AD-A164 338 PROCEEDINGS OF THE ﬂIlUﬁL NATIONAL CONFERENCE ON ADA
CTRADEMARK) TECHNOLO. . RN
gﬂNUNlCRTIONS-ELECTRONICS CONNAND FORT HONHOUEH N;

UNCLASSIFIED

— o AT AT IR P T f . . AR A LR AR, _—
M‘M\N.\-t\. ”N Ts.\-\na\ -s\ un\ [. . . g ’ Ve .\0\-!-- T, %.-. [NTNR --- v 4 ‘ AN ..'\..\”u..“\.“n -&
\\\. ...aq\ g ..-\ n-n_- .-. .-\J-ﬂ- \f\ v . - P ; / _) ‘A e e .-.

et ea”

SN LIPS IO Dot Nt T P DB S B UARP RN BT -

EEFE,
HEEF

m—mm-m.._uuu.m

-

et e
'.4
 m——
——
——
—
——

SATIONAL BURTAIY OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART

X =t
” - N — 5
Y o .
[SS———— S—— —
h,q . S S———— E———
y —_— —e= =
. v
i
!
i
A
L ..e
¢ o
nh' bn
. 1 --
34 h
..J —-4'
s >
B X7
4 ..M :
I3
4 5
. & .
..c& e »

0

Wy

5!
.

.
. L
5
h "~
, b} [(PRSI M M N J’}‘

- — - e e e . P R . RIS foe . et e TE % % L . 1 Loy e Tl PR TR Y MR W) [.

OO i L el] QNS <% YN ...N-.. .‘«...\. e .-m ey 4 b .-\n.ﬂ-. ..-\. A I A S T ERERTRTR “..s.-... DA Sy A A '-n. .

2 Proceedings of the
_~ 3rd Annual National Conference on

= ® Ada Technology

March 20,21,1985 ___ o
DTIC

ELETTE
xoV0T 3G
i This ‘d-c’/\ ;’:1"“ ’Ejfsoﬁﬁ‘faﬁf Bis \ FEB7 we8
£ pb‘*\ TRt itnd
498 A
SPONSORED BY U.S. ARMY CENTER FOR TACTICAL COMPUTER SYSTEMS

FORT MONMOUTH, NEW JERSEY
Host College — Prairie View A&M University, Prairie View, TX

® Ada is a registered trademark of the U.S. Government, Ada Joint Program Office (AJPO) ™

L RNEA RIS RERIUEY B o 28 AE ST A RS ApracEr i hd A AT AT AT ST) R SR T YT SRR Y ..
.:- .'-.-.‘ ,_-I.' \'-'.’..’sc ~l;;f 0'.'}_.;{' Cd .‘f., . -'.’\‘.\’ﬁr ‘ . . '+ T, o \' ¥

......

R R AL

S DA N R N e v o s o
AT Yatipd it . Min A o= PR AN A e WS P P A A il ey

PROCEEDINGS OF
3RD ANNUAL NATIONAL CONFERENCE ON
Ada® TECHNOLOGY

Sponsored By
U.S. Army Center for Tactical Computer Systems
(CENTACS) Fort Monmouth, New Jersey

Host College
Prairie View A&M University
Prairie View, Texas

Hyatt Regency Houston
Houston, Texas
March 20-21, 1985

Approved for Public Release: Distribution Unlimited

®Ada is a registered trademark of the U.S. Government, Ada Joint Program Office (AJPO)

g e .

’ [
e e
b e e

ARTE A R
AAIA
'l’ 'a' 'rr.:' .r' .:, 'r

Hv..—\'—‘-v

K ORI
" . SOOI
St AP

. .."..".._P Y
s

3rd Annual National Conference on Ada Technology

CONFERENCE COMMITTEE

Elmer F. Godwin, Director, GEF Associates (201) 741-8864
Melissa Herrera, Assistant, U.S. Army CECOM (201) 544-2980
Michael Danko, RCA, Morristown, N.J.

Frank T. Hawkins, Prairie View A&M University, Prairie View, TX.
Charlene Hayden, GTE Communication Systems Div., Needham, MA.
Arthur M. Jones, Morehouse College, Atlanta, GA.

Joseph E. Kernan, U.S. Army CECOM, Ft. Monmouth, N.J.

Kurth Krause, Intermetrics, Inc., Huntington Beach, CA.
Benjamin Martin, Atlanta University, Atlanta, GA.

Isabel Muennichow, TRW, Redondo Beach, CA.

W. M. Murray, General Dynamics, DSD, St. Louis, MO.

Serge Paul-Emile, Digital Equipment Corp., Concord, MA.

John W. Roberts, The BDM Corp., Norfolk, VA.

Richard Simpson, SOFTECH, Inc., Waltham, MA.

Joan Sterling, Hampton Institute, Hampton, VA.

Ken Taormina, Teledyne Brown, Tinton Falls, N.J.

Paul Wolfgang, Computer Science Corp., Moorestown, N.J.

_—

"~ TECHNICAL SESSIONS — —
Wednesday, March 20, 1985

9:00 am Session | <) Panel Dlscusslon—Technology Sharing and Standardization

vs Profitability: Are the Two Compatible"'~
2:00 pm Session Il - 2) Ada Education: Strategies and Heunstics
2:00 pm Session il * 3)Ada Program Support, Tools and Techmques)

Thursday, March 21, 1985
9:00 am Session |l Continued~Ada Education: Strategies and Heuristics
9:00 am Session V - #) Ada Methodology: Strategies and Techniques; -
10:00 am Session |V s')Ada Research: New Dimensions, New Directions
2:30 pm Session Vi ¢)Ada Project Management: Decision Support I d
2:30 pm Session VIl < =) Ada Applucatlons Implementation issues and Pro;ect Results , 5
- oy, T T
- N B ipres 2w /«_: /" AJNJ; P ISR TT A)-7‘ oo
PAPERS 7 :

Request for individual copies of papers should be addressed to the authors.

- Z—a,/h‘.;f'— "/44—./; B
Responsibility for the contents included in each paper rests upon the authors and not the Conference
Sponsor. After the Conference, all the publication rights of each paper are reserved by their authors, and
requests for republication of a paper should be addressed to the appropriate author. Abstracting is permit-
ted, and it would be appreciated if the Conference is credited when abstracts or papers are republished.

S f
v X
t'--

LS

\.-

\-n

n

a

L i e PN A DArad . . A A A 4 A T W T N e Y e N N Ty o o W o o W W TN v v -

MESSAGE FROM DIRECTOR

On behalf of the sponsor, the U.S. Army Center for Tactical Computer
Systems (CENTACS), the conference committee, and the host college, Prairie
View A&M University, welcome to the 3rd Annual National Conference on Ada
Technology. In general, last year's conference was considered a success,
with an attendance of over 240, which included representatives from 32
colleges, 18 government agencies, and 58 U.S. companies.

The Committee is quite pleased and excited over this year's technical
program, which includes a tutorial session, and six technical sessions. The
tutorial session, "Technology Sharing and Standardization vs Profitability:
Are the Two Compatible?," with its distinguished panel members should be of
extreme interest to many attendees in view of the trend toward the use and
introduction of Ada into new design, management, and engineering practices,

This annual conference provides the format and the opportunity to fuse
together many disciplines that are considered essential for promoting and
accelerating the distribution of Ada knowledge, from the realm of the software
technologist to the realm of the system engineer and the software practitioner,

The 4th Annual National Conference on Ada Technology (1986) will be
held at the Hyatt Regency Hotel, Atlanta, Georgia on the 19th and 20th of
March 1986, The host college will be Atlanta University, Atlanta, Georgia.

The committee solicits the support of all members of the Ada family. The
future success of the conference will depend upon the continued support provided
by many individual organizations, government agencies, and participating colleges.
Your comments and suggestions for improving the conference are welcomed.

W PC0

mer F. Godwin
Director, Ada Conference

iii

R AN

N, LA

<
N

A gl ~ XN

[t

e

Proceedings 2.
\.-.::) 'J“:

Bound—Available at Fort Monmouth

3rd Annual National Conference on Ada Technology
1st-3rd copy—$20.00 each; 4th-10th copy—$15.00 each; 11th copy and above—$10.00 each

Make check or bank draft payable in U.S. dollars to the Annual National Conference on Ada Technology
and forward request to:

Annual National Conference on Ada Technology

U.S. Army Communications-Electronics Command

ATTN: AMSEL-TCS-SA (M. Herrera)

Ft. Monmouth, New Jersey 07703

Photocopies—Available at Department of Commerce. Information on prices and shipping charges should
be requested from the:

U.S. Department of Commerce
National Technical Information Service
Springfield, Virginia 22151
USA
Include titie, year, and AD Number;
2nd Annual Conference on Ada Technology 1984 -AD A142403.

v

W5

-"o

,,7,
”

+ ‘s
Y YT

2 e

/.

2"
.."l

2l
AR
PN RN

r')','
[.

.. '.
’é’,/". "
111'/',
el

=
[

o
.fi’l]‘

y e e e e
O ' AL

. . .
R

Fr e e ot

P A MR I N AR

R R T R P IIw ey

Highlights of
the 2nd Annual National Conference on Ada Technology
March 27-28, 1984
Sheraton Inn/Holiday Inn
Hampton, Virgina

Greetings

S

Mr. James E. Schell, U.S. Army, Director Dr. Martha Dawson, Vice President of Dr. Hugh M. Gloster, President of

of CENTACS, Ft. Monmouth, NJ, Academic Affairs, Hampton Institute Morehouse College, Atianta, GA

Sponsor {Host College), Hampton, VA

Guest speakers from government, academia, and industry

Dr. Mark Epstein, Office of the Asst. Dr. Percy A. Pierre, President, Prairie Dr. Jean Ichbiah, President, Directeur
Secretary of the Army (RDA), View A&M University, Prairie View, TX General, ALSYS Inc., France
Washington, DC
GOVERNMENT ACADEMIA INDUSTRY
Banquet Guest Speaker Luncheon Guest Speakers

Monorable Dr. J. R. Sculley, Assistant Lieutenant General Emmett G. Paige, Jr., Brigadier General Alan Salisbury, Com-
Secretary of the Army, Research, Commanding General, USA Information manding General, US Army Information
Development, and Acquisition Systems Command, Ft. Huachuca, A2 Systems, Software Support Command,

Ft. Belvoir, VA

LS e, et L, R - A . B . R
BN PRIA . e et . RIS e o T e T T e

o’ . .
P A AT LA LS
PR S TR T

LA T T e St l Bt Jh el Jate S Lmaeauapes

oA Lt A0 L O SAaC MR Sl SEhd Jnf

““““““ M ek cul s on ook e

CONTRIBUTORS

General Research
McLean, Virginia

Intermetrics, Inc.
Huntington Beach, California

SOFTECH, Inc.
Waltham, Massachusetts

TRW Electronics & Defense Sector
Redondo Beach, California

1,

[
R T

e}
.l .I " I

s .

TABLE OF CONTENTS

WEDNESDAY, MARCH 20, 1985—9:00 AM-12:00 N

Imperial Room - East - Hyatt Regency

Greetings:

Mr. James E. Schell, Director, CENTACS

US Army Communications-Electronics Com-
mand, Fort Monmouth, N.J.

Dr. Percy A. Pierre, President

Prairie View A&M University, Prairie View, Texas

Dr. Hugh M. Gloster, President, Morehouse Col-
lege, Atlanta, Georgia

SESSION I: TECHNOLOGY SHARING AND STAN-
DARDIZATION vs PROFITABILITY:
ARE THE TWO COMPATIBLE?

Chairperson: Kenneth C. Taormina, Teledyne
8rown Engineering, Tinton Falls,
N.J.

Panel Members:

Dr. Barry Boehm, Manager of Advanced
Technology, TRW, Redondo Beach,
California.

Dr. Harland Mills, IBM Fellow, IBM, Bethesda,
Maryland.

Dr. Robert Mathis, Director, STARS, Joint Pro-
gram Office, Washington, D.C.

Dr. Lasio Belady, Vice President, Microelectric
& Computer Technology Corp., Austin,
Texas.

WEDNESDAY, MARCH 20, 1985—2:00-5:00 PM

Imperial Room East

SESSION II: ADA EDUCTION: STRATEGIES AND
HEURISTICS

Chairperson. Dr. Frank Hawkins, Prairie View
A&M University, Prairie View, TX

Two Open-Ended Case Studies for Ada
Training A Real-Time Process Monitor and
an Airlines Reservations System—P. Gold-
stein, P. Caverly, and M. Aabdollah, Jersey
City State College, Jersey City, NJ........ 1
Ada as a Primary Language in a Large
University Environment—H. Evans, W.
Greene, J. Nifio, W. Patterson, D. Rudd, and
J. Thomas, University of New Orleans, New
Orleans, LA......... 7
Teaching Ada from a Conceptual View-
point—J. J. Buoni and E. S. Santos,
Youngstown State University, Youngstown,
OH .. e 14
Ada and the Business School Cur-
riculum—D. M. Fisher, Hofstra University,
Hempstead, NY........................ 18

Academic Implications of Ada in In-
dustry—J. M. Sterling, Hampton University,
Hampton, VA 22
QUEUE-MANAGER, a Useful Example for
Teaching Ada—D. Rudd, University of New
Orleans, New Orleans, LA. 30
Modelling Ada Tasks—An Initial Survey—
M. Gagliardi and R. Blasewitz, RCA,
Moorestown,NJ........................ 33
Ada Summer Seminar—Teaching the
Teachers—M. S. Richman, The Penn-
sylvania State University, Middletown, PA, J.
M. Shoaf, North Carolina Central University,
Durham, NC, and D. C. Fuhr, Tuskegee In-
stitute, Tuskegee, AL............... 58

Regency Room, Second Floor

SESSION Iif: ADA PROGRAM SUPPORT; TOOLS
AND TECHNIQUES

Chairperson: Charlene Hayden, GTE Products
Corp., Needham, MA.

Some Practical Experience in the Organiza-
tion of a Library of Reusable Ada Units—R.
Leavitt, Prior Data Sciences, Ltd., Nepean,
ontario i i e 68
Debugging Ada Tasking Programs—R. A.
Conti, Digital Equipment Corp., Nashua, NH 72
The Ada Language System—D. J. Turner,
CENTACS, CECOM, Ft. Monmouth,NJ. 82
Ada Implementation in a Non-Ada Environ-
ment—J. C. Helm and T. E. Cook, Ford
Aerospace & Comm. Corp., Houston, TX... 87
General Dynamics Ada-Based Design
Language—T. S. Radi, General Dynamics,
Pomona, CA.......... i, 92
IBM-PC Based Ada Symbolic Debugger—D.
W. Lyttle, Rockwell Int'l/Collins Avionics
Div., Cedar Rapids, lA................... 99

THURSDAY, MARCH 21, 1985—9:00AM-12:00 N

Imperial Room East

SESSION IV: ADA RESEARCH: NEW
DIMENSIONS-NEW DIRECTIONS

Chairperson. Dr. Benjamin Martin, Atlanta Univer-
sity, Atlanta, Georgia

Parallel Parsing Using Ada—W. H. Carlisle
and D. K. Friesen, Texas A&M University,
College Station, TX..................... 103

T W T— " -

A Dynamic Program Profiler for Testing Ada
Programs—A. K. Sahai, Plymouth State Col-

lege, Plymouth, NH..................... 107
An Ada Distributed System—Y. J. Inn and M.
Rosenberg, TRW (ESL), Sunnyvale, CA. 115

An Abstract Machine Specification for the
Process Node Section of the Common APSE
Interface Set (CAIS)—C. S. Srivastava and T.
E Lindquist, Virginia Polytechnic Institute
and State University, Blacksburg, VA.. 123

Imperial Room West

SESSION V: ADA METHODOLOGY: STRATEGIES
AND TECHNIQUES

Chairperson: Paul Wolfgang, Computer Science
Corp., Moorestown, NJ

Ada as Output from Software CAD
Systems—T. A. Mizell and H. S. Osborne,
Teledyne Brown Engineering, Huntsville, AL 129
Reusable Generic Packages—Design
Guidelines Based on Structural Isomor-
phism—M. Mac an Airchinnigh, Generics
(Software) Limited, Foxrock, Dublin, Ireland. 132
The Use of Adain implementing a Rapid Pro-
totyping System—G. M. Pollock and S.
Shepard, Dept. of Computer Science, Texas
A&M University, College Station, TX..... .. 145
Analytical Approach to Software Reusabili-
ty—D. G. Whinery, Ford Aerospace &
Comm. Corp., Houston, TX, and G. H.
Barber, Intermetrics, Inc., Houston, TX. 153
The Marriage of Ada and an Adaptable
Multiprocessor Architecture—D. Malek and
G. Mcintire, Ford Aerospace & Comm. Corp.,
Houston, TX. 160
VHSIC Hardwre Description System Over-
view—A. S. Gilman, Intermetrics, Inc,,
Bethesda, MD.......... 168

THURSDAY, MARCH 21, 1985—2:30-5:30 PM

imperial Room East

SESSION VI: ADA PROJECT MANAGEMENT:
DECISION SUPPORT

Chairperson: Joseph E. Kernan, CENTACS,
Ft. Monmouth, NJ

Software Quality Assurance and Ada—B.
Brocka, U.S. Army Mgt. Eng. Training Activi-
ty, Rock Island Arsenal, Rock Island, IL.... 173
Software Management Control System—AR.
J. McGlynn, CENTACS, CECOM, Ft. Mon-
mouth, NJ...... i 178
An Ada Measurement and Analysis Tool—S.
E. Keller and J. A. Perkins, Dynamics
Research Corporation, Wilmington, MA. ... 188
Transitioning to Ada: The Challenge for Soft-
ware Engineering—T. J. Walsh, Teledyne
Brown Engineering, Tinton Falls, NJ. 197

Imperial Room West

SESSION VII: ADA APPLICATIONS: IMPLEMEN-
TATION ISSUES AND PROJECT
RESULTS

Chairperson: Kurth Krause, Intermetrics, Inc.,
Huntington Beach, CA

Development of an Embedded Computer
System (ECS) Application in Ada—A Case
Study—R. Rathgeber and B. Burton, In-
termetrics, Inc., Huntington Beach,CA. 211
Implementing Watch Dog Timers in Ada for
Tolerance to Certain Classes of Real Time
Faults—C. Wild, Dept. of Computer Science,
Oid Dominion University, Norfolk, VA 217
Why not UNIX? The Case for the Army
Secure Operating System—E. R. Anderson
and R. M. Hart, TRW Defense Systems
Group, Redondo Beach, CA.............. 225
Integrating Ada into Multi-Lingual Systems:
Issues and Approaches—M. J. Horton and T.
F. Payton, Systems Development Corp.,
Paoli, PA. 230
Experiences in Acquiring and Applying Ada
to the SUBACS Project—O. Cole and S.
North, OCS Systems, Inc., Alexandria, VA.. 239

[
DI

TWO OPEN ENDED CASE STUDIES FOR ADA TRAINING
A REAL-TIME PROCESS MONITOR
AND AN
AIRLINES RESERVATIONS SYSTEM

) AT A TS P N e L

Philip Goldstein, Philip Caverly, Morteza Aabdollah

-
o
Ada Technology Center
) Jersey City State College
. Abstract stated, a partial analysis is given, a
k. top~down approach to the solution is
X This paper describes two case studies developed 1in reasonable detail, and
.I that have been developed at the Jersey portions of the program are produced.
K City State College Ada Technology There is, however, no guarantee that the
- Center. The topics chosen are a Real- solution and analysis are optimal in any
R Time Monitoring System and an Airlines sense of the word. The problems are
P Reservation System. The case studies open ended, as are real world problems,
are educational in nature and are and students must provide some of their
intended as a sequel for students who own analysis and design in order to
have taken the Introductory Professional complete the case studies. The problems
Level Ada Course developed earlier by may also be extended in various ways,
the Center. Both efforts were supported and students are encouraged to develop
by the CENTACS division of Fort Monmouth. extensions of their own. The specific

topics for the case studies were chosen
because they are typical of the kinds of
projects Ada programmers will be working
on, and because tasking is used in both
studies. Students who complete the case
studies will have gained some
significant insights on how real
problems are solved.

General
Introduction
Case studies are important educational
This work was undertaken as part of a tools because they give students some
contract awarded by CENTACS, Fort insight into real situations. There are
- . Monmouth to the Ada Technology Center at two aspects to every case study: (1) The
;. Jersey City State College to continue analysis of the real problem that has to
" the development of earlier curriculum be solved; (2} The synthesis and design
L material developed at the Center. Under of the solution.
. a previous contract with CENTACS, the In doing the analysis, students must
- Center developed two introductory Ada decide what 1is important, what is
® courses designed to introduce secondary, what can be ignored on a
- programmers to Ada. One of these first cut. A methodology needs to be
- courses, called the Professional Course, chosen for the design phase of the case
- was designed for engineers, scientists studies. Ada supports many different
:, and advanced level programmers. The methodologies such as SADT, SREM,
project reported here involves the Parna's Method, the Jackson Method and
development of two case studies as Object Oriented Design. These are
extensions of the Professional Course. explored for possible use in the design,
The purpose is not to provide complete There are a wealth of practical
programs and documentation, but rather applications using the above
to develop a practical and theoretical methodologies in the General
framework with which students could Dynamics/Softec Case Studies Report
apply the principles of software using Ada Software Design Methods
engineering in setting up, analyzing and Formulation(1i).
solving the problems. The specific
problems chosen are a Real=-Time Next, a method for analyzing the design
Monitoring System and an Airlines of each case study is required. Each
Reservations System. The problems are case study makes use of concurrent

Annual National Conference on Ada Technology 1985 1

processes and thus involves Ada's
tasking facilities. Several methods are
being studied. One method uses finite
state machines to analyze concurrent
processes. An application of finite
state machines in this area is given in
reference (2). Petri Net theory can also
be used to analyse concurrent processes.
It is important that the student
developing the case studies be able to
take full advantage of the software
engineering tools supported by Ada and
not rely on 1limited experience in
dealing with concurrency.

Real-Time Process Monitoring System

This problem was chosen because process
monitoring and control is a key feature
of most embedded systems and of many
laboratory computer applications. It is
thus important for students to obtain
some exposure to this field. The
student objectives for this case study
include:

(1) To become familiar with
important concepts in
real-time process management.

To understand the need for
tasking in this application.

(3) To develop requirements for the
system.

(4) To implement a system in Ada.

This problem is approached at different
levels of complexity. At its most basic
level, a general purpose monitoring
system(GPS) will, at regular time
intervals, sample the value of some
physical quantities. Sensors are used
to transduce the value of the physical
quantity to a voltage, which 1is then
measured by an Analog to Digital
Converter (ADC). Often, the GPS will log
the data acquired onto a log device (a
recorder or a file), and it can be setup
so that a measured value falling outside
of preset limits will sound an alarm.
For simplicity we initially assume that
only one physical quantity is being
measured and that this quantity is
temperature. The student is to develop a
program that does the following:

1. Read the temperature sensor at
reqular time intervals and
place the data and the time
at which it was collected
into a file.

a. If a dangerous condition
arises (temperature out of
bounds) an alarm must sound.

2 Annual National Conference on Ada Technology 1985

b. If the sensor malfunctions
(fails to report), an alarm
must sound.

Permit entry of commands from
the terminal. Typical commands
might be:
a. Quit (Shut down system).
b. Display most recent
measurements.
Display measurement history.
Temporarily disable system.
Change interval between
measurements.
Sound alarm.

In developing a strategy for solving
this problem, the student will note that
tasking is required; a sequential
program cannot be used. One reason is
that when a program unit performs an
input operation (GET from terminal), that
unit suspends and cannot perform any
other activities until the input request
is satisfied. Having thus decided to
use tasking, the student must then
decide on what tasks are needed and how
they should communicate with each other.
First, we need a TERMINAL IO task to
permit communication between user and
system. It is also clear that we need a
MEASUREMENT_TASK to interrogate the
temperature sensor. Since this is to be
done at reqular intervals, a timer task
is needed to "wake up" the measurement
task. Also needed are a task({s) to log
acquired data to the log file and also
to read data from this file, In order
to simplify communication between
tasks, most tasks communicate only with
a COORDINATOR task. (Students are asked
to consider alternate approaches to the
use of the COORDINATOR task). A
simplified block diagram showing the
tasks and communication channels is
given in Figure 1.

Since writing of code is the last step
in the process, students must clearly
indicate the ©purposes of each task.
First, they set up a table such as shown
in Figure 2 which provides a brief set
of the requirements of every task.
Next, they set up a detailed
specification sheet for each task such
as shown in Figure 3 for task
MEASUREMENT_TASK where the parameters
and purpose of each enty are specified.
Next, students begin to write Ada code
for the tasks. Figure 4 shows a first
stab at coding the measurement task. At
this stage it is not intended to be
executable code. Note that the task
contains a SHUT DOWN entry so that it
can terminate 1In an orderly fashion.
Here, when the SHUT_DOWN entry is
invoked, it causes an exit from the loop
so that the task reaches its end

statement. Notice also that the task
contains a call to a procedure called
MEASURE_TEMP which we assume is
available on the system either as a
separate compilation unit or is in an
appropriate package. In our environment
using Ada/Ed on a VAX we did not have
any access to actual interface equipment
Or Sensors. Hence the student has to
simulate the external environment in
some manner, possibly by storing the
data in a file,

Testing of the program to see that it is
"bug free" and does what it is supposed
to 1s an 1mportant part of the case
study. Students must develop strategies
for determinig that the program works
properly, although complete checking may
not be possible.

The case study can be extended in
various ways. For example, there might
be more than one temperature sensor, or
there might be a set of different types
sensors, or some element of control of
some extcrnal device could also be
included.

Airline Reservations System

The design of an airline reservation
system requires that students design a
data base and solve the passenger list
update problem. The data base structure
is related to the type of searches and
updates that can be made by the
reservations agent, A reservations
agent should be able to:

(1) Determine if one can go from
CityA to CityB.

(2) Determine if there are seats on
Flight XXX on date YYY.

(3) Add passengers to Flight XXX.

{4) Delete passengers from Flight
XXX.

Files should be structured so that file
searches can be minimized.

The passenger 1list update problem is
illustrated by the following situation.
On behalf of a customer, reservations
ag- . ¢ RA1l looks up seat availability on
Flight 937 and learns that there is one

seat left, While RAl's customer |is
mulling things over, another
reservations agent, RA2, requests a seat
on Flight 937. How should this

situation be handled? If the program
does not enforce limits on seat sales,
the flight will be overbooked. On the
other hand, suppose the program holds
off RA2's request until RAl either

reserves a seat or decides to cancel his
request? What happens if RAl goes to
lunch and forgets to close out his
request? Is RA2 to be left waiting
indefinitely? Clearly these situations
need to be addressed.

Student objectives for these case
studies include:

(1) To develop requirements for
the system - what can the
reservations agent do?

(2) To design the database.
(3) To design the required tasks.
{4) To implement a system in Ada.

Here also, the problem can be approached
in different levels of complexity.
First, we might consider that there is
only one reservations agent, but this is
too simplistic. Hence, we consider two
reservations agents as the minimum
number. Ideally, each agent should use
a different terminal, but it 1is also
possible to run the systems using one
terminal and simulate two agents.
Initially, we <can limit all flights to
the same day. Further complexity can be
introduced by:

1. Allowing managerial personnel to
cancel flights.

2. Storing flight information and
passenger lists for more
than one day.

Designing the Front End Task

A front end task is required to service
each terminal. The front end task
acquires input from the reservations
agent, and if a legal request has been
input, the request is then dispatched to
another task that will then perform the
requisite action. The student must
consider whether to make the front end
command driven or menu driven.

Summary

The case studies will help the student
bridge the gap between small text book
programs and real world problems. The
topics chosen for the case studies are
representative of the type that will be
encountered in an industrial enviroment,
but are specified at a level that the
student can model and simulate in Ada

using modern software engineering
techniques: methodologies, methods of
analysis, charts, diagrams and

mathematical analysis.

Annual National Conference on Ada Technology 1985 3

4.

l:l""'} I' ’

-

.

-

s
I

»

4

. s,

-
-
-
-

A
v Ay T Ty e e

.

References

{1) D.L. Parnas. "On the criteria to
be used in decomposing systems into
modules." Technical Report,
Department of Computer Science,
Crnegie-Mellon University.
Pittsburg, PA., 1971.

M.A. Jackson. "Principles of
Program Design." Academic Press.
1975.

G. Booch. "Software Engineering
with Ada."” Benjamin/Cummings. 1983.

E. Yourdan and L. Constantine.
"Structured Design: Fundamentals of
a Discipline of Computer Program
and System Design.” Prentice-Hall.
1979.

"An Introduction to SADT (TM) ."
Softec Inc. Walthan, MA. Document
9022-78, Feb 1976.

(2) R.J.A. Buhr, "System Design with
Ada." Prentice-Hall. 1984.

Biographies

Philip W. Caverly is Professor and
Chairman of the Computer Science
Department at Jersey City State College,
and Director of the Ada Technology
Center at the College. He is responsible
for Ada activities and contracts at the
Center, and teaches courses in software
engineering and Ada. Dr. Caverly has
been a consultant for the Federal
Government and private industry in Ada
related fields.

Caverly received his BS in Applied
Mathematics from Stevens Institute of
Technology and his PhD in Scientific
Computing from New York University. He
is a member of ACM, IEEE and SIAM.

Address: Computer Science Department
Jersey City State College
Jersey City, NJ 07305

Philip Goldstein 1is Professor of
Computer Science at Jersey City State
College, and a member of the Ada
Technology Center at the College. He
teaches courses in microcomputers,
Computer Organization and Computer
Graphics. He has extensive experience in
the use and development of real-time
systems for medical applications, and
has a number of publications in this
field. He has also developed programs
for use in physics courses. He has a BS

4 Annual National Conference on Ada Technology 1985

in Physics from City College of New
York, and an MS and PhD in Physics from
Carnegie-Mellon University. He 1is a
member of IEEE, IEEE Computer Society
and AAPT.

Address: Computer Science Department
Jersey City State College
Jersey City, NJ 07305

Mr. Aabdollah is President of M & M
Computer Systems Consulting Inc., a
company specializing in consulting
services to the utility industry in the
area of design, specialization, and
implementation of real-time computer
based systems.

Mr. Aabdollah has held Technical,
Supervisory and Project Management
positions in the area of real-time
Control systems for the past 16 years.

Address: Computer Science Department
Jersey City State College
Jersey City, NJ 07305

0,0,
s
r'a Y

‘l
s
’

€ -
0

FILE

-, Q FILE_ ACCESS TASK
-

5 !
/

MEASUREMENT _TASK

" COORDINATOR SENSOR
: TERMINAL <« —
TASK
J \:
- TERMINAL TIMER
d I/0 TASK TASK

. -=- Figure 1 =~-

; Task Name Purposes

- TERMINAL_10 1. To intercept keyboard entries and

determine their validity. valid
keyboard commands are sent to the
coordinator task for further
processing.

. 2. Print messages.

o COORDINATOR To coordinate the activities of the other
tasks. In case of sensor malfunction or
dangerous condition, sounds alarm.

MEASUREMENT_TASK To obtain the data from the ADC (measure
the temp) and send the data to
COORDINATOR task. This task 1is normally
suspended.

TIMER Makes an entry call to MEASUREMENT_TASK
at regular intervals.

FILE _ACCESS To send and receive data from the disk

file.

N 2 R SN e e

-- Figure 2 -~

'
0
.
'
ke
-

Annual National Conference on Ada Technology 1985 5

o
.;i Task Name: MEASUREMENT_TASK

A Requirements: To obtain data from the ADC (measure the temp) and send the
b data to COORDINATOR task. This task is normaly suspended.

%

»

P I T

Entry Name Purpose Parameter
(name, mode, type)

Do NP AN

WAKE_UP Causes this task to None
obtain a temperature
value from the ADC.

NS Then the time |is

’ obtained and this

)

(d

RS data is sent to the
L COORDINATOR task.*

SHUT_DOWN Results in normal None
termination of this
task.

o * We shall assume that this task calls a procedure named MEASURE_TEMP
K which reads the voltage signal produced by the ADC and then converts
L. it to a temperature value. The details would be system dependent and need
not concern us.

Aom
. -=- Figure 3 --
P task MEASUREMENT_TASK is --First version not intended to

i entry WAKE_UP; --be compilable code.
-;_ entry SHUT_DOWN;
- end MEASUREMENT_TASK;
I-;_— task body MEASUREMENT TASK is

. TEMP : TEMPERATURE; --Global type

DATE : TIME;

:f begin
= loop
- select
A accept WAKE_UP do

: MEASURE_TEMP (TEMP);

DATE := CLOCK; --Get current time.
— - COORDINATOR.GET_MEASURED_DATA (TEMP,DATE) ;
. --This is an entry call to coordinator.
end WAKE_UP;

} or
. accept SHUT_DOWN do
o exit;

. end SHUT_DOWN;

end select;

i end loop;
- end MEASUREMENT TASK;
.
.. -- Figqure 4 -~

6 Annual National Conference on Ada Technology 1985

ADA AS A PRIMARY LANGUAGE
IN A LARGE UNIVERSITY ENVIRONMENT

B. Bvans, W. A. Greene,). Nifio, W. Patterson, D, Rudd &). Thomas

The Ada Implementation Group at the University of New Orleans
Department of Computer Science, University of New Orfeans
New Orleans, LA

ABSTRACT: Ada has been implemented as the
primary teaching and programming lenguage in
the Department of Computer Science ot the
University of New Orieans. The UNO Ade
Implementetion Group eddresses o number of
issues involved in fide implomentation in 8 large

university environment, including the
differences brought ebout in intreductery
courses through the use of Ade.

INTRODUCTION

This paper will be divided inte four parts:

(a) Resuits of the implementation of Ade as

the primery programming language in the first
Computer Science course;

(b) Curriculum development and modification
using Ada as the primary programming lenguage
in the second Computer Science course;

(c) Current use of fide in other Computer
Sclience courses;

(d) Proposed use of fde in other Computer
Science courses.

AESULTS OF THE YMPLEMENTATION OF ADA INCS1

The University of New Srisens (UNO) is on @
semester system, with mest Computer Science
courses having three hours of lecture per week,
ond offering three credits to the student.

In fugust eof 1984, CSCI 1583 waes
implemented at UNS, a course whese catsleg
description is as follews [UNGS4):

£SCl 1583 - [ntreduction to Comsuter
Science. An Introduction to computer science
ond programming using & precedure-eriented
language. Emphasizes elgorithm design,
verification, and sneiysis. Intended primarily
fer computer science majors. (Preroquisites:
Concurrent registration in Celculus or
Discrete Structwes.)

This course in considerad by us te be the
oquivalent of the (S| course prepesed In
(Rust79] end indeed to heve mest of the
features of the revised CSt praposal in [Xof184).

The course is directed tewerds students
intending to major In Computer Sclence, and
students maejoring in other fields sre normally
directed towerds ocae of the ether enftry-fevel
courses; however, students majoring in other
disciplines may aise onrel in CSC) 1583 if they se
chesse.

Because the ceurse is directed te Computer
Sclonce ma jors, there is an attempt te teach the
introductory material in @ mere profound wey.

Feur sectisns of the course were sffered (by
four of the authers of this article) te mere then
120 students in the Fell 1904 Semester. (Four
sections ore alse being offered in the Spring
Semestor.) The tentbosk used is [Prico4).

The university computing facilities consist of a
UAN 11-7808 cluster with fewr precessers;
however, in the Fell 1984 Semester, an Nda
complier (Telesoft Rde Version 1.3 fer UMS)

Annual National Conference on Ada Technology 1985 7

{Teie83] was present on only ene host; end, for
ol intents and purposes, the student users were
physicelly cennected to that host and the
system served the users as theugh It were a
single stend-elone precessor.

fi concem enpressed frequentiy prier te the
baginning of the semester by vericus members
of our team wes whether or not the system
would be capable of hendling the demand on
resources imposed on It --- for, in addition to
the student use of Ada, most other Computer
Science courses requiring significant amounts of
progremming (typicelly in Pascel, FORTRAN 77,
ond URN-11 Assembler) used the same processor.

