-). (a- is the previous estimate.) Then

+ - C x(ac - al .(a. + r

which is clearly a modified secant step for the equation 0(a) = 0. Mord found it neces-
* sary to safeguard his procedure by computing and updating upper and lower bounds on

a. Similarly, we maintain such bounds, but with formulas appropriate to the secant-like
method. These will be provided in a subsequent paper.

8
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The trust region bound r is updated according well-tested ideas which are in several

existing rodes. (See e.g., [Mor77I, [Gay84], [SchKW86j.) A valuable feature in our code L
has been the"internal doubling" step. For a given 7' and r, suppose z,. is generated such
that r restricts 2 and the reduction in u]Ghi predicted by the linear approximation agrees
with the actual reduction in IGII to a high precision. Normally, one would accept Zr,
set 17+ := tl + z7 and double r for the next step. The internal doubling procedure is to
remember r := 17C+z , double r and generate a new Zr from i7. Note that this procedure
only costs an evaluation of G and, if successful, may save several evaluations of J . In
practice, it has been successful often enough to warrant leaving it in. Its main advantag is
that it permits rapid and cheap increases in r based on an overly conservative initial value
of r or when the iterates are moving away from a highly nonlinear region in parameter U
space.

Since many users will want to compare the results of OLS with ODR, an option to do
OLS has been implemented. Enabling this option merely initializes the 6 vector to zero
and sets V to zero whenever it is computed. It is easily verified that, in this case, (2.11)
reduces to the OLS Levenberg-Marquardt step and (2.9) yields t = 0 leaving 6 = 0. Using
this procedure to do OLS, therefore, is equivalent to a standard OLS algorighm with a
moderate extra algebraic overhead.

3. Local and Global Convergence Analysis

The global convergence properties of trust-region-Levenberg-Marquardt methods ap-
plied to the general nonlinear least squares problem (2.3) are well known (see e.g., [Pow75l,
[Mor77], [MorS81], [ShuSB85]). As long as the sequence of Jacobian matrices, {G'(qtk)}, ___

* is uniformly bounded, then
lim G(i7k)TG(,,k) = 0,

so that any cluster point satisfies the first order necessary conditions for a local minimizer.
These results apply to our algorithm and nothing more needs to be said regarding global
convergence.

The local convergence behavior of general trust-region-Levenberg-Marquardt methods
" for nonlinear least squares is discussed by Byrd and Schnabel [ByrS85] who show that, if

there is a 4luster point '7. where G'(j7.) is nonsingular, then the iterates converge at
least linearly to tj. independent of the size of G(t7.). This theory also applies to our
algorithms. If, in addition, the residual G(7.) is sufficiently small, Byrd and Schnabel show
that asymptotically the trust region constraint becomes inactive, and that the Levenberg-
Marquardt algorithm reduces to the Gauss-Newton iteration

'7k+i = 17k- [GI('7k)TGI('7k)] -1GI('7k)TG(7k)

and is linearly convergent to 17.. The linear convergence analysis of the Gauss-Newton
method is well known (see e.g., [OrtR70], [DenS83]). The constant of linear convergence
depends upon the smallest singular value of GI (17.), the residual G(t .), and the nonlinearity
of G(7) near 7..

The small residual analysis is particularly relevent to ODR because most applications
of ODR will have small residuals. This is especially true when ODR is used to consider
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errors in independent variables in parameter estimation, because errors in the independent
variables are most likely to be considered when the model and the dependent variable
measurements are accurate, which implies that the residuals will be small.

It turns out that the application of the local Gauss-Newton analysis to ODR is non-
trivial, although the expected results can be proven. This is the main contribution of this

section. To simplify the algebra here, we consider a version of the ODR problem (2.1) withthe simplified weighting scheme wi = 1 and di a for all i, i.e.,

(3.1) min [(Xs + 6,; ) 2 + or 26 6]

where a > 0. This weighting still allows the metric of distance from the curve f(z; P) to the
data points (z, zi) to vary from vertical (as a --+ oo) to orthogonal (a = 1) to horizontal
(as a --* 0). (We explain this statement more carefully later in this section.) This is all
the generality in the weighting that is usually used in practice, and precisely what we use
in most of our computational results in Section 4.