AR four sections of CSCI 1583 were viewed by
the Department of Computer Science and AIGUNO
as experimentel; consequently, there wes en
ellowence made for varistion in the choice of
topics teught in the ceurse.

It should be pointed out thet, in previous
yeers, the intreductory Computer Science course
at UNO was taught using Pascel as a primery
language. Consequently, in most cases, the
sylisbus fer the previeus introductory course
wes used os o sterting peint.

SYNTHESIZED CSCI 1583 TOPICS

The Computer and Its Components
Memory - How Types Are Represented
Types in @ Nigh-Level Lenguage (The Ade
Philosophy)

Eupressions and Assignments
Date Types Are Gbjects and Meanipulation of
Objects
Control Statements: if, case (plus short circuit)
Loops: Conditional Loop
Middie Enit Leap
Oefinite Loop (for)

Subprograms : procedures, functions
introduction te a Class of Probiems Rdaptebie to
Recursion
frrays (Uni- and Multi-Dimensional) ---
Uncenstrsined
fecords (net varient recerds)
Subtypes and Derived Types

8 Annual National Conference on Ada Technology 1985

Enumeration
Overicading

The structure of Ads seems 1o encourege the
presentatien of certeain of these topics from a
more profound perspective then previously. As
an snample, Ia our previous courses, discussien
of 1-0 wes limited te line-orionted (-0, and Ada
forced us inte o discussion of stream-oriented
1-0, end the cverioading of the get end put
operations. Both discussions seomed teo be
well-received by students, thus leading te o
more sophisticeted understanding of 1-0 at this
fevel.

As & second example, Rda seoms te demystify
the concept of a subprogram. Heving im, ost,
and in out clarifies considersbly the reles of
parameters, and the entire discussion of “cell by
velue® and “call by reference” cen be, and wes,
emitted.

A third example erises in the teaching ef
arrays. The fAde view of arrey types as bdeing
intrinsicelly unconstrained, with the flned range
of positions declered with the verieble. This
seemed to provide a significant adventege in the
understending of arreys es compared te the
comparable subject matter teught using Pascel.

One of the projected benefits of Rda is the
consistency that the language impeses because
of its early standerdization. Consequently, we
asked ourseives whether or net differences
between the lenguage sad the complier ferced
us into any “patchwork” in the course.

Three instences were reperted ameng the four
soeclions of the course:

1. Direct conwversion between long imteger
ond float types was net supported;

2. There was ne pregrem librery;
5. Enumerated 1-0 was not supperted.

fis mentioned shove, concern was sipressed
prier 1o the beginning of the semester about the
likelihoed of system fellure beceuse of the
demand on resources impesed by 30 meny fide
users.

la generel, this did not become a preblem. fide
compiles on our system were typicelly much
siower than Pascal compiles, fer enemple, but
the difference did not scem te bother students.
(1t did, however, bhother some edvenced
students, as will be neted (ater.)

System fallure couid be treced to the Ade
complier a few times, but each time this was
traced to peculiarities in the communication
between the compiler and the spersting system,
rather than fallure because of an overiead en
the system.

Other prebioms

Uirtually ol of the other problems
encountered in the implementation of CSCI 1583
can be fraced to weaknesses of Uersien 1.3 of
the Telesoft Rda compiler.

Uersion 1.3 has now been replaced by Versien
2.1, a version certified by Telasoft aend
submitted for validation. It appeers thet mest, If
not all, of these preblems have been rescived in
Version 2.1; thus we do nol expect to
re-encounter these situations.

We are ailse of the opinion that Dersion 1.3 of
Telesoft Rde would leed to very serious
problems in the impiementation of second and
third courses in Computer Science. Thus Version
2.} would seem to be the minimel versien
required for e university environment primary

progremming lenguage.

A cetaleg of the weeknesses of Telesoft Ado
Uersion 1.3 thet ere likely to surface in an
intreductory course cem be found in [EvenSS],
thus they will not be repeated here.

......

Studont Performaace

CSC) 1583 enperienced an sversii 50% dropout
rete. This sheuld be enslyzed in the content ef
twe considerations: 1) UNO has en open
admissions policy, and students sdmitied te the
university mey freely choese their major; 2) the
predecessor course to CSCI 1583 had (and has) a
comparable dropout rate.

Conclusions

for the introductory course in Computer
Science, it is not only e ressonable proposal o
use Ade (as hes been suggested in [Ruged3) and
(Xeffe4)]), but it is feasibie in a large university
environment, using asvellable machines and
complilers. Further, the use of fAda In the
introductory course seems to leave students no
worse off, and probably better off, than similar
students studying Computer Science using
Pascal.

At UND, the second course in Computer Sclence
(CSCt 2120) has an objective the introduction ef
many seftware engineering concepts, and the
ottempt to understand threugh programming the
difference between smell and large programs.
The catalog description of the course reeds:

.

CSCL 2120 - Structwre of ARigorithms.
Prerequisites: Computer Science 1583 and
sither credit in [Discrete Structures] er
toncurrent registratien in [Discrete
Structures]l and credit In [Colculus 1). A
second course in programwming with
procedure-oriented lenguages. introduces
fundamental concepts needed for the
construction and aenalysis of effective
elgorithms, and applies these ideas te the
moduler development of large programs.

Annual National Conference on Ada Technology 1985 9

-—

Gt Y

fn outline of the actusl topics teught (using

Pascel as the pregraming languege) in Fell 1984
is et follows (queted frem e course hendeul

prepared by W, Pattersen):

“This course may be described as felling into
three ma jor divisions:

‘1. Advenced Pascal -- a study in grester
dopth of the features of the computer
programming longuage Pescal; Including such
edditional featwres as scalar types, the case
statement, records, files, sets, and pointers.

*2. A study of good pregramming technique.
This pert of the ceurse anelyzes pregram style,
design, testing, program wverificstion. Design
issues ere enamined In some deteil; top-down
structured design is studied.

3. Rigorithms -- follawing from the study of
top-down design, specific classes of elgerithms
such as recursion and backtracking are studied,
sleng with case studies of classic large-scele
problems.

"Teutbooks

“1. Stendard Pascal - User Refersnce Manuel,
Boug Cooper, W.I. Norton, 1983.

‘2. Problem Solving ® Computer Programming,
Peter Grogono @ Sheron H. Nelson,
Addison-Wesley, 1982.

‘References

°1. Pascal, Neli Dale @ David Orshalick, Neath,
1983.

°2. Pascel User Manuel and Report (2nd ed.),
Kathieen Jensen @ Nikieus Wirth, Springer, 1974,

3. Rdvanced Programmiag and Problem Seiving
With Pescel, 6.M. Schnelder @ S.C. Bruell, Wiley,
1981.

*4. The Elements of Progreamming Style, Brien

10 Annual National Conference on Ada Technology 1985

Kernighen @ P.J. Plouger, McGraw-ill, 1978.

*S. Pregram Style, Design, Efficiency, Bebugging,
end Testing, Dennie Ven Tassel, Preatice-lall,
1970."

In Spring 1985, CSCi 2120 is boing taught using
Ade. A number of medificetions te the course

content have been made possible and desirable
because of the use of Ade.

The first part of the ceurse remeins en
introductien to language features. in particuler,
veriant records, strings, poiaters, separste
cempiiation, packages, file 1-0, and tasking are
iatroduced.

The discussion of program style remeins
comparable.

The discussion eof pregrem design changes
fundementally because of the language support
for peckeges, generics, and seperale
compilation.

The development eof elgorithms, and the
discussion of program correctness is comparable
to the earlier course.

There are currently twe sectiens of CSCI 2120
taught using fda. (R third section uses Pascal,
for reasoas ef traasition and eiss to serve
majors from other disciplines vequiring en
introductory courses in Pascel.)

Thres advanced ceurses cwrrently use Ada:

CSCI 4990 is a topics course that will be
teught a number of times, during this peried of
transition. it is an advanced intreduction te Ada
for senior level Computer Science studeats. It
prevides a great deal of progremming
enperionce as well as o groater insight inte the
language than is possible in the progremming
lenguages course (where the design priaciples of

many langueges are studied).

For enample, one topic discussed, with
corvesponding programming essignments,
involved tasking --- & feature not supported in
the ather languages eveilable on our computer
system.

fAn interesting insight from a CSCI 4990
student (whose primery programming language
had been Pascel) wes the follewing: "fAde
compiies are so slow, that now | only complie as
« lost resort.”

The comment was offered as a criticism of Ada
end/or Rda compliei(s), yet It seems clear that
the end resuit waes te cause the student to be o
grest deal more careful about his design and
coding. It is not proposed that compilers should
be made deliberstely slower In order to
frustrate their use as #e 7ac/e (text editors;
nevertheless, it sesms that frequency of
compiiation shouid be considered as an issue In
the measurement of productivity in the
software life cycle.

0f course, the separate compilation (even of
specification and budy) additionally lend support
to the argument for the efficiency of Ade.

A second advenced course to use Ade is CSCi
4501, Programming Lenguage Design. in this
course, Rde is discussed only In the content of
its design principles; since many other languages
are aiso discussed, littie time is spent analyzing
fide In depth.

The third course to use Ada curveatly is CSCI
4401, Operating Systems |, where Ada enamples
heve been used to demonstrate the concepts of
readervess and tasking in operating system
design,

Annual National Conference on Ada Technology 1985 11

PROPOSED USE OF ADA IN OTHER COMPUTER SCIENCE
COURSES

Since for ali students in future years, Ade will
be their primery lenguage, Ada will prebebly be
chosen in courses where the languege of
implementation of programs Is left to the
student.

CSCt 2125, Date Structures, will be teught
using fAde, beginning next semester, as o
reference languege (which meens thet Ada
enamples will be given, but that the students
will be free to choose a language for the
impiementation of their programs).

Our senior level course in Softwere Design, is
expected to be offered in 1985-86, and will use
Rde.

Other courses that may use Ada in the future

are Deota Communcations end Networks,
Opereting Systems u, ond Systoms
Programming.

QUERALL CONCLUSIONS

At this eartly stege, It is too soon to judge the
overall success of our enperiment, however, it is
generelly feit that the level of implementation
to dete of en Ada-besed cwriculum has been
successful, end we remained optimistic
(although not in an unquelified fashion) sbout
the prognosis for the later stages of our
curticulum development and medification.

REFERENCES

{Rda 83] Reference Manual for the Ade
Programming Lenguage, United States
Department of Defense, Washington 1983,

Caf SRy et e S g e S AL Ah o se S e pan e Shte die 20~ SR SR A

[huges3] Rugenstein, Meshe, Raron AUTHORS

Tonenboum, end Geraid Weiss, Selecting o g’ -’ 'ﬁ Dr. Hovard Evans is &
Primary Progroamming Longuage for @ Computer X % Assistant Professor of
Science Curriculum: PL/I, Pascel snd fda, ACM ?,‘;13.“,‘;'., Science o‘rth:::
SIGCSE Bulletin, vel. 15, ne. 1, February 1983, <@ He received his doctorsle
148-153. from Tulsae University. His
research intorests are ia
compiler construction.

(Must?9] Rusting, Richerd W, ot al, eds,
Recommendations for the Undergraduate
Progrem In Computer Science, Communications
of the ACM, vel. 22, no. 3, March 1979, 147-166.
Dr. VWilliam Greene is so
4 Assistant Professor of
“ Computer Science at the
University of New Orleans.
-2 He received his doclorate
“B® [rom Tulane University. His
"% research interesis are in the
sres of the aaslysis of
algorithms.

{Bam84] Bammes, J.6.P., Programming in
Rds, 2nd ed., Addison-Wesley, Reading, 1984.

i (EvaneS] Evens, Howaerd, and Wayne Patterson,

; implementing Rda ss the Primery Programming
Language, ACM SIGCSE Bulletin, vol. 17, no. 1,
March 1985.

IXofr84] Koffman, Elliot B., Philip L. Miller, and

i Coroline E. Wordie, Recommended Curviculum for
CS1, 1984, Communications of the ACM, vol.
27, aa. 16, Gctober 1964, 998-1001.

Dr. Jaime Nifio is an Assistant
Professor of Computer
Science st the University of
New Orisans. He received his
doctorate from Tulln;
Unive His ressarc

[Price4] Price, Dovid, Introduction to Ade, intoress are in the aro of

Prentice-Hall, New York, 1984.

[Tele83) Telesoft-Ade Compiler User's Manual,

- Telesoft, San Diego, May 1903.
Dr. Wayne Patterson is an
Associste Professor of
Computer Science at the
University of New Orleans.
Ho received his doctorate
from the University of
Michigan. His research
interests are in the ares of
cryplography.

[UNO 84] University of New Orleans Computer
I Science Department, Curricuium in Computer
Science, New Orieans, August 1984.

University of New Orieans
New Orfeans, Louisiane
Januery 10, 1985

12 Annual National Conference on Ada Technology 1985

A L

7o
7 ‘e v

v
»
A

Mr. James N. Thomas ia an
lastructor of Computer
Science at the University of
Now Oricans. He received his
bachelor’'s degres from the
University of New Orleans.
SN His research interests are in
Mthe areas of operating
systems and netwarks.

from the Uajversity of
Mismi. His research interests

Annual National Conference on Ada Technology 1985 13

- .. [- . . R S
et et mt e RTINS R X R T T T T A TP
MO AR S S A SRt e I S B T T T N A ST e T L A Tt
RN SN T N N R N AN A e T e e R i R S OO I A Y
CO A A W SN SN P WA D W W S O RRERRA N AT e N 3 AT R N Sl N N

TEACHING ADA FROM A CONCEPTUAL VIEWPOINT

J. J. Buoni and E. S. Santos

Department of Mathematical and Computer Sciences
Youngstown State University

Youngstown,

Over the past fiew years in many
Academic programs, the Ada programming
language has been introduced in advance
courses as a vehicle for instruction in
presenting the principles of software
engineering. There are several other
approaches to the introduction of the
Ada programming language in advanced
courses. The purpose of this paper is
to introduce the approach used by the
authors over the past three years; that
is, to introduce Ada in the "Programming
Language Design" framework.

Background:
The following paper offers an alter-

native view to the instruction of Ada at
the advanced undergraduate level which
departs from the traditional "Software
Engineering" approach.

Introduction:

The external enviroments of a pro-
gram during its execution may be termed
its operating enviroment. Batch-process-
ing, interactive and embedded systems are
three different types of operating envir-
oments whose different requirements have
an important influence on the language
design. It is not unreasonable that pro-
gramming languages are designed with
different designs. Over the past few
years in many Academic programs, the Ada
programming language has been introduced
in advanced courseg as a vehicle for
instruction in presenting the principles
of software engineering. There aresever-
al other approaches to the introduction
of the Ada programming language in advan-
ced courses. The purpose of this paper
is to introduce the approach used by the
authors over the past three years; that
is, to introduce Ada in the "Programming
Language Design" framework. Few program-
mers ever think of themselves as language
designers, yet any program has a user
interface that in fact is a form of pro-
gramming language. The user interface
consists of the commands and date formats
that are provided for the user to commun-
icate with the program. The designer of
the user interface for a large program
such as a text editor, an operating

Ohio 44555

system, or a graphics package must be con-
cerned with many of the same issues that
are present in the design of a general-
purpose programming language. The aspect
of program design is often simplified if
the programmer is familiar with a variety
of constructs and implementation methods
from ordinary programming languages. The
approach taken by the authors is to start
with the overall language design princi-
ples, study them in relative isolation and
then seek examples of these principles in
Ada and other programming languages. The
course entitled "Programming Language

Structures” has followed this approach over

the past three years because we believe
that it is only by understanding the basic
underlying concepts that meaningful
comparisons may be drawn between Ada

and other programming languages and

only then will Ada be fully understood.
Central to this theme is the text by
Ledgard and Marcotty entitled

"Programming Language Landscape" which has
been used in our Programming Language
Structures course for most of the past
three years and which has recently been
supplemented by the Ada Language Reference
Manual5., This paper presents the experi-
ences of the authors in the instruction of
Ada in the above setting over the past few
years. Central to this course is the com-
parison between PL/I (a batch processing
language) and Ada (an embedded systems
language). Developed in the early 60's it
is not surprising that PL/I would not
stack up well against Ada. But in an edu-
cational enviroment, it serves as a model
for a language which is at the opposite
spectrum of Ada; yet in some sense, Ada
may be thought of as a lcogical completion
of PL/I. This comparison becomes necessary
in the Programming Languages course as
taught at Youngstown State University,
since the principle vehicle of instruction
has been PL/I and not Pascal.

Scope:

PL/I and Ada are both block structured
languages. The essentials of block struc-
ture is a system of program units that de-
limit the region of program text amd a
method for specifying the names that belong

14 Annual National Conference on Ada Technology 1985

P
Y 2

5
.'
.;/_‘.

-

LN e TR B
.
‘
o]
-
T

i
~
.“

1

.
s
.
'

g
[R AR

to these regions. The conventional rules
of lexical scoping which one may attribute
to Algol 60 may be summarized as follows3:
1.) The scope of a declaration includes
the block in which it occurs but excludes
any block surrounding it.
2.) The scope of a declaration includes
any block contained within the block in
which the declaration occurs but excludes
any contained block in which the same
identifier is redeclared.
These basic rules are quite complicated
when applied to Ada 3. Yet to what extent
do these rules hold exactly in Ada and
PL/I is of much importance. PL/I offers
an escape to these rules with its Exter-
nal declaration concept allowing one to
introduce them into selected choices of
separately compile procedures.

On the otherhand, Ada's complex
rules for managing the name spacel leads
one to differentiate between Scope and
Visibility Rules. The scope of an entity
is the region of a program where its dec-
laration has effect and the visibility of
an entity defines where its name may be
seen. In general, the scope of an inden-
tifier starts at the point where the
indentifier is declared and extends to the
block that contains the declaration.
Similar to PL/I, Ada offers a mechanism to
escape these rules with the package con-
cept2,5. Since the scope of the entities
with the same identifier may overlap as
a result of overloading, the term 'visi-
bility' has been added to the vocabulary
which informally means that the visibil-
ity of an entity defines where its name
may be seen. 1In all cases, an entity is
visible only within its scope5.

PL/ I Example 1:

P:procedure;
declare A,B;
Q:procedure;

declare B;
end Q;
end P;

By the traditional rules of scoping, pro-
cedure Q's variable B creates a hole in
the visibility of procedure P's variable
B. Hence, P.B (notation borrowed from
Ada) is not known in the procedure Q. Ada
has rectified this situation.

Ada Example 1:

procedure P is
A,B: float;
procedure 0 is
A: integer;
begin -~
end P;

§imil§r to PL/I, the variable A defined
in P is not directly visible in Q; however,

Annual National Conference on Ada Technology 1985 15

its scope includes all of Q. O©One is able
to use selected component notation P.A to
obtain access to P's variable A. It may
be worth mentioning that this qualified
name mechanism does to some extent exist
in languages such that one may be able to
access the components of a record i.e. in
PL/I. Hence, one sees how Ada has filled
a void which existed in the Algol 60 scope
rules.

Parameter Passing:

In the study of Programming Languages,
one usually mentions five types of param-
eter passing. They are pass by name, ref-
erence, result, value, and value-result.
PL/I supports pass by reference. Ada on
the other hand with its IN, OUT, and IN-OUT
parameter passing mechanism supports what
at first appears to be a form of pass by
value, result and value-result but hides
the actual implementation with stern warn-
ings when refering to a parameter whose
type is an array, record, or task type. An
implementation may achieve the results of
IN, OUT and IN-OUT effects by copy or by
reference. However, the language does not
define which of these mechanisms are to be
used for parameter passing nor whether dif-
ferent calls to the same subprogram require
one to use the same mechanism. The execu-
tion of a program is erroneous if its ef-
fect depends on which mechanism is select-
ed by the implementation. Such "Informa-
tion Hiding" of the implementation is not
surprising to Ada and may be considered an
analogue of the manner in which the multi-
dimensional Array implementation is hidden.

Also, Ada has taken the attitude that
side effects are somewhat immoral. Thus
it requires parameters passed to functions
have mode IN only.

Control Structures:

In programming Language Structures one
encounters the definition of RE(n) struc-
ture which is composed of basic actions,
if-then-else, and loop constructs together
with an exit statements of the form ext(i)
where i is any integer between 1 and n and
any group of the above statements is also
a basic action. That Ada supports RE(n)
structures but not L-structures (L struc-
tures contain unlimited goto's} is not
surprising. Recall that Ada's exit state-
ment, defined as5:

',
v
&)

exit::=exit[loop-name] [when condition)

allows several nested loops to be exited
and Ada's goto statement5

goto-statement::=goto label-name;

requires that the innermost sequence of
statements which encloses the target
statement must also enclose the goto
statement.
Exception Handlers:

Exception handling have been class-
ified in two categories:

1.) Those that return {unless otherwise
directed) from the error handler to the
vicinity of the error raising statement.
PL/I provides this feature in many of its
handlers.
2.) Those that Do NOT return to a vicin-
ity of the statement that raised the excep-
tion. Ada falls into this category.

In studying the exception handling
capability of both Ada and PL/I one is
left captive by the power of Ada in this
respect. Exceptions in PL/I are used as a
normal programming technigue. In contrast,
exceptions in the Ada language are intended
specifically for handling errors and limit-
ing conditions. In both languages, execu-~
tion of the normal part of a program is
suspended when an exception occurs; execu-
tion of an exception handler (if any) is
initiated. It is at this point that Ada
and PL/I severely disagree. In Ada the
program block unit terminates because Ada
considers exception handlers as the logical
completion of the block unit, while PL/I
may take one of three alternatives unless

otherwise directed, i.e. return to the
statement in which the error was raised

(on Conversion), return to the statement
after the statement that raised the error
(on endfile), or return control to the
operating system (on error). PL/I seems
to have been the first language to provide
elaborate exception handling facilities;
however, they are not uniformly treated.
Both PL/I and Ada propagate errors to the
next level if no exception is specified
and then proceed according to their
respective rules. Consider the following
implementation of a merge sort of two
sorted files.

Ada Example 2:

with TEXT-10;use TEXT-I0;

procedure main is
FILEA,FILEB,FILEC:file-type;
type DATE is array (positive range
1..20) of integer;
Al,Bl1,Cl : integer;
ALOGIC,BLOGIC : boolean;
package MY-INTEGER-IO0 is new
INTEGER-10{integer) ;
use MY-INTEGER-IO0;

begin
create (FILEC,OUT-FILE. 'FILEB.DAT');
open(FILEB, IN-FILE," it ..s.DAT'):;

open (FILEA,IN-FILE, 'FiLEA.DAT');
get (FILEA,Al);
get (FILEB,Bl):
begin--inner block
loop
ALOGIC:=false; BLOGIC:=false;
if Al >= Bl then
ALOGIC:=true;
put (FILEC,Al);
get (FILEA,Al);
else

16 Annual National Conference on Ada Technology 1985

BLOGIC:=true;
put (FILEC,Bl);
get (FILEB,B1);
end if;
end loop;
exception
when end-error =~
loop
if ALOGIC then
put (FILEC,Bl);
get (FILEB,B1) ;
else
put (FILEC,Al);
get (FILEA,Al);
end if;
end loop;
end; ~- inner
exception
when end-error=>close(FILEC);
end main;
While in PL/I the same type of program
would be:

PL/1 Example 2:

MERGE:proc options(main):;
dcl (FILEA,FFILEB,FILEC) file record
sequential, (Al,Bl) char(80);
dcl (AEOF,BEOF) bit(l) init('l'b);
on endfile(FILEA) begin:

AEOF='0'b;
on endfile(FILEB) BEOF='0'b;
read file(FILEB)into(Bl};
do while (BEOF);
write file(FILEC)from(Bl)
read file(FILEB) into(Bl)

-~ e

end;

end;

on endfile(FILEB) begin;
BEOF='0'b;

on endfile(FILEA) AEOF='0'b;
read file(FILEA)into{(Al);
do while (AEOF) ;
write file(FILEC) from(Al);
read file(FILEA) into(al);
end:
end;
open file(FILEA) input, file(FILEB)
input, file(FILEC) output;
read file(FILEA)into(Al);
read file(FILEB)into(Bl);
AEOF='1'b; BEOF='l'b;
do while (AEOF&BEOF) ;
if Al1>Bl then do;
write file(FILEC)from(Bl);
read file(FILEB)into(Bl);
end;
else do;
write file(FILEC)from(Al):
read file(FILEA)into(Al);
end;
end;
close file(FILEA),file(FILEB),
file(FILEC);
end MERGE:;
Type checking:
Given the fact that modern program-
ming language design theorist now seem to

>

r

| RN A R |

A 2 I Il ST e e p o b e B b e o

we agreed that typed languages are to be
preferred, Ada with its strong typing,
offers a refreshing alternative to PL/I's
fifteen pages of conversion rules6.

Ada's strong typing ensure that dis-
criminants always have a value. This is
especially different from Pascal. In
Pascal, variant records may have the fol-
lowing type of declaration which lead
many to claim that Pascal is not a strong-
ly type language.

Pascal Example:

...some declarations omitted...
type VISA=(PERMANENT, TEMPORARY,VISITING):;
NEWPERSON=
record
NAME : WORDS :
AGE:YEARS;
PRESENT : WORKWEEK;
case CITIZEN:boolean of
true: (PENSIONNO:integer) ;
false: (STATUS:VISA; PASSPORTNO:
end: integer)

var FERGUSON,SMITH:NEWPERSON
...S0me assignments....

FERGUSON.CITIZEN:=false;
FERGUSON.STATUS:=VISITING;
SMITH.CITIZEN:=true;
SMITH.PENSIONNO:=2361;

whereas the assignment
FERGUSON.PENSTONNO :=87431;

would be illegal and cause a runtime errcr.
The same example in Ada would be the fol-
lowing:

Ada Example 3:

type VISA is(PERMANENT,TEMPORARY,VISITING):
type NEWPERSON (CITIZEN:boolean) is
record
NAME : WORDS:;
AGE:YEARS;
PRESENT : WORKWEEK;
case CITIZEN is
when true =>
PENSIONNO:integer;
when false=>
STATUS:VISA;
PASPORTNO:integer;

end case;
end record;

...sample declarations...

SMITH:NEWPERSON (true) ;
FERGUSON : NEWPERSON (false) ;

Structured Programming:

Ada and PL/I both contain ample
structured statements. However program-
ming style encouraged is different be-
cause PL/I contains an UNTIL clause and
also encourages the use of gyoto's in
exception handlers.

References:

{1.} Booch,G.,"Software Engineering with
Ada" Benjamin/Cummings (1983).

(2.]) Evans,A.,"A Comparison of Programming
Languages: Ada Pascal and C" in Comparing
& Assessing Programming Languages Ada C
Pascal” edited by A. Feuer and Narain
Gehani, Prentice Hall (1984).

{3.) Ledgard H. and Marcotty M., "The Pro-
gramming Language Landscape", SRA (1981).
[4.) Pratt T.W. "Programming Languages",
ANSI/MIL-STD-1815A, (1983).

[5.] Reference Manual: Ada programming
language, ANSI/MIL-STD-1815A, (1983).

[6.] Reference Manual: PL/I checkout and
Optimizer Compiler, IBM Program Product,
(1976) .

J. J. Buoni, Professor
Youngstown State University
Youngstown, Ohio 44555

E. S. Santos, Professor
Youngstown State University
Youngstown, Ohioc 44555

Annual National Conference on Ada Technology 1985 17

« e a

ADA AND THE BUSINESS SCHOOL CURRICULUM

Diane M. Fischer

Department of Business Computer Information Systems
and Quantitative Methods
Hofstra University, Hempstead, NY 11550

Abstract

The current curriculum for business comput-
ing i1s examined in view of including Ada. Con-
straints are discussed. These include accreditation
requirements and school-wide requirements for a
Bachelor of Business Administration degree.
DPMA and ACM model curriculum are considered.
Ada is compared with popufar business languages,
COBOL. BASIC and FORTRAN. Suggestions for
including Ada in particular courses are given.
Topics in Ada especially relevant to a first course
are noted. as is the background material needed to
teach Ada. The business market is investigated in
terms of programming needs. The university is
considered both as leader and follower vis-a-vis
this market. Trends in computing are noted and
suggestions given for the use of Ada.

1. Buslness Computing Curriculum Accreditation
Requirements

To discuss the inclusion of Ada in the Busi-
ness Con puter Information Systems (Business
Computing) curriculum, one must look at con-
straints on the curriculum. Hofstra University's
School of Business holds accreditation from the
American Assembly of Collegiate Schools of Busi-
ness (AACSB) for both the undergraduate and gra-
duate programs. The Business Computing curricu-
lum for a bachelor's degree in business administra-
tion (B.B.A.) has been specially designed to meet

AACSB requirements.

Presently a business student needs 125 credits
to graduate, of which 62 must be in designated
liberal arts areas. In addition, a student has 39
required credits of Accounting, Business Law,
Finance, Quantitative Methods, Management,
General Business and Marketing. This leaves the
24 credits (eight courses) which distinguish the
Business Computing major from other BBA.

18 Annual National Conference on Ada Technology 1985

degrees. Of these, six are required courses and two
are electives within the department.

The introductory course, required of all busi-
ness school students, devotes one-third of its con-
tent to programming in BASIC and the remainder
to computer literacy and business applications.
COBOL. the main business language, is taught in
a two semester sequence. These serve as prere-
quisites for the advanced courses of systems
analysis and design, management information sys-
tems and equipment selection. The two depart-
ment electives are chosen from six courses covering
the following subjects: FORTRAN, a collection of
several languages, simulation., minicomputers and
microcomputers, reading and research, and work
experience in an internship. There are no further
electives, unless a student takes more than 125
credits to graduate.

The School of Liberal Arts contains a Com-
puter Science department. Business Computing
offers a computer science minor consisting of a set
of required courses to be substituted for a desig-
nated set of otherwise required liberal arts coutses.

2. Possible Ada Courses

With this background, one can address the
question of how Ada can be included in the Busi-
ness Computing curriculum. Such a course would
have to be included among the eight major courses
or taken as part of a computer science minor. To
relegate the teaching of Ada to a Computer Sci-
ence minor would effectively remove it as a possi-
ble course for the majority of majors, who do not

minor in computer science. It would remove the
course from Business Computing control. The
course would be taught from a Computer Science
viewpoint which is more technical and less
business-oriented than Business Computing. This
also assumes the Computer Science department
would be willing to offer this course regularly.
Ada has been taught by Computer Science on an
experimental basis, but their main language is
PL/L

D
»
[
o
L}
»
’]
-

i %

PR

Ada for business applications would best be
taught in the Business Computing department.
Options include substituting Ada for one of the
languages presently offered and adding another
course to the department electives. These electives
are typically offered once a year and have minimal
enrollment. Adding another course would spread
the students thinner and place further burden on a
heavy faculty teaching load. Faculty teach three
to four coutses per semester. The faculty are often
understaffed because AACSB requires them to
have appropriate terminal degrees and because
competition for Ph.D.'s in Business Computing is
heavy. The option of adding an Ada course is not
viable. The only remaining possibility is to substi-
tute Ada for a language presently being offered.
This is currently being done. In the past year,
Ada has been included as one of the languages
offered in the comparative languages course.

The department has recently decided to col-
lapse the two FORTRAN and languages electives
into one course. It will be offered each semester
and will cover one of Ada, FORTRAN or Pascal
each time. Students will be permitted to take the
course more than once. This change reflects the
increasing importance of Ada, but the course is an
elective and majors can graduate without it.

The remaining possibilities are to substitute
Ada for either BASIC or COBOL, the languages
offered in the two required language courses. The
format for the introductory course is constrained
by AACSB requirements. It may be possible to
teach a subset of Ada to non-technical students to

give them a general understanding of programming
and to cover the basic program structures. The
success of Ada in an introductory course would
depend on the level of the students. BASIC is
easy to teach and one of the easiest languages to
learn. However, even this simple programming
component is very diflicult for many students. It
does not seem reasonable to offer a five week intro-
duction to Ada as a first language in that course.

The two-semester COBOL course is a stan-
dard for business computing. AACSB does not
specifically require that COBOL be taught.
Instead. for these and the remaining major courses,
AACSB requires a basic understanding of the con-
cepts of Management Information Systems and of
computer applications. This is very gencral. But
inherent in their guidelines is the assumption that
there exists a wide range of business applications
written in the chosen language. Any substitution
for COBOL would have to be justified in terms of
what is used in the business community. No
major change is forseen in the near future.

While not binding, the DPMA model curricu-
lum for undergraduate education in Computer
Information Systems has served as a guide for
course oﬁ'()rings.'1 This model specifies COBOL but
emphasizes that the model curriculum is a ‘living’
document open to change. ACM curriculum
recommendations for Information Systems does
not specify any language.” Both guides suggest a
wide range of computer science techniques for
which no oue existing language is adequate. File
handling is best taught with COBOL. Sorting
algorithms, hashing, stacks, queues and trees are
better taught with a scientific programming
language lik2 Ada.

Any course offering in Ada will require com-
puter support. This ingludes a working compiler,
manuals and textbooks.” There are Ada compilers
available for a few machines. DEC has announced
an Ada compiler prevalidated for the VAX 11/780
running the VMS operating system. Hofstra runs
this compiler on its VAX 11/782. The Business

Computing department has a subset of Ada run-
ning on IBM PC computers. Manuals and text-
books are scarce, but the situation is improving.
A colleague is currently under contract to write an
Ada and business applications text.

The newly chosen elective business course in
Ada or other major languages will be open to busi-
ness students majoring in other departments.
These students must have had BASIC, but not
necessarily COBOL. The course will cover nota-
tion, scalar types, control structures of selection
and repetition, one dimensional arrays, linear
records, ard simple functions and procedures. An
overview of other language features such as pack-
ages, private types, tasks, exce&)tions and generic
program units may be given.7' !

Thus far, this paper has focused on how Ada
can be included in an AACSB accredited business
school curriculum. Ada can and is being offered as
a language supplemental to COBOL. While it is
possible that the roles of Ada and COBOL could
be reversed in the future, there would have to be a
large amount of business programming done in
Ada to justily this. The following section consid-
ers Ada's place in the business computing market.

3. Ada For Business Computing

Ada was designed for programming large-
scale, real-time embedded systems. As noted, it
includes facilities for abstract data types, multi-
tasking, generic program units and real-time con-
straints. Its package feature that allows separate
compilation has lead to new ideas regarding the

Annual National Conference on Ada Technoiogy 1985 19

1
v '/'("f‘

LY]
AR

»

e

\la

oy
« 8 &

[NRARAIN YA 'v"

.
. l‘

place of nesting in program design. A structured
programming language, it was targeted for replac-
ing Pascal and FORTRAN for real time applica-
tions, not for commercial applications. However,
the power of the language lends itself to a broader
range of applications.

In the past it has been easy to classify pro-
gramming applications as either scientific or data
processing. FORTRAN covered the former and

COBOL dominated the latter. Modern applica-
tions cannot be as easily classified. An example is
computer-aided manufacturing. To facilitate this,
we will see the roles of FORTRAN and COBOL
diminishing and more versatile languages being
used.

There are several factors which might limit
widespread acceptance of Ada in the business com-
puting field. A serious one is inertia. COBOL
began in 1960. An ANSI-Standard COBOL was
issued in 1974. COBOL 80 is in the process of
being made the Jatest national stand: rd, facilitated
by its acceptance by the international standards
committee. There are compilers and manuals
available for this latest version of COBOL. The
VAX under VMS runs one at Hofstra. Regardless
of the availability of two much more powerful ver-
sions of COBOL, the great majority of the busi-
ness community is still using COBOL 60. A dis-
cussion at a COBOL session at NCC 84 indicated
that companies are loathe to update their COBOL
programs. It seems clear that they will be even
less anxious to scrap their programs entirely to
convert to Ada.

What might soften this resistance is the avai-
lability of conversion packages from COBOL to
Ada. Whether it makes sense to spend the man
power on a system to translate probably poor
patched, unstructured COBOL code into Ada is a
question beyond the scope of this paper. A better
idea is the provision of interfaces between COBOL
and Ada programs which would make such a tran-
sition less painful.