In fact, as we illustrate in Section 4, in practical ODR applications, the user may wish
to solve (3.1) for various values of a. A second contribution of this section is to produce a
bound on the constant of linear convergence of the Gauss-Newton method applied to (3.1)
that is independent of the value of a.

To further simplify notation, we rewrite (3.1) as

(3.2a) MiUR(,)TR(j)) + C0 26 T6+ o 1

or equivalently,

(3.2b) minG(,)TG(v?)

where 6 = (6T',2T,... , T)T, 7 - (j3 T, 6 T)T, R(17), = f(z, +6,;13) - y/, i = 1,...,n, and

G = (R(/)T,6T)T. Our analysis will not depend upon the special form of R(i7) in any
way. Recall that

G(17)= (J7) V(17))0 aI : -

where J(i7) and V(ii) are, as in Section 2, the derivatives of R(YI) with respect to/f and 6
respectively.

The difficulty in applying standard Gauss-Newton analysis to (3.2) is that G(i,) and ':

G'(t) are functions of a. In Theorem 3.5 we show that the convergence can be analyzed
in terms of the properties of J(tq), V(T), R(t.), and 6. only, i.e., independent of a except
for its role in determining q.. Lemmas 3.3 and 3.4 are used in the proof of Theorem 3.5 to
bound the linear and quadratic terms in the convergence results, respectively, independent
of a. Lemmas 3.1 and 3.2 are technical results used in the proof of Lemma 3.3. Theorem
3.5 can be applied to the more generally weighted problem (2.1) by making an appropriate
change of variables.

10
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Lemma .L Let A E RPxP, C E RqXq, B E RPxq, and let

H=

be symmetric and positive definite. Then IIHII - IAil + hichi.
Proof: Define a = IAII,c = CiI. For any v E RP and w E R', consider

tVIII/V f

Then, since H is positive definite,
0:5y UT 112C T TCWIIV112G4

Hy - vj -2 Bwjjwjjv 1vjj.7a.c.'

and therefore
2v TBw < vTAvhwlllj c + WTCWIIhl

2a

< IjVII2aiw IjC + W112c II1VII12 a

< 11VI12C + IWll1a.

Thus VTAV + 2VTB T + TCW

IIII ERP, ERQ VTV + wTW

< a 11vIaxa + ( 11Vl12c + IIW12 ) + ll w1l2c

,ERF, WER4 VTV +WTW

a a+c.
Lemma 3.2. Let A E RfxP have ful column rank and B E R n xn be positive definite.

Then II(AT B-1 A)-I1 <_ II(ATA)'IIIIBII.

Proof:T
II(A.B- A)- I-- max Tvv

vERP vTAT- FV
ma V : !L1l < II(A TA)-'II IIBII. ,_.

v VT A T Av

Lemma 3.3. Let J E RnxP have full column rank, V E Rn xq, I the q x q identity, and

or a positive scalar. Let M(a) 'J'V , and N(o) = M(u)TM(Gr). Then N(o) is

nonsingular and

(3.3) IIN(o 1  ( j (J1J)-1 1 + o- (1 + 11(JT J)-l11 IIV112).

I t



Proof: Since J has full column rank, M(o) has full column rank. Thus N(o) is positive
definite, and it is straight forward to verify that N(o)- I  (T C where

A [2jT (VTV + a2I) -I -]

C = [o21 + VT (I - J(jTj)-1JT) v]-1,
B = -(JTJ)-1JTVC.

." From Lemma 3.2,

11AlI_<-o-211 (JTJ)- 1 IIVTV + a2I11
(3.4) l - 2 jI(J T J)- I IV T Vll + o 2) _)= - 2 l(JTJ)-ll 1lVl12 + (JT J)-*ll. .

Since C- - a21 - VT [I- J(JTj)-jT] V is positive semi-definite, the smallest eigen- . .
value of C-I is at least Or2 which shows

.4
,.(3.5) ,1C, <5 Or2. ,-

Thus, since N(a)-1 is positive definite, applying Lemma 3.1 and using (3.4) and (3.5)
gives (3.3).
Lemma 3.4. Let the assumptions of Lemma 3.3 hold, and let u E R". Let z be the solution
to

(3,'.8) min J V.-.
FR + 0 01 0 -" t"', ''

Let J+ = (jTj)-1jT and let V+ denote the pseudoinverse of V. Then

Ilzll < [IJV+ll + IIJ+ll (1 + IVII IIV+ll )] Hull.
Proof: Define y e RP+q by

I( _J+V)(= ( ) 1 Y:
*. and letz= zi), Y= zj") where z,,y, E RP, and z 2,Y2 E R .Then (3.6) is equivalent .0...-

to

(3.7) min

where P = (I - JJ+) is a projection matrix. From the normal equations using jTp = 0, ,. o,
the solution to (3.7) is

y, = J+u
.2 - (VTpV + o 2 j)-IVTPu.

1 2 ; % .* .
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It is well known, for instance from the theory of Levenberg-Marquardt methods, that

I1Y211 ! II(PV)+UI

and since (PV)+ = V+P and IIPII < 1,

IlY211 < I~v+ll I1U11, 11 I:11 IJ+l 11 . --

Finally since z2 - Y2 and z, = yj - J+/y2,

211211 !5 I Iv+1 Ii h ll
and pU

Using I1111 < I1zihl + I1Z211 gives the desired result.

Throughout the statement and proof of Theorem 3.5, we will often omit the argument
i7; i.e., we will denote G(q7.) and G( 7o) by G. and Go, respectively, and likewise for other
symbols in place of G. Also for J having full column rank, J'+ will denote (T) Tand

for V having full row rank, V+ will denote V(VVT) - . Note that IIJlI2 
- I(JTJ)-11.

Theorem 3.5. Let R( 7 ) :R - Rn be continuously differentiable in an open convex set
D C R. Let E1T = (1 3 , 8 T), RP ER', 6 E R let ar be a positive scalar, and let G(7) =

) . Assume there exists nf E D such that G'(,)TG(,i") 0, and that there exists

> 0 for which

(3.8) IIR'(n) - R'(,n')II 1 1,n - , 11 .. :.:

for all n ED. Define

Ci = I [II(J J.)-'l IR.II + (+ IIJYJ.)-'iI IIV.II2) jv.+lj 116.11]
C2 = (,1/2) [JIVtII + IfJJiI (I + IJV.IL IJV. I] • . -

If cl < 1, then for any c E (1, 1/c 1), there exists E > 0 such that for all ro for which
1Ilno - n.11 < e, the sequence generated by the Gauss-Newton method

|-.Po 17, (G7)TGI(n)) -'GI'7k)-G(17k)
.. ~~~~k+i = nk - ('(, r', ',k

is well defined, converges to q/. and obeys

(3.g) IIk+i - n.11 -- C(cI + hl1Ik -7.12)17 - .11"

L .....1..3 13
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X Proof: The crucial remaining part of the proof is to note that since the optimality conditionN ~ G'.G* 0 gives VTR. + Or~b = 0, we have

= -o 2 (V.V.)- 1 V6 .

-OF2 (V;I) T b

so that

Thus from (3.3) of Lemma 3.2,

((G.) G.) ,.I
S(3.10)-< I)- IIR.II + - 2 (1 + 1(jyj.) - 11 IIV.112) IR...

< I~j~( .T - l1R.11 + (1 + 11(jyj.). 1 j Iv.112) Iv+jI 11b.11

="ci-Y.

The remainder of the proof is by induction. Let c be a fixed constant in (1, 1/c 1 ).
Then there exists e > 0 such that for all r/for which 1j7 - . i, J(i)andV( 1 ) have"
full column and row rank, respectively, and

(3.11) (G'(i,) T G'(r7 )) - 1 _ c ((G,) T G,) --..

and

(3.12) II V(i))+ll + I1J(i7)+l (1 + IIV(7)II IIV(17)+ll)
<c [IV.+II + IIJ~li (1 + IIV.lI IIv.+l)]..

Let e = min {ci, (1 - cc,) / (2cc 2)). Then at the first iteration ((GI)TGI) is nonsingular,
and

(3.13) ,71 -7. = 7o- 7. - ((G')TG'o) - (G)To-
- a + b , ..

where
a=-((Gi)TG) (,) T G

b ((G )TG',) - (G,) T (G. - Go- G (,7 -.- o))

Since (GI.)TG. = 0,

(3.14) (G') T G, (G' G.) T G. (R; - R') T R.