In any case, for Ada to be more palatable to
the business market, sophisticated 1/O and file
handling mechanisms need to be made available.
These will probably come in the form of Ada pack-
ages which can do COBOL-type file manipulation.
COBOL was designed to provide output for busi-
ness applications. Ada will have to provide similar
output to challange COBOL seriously within the
business community.

One must consider the business community as
a whole and not simply from the view of informa-
tion systems. Hofstra's School of Business can

serve as both a microcosm and a source of this
community. The traditional academic lines are
Finance, Management, Marketing, and Business
Law. Professors in these disciplines rarely are
interested in learning high level programming
Ianguages. They want user-friendly systems that
are easy to learn to manipulate and that can easily
interact with one another.

Popular business programs include VISI-
CALC, a financial spread sheet; MINITAB and
SPSS, statistical packages; LINDO, a linear pro-
gramming package; SHAZAM, a time-series pack-
age. These are the so-called problem-oriented
languages. Faculty use these types of programs in
classroom teaching and in research. Business stu-
dents learn these prograns and the techniques of
using them. They enter the business community
with the knowledge that they can use computers
without having to master the arts of computer
programming. Articles on future trends
emphasize attempts to make computers easier to
use for non D.P. professionals. The market for
Apple's Maclntosh computer indicates the power
of easy to use computing systems. This market
will increase as more software is available. Ada, as
a complex and technical language, is not going to
meet this demand directly. This is not its primary
purpose. If Ada can be used as a language behind
such packages, it will find a large business market
willing to accept it. If it does, it will be even more
necessary to teach Ada to business students so
they can direct the development of specialized
business applications in their business careers.

In summary, this paper has briefly considered
how to include Ada in a business school curriculum
and future acceptance of Ada in the business com-
munity as justification for such inclusion.

References:

(1) ACM Curricula Recommendations for Infor-
mation Systems. Volume II, 1983.

(2) ACM Position on Standardization of the Ada
Language. Commun. ACM 25.2 (Feb 8§2)
118-120.

(3) Ada: Past, Present Future: An Interview
with Jean Ichbiah, Principal Designer of Ada.
Commun. ACM 27.10 (Oct 84) 090-997.

(4) DPMA Model Curriculum for Undergraduate

Computer Information Systems Education
1981.

(5) Hoare, CA.R. The Emperor’s Old Clothes.
1980 Turing Award Lecture, Commun. ACM
24.2 (Feb 81) 75-83.

20 Annual National Conference on Ada Technology 1985

CANNA AL Srd A S S e /N

BN MR A N EAA A A 2 20 B

.
]
.

(6) Ledgard, H.F. and Singer, A. Scaling Down
Ada. Commun. ACM 25.2 (Feb 82) 121-125.

(7) Smedema, C.H., Medema, P. Boasson, M.
The Programming Languages Pascal Modula
CHILL Ada. Prentice-Hall Internationsl, New
Jersey, 1983.

(8) Tompkims, H.E. In Defense of Teaching
Structured COBOL as Computer Science.
SIGPLAN Notices 18.4 (April 83) 86-94.

(9) Traub, JF., ed. Quo Vadimus: Computer
Science in a Decade. Commun. ACM 246
(Junegl) 351-369.

(10) Wegner, P. Self-Assessment Procedure VII.
Commun. ACM 24.10 (Oct 81) 647-678.

. (11) Wichman, B.A. Is Ada Too Big? A Designer

l Answers the Critics. Commun. ACM 27.2
(Feb 84) 98-103.

T AT) pummem . .

Annual National Conference on Ada Technology 1985 21

P
’.. lN O
aa’a’al

s ES T oYy

, . S ey, . ..
.. s -,

Wi

.
el e

(RSN

o

~

e e e v

ACADEMIC IMPLICATIONS OF ADA IN INDUSTRY

Joan M. Sterling

Hampton University
Department of Mathematics and Computer Science
Hampton, Virginia 23668

As knowledge about the Ada language becomes
more widespread, the number of industrial organ-
izations using Ada increased accordingly. More
companies are using Ada and considering Ada, as
both a specifications and implementation language
than ever before. As an exchange faculty member
during the summer of 1984, I had the opportunity
to observe some industrial requirements, with
respect to Ada, for software development. This
paper is therefore a discussion of Ada's present
position in various industrial applications, some
future industrial requirements and how Ada can
best be utilized to fill those requirements, as
well as some suggestions on how industry, col-
leges, and universities can work together to
produce a sufficient number of individuals train-
ed in all aspects of Ada. These individuals
could then help meet the growing demand created
by the United States government and the indus-
trial world for Ada qualified people. The
supply of Ada trained individuals is low compar-
ed to the very high demand.

INTRODUCTION

The annual U.S. Army sponsored Faculty
Research and Enhancement Program took place during
the period June 10, 1984 through July 17, 1984 at
Tuskegee Institute in Tuskegee, Alabama. [was an
attending professor from Hampton University. Al-
though I had previous encounters with Ada through
two previous seminars (one 3 day seminar and one
4 day seminar), I did not really understand the
syntax or real purpose of the language until com-
pletion of the summer course. The attainment of
knowledge from the instructors, course materials,
and various speakers who shared their experience
with the participants of the Ada Summer Research
Program has made me an Ada advocate. 1 am using
that knowledge to help me teach two Ada courses;
An Introduction to Ada and Advanced Ada Programm-
ing. The advanced course incorporates many soft-
ware engineering practices.

First Industrial Encounter

Upon completion of the Ada Summer Research
Program at Tuskegee Institute, I became an ex-
change faculty member at one of the major indus-
trial companies which handle software contracts,
especially large contracts for the Federal govern-
ment. The Federal government has issued a mandate

which had two deadlines concerning software were
January 1, 1984 and July 1, 1984. The January 1,
1984 deadline concerned the use of Ada for any and
all new software being developed for defense
mission-critical applications entering Advanced
Development. The July 1, 1984 deadline concerned
the use of Ada for any and all software entering
Full-Scale Engineering Development. Other types
of programs were encouraged to use Ada as soon as
and whenever possible. Although the Department of
Defense reset the deadlines, the use of Ada was
and is presently a governmental mandate. There-
fore, this particular major industrial company was
working towards the development of software with
Ada so that they could maintain their governmental
contracts.

The first concern, for this and other compan-
ies I have talked with was the procurement of a
validated Ada compiler which was compatible with
their particular computer system. Several compan-
ies offered Ada compilers but they were almost
never delivered in completed form by the contract-
ed time. Partial compilers were usually delivered
and updated over a period of time until the com-
pleted software package could be delivered. The
partial compilers could compile programs composed
of the Pascal subset of the Ada language: However,
these compiler packages did not have the source
code necessary to implement some of the more dyna-
mic and interesting facilities of the language,
such as, enumeration types, generics, and tasking.
Consequently, this particular company was getting
a slow start with its effort towards meeting the
governmental mandate.

The lack of a complete compiler did not hin-
der the writing of objectives and the creation of
small Ada source programs to test(Eye aspects of

a compiler as the pieces arrived. 1 participat-
ed in this facet of the '"move towards Ada". Two

types of code were of interest to this industrial
organization: regular program source code and
code to monitor the system efficiency as Ada pro-
grams were compiled or executed. The regular
program code was used to check the following and
more: to determine whether error messages occurr-
ed when they should; to determine if various pro-
grams actually did turn control over to the sys-
tem; to determine if the attributes really gave
the required information; to determine if Ada's
implementat ion of generics, packages, and tasking

(1) See sample objectives and source code.

22 Annual National Conference on Ada Technoiogy 1985

AL IOV RN U AR i oSl S ok /e Do ASAR ab sAds e o

M and
PR

L

were really the long awaited boost to software
engineering that they appeared to be; and last but
not least, to determine the real software engineer-
ing worth of the package. Packages were of special
interest since it appeared that existing library
facilities could really be enhanced and/or updated
with their use.

The second type of code was system oriented
code to monitor the computer's actions and reac-
tions as Ada code was compiled or executed. Of
special interest was how much of the system's power
was going to be required to implement such features
as tasking, generics, unbounded arrays,and pragmas.
This aspect of the testing went beyond my level of
expertise with Ada because I had only dealt with
Ada from the programmer-software engineer side.
Nevertheless, this aspect of the testing held a
particular interest.

Educators teach languages and test for error
situations, but very often th~ slowness of the
system is taken as an ordinary daily occurrence.
Industry on the other hand should not and cannot
tolerate unnecessary slowness because some degree
of efficiency is necessary.

Several programs were written in Ada to be
used on an IBM P.C. computer. The memory of the
IBM P.C. was increased to 512K initially tc elim-
inate as many memory problems as possible before
they might occur. The IMB P.C.'s compiler pre-
sented a problem because it was only partially
complete thereby being incapable of testing those
Ada facilities of most interest. Those features
one could test with the system, for example: a
minor program such as a prime number generator,
took hours to execute. From the time periods
involved in executing 'small' programs with the
micro, one could draw the conclusion that if the
programs being compiled had contained the main
software design features of Ada, the small system
would have come to a virtual standstill or crashed.

Several months later, I had the opportunity
to interact with other micros through the use of
Ada and the responses were very similar to those
mentioned above. It appears that the time has yet
to arrive when the micro and Ada will be compati-
ble.

Industry is presently experiencing a shortage
of personnel capable of programming in Ada. A
plausible reason for this shortage is that there
exists only a few individuals capable of utilizing
the language's capabilities to its fullest extent.
Most of industry's beginning Ada programmers are
experienced in Fortran and Cobol programming.
Therefore, they tend to produce code in Ada which
looks like Fortran or Cobol source code, respec-
tively. However, after working with Ada for a
length of time, they start to use the more ad-
vanced features of the language. 1f Ada's poten-
tial, as a software engineering language, is to be
realized by industry, then the number of capable
Ada programmers must be increased dramatically.
The question is: How is this feat to be accom-
plished?

Academic Outlook

Several institutions around the country are
trying to bridge the gap between the number of

AT AR i S ATl st e B S0 AR aae o

Ada programmers presently available and the number
of Ada programmers needed to meet the demands of
industry. These demands were as a direct result
of the mandate of the Department of Defense per-
taining to specific areas where Ada should become
the only language used to develop necessary soft-
ware. The academic world is, however, experiencing
some of the same problems which exist in the in-
dustrial world: a shortage of competent teachers
(programmers) of the Ada language and most impor-
tantly the lack of a validated Ada compiler. A
few institutions have the Ada Ed interpreter dis-
tributed by New York University which does the job
but is slow. The slowness of compilation and
execution speeds are especially noticeable if
several students are trying to compile and/or
execute the Ada programs at the same time. There-
fore there is no mystery as to why students tend
to shy away from both introductory and advanced
courses in Ada programming and Ada software
engineering. This trend tends to defeat a common
goal of industry and academics; to increase the
number of Ada educated computer scientists.

As in industry, partially completed Ada com-
pilers are available to the world of academics.
The frustrations associated with not being able
to use the "power house' structures of the
language, so that individuals themselves can deter-
mine what they consider the full worth of the
language, takes its toll on student enrollment.
Rumors travel fast among students about a course
or its teacher. Ada student enrollment is on the
rise at those schools where it is being offered,
but because of the reasons mentioned earlier Ada's
enrollment lags behind those of such languages as
Fortran, Pascal, and Cobol. Inspite of the major
discouraging factors involved with an Ada educa-
tion, there is hope for the future for Ada in
academics as well as in industry.

Academic/Industrial Common Lfforts

There are several Ada user's groups presently
in existence, for example: the ACM group, the
group at the University of Houston at Clearlake
and some of them are involved with experiments
which are attempting to test and evaluate Ada in
various working environments. At present it
appears that no major governmental agency, like
NASA for example, is attempting any full scale
software development with Ada. Yet the interest
in the language and its capabilities is very much
alive and well. Some NASA locations are experi-
menting with such systems as the NTELL 432, Tele-
Soft, and Rom.

Presently code is being generated for soft-
ware to test Ada's feasibility for a number of
areas., Some questions which need to be consider-
ed are the following.

Could it make the running of a space station
easier than it presently is or harder? Would
flight programs become more manageable with Ada's
capabilities as a resource, especially tasking?
1f Ada was used in a distributed network environ-
ment and one of the members of the network faileds
could tasking recover the situation? Would sate-
llite and other methods of communications benefit
from its seemingly robust nature? Is it really
true that several groups of programmers, each

Annual National Conference on Ada Technology 1985 23

group in a different locatiom, can actually create
segments of code for given modules of a relatively
large project? Could the groups meet after an
allotted period of time and turn the modules into
a working program in 25 to 50 percent less time
than would be the normal time period by today’s
standards? 1Is Ada really the portable language
the world hopes and believes it to be? 1Is the
ability to separately compile parts of a program
worth the overload? Can a group create software
in a particular area, in-house and then offer that
software to the world with minimum difficulty?

Each of these questions needs an answer, if
one of is to really become knowledgeable in the
Ada world. The world of academics is doing its
share to answer some of the questions raised above
and to supply competent Ada programmers to the
industrial/governmental world at the same time.
Not only is Ada being taught as a class at a
rapidly growing number of institutions, these
institutions are obtaining grants and proposals
to perform specific experiments that could indeed
give Ada that needed boost to remove doubt from
the minds of many non-believers. The University
of Houston at Clearlake, the University of
Virginia, the University of Maryland, Hampton
University, Old Dominion University, and many
others in other parts of the U.S. involved with
Ada ranging from the beginning teaching stages
to the more complex areas of creating software
under proposals and contract with various govern-
mental agencies. For instance, the University of
Virginia is working with Ada in a distributed
network environment, the University of Houston
and Maryland are doing some work to evaluate the
language, and Hamptou University is trying to
develop some mathematical packages.

Many industrial organizations,who have little
or no governmental contracts at the present time,
are staying away from Ada. They considered it a
dying cause even before its birth. However, those
organizations who do a great deal of contractual
work for the government must turn to developing
software using the language if they are to main-
tain their status with the government. They are
willing to work with the world of academia to
obtain Ada qualified and software engineers.
Several suggestions have been offered: 1) Do
not teach the language from the syntax point of
view; 2) teach good software development met hod-
ologies, such as various design approaches, style
of development, and usage of portability and re-
use capabilities during development; 3) interact
more with various industrial organizations so
that a student will be the recipient of a broad-
based education thereby effectively increasing
his worth to any organization to which he may
belong.

Many academic ins.itutions are trying to
comply with industry's requests pertaining to
computer training. Academic institutions, how-
ever, also need some assistance from industry.
They need incentives to offer potential Ada
students, such as workable equipment, good
salaries, and good working environments upon
completion of a course of study which included
Ada training. To a certain extent, industry
provides for some of these needs. Quite often

24 Annual National Conference on Ada Technology 1985

students discover that a company offers a high
salary if a potential employee has been trained in
the area of Ada. Sometimes they offer free system
wmaintenance for a period of time to a school which
is struggling to implement a program in computer
science independent of an offering in Ada program-
ming. A faculty exchange program is also main-
tained to allow both academia and industry to keep
abreast of each other's needs.

Various industrial organizations offer short
courses in Ada which encompass programming and
software engineering. Others such as Digital
Equipment Corporation are in the process of offer-
ing such courses. They also allow employees time
during their regular work day to take courses.
Very often they reimburse tuition and fees to
those employees who take courses on their own time.
Industry is working towards eliminating the short-
age of Ada educated individuals.

The number of Ada qualified individuals is on
the rise, but the number is not yet remotely close
to the large number needed in the industrial world,
if the Department of Defense's mandate is to be
met in the near future. Education and industry
must do more hand-in-hand work if Ada's future
goals are to be met. Exchange programs which
allows institutions, which do not have any Ada
computing facilities, to access certain company
accounts in order to execute student programs
might be implemented in a large scale across the
country. The duality of benefit would be the
following: The institution would benefit because
it could teach Ada with the excess cost of acquir-
ing an Ada compiler system not being present. The
company would benefit because individuals would be
trained in the use of Ada for programming and
softwvare engineering. Academic institutions could
hold special courses for employees whose organiza-
tions needed Ada for its company's governmental
contractual stability. These courses would also
be available to companies who aspire to obtain
governmental contracts but do not presently create
software for the government.

In conclusion, software engineering with Ada
is increasing in volume, however, it has not
reached a level encompassing current needs.

The following are samples of objectives and
source code created for micro compiler testing
and standard compiler testing.

Exceptions
Specify "exceptional' situations which arise
during program execution. These situations are
usually caused by an error in the program.
Some exceptions are predefined and others can be
declared by the user. A programmer can raise an
exception.

The 1ist of predefined exceptions is as follows:

numeric_error
storage_error

constraint_error
program error
tasking error.

Note: It is possible to use the pragma ''SUPPRESS"
to stop the raising of the above mentioned
exceptions.

Constraint_error:

specifies that an error message be given if some
entities go out of bounds previously set.

Test Objectives:

1. Check that each of the following causes the
correct error message to be printed: a) attempt
to violate a range constraint; b) attempt to
violate an index constraint; ¢) attempt to violate
a discriminant constraint; d) attempt to use a

record component that does not exist for the current

discriminant values. 2. Check that a null access
value will cause the error in each of the follow-
ing cases: a) attempt to use a selected component
of the null object; b) attempt to use an indexed
component of the null object; ¢) attempt to use an
attribute of the object; d) attempt to use a slice
of the object.

Numeric_error:

Raised when the result of a numeric operation
exceeds the implemented range of some real type.

Test Objectives:

1. Check that each of the following causes the
raising of this error message: a) data underflow;
b) data overflow; ¢) divide-py-zero,

Program error :

Raised upon an attempt to make use of a unit whose
body has not yet been elaborated.

Test Objectives :

1. Check that a raise occurs automatically:

a) call to a subprogram; b) attempt to activate a
task; ¢) attempt to elaborate a generic instantia-
tion. 2. Check that this situation occurs when
an exit from a function is attempted without using
a "return" statement. 3. Check that a raise
occurs during the execution of a selective wait
that has no else part and all alternatives are
closed. 4. Check that this is caused during an
erroneous execution. 5. Check that an incorrect
order dependency causes this error.

Storage_error :

Raised when storage allocated to a task or for a
collection is exhausted during the execution of an
allocator.

Test Objectives :
1. Check that both of the following are causes of
this error: a) when dynamic storage allocated to a
task is exceeded; b) when the space available for
the collection of allocated objects is exhausted.

Tasking_error

Occurs during inter_task communication.

Test Objectives:

1. Check that the abnormal termination of a
server task causes this error in the “caller’ task.
2. Check that abnormal abortion of the caller
task does not raise an error.

PRAGMAS :
Pragmas are used to convey information to the

compiler. They are allowed after a semicolon de-
limiter but not within a formal part or discrimin-

ant part. The list of predefined pragmas are as
fellows:

Controlled Elaborate Inline

Interface List Memory-size
Optimize Pack Page

Priority Shared Storage-unit
Suppress System~name

The pragmas memory-size, storage—-unit, and system
deal primarily with areas which will not be
touched upon by this group of tests.

Controlled:

Specifies that automatic storage reclamation must
not be performed for objects designated by values
of a given access type.

Test Objectives:

Syntax:

1. Check that non-simple names of access types
are not allowed. 2. Check that multiple argu-
ments are not allowed. 3. Check that this
pragma is only allowed within the declarative
part or package specification which contains the
declaration of the access type. 4. Check that
derived types cannot be used. 5. <Check that the
pragma declaration must occur after the declara-
tion of the given access type.

Semantic:

1. Check that storage reclamation does not occur
during the duration of this program. 2. Check
that in the absence of controlled automatic
storage reclamation follows the system default
method.

Elaborate:

Specifies that the corresponding library unit
body must be elaborated before the compilation
unit.

Test Objectives:

Syntax:

1. Check that only simple names denoting library
units can be used as arguments. 2. Check that
this pragma is only allowed to immediately
follow the context clause of a compilation unit.
3., Check that each argument must be the simple
name of a library unit mentioned by the context
clause. 4. Check that both single and multiple
arguments are allowed.

Semantic:

Annual National Conference on Ada Technology 1985 25

Sad Sl Al A an N A 8 A AR Mg aa o)

1. Check that the components of the argument list
are elaborated. 2. Check that an error occurs if
the necessary units are not elaborated.

Inline:

Specifies that subprogram bodies should be expanded
inline at each call whenever possible. (In the
case of generics, this aprlies to instantiations.)

Test Objectives:
Syntax:

1. Check that only names of subprograms or the
name of a generic subprogram can be used as an
argument. 2. Check that this pragma is only
allowed in one of the following three places:

a) at the declarative place of a declarative part
aof a program; b) at the place of a declarative
item in a package specification; c¢) after a
library unit in a compilation but before any sub-
sequent compilation unit,

Semant ic.

1. Check that the code for the members of the
argument list is actually expanded at the place of
each and every call. 2. Check that no arguments
are passed, etc. as in the usual way that subpro-
gram calls are handled. 3. Check that without
inline, the expansion does not occur,

Interface:

Allows a subprogram in another language to be
called by an Ada program provided all communication
is achieved via parameters and function results.

Test Objectives:

Svntax:

1. Check that a language name and a subprogram are
the onlv allowable arguments. Check that this
pragma is allowed at the place of a declarative
item and must apply to a subprogram declared by an
earlier declarative item. 3. Check that the
above-mentioned declarative item and pragma must
belong to the same declarative part or specifica-
tion. 4. Check that this pragma must appear after
the subprogram declaration and before any subse-
quent compilation unit when dealing with a library
unit.

Semantic:

1. Check the system to determine how the acquir-
ing of the subprogram in a second language is
achieved. 2. Check the system to determine how
the return to the Ada language 1s achieved.

List:

lakes one of the identifiers ON or OFF as a single
argument. If a compiler listing is occurring then
the use of OFF will cause it to cease until ON
causes it to restart the printing of the given
file.

26 Annual National Conference on Ada Technology 1985

Test Objectives:

Syntax:
1. Check that it can be placed after a semicolon
delimiter but not within a formal part or discrim-
inant part. 2. Check that this pragma can be
placed anywhere that a syntactic category whose
name ends with declaration, statement, clause, or
alternative can be positioned.

Semantic:

1. Check that a listing of a compilation is
suspended or continued until a list pragma with
the opposite argument is encountered.

Memory-size:

Takes a numeric literal as the single argument. It
is only allowed at the start of a compilation and
only before the first compilation unit in a libra-
ry. It is associated with the package for the
"SYSTEM'". This pragma will not be dealt with by
this series of tests.

Optimize:

Specifies whether time or space is the primary
optimization criterion.

Test Objectives:

Syntax:
1. Check that this pragma cannot appear any place
in a program other than the declarative part of a
block. 2. Check that optimize only applies to the
block or body enclosing the declarative part to
which it belongs. 3. Check that the only argu-
ments allowed are either "time" or "space".

Semantic:
1. Check that the system time becomes shorter
versus default time for the same amount of code.
2. Check that the amount of space allowed for a
block of code changes if optimize uses space as an
argument.

Pack:

Specifies that storage minimization should be the
main criterion when selecting the representation
of the type being considered.

Test Objectives:

Syntax:
1. Check that a record or array type are the only
possibilities as arguments. 2. Check that this
pragma can only occur in the declarative part,
package specification, or task specification.

3. Check that any use of a representation attri-
bute of the packed entity must appear after the
pragma declaration.

Semantic:
1. Check memory allocated for the designated code
to determine whether the amount of space is
actually less than the default amount. 2. Check
that the amount of memory will correspond to the
default value if pack 1s not applied.

I At Nk b el Sl Jh el B 2 I T YWY v

»

. Page Suppress:

'} Specifies that the program text which follows the Specifies that errors associated with the identi-
S pragma should start on a new page 1if the compiler fier in the argument list will not be checked for,
I is currently producing a listing. unless it Is too costly to suppress the checks. 1
: the identifier is followed by some entity to be

-} Test Objectives: worked upon, then those errors associated with the
~ entity will be suppressed.

J{ Svntax: Test Objectives:

o 1. Check that this pragma can occur where any

" other pragma can occur. Syntax:

Semantic:

1. Check that all text following the call to this
pragma does go to a new page if the compiler is
listing a program.

Priority:

Specifies the priority of the task in which it
occurs or it specifies the priority of a main
program,

Test Objectives:

Svntax:

1. Check that the onlv arguments are static ex-
pressions of the predefined integer subtype
prioritv. 2. Check that multiple arguments are
not allowed. 3. Check that this unit can only
appear: a) within the specification of a task
unit; b) immediately within the outermost declar-
ative part of a main program.

Semantic:

1. Given several tasks of unequal priority, check
that the tasks are selected in order of highest
priority to lowest.

Shared:

Specifies a variable which must be shared by more
than one task. Every read or update of the vari-
able is a synchronization point for that variable.

Test Objectives:

Svntax:

I. Check that only one argument is allowed.

2. Check that the variable involved is of type
scalar or access type. 3. Check that the vari-

1. Check that the identifier of a check is the
only necessary argument. 2. Check that along with
the identifier, the following may also be present:
the name of either an object, a type or subtype, a
subprogram, a task unit, or a generic unit.

3. Check that this entity is only allowed either
immediately within a declarative part or immediate-
ly within a package specification. 4. Check that
the only allowed form is with a name that denotes
an entity (or several overloaded subprograms) de-
clared immediately within the package specifica-
tion. (Providing this pragma is to be used in a
package specification.)

Semantic:

1. Check that the suppress extends from the place
of the pragma declaration to the end of the de-
clarative region associated with the innermost
enclosing block statement or program unit.

2. Check that the suppression extends to the end
of the scope of the named entity when working with
a package specification. 3. Check that when an
optional name is given (name of one of the entities
in objective 2.) the suppress applies only for:

a) operations on the named object or on all objects
of the base type of a named type or subtype;

b) calls of a named subprogram; c) activations of
tasks of the named task type; d) instantiations of
the given generic unit.

System-name:

Specifies system changes. Takes an enumeration
literal as the single argument and is only allowed
at the beginning of a compilation. In the case of
libraries it must appear before the first compil-
ation unit only. This pragma will not be dealt
with in this series of tests. It deals with the
"SYSTEM".

The following is a listing of programs to be
used to test various aspects of an Ada compiler.

.

!.. able declaration must be followed immediately by .

g s . X Those programs with code for separate compilations,

. this pragma in the same declarative part or pack- -

s age specification. packages, pragmas, and tasking were not used on " . -
micros. Several of the programs in part/and or n o)
total are by Young [5]. Booch[?] and Wiener[]. T

Semantic:
1. Check that the reading and direct updating of

. allowable variables is an indivisible operation. ~-Use_interface is a procedure which uses the
- package interface.

® -
' Storage-unit: Some computations are performed by Sqrt and exp.

Takes a numeric literal as its single argument. --Created August 22, 1984

It is allowed at the start of a compilation, be-
fore the first compilation unit. This pragma
will not be dealt with by this series of tests.

With Text_io,interface; Use text_io;

Procedure Use_interface is

Num,Ansl,Ans2:float;

package flt_io is new float_io(float); use flt_io;
Inter in,Inter _out: file type;

Annual National Conference on Ada Technology 1985 27

~ Ao e, - - - - .
LY T N S]

. - . . . - c"..~...0-.v.' .--.'A.. ‘\‘V.-
[P AEAT RN, PR PLP L "’&{L'.\'u

begin -~Use interface
Open{Inter in,in_infile,"Interi.dat");
Create(Inter_out,out file,"Intero.ans");
Set_input(inter_in);
Set_output (inter _out);
Put_line("'Output answers created by a

Fortran Subprogram');

Put line(" "y,
New line(2);
Put_line("Num

Ans Ans?2 "y:

Ansl :=Interface.Sqrt(num);
Ans2 :=Interface.Exp (num);
New line;

Put (Num,5);

Put (Ansl,5);

Put (Ans2,5);

New line;
Close(inter_in);
Close(inter out);

end Use interface:

-- Package interface displays the use of pragma
interface. It allows Ada to make use of a sub-
program in a different language. The language
used here is Fortran.

-- Created August 22, 1984

Package Interface is
-- Ada specifications of Sqrt and Exp

function Sqrt(x: Float) return Float;
function Exp (x: Float) return Float;

private
~-The Fortran Subprograms

pragma Interface(Fortran,Sqrt);
pragma Interface(Fortran,Exp);

End Interface;

~- Program except tests two exceptions and the
pragmas suppress page, and list,Numeric error and
Constraint_error are to be tested.

-~ Messages will be printed if either of the
errors is encountered.

-- The pragmas page and list will also be checked
by this program.

-- Extreme data values are required to get
numeric error to appear. A divide-by-zero and a
number larger than the maximum system float value
will cause numeric error.

-- Use a=0 and a=0.00001 or some equally likely
candidate.

-- Suppress and its parameters explain what
errors are being suppressed.

With text io; Use text io;
Procedure Exceptions is

28 Annual National Conference on Ada Technology 1985

L Aad Al sl Bl B S Al A s ang

Pragma Suppress(Division_check);
Pragma Suppress(range check, on = >temp);

--Determine whether Suppress belongs here or inside
of procedure roots.

subtype Non negative real is float range 0.0..Float
'last;
subtype Pos real is float range Float’small..float'
last;

package flt_io is new float_io(float); Use flt io;
a,b,c,ri,r2:float;
Pragma List(off);

function Sqrt (x_value: in Non negative_real;
eps: in Pos real:=0.001) return float is

--Only floating point numbers greater than 0.0 are
accepted.

-~Positive square root is returned with the speci-
fied accuracy

-~the approximation method is used to find the
square root.
old_value:float;
new_value:float;

~--kth approximation
~--f+lst approximation

begin
0old_value:0.0;
new value:=x_value/2.0 --initial guess
while abs(new _value-old value)> eps
loop
old_value:=new value;
new value:=0.5* (old_value + x value/
old value);
end loop;
return new value;
end Sqrt;

Pragma List (ON);
Pragma Page;
R1,R2: out float)

Procedure Roots (A,B,C: float;

is
Pragma Suppress (division_check);
Pragma Suppress (range check, on temp);

--Roots actually finds the square root.
--8qrt is called from this procedure.

temp:float;
begin --roots

temp:=sqrt (b*b~4.0%a%c);
rl:=(-b+temp)/(2.0%*a);
r2:=(-b-temp)/(2.0%a);

exception

when numeric error =>
put ("Numeric_error");
new_line;
put ("overflow or divide by zero");
new_line;

when constraint_error =>
put("Constraint_error"):
new_line;
put (" B*B-4*A*C is negative');
new line;

end roots;

Pragma Page;

begin -~exceptions
get(a);
get(c);
Roots(a,b,c,rl,r2);
put("a=");
put(a);
put(" ll);
put (b= ");
put(b);

d put (" ");

. nLt(Me= "y;

put(c);

put("r1= n);
put(rl);
put("'r2= ");
put(r2);
new line;

end exceptions;

Acknowledgements:

Valuable comments and information were receiv-
ed from the following people for this paper:
Allen R. Crawley of Information Development and
Applications, Inc. (Ideas) Virginia Beach,
Virginia; Duvan Luong, IBM Corporationm,
Gaithersburg, Maryland; Susan Voigt of NASA
- Langley Research Center, Hampton, Virginia;
- Iona Black of Hampton University, Hampton,
- Virginia.

References

1. Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815-~1983, page 1.l.

Valuable resource texts are found in the follow=~
ing:

- 2. Grady, Booch, Software Engineering with Ada,
: Addison-Wesley, 1983.

3. Narain Gehani, Ada: An Advanced Introduction,
Prentice~Hall, 1983.

: 4, R.W. Wiener and R. Sincovec, Programming in
Ada, John Wiley, 1983.

5, S. J. Young, An Introduction to Ada, John
Wiley, 1983,

Annual National Conference on Ada Technology 1985 29

AEARALSLLINE AR O Ca vt g /s ia Lb e ST R

Joan M. Sterling is a lecturer
of Mathematics and Computer
Science at Hampton University
in Hampton, Virginia 23668.
Ms. Sterling is a graduate of
the College of William and
Mary and 0ld Dominion Univer-
sity where she received a
Master's Degree in Mathematics
and a Master's Degree in
Computer Science respectively.

Vet

.

QUEUE_MANAGER, A Useful Example For Teaching Ada

David Rudd

Department of Computer Science
University of New Orleans

New Orleans,

Summarz

It is the author's belief that clear, well-
constructed examples play a major role in teaching
the concepts and methods of computer programming.
The purpose of this paper is to describe one

such example (actually a progression of related
examples) that the author has found to be a
valuable and useful pedagogical tool in an Ada
course. The example consists of a package which
can be used in queue management -- first a single
queue with a specified number of integer entries,
then an arbitrary number of queues each with a
(possibly) different number of integer entries,
and finally an arbitrary number of queues each
with a (possibly) different number of entries

of an arbitrary type.

1. Introduction.

It is the author's belief that good examples
play a major role in computer science education.
It is fine to discuss a general philosophical
framework for a concept, why it is important, and
rules and methods for implementing it; but there
is no substitute for a clear, non-trivial example,
Student appreciation and comprehension are greatly
aided by illustrative examples of concepts.

Since the package is the major new feature of
the Ada programming language, it is especially
desirable to incorporate packages into important
examples and homework assignments in an Ada course.
The purpose of this paper is to describe a series
of packages of increasing complexity and utility
which can be used to illustrate such major features
of Ada as exceptions, generics, private types,
unconstrained arrays, and variant records. The
packages are presented as progressively more
powerful solutions to the general problem of
managing queues.

2. The Original Problem.

In order to couch the problem in a reasonably
realistic setting, we consider an office with 10

30 Annual National Conference on Ada Technology 1985

LA 70148

telephone lines numbered 1 through 10. Callers
are all trying to reach an agent in order to have
their questions answered. We assume that only one
person can talk to the agent at a time; the others
(if any) remain on hold.

The operator who initially answers the calls
places callers in a first-come-first-served queue
and connects the caller at the head of the queue
to the agent when a signal is received from the
agent. At any time, the operator wishes to be
able to do the following:

1) place a caller at the tail of the queue

2) remove any entry from the queue

3) connect the entry at the head of the queue
to the agent and have that entry removed
from the queue

4) list the entries in the queue, in order.

3. QUEUE_ MANAGER 1.

The first assignment is to write a package
which can be used for the original problem. A
possible solution is given below.

- The purpose of this package is to manage
-- a queue of integers from 1 through MAX SIZE.
-~ The queue will be represented as an array

-- with 1 the index for the head and COUNT the
-- index for the tail. The package can be used
-- to perform the following operations:

- 1) insert an entry at the tail of the
- queue

- 2) remove any entry from the queue

- 3) display the entry at the head of the
-- queue, then remove that entry

- 4) list all entries in the queue in

- ascending order.

with TEXT I0; use TEXT 10:

package QUEUE_MANAGER 1 is
procedure INSERT (X : in INTEGER);
procedure REMOVE (N : in INTEGER);
procedure CONNECT;
procedure LIST;

end QUEUE_MANAGER_1;

o LA
<
ll 'l .l ‘t ‘1 .

f ‘. '.. '!- &

.]
ot

N R
L I

»

etatats

A

PR
Lo e e S

package body QUEUE_MANAGER 1 is

package INT_IO0 is new INTEGER_IO(INTEGER);
use INT_IO;

MAX SIZE : constant INTEGER := 10;
COUNT : INTEGER range 0O..MAX SIZE := O;

Q array (1..MAX SIZE) of INTEGER;
procedure INSERT (X : in INTEGER) is
begin
COUNT := COUNT + 1;
Q (COUNT) := X:
end INSERT;

procedure REMOVE (N : in INTEGER) is
begin
for I in N .. COUNT -~ 1 loop
Q(I) := Q(I + 1);
end loop;
COUNT : = COUNT -~ 1;
end REMOVE;

procedure CONNECT is

begin
PUT_LINE("head of queue is "); PUT{Q(1l));
REMOVE (1) ;

end CONNECT;

procedure LIST is
begin
for 1 in 1 .. COUNT loop
PUT(Q{(1)); NEWL}INE;
end loop,
end LIST;

end QUEUE_MANAGER 1;

The students might be presented with this
particular solution for purposes of discussion.
Here are some suggestions for such a discussion.

1)

2)

3

-

4)

What is accomplished by declaring the

array object Q in the body of the package?
(If it were declared in the specification,
the integrity of the package might be
compromised, For example, a user program
would be able to automatically insert phone
number 2 at the head of the queue each time
it rang, or not allow number 5 into the
queue at all.)

What happens if you attempt to insert into
a full queue or remove from an empty queue?
How can exceptions be used to improve the
robustness of the package?

Supposed it is decided to change the
representation of the queue from an array
to a linked list. What changes, if any,
would have to made in the package specifi-
cation, body, and user program?

The package could be made more complete
by including a procedure to present the
user with a menu of choices. Then the

statement part of the user program could

consist of only a single statement -- a
call to the menu procedure. Is this a good
idea? Show how to incorportate such a
procedure into the package.

5) Since this package is going to be used by
human beings, who are by their very nature
error prone, it is important to provide
some means for recovery from the inevitable
input errors (e.g. typing the letter "1"
instead of the number 1). What feature
of Ada gives the package the means to
recover from such errors? (This is a good
way to see the need for exceptions such as
DATA ERROR.)

4. QUEUE_MANAGER 2.

We are now ready to consider making our
QUEUE_MANAGER more powerful, and in so doing we
introduce some additional Ada features.

We can imagine that our customer is pleased
with the package QUEUE_MANAGER 1, so much so in
fact that he wants to use it to manage other queues,
still of integers but with different lengths.
Package QUEUE_MANAGER 2 is to provide this addition-
al capability. A possible solution is given below.

- The purpose of this package is to

-- manage an arbitrary number of queues of

-- integers, each with a (possibly) different
-~ size. Each queue Q will be represented as
-~ an array with 1 the index for the head and
-~ Q.COUNT the index for the tail.

- The package can be used to perform the
-~ same 4 operations as QUEUE_MANAGER_l.

with TEXT IO; use TEXT_IO;
package QUEUE MANAGER 2 is

type QUEUE (NUMBER_QF_ENTRIES : INTEGER)

is limited private;
-- QUEUE is a discriminated private type with
~- discriminant NUMBER OF ENTRIES

procedure INSERT (Q : in out QUEUE;
X : in INTEGER);

procedure REMOVE (Q : in out QUEUE;
N : in INTEGER):

procedue CONNECT (Q : in out QUEUE);

procedure LIST (Q : in QUEUE);

private
type QUEUE_DATA is array (INTEGER range
<>) of INTEGER;
type QUEUE (NUMBER_QF_ENTRIES: INTEGER) is

record
QUE : QUEUE_DATA (1..NUMBER OF_
ENTRIES) ;
COUNT : INTEGER := O;

end record;

end QUEUE_MANAGER_2;

Annual National Conference on Ada Technology 1985 31

."'.

= o
“~

.
PO
S -~
AR -

~ - ..
S
aYatata

[N

L R]

w -
s

YA

3

~

SndSn Aalafad M e R e R W Y o=

MODELING ADA TASKS — AN INITIAL SURVEY

R.M. Blasewitz and M.J. Gagliardi

RCA Government Systems Division
Missile and Surface Radar

Abstract

This paper presents the results of a preliminary investiga-
tion into techniques and methodologies that support the rep-
resentation of real-time system designs in Ada. It represents
an overview of some widely disseminated methods, including
Buhr diagrams, Petri Nets, PDL code and flow charts. The
objective of the research is to derive a means of communicat-
ing real-time processes in a suitabie fashion across the life
cycle of the software product. The paper also discusses some
of the problems encountered with the research due to the
present state of Ada tools and compilers.

Introduction

The Ada* programming language provides a technique for
expressing potential parallelism as an approach to solving
the synchronization and communications problems of today’s
major real-time systems. The name given to programming
notations and techniques for expressing potential paraliel-
isms is “concurrent programming.” Concurrent program-
ming is important because it provides an abstract viewpoint
from which to study parallelism without being buried by the
details of a particular implementation. The ability to write
concurrent programs is very desirable for a number of rea-
sons:

1. Real-time systems, operating systems, data-base sys-
tems can be expressed in a convenient notation at a
high level of abstraction.

2. Algorithms that cry out for concurrency are best ex-
pressed using language features that support and model
concurrent events.

3. The complex reasoning involved in concurrency and ex-
ecution time constraints can be made more user friendly
and hence understandable.

4. Program execution time, efficiency and elegance can be
greatly enhanced without pushing the state of the art of
fourth-generation hardware.

5. A certain class of problems can be most easily and ele-
gantly solved by parallel communication processes in-
stead of the often-used sequential methodology.

*Ada is a registered trademark of the U.S. Government Ada Joint Pro-

gram Office (AJPO.

The initial desire to use concurrent programming languages
stemmed from attempts to write conceptually concise pro-
grams that reflected or mirrored the structure of an algo-
rithm. However, current interest is probably largely moti-
vated by the desire to take advantage of recent advances in
the realm of computer architecture. These advantages
materialize in many ways, namely:

1. More computing power per device per dollar is being
realized today.

2. Computing facilities offered by microcomputers or com-
puters on a chip rival those of larger minicomputers and
main frames.

3. Benefits of highly parallel hardware architectures and
concepts are accruing through support of concurrent op-
erations in an efficient and understandable manner.
These benefits are now of concern in the scientific com-
munity.

Although concurrent languages offer aid to the programmer
in abstracting the functional features of a program from the
implementation of an algorithm, the real tor unreal) “art” of
designing parallel programs is still undeveloped because we
lack formalism and understanding of parallel programs. To
further complicate this matter, there are very few. if any,
acceptable methodologies or practices in current use to
clearly and concisely represent real-time or parallel program
design. Although many methods have been proposed, few
have gained wide acceptance within the software develop-
ment community. Is the problem due to the complexity of
software designs, languages, concurrent programming
knowledge, or to a lack of acceptance of new programming
concepts and paradigms? Or is it a combination, subset or
superset of those reasons? Obviously there is no universal
answer to this question. A survey of existing methodologies
or practices in this broad arena leaves one more bewildered
than one would expect. The picture becomes even more fuzzy
when Ada enters as a possible candidate for real-time pro-
gram development. The potential in all these techniques is
clearly very high, but we cannot expect instant solutions for
embedded or large-scale computer program developments in
the real-time programming community.

Annual National Conterence on Ada Technology 1985 33

Fo

Where does Ada fit into this section of the software universe? Coupled with this look at Ada. imittal conclusions are drawn
It is generally agreed that earlier languages such as PL 1, regarding capabihities for real-time programning represen-
Algol 68, Concurrent Pascal. Modula or even Euclid have tations using Ada as the implementation language
offered only rudimentary facilities for concurrent program-
ming. From a programming language viewpoint, Hoare's An Ada program that uses tazking may suffer from sigmifi-
proposal to use the rendezvous concept as the basis for con- cant portability problems tdue to Instruction execution times
current programming was a4 major advance. from machine to machine). but this aspect of 1ts capability

was not considered a major 1ssue 1in evaluating its present
Houare defined a concurrent program as a collection of se- capabilities as a real-time language It 15 also assumed that
quential programs that can execute in parallel — all cooper- the current lack of full-capability Ada compilers rnot to say
ating to implement a common objective. These sequential production-grade compilers) will svon be alleviated
programs or processes interact by first synchronizing and
then exchanging information. Synchronization and commu- I1. Major Approaches to Representing Parallel
nication are viewed as an integral activity that is called the B Program Execution
rendezvous. This leads us to Ada. whose concurrency fucili- T
ties are based on Hoare's ideas with modifications and addi- This section examines a number of the six noted major tech-
tions to deal with the realities of hardware and with other nigues presently used to represent or communicate the be-
practical concerns such as error handling and program de- havior of parallel processing svstems Included in this set
velopment. Ada is the first major general-purpose program- are:
ming language to provide high-level concurrent program- .
ming facilities based on the rendezvous concept. Ada and its 1. Petri nets
facilities are elegant and easy to use. but are untested and 2. Buhr diagrams
untried to any significant degree. Only time and practical 3. Fl .

3. Flow charts

experience will lead to a detailed evaluation of Ada's capa-
bility in this area. This paper proposes to evaluate Ada's 4

initial capability in this area and to offer a range of view- 5

points for real-time design representation in Ada. However,

this research is somewhat weakened by the lack of Ada com- 6. Object-oriented design
pilers to support the concurrency features of Ada in total. As 7

such, these observations are certain to undergo perturba-
tions as more efficient Ada compilers become available. 8. Mathematical notations

Although all of these techniques play an important role, the
ability to represent design through good, clear diagrams ap-
pears to be the best communication tool. When systems are
modified, clear diagrams are an essential aid to maintenance
1. The basis of the study will be Ada in its present state and allow changes to be made with a better understanding of

rcompiler state). the consequential effects of that change. Obviously, mathe-
matical notations are important, but somehow lack the
power of noise-free communication made available by clear
diagrams, charts, etc.

. PDL code
. State graphs

. Functional decomposition techniques

The methodology employed by the authors centered around
the following considerations:

2. Various approaches to representing real-time or paral-
lel program execution will be examined against conven-
tional methods.

3. Ada's usefulness in the concurrency programming do- The first techm'qu_e in'vestigated is the Pg;ri Net, developed
main will be assessed. with emphasis given to its ability by the German Scientist Carl Adam Petri in the early 1960s
to implement algorithms in real-time. to study and model communicating parallel automation.

These nets have a mathematical side and a graphical, intui-
tive side. As such, these nets offer a possible means of clari-
fying the abstract concepts of parallel programming.

4. Using the Ada designs as a basis. a real-time represen-
tation will be presented that combines the present
working knowledge of presently available real-time de-
sign representations. A Petri Net is a directed graph that contains two kinds of

nodes: place nodes, and transition nodes. Place nodes are

represented by circles and transition nodes by means of bars,
small black boxes, or rectangles with statements in them.

Figure 1 illustrates a simple Petri Net with four place nodes

and three transition nodes.

The recommendations and conclusions regarding Ada as a
real-time systems language rest almost entirely on design
experience gained from an operating system project that in-
cluded the modification of a vendor-supplied Ada compiler
for translation from VAX 11/780 code to Nebula code. Al- P Y Py 2 2 3
though Ada is the first language to use the rendezvous con-
cept, it is the opinion of the authors that the compiler tech-
nology has not given Ada the chance it deserves. Very few of
the present Ada compilers implement full tasking (Ada’s
concurrency facility) in a manner conducive to a fair and
conclusive study of performance or efficiency. Nontheless,
other aspects or issues of Ada can be evaluated, such as
expressive power, user friendliness, concurrency capability,
and scheduling mechanism capability.

Figure 1. A Petri Net Graph with Places and Transitions
Labeled.

34 Annual National Conference on Ada Technology 1985

Before we can examine how Petri Nets model parallel proc-
esses, let us clear up some basics about their operation. Arcs
that connect places and transitions are called directed arcs.
In general, a transition has input places and output places: a
place is an input place of a transition if that place has an arc
directed at its transition. For example, place P, is one of the
input places for transition t, and one of the output places for
t.,. These input and output places can be mathematically
represented as:

ity - PPy}
ity - {Py)
oy - Py

where [(t,) = Input place for
transition t,
{P..P, } is the set PP,
at the input or output places
and
0ty = |
Oy -
Oty -

P.} where O (t,i = Output place for
P, Py transition t,

}

Petri Nets can also be marked by placing tokens, repre-
sented as small dots. in the net place nodes. The Petri Net
executes by firing its enabled transitions. A valid firing situ-
ation is defined as one in which each input place must have a
token in it.

Therefore. the structure and marking of a Petri Net deter-
mines its execution. When the firing occurs, the changes are
marked by placing the input tokens into each of the transi-
tions output places. Consider Figure 2. which is a marked
version of Figure 1.

Figure 2. A Marked Petri Net Graph.

Now assume that enabled transition t, in Figure 2 fires. The
new marking is then illustrated by Figure 3.

Py

Figure 3. A Fired Petri Net.

If we again fire the enabled transitions., we have the Petri
Net as represented in Figure 4. This sequence of events illus-
trates the basic working of the Petri Net. Our next concern is
the actual use of these graphs in modeling computer pro-
grams.

To model the dynamic behavior of a system, the execution of
a process is represented by the firing of the corresponding
transition as illustrated. The changes in system state are

Figure 4. The Second Firing of the Petri Net.

represented by the movements of tokens in the net. Without
getting into the mathematical representations afforded by
Petri Nets, one can easily model sequences of statements by
transitions, the points between actions by places. and the
value of a program counter by the location of a Petri Net
token. Before moving on to parallel program modeling. let us
examine the use of Petri Nets in modeling sequential pro-
grams consisting of sequence of statements, conditional
statements, and loop statements.

Consider the following partial Ada code for division with
remainder:
Quotient =z § ;

numeratar := x
denominator :=

H
Yy s/

while numerator >= y lo3p

quotimsnt :2 guotient & 1 ;

numerator := nuserator - denominator ;
end (odo0 ;7

The Petri Net representation for this code is illustrative of
the elements of a sequential program. The sequential ele-
ments with their Petri Net representation are given in Fig-
ure 5.

CODE PETRI NET REPRESENTATION

SEQUENCE

CONDITIONAL

LOOP (WHILE)

Figure 5. Modeling Sequential Structured Elements With
Petri Nets.

Annual National Conference on Ada Technology 1985 35

-.,, ,. . .
""""‘b""'-"" . R
’v‘v'y’“v'ffl't' : REEREREAR U

]
e’

’
.

ps

L SRS o

4

Z
]

4

PR
. _F
RS

gy ' Leony

¥

Ll R g
Wi

.

8
: -,

;
.

L S T
A .

"

The Flowchart for the Ada program is given in Figure 6 with
the corresponding Petri Net given in Figure 7.

$1 QUOTIENT: = 0:
NUMERATOR: = X;
DENOMINATOR: = Y;
IF NUMERATOR = = ¥
FALSE
TRUE
QUOTIENT: = QUOTIENT +9;
S2 NUMERATOR; = NUMERATOR -
j DENOMINATOR:

Figure 6. Flowchart For Ada Division Program.

S1

FALSE

TRUE

Figure 7. Petri Net For Ada Division Program.

We have described classical Petri Nets up to this point. We
can now extend the classical Petri Net with a mechanism for
“zero testing” a place; this mechanism is called the inhibitor
arc. An inhibitor arc from a place P, to a transition t, termi-
nates with a small circle, rather than an arrowhead. Figure
8 illustrates the use of an inhibitor arc.

Piva

Pi+2
Figure 8. The Inhibitor Arc Extension For Zero Testing.

For t, to fire there must be at least one token in P, and zero
tokensinP . Thus the transition t, tests place P ., for zero.
Simply. a transition cannot fire unless its inhibitor arc place

Aal Fads Sl il A St At st A Al O v

is empty. This type of scheme can be used to model concur-
rent programs rather simply. To represent concurrent activi-
ties no new Petri Net mechanisms need be introduced. To
spawn new paths of control. a fork or cobegin is used, as
shown in Figure 9.

Figure 9. The Petri Net Cobegin or Fork (one path in, two
paths out).

Using this mechanism we can represent two or more parallel
paths, where each path operates independently. Figure 10
illustrates a possible Petri Net for parallel activities and
precedence, since the completion of activities represented by
t,.t..ts must precede the start of activity t,.

Figure 10. Parallel Activities With Precedence For Petri Net
Graphs.

Obviously, Figure 10 illustrates a straightforward and sim-
ple parallel scheme. If we are concerned with shared re-
sources or possible conflicts the Petri Net representations
become more complex. but are still representable without
deadlock. Of more importance is the case of concurrent tasks
which need to communicate or synchronize with each other.
In Ada this process occurs through the rendezvous. Figure 11
illustrates how synchronization can be achieved by rendez-
VOus.

The Petri Net illustrates that Task B does not want to fire its
t, and that task A does not want to fire its t, until task B has
fired its t,. If Task B reaches P,, before task A has fired t,,
task B will wait for task A. Task B detects that task A has
fired t, by the presence of a token in Py, Looking at task B
as a server task and task A as the clirnt task, the transitions
have the following meanings:

A requests service from B (A is suspended)

B accepts A's request for service (rendezvous is
initiated)

36 Annual National Conference on Ada Technology 1985

N

'y

S R S e T ey |

»

. e d
k aadlt |

<

v

y LS N AL R N A T T
‘ P . .

> v v

-~

S

SORV A B A

T
.

Y@

v

(s

et B

=
. n

’ 0

¢

v
»
v

TASK A TASK B
P1a P3b Pib
ty 1
t
1
PZ!a
F'Za
P2y
ty \
2
P ()
43 P4b

Figure 11. The Ada Rendeztous Mechanism.

B t, = B finishes performing the service for A trendezvous
terminated)

At, = A resumes operation after its rendezvous with B

This has been a quick and simplistic look at the modeling
capability of Petri Nets. More detailed information is in-
cluded in citations 15, 12, 5, 24, 25 in the bibliography.

The second description technique presented here is the
method proposed by R. J. A. Buhr in his book Systems Design
with Ada. His objective was to provide a design-oriented in-
troduction to Ada and to present a useful, graphical design
notation. His methodology is intended to be:

1. an aid to conceptualizing the organization of a system in
Ada terms

2. an approach to communicating design approaches and
decisions

3. a basis for computer-aided design of systems, using Ada
as the specification and/or implementation language.

The description techniques presented also include concur-
rency representations and cover solutions to the basic prob-
lems of material exciusion, synchronization, scheduling and
deadlock. Only superficial knowledge of Ada is required to
understand this brief introduction to the pictorial conven-
tions concerned with concurrency. However, one should be
somewhat familiar with the concept of an Ada task and its
rendezvous mechanism.

Buhr presents a set of notations for use in representing Ada
concurrency, shown here in Figure 12.

ACCESS CONNECTION

TASK WITH ENTRY “SOCKETS”

@ ORDER OF ACCESS

OATA FLOW

Figure 12. Basic Pictorial Conventions for Concurrency
Features.

As shown, pockets of tasks, known as entries in Ada, behave
like any other interface functionally, but have exclusivity
and timing concerns. The rendezvous mechanism requires
the calling task to meet with the accepting task, then wait
while the accepting task services the call. If the accepting
task is busy, then it cannot accept a new call. The new call-
ers are then placed in a queue associated with that particu-
lar entry, which ensures mutually exclusive processing of
entry calls from different tasks. The basic symbols given in
Figure 12 are not sufficient for all purposes and Buhr recom-
mends additional symbols tas shown in Figure 13).

UNCONDITIONAL
TYPICAL
ENTRY
B. REQUEST
CONDITIONAL REQUEST
SELECT
B. REQUEST;
ELSE
ALTERNATE ACTION
END SELECT
TIMED
T
SELECT
B. REQUEST;
OR DELAYT;
ALTERNATE ACTION;
END SELECT;

Figure 13. Structure Graph Symbols Expanded for Various
Types of Entry Calls.

Annual National Conference on Ada Technology 1986 37

To further expand the symbology, entries that are accepted
in o particalar order are illustrated as in Figure 14,

FIXED ORDER LOGIC PROCESSING

ACCEPT A
OTHER A PROCESSING

ACLEPY B
QGTHER B PROCESSING

] RDER
TIMED 0 seect
ACCEPT
s 77 5] /[o] ; OTHER A PROCESSING
0R
/[([&] z (8 Jfee - ACCEPT B
OTHER B PROCESSING
END SELECT
CONDITIONAL FLECT
X FALSE SELRREN X
> ha CESSING
] DTHER A PROCESS!
Y FALSE oR
. [8] ® INDICATES mizcvcma
GUARDS OTHER 8 PROCESSING
END SELECT
TIMEQUT SELECT
ACCE

PT A
OTHER A PROCESSING

OR

[2] ACCEPT B
— { 8) ACCEPT B PROCESSING
0R
[T J DELAY T
DELAY PROCESSING
END SELECT

Figure 14. Fixed. Timed, Conditional. and Timeout
Conditional Entries.

To illustrate the nature of intertask communication and the
use of the rendezvous mechanism, consider as an example a
simple buffer (Figure 15). There is a consumer task, a buffer
task and a producer task. The buffer task has entries for read
and write to be used by the consumer and producer.

The symbols indicate the flow of data, the entries and mu-
tual exclusion of the two actions (read/write). To illustrate
the rendezvous mechanism, Buhr diagrams provide the di-
rection passed between the tasks as illustrated.

PRODUCER CHAR

BUFFER

CONSUMER

Figure 15. A Basic Buffer With Producer and Consumer
Tasks Shown Pictorially.

To further illustrate the grace and simplicity of Buhr dia-
grams, we have selected as an example the interaction be-
tween tasks for a disk manager function. Using the symbol-
ogy presented allows one to pictorially illustrate the concur-
rency of the system. Figure 16 illustrates the disk manager
function using Buhr Diagrams. In this particular system,
there are six major tasks with communications occurring
between the two major tasks, Disk start and Disk complete.

REQ_PKT COUNT = MAX
[}

ey

COUNT=0 DISK_REQUEST

REQ_PKT

DISK_START

REQ_PKT

DISK_IOC

DISK_INTERRUPT_HDLR

o

DISK_COMPLETE AST_PKT

COUNT = MAX

AST_PKT

Figure 16. The Disk Manager Function Illustrated Using
Buhr Diagrams.

Obviously we have only touched the surface of Buhr's
methodology or symbology here, with the intent of avoiding
too much detail too early. Detailed analysis of the methods
are given in the following sections when Ada is formally
introduced via examples.

The third methodology, examined in detail, is the state dia-
gram approach. This type of approach is useful when entity
tapes, variables or programs can be thought of as being in a
given number of states. It has been used in the design of
control program mechanisms, systems software and network
protocols. The basis for this approach is that a finite-state
machine is a hypothetical mechanism that can be in one of a
discrete number of conditions or states. Events may cause it

38 Annual National Conference on Ada Technology 1985

to change its state. In this manner, a process can be repre-
sented as a collection of finite-state machines. This gives a
precise way to conceptualize and draw complex processes
and to check that all possible state transitions have been
reconciled.

State transition diagrams are used to represent the behavior
of finite-state machines. A finite-state machine is thought of
as a black box that can be in one of a number of possible
states as illustrated in Figure 17.

INPUT —» 0
STATES —>
1, ——— S 9 { outeuts
sl' B] ——-—»03
0"

Figure 17. A Finite-State Machine With Finite Inputs,
Outputs and States.

The finite set of input types is limited by allowing only one
input to be active at any time. This is usually accomplished
through a queuing mechanism which allows inputs to be
handled one at a time. The state of the machine is a static
discrete variable which can change only at the instant when
an input is received. Algebraically we could represent the
state machines behavior as:

Sty =f, (S, Lign

O =, (S, Ian

where

t, = time that an input is received

s (t,} = state of the machine at t,

Ity = input at time ¢,

f, = funetion which dictates behavior of machine
as a response to S (t,), I (t)

Sw = state of the machine for t ., or mext state

0O (t,) = function of S (t)), I (t)), dictating the output at

time t,

These two functions define a state machine. Using circles to
represent the states and arrows as the transition mecha-
nisms, outputs can be clearly illustrated as shown in Figure
18.

The arrows between the circle: siiuwing the state transitions
are labeled with the input that stimulates the transition and
the resulting output. Some inputs cause no state change as is
illustrated by state 5 receiving an [, input. Sometimes more
than one input can cause the same transition, as between
states 3 and 4. Obviously the drawing of Figure 18 is useful
for representing machine behavior, but it does leave some
possibilities unanswered. such as what occurs when a state
receives an input that has no transition arrow? In order to
complete the description of a system in this manner, a state
transition matrix can be drawn as shown in Table 1.

INPUT
l fh-OUTPUT

1,/0
12 13/05 «— NEXTSTATE

Figure 18. Example Of A Finite-State Machine Transition
Diagram lllustrating Outputs and State Changes.

TABLE 1. STATE TRANSITION MATRIX WHICH CON-
TAINS THE INFORMATION ILLUSTRATED BY THE
STATE DIAGRAM

INPUT STATE
BEREN KRR

PR 7% N N N i

2 - Jwog| - T | -] B
Iy - woglan, | - | -

Iy - =] - {u| -

I - < e, | - | -

Ig < = || -

Applying these state mechanisms is rather straightforward
if one considers the various concurrent actions as states with
the transitions occurring as needed. As the concurrency be-
comes more complex, however, or as the transitions among a
number of states become large, these diagrams become clut-
tered and confusing. A possible approach in this case is to
use the so-called fence diagrams, where states are shown as
vertical bars and transitions are horizontal lines linked to
the states by arrowheads. Another possible reason for avoid-
ing these charts is that they appear to be data flow diagrams.
which can confuse their true meaning. However, they are
useful in showing the multiple states possible for entity

Annual National Conference on Ada Technology 1985 39

0 _' *
RS
'l' _..~ .-i -
LS LS
LR GE
EYASL S S
IS
(SN NN

types in data base systems. They are also useful for illustrat-
ing the behavior of systems with multiple inputs, complex
processing and synchronization requirements. They there-
fore have their place in representing computer program de-
sign, although fine tradeoffs would be required to determine
their overall usefulness in representing complex concurrent
events found in real-time systems.

The sections following include a description called Ada Pro-
gram Design Language (PDL) representation. PDLs present
an elegant possibility in the consideration of design repre-
sentations. They have certainly taken a step forward within
the software development environment presently and are
becoming increasingly popular as design representation
tools and analyzers. The reasons for the popularity of Ada-
based PDLs include:

1. the power of the Ada programming language is utilized
in the design process

2. communication is enhanced by using the same lan-
guage notation throughout the life cycle

3. various levels of design detail can be represented and
focused upon

4. a mechanism is provided for supporting the transition of
Ada based software engineering practice.

Using the work accomplished by the IEEE working group in
this area as the major reference (26, 27] allows us to summa-
rize Ada’s power as a PDL: “Ada provides constructs which
support modularity, abstraction, information hiding, concur-
rent processing, generics, exceptions, strong typing, and
data description. These are many of the features required as
a design language.” The PDL examples illustrated in this
paper comply with Ada syntax and semantics, and are used
to illustrate the essence of the method and the robustness
offered by Ada.

Other possible representation approaches include Object Or-
iented Design, Flow Charts, Structured Analysis Concepts
(data flow design, data structure design), Functional Decom-
position, and Programming Calculus.

Many claims have been made about the different strategies
for designing software. For functional decomposition, the
proponents have largely said "it is a good design, for sure.”
For data flow design methods, they have said “this design is
better than yours. Let me tell you why.” For data structure
design methods, the claim is that “mine is right, the others
are wrong.” In the programming calculus, the contention is
that "Program A is probably correct, and the others are un-
proven.” All of this leaves an area for innovation in the area
of program design. If one restricts the design methodology to
real-time design, the above methodologies fall even harder.
The current state of the art was represented schematically
by Johnson in the form of Figure 19.

The design of real-time systems for the future will place
some requirements on a complete methodology, not just the
design representation chosen. These demands could include:

1. a rational procedure for partitioning and modeling the
problem

40 Annual National Conference on Ada Technology 1985

REAL-WORLD
PROBLEM ENVIRONMENT

DATA MATH-
STRUCTURE EMATHICAL
MODEL MODEL

FUNCTIONAL
DECOMPOSITION

X

¢ 600D PROGRAM STRUCTURE)
SOMETIMES ~ SOMETIMES USUALLY MAYBE

Figure 19. Current State of the Art in Using Design
Strategies.

2. consistent designs as a resultant output (not dependent
on personne})
3. accommodation for partitioning of the design process

4. correctness of individual design steps guaranteeing the
correctness of the final combination

5. opportunity for innovation in the algorithmic stage, but
controlled during the entire design process.

The only certainty in all of the literature on design is that we
agree that we are not there yet. There is still too much magic
involved in the design of software, whether it be real time or
not.

II1. Ada’s Approach To Parallel Programming

In order to write programs that are concurrent or parallel in
nature, the programmer needs a way of specifying which
processes are conceptually concurrent. In Ada, the language
construct used to group such sequences of actions is known
as a task. Tasks are entities that operate in parallel. There is
concurrent execution of two or more threads of control. How-
ever, the concurrency may be actual, as in the case of sys-
tems configurations that utilize multiple processors, or ap-
parent, as in a multiprogramming environment with inter-
leaved execution or a single processor. Declaring a unit to be
a task provides only logical concurrency; the language can-
not assure any assumptions about the efficiency or execution
speed of these tasks. The operating system in conjunction
with the routine support system has the responsibility for
scheduling different tasks and for allocating any resources
they may need.

In Ada, tasks represent independent program units that can
execute at their own pace and are essentially isolated unless
the programmer specifies explicit synchronization points.

The svnchronization point serves as a place where one of the
affected tasks can "wait” for the other task process to rendez-
vous with it. This synchronization mechanism delineates the
code which is to be executed while the tasks are attempting
svnchronization. In particular, most tasks can be broadly
categorized as either servers or requesters. Usually, request-
ers are the active elements of a system of cooperative tasks.

: They are servers to accomplish certain defined functions.

) Servers are generally passive, reacting only to the external
requests generated by requesters. The Ada tasking mecha-

: nism permits the user to define serverirequester relation-
ships clearly and concisely.

Tasks have three main purposes:

1. they may model or control co-existing objects in the
problem domain

I 2. they may serve as controlling or synchronizing agents,
providing the effects of semaphores and locks, buffers,
monitors, schedulers, controlling access to shared re-
sources, or synchronizing the actions of otherwise inde-
pendent tasks

3.they may serve to define concurrent algorithms for
¢ more efficient execution in a multiprocessor architec-
- ture.

In Ada, tasks call upon the programmer to decompose a prob-
) lem into a manageable group of independent threads of con-
i trol. Without any regard for the physical representation, the
i abstraction of a solution with many tasks is a natural one,
drawn directly from our understanding of the problem space.
The key in using tasks is being able to represent real-time or
real-world parallel activities within a level of our solution
space. This is not a minor step, for many programmers/desig-
ners are very comfortable with sequential solutions to prob-
lems, but are not at ease with concurrent solutions to prob-
l lems that could utilize concurrent actions. As a matter of
fact, we could state more directly that the art of designing
parallel programs is underdeveloped because we do not un-
derstand or perceive parallelisms clearly and we have little
knowledge to communicate about these designs.

) The major topics examined in this section include task spe-
. cifications, rendezvous mechanisms, control mechanisms for
the rendezvous, and task types and families.

This section assumes that the reader is somewhat ac-
quainted with Ada and its basic constructs. Since tasks are a
unique feature of Ada and unlike any other feature found in

) high-level languages, they merit some examination and ex-
planation.

)

Task Specifications

Tasks are program units that may operate i parallel with
other program units. A task speafication. hke a packoge
specification, defines the interfuce which other reluted pro-
gram components use to interact with the task. The interface
consists of entry declarations that are similar to the subpro-
gram declarations in a package specification. Some simple
examples of an Ada Tusk Speaification are illustrated below

task “yfter 15 -- tiss eith entrics
entry Pat Lin_patter: 11 messa;e)
sntry Tias (troa_=gyfter: dut messaje) /
endg Jutfer |

-~ or

task “uffer 15 -- task sithout entries

eny Jutter o
- ar

task iufter | -= task eithout entries

As illustrated above, some tasks have entries. An entry of a
task can be called by other tasks. A task accepts a call of one
of its entries by executing an accept statement for the entry.
Synchronization is achieved by the rendezvous mechanism
and is discussed in the next section. The model offered by
Ada is based on Hoare's Communicating Sequential Proc-
esses, in which parallel processes synchronize and communi-
cate by means of input and output statements.

The Ada Rendezvous Mechanism

Synchronization between two tasks occurs when the task
issuing an entry call and the task accepting an entry call
establish a rendezvous. The two tasks communicate with
each other during the rendezvous. Entries are also the pri-
mary means of communicating between tasks. To illustrate
this mechanism, an example is given which is based on a
creator/server of messages. The creator writes the messages
and provides it to the server, who transmits it to some other
location. Since the creator is providing the service, it must
have an entry into its process by which it can accept a mes-
sage. This can be accomplished as follows:

task Creator {s

entry Transmitor (m: in message} ;

end Creator

The task specification establishes the interface to the ser-
vices provided by the task body. The entry declaration is
much like a procedural declaration. It has the same format
and may have in, out, and in/out parameters. The corre-
sponding task body defines the processing to be done by task,

Annual National Conference on Ada Technology 1985 41

- >
o e

" e
r .

including an accept to tulfill the entry specification. The
hudy for the above task speaification is given by:

task body Creitor is

oUtout_wessage : messaje

orocedure Transait {any_messaqge: in wessage) is

null ;
enc Transmit ;

pegin
ioop

accept Transeitor (m: in message) do0

autput_message

end Transwmitor ¢

HEA I

transmit (outout _wessaze) 7

ena loop /
eng (reator /

-~ The specitication and body of the Server task {s given below.

task Server ;

task body Server is
text : message

pracedure write (text_out: out wessage) is

null 7
endg write /

degin
\oop
write (text)

Creator.Transafitor (text) 7

end looo 7

end Server ;

The call in the above code is given by
creator.transmitor (text);

and looks like a procedure call. However, the major differ-
ence is that server and creator are operating in parallel. This
implies that the rendezvous does not occur until a task is
suspended. It will then wait for the called task to reach the
accept statement. If the task providing the entry reaches the
accept statement first, it waits until the entry is called.

When both conditions have been satisfied, the tasks are syn-
chronized and the information is passed via the parameter
list. In summary, the rendezvous brings together what had
been two independent threads of control into a single syn-
chronized thread of control. In this manner, the Ada rendez-
vous becomes the mechanism for task coordination and for
sharing information. It should also be noted that the rendez-
vous mechanism has an asymmetric nature, since:

1. the calling task must know the name of the accepting
task as well as the specification of the entry point

2. the task providing the entries and accepts is essentially
passive; it provides a service to any task that knows
how to call it

3. the accepting task does not know the name of the caller

4. a task providing entries may have a number of tasks
queued waiting for service at a number of different en-
try points.

This asymmetry allows us to distinguish between active and
passive tasks. Passive tasks provide services through entries
and accepts. Active tasks use the services provided by issu-
ing entry calls. These active tasks are similar to application
tasks that may use the services provided by a real-time oper-
ating system. Passive tasks have the characteristics of oper-
ating systems and require considerable skill to design and to
implement.

Control Mechanisms For The Rendezvous

Each of the two types of tasks illustrated previously (the
calling task and the called task) has a mechanism for con-
trolling the rendezvous. For the called task, it is the selective
wait, and for the calling task it is the conditional and timed
entry calls. Each of these mechanisms will be described
briefly.

The selective wait statement is very useful when it is neces-
sary to react to externally changing conditions that make it
necessary to accept entry calls in an arbitrary order. The
selective wait statement permits the programmer to define
several accept alternative actions to be selected. Since the
selected wait contains accept statements, it may appear only
in the body of a task. An example of a selective wait is given
below for the example illustrated previously

task body New_Message §s
recegtacle : message
new_message : ooolean := false 7

select
accept Transeitor (e: in message) Jo
null 7
ena Transmitor
new_Mes3agqe T true

uhen nes_message =>
accept Take (m: out message) do
nult ¢
end Take
new_message :x false
end select ¢

eng loop *
end New _Messege ;

The when clause stipulates that the condition new message
must be true for the take entry to be available for rendez-
vous. The operations on new message ensure the correct or-
dering of rendezvous.

42 Annual National Conference on Ada Technology 1985

Lt 2l e

The calling task has essentially two mechanisms to allow it
to control the conditions under which a rendezvous may oc-
cur. One control mechanism is to issue an entry call only if a
rendezvous is immediately available. This is the Ada condi-
tional entry call. The following code illustrates the above
concept:
selrct
messdre_receiver.transeit (text) ;

: ootional seauence of stateaents
else

. ao alternative action

. (could be null)
enl select ¢

The result is that tie rendezvous will occur only if no other
entry calls are queued for message receiver transmit. If the
rendezvous cannot take place, the alternative action is exe-
cuted.

The second control mechanism allows the calling task to
enter the queue for an entry. If the rendezvous does not occur
within a specified time. the calling task leaves the queue and
continues execution. This is the Ada timed entry call. For
example,

select
sessaze_receiver.transeit (text) ;
. optianal sequence of staitesents
else
aelay 17,0
B alternative ootional senuence of
. statements

-- d4elay 10.0 secnnis

end select ;

If the rendezvous occurs within 10.0 seconds. the rendezvous
task will participate in the rendezvous, execute the optional
sequence of statements, and then exit the select statement. If
no rendezvous occurs within 10.0 seconds, the alternative
optional sequence of statements will be executed.