14 .-..
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due to the linearity of the final q components of G(q). Using (3.14) plus (3.8), (3.10), and
(3.11), we have

1Il: l( ' l l 'o _j 1R 1

(3.15) < c-Y I((G.,jTG)flII IR.11 1i7o -. 11

_< cc I I7o - ,7.11•

Also note that b is the solution to

minh 1Gb- [G. - Go - G'0 (q. - ,7o)]1,

and that

(3.16) G.,- Go -G' (q./- 17o)0 R -P.- r, /) .~i.i

From (3.8) and standard results

(3.17) IIR. - .- R; (,r. - 7o)ll . (-y/2) 1hIo - 1.2.11'

Thus using (3.16), (3.17), Lemma 3.4, and (3.12),

(3.18) Ilbl]l 1_ + + 11o+11 (1 + IlVoll j1Vo+j1)] (-y/2) II'o - ti.11'
% o;<_CC211,o0 - 7.112. ;" .

Substituting (3.15) and (3.18) into (3.13) and recalling II'7o - 7.11 5 (1 - cc,)/2CC2 ,

InI -. 11 C (Cl + C2 ,I'.O - n11) lio -7.11
< [(1 + cc,) /21 lino - '.11

which proves (3.9) in the case k = 0 and shows that 11'7/ - q.11 < 1I,7o - 7.11. The proof ofthe induction step is identical.
Byrd and Schnabel [ByrS85] show that the trust-region-Levenberg-Marquardt algo-

rithm described in Section 2 will reduce asymptotically to Gauss-Newton if the constant
of linear convergence, cI, in Theorem 3.5 is sufficiently small. In particular, our computer J
code will accept the trial step if the ratio of actual to"predicted" reduction, -

IG(c + z.)II - JIG(tc)II -
I(ic) + GI'(i)z,,jI - IIC(c)l-.

is at least 0.001. In this case, as long as c, < .9999, the trust region in the Levenberg- '-,
Marquardt algorithm is inactive asymptotically, so that the algorithm becomes Gauss- -.
Newton.

15
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Now we consider the behavior of the ODR problem (3.2) as the parameter a is varied.
For this purpose, let us denote the global minimizer to (3.2) by r1. (a). Then by standard
analyses of barrier function methods, (see e.g., [FiaM68] or [Lue73]) we know that the limit
of r.((a) as a -* oo is the solution to

minIIR(i7)IP subject to 6=0,

i.e., the standard OLS problem

(3.19) min IR(l, 0)11 2 .

Similarly, the limit of ti.(a) as a -- 0 is the solution to the implicit least squares (ILS)
problem

(3.20) min16112  subject to R() =0.

In the data fitting context where R(7)1 = f(xi + 6i; 3) - yi, (3.19) is the standard problem
where the independent variables z are assumed exact so that the metric of distance is in
the y (vertical) direction only. In constast (3.20) is the case where the dependent variables
yi are assumed exact and the independent variables zi inexact, so that the metric is entirely
in the x (horizontal) direction.

The standard analysis of barrier function methods also shows that 1R(,(o))JJ is a
monotonically increasing function of a, and that 116.(o) I is a monotonically decreasing
function of a. This means that for all a E (0, oo), the values of IJR(i7.(or))II and 116.(a)II
are bounded above by the optimal objective function values for problems (3.19) and (3.20),
respectively. In data fitting terms, for any a, the norm of the optimal vertical residuals
in ODR is bounded above by the norm of the optimal residuals in OLS, and the norm
of the optimal horizontal residuals in ODR is bounded above by the norm of the optimal
residual for the ILS problem. The computational results of Section 4 demonstrate these
relationships.

Combining the above facts with Theorem 3.5 shows that, if the optimal objective
function values for problems (3.19) and (3.20) are sufficiently small, and if J(/. (a)) and
V(r.((a)) are sufficientiy well-conditioned for all a E (0, oo), then the Gauss-Newton
algorithm applied to (3.2) is linearly convergent for any a E (0, oo).

Corollary 3.6. Let tI, 0, 6, R(i7), G(Y?), J( 1 ), and V(t7) be defined as in Theorem 3.5.
For any a E (0, oo), let .((a) = (/.(a)T, 6.(a)T)T denote the global solution to

(3.21) rinlR(, 6)112 + a2 112.