Task Types and Families

Ada allows the definition of task types for declaring multiple
tasks of similar nature, in the same manner as generics are
allowed for subprograms and packages. It is also possible to
have a family of entries in which each entry of the family is
to accomplish a similar function. Task types facilitate the
declaration of similar tasks. since several tasks can be de-
clared collectively in an array or individually. The declara-
tion of a task type is svntactically similar to the declaration
of a task, the only difference being the presence of the key-
word type in the task specification. For example:

task type Do_something is
entry Do_this
entry Da_that
entry Da_sverything
eng Do_somethinz

The declaration
DS1. DS2: Dosomething:

declares that two tasks become dctive just prior to execution
of the first statement of the subprogram or package in which
they are declared. Arrays where elements are tasks are de-
clared just like arrays with other types of elements for each
element of array DS declared as

DS: array tindex) of Dosomething;
is a task.

SR aa o e o o T e S Sl b eh s
IR IMAC L A S Srt e aach oy e — PPy v —y

v

Task types are also like limited private types. Objects of task
types are constants and cannot be assigned to or compared
for equality. Tasks can be passed as parameters; the actual
parameter and the corresponding formal parameter desig-
nate the same task for all parameter modes. If an application
needs to create tasks dynamically, then access types must be
used. For example, consider access type IndexDoSomething
is access Dosomething: and variable Anotherlndex declared
as
AnotherIndex:Dosomething;

A task can also be created dynamically by calling the alloca-
tor as illustrated by the statement

Anotherlndex:=new Dosomething;
Allocated tasks become active when allocated, and must
have terminated or be ready to terminate when the scope of
the block, subprogram or task in which the access type is
declared is about to be vacated. Otherwise, Ada prevents
vacating the scope section.

We have only briefly described tasks and some of their more
important features. [t is obvious that the subject of tasks and
their potential use is a complicated matter. However, despite
their complexity, tasks are an important and necessary con-
cept. The control of concurrent processes is a necessity in
real-time systems and Ada provides this feature at a high
level of abstraction within the higher level language.

1V. Hlustrative Examples of Parallel Program
Representations Using Ada

The ability to represent parallel or concurrent designs is
essential in communicating a designer’s approach to solving
the real time systems problems of today. A sound knowledge
of Ada’s tasking programming constructs will enable design-
ers to cope with real-time systems at the coding level. How-
ever, the understanding of design representation is en-
hanced through pictorial representations when possible.
This section does not propose to answer all the questions
about Ada and concurrent processing, but does make some
pointed recommendations about design representations and
Ada. The key to success in this area is the ability to produce
Ada designs that are understandable to a broad spectrum of
interested parties. Eventually a concerned organization will
derive its own specialized or tailored graphical notation for
representing concurrent designs using Ada.

This paper includes four illustrative examples of parallel
programming representations. These examples will be de-
scribed using each type of representation: the Petri Net, the
Buhr Diagram, PDL, and the Flow Chart.

There will be annotated code for each example. The repre-
sentations will be compared with each other through these
examples, thus exposing the strengths and weaknesses of
each.

It is the belief of the authors that the information derived
from state diagrams. namely state transition tables, can be
derived from Petri Nets. This is accomplished by placing
tokens in the nodes of Petri Nets for every configuration of
the Petri Net. firing the applicable transitions and marking
the state transitions that occurred in the state transition
table. Therefore. the following examples will not contain
state diagrams as a method of representation.

Annual National Conference on Ada Technology 1985 43

-

tetale
LN

." -

.
.

4

NW L

"
.

]

~*a)

The first example is a simple tasking program introduced by
J. G. P. Barnes. The example problem is to consider a family
going shopping to buy ingredients for a meal. The Ada code
for this example is shown in Figure 20. Suppose they need
fish, salad, and wine. Provided there are three people in the
family, a simple solution may be implemented. The solution
is sequential in the sense that the family must pick up the
items (in parallel), agree to meet at a central location (near
cashier), then pay for the items. The procedure Pick Up
Items is invoked, the three tasks execute in parallel and the
procedure cannot return until all the tasks have terminated
i.e., all the ingredients have been found and the family has
met at the cantral location.

procedure Shopping is
procedure Pick_uUp_Items 1s
task

task
task

Get_Salad ;

Get_wine ;

Get _Fish ;

task body Get_Salad is
begin

-- Find and

null 3

take salad.

end Get_Salad ;

task oody Get_wine 1s

begin
- Find and take wine.
null

end Get_wine
task body Get _Fish is
begin
- Find and take fishe.
nuldl 3§
end Get _Fish ;

begin
nutl 3

end Pick_uo_Items 3
procedure Pay For_ltems is
begin

- 3ive monev to cashier
null 3§

end Pay_FfFor_lItems

pegin
Pick_Up_Items ;
Pay_For_Items 3

end Shopping |

Figure 20. Ada code for the Shopping Program.

The flowchart for this program, shown in Figure 21, is
straightforward. The three subtasks (denoted by the parallel
program with the double stripes on the sides) are contained
in the procedure Pick Up Items (denoted by square box).
Control is passed outside of Pick Up Items when all the sub-
tasks have terminated.

The PDL code for this example problem, shown in Figure 22,
illustrates the similarities with straight Ada code.

44 Annual National Conference on Ada Technology 1985

_L PICK-UP-ITEMS
GET GET GET
SALAD WINE FISH
gL
—_
y

PAY-FOR-ITEMS

Figure 21. Flow chart for the Shopping Program.

procedure Shopping is
procedure Pick_Up_Iteas {s
task Get_Salad is
Find and take salad.
end Get_Salad
tesk Get_wine is
Find and take wine.
end Get_aine
task Get_Fish is
fFind and take fish.
end Get_Fish
end Plck _Up_Iteas
procedure Pay_Ffor_ltens {s
Give money to cashier.
end Pay_For_Itess
begin
Pick_Up_Items
Pay_For_[tems

end Shopping

Figure 22. PDL code for the Shopping Program.

The Petri Net for this example is also rather straightfor-
ward, as illustrated in Figure 23. The firing of transition T,
occurs only after the three tasks have terminated. This ex-
ample is a simple high-level solution to the original problem
with no data passed.

N A

e
’ »
v ’
CAP S

Ve

e
e

POREY
W
R

AR

»

SHOPPING

j l PICK-UP-ITEMS
GET GET
FISH SALAD

Tt

PAY-FOR-ITEMS
DONE

Figure 23. Petri Net for the Shopping Program.

The flow chart and Petri Net representations could be suffi-
cient methodologies in this case. However, the Buhr diagram
for this case, shown in Figure 24, illustrates the structure of
the program and the sequence of procedure calls which adds
a level of information not given by the others. Since there is
no data being passed, this representation does not have a
distinct and noticeable advantage over the other methods.

After reviewing the first example it appears that for a high-
level solution or a high abstraction process, flow charts and
Petri Nets are sufficient to represent the solutions with re-
spect to the central flow. Since there was no communication
between the program elements, the Buhr diagram did not
appear to provide any more insight into the program than

[J[][] =

GET_SALAD GET_WINE GET_FISH

PICK_UP_ITEMS

2

PAY_FOR_ITEMS

SHOPPING

Figure 24. Buhr Diagram for the Shopping Program.

the other representation. However. representations are
needed for lower level solutions and inter-module communi-
cation, which need to be included in the representation. This
will be shown in the next example, which takes us one step
lower into the design.

The second example is taken from the book Studies in Ada
Style|28). The program is a console drive for a PDP-11 and is
discussed in detail in the reference. In short, the functions
performed by this program are buffering of requests for the
device, ensuring the integrity and validity of these requests
and fielding interrupts from the hardware.

A central problem in this example is implementing a syn-
chronous process with the synchronous mechanism of ren-
dezvous provided by Ada. This is accomplished using three
explicit tasks that monitor requests from the program, inter-
rupts from the input and output devices. All three tasks
communicate through shared queues as illustrated in the
Ada coding example in Figure 25.

The flow chart for the terminal driver is shown in Figure 26.
This example shows that several Ada semantic constructs
were not included in this representation, such as select state-
ments, exceptions. and terminations. The select and termi-
nation constructs were added with little effort, with major
problems occurring with the exception constructs. The data
structures in this example (I'O buffer, hardware devices,
characters) cannot be represented in a reasonable fashion
because of the inability of flowcharts to graphically show
data structures and data flow. The flow chart is also weak in
depicting the relationship between the interrupt handler
and the device driver.

The PDL code for this problem (Figure 27) is considerably
simpler than the equivalent Ada code structure.

The Petri Net for this example (Figure 28) contains all the
major Ada tasking semantic constructs to model this pro-
gram properly. The notations used conform to the
methodology representations offered by G. Cherry's Paralle!
Programming in ANSI Standard Ada|5), and appear to be
adequate for this design. The weakness of the Petri Net rep-
resentation is its inability to relay data transfers among
design elements.

The Buhr diagrams now tend to give more useful informa-
tion graphically to enhance communications. For example,
the Buhr diagram for the terminal drive example, shown in
Figure 29, shows the structure of the terminal driver pack-
age and its subtasks. The data flow into and out of the pack-
age is depicted as well as the data exchanged between the
subtasks. The Buhr diagram clearly illustrates Device
Reader task receiving the input character from the keyboard
hardware through its interrupt handler. The interrupt hand-
ler then deposits this character into the input buffer. The
Read Character entry for the device driver task can then
return the input character from the input buffer to process
the call for this entry. Similarly the Device Writer is also
clearly annotated. This example is not overly complicated
and the Buhr diagram fits well on one page. However, for
more complicated examples, Buhr diagrams begin to crowd
the page and lose their readability. This example shows rela-
tively easily the advantage Buhr diagrams have over other
representation methods: namely, the control flow and the

Annual National Conference on Ada Technology 1985 45

L e -

package Terminal _Driver_Fackage s

task Terminal_Oriver is

end Terminal Oriver 3

entry Reaa_Character(C : out Character)
entry Write_Character(C @ out Character) 3
entry Reselt |

entery Shut_QDown

end Terminal_Driver_Package

with Queue_Package. Low_Levwl_10 3

use Low_Level_10

package body Terminal_Driver_Package is

task body Terminal_Driver is

end ODevice_Reader 3§

-~- Group all of the machine depencent constants together

Console_Input_Vector : constant 8R60N
Console_oOutput_Vector : constant = 8uean ;
£nable_Interrupts : Integer := 8#100m 3
Write_Time_Out : constant Duration = 0e5
Numper_of_Lines : constant = H
Line_Length ! constant = 132 i

task type Oevice_Reader s
entry Interrupt i
entry Start_up_Oone |

for Interrupt use at Console_Input_vector

end Device_Reader ;

task type Device_uWriter 1is
entry Interrupt
entry Start_up_Done 3

for Interrupt use at Console_Output_Vector

end Device_uWriter ;

package Char_Queue_Package 1s new Queue_Package(Character)

use Char_Queue_Package i

type Oriver_State_Block fis
record

Input_char_Buffer, Output_Char_Buffer
Blocking Queue(Number_of_LineseLine_Length)}

Cur_Reader : Device_Reader |
Cur_uWriter : Device_writer
end record }

type Ref_to_Block §s access Oriver_State _Block

Cur_State : Ref_to_Block 3

task pody Device_Reader is
temp_1input : Character ;
oegin
accept Start_up_Done

Send_Control(Console _Xeyboard_Controly

Enable_Interrupts)

Loap
accept Interrupt ao

Recelve_Control(Console_xeyboard_Data,

Temp_Input)
end Interrupt ;
Append(Cur_StateesInputeChar_ Buffery

end loon

task body Oevice_Writer {s

temp_cutput : Character |

accept Start_up_Done }
Send_Control(Console_Printer_Control,

Temp_Inout);

Enavle_Interrupts)

accept Interrupt 3
Loop
Remove(Cur_State.Output_Char_Buffer,

Temp _Output)

Send_Control(Console _Printer_Data,

Temp_Output) ;

select
accept Interrupt 3
or
dgelay write_Time_Out
end select 3
end Loop §

end Oevice Writer §

Figure 25. Ada code for the Terminal Driver Package.

Annual National Conference on Ada Technology 1985

e S T W S W A W T W I S W T VT WL - LT

N
)
v
A
_’ procedure Shut_Cown_Old s
- ratse Cur_State.Cur_Reader?FAILURE |
- ratse Cur_State.,Cur Reader?FAILURE 3
e Destroy_Queue(Cur_state.lnput_Char_Buffer) i
o Destroy_Gueye(Cur_State,Output_Char_Buffer) ;
. end Shut_Down_Ola ';
- procedure Start_Up s
. Cur_State := new Driver _State_B8lock ?§
o Intt_Queue(Cur_State.Input_Char_Buffer) i
h Init_Queue(Cur_State.,Output_Char_Buffer) ;
“ Cur_State.Cur_Readger,Start_up_Qone 3
MG Cur_State.Cur_uWriteroStart_Up_Done §
SN end Stara_Up
.
v begin
Start_Up
Loop
e setect
- accept Read_Character(C : out Character) do
. Remove(Cur_StateeInput_Char_Buffer,
Cy i
o end Read_Character 3
S or
- accept Write_Character(C : out Character) do
Append(Cur_State.0utput_Char_Buffer,
cy 3
end write_Character ;3
or
accept Reset do
shut_DBown_0Ld 3
. Start_Up
S end Reset
F .- or
. accept Shut_Down 3
! Shut_Down_Old
exit ;
- or
terminate 3
. end select
R end loop |
- exception
a when Terminal _DriverYFAILUER =D
Shut_Down_0ld 3
end terminal_Oriver =
Id LS

end Terminal_Oriver_Package 3

- Figure 25. Ada code for the Terminal Driver Package. (Continued)

C SELECT j

ACCEPT ACCEPY ACCEPT
READ WRITE ACCEPT SHUT- TERM-
2 CHARAC- CHARAC-| |RESET DOWN INATE
o TER TER
- END END END END
- ACCEPT ACCEPT ACCEPT ACCEPT

’ L END SELECT j

N T

Figure 26. Flow Chart for the Terminal Driver Package.

Annua! National Conference on Ada Technology 1985 47

.

“ NN

<

LA A

WA

(A

PR

package Terminal _Oriver_Package fis

task

DEVICE WRITER

DEVICE READER

START-UP.
DONE
END
END ACCEPT
ACCEPT T
‘ ACCEPT
prvm INTERRUPT
CONTROL '3
END
> AcCEPT
ACCEPT
INTERRUPT
REMOVE
SEND
CONTROL
RECEIVE
CONTROL
J SELECT
2
ACCE
ACCEPT
‘ INTERRUPT DELAY
APPEND END
ACCEPT
END
SELECT

Figure 26. Flow Chart for the Terminal Driver
Package. (Continued)

end

Terminatl_Oriver 1is

task Device_Reader is
send control sequence to terminal
toop
wait for interrupt
appena character to Ynput buffer
end Loop
end Device_Reader

task Device_uriter is
send control seauence to orinter
wait for interrupt
Looo
remove character from output buffer
sena character to orinter
select
wait for interrupt
or
time out printer
end select
end Lloop
end Jevice_uwriter

procedure Shut_Dowxn_old is
gestroy reader qQueue
gestroy writer aueue
end Shut_Oown_Old

procedure Start_uUo is
create reader queue
create writer queue
end 3tart_Up

begin Terminal_Jriver

Loop
select
accept Read_Character (c: out character) do
remove character from {nput buffer
end Read_Character
or
accept Write_Character (c: ¥n character) do
appenc tharacter to output puffer
end write_Character 3
or
accept Reset ao
Shut_Down_0Olso
Start_Up
end Reset
or
accept Shut ODown
Shut_Down_0Otd
exit
end select
end Lood

Terminal _Driver

end Terminal_Oriver_Package

Figure 27. PDL Code for the Terminal Driver Package.

data flow are both clearly evident and identified. The nota-
tion may be a little rigorous in the sense that all the Ada
tasking semantics must be depicted and many notations are
therefore needed. but that can be reduced according to need
or complexity.

The final example is a scheduling algorithm problem which
is again a step up in concurrent complexity. The timing dia-
gram illustrated in Figure 30 depicts the timing require-
ments of this problem.

48 Annual National Conference on Ada Technology 1985

In summary form, Module A must communicate with Mod-
ule B every 20 microseconds. Module C must communicate
with Module A every 40 microseconds. One possible solution
is to implement a scheduler task which first delays 20 ms
and signals Module C to communicate with Module A. The
scheduler then delays another 20 ms, signals Module A to
communicate with Module B, then signais Module C to com-
municate with Module A. This process is repeated indefi-
nitely.

\"

O
D

. s
B

PO
...'h"'A"‘-

S
O
AR |

‘ SELECT
ACCEPT ACCEPT
READ WRITE ACCEPT ACCEPT TERMINATE
CHARACTER CHARACTER RESET SHUTDOWN
REMOVE APPEND gugrnowu SHUTDOWN
L

END END START END
ACCEPT ACCEPT up ACCEPT

END

ACCEPT

X END SELECT

Figure 28. Petri Net for the Terminal Driver Package.

READ
CHARACTER

INPUT
DEVICE
HARDWARE

DEVICE READER

INTERRUPT

START-UP
DONE

CHAR

START-UP
DONE

QUT-BUFFER

3
]

1
CHARACTER

DEVICE WRITER

TERMINAL ORIVER TASK

Figure 29. Buhr Diagram for the Terminal Driver Package.

Annual National Conference on Ada Technology 1985 49

WS

e

»
.
i

1 < A

A A A A

C——Lq—L/—qul/quL—-—{m -

A A A T T aek body Scnedaler 1s

task boay Scheduler 1is

- + 4 DY . + accept Start 3
0 20 [40 60 | so 100 | 1$n 140
Loop
8 8 B
- delay 20 ms 3

Figure 30. Timing Diagram for the Scheduling Algorithm.

The Ada code, flow chart, PDL, Petri Net and Buhr diagram
for this solution are shown in Figures 31 through 35.

Co.Signal
- detay 20 ms i
AsSfignal 3
CeSignat 3
end Lloop 3

end Scheduter ;

task body A is

begin
package Init_2 is Loop
select
task Scheduler fis accept §|gnal H
entry Start 3 B.Comm 3
end Scheduler or
accept Comm
task A is end select
entry Signal i end Loop
entry Comm § end A
epa A ¢+ eescccccccccecce--- mm-—
task pbody B8 {s
task B is begin
entry Comm § loop
end B 3 accept Comm
end Lloop -
task C is end 8 3§
entry Signal i cetsctccccracecee~ _——
entry Comm task bog
. y C is
ena C § begin
Loop
accept Signal
A.,Comm §
end loop 3
end C
begin -
Scheduler.Start @ .
end Inft_2 5
‘ : .
-
‘et
<.
J -
l ;
\ [e
..
o SELECT ';
20MS -
'
» .'.
L
ACCEPT ACCEPT o
oMM SIGNAL .
C.SIGNAL .
W
DELAY ACCEPT ACCEPT
20MS SIGNAL comm A. COMM
A. SIGNAL
C. SIGNAL

Figure 32. Flow Chart for the Scheduling Algorithm (1).

50 Annual National Conference on Ada Technology 1985

packhage Intt 2 s
task Scheduler i3

accept Start

Loop
delay 20 as
CeSignatl
delay 20 ns
. A.Signat
' C.5ignat
end (oap
d $cheaul
on cheduler sc"EDULER
task A ¥y
Loop
select
accept Signatl
. or B.Conn
accept Coma \ SIGNAL
.- end select
. end Loop
. end &
c T2
. task B 1s
.; Loop
..* ena Logn ST ot Figure 35. Buhr Diggram for the Scheduling Algorithm (1).
!., end @
- sk € by e Another possible solution is for the modules to implement
o accept Signal the scheduling algorithm themselves instead of relying upon
o nd Lo A.Cons the Ada scheduling capability. That is, Module B loops indef-
T end ¢ °P initely, first delaying 20 ms, then making an entry call to
. . communicate with Module A. Module A is also fooping indef-
oeatn Scheduler.Start initely on a select statement. One alternative of the select is
end Init 2 to delay 40 ms, then communicate with Module B. The other
alternative is to accept communication entry calls from Mod-
Figure 33. PDL Code for the Scheduling Algorithm (1). ule C. This solution is workable so lang as the delay does not
TASK A SCHEQULER TASK

ACCEPT START

ot~ DELAY 20MS ACCEPT SIGNAL

S ACCEPT
AR SIGNAL

END ACCEPT

WAIT FOR REND.

Figure 34. Petri Net for the Scheduling Algorithm (1).

Annual Nationat Conference on Ada Technology 1985 51

exceed the delay duration specified. However, this is not cur-
rently guaranteed by Ada. The Ada code, flow chart, PDL,
Petri Net and Buhr diagram for this solution are shown in
Figures 36 through 40.

The first solution suffers from the same delay statement
problem; that is, it suffers from the fact that after a rendez-
vous has occurred in Ada, the task to execute next is not
specified.

In summary, Buhr diagrams are particularly useful in des-
cribing tasks and their interventions. Data flow between
tasks (through the Ada rendezvous) is included in this picto-
rial notation as well as control flow. This basic set of nota-
tions is sufficient for describing the full set of Ada tasking
semantics with a few exceptions such as task termination
and dynamic task creation.

package Indt_3 s

task A is
entry Comm j§
end A 3

task 8 is

entry Comm 3
end 8 3§
task C ¢

task body & is

begin
Ltood
select
-- delay 40 ms
BeComm 3}
or
3ccept comm 3
end select |
end Loop 3
ena A

task boay 4 is
begin
Loon
accept Comm 3§
2ag Lodo 3

task poay T is

begin
Lono
- gelay 20 ms
A.Comm 3
eng looo
end C 1
pegin
null i

end Inft_3 3§

Figure 36. Ada Code for the Scheduling Algorithm (2.

However, Buhr points out in his book that procedural access
is only through packages. This restriction must be removed
in order for Buhr diagrams to handle tasks in subunits. This
is the case when a server task is needed that loops indefi-
nitely, accepting entry calls to its service routines.

Buhr diagrams can be used throughout the life cycle of soft-
ware, starting from top-level design to unit coding. The fact
that manual updating of Buhr diagrams may be tedious is
forcing the issue of automated Buhr diagram processing. At

52 Annual National Conference on Ada Technology 1985

SELECT
DELAY ACCEPT ACCEPT DELAY
40 MS COMM COMM 20 MS
8. COMM A. COMM

Cemsereer

Figure 37. Flow Chart for the Scheduling Algorithm (2).

oackage Inti_3 is

task & is

vegin
Loop
select
gelay 40 ms
BeComm
or
accept Comm
end select
2ng loop
enc A
task 8 is
besin
Loop
accept Comm
ena toop
end R
task ¢ i
vegin
Looos
delay 20 ms
AsComm
end laon
ena C
end Init_3

Figure 38. PDL Code for the Scheduling Algorithm (2).

this time Buhr is doing extensive research in this area and is
expected to have a product for accomplishing some automa-
tion of his notation.

V. Conclusions

Concurrent or real-time systems are, by definition, systems
whose proper functioning is dependent upon time-critical
events. High-level language implementations that exhibit
large overheads will usually make the language unsuitable
for real-time programming. Many of the features found in

TASK B

ACCEPT
COMM.

Figure 39. Petri Net for the Scheduling Algorithm (2).

B
Figure 40. Buhr Diagram for the Scheduling Algorithm (2).

Ada, while adequate for operating system design and gen-
eral applications, do not lend themselves easily to efficient
implementation. In particular, dynamic task creation and
deletion is worrisome for a number of reasons. One major
worry is the lack of traceability and hence the increased
ambiguity of design. Other concerns in real-time systems
could be the complexity and overhead associated with these
features. Obviously as the complexity of the real-time sys-
tem grows, the number of tasks may grow proportionately,
as will the possible need for message buffers (not provided by
Ada) and hence the overhead. It would also appear that to
diminish ambiguity, programmers must have better control

of task scheduling policy. Other areas of concern involve
task handling of interrupts and scheduling of I/O requests
where fast response to external events is often essential to
the proper functioning and viability of the system.

On the positive side, Ada has an impressive number of proc-
ess control structures for real-time implementations. There
are also mechanisms for awaiting any of several messages
and for the non-deterministic selection among messages.
However, as pointed out previously, there are no means for
direct discrimination among arriving messages, nor is there
a mechanism for sending messages that can be received by
any of many identical servers.

Although this paper addressed a means of graphically denot-
ing designs in Ada, it also pointed out the shortcomings of
present compiler technology to support the acceptance of
Ada. This immaturity (or lack) of Ada compilers has forced a
retrenchment from Ada and, in particular, from its more
esoteric features (generics, tasking, exception-handling). In
concert with this drawback is the very visible absence of Ada
software engineering tools, graphical or otherwise. The Ada
market has not matured 1o the point where Ada tools and
environments have been developed to aid rather than hinder
large program development. With respect to real-time sys-
tems, which usually (if not always) require sophisticated
tools and design methodologies, Ada seems to be in its in-
fancy.

Annual National Conference on Ada Technology 1985 53

The coupling of the Ada mission with its cry for environ-
ments has forced software engineers to implement systems
in a manner that is less than desirable and unsupported by
tools, including efficient compilers and translators. Accord-
ingly, any strong criticisms of Ada at this stage of its matu-
ration may well be unfounded and too severe. It seems likely
that the normal evolution of compilers and associated tool
sets will reveal the real ability of Ada to meet the demands of
real-time systems. Indeed, it appears, at present, that the
support mechanisms as examined in this paper may well
surpass the technology made available in Ada. Although
general in nature, the concepts behind a graphical notation
seem both viable and worthwhile in the long run. These
concepts, supported by the sophisticated automated tools un-
der development te.g., Buhr’s methodology) show real prom-
ise of leading the technology front.

Bibliography

{1) Ada Language Reference Manual, ANSI-MIL-STD
1815A.

(2) Gehani, Narain, Ada Concurrent Programming, Pren-
tice Hall, Inc., Englewood Cliffs, NJ 08632, 1984.

(3) M. Ben-Ari, Principles of Concurrent Programming,
Prentice Hall International, 1982.

(4) Buhr, R., System Design with Ada, Prentice Hall, 1984.

(5) Cherry, G. W., Parallel Programming In ANSI Stan-
dard Ada,, Reston Publishing Co., Inc., Reston, VA,
1984.

(6) Booch, G., Software Engineering With Ada, Benjamin
Cummings Series in Computer Science, 1983.

(7) Barnes, J. G. P., Programming In Ada, (second edition),
Addison-Wesley Publishing Company, 1984.

81 Schumate, K., Understanding Ada, Harper & Row Pub-
lishers, NY, 1984.

(9) Nissen, J., and Wallis, P., Portability and Style In Ada,
Cambridge University Press, 1984.

(10) Olsen, E. W, and Whitechill, S. B., Ada For Program-
mers, Reston Publishing Co., Inc., Reston, VA, 1983.

(11) Bergland, G. D., "A Guided Tour of Program Design
Methodologies, Bell Telephone Labs,” IEEE Computer,
Oct. 1981.

(12) Ramamoorthy, C. V., and Ho, G. S., “Performance Eval-
uation of Asynchronous Concurrent Systems Using Pe-
tri Nets,” IEEE Transactions on Software Engineering,
Vol. SE-6, No. 5, Sept. 1980.

(13) Habermann, A. N., and Nassi, I. R., "Efficient Imple-
mentation of Ada Tasks,” Dept. of Computer Science,
Carnegie-Mellon University, Pitts.,, PA, Jan 1980.
CMU-CS-80-103.

(14) Karp, R. M., and Miller, R. E., "Parallel Program Sche-
mata,” Journal of Computer and System Science, 3,147-
195, 1969.

(15) Hehner, E. C. R., “On The Design of Concurrent Pro-
grams,” Information, Vol. 18, No. 4, Nov 1980.

(16) Petri, C. A., ‘Communication Disciplines, Computing
Systems Design,” Proceedings of the Joint IBY and U.
Of Newcastle Up On Tyne Seminar, 1977,

(17) Wirth, N., “Toward A Discipline of Real Time Program-
ming,” Communications of the ACM, Vol. 20, No. 8,
Aug. 1977.

(18) Habermann, A. N., “Synchronization of Communicat-
ing Processes,” Communications of the ACM, Vol. 15,
No. 3, 1972.

(19) Andrews, G. R., "Synchronizing Resources,” ACM tran-
sactions on Programming Languages & Systems, Vol. 3,
No. 4, Oct 1981, pp. 405-430.

(20) Cohen, N. H., “Parallel Quicksort: An Exploration of
Concurrent Programming In Ada,” Ada letters Vol. II,
No. 2, Sept-Oct 1982.

(21) Mayoh, B. H., “Parallelism in Ada: Program Design and
Meaning,” Proceedings of the 4th Collogue Internationsl!
sur la Programmation, edited by Robinet, Springer-Ver-
lag, 1980.

(22) Mahzoub, A., “Some Comments on Ada As A Real Time
Programming Language,” Sigplan Notices, V16, N2
(Feb. 1981).

(23) Eventoff, W., Harvey, D. & Price, R. J., “The Rendez-
vous and Monitor Concepts: Is There An Efficiency Dif-
ference?” Communications of the ACM, 1980.

(24) Agerwala, T., “Putting Petri Nets To Work,” IEEE
Computer, Dec 1979.

(25) Peterson, J. L., “Petri Nets,” Computing Surveys, Vol. 9,
No. 3, Sept. 1977.

(26) Blasewitz, R. M., “Ada As A PDL, Have The Major De-
sign Issues Been Addressed and Answered?” Proceed-
ings of the 2nd Annual Conference on Ada Technology,
1984,

(27) "IEEE Draft Recommended Practice on the Use of Ada
as a Program Design Language,” 1983, 1984, 1985 min-
utes, notes, R. Blasewitz, Chairperson.

(28) P. Hibbard, A. Hisgon, J. Rosenberg, M. Shaw, M. Sher-
man, Studies in Ada Style, Springer-Verlag, 1981.

(29) Peters, L. J., Software Design: Methods & Techniques,
Yourdon Press, 1981.

(30) King, D., Current Practices in Software Development,
Yourdon Press, 1984.

54 Annual National Conference on Ada Technology 1985

AP I AN I S S T
D-F.Q}‘_‘%_A‘l! .« b W

et e e S N M . S B
PR LRI TR A D WL RS R R AT VAR T

L L. L

- .

LY

N SWY

.

Ada SUMMER SEMINAR--TEACHING THE TEACHERS

Dr. M. Susan Richman
The Pennsylvania State University, Capitol Campus

Dr. James M. Shoaf
North Carolina Central University

Mr. Donald C. Fuhr
Tuskegee Institute

Abstract

The Ada Curriculum Development Seminar was
organized and conducted over a six-week period by a
team of three professors, It was designed to
consider various aspects (organizational,
curricular, and laboratory) of an intensive program
and to evaluate them for applicability within an
academic environment. Both industrial and academic
methods and materials were used, as well as various
video-based media. Detailed questionnaires
captured participant opinions regarding the
effectiveness and acceptability of each method of
presentation, Various system management techniques
were also tested in an effort to arrive at an
optimum support environment for such a seminar,
The results of these tests and evaluations are
intended to be used in the design of future
intensive programs as well as by the participants
in the planning of Ada courses in their own
schools.

Introduction

Program Background

The Ada Curriculum Development Seminar held at
Tuskegee Institute, Alabama from June 10 through
July 20, 1984 had 1its roots in three years of
previous similar programs. These programs were
sponsored by the U.S. Army Center for Tactical
Computer Systems (CENTACS), and were held at Ft.
Monmouth, NJ during the summers of 1981, 1982, and
1983. The objectives of all these programs were to
propagate the Ada Programming Language into college
and university computer science curricula by
providing an intensive 1learning experience for
faculty members, That the tradition is growing 1is
shown by the fact that all three of the
professional staff of this Seminar were
participants in the 1983 program, and most of the
guest speakers were involved in some way with one
or more of the previous efforts.

Seminar Contract

Funding support for the Seminar was provided by
CENTACS via an existing contract between the
Electronic Devices and Technology Laboratory at Ft.
Monmouth, NJ and the Southeastern Center for
Electrical Engineering Education (SCEEE) of St.
Cloud, Florida. SCEEE, in turn, negotiated a

subcontract with Tuskegee Institute, providing a
fixed level of funding for the local administration
of the Program. SCEEE provided direct appointments
to the participants and paid them directly.

Seminar Objectives

The objectives for the Ada Curriculum Development
Seminar as stated in the subcontract were:

1, To provide graduate level Ada language
instruction to qualified college faculty.

2. To experiment with methods of instruction
for Ada for later potential wuse within
academic institutions.

3. To explore curriculum and techniques
issues providing insight and recommendations
for the introduction of Ada into college level
computer science and/or engineering curricula.

4. To explore potential uses of Ada as a
hardware design language.

5. To encourage the 1Inclusion of Ada
instruction in those colleges represented by
the participants. The participants will
perform a review at the conclusion of the
experimental program. The format will also
include short presentations by Ada experts
from Industry, Government, and Academia.

Participants

Attending the Seminar were thirteen participants
from seven different institutions, All but two of
the participants possessed a doctoral degree, but
their backgrounds varied widely. Some had one or
more degrees in computer science with commensurate
experience, Others had had no prior experience
with higher order programming languages. This
diversity in backgrounds caused a number of
difficulties in presenting the seminar and reduced
our ability to make it as effective as we would
have desired it to be.

58 Annual National Conference on Ada Technology 1985

Planning Model

NOTE: This 1s a synopsis of a document written
before the Seminar as an attempt to capture our
thoughts at that time regarding program philosophy.
It is included here as an outline of what we
intended to accomplish,

The fundamental premise behind our planning for
this Seminar 1{s that college students and,
theretore, college faculty need a different
approach to the Ada programming language from that
which is appropriate for working programmers. This
premise is based on the following observations:

The vast majority of Ada training courses for
industry are only a few days in length, and do not
always include hands-on exercises. Essentially all
the information must be presented by the
instructor, with very little outside reading or
assimilation time for the students. We believe
that this leads to shallow learning of syntax and
semantics, with 1little wunderstanding of the
theoretical basis for proper system design using
the language. We believe this approach is not
appropriate for teaching the language as a design
tool.

College courses, on the other hand, emphasize
individual study and research in conjunction with
lecture presentations. The result is that college
students are taught to apply the language as a tool
for problem solving and to draw inferences from
this activity as to what new applications may be
developed. We believe that college faculty should
be taught in the same way.

We intend to test this hypothesis by teaching
selected topics such as Generics by both methods
and evaluating the group's reactions.

We believe it 1is important in teaching Ada to
college faculty to take advantage of the varied
backgrounds of the participants. This can be done
by relaying questions to members who may be able to
answer them, by having members give presentations,
by having them help one another with programming
exercises, and other similar techniques.

We believe that evaluation of student progress is
an essential element of all training, but
particularly in the college environment where
grades must be reported. We intend to explore the
opinions of the group regarding the impact of Ada
on the preparation and grading of examinations, and
to discuss broader issues of effective evaluation
of programming progress.

We believe that one of the most important ideas to
get across 1in teaching Ada 1is the concept of
software maintenance and how Ada simplifies it. We
intend to highlight this feature by requiring the
participants to modify existing code under several
different conditions,

We intend to gather a large amount of data, via
various questionnaires, on the seminar
participants’' opinions regarding the various
pedagogical issues that come up.

Instructiopnal Activities

Course Texts

Observations: As 1s traditional 1in a college

course, texts were chosen based on the instructor's
assessment of their appropriateness for the
audience, They were followed fairly closely in the
order of presentation of topics and supplemented as
considered necessary by the instructor, In this
program the primary texts were:

An Introduction to Ada,

S.J. Young, Ellis Horwood Ltd, 1983
Software Engineering with Ada,

G.Booch, B.Cummings, 1983

Young 1is primarily a language text, while Booch
emphasizes software engineering. The two texts
complement each other nicely, Reading assignments
to supplement the lectures were 1included 1in the
outline for the seminar; however, we determined as
the seminar progressed that the assignments were
not generally completed,

A third document which was invaluable to the
instructor, and to those students who made use of
the library copies available, was the "Rationale
for the Design of the Ada Programming Language”.