Also let /3OLS denote the global solution to the ordinary least squares problem

minIR(P, 0)112
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and let (/ ILS, 61LS) denote the global solutions to the implicit least squares problem

Min 116112 subject to R(fl, 6) = 0.

Let ROLS = R(foLS). Assume that there exist > 0, j > 0 such that for each a E (0, o),

for aUl17 for which I17- L.o)Il _ . Assume also that for all a (0, 00), J(y7.(&)) and
V (n. (o)) have full column and row rank, respectively, and let J, J+, V, and V+ be uni-
form bounds on IIJ(n.(a))I, jIJ(.(a))+jl, llV(7.(a))lI, and IIV(7.(u))+II, respectively,
over all a E (0, oo). Define

( ROLS + 1+ (+)',2 f6bILSj

2 (j/2) [+ + i+ ( +

If e1 < 1, then for any c E (1, 1/a 1 ), there exists i > 0 such that for any o E (0, oo), the
sequence {k} generated by the Gauss-Newton method applied to (3.2) starting from any .....

'no for which I'lo - 7.(o)II <5 is well-defined, converges to 7.(o), and obeys
1117k+1 - 7.(a)11 _ c[,l + E21117k - 7.(o)III 1117k 17- .(o)1

4. Computational Testing

In this section we report the results of preliminary computational testing. These
tests, consisting of two contrived problems and one real problem, were selected in order to
illustrate the effectiveness of the implementation and to demonstrate the performance of
the basic algorithm. They also allow us to contrast ODR and OLS, which can have rather
dramatic differences, and to point out some of the inherent difficulties in ODR problems.

The contrast between OLS and ODR is best brought out in terms of the parameter
a and the function #(a) from Section 3. (Recall that 0(oo) corresponds to the OLS
solution.) Since, in practice, the correct value of a may not be known exactly, it is of ,.
interest to compute #(a) for various values of a.

The algorithm was coded in Fortran 77 and run in double precision on the Perkin-
Elmer 3230 at the National Bureau of Standards (NBS). The graphics were done on the
Evans and Sutherland PS-300, also located at NBS. .. " ''

Example 1.

Consider

Y 1
and define x, = .01 + (i-i1)* .05,, = 1,...,40. Next letz-1

y,. 1,...,40.-ext.l
Xi -- " a " ,

17
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Now we perturb the data points as follows:

Zi :Xi + rX

yi :=i + ry

where the rz are uniformly distributed on (-.05, .05) and the ry are uniformly distributed a-

on (-.25, .25). The model for the data was taken to be

X -2

and the ODR program was run with several values of a. The results are reported in
two tables and three graphs. Table 1 was generated by setting a = 1 and taking (0
(1, I)T. Subsequent solutions for higher values of a used the previous solution for the

initial approximation. In addition to the values of #(a), Table 1 contains the number of
evaluations of the extended residual function G (cf (2.3)) and its Jacobian, and the optimal
values of JIR(P7(a))I and 116(a))1 for each value of a. Since the value of 6 was expected to
be approximately the size of the variance of the errors, we set the weight T = 10. Table
2 is organized just as Table 1, but the results were generated by starting with the OLS "
solution using 8o = (1, 1)T and then decreasing a. The graphs are as follows: Figure 5
corresponds to the a = 2 fit; Figure 6 corresponds to the OLS fit from Table 1; and Figure
7 to the OLS fit from Table 2. Note that on all of these plots, the y-axis has been scaled
by a factor of approximately 100 in order to get all of the points on the plot. Because of
this scaling, the error pegs (connecting the data points to their predicted values) appear
to be much more horizontal than they really are.

Obviously, Tables 1 and 2 exhibit a nonuniqueness of the solutions. It appears that
there are two local solutions for the OLS problem corresponding to the asymptote to +oo
being on the left or right half of the curve, and that the trajectories emanating from these
solutions come together around a = 600 or that the trajectory represented in Table 2
fails to be continuous near a = 600. A possible means of investigating this phenomenon
is to write the differential equation describing the trajectory /(a) and to study possible
bifurcation points. This is not pursued here.