Recommendations: There is no single text currently

available that would be adequate for any similar
program, However, new texts are continually being
written and should be reviewed in planning for
future seminars. Until a single adequate text
appears, the combination we used is a workable
alternative.

It 1is vital in a concentrated program with limited
time for digestion of new concepts that students
receive as many exposures as possible. Readings,
reinforced by the lectures and the laboratory
exercises, provide a fimm foundation for further
study and use of the language. The participants
must be convinced of the necessity of completing
the assignments on schedule.

Use of the Ada Language Reference Manual

Observations: The Ada Language Reference Manual
(ANSI/MIL-STD-1815A), the only completely reliable
source of Ada information, is a vital student
reference. It is essential that students become
familiar with it as soon as possible. However,
learning to use the Reference Manual is a
non-trivial task.

In the beginning of the seminar, the students
answered questions of the form "What would happen
if....?" by actually writing a small code segment
and trying it on the system. However, as the
questions and the corresponding test programs grew
more complex (and computer time became more
critical), the Reference Manual became the favored
source of information for the students. At first,
they found the Manual to be intimidating, diffficult
to read, and not much of an aid in understanding.
However, eventually they discovered that the
information WAS accessible even if, after looking

Annual National Conference on Ada Technology 1985 59

in five different places for the critical section,
one had to read that section three times before
comprehending it.

Many of the excellent examples in the Reference
Manual were wused as illustrations for various
lecture topics. An wunderstanding of the structure
ot the example provides a context 1into which the
student can fit the syntax and language rules,
making them more reasonable and understandable.

It was further seen that the Reference Manual was
the best source (not only comprehensive, but also
quite readable) of information on Input/Qutput. By
the end of the course most of the participants had
concluded that the Reference Manual was
indispensible for programming in Ada.

Recommendation: A copy of the Reference Manual tcor
the Ada Programming Language should be provided for
each student. Through whatever means are possible
they should be encouraged to become familiar with
its style and learn to use it as a source of
information and as their final authority on
questions about the language.

Classroom Library

Observations:

Observations: Located in the <classroom was a

fairly extensive collection of reference materials
for use by the students. These materials included
numerous language texts, Ada reference books,
reference materials for VAX/VMS and the EDT editor,
and some of the periodical literature relating to
current activities in Ada and future Ada
conferences. The participants were thus able to
evaluate many texts for appropriateness for use in
Ada courses projected for their schools.

Also available for use by the students were various
commercially produced video resources on Ada.
These included: 1) a videotaped course
"Programming in Ada" presented by Ichbiah, et. al.
in 1980; (2) "The World of Ada Part I1", and (3)
"Ada Overview", a PLATO CAI course on a CDC 110
microcomputer, These were accessible to the
participants in their free time and were used to
reinforce and amplify other presentations.

Order of Presentation of Topics

Since Ada is more than just another
programming language, in order to provide the
proper setting for the seminar, the lecture of the
first day was devoted to the background of why and
how Ada came into being. This was, perhaps, the one
topic that NOBODY felt should be moved to another
position in the syllabus. A language overview was
then given, followed by an exhaustive treatment of
each of the components that go to make up an Ada
program. The objective was to build a complete set
of tools beginning with Lexical Elements and
progressing through Data Types, Data Structures,
and Subprograms to allow coding of increasingly
more complex programs. This was essentially the
order in which the toplcs are treated in the
SofTech course L202, Basic Ada Programming, which
we were using as an experiment in methodology.

60 Annual National Conference on Ada Technology 1985

Various circumstances caused us to deviate from the
originally-planned order. The most important of
these were the need to enable the participants to
write programs earlier and the need to run
compilations and executions in batch mode which
necessitated earlier discussion of File IO.

Recommendations: In setting up the orvder of

presentations in a programming language course
there are several competing and conflicting aims
which must be balanced. Firstly, there is the
pedagogical aim of not overwhelming the student
with new {information to absorb -- with the
consequent risk of brain shut-down. 1In addition to
learning to write the code, the student must learn
a great deal of information 1in order to interact
with the computer system, He or she must learn the
log-in sequence, operating system commands, file
creation and manipulation, reactions to unexpected
system responses, interfacing between files and
programs, creation and use of program libraries,
and commands for compilation and execution,
Secondly, however, it is essential that the student
begin writing code and testing it on the system as
early in the course as possible. These two goals
are 1in strong conflict. The best solution is to
reduce, in whatever ways possible, the amount of
information the student must learn in order to get
a meaningful response from the system to his Ada
code,

Since the fundamental Ada concept of Packages
allows programmers to use tools without necessarily
knowing all of the details involved in the
implementation, we recommend beginning the course
with Packages and having the students write
programs which use packages previously designed and
made available to them. This tactic will also
reinforce the principles of abstraction which are
so vital to Ada. An overview of all the data types
available in Ada should come next, with just enough
detail to allow students to write programs
involving simple data structures, Input/Qutput
incantations for all the different data types
should be provided at this point with only minimal
explanation of the actual mechanics of 10.
Subprograms and control structures will then allow
development of solutions to some significant
programming exercises. The details of structured
data types, such as multidimensional or
unconstrained arrays and discriminated records, can
and should be postponed until the students have had
an opportunity to work with the simpler forms.

Lecture/Laboratory Daily Format:

Observations: Throughout the seminar we
experimented with lengths and times of lectures.
In the beginning of the seminar the morning was
devoted to a lecture presentation and the afternoon
to laboratory work, For a time, the ratio of
lecture to lab time actually increased because of
our efforts to stay on schedule. It soon became
clear that there was insutficient laboratory time
for the students to practice using the language
features. As a result, much of the detail which
was covered during the lecture was not fully
absorbed and retained. The ultimately most
successful mode was that of two or three lecture

L et i e g Ty

s SCHEDULE---PROGRAMMING EXERCISES Information on the NYU Ada/Ed compiler was given in
: two parts. A short introduction to compilation and

Day 1 Day 2 Day 3 Day 4 Day 5 execution of Ada programs was the second part of
- the first laboratory session. Only a minimum
l i] | ' f ! background was presented, because of the diversity
' Week I ' Ex 1,2} Ex 3,4 Ex 5 Ex 6 | and bulk of information given at the first~day
bR i . ; ' orientation laboratory. In the second week, the
f< v - laboratory director discussed Ada/Ed program

Week 2 . Ex 7i Ex8 . Ex 9 ; libraries.

i
1 The VAX EDT editor was the tool used for source
! code entry. On the first-day laboratory the basic
I L ! ! i operations of this editor were presented. The
: ; }] f laboratory director followed this on day two with
T- Week 4 ‘Speakeﬁ ‘ information on more advanced features of the

. ‘ i ;
- Week 3 | Ex 10 : i Ex 11 Ex 12

holiday
. , editor--information that was found to be not very
- worthwhile.
SCHEDULE-~~PROJECT Programming Exercises
l Day 1 Day 2 Day 3 Day & Day 5 The twelve programming exercises were graduated in
difficulty and based on most~receantly-presented Ada
i | | features from the lectures. As minor changes
Week 4 speaker! holidaﬂ project] occurred in the lecture topics, corresponding
; : dist. i changes were immediately incorporated into the
! . ! exercises, Also, the last six of the exercises
Ex 11F ; EX I1F Ex 11F ' were structured so as to serve as preparation for
- Week 5 !speaker speaker| speaker the team projects. The Ada or environment areas
D - - ‘'team project development] -~ - featured in the exercises are shown in the table
b : ' below.
. N speaker|
2 Week 6 [speaker speaker| review | presen.] project PROGRAMMING EXERCISE FEATURES
- guid. guid. pres.
S Exercise Ada or Environment Features
; Ex 11F = a group of two people finish Ex. 11 1 VMS commands, basic EDT operatioms, basic
i Ada/Ed operation
Environment
2 10 Package instantiation for integers,
Each computer wuser required an orientation to the string output
working environment, plus specialized information
on environmental aspects when deemed necessary. 3 FOR loops, local subprograms, type
. The environment consisted of the computer system, conversions
' the text editor, and the Ada compiler.
4 Same as Exercise 3, plus constants and
Background system information was divided into emphasis on modifiable code
three parts. In addition to a basic introduction
to the system, there was a special presentation on 5 IF and CASE statements, enumeration
A running batch jobs, plus many short presentations types, integer ranges
i on individual system features (called VMS Minutes).
. 6 FOR lyo0p, arrays, local subprograms,
) The first-day environmental orientation began with overloaded GET and PUT
— the computer interface step--the local login
procedure followed by the VAX user-—account 7 file 1/0, VMS files, WHILE loop
initialization. Afterwards came an introduction to
VAX/YMS commands for handling files. The 8 packages, Ada/Ed libraries,
information presented had three parts: the notion function calls, WHILE loop, file I1/0
of file directories, a set of eight basic commands,
and a small set of practice exercises. The 9 records, enumeration types, packages
) practice exercises included steps preparatory to
A running a simple Ada program. 10 variant records, integer ranges,
" exceptions
. Information for submitting batch jobs for
' compilation and execution came at the end of the 11 access types, packages, tasks
first week., The remaining system information was
presented in the format of VMS Minutes. Each of 12 generic subprograms with a formal generic
these short presentations by the system manager subprogram parameter
L usually centered on one useful system featyre.
g Annual National Conference on Ada Technology 1985 61
J

periods of approximately one hour each, interleaved
throughout the day with laboratory periods. This
provided a better mode for retention and
comprehension of the information presented {n the
lectures and also resulted in more efficient use of
the lab time, since batch compilations and
executions could be golng on during the lectures.

Methodology in Presentation of Topics

Observations: In teaching Ada, the methodology
used is closely related to the topic sequence,
particularly the issue of "top-down” vs.
“bottom~up”. In the use of the SofTech materials
we followed the bottom—up approach, treating each
topic in great detail, then progressing to the next
topic. It became clear as the course progressed
that not even a class consisting of Ph.Ds can
absorb great amounts of detail after hearing it
only once, or sometimes even twice. It was evident
by the questions asked and the programs written
that not all of the concepts were grasped and
appreciated right away, not even by the most
experienced computer scientists in the group. It
is often necessary to hear something several times,
preferably in different ways, before it makes a
lasting impression. For this reason we found it
advisable to change our approach to provide a
variety of exposures to the basic information:
lecture, discussion, in-class exercises, laboratory
exercises, reading assignments, and videotape
presentations all contributed to the assimilation
of the material.

Recommendations: The course should begin with an
overall view of the Software (risis, Software
Engineering, and the History of the Ada Programming
Language. Sending the participants advance
materials to read on these topics may make this
presentation more effective, The course should
progress from there into an overview of the
language covering, without much detail, program
structure, the different data types, and control
structures. One might supply students with a
package or packages and have them write program(s)
using the facilities 1in the packages. It seems
best to introduce new topics by giving simple
examples, giving the basic facts, reinforcing these
by means of exercises whenever possible, and using
the spiral approach of returning to previous topics
with new perspectives and insights.

In place of exhaustive detail, 1t is better to
explain the “"why” and the "how" of the concepts.
It is reasonable to expect the students to locate
in the Reference Manual, and in other reference
sources, some of the detail which they will need in
order to complete their programming assignments.
The instructor should encourage the independent use
of videotaped lectures and other course materials
for multiple exposures to topics as needed.

One should supply 10_Incantations as soon as they
are needed for programming. There 1is no need to
postpone 1/0 operations until the students have the
background to fully appreciate generic packages and
Text_lLO. The use of limited-function,
already-instantiated "Easy I0" packages is at best
a stop-gap measure, and at worst misleading and
confusing.

Terminal access for each student during the lecture
periods can be a two-edged sword. While useful for
illustration and as a teaching tool, terminals can
also be distracting. If terminals are available in
the classroom, the capability of deactivating them
would, at times, be valuable.

Guest Lecturer Program

A valuable component of the seminar, the guest
lecturer program was designed for experts in
various aspects of the Ada world to share some of
their expertise with the participants, The eight
speakers provided valuable insights and were well
received by the participants. This program should
be part of any similar seminar, and should be
expanded if seminar constraints allow.

Laboratory Activities

Overview

The laboratory activities consisted of three
interrelated parts: an introduction to the
programming environment, the solution of twelve
graduated programming exercises, and a team
project. These activities were synchronized with
the corresponding lecture presentations. Together
the lecture and lab work gave the seminar
participants a fairly thorough background in Ada.
The particular schedule and choice of topics were
selected on a day-to-day basis because of changes
made 1in the original organization of seminar
topics. This offered the advantage of using the
latest Ada features from the lectures in a
laboratory exercise.

The first four weeks were devoted to the
programming exercises and environmental
introduction, while the last two weeks were spent
on the team projects. A simple schedule for each
part of the laboratory activities is given below.
Following paragraphs supply details for the
scheduled activities indicated.

SCHEDULE-~-ENVIRONMENT

Day 1 Day 2 Day 3 Day 4 Day 5

H
Week 1 Ada/Ed EDT * * VMS
EDT
Week 2 * Ada/Ed| Ada/Ed * i *

Week 3 { * , * * * *
f

* = VAX/VMS Minutes

62 Annual National Conference on Ada Technology 1985

0f the participants in the seminar, six completed
all of the exercises, two completed eleven
exercises (with Exercise 11 80% finished), and the
other four completed 7-9 exercises. These results
reflect the varied programming background of the
participants, some loss of programming time for
guest speaker presentations, and the above average
difficulty of Exercise ll.

Team Project

The team project was intended as a small software
engineering experience 1in which the key Ada
features of packages, subprograms and tasks are
used as tools. The seminar group was divided into
4 groups of approximately equal talent, Each team
was given some general software engineering
guidelines in addition to the project problem
description. The particular problem consisted of
simulating the operation of an airport with two
runways, controlled by one air traffic controller.

The project guidellnes and problem description were
distributed on the last day of week 4, At that
time the majority of participants were in the final
stages of Exercise 11, having finished Exercise 12
earlier. Project planning began immediately while
Exercise 11 was being completed. During week 5,
the teams made progress reports. At the beginning
of week 6, it was decided to give the teams more
work time, postponing the project solution and
review presentations until the last day of week 6.

The project problem was based very heavily on the
Ada features used in Programming Exercises 9, 11,
and 12. Exercise 9 presented the basic data
structure with 1input and output, Exercise 11
presented a chance to become familiar with access
types in setting up a queue and with tasks
involving a third-party task that manages a shared
data resource, Exercise 12 provided an opportunity
to use a generic compilation wunit. The project
brought all of these concepts together in a team
setting. The two major constraints of the problem
were a generic queue package for setting up plane
arrival and departure queues and the concurrent
processing of planes on the runways and in the two
queues.,

Each team encountered three major hurdles in its
work: setting up the basic plane flight data
structures and accompanying I/0 operations, setting
up the generic queue facility using access types,
and the tasking component for controlling the
accessibility of the queues, By the end of day 4
of the final week, one team had overcome all three
hurdles., The other teams were involved with the
last hurdle, making 1t possible for each team
project solution to be realistically reviewed by
another team.

The review process 1involved each team passing its
completed code to another team, The second team
was to implement a change in specifications in the
code. The objective was to demonstrate the ease
with which good Ada code can be analyzed and the
ease of localizing the effect of modifications.

The project solution and review presentations on
the last day showed several creative and workable
approaches to the project problem, Each team
followed the instructions to present a hierarchical
chart of program units to aid in explaining the
overall nature of their project design. The main
differences occurred in the division of the tasking
aspect of the problem. Some of the main issues
raised about the project solution development were
minor confusion on the 1initial requirements,
completion of the design occurring in the midst of
the major coding, and that ease of design
development corresponded to a good working
knowledge of the tools available, The modification
presentations mentioned at least one aspect in each
project solution in which some Ada feature would
have made the proposed modification easier. Each
review team mentioned that modifications would
sometimes require considerable searching through
the code to 1insure complete correctness of
modifications, Each team, from both a design and
modification viewpoint, learned much about the
significance of software maintenance
considerations.

Conclusions

Overall the main goal of the laboratory activities
was accomplished: first-hand experience 1in wusing
the powerful main features of Ada, in a team
setting, The secondary goals of completing the
team project, getting familiar with all the
advanced Ada topics, and gaining skill in writing
easily modifiable code were reached with varying
degrees of success. A few modifications in the
seminar structure would improve the chances of
achieving these secondary goals:

1) adding two weeks to the length of the seminar
in order to schedule speakers well before the
project development period and to allow for
adequate exposure to advanced Ada features;

2) providing an additional orientation session to
the environment for novices, less information
on the advanced editor features, and sample
code with or without compilation errors;

3) requiring more programming exercises of short
length so as to provide better feature exposure
and to emphasize abstraction and software
engineering through the use of interesting
package problems;

4) providing more guidance and background on key
aspects of software engineering relating to the
team project--better preparatory exercises,
background information on efficient ways to
develop software components and test them, and
tips on using Ada and other tools in program
design.,

Annual National Conference on Ada Technology 1985 63

CES LSS
RPN NP

o

oy
O]

A

a8,
a a

YK

Computer System Support

System Configuration

Hardware: Computer support for the seminar was
provided by a dedicated VAX-11/780 which contained
8 MBytes of memory, 512 MBytes of disk storage, and
40 ports, The 16 classroom terminals were
connected to the computer through a MICOM Micro600
Port Selector. This hardware configuration proved
to be adequate for this size program, and probably
for a group of up to 20 participants.

Software: Initially, the seminar used Version 1.1
of the NYU AdaEd interpreter running under VMS.
This worked well enough, notwithstanding its
well-known slowness and the various documented
bugs. Later, we wused Version 1.4, with only
moderate gains in speed, but much more reliable
performance. Along with Version 1.4 came a faster
parser, which provided exceptionally quick syntax
checking. AdaED supported the seminar well, but
required constant monitoring to prevent
unacceptable system performance degradation.

User quotas and privileges: Most user

authorizations in effect were the defaults provided
by VMS. Exceptions are as follows:

A 1300-page (650 KByte) memory allocation was
necessary to allow interactive Ada jobs to run
without overwhelming the system with page
faults.

It was necessary to lncrease the PGFLQUOTA to
13000 from the default 10000 value in order to
allow Version 1.4 to run correctly.

All users were given GROUP privilege in order
to allow them to stop their own batch jobs
when they behaved erratically.

Each user was given Read access to the system
Accounting data file and instruction on how
and why to use it as a last resort in
troubleshooting a problem which cannot be
isolated between VMS, Ada, Setl, and
programmer logic error,

System parameters

Interactive operatiom: The first day in lab, in
order to test the limits of the system, we
deliberately had all 13 participants start an
interactive compilation at once. After thrashing
for about 2 1/2 hours, the jobs finished and the
system recovered. We concluded that the system
would not support 13 jobs needing the same resource
at the same time, but if the jobs were started in a
random fashion as would normally be the case, the
system would survive. This proved to be true for
the rest of the seminar., The problem with
interactive work is that the wuser's terminal is
disabled for the 15-30 minutes or more that a
compilation takes, preventing work on another
compilation unit or exercise while waiting for the
first to complete. A partial solution 1is to
perform compilations in batch mode. This releases
the terminal as soon as the system accepts the job.

Batch operation: To strike the best balance
between memory limitations and CPU contention, we
operated with three batch jobs running

simultaneously from one queue, allocated 2500 pages
(1.25 MBytes) of memory each. Running fewer than
three jobs uses memory inefficiently; running more
causes a bottleneck at the CPU.

Command Procedures

Since this was in large part a research
environment, we realized that we would need ways of
changing the operating parameters of the system
quickly. To this end, several command procedures
were developed before and during the seminar to
make this easy and reliable.

ADAUAFCHG.COM: Used to modify entries (such as
quotas and privileges) in all group \User
Authorization File records with a simple,
interactive procedure.

ADAQSTOP.COM: Used to change the operational
parameters of the batch queues as needed.

COPYFILES.COM: Used by the faculty to send files
containing useful examples, lab assignments, and
other information to all participants.

COPYLOGIN.COM: Used to add entries to each
participant's LOGIN.COM file when the function was
needed, but the explanation would not have been
undetrstood.

MAIL distribution files: Three files for mass
mailing were made available to all: one containing
only the Usernames of the staff, one containing
only the Usernames of the class, and one containing
all Usernames in the program. These were used
extensively for broadcast communication among all
three groupings.

Seminar Logistics

Classroom/laboratory facilities

A dedicated classroom was provided for the program,
One terminal was provided for each participant, one
each for the Lab Director and Academic Director,
and one spare. The system printer was remoted into

* the classroom for hardcopy output. A coffee bar

and break area were set up in one corner of the
room, and videotape machines and demonstration
microcomputers in another corner. Two overhead
projectors were available. Access to the classroom
was provided from 8:00 am wuntil 11:00 pm Monday
through Friday, with weekend hours as requested by
the participants. The room was locked whenever it
was unoccupled, protecting the equipment and
enabling participants to leave materials there 1if
desired. The facility was deemed adequate except
for some temperature control problems,

64 Annual National Conference on Ada Technology 1985

, 8y ":1"'1"1'

LR RN

.

Budget

The budget total of $62,000 for Tuskegee Institute
covered faculty salaries and expenses, computer
operation and maintenance, seminar logistics,
review and coordination meetings, and overhead.
Actual expeunses were within budget, although the
distribution of expenses among budget elements was
considerably different from the original estimates.

Seminar Staff
A total of six people performed various tasks in

support of the seminar, The Academic Director was
the primary instructor; thus, the primary selection

criterion was lengthy teaching experience,
including the teaching of Ada. The Lab Director
developed and administered the programming

exercises; thus, the primary qualifications were
facility with the language and ability to work well
with people. The Systems and Logistics Director's
job was to handle all system actions and logistics
arrangements. The qualifications for this job were
primarily managerial. Due to the critical
importance of good computer support, it is
essential that this person occupy a position of
authority with respect to the computer system and
the people who directly operate 1{it. Other
personnel involved were a technical specialist who
operated the system, a secretary who performed the
clerical support, and a statistician who designed
and analyzed the participant questionnaires.

Analysis of Participant Responses

The seminar participants were asked to provide
written reactions to the program in four different
formats: 1) A daily questionnaire during the
lecture phase; 2) A mid-point questionnaire at
the end of the third week; 3) A questionnaire
each day on which a guest speaker appeared; 4) A
final questionnaire at the end of the program,

Daily Questionnaires

These surveys were used to keep a daily pulse on
the participant reactions to the seminar. They
were used to determine the need for changes in
approach or sequence as the program progressed.
Because of this utilization, they reflected
opinions on specific topics, and showed a steady
improvement throughout the seminar.

Mid-course Survey

This questionnaire was administered to capture the
thoughts of the group at the point at which they
had been exposed to essentfially the entire
language, but before they had an opportunity to
work extensively with it. We tried to quantify the
comments we had received informally regarding topic
order and lecture/lab time proportions. The
quantified responses to this mid-course survey
indicate that, in most areas, the program was
successful up to that point. There were no major
problems identified, at least none that had not
been addressed by the staff. There were no signs
of real dissatisfaction from anyone,

A (i O AV 00 SN S AR N At oS o dn i fer Jlgagheaitea

Speaker Critiques

A questionnaire was distributed on each day when a
guest speaker was scheduled, This was not so much
intended as a speaker rating, but as a measure of
the value of the presentation to the program.
Summarized results from these questionnaires are as
follows:

The group overwhelmingly rated the guest
presentations as understandable and useful,
appropriate for the program and for the time
in the program, not too technical, and worth

the time allocated. Even the somewhat less
dynamic speakers were rated high. Many of the
group, while approving the speakers, also

complained verbally about not being able to
work on the team project as much as they would
have liked. This would seem to make a good
case for a longer program.

Final Program Survey

The end-of-seminar questionnaire was designed for
somewhat more free~form responses. There were some
numeric categories, but most of the questions
required write-in answers. The group, as had “een
the case throughout the program, was most reluctant
to write much. We will wuse some of the specific
comments as indicators of possible 1mprovement
areas, but they are not amenable to statistical
analysis. Those numertic results that are
significant are as follows:

The participants were asked to rate themselves
on 13 background and academic-related factors
compared to the others in the program, The
results showed a very high correlation between
their opinion of their computer-related
background and Ada ability and the opinions of
the staff regarding their relative performance
in the program.

The seminar was rated overall as being very
worthwhile by 92% of the group. They were
completely ambivalent about whether it should
be restricted to particular skill levels. All
of them felt the seminar was well organized.

92% of the group agreed that the lab
assignments greatly aided wunderstanding of
Ada. This response from a group of academics
is strong evidence that adequate lab work is
very important to Ada instructional programs.

All of the
excellent to

group rated the {instruction

outstanding in being
well-organized, presented clearly, not too
general or theoretical, and informative and
useful, 83% said it was aimed high enough,
but one participant strongly disagreed with
that premise.

The ratings for the instructors were similar
to those for instruction. All of the group
rated them excellent to outstanding on
competence, attentiveness and understanding,
being well-suited for the course, and
effective use of audio-visual aids.

Annual National Conference on Ada Technology 1985 65

Pt (> o
]

L

.

v
LA A

The participants rated the individual lab
assignments as generally being about right for
complexity, tending toward the complex. They
reported having problems understanding Labs
10, 11, and 12, but gave the others good marks
for understandability.

VAX/VMS 1information was rated excellent to
outstanding by 83-100% of the group as being
necessary, adequate, and timely. They were
undecided as to whether it would have been
better in one chunk. EDT Editor information
was rated as necessary and adequate by all of
the group.

The computer was found by 75% of the group to
have provided adequate support and to be easy
to learn to use.

All of the group rated the guest speakers
overall as valuable, a welcome change of pace,
and experts in the field. A slightly smaller
number, 83%, felt that they did not detract
from the lab work. The vocal comments on this
matter were not reflected in the
questionnaires.

The seminar was judged to have been worth the
time by all of the group. 837% felt it should
be at least 6 weeks long, and 67% voted for 8
weeks. The seminar format was highly approved
over other media such as videotape. The group
was undecided as to whether the seminar was
too challenging or ambitious, but they said it
lived up to their expectations,

The end-of-program survey results reflect overall
satisfaction with the program, as well as a desire
on the part of the participants to provide
constructive criticism in order to improve it. The
results are in general agreement with our
assessment of the program's strong and weak points,
and with our perception of the group's reactions.

Conclusions and Recommendations

Program Length and Composition

The six-week length of this seminar was minimally
adequate. We covered essentially the entire
language, but there was not enough time to
adequately cover the advanced topics. Most of the
participants needed more laboratory time in order
to become really fluent with the language.

We recommend that the seminar be scheduled for
eight weeks., The first three weeks of this time
should be spent on a basic coverage of the language
together with many lab exercises illustrating the
gspecific language features. The next two weeks
should be used to expand upon the advanced
features, emphasize graduated exercises using these
advanced features, and include most of the guest
gpeakers., The final three weeks should be allotted
for the team software development project. We
strongly believe that this project 1s essential to
giving the participants insight into the full power
and utility of the language.

66 Annual National Conference on Ada Technology 1985

Contract Tiwming

We strongly recommend that the fun. ng source,
contract mechanism, and host site(s) be identified
as early as possible, and that the contracts be
finalized not later than mid-January., This would
allow selection of participants by mid-March
(before they have other summer commitments), and
sufficient time for pre-seminar preparation.

Academic Considerations

Our experience leads us to believe that Ada should
be presented using a "top-down" approach, but not
by the definition normally applied to that term. A
language overview 1is 1important at the beginning,
but it must include enough detall so that students
can start to write programs very early. One should
take advantage of Ada's information-hiding features
to allow students to write small programs using
packages already In existence without fully
understanding how they work. Then, as they gain
more knowledge and experience, they can be assigned
to develop the packages to support larger systems.
It must always be remembered that an overview does
not prepare one to write code, and an extremely
detailed lecture does not illuminate the big
picture. A view of the entire puzzle is needed,
with just enough detail to enable the students to
begin to assemble the pieces for themselves.

Laboratory Considerations

Qur experience reemphasized the need for adequate
laboratory facilities and time to support the
instructional effort, The facilities available for
this seminar were deemed adequate by us as well as
most of the participants. The final daily schedule
of 1 hour of lecture followed by 2 hours of lab,
repeated in the afternoon was the consensus choice
by both participants and staff.

One area we believe should be improved is that of
VMS/EDT familiarization. With the diversity of
backgrounds among the participants, there were some
with extensive VAX experience, and others with no
appreciable experience with any computer. Even
with a more homogeneous group, this could be a
problem. Our recommended solution for this problem
is to offer a pre-seminar tutorial the day before
the official seminar opening for those who wish it.

Group Size and Composition

The group size of 13 was easily accommodated for
this program. The wide diversity in background
among the participants caused some difficulties and
necessitated some compromises in depth and speed of
presentations. This reduced the benefits of the
program in various ways for most of the group. A
larger group with the same diversity would have
been very difficult to handle. We believe that a
more homogeneous group composition is very
important to the overall success of the program.
This should be achleved by stating a minimum
qualification of fluency 1in a higher order
programming language for applicants. 1f desired, a
separate seminar should be offered for those
learning Ada as a first language.

LTV L.t s v e ok v -

The feasible size of a seminar group depends
largely on facility availability. Assuming a
homogeneous group, we believe that 20 participants
could be accommodated with the facilfties at our
disposal.

Budget Considerations

The total budget allocation of $62,000 (not
counting participant compensation) for this seminar
was adequate, and would probably be adequate for
another year at this location. Most of the
planning factors are specific to location, and
would vary depending on how much setup work needs
to be done, It is importantthat the overall funding
for the program include compensation for the
participants. If a qualified pool of applicants is
to be attracted, some form of income for the summer
is necessary in order to attract those who might
have other summer employment opportunities.

Staff Requirements

Our complement of three direct professional staff
plus three support staff was adequate. We believe
that three 1is the minimum number of professional
staff required to present an intensive seminar such
as this, The heavy (and sometimes short notice)
duplication requirements necessitate clerical
support on nearly a full-time basis. The need for
a system operator depends on local management
structure. The need for a statistician depends on
data analysis requirements.

Seminar Results vs, Planning Model

The objective and subjective appraisals of the
seminar support the hypothesis stated in the
Planning Model: That academics learn better and
are more satisfied with a program taught in the
academic mode compared to an industrial-type
program. The participants were not pleased with
the SofTech approach of presenting all the detail
in the lectures. When we changed to shorter, less
detailed lectures supported by reading and practice
they responded better, and seemed to learn more.

Several of the test methods we had intended to use
fell victim to the shortage of time., We did not
feel we could afford to teach the same topic twice
using different methodology, particularly since the
group so thoroughly disapproved of the SofTech
approach, There was also strong resistance to
examinations, at least the recording of scores.
Therefore, our objective of research on testing
issues was not met.

We were able to take much advantage of the superior
experience of some members 1in helping the others,
but we found that the slower students were
reluctant to ask for help from the others.

The modifiability and reusability of good Ada code
were made clear to the participants via exercises
requiring modification of previously-written code,
team exercises, and use of previous exer.ise
results in the team project. These activities were
very successful and gave the partic.pants a good
appreciation of these significant Ada features.

Annual National Conference on Ada Technology 1985 67

Conclusion

This Ada Curriculum Development Seminar was deemed
by all participants and staff to have been very
successful. Our plans were generally effective,
anticipating most problems that arose. We worked
hard to ensure responsiveness to participants'
concerns and made numerous in-progress adjustments
as a result. We strongly recommend that seminars
of this type be continued at this and other sites
as the best way to prepare faculty to teach Ada
effectively. We believe that, if government
funding cannot be made available, various
progressive industrial firms would be willing to do
their part to assure the flow of well-educated
computer science graduates fluent in the Ada
language.

References

1. Booch, Grady: Software Engineering with Ada,
Benjamin/Cummings, 1983.

2. Young, S. J: An Introduction to Ada,
John Wiley, 1983,

3. Ichbiah et al: Rationale for the Design of
the Ada Programming Language, Draft for
editorial review, Honeywell and Alsys, 1984,

4. SofTech, Inc: Course Notes, Basic Ada
Programming (L202), U. S. Army (CENTACS),
1983.

5. Reference Manual for the Ada Programming
Language, ANST/MIL STD 18154, 1983,

Biographical data

M. Susan Richman {s chairman of the Mathematical
Sciences Program at the Capitol Campus of the
Pennsylvania State University, Middletown, PA. Dr.
Richman 1s a graduate of the University of
California, Berkeley, and received the Ph.D. in
Mathematics from the University of Aberdeen 1in
Scotland.

James M. Shoaf is Associate Professor of
Mathematics at North Carolina Central University,
Durham, NC. He is a graduate of Pfeiffer College
and received the Ph.D. in Applied Mathematics from
North Carolina State University.

Donald C. Fuhr is Director of Computer Services at
Tuskegee Institute, AL. He i{s a graduate of Oregon
State University and received the M.S., degree in
Engineering Management from the University of
Alaska.

4 i A/l A A

-. .’v Fx-ltl_ -

N Some Practical Experience in the Organization
l of a Library of Reuseable Ada* Units

Randal Leavitt

PR R

I RIOR Data Sciences Ltd., Nepean, Ontario

*Ada is a trademirk of the US Government, Ada Joint Program Office

b. lead to improvements in our software

Abstract:
developments methods,
. This paper summarizes the steps being
) taken by one real-time software firm ¢to c. reduce our system development costs,
s prepare for the new Ada marketplace. By
= concentrating on the creation of a library d. produce bette- quality systems for our
' of reusable software we are beginning to customers, and
(! use the new methods best suited for Ada
’ programming. Tool acquisition costs must e, lead to the development of some
be carefully compared with potential long marketable software products.
term savings during this transition
period.

It is interesting to note that the very
readable Ada language can contribute to
reduced maintenance costs, but this does

- not directly benefit us since we are
a seldom required to maintain our delivered
- systems. The creation of a library will,
e however, give us an opportunity to take
R full advantage of the maintainability of
.{‘ ada software. This kind of change may lead
= Goals: What We Expect to Achieve to a complete transformation in the way
real-time systems are acquired and

- Our company is a relatively small software maintained in the future, with more of the

engineering firm that develops real-time maintenance work and responsibility for

systems. We take a very competitive correct performance falling on the

approach to the marketplace, maintaining original developer.

our lead position by employing

exceptionally talented people. We do not

pave an excessive amount of money to what We Have Accomplished So Far

xnvest‘ in capital goods to support our

work (ie, our offices are not the most A library of reusable software can be a

elegant one possible), yet we are very very complicated system. Recognizing this,

much aware that we have to make some we have begun the development of our

sizable expenditures to prepare for the current library as a prototyping

coming Ada transformation. Ada will experiment. We expect to continue with

require a significant amount of "up front” this "build as you go” approach until we

work in order to be successfully used. have a good understanding of our actual

requirements. At that point a thorough

.. . revision or a new beginning may be called
- Qur situation, therefore, is a typical one for. Consequently, we are adding to our
" in the software industry, and we hope to library as fast as possible, responding to
. contribute to progressive developments and feedback about suggested improvements, and
0 a}so to learn as much as possible by making notes about where we should be
) discussing it openly. headed in the future. This approach to

»

library development requires very little

®

[initial expense, and since it has already
ne We have decided to create a library of led us to 'a few mildly surprising
e’ reusable Ada software to focus our Ada conclusions we feel that it is the best
. c?;Yetsion, with the expectation that this strategy to follow at this time.

‘e, w H

&

et a. enhance our reputation as experts in We began with perhaps the simplest
® the most advanced forms of software possible definition of a library, namely a
r- engineering, collection of Ada program unit source

68 Annual National Conference on Ada Technology 1985

WL, e

ll

‘

et

2
o
:.

-
D
-
.

’

AR -'.I‘.' At

- » ‘s - -
R A EN AP
ISP WPV AR A A L A, Y Y WSS Y

files. Our library now includes about
twenty-five different units covering:

a. mathematical functions packages,
b. complex arithmetic abstract type,
c. user interface procedures,

tools such as
communications

d. development
prettyprinters and
support programs,

e. discrete Fourier transform procedures,
and

f. various utilities such as sorting and

searching routines.

We then decided that each library unit
must be accompanied by at least one
demonstration or test program. Such a
program may also require test data files.
We have now added these to our library as
well, and set up a small database showing
how these files are related to each other.

A library such as this very quickly
develops its own complicated internal
dependencies. The complex arithmetic

types, for example, are used in the
discrete Fourier transform package, and
the user interface routines appear in many
of the test programs.

We have also written a brief user's guide
for the library. It 1lists the 1library
contents under various categories,
describes access procedures, and gives the
style rules followed while writing the
library entries. Each library unit has a
standard header hlock, which |is also
explained in the user's guide. We expect
this guide to be just as useful for those
making new contributions to the library as
it is for those drawing on the resource.

The next step was the announcement of a
company policy requiring Ada project
managers to have an early design review
with the library manager for each project.
This review will help guarantee that the
library is used as much as possible, and
that library enhancements will be made to
meet real project work needs. We intend to
establish the tradition of reuse right
from the start with our Ada work.

Finally, as one of our accomplishments, we
have recently made our first Ada software
sale, using our library components to
construct the delivered product. Based on
this we are now setting up another
database to keep track of which library
units have been drawn out and used. This
will allow us to properly distribute

PR - DI x.'_..'.-:‘..'.-
Asdh Ral o

L:I- o

future updates and revisions.

Some Preliminary Decisions

The process of actually attempnting to put
together a software library forces
decisions to be made. These constitute the
primary lessons learned from our
protoytping exercise. We are recording
them carefully for later analysis. So far
they can be summarized as follows:

a. The 1library will only contain text
files to keep 1its organization and
maintenance as simple as possible.
Users will take copies of the routines
they want and compile them as needed.

b. A database is needed to keep track of
all the relationships between the
library elements. This ensures that
revisions and updates are properly
followed up on throughout the library.

c. There must be at least one test program
for each library unit. These tests will
be as self contained as possible so
that simply running or will give a
clear indication of whether or not the
library is correct.

d. A common header block will be used for
every Ada program unit in the library.
The sections in this header will
provide enough information to allow an
experienced programmer to use oOr
maintain the unit.

e. Ada project managers will be required
to use the library extensively. They
are also expected to identify areas
needing enhancements.

f. Contributions to the library will not
be written as part of any particular
project's work. There must be no doubt
about the ownership of the library
contents.

g. A database will be used to record who
has used the library resources so that
future updates can be properly
distributed.

h. Library program units will be written
using the entire Ada 1language, even
though we only have a subset compiler
at present, Full compilers will soon be
available.

Findings Related to Reusable Ada

Components

In the process of putting together our
prototype Ada library we have noted the
following interesting points:

Annual National Conference on Ada Technology 1985 69

- ee— e

eliminate

Ada compilers must
unreferenced subprograms, data objects,
and unreachable code in executable
program images. This material has to be

included in library wunits to provide
the needed generality, but often is not
fully used 1in any single application.
The lack of this feature in an Ada
compiler creates a severe restraint for
truly generalized library development.

f. A library must be much more than a
collection of Ada program units. Test
progranms and data, specification
documents, and user documentation must
also be stored. Database facilities are

needed to keep track of relationships
between library elements, of users
requiring updates, and of

classifications and categories used to
organize the library contents.

L AN OB cuat st JOMS U e suld SN arih el g

- b. Library generic units are very
difficult to write. The requirements Future Considerations

l are often complex, vague, and
conflicting. Generic units are seldom As we are building our current library we
produced as a by-product of regular are beginning to formulate some ideas

about the ideal system we would 1like to
have.

. software development since the effort
- required to properly generalize them is
) usually significant. Since it seems to

be practically impossible to get them

I right the first time some process of First of all, our current project is
gradual introduction into the library loading the library from the bottom up.
. may be needed. Specialists should be This does not appear to be the most

employed to create usable, reliable,
and well documented generic units.

profitable approach. Most programmers can
produce 1low level building blocks quite
easily, often with 1less effort than it
¢. Generic units are also difficult to takes to query a complicated library. What
use, especially when they have many we seem to need is a library loaded from
interrelated parameters. The parameter the top down. We are considering now if
matching rules can be very subtle, this might be feasible using an Ada PDL to
Also, since a generic instantiation document designs which we can store in the
does not show the actual interface (ie, library. These standard designs may
the procedure parameters or the package provide very good starting points for
specification items), instantiated future development work.
units are easily misused. These
. problems incline programmers away from
I generic units. Ada training courses It is also obvious that the interactions
should emphasize generic unit use. of our software engineers with the library
Generic unit documentation must include system are similar to those that a
complete examples of instantiations. specialist 1in any field will have with an
expert system. An expert system front end

-

- 4. The

: generic package is the most may be very helpful to both those drawing

. complete unit to use as the common from the library, and to those adding to
library generic unit, Generic it, It may also be feasible to have the

. procedures, for example, cannot library store only very generalized

. propogate exceptions to the calling templates which are used to guide the

- program in any useful manner. This can output of a particular Ada program

; be done if a generic package is tailored to the user's stated
provided to make both the exception and requirements, The potential for
the subprogram names available. Since productivity improvements appears to be
this approach must be taken to very large using these methods.

effectively create generic tasks, it

simplifies the 1library if all generic

units are implemented as generic Present day software development

packages. methodologies do not assume that software
. reuse 1is the fundamental operation;
o e. Since the instantiation of some generic instead they are based on new development.
. units can be troublesome, it seems to This must change if we want our Ada
N be a good idea to have some library library to be really beneficial. We have

units which are typical intstantiations already begun the investigation of how to
! of existing units. For example, a make these changes.
" generic trigonometric functions package
. with a floating point type parameter
; could be instantiated as another Many of the benefits of a software library
-~ library unit for the standard type can be realized with other programming
- FLOAT. This second unit can then be languages as well. Whether we should have
> referenced as a simple package. This a different library for each language, or
D approach can be used to simplify the one Ada library with automated translators
=~ use of library entries. is currently an open question, Our
X 70 Annual National Conference on Ada Technology 1985
.

. @

- - CER e e ct s T T SO S SR S S L O N I

- ‘e ..'A - -
. . St el . e ,
PR PR RPN, S PR VAL P VAPV A gy SRl Wl W)

PR W -

preference would be automated translation, "Automating Software Development: A

but the cost of developing this is beyond Small Example"

- our means at present. S. Fickas

Symposium on Application and Assessment
of Automated Software Development Tools.

Formal methods involving proofs of 1983
. correctness are too expensive to be
. applied on project work. However, the cost "Reusable Software Engineering: Concepts
" equation changes if we consider library and Research Directions”
- units which may exist for many years and P. Freeman .
- which may be distributed to many systems Tutorial on Software Design Techniques
N which are very difficult to update. We Fourth Edition
. anticipate the need to use much more IEEE Catalogue Number EHO2@5-5
- formal and rigorous methods to build the 1983

solid core of a library.
"Some Practical Experience with a Soft-
ware Quality Assurance Program”

Finally, data communictions must be G.G. Gustafson
. included as an important feature of our R.J. Kerr
) library service. We must be able to fill Communications of the ACM
l up our library from external sources, and volume 25, Number 1
able to deliver to these sites as well. 1982
Without this capability we will not be
able to 1load our library adequately. The "Contemporary Software Development
principal difficulties in this area are Environments"”
those concerned with ownership and W.E. Howden
. liabilities., Communications of the ACM
Ny Volume 25, Number 5
] 1982
Conclusions

Our initial attempts to create an Ada
software 1library have been very exciting

: for us. There is good reason to believe
) that this project will radically change

i the way we do our work in the future,
leading to new methods based on reuse and
requiring much more formalism and

precision. We expect that this will be a
very satisfying environment to work in. On
the other hand, the general lack of demand
for Ada programming up to this point has
made it difficult to justify major efforts
for our 1library. We have had some minor
successes, such as as initial delivery of
a program based on library components, but
in general the mood remains tentative.

Author: Randal Leavitt

BN We expect this situation to change now PRIOR Data Sciences Ltd.
;: that the Ada compilers have finally 39 Highway 7
> arrived. Our response to a strong demand Nepean, Ontario
— for Ada software will be based on our Canada
library and on our policy for software K2H 8R2
reuse. We feel that this is the best way
for a company like ours to participate in Telephone: 613 82§-7235

the Ada culture.

- Mr. Leavitt is in charge of Ada
References application development at PRIOR. He s
- chairman of the Ada Working Group within

the Canadian Standards Association, and

"Suggestions for Using and Organizing has been actively involved in Ada

Libraries for Ada Program Development"” evaluation, teaching, and consulting for
J.A. Goguen several years. He has a B, Math degree
SRI International from the University of Waterloo, and is an
Menlo Park, CA ACM and IEEE member. He also has a
94925 Certificate in Computer Programming from
1983 ICCP.

Annual National Conference on Ada Technology 1985 71

....-:._: . "“;..'4....’5.:_._..4_; R .‘;--'_\\..' .__;;.. :' : .

v .

r *

DEBUGGING ADA TASKING PROGRAMS

.

[
)

Robert A, Conti R SN
._“:_14- . g
I
LN -
W IR

Digital Equipment Corporation

symbolic debuggers permit a user to debug The three major sections of this paper,
a compiled program in terms of the the respectively, describe the typical kinds
original source code in which it was of bugs and problems that occur when
written. A symbolic debugger for Ada must programming with Ada tasks, list
also be able to <cope with the multiple reguirements on the debugger, and describe
threads of execution represented by Ada the debugging commands that aim to satisfy
tasks. This paper describes the typical the reguirements.

kinds of bugs that a user of Ada tasks
will encounter and lists a set of

requirements for a symbolic debugger. Typical Ada Task Debugging Problems
Finally, the special commands and features

that have been developed for VAX DEBUG Clearly, it is important that a debugger
(the VAX/VMS (tm) symbolic debugger) are be able to help with the most frequently
presented. occurring bugs. In this section we review

what, in our experience, seem to be the

more frequent kinds of tasking bugs and

sitow how they generate requirements for

the debugger. Note, we are not faulting

the Ada language 1in any sense here --

tasking is just another language construct

. with its own characteristic set of bugs,
Introduction just as infinite looping is a bug

) characteristic of while loops.
VAX DEBUG is the multi-language debugger

that executes under the VAX/VMS operating
system. At the time of this writing, VAX

DEBUG supports the Ada, Pascal, FORTRAN, Deadlocks

COBOL, MACRO, €, PLI, RPG, and BLISS -

languages. Support for Ada was Ada tasks can deadlock in many ways. (In

incorporated into the debugger this paper we use the term deadlock

concurrently with the development of the loosely, to mean that one or more tasks of

VAX Ada compiler. Much work had to be the program are waiting forever. Our use

done because Ada is different in many ways of the term is wider than 1its usual

from languages that the debugger definition which is restricted to the

previously supported. Special features existence of a “"circular wait").

were needed for Ada's tasks, packages,

subunits, overloaded subprograms, Probably the most common bug when using

attributes, and exceptions. tasking is a deadlock initiated by an
unanticipated exception. Ada rules

This paper discusses only those debugger require that a task that propagates an

features developed to support Ada tasking. unhandled exception must first wait for

r Ada is a registered trademark of the U. S. Government, Ada Joint
Program Office.

tm VAX and VMS are trademarks of Digital Equipment Corporation.
* The information in this paper is subject to change without notice

and should not be construed as a commitment by Digital Equipment
Corporation.

72 Annual National Conference on Ada Technology 1985

i

s

DA
I]
. e e Y,

"
LR

5

i

U ,l' o ,",

(4

St

W o s

its dependent tasks, and then must
terminate. It is often the case that a
reading of the program indicates that the
program is deadlock free, but the reader
has overlooked the possibility that some
exception can occur at run~time and cause
deadlock.

A simple illustration of deadlock due to
unanticipated exception follows. 1In this
example, one task handles commands from
the terminal, and another performs
computations in parallel. As the program
is written, there appears to be no
deadlock. The procedure
INTERACTIVE_SOLUTION waits at its end for
both tasks to terminate. The terminal
handler initializes for the problem, and
then starts the background compute task by
calling its entry START. After proceeding
with further work, both tasks terminate
and the procedure completes.

Unfortunately, if an exception occurs in
the region labelled “initialize for
problem", a deadlock will result. If such
an exception were to occur,
TERMINAL_HANDLER would propagate the
exception and then terminate. Task
BACKGROUND_ COMPUTE, however, is programmed
to wait unconditionally at the accept for
entry START. The premature termination of
TERMINAL_HANDLER prevents the expected
call to that entry. Ada rules require
that a procedure such as
INTERACTIVE_SOLUTION must wait for its
dependent tasks to terminate. Thus, if
such an exception were to occur, the
procedure will wait forever for
BACKGROUND COMPUTE to terminate, and
BACKGROUND_COMPUTE will wait forever at
its accept.

procedure INTERACTIVE_ SOLUTION is

task TERMINAL_ HANDLER;

task BACKGROUND COMPUTE is
entry START;

end;

task body TERMINAL HANDLER is
begin
-- ... initialize for problem

BACKGROUND COMPUTE.START;

-- ... talk to the user, etc.
end;

task body BACKGROUND_COMPUTE is
begin

accept START;

-- ... do the work here
end;

begin
null;
end;

This example points out some Ada-specific
debugging needs. First, the termination
of a task by exception, while "simply
another Ada rule", surely seems to be an
unusual event. It would be nice if we
could tell the debugger to let us know if
this ever happens. Second, at the time of
the deadlock, the program simply stalls
with TERMNAL_ HANDLER terminated, and
BACKGROUND_COMPUTE and the caller of
INTERACTIVE_SOLUTION in wait states. If
the debugger could show us the state of
these tasks (i.e. terminated, waiting,
and waiting, respectively) it would help.
I1f the debugger could do more, and show us
the detailed reascn for each wait,
including the name of the entry (waiting
for dependents, waiting at accept of
START), that would even be better. It
turns out that satisfying the simple needs
of *his example goes a long way to aid
task debugging.

Another set of deadlocks arises from the
Ada rule that propagation of an exception
must wait for dependent tasks.

This is illustrated by the following
program. In this example, a NUMERIC_ERROR
exception is raised by the computation
3/2, a divide by zero. As in the previous
example, the exception leads to a deadlock
by causing an entry call to be omitted.

procedure THIS_IS_MAIN_PROGRAM is

task PARALLEL_ COMPUTE is
entry START;
end;

X : integer;
Z : integer := 0;

task body PARALLEL COMPUTE is
begin -

accept START;

-~ ..., do work here

end;

begin
X := 3/2; -- raises exception
PARALLEL_COMPUTE.START;

end;

What is different in this case is that the
exception never propagates. This is
because Ada rules state that the exception
must wait for the termination of all
dependent tasks before propagating. The
exception propagation is held up until
task PARALLEL_ COMPUTE terminates. This
example points out a need to have the
debugger show us when a task (in this
case, the environment task that is
automatically created to <call the main
program) is waiting for dependent tasks
because of an exception.

Annual National Conference on Ada Technology 1985 73

Another kind of deadlock 1is associated Again, the debugger should

with errors in calls to an entry which is display entry names when tasks
a member of a family of entries. An entry are suspended at an entry call or
in an family 1is wused by specifying its accept.
index on the entry call and also on the
accept. If the computations on each side 2. A task not being programmed to
of the rendezvous produce different terminate. Perhaps the task goes
values, a deadlock will result. The into an infinite 1loop. By Ada
following fragment illustrates such a rules, the task that 1is its
deadlock. master cannot terminate.
BASE_INDEX : integer := 1; Here, about all we can ask the
debugger to do is show when a
-~ the call in task A: task is waiting for its
B.SOME_FAMILY(BASE_INDEX + 2) (P) dependents and show the current
statement being executed by any
-~ the accept in task B: task. AR
accept SOME_FAMILY(BASE_INDEX + 3) (P) AR
3. Busy-waiting on a variable used ; .

as a flag that is to be set by a

No rendezvous can occur because the call lower priority task, which never ®

is to entry family number 3, but the runs because some higher priority R
accept is for entry family member 4. This task is always ready to execute. wee
kind of bug can be hard to detect by This kind of deadlock is a bit A
reading the program if the index more "dynamic" than others : .
calculations are complicated. Therefore, because tasks remain in compute

another debugging need is the ability to states and don't suspend.
inspect the 1index value for any task
suspended at an entry call or accept for The debugger should allow a
an entry in a family. running program to be interrupted
asynchronously. It should allow
Another set of problems arises from select one to find out what statement
statements. Run-time calculations can be any given task is currently
specified for the entry indices, when executing. It should also allow
conditions, and delay statements of a changing of priorities so a
select statement. In addition to correction can be implemented and
previously mentioned deadlock because of tried without the need to
wrong family indices, deadlock can also recompile.

result from a condition being permanently
computed as FALSE. Excessive delays can

result if the delay expressions are Other Tasking Problems

incorrect. Ada-specific debugging help is

needed here to make condition values and Other kinds of tasking problems are:

delay expressionc readily available. non-repeatable execution, races, loss of

access to a task, task starvation, stack

Another problem related to select overflow, and excessive context switching.
statements is their non-deterministic

nature. If several accept alternatives Non-repeatable execution can occur if

are open and callers are engueued on each, tasks in the program execute delay

the choice of which rendezvous to accept statements, or do asynchronous 1/0 that

is arbitrary (up to the run-time system). depends on some external hardware device,

When a task is waiting at a selec*t, the or if time-slicing [see note below] is

debugger shouid provide a means of enabled. This can be especially

suspending execution before any statements pronounced while debugging if the

of the chosen accept alternative are execution of the debugger slows the

executed. program down relative to external events.

The debugger should allow a user to force

Other cases of deadlock arise from: any execution order that might occut

naturally. The user should be able to

l. Entries in a task being called in prevent a task from executing at any time

. the wrong order. For example, (ignoring any asynchronous events directed

N task A waits forever on a call to at that task, or waiting for events to be

-}' entry ONE, but task B executes an delivered to some other task), and be able

> accept for entry TWO. to switch control to any task that is

Note: Time-slicing is not required by the Ada language. VAX Ada
by default uses FIFO scheduling, and provides a pragma TIMFE SLICE
to enable round-robin scheduling and specify the time guantum.

[2 T

74 Annual National Conference on Ada Technology 1985

eligible to execute (allowing the task to
acknowledge the asynchronous event).
Combining these capabilities with being
able to execute commands at breakpoints
seems sufficient to force any desired
execution order that can occur in
practice,

A race is the accessing of an object that
is shared between two tasks in the wrong
order, or by both tasks concurrently,
because the tasks are not properly
synchronized. When there 1is only one
physical processor, a suspected race might
be verified if a user is able to change
task priorities while debugging, thereby
causing one task to execute in preference
to the cther. Alternatively, commands
that force explicit task switching and
suspension may be helpful. Another way to
detect a race is to be able to set a
"watchpoint" on the shared data. A
watchpoint is a way for a debugger to be
invoked on any attempt to read or write
the data. The debugger could then show
which task was executing at each
reference,

Loss of access to a task can occur when
one has declared an access type
designating a task. After the program has
assigned an access variable (pointer) to
point to one task, the program may then
assign it a different value. Ada rules

state that the task can continue to
execute even though the access variable
has been reassigneag, or the scope

declaring the access variable has been
left. Clearly, the user needs a way
name such tasks on debugging commands
independent of the use of program
variables. Some unigue and universal way
of naming tasks is needed.

Task starvation can occur when higher
priority tasks prevent a lower priority
task from gaining access to the processor
for long periods. This can be detected if
the debugger can find out how much "“CPU
time” a given task has received, or a
count indicates how often a given task has
run. Being able to change prioritier
would allow the starved task to exe:ute.

When an implementation uses fixed length
stacks for tasks, stack overflow can
occur, The debugger should display the
amount of stack space currently consumed
by a task and how much total space is
available. The debugger should also
automatically monitor and report if stack
overflow is imminent.

Excessive task switching may result from
the way the program is designed. This can
arise from the improper assignment of
priorities, or specifying tou short an
interval for the scheduler time slice.
This illustrates a need to maintain

statistics such as the total number of
context switches. Statistics can be used
both to improve performance and to find
subtle bugs.

Reguirements for the Debugger

A symbolic debugger for Ada must allow a
user to both observe and modify program
behavior. 1Ideally, to the maximum extent
feasible, the simple act of observing a
program should not also modify its
behavior,

A symbolic debugger must, of course, offer
many other features not directly related
to tasking, such as the ability to display
source program lines as the program
executes, to use names of program objects
rather than merely their addresses, to
cope with overloaded subprograms, etc.
Here, we shall concentrate only on
debugging requirements pertaining to Ada
tasks.

A proposed set of requirements on a
debugger for Ada tasks follows. The
debugger should:

1. Provide a way to uniquely
identify tasks in debugging
commands that is independent of
variable names.

2. Display a detailed reason why a
task is suspended.

To merely show that a task is
suspended, or to display the
program counter is not as useful
as to give a more detailed
reason, such as, "suspenrded for
an entry call", “"suspenued for a
delay", etc.

3. Show the name of the entry and
the index for a task suspended on
an entry call or accept of an
entry family.

4. Show the state of when
conditions, delay values, entry
indices, and entry names for a
task waiting at a select
statement.

5. Show the amount of stack
currently consumed, and the
amount of stack space available.
Automatically watch for impending
stack overflow. (This applies
primarily to implementations that
allocate a fixed amount of space
for the stack at ihe time a task
is created).

Annual National Conference on Ada Technology 1985 75

3
‘.1
N

B L "-‘-l"‘v"’- ,. ,‘l '.- 'lv Il -."'."‘.-".

6. Provide a way to select, for
display, a subset of all tasks in
the program based on priority and
scheduling state.

In some applications, there may
be hundreds of tasks in a
program, Clearly, an easy way is
needed to determine which tasks
of a given priority are 1in the
rcady state (and thus might take
control of the processor). It's
also informative to know what
tasks are terminated, suspended,
etc.

7. Provide statistics on the number

of tasking-related operations
executed, such as context
switches, entry calls, accepts,
etc.

Providing a report on the total
number of context switches can
help a user learn how
modifications might increase or
decrease overhead. These numbers
are readily available to the
tasking run-time system, but very
difficult for the user to obtain
otherwise.

8. Be able to restrict all but a
chosen task or set of tasks from
the processor.

Putting tasks "on hold" allows
one to debug a task or task set
in isolation without interference
f rom other tasks that might
change the state of the program,
or, worse, abort the task being
debugged.

9. Be able to observe and modify any
variable in any task, at any
time.

10. Be able toc control the scheduling
discipline (round-robin or FIFO)
while debugging.

11. Allow changing priorities.

12. Help the user cope with
non-repeatability by allowing a
user to generate all possible
execution orderings.

It must be possible to: place
any task on hold, switch control
to any ready task, set
breakpoints, and execute
debugging commands at
breakpoints. These appear to be
sufficient to reproduce any
possible natural ordering.

76 Annual National Conference on Ada Technology 1985

It must also be possible to
disable round-robin scheduling.

It is advisable to attempt to
eliminate wunnecessary sources of
non-repeatability within the
run-time system.

13. Provide a way to invoke the
debugger on various unusual
run-time events, such as
termination of a task by

unhandled exception.

There should be a way for the
user to tell the debugger to
perform some action when one of
these events occurs, such as halt
the program.

14. Detect deadlocks when they occur,
or upon demand.

15. Measure execution progress, such
as CPU time, in each task.

Debugging Commands

In attempting to satisfy the above
requirements it was necessary to define
only a handful of new commands (plus
gualifiers) for VAX DEBUG.

A command SHOW TASK has been defined for
the purpose of observing task states, and
a command SET TASK has been defined in
order to modify task states. The existing
breakpoint and tracepoint commands (SET
BREAK and SET TRACE) have been modified so
that interesting tasking events can invoke
the debugger. (NOTE: A breakpoint
suspends program execution and causes the
debugger to prompt the user for debugging
commands. A tracepoint merely displays a
message and continues execution. VAX
DEBUG provides numerous additional
options, including automatic execution of
a command sequence when the event occurs).

Preliminary Definitions

A user must be allowed to examine the
variables of a task that is not currently
executing. To provide such visibility, a
command was defined to allow a user to
make any task the default task for the
debugger’'s commands that observe and
modify vaiiables. This task is called the
visible task.

The task which is running on the processor
is called the active task. When the
debugger is invoked, the visible task is
made the same as the active task. Using
debugging commands, the wuser can change
which task is visible (can be¢ observed and

AR IR At dai i it Bt Bl ek o S S d a1

[]
|."
L9
fa modified), and which task is active (will substate is the Ada-specific state
o execute next). information,
Requirement 1 above points out the need to task object is the name of the task
generate a unique way of referencing a object in the program.

task. To satisfy this, the Ada run-time
system increments a counter each time a

task is created by the program. A .
construct called a "task ID" is defined by The substate field can assume any one of a e
VAX DEBUG. A task ID has the format $TASK long list of values. A suffix [exc] and A
n, where n is the count. A user can use a [abn] are appended to indicate if the ? -~
task ID, as well as a task object name, on state was obtained because of an exception N S
any task debugging command. or abort. The full list of substates and
explanations follows:
The debugger has also defined some useful
task-valued functions, The functions Abnormal Task has been aborted.
%ACTIVE_TASK, $VISIBLE TASK, and
$CALLER_TASK evaluate to the active task, Accept Task is waiting at an
visible task, and the calling task 1in a accept statement.
rendezvous, respectively. These are
especially useful in conditionally Activating Task is elaborating
executing debugger commands . To its declarative part.
illustrate, the following command sets a
breakpoint on 1line 10 such that the Activating tasks Task is waiting for
breakpoint is triggered only when the tasks to finish
executing task 1is named DRIVER. Without activating.
this feature trying to debug a subprogram
called by hundreds of tasks could be Completed [abn] Task is completed due
pretty tedious! to an abcrt statement,
SET BREAK %line 10 but not terminated.

WHEN (%ACTIVE_TASK = DRIVER)
Completed [wexc! Task is completed due
to an unhandled ex-
ception but not

The SHOW TASK Command terminated.

The SHOW TASK command has several completed Task has completed
gualifiers. Without qualifiers, it normally.

illustrates the current state of the

visible task, as illustrated in Figure 1. Delay Task is suspended at a

delay statement.
In the display of Figure 1,

o . Dependents Task is waiting for
* indicates the task is dependent tasks to
the active task. terminate.
task ID is the unigue ID for the Dependents [exc]) Task is waiting for
task. dependent tasks
s : because of an
pri is the task's current unhandled exception.
priority.
Entry call Task is waiting at
hold indicates if the task has an entry call.
been placed on hold.
. . 1/0 or AST Task is waiting for
state is the language-independent I/0 completion or
task state. This can assume software interrupt.
the values RUN, READY, SUSP,
TERM, CREA for running, Not yet activated Task is waiting to be
ready, suspended, activated.
terminated, ancd created.
SHOW TASK
task id pri hold state substate task object
* RTASK 3 7 RUN EXAMPLE .PRODUCER

Figure 1. The SHOW TASK Display

Annual National Conference on Ada Technology 1985 77

Task is waiting at a The qualifier /FULL causes more detailed
select statement with information to be displayed, as shown in
delay alternative. Figure 3.

Select or delay

Select or term. Task is waiting at a In Figure 3 we see detailed information
select statement with about the task. Information is displayed
terminate alternative. about the task's waiting for a rendezvous,
its type and «creation, its task control
Select Task is waiting at a block, and its stack usage. The
select statement with rendezvous information satisfies
no else, delay or requirements 3 and 4 regarding the display
terminate alternative. of details about entry indices, delay
values, etc. For example, in Figure 3 we
Shared resource Task is waiting for see that the entries in the select are
some shared resource. named and entry index values are
displayed.
Terminated [abn] Task terminated by
abort. Qualifiers /PRIORITY = n, /STATE = s, and A
/HOLD can be used separately or in R
Terminated [exc] Task terminated by combination. They restrict the set of e T
unhandled exception. tasks that will be displayed to only those ot
that satisfy all these selection criteria. '.. - '.
- Terminated Task terminated For example, SHOW -
- normally. TASK/PRI=7/STATE=READY/NOHOLD, displays

N all tasks of priority 7 that are in the
" READY state and have not been placed on

- A command qualifier /ALL can be wused to HOLD (SET TASK/HOLD is discussed later).
o obtain a brief display of all tasks
currently in existence. This is The qualifier /STATISTICS changes the

k illustrated in Figure 2. nature of the SHOW TASK display. Instead
3 SHOW TASK/ALL

task id pri hold state substate task object

$TASK 1 7 SUSP Dependents 121036

$TASK 2 7 SUSP Select or term. EXAMPLE.WORKER

* YTASK 3 7 RUN EXAMPLE.PRODUCER

1} Figure 2. The SHOW TASK/ALL Display

SHOW TASK/FULL %TASK 2

task id pri hold state substate task object
$TASK 2 7 SUSP Select or term. EXAMPLE . WORKER

Awaiting rendezvous at: select with terminate.
The select has 4 arms.

R When Alternative, 'VAL({index) Do Part Next Stmt .
true PRIORITIZED WORK(i), 4 0000061E 000006DF 2
true MORE_WORK 00000624 000006DF @ {

- false PRIORITIZED WORK(i), 3 0000062A 0GOQO6DF bt

true Terminate

P Task type: WORKER
. Created at PC: EXAMPLE.$LINE 8
Parent task: $TASK 1

Start PC: EXAMPLE . WORKERS TASK_ BODY
Task control block: Stack storage (bytes):
Task value: 1104528 RESERVED BYTES: 3072

s Entries: 13 TOP_GUARD_SIZE: 5120
- Size: 1598 STORAGE_SIZE: 30716
- Stack addresses: Bytes in use: 352
- Top address: 1155584
- Base address: 1186300 Total storage: 40506

Figure 3. The SHOW TASK/FULL Display

78 Annual National Conference on Ada Technology 1985

u

e {
kf};u:\fi
of displaying the state of a particular variable VARl in task T3 while some :f: -
task, it displays global state unknown task is active, then it restores ~J g
information, most important of which is visibility back to the active task. o)
the number of context switches that have . d
been performed. This 1is illustrated in SET TASK/VISIBLE T3 PSAEASI
Figure 4. EXAMINE VAR1 ®
SET TASK/VISIBLE %ACTIVE_ TASK A
Other qualifiers are as follows: W
The gualifiers /HOLD and /NOHOLD allow one R
/TIME SLICE Displays the number of to place any or all tasks on hold. A task AR
seconds in the round-robin on hold will not be permitted to run. SET .-}‘
scheduling interval. TASK/HOLD can be used to keep other tasks X
from interfering while debugging a
/CALLS Displays the name of each particular task. Examples of its use are: .9
routine called by the task T
and the current line Put all tasks on hold:
number in that routine. SET TASK/HOLD/ALL RICRE

Release only the task numbered 4:
We have shown that the SHOW TASK command SET TASK/NOHOLD $TASK 4
satisfies requirements 2 through 7.

The qualifiers /PRIORITY and /RESTORE

The SET TASK Command complement each other. To illustrate, the
following command sequence sets the

The SET TASK command allows modifications priority of task T to 8 and then restores

of certain attributes of tasks. its natural (declared) priority.

The qualifier /ACTIVE switches the active SET TASK/PRIORITY = 8 T

task (the task that is currently SET TASK/RESTORE T

executing). Like any VAX DFBUG command,

it can be used in conjunction with a The /RESTORE gqualifier eliminates the need

breakpoint command. The following command to remember the task's original priority.

illustrates some of the power of VAX

DEBUG. It sets a breakpoint on 1line 30. Other qualifiers for SET TASK are:

The breakpoint is honored only when the

active task is Y. 1If so, a task switch is /ABORT Abort some task

performed (from Y) to T3. /TIME SLICE= t Change the round-robin

- time-slice interval;
SET BREAK %line 30 a 0 value causes FIFO
WHEN ($ACTIVE TASK = Y) scheduling.

DO (SET TASK/ACTIVE T3)
The SET TASK command satifies requirements
The qualifier /VISIBLE is the one SET TASK 8 through 12.
command that doesn’'t really modify the
behavior of the program. This command is
used to make another task visible for
debugging commands. For example, the
following command seguence examines a

SHOW TASK/STATISTICS

task statistics

Entry calls = 2 Accepts = 2 Selects = 1
Tasks activated = 2 Tasks terminated =0

ASTs delivered =7 Hibernations =5

Locks tested = 39 Locks that blocked = 12, 30%
Total schedulings = 19

Due to task activations

Due to suspended entry calls

Due to suspended accepts

Due to suspended selects

Due to waiting for a DELAY

Due to scope exit awaiting dependents
Pue to delivery of an AST

LU T O I A 1)
N A RN

Fligure 4, The SHOW TASK/STATISTICS Display

Annual National Conference on Ada Technology 1985 79

. LR - e
- . .n e 3 e .- Te
SR et e .
SN PP WL I I AL SR

Commands for Detecting Tasking Events display, and remains in the debugger.
. It is desired to invoke the debugger upon SET BREAK/EVENT=EXCEPTION_TERMINATED
" detection of events known only to the DO (SHOW TASK)
N run-time system, such as termination of a

task by unhandled exception. There are numerous tasking run-time events
. that can be detected. The list of event
e One would like to be able to halt the names and definitions appears in table 1.
- program as well as pause it and execute
o) commands. The existing command to halt The /EVENT gqualifier satifies requirement
N the program is SET BREAK. For example, 13.

SET BREAK %line 10, halts the program

before 1line 10 is executed. The command

to pause the program is SET TRACE. The

=, normal parameters to these commands are Possible Future Commands
program addresses.

X of the reguirements list, only
- These commands have been modified by requirements 14 (automatic detection of
- adding a /EVENT qualifier. The event deadlocks) and 15 (measure task progress)
o qualifier allows the break or trace action have not been met by one of the commands
' to occur not when an address is reached, described above. We hope to fill this gap
but when a particular run-time event in the future.
X occurs. For example, the following
X command causes the debugger to be invoked Deadlock detection can be either
. when any task terminates by wunhandled continuous or on-demand. With continuous
. exception. When the debugger is invoked detection, considerable run-time overhead
y by such an event, the command SHOW TASK is is incurred to ensure that a deadlock is
< executed to display which task is detected as soon as it occurs. With
terminating. Since a breakpoint is on-demand detection, a small amount of
. requested, the program halts after the continuous overhead is incurred, but the
B user must specifically request an analysis
R for deadlocks.
[RENI'EZVOUS_EXCEPTION Triggers when an exception begins to
=X propagate out of a rendezvous.
ﬂf DEPENDENTS_EXCEPTION Triggers when an exception causes a task
) to wait for dependent tasks in some
o scope.
- < TERMINATED Triggers when a task is terminating,
whether normally, by abort, or by
K exception,
:: EXCEPTION_TERMINATED Triggers when a task is terminating due
o to an exception,
- ABORT_TERMINATED Triggers when a task is terminating due
to an abort.
. RUN Triggers when a task is about tc run.
‘- PREEMPTED Triggers when a task is being preempted
- from the RUN state.
- ACTIVATED Triggers when a task is going to run for
q the first time.
o SUSPENDED Triggers when a task is about to be
o suspended.
}' READY Triggers when a task has become ready to
" run.

«

TABLE 1. Event Names and definitions

80 Annual Nationai Conference on Ada Technology 1985

o

R R e At Lo A A~ i o ”, v"‘! a/ o

A ARASR A Ak il Sl A el Sk A Sl A ma ten e bk~ '2‘\‘?1“;]

Both forms could be implemented within the Acknowledgments
framework outlined earlier. The first
command to follow would invoke the The author would like to acknowledge the

contributions of other members of the VAX
Ada compiler project and the VAX DEBUG
project toward this effort.

debugger when the next deadlock is
detected. The second command would
analyze the current program state and
report all deadlocks.