Observe that/12 determines the location of the asymptote and thus the data locate this
parameter very well. Note, however, that the data point near the asymptote, corresponding
to (1.01, I00)T, completely dominates the fitting process for OLS in Table 2 and results in
a value of -.3180 for #I. The ODR fit is not nearly so influenced by this data point and, for
a broad range of a, does a very good job of fitting the data. This last point is important,
namely that the parameter values do not vary much as a function of a, which means that
a may not need to be known with much accuracy. The stability of P(a) has been noticed

on all of our examples and on problems not reported here. This is not, of course, a proof
that this phenomenon holds more generally.

A further difference between the OLS and the ODR fits is that the errors for both
the the OLS fits do not appear to be random. Almost all of the errors to the left of the %*

asymptote are negative while all to the right are positive. The ODR errors for reasonable r

values of a appear to be much more random.
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An examination of the computational results reveals that the only hard optimization
problem in each set is the first. Subsequent solutions are found very quickly except,
of course, for the problem corresponding to a = 500 in Table 2 which appears to have
jumped across a discontinuity in #(a). A detailed examination of the iteration process
shows that the algorithm sometimes slows down (a very small value of r is generated) but~~then recovers and final convergence is with full Gauss-Newton steps. For the case a 500,- aa":A

airly large steps in b were generated which led to apparent convergence with very poor 3
values (near (0, 1)) and very large values of 6 (0(1)). In this case, a very small value of r

was produced. When the procedure was restarted with a large value of r, the algorithm
immediately stepped over this bad region and converged quickly to the correct solution.
Thus, it appears to be important to scale the step in 6 correctly and to be on the lookout
for unrealistic solutions.

Example 2.

This example is a two dimensional version of Example 1. Here we take x E R 2 and

1
X.:+ X2 -1

This function has a line of singularities along X1 + x2  1. We take the data to be on
the rectangular grid of width .1 in the x, direction and width .2 in the X2 direction. The
first point is (.01, .01)T and there are 10 points in the x, direction and 5 points in the z 2

direction. y is the evaluated at these points and the data are then perturbed according to
the following:

:=(xi) + rx

( 2)i:= (X2)- + r

Yi : i + ry ...

where rz are normally distributed with mean 0 and standard deviation .01 and the ry are
distributed normally with mean 0 and standard deviation .04.

The form of the model is

2X= 2 1 + 3Z2 - 7"

The results are given in Table 3 and in Figures 8-12. Table 3 is organized as Table 1
and Figures 8-12 correspond to the values of a noted. The graphs are compressed by a
factor of approximately 80 in the y direction in order to get all of the data points on the
picture. Again we observe that the values of /3(a) do not vary quickly and that the fits
depend more and more on the points near the asymptote as o increases. Note that the
location of the asymptote is well-determined by the data and that only #I changes much as
a increases. Here the insistence on near vertical measures of the error forces #I to assume
smaller values which has the effect of flattening the function as much as possible near the
asymptote. This, of course, tends to minimize the vertical component of the error. As in S
Example 1, the errors for the OLS fit do not appear random while those for the ODR fits
do.
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Note that the first solution, corresponding to o 1, was computed with some diffi-culty. (This is the same situation as occured for a = 500 from Table 2.) In these cases,the terrain in parameter space (P and 6) appears rather flat and fairly large values of 6
were again obtained on intermediate iterations. The iteration stalled with an indicationof convergence due to x-convergence and a very small value of the trust region radius. A I "restart (which resets the trust region radius to a larger value) then allows the iterates tostep over this flat area and converge very quickly to the correct answer.

The non-uniqueness observed in Example 1 was again observed here. The details arenot reported, but we found a second OLS solution which led to a trajectory of solutions
that finally joined the above trajectory at a = 2.
Example 3.

The data here are actual measurements from a calibration run on an electronic device
which was intended to give a flat response over a wide range of frequencies. In the (z, y)-data, the z-vaues are in units of frequency squared and the y-data are the gain. Thex-values are scaled to the interval (0,1) with several measurements made in each decadefrom 10- 8 to 1. More measurements were taken at the higher frequencies since most of
the important information is obtained there. The data are plotted in Figures 13 and 14*. with a log scale on the x-axis in order to see the situation better. The y-scale on thesegraphs has been magnified to accentuate the differences. The peak at the right side of thedata is at 1.001 while the low point at the extreme right end is at .9473. The flat part atK- the left side is all near .9882.

The model for this data was obtained from theoretical considerations and has the form
4_Y i+ A , i = 1 . .4-

Xi +

.- where the parameters to be determined are

Estimates of the pole locations-the negative -i-values-are likewise obtained from other"V analyses. The -y-values are approximately
= 1.3 x 1 0 -

.
3

12 5.96 x 10 - 2

13 6.71 x 101

,4 - 1 .0 7 x 1 0"
Since all of the poles are negative and all of the data have positive x-values, there -.is no problem with being close to the asymptotes. The range of the z-values, however,

implies the need to scale the trust region. We used, for the diagonal scaling matrices Sand T, the following: 
:'

1
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It turns out that the measurements are proportionately more accurate at the lower fre-
quencies and we therefore took the d-weights to be the same as the t-weights.

While the data were measured quite accurately, there were simply no data at a suM-
clently high frequency to warrant keeping the two terms corresponding to " - 3 and j -4
in the model. This situation was evidenced by the fact that the Jacobian J had five almost
identical columns.

With these terms removed, the resulting problem was easily solved as follows. Using a
feature of the program which allows certain parameters to be held fixed at specified values,
we fixed the pole values (the ,y-values) and used an OLS estimate of the remaining linear
parameters. We then freed all of the parameters and did an OLS fit and and ODR fits
with several values of a. In doing the ODR fits, we first specified a a-value of .01 since
the gain measurements in this data set were 100 times more accurate than the frequency
measurements. Other values of a were subsequently used for comparison. The results are
in Table 4 and Figures 13 and 14 which depict the OLS fit and the ODR fit for a = .01,
respectively. Virtually no difference appears between the two at the lower frequencies, but
some differences occur at the higher frequencies. In the enlargements (Figures 15 and 16)
one can easily see that the contribution of the error in the z-values causes ODR to get
a significantly better fit than OLS. While the 6-values are not reported here, there were,
again, very slow changes in f(a).

In this section we have shown that our algorithm is effective on highly nonlinear" "-..
problems, but that these problems themselves often have multiple solutions and other
difficulties which imply that potential solutions need to be studied carefully. In subsequent
papers, we will provide a more complete description of our implementation and further
results on its performance. *,
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A Table 1

;Evaluations of Final Value ofa( .(u) G C , I1G(O()) 11I (o)ll
1.023 70 o.2:"2 1.021 1.005 6 5 0.454 0.223

5 1.015 1.004 0 4 0.771 0.1225 0.9847 1.002 0 5 1.280 0.080
0100 .9247 0.9972 9 8 3.204 0.061

300 0.9881 0.9928 13 12 10.408 0.035
500 0.9487 0.9953 12 11 15.524 0.018
1000 0.828 0.9937 10 9 18.881 0.007001 0.6807 0.9909 7 8 21.774 0.

Table 2

Evaluations of Final Value of
a3(o) ,2() C' IIR(C7(c))Il 116(c)II
002 -0.3170 1.010 40 22 104.709 0.1000 -0.3355 1.095 20 15 104.223 0.007
700 -0.3845 1.093 27 21 103.660 0.015
500" 0.9487 0.9953 103 43 15.524 0.018

Table 3

Evaluations of Final Value of

0.8988 0.9482 1.015 147 60 0.184 0.6702 0.9223 0.9478 1.019 7 6 0.428 0.618
4 0.9345 0.9506 1.027 8 7 0.989 0.54010 0.9049 0.9510 1.047 9 8 2.379 0.42940 0.7148 0.9568 1.044 10 9 6.411 0.315
100 0.3645 0.9343 0.9894 22 18 19.934 0.174500 0.0914 0.8830 0.9675 25 17 30.424 0.039
00 0.1192 0.8883 0.9338 27 12 77.440 0.

Table 4 
.

Evaluations of Final Value of
G C' IG(,(o)lI 116(o.lI -'

00 19 9 1.8702 0..01 18 7 0.0005 0.03993.1 12 7 0.0016 0.00482
1. 5 4 0.0018 0.00006

• , ",- -
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