SET BREAK/EVENT=DEADLOCK

SHOW TASK/DEADLOCK References
Measuring task progress .
relatively expensive operation be (1] Ada Programming Language,

performed at each task switch. To ANSI/MIL-STD-1815A, U.S. Government,
minimize the impact of this monitoring on 10 December 1980.

programs not needing such monitoring, a

command is needed tc enable or disable the {2] Developing Ada Programs on VAX/VMS,
monitoring. This could be done via a SET Digital Equipment Corp., Maynard,

could require a

TASK/MONITOR=CPU_TIME. If this command Mass., 1985.

were invoked for some task, the elapsed .

CPU time would appear in the SHOW TASK [3] VAX Ada Programmer'§ Run-Time
display. Reference Manual, Digital Eguipment

Corp., Maynard, Mass., 1985.
[4] vAaX Ada Language Reference Manual,
Digital Eguipment Corp., Maynard,

Implementation of the Commands
Mass., 1985.

The run-time cost associated with these

commands has been very small.

Much of the information displayed by SHOW
TASK was already embedded in the tasking
run-time system. A few additional
instructions had to be added, for example,
to specify a reason code for a task
suspension, Most of the overhead, for
example, converting binary to symbolic
format, and much arithmetic, occurs only
while debugging.

e ae
P R e

For SET TASK, it was necessary to add some
tests of a few master flags, that mean
for example, "DEBUG changed some NG
scheduling info", or "some event is Robert A. Conti is a member of Digital

enabled". Only if the master flag is Equipment Corporations's VAX Ada compiler

found to be set is more detailed code development team. His responsibilities

executed to fully analyze the particular included the implementation of tasking,

situation. task debugging, and general Ada debugging.

’ -

ks
)

Prior to joining UDligital, Mr. Conti
worked at Westinghouse Electric
Corporation on software for several

Conclusion military programs, most notably AWACS. He
received the BS in Engineering from Case

Western Reserve

This paper has described typical bugs that
occur when writing programs using Adea
tasks. A set of reguirements for a
debugger of Ada tasks is listed. Finally,
a set of debugging commands to address
these requirements has been described. We
have shown how a few simple commands can
add tremendous power in the ability to
debug Ada tasking programs.

University, the MS in
Electrical Engineering from Johns Hopkins
University, and the MS in Computer Science

from the University of Maryland. He is a
member of the IEEE and ACM.
The author's address is: Digital

Equipment Corporation, ZK2-3/N30, 110
Spitbrook Rd., Nashua, NH 03062.

Annual National Conference on Ada Technology 1985 81

LY

Te

b

N

kS

n;‘

I THE ADA* LANGUAGE SYSTEM
;: Dennis J. Turner

Center for Tactical Computer Systems (CENTACS)
U.S. Army Communications-Electronics Command (CECOM)
Fort Monmouth, New Jersey

The Ada Language System (ALS) is an integrated,
rehostable, retargetable and extensible pro-
gramming environment for the Ada language.
Significant benefits are expected to be derived
through extensive use of the ALS as a common
environment across Army Battlefield Automated
Systems (BASs). This paper provides background
on ALS activities to date, current status and
future plans.

Introduction

A great deal of attention has been given in
recent years to the growing costs which can be
directly associated with the proliferation of
programming languages and computer hardware
within Army Battlefield Automated Systems
(BASs). However, there is another aspect of
BAS proliferation which is considerably less
visible but, is also a source of significant
cost.

Every BAS, whether it includes a large mainframe
computer or a deeply embedded microprocessor, has
an associated support computer and a set of
computer programs which collectively comprise the
so-called "support system." The term support
system is something of a misnomer because, while
it would seem to refer to a post—-deployment
period, it actually refers to the entire cycle of
4 BAS.

Figure 1 illustrates the relationship between the
support (or host) computer and the fieldable (or
target) computer. Programmers use the support
computers to prepare and integrate progiams which
will ultimately execute on the target computer.
Program preparation can include text editing,
language translation, linking, simulation and a
variety of other activities including config-
uration management. The separation of activities
across these systems is dictated by the different
demands which are placed on the computers.

Target computers are designed and configured to
accomodate the needs of Army field users and of

amounts of primary and secondary memory and very
high speed peripheral devices.

Support systems typically are comprised of a
general purpose commercial mainframe computer, an
assortment of peripheral devices, a vendor
supplied operating system and a collection of
software (some vendor supplied, some government
developed) which programmers use to develop
application software for the target computer. The
support programs, (such as text editors and lan-
guage translators) which programmers use to
develop applications software, are often referred
to as ""tools." Just as a carpenter uses a variety
of tools to build a house, a programmer uses a var-
iet{iof (software) tools to design and implement

application programs.
The life cycle costs of a support system primarily
are composed of:

a. The cost of maintaining the vendor supplied
host computer hardware.

b. Costs for initial licenses and the recurring
support costs for vendor supplied software
(operating system and tools).

c. The cost to develop and maintain additional
government required tools.

The life cycle costs of "b" and "c¢'" can signifi-
cantly exceed those of the mission program,
depending on the extent of the tools and the size
and complexity of the application.

An Army contractor typically chooses a support
system as a function of the programming language,
target computer and programming staff experience.
With little Army constraint imposed on these sel-
ection factors, it is no wonder that we have found
ourselves in a situation where nearly every BAS
has a unique support system associated with it.

Even with the advent of the Ada programming lan-
guage, there is little reason to expect a signi-
ficant reduction in the proliferation of support
systems, even though they may all share an Ada
theme. In anticipation of the vast market across

the mission environment. These needs are
typically very different than those of
programmers, who work in a laboratory environment
and who require interactive terminals, large

government, industry and academia, at least 35
U.S, and 15 foreign initiatives are now underway
to produce Ada compilers and Ada support tools.
Each of these initiatives represents a substdntial

*Ada is a registered trademark of the Department of Defense (Ada Joint Program Office) OUSR&E (R&AT).

L] L]
Catetat ety

82 Annual National Conference on Ada Technology 1985

.

.

rp v,
A

amount of software. For the most part, they will
accomodate only a narrow range of computers and
are considered to be proprietary in nature.
Unless very deliberate steps are taken to con-
strain the choices that can be made for use on
Army systems, it is likely that a large number of
these very distinct compilers, tools and host
computers could become associated with Army BAS
(see Figure 2).

In anticipation of this difficulty, the U.S. Army
Communications-Electronics Command (CECOM) set out
Lo develop a solution.

“SUPPORT" “FIELDABLE”
OR \ OR
“HOST” Z “TARGEY"
SYSTEM SYSTEM
MANUAL
OR
AUTOMATIC
f \l_ LINK 1 ?
PROGRAMS PROGRAMS
ARE PREPARED ARE EXECUTED
AND INTEGRATED AND TESTED
HERE HERE
Figure 1
RESOURCE
REMENTS
REGUIREME UNCONSTRAINED gy,
PROLIFERATION

COMMONALITY,
.....Q,FOWEHFUL TOOLS
L)

A

pal TSy,

RESOURCE ISSUES: o LIMITED FUNDS
o LIMITED POOL OF PEOPLE

Figure 2. Support environment.

Lt et .

DTS SR
< - .

R AL S S S A .
At A e e e et ey m,
e lntaLalat el el at ol s e e

Key Characteristics

In June of 1980, CECOM awarded a contract to
Softech, Incorporated to develop an Ada Language
System (ALS) which could satisfy three primary
goals: reduce the proliferation of support envi-
ronments for Army BASs; improve the productivity
of programmers; and improve management control
over the software life cycle.

The ALS has several important characteristics that
serve as the basis for meeting these objectives:
integrated environment, rehostable, retargetable
and extensible.

Each of these characteristics now will be des~
cribed in greater detail.

Integrated Environment

The ALS is first and foremost an "environment."
This is a commonly used term which refers to a
support system which consists of a large variety
of tools to assist programmers in a wide range of
acrivities. Most of the current U.S. and foreign
Ada initiatives seek to develop only a compiler,
Tools beyond support of language translation
typically are not included in these initiatives.
The ALS includes a rich set of powerful tools
which support activities such as command process-
ing, data base management, language processing,
program analysis, configuration control, text pro-
cessing, file operations and other miscellaneous
activities.

In order to appreciate totally he notion of an in-
tegrated environment, one must have had some ex-
perience with more traditional systems, where tool
design has been approached in a manner that can
best be characterized as ad hoc. In these systems
tools ahve been developed independently of one
another, with no common design philosophy or ob-
jectives. As a result, they are difficult to use,
modify and expand.

Figure 3 illustrates the integrated nature of the
ALS. Here, all tools communicate with the user
through a common and friendly command language
processor. '"Inter-tool" communication occurs
through a common data base and through standard
interfaces. The result is a cooperating system
of integrated tools which are easy to use and
which can be modified and expanded in a straight-
forward manner.

‘* TIME

Annual National Conterence on Ada Technology 1985 83

Pl

e
e

o e -
P
[PEACIE AL

.

SODOPE B
r» LR A) .

o

Ll

A0

T Y

USERS

COMMAND LANGUAGE

TOOL§ JTOOLE..§ TOOL
1 2 N

COMMON DATA BASE

TOOLS TO SUPPORT:

* PROGRAM PREPARATION
* PROGRAM TESTING

* MANAGEMENT

Figure 3. ALS characteristics: integrated.
Rehostable

A support enviromment which can be moved
{transported) from one host computer to another
with a minimum of difficulty is said to be
"rehostable." The ALS achieves its rehostabil-
ity through two primary characteristics. First,
all of the tools are written in the Ada language
and need only be recompiled for a new host.
Secondly, as illustrated in Figure 4, the tools
to not communicate directly with the host op-
erating system. Instead, all tools communicate
with a "kernel” which maps the tool interfaces
into the services through the underlying operat-
ing system. This approach "decouples" the tools
from any dependency on the operating system or
the host hardware (computer).

In order to rehost the ALS, one only needs to
implement a kernel for he new host. The tools
(which represent the bulk of the system) can be
moved without modification. A second advantage
to this approach is that the underlying operating
system and host hardware is transparent to the
ALS users. Since users communicate only with ALS
tools and not with the host operating system,
they see the same interface, independent of what
the host may be.

Rehostability is a particularly attractive fea-
ture of the ALS because it can be used to accom-
modate concerns for hardware competition and for
hardware technology insertion.

USERS
COMMON
INTEGRATED < ACROSS AL
SET OF TOOLS HOSTS
_J\
KERNEL MACHINE
S| e «ag{ DEPENDENT
INTERFACES
SHIZAN R
OPERATING OPERATING OPERATING | < s
SYSTEM SYSTEM |* | sysTEm COMPUTER
HARDWARE HAROWARE HARDWARE
MACHINE MACHINE MACHINE
1 2 N

» THE ALS CAN EXECUTE ON ANY {SUITABLE) COMPUTER: RE-HOSTABLE
© THE HOST 1S TRANSPARENT TO THE USER AND TO THE TOOLS

Figure 4. ALS characteristics: "rehostable."

Retargetable

Most support enviromments are developed to accom-
modate a particular target computer or, at most,

a narrow family of target computers (typically re-
presenting the products of the associated vendor).
A host environment which can accommodate an arbi-
trary set of target computers is said to be 'retar-
getable." The ALS is such an environment.

As illustrated in Figure 5, the tools of the ALS
can be divided into two categories: those that
contain dependencies on the target computer (e.g.,
compiler, assembler, linker, debugger, etc.) and
those that do not (e.g. text editor, configuration
control tools, command processor, etc.).

The most significant target dependent tool is the
Ada compiler itself, The compiler translates Ada
source programs into the instructions that are
understood by the target computer. In the ALS,
the compiler has been deliberately designed to
consist of two primary pieces. The first, called
the "front-end," performs lexical and syntactic
analysis and translates the Ada source code into
an intermediate language representation called
DIANA. The second piece, called the "back-end,”
takes the DIANA representation (which is indepen-
dent of target computers) and performs semantic
analysis, optimizations and ultimately produces

a program which can be executed on the desired
target computer.

Only the back-end of the compiler contains target
computer dependencies. With this approach, it is
possible to associate a single front-end with
multiple back-ends, where each back-end is tailor-
ed to the characteristic of a particular target
machine,

In addition to the basic structure of the compiler,

all the target dependent tools have been carefully
designed to isolate those dependencies and to
place them in tables (as data) rather than in

84 Annual National Conference on Ada Technology 1985

L

r.
>
L algorithms (as code).
"
e The design approach, taken in the ALS for retar-
- geting, makes it possible to accommodate an arbi-
trary number of target computers. This is a nec-
essary characteristic if the ALS is to succeed as
N a common environment.
!.4.-
] -
K.
- TARGEY
s TARGEY
A5 Y INDEPENDENT COMFUTER
< ToOoLS
=
[}
z
users | 3 J---—--—-—-- TARGEY
< 6T 1 COMPUTER
= -~ === 2
H TARGET
Z | oepenpent T6T 2
8 TOOLS =T
- - === TARGET
. TGT N p————————"> | COMPUTER
y N

Figure 5. ALS characteristics: retargetable.
Extensible

Extensibility, as depicted in Figure 6, refers
to the ability of an environment to accept ad-
ditonal tools as new requirements are identified
and as technology advances. The extensible na-
ture of the ALS is derived from the standard
interfaces within which the tools function.
Given a clear definition of how a tool must com-
municate with the user, another tool or the ker-
nel (recall that the kernel maps tool require-
ments into the services provided by the host op-
erating system), it is a very straightforward
matter to either modify a tool or add a new one.

In this day of rapid technology advances, no sup-
port environment can hope to survive for very
long if it cannot keep pace with those advances.
The extensible nature of the ALS has been de-
signed to meet this need.

L 11 T -q

]

) 1
. EXISTING NEW

]

1

- L X X T ¥] -J

® INTERFACE REQUIREMENTS WELL DEFINED
* CAN BE WRITTEN EITHER IN ADA OR (POWERFUL) COMMAND
LANGUAGE

Figure 6. ALS characteristics: extensible.

Recent Activities and Future Plans

The ALS is being developed to provide a compre-
hensive set of design and user documentation, in
accordance with MIL-STDs 483, 490 and 1679. The
system is govermnment owned and written in Ada;
Ada also has been used as a Program Design and
Language (PDL). Training material, to include a

System Administrator's course and a textbook,

also being produced.

are

One of the most significant statistics that can be
associated with the system is the fact that it
currently consists of over 500,000 lines of source
code. This puts it "on par" with the software
contained in some of the Army's major BASs. The
size of the ALS is one of the more important rea-
sons that the Army must begin to control the pro-
liferation of support environments. We simply
cannot afford to manage an arbitrary number of
them.

Figure 7 illustrates the categories of tools which
will exist within the ALS. There are currently
some 75 distinct tools distributed across these
categories.

ADDTIONA,
10008

Figure 7. ALS components.

The ALS is currently hosted on a Digital Equipment
Corporation (DEC) VAX-11/780 with the VMS operat-
ing system. The version of the compiler which is
targetted to the host was validated by the Ada
Joint Program Office (AJPO) in December 1984. Con-
tinuing development activities will produce targets
for the Intel iAPX286 and a '"bare" (no resident
operating system) VAX by early 1986. Plans are
also underway to retarget the ALS to the Motorola
68000 family. That effort is expected to be ini-
tiated before the end of 1985.

In the summer of 1983, an ALS Early Release Pro-
gram was initiated to help insure the ultimate
success of the product. Advertisements through

the Commerce Business Daily offered an interim
version of the ALS, including source code and docu-
mentation, to U.S, industry in exchange for com-
mitments to pursue rehosting and/or retargeting
activities. The response to this program was far
greater than expected. Approximately 60 U.S.
companies are participating in the program.

Al
1.

- '. .' .l ‘r y
N
I}
ey

Ja

Annual National Conference on Ada Technology 1985

< obvious:
E of software at no cost and have an early oppor-

NN

The advantages of the participating companies are
they have received a significant amount

. tunity to tailor it to their products. In this
) way they can establish a competitive position for
future Ada based contracts.

There are several benefits for the Army. First,
the Early Release Program will cause new hosts and
targets to appear sooner than they would have
otherwise. This can only help to accelerate the
use of Ada in Army BASs. Secondly, it will estab-
3 lish a competitive base for future ALS extension
activities. Thirdly, it is likely to focus some
industry IR&D expenditures on the ALS.

ety
P

There are a nuuwber of negr-term activities which should
be pursued to enhance the recently validated base-

line system. First is the commitment which the
Army has made to continued improvement of the
performance of the system. Second is the need for
continued development of new hosts and targets for
the ALS. Third, a standard Ada program library
needs to be developed and managed. This library
will provide the mechanism for promoting the reuse
of common Ada software. Another benefit from such
a library would be that it could serve as a

- proving ground for functions (which have been

monitored for stability and popularity) that are
candidates for implementation in hardware (e.g.
Very High Scale Integrated Circuits). Successful
establishment of such an Ada package library in-
volves both technical issues (how to specify such
programs) and business concerns (how to motivate

. contractors to reuse software).

Id Other needs include:

- a. the development of a more comprehensive set

N of environment tests;
- b.
- c.

the automation of training material;
the incorporation of intelligent work
. stations; and
d. technology to support distributed host and
target considerations.

Strategies for Use

An ideal strategy for the ALS would be one in

. which industry would be free to use any Ada

support enviromment for BAS development purposes
and then transition to the ALS for the post
deployment period. This would maximize compe-
tition for development and still provide a common
and affordable post deployment environment, where
the impact of proliferation is felt the most. The
obstacle to achieving this strategy is subtle but
extremely important.

The difficulty has to do with the Ada compiler and
other language processing tools which influence
the performance characteristics of programs which
ultimately execute in the Army mission environment.
No two compilers translate a given source program
in the same way. Further, no compiler is error
free, and each compiler contains a different set

of errors. 1t should not be difficult to see that
a transition from one compiler to another will
cause at least two problems:

86 Annual National Conference on Ada Technology 1985

At e i i -k

a. Translated application programs will execute
with a different performance characteristic.

b. Previously nonexistent errors will appear
(because the source programs were designed to
accomodate the errors of only the first compiler).

For these reasons a transition from one compiler
to another after any major test could negate the
conclusions derived from the test. An attempt to
transition prior to testing defeats the whole pur-
pose of pursuing a transition.

A technical solution to this problem does not
currently exist. However, if certain technology
advances were to occur, the tools which influence
the performance of Army mission software could be
approached in one of two ways:

"plug in" to any vendor's

a. One set which could
environment.
b. One set which could be accessed from any

vendor's environment.

Until technology advances enough to provide these
solutions, it would appear that the only affordable
strategy is one which encourages the ALS for dev-
elopment and support of Army BAS. When sufficient
justification exists, other environments could also
be used but the preference would be clearly for the
ALS.

Request for Copies of the ALS

Request for copies of the Ada Language System,
documentation or any of the Ada or ALS training
material developed at CECOM should be directed to:

Commander, U.S. Army CECOM
ATTN: AMSEL-TCS-ADA
Fort Monmouth, NJ 07703-5204

Summary

This paper has focused on the software support
environments which are used to develop and main-
tain computer programs in Army BASs. Considerable
proliferation and unnecessary costs have been
incurred from past practices. In order to promote
a greater degree of convergence in the future, the
U.S. Army CECOM is developing the ALS.

Technology advances are required before it will

be possible to exchange software across dissimilar
support environments, Until those advances occur,
the ALS is expected to become a common environment
across Army systems.

Biographical Sketch

Mr. Dennis Turner holds BSEE and MSEE degrees from
Monmouth College, West Long Branch, New Jersey.
He has been a member of the U.S. Army
Communications-Electronics Command for twelve
years and is currently the Chief of the Software
Technology Development Division within the Center
for Tactical Computer Systems.

Mr. Turner has held industrial pocitions with
DIVA Incorporated, Electronics Associates
Incorporated, and Frequency Engineering
Laboratories.

1
1
]

> e e o = - -

IR 2
LR

S S
AT

Ly
PR

ADA IMPLEMENTATIONIN A
NON-ADA ENVIRONMENT

J.C. Helm

Ford Aerospace &
Communications Corporation

ABSTRACT

At NASA’s Johnson Space Center, existing software
systems containing millions of lines of code are planned for
continued use in projects that span the next decade. The
software systems and tool sets that are under configuration
control, are proven, reliable, and operable. For NASA, recovery
of as many software systems as possible appears to be cost
effective. Since Ada is mandated by the Department of Defense
as the future language, and due to Ada’s portability and life cycle
cost reduction, it is being considered as a language for
modification to existing software systems.

INTRODUCTION

This paper investigates the feasibility of using Ada and
newly developed Ada packages in existing non-Ada software
environments. An existing group of software environments was
identified. From these environments a feasibility eriteria for
implementing Ada code in a non-Ada environment were
determined. The criteria consist of a set of parameters that were
used to develop metrics. The metrics provided management with
an Ada Decision Matrix to use in determining if new modules
planned for integration into an existing non-Ada environment
should be written in Ada.

Further, this paper demonstrates the need for interfacing
Ada packages into existing non-Ada environments, which should
result in interface or linkage mechanisms being provided as a
part of the standard Ada tool set. The paper analyzes the
interface mechanisms required for a selected software
environment.

TECHNICAL APPROACH

A systems analysis approach was taken to identify a set of
decision parameters and establish a decision criteria. The
particular decision analysis tool applied was the decision table or
matrix (Reference 7). Two additional design concepts that were
investigated before deciding on the decision matrix were the
Decision Tree and Structured English methods.

The Decision Tree method diagrams conditions and
actions sequentially showing the relationship and permissible
action of each condition.

Annual National Conference on Ada Technology 1985

T. E. Cook

Ford Aerospace &
Communications Corporation

The Structured English method uses one of three basic
types of statements to reach a decision. First, the Sequence
structure is a series of single steps or actions necessary to reach a
decision. Second, the Decision structure is used when two or
more actions can occur depending on values specified for specific
conditions. Third, the Iteration structure is used when certain
activities are repeated while a given condition exists or until the
condition occurs.

The decision analysis strategy and the decision matrix in
particular was chosen because it identifies existing software and
hardware conditions and suggests actions to be taken based on
the conditions. The decision matrix establishes a decision
criteria based on the actions and incorporates all the conditions
to form a decision rule.

D. B. Baker developed an Ada Decision Matrix comprised
of two parts, a worksheet, "Project Risk Potential in the Use of
Ada", and a "Risk Prierities Matrix" (Reference 2). The decision
matrix addressed three risk areas when considering the use of
Ada for mission critical software: technical, aecquisition and
economic.

The decision matrix concept developed for this paper
contains rows and columns that show the decision parameters
and associated action statements. The action statements
indicate selections to make when certain conditions exist. The
matrix also contains action values and weights applied to the
action statements. A decision rule is formed from the action
values to establish a decision criteria.

To build the decision matrix the following steps were
taken:

1) Determine the most relevant factors to be considered, that
is, identify the condition statements for the decision

parameters.

2) Determine the most feasible steps or activities that apply
to each statement. These form the action statements.

3) Study the combination of action statements for each
condition and assign appropriate weight.

4) Fill in the matrix with possible action statements

5) Apply a rule with assumptions,

87

The decision matrix shown in figure 1 contains the
condition statements, action statements, action values, and
decision weights The condition statement section identifies the
relevant decision parameters The action statement lists a set of
events or selections that exist for each condition statement. The
action values specify a range of choices and assigned weights
that apply to each action statement for a condition. The decision
weight column is filled in based on the value chosen from the
action statement list.

DFCISION CRITERIA

DECISION DECISION
e P —
PAPAMF TERS WE [GHTS
ACTION VALUES di

| T
| |

ACTION STATEMENTS

CONDITION
STATEMENTS

! {
|]

WETGHT SUMMATION

Figure 1. Ada Decision Matrix - Form

A decision rule is developed from the decision weight
column. The formula for the decision is:

>
Il
e
=

nxw
where n = number of decision parameters (12)
w = normalization weight factor (10)
d = decision weights
The decision rule plot is shown in Figure 2.

An assumption is if one or more of the decisions is zero,
automatically reject Ada.

ADA DECISION
DEFINITE {
POSSIBLE :
|
NO /
0.0 0.5 1.0
A

Figure 2. Decision Rule Plot

88 Annual National Conference on Ada Technology 1985

ADA DECISION MATRIX

A systems analysis methodology using a decision matrix
strategy was developed. To construct the matrix six NASA
software environments were identified. Experts from cach
environment were interviewed and an on-site inspection made
Using the gathered information, a set of 12 decision parameters
was established and used to construct the condition statements
for the decision matrix. The decision parameters selected were:

. Existance of a validated Ada compiler to produce target
code

[] Coupling and cohesion ol existing software environment

L Efficiency of compiler produced cade on w0 real time

environment

[Proven reliability of the comporr for o ceeeal soltware
environments

L Adaptability of the existing oo et

L] Remaining software life cvele

[Independence of the softwire modification
° Potential reusability of the software

° Cost effectiveness of retraining

[} Interface mechanisms

(] Necessary or desired lunguage features

[Other cost considerations

F.ach condition is further discussed to evaluate and clarify
its potential contribution to the action statements and the
decision rule.

A major concern was the existance o1 a validated Ada
compiler to produce target code. Several validated Ada
compilers now exist that will allow formatting and transferring
Ada program files from a host computer to a target compatible
computer. This will not be a future concern due to the effort
being expended by software vendors, however it must be
researched.

The coupling and cohesion was a concern to existing
FORTRAN software environments. Ada with its strong typing,
abstraction, generic definitions and seperate compilation will
simplify the previous problems encountered with module
cohesion and modules coupled by comman or global variables.
Coupling is defined here as a measure of the strength of
interconnection between one module and another. Common
environment coupling is when two or more modules interact with
a common data environment. Cohesion is the degree of
functional relatedness of processing clements within a single
module. The seven levels of cohesion are: coincidental, logical,
temporal, procedural, communicational, sequential, and
functional (Reference 8). For existing soltware modules that are
highly coupled it will be difficult to integrate new Ada modules
Also, if the existing software has no identifiable cohesive form,
integrating an Ada moduie would not be practical

AD-A164 338 PROCEEDINGS OF THE ANNUAL NATIONAL CONFERENCE ON ADA 2/3
C(TRADEMARK) TECHNOLO. . (U) ARNMY
COMMUNICATIONS-ELECTRONICS COMMAND FORT NONMOUTH NJ
UNCLASSIFIED CENT .. 1985 F/G

9/2 NL

EEEERNREEEEREE
 AEEEENEEENEREE
 AEEEEEENEREREE
S

4
4
o
o
r-
3
9
|
(-
.
8
. .
.
b .
.
)
3
, R o~ o —
Lz 2_ ~f 2@ © % -
- = £3
f o8
“ @ = 52
8 SEEE] =
. “ 13 ~ AW :
O 2R < . Q<
; E EEEFIIS — S e
] 2
2 = 8
. : nU . x g
A — - w©nH Pl
.... ——— 2 Ao.u W
P —— — o ¢
X . = === 21 &
- _ s = g
S v
.t
2
.‘ .
P
>y
X
K,
PR
A
i &
X
X
-‘
~
- - A e . -t L, e N) L taTa N R AN PPN AT RN AR ,..J.-.-..o
A XL NSNS Ve DO X P LA OO0 . BN TR o f«......... AT,

TR,

In a real time environment analysis must be performed on
the Ada compiled code to determine if the compiled code would
degrade the efficiency of the computer. The following equation
could be used:

Cm x Ce + E <100% U
where

Cm =Current machine utilization as a percent the
machine is utilized for non-Ada

Ce =Compiler efficiency, a factor computed between Ada
and non-Ada

E =Percent of CPU required for future expansion

U =Central processing unit utilization

Even though validated Ada compilers exist, the validation
process does not prove the reliability of the compiler. The
compiler could compile code that contains faults that go
undetected during testing. Therefore, for life critical software
environments the decision to use Ada should be based on its past
performance.

Careful consideration must be given to the adaptability of
the existing tool sets or a transition to Ada tools before making
the decision to implement Ada. There are three catagories of tool
sets most vendors have or will be developing The three sets are
data base control, application, and target development tools.

The Data Base Control Tools are divided into three areas,
the Data Base Manager (DBM), the Configuration Control
Management (CCM), and the Librarian. The DBM predefines

data base premitives and allows definition of user premitives. It software modifications, Ada permits program units to be Pas,

also provides services for creating, accessing, modifying, subdivided into units that can be modified, coded,checked out, ‘:"'_x' et
relating, and deleting all Ada development environment {ADE) integrated, and documented (Reference 3). The Ada software :.‘-:.'- :."-,.":
data base objectives. The CCM provides control over the modifications must conform to the basic program units :’}".-'_‘f:"
manipulation of ADE data base objects, including archiving and independent of the software in the system. Otherwise further Ea T T

revision control services. The Librarian is responsible for
controlling the logical grouping of objects comprising Ada library
units and subunits, as well as controlling access to those objects.

Application development tools include the Editor,
Formatter, Pretty Printer, File Maintainer, and Debugger. The
Editor is used by programmers to enter Ada source text, as well
as other textual materials; it must be capable of Ada-indenting
and format control. The Formatter processes text files and
reformats them into documentation files. The Pretty Printer
prints Ada programs in a logical Ada format and highlights Ada
reserve words, etc. The File Maintainer allows comparisons of
object programs; text files and typeless files can each be
compared. The Debugger provides a symbolic debugging facility
to aid in testing Ada application programs

Target development tools are configured to support
specific target machines The tools include the Ada compilers
themselves, Runtime Support Packages, Assemblers, Object
Linkers, and Exporters The Ada compilers with unique code
generators will (eventually) be availabie for target CPU's A
unique Runtime Support Package must be supplicd for cach
target environment Fach target also requires its own
Assembler The assembler must be available as a cross
development tool also

The Object Importer is used to bring into the Ada
development environment binary modules produced by other
languages. FORTRAN 77 is probably the only language
considered at this time. The Linker comhines Ada-binary with
Libraries and Runtime Support Packages to create Ada Program
Files. The Exporter tools are responsible for formatting and
transferring Ada Program Files from the host environment to
the target environment.

There are no standard library packages defined for Ada
other than those given in the language reference manual
(Reference 1). Predefined packages must be supplied for
standard math functions, statistical packages and common
abstract data types. Special standard math packages will be
required for particular applications similiar to scientific
subroutine packages. For avionics applications matrix and
quaternion math routines will need to be developed.

I/0 packages are provided by means of predefined
packages (chapter 14, Reference 1). The gencric packages
SEQUENTIAL__10 and DIRECT_lO define l/0 operations
applicable to files containing elements of a given type. Text l/Q
are supplied in the package TEXT_10. The package
10__EXCEPTIONS defines the exceptions needed by the above
three packages. A package LOW__LEVEL_ 10 is provided for
direct control of peripheral devices.

For existing software systems, the remaining software life
cycle must be considered. Large software systems, with no
foreseeable need to upgrade, should be left intact and maintained
until they become obsolete and can be phased out. Ada should be
considered when the additional cost to implement in Ada is less
than the life cycle cost savings over the remainder of an existing
project.

Software for large systems is continuously changing due to
design changes either in hardware or software. For independent

consideration must be given to the logical grouping and the
heirarchial compilation.

When a software package has a high polential for
reusability beyond the current project, it is a candidate for Ada,
even though it might not be cost efficient on the current project.
This becomes a cost saving factor realized on future projects due
to DOD's commitment, the language's portability and
maintainability

Since Ada is the language of the future, it will be cost
effective to train in Ada (Reference 4). The initial
implementation of Ada will require a substantial investment in
training This is due to Ada's programming language strength,
potential as a development tool, and its maintenance
requirements Personnel should be trained at levels compatible
with their level of involvement Five possible levels are for
managers, support personnel, bhasic, intermediate and system
software engineers (Reference 6)

The Ada vendors have developed object importers to
import non Ada code into Ada Very few have provided for Ada
to be calied by other languages, handie exceptions and share
data with non Ada code through parameter arguments calls,
global variabies or common blocks One vendor, Digital

Annual National Conference on Ada Technology 1985 89

Equipment Company, using VMS operating system, has
provided these capabilities. The DEC VAX Ada conforms to the
VAX calling standards, which provides the ability to call and be
called by code written in other languages. VAX Ada is also able
to handle exceptions from non-Ada code, generate exceptions to
be handled by non-Ada code, and share data with non-Ada code
through global variables and common blocks (psects).

Telesoft, another Ada vendor, supplies a system interface
program. The program allows an experienced programmer to
interface between Telesoft Ada and another language based on
the VAX operating system. Special modifications must be made
to the interface routine. The routine must be recompiled and
linked with the assembler runtime support package.

The decision to develop a module in Ada must be based on
the host and target computer, the operating system and the Ada
compiler vendor. In all probability a system level interface
mechanism will have to be developed.

Two important issues concerning necessary or desired
lunguage features are programming methodology and software
engineering (Reference 5). Programming methodology is
concerned with the structured programming, program
verification, information hiding and hardware representation.
Software engineering is concerned with the issue of large system
construction and maintenance. Ada was designed to support and
incorporate both of these issues.

The decision criteria called other cost considerations
includes; software design specifications, coding specifications,
software testing, software design review, software configuration
control and deliverable documentation.

The software design specification should address the use of
Ada as a programming design language (PDL), the best way to
package systems, subsystems, and guidelines for module
composition.

Coding specifications and coding style guides will be
required to insure that the delivered code is readable and
maintainable.

Software testing becomes a factor since Ada encourages
separate module development, compilation and independent
testing. The module, package, subsystem and system level
software test hierarchy becomes a time phase factor for
integrated testing.

Software design reviews will require engineers to be
knowledgeable in Ada so they can analyze code specifications for
their area of expertise

As compilers are upgraded the question of placing
software under configuration control becomes important. A
criteria must be established to determine when a compiler and

an Ada tool set are sufficient to begin full-scale development.

ADA DECISION CRITERIA
DECISION DECISION
PARAME TERS [very s!m%,,smonp___ 600D h._m“_ﬁ Y UNACCEPTABLE
- 0 1 9)) e | s « | 3 7 1 1 0 WE1GHTS
1 The existance of a validated Ada Comniler exists for Host and Targe{ Compiler exists for Target Compiler not validated for efther
compiler to produce Target Code computer. Both operating systems | computer and Host however both target/host computer.
and software are compatible. are not compattble. 9
?. The covpling and cohesion of U e Y oD . "0%| Coupling and cohesion of modules |Existing software highly coupled or
isti H common or & bases. Module 4
Existing Software Environments cohesive and ¢ ats can de resolved with modifications{modules are not cohestve. 5
idenlifiable
T In Real Time environment, the Complied code 1s effictent, runs irf Comptied code efficient on host is' Compiled code runs on host but is
efficiency of the code the compiler |real time, on target computer and | compatible with target byt is mot [mot targel efficient.
produces allows for expansion. e{”dent doesn’'t allow for expan- 3
Alon,
4. For life critical Software Past performance has proven the The compiled code ts still in g The compiled code has not been
Environments the proven relfability |compiled code to be fault free. test and checkout phase. Two fully tested or was tested and is
of the compiler (5 years) years valid /.om critical. not reliable. Use less than 1 year. 4
§. The adiptability of the existing The following too! sets exist: Some of the ool sets are in The tools sets have been
Tool Set Data Base Control, Application place or are under development. identified and some exist or
| o |Development, Target Development are planned. 4
6. The remaining Software Life Cycle Additional cost to implement Ada 1s|Ada implemen-ation and LCC saving Kost to implement in Ade greater
Tess than Life cycle cost saving are equivatent. than LCC saving for remainder of
over remginder of existing project. iluﬂnq project. 5
1. Independence of the Software Modification divide into program Modifications require improvisions PModificattons are very difficult to
Modification units for coding, checkout, to be devisible into program integrate part of into existing
integration and documentation. units. program units. 7
f. Potential Reusability of the Reusable beyond current project. Software might De reusable but has Software will not be reused.
software not been tdentified.
9
9. Cost effectiveness of Retraining Adequate resources svatlable Limited resources available to Project 1ife cycle 1s short and
profects 1ife cycle justifies train a number of key tndividuals Fesources not svailsble.
training effort. for project. 7
10 Interfice Merhanismg Selected computer, compiler snd Interface mechanisms can be Mo provisions svailable for
oporating system have fnterface developed or work arounds nterfacing.
rechanisms . established. 8
11. Mecessary or Desired Lanquage Supports both Programming Need efther programming anquages features not supported.
Features Methodology and Software methodology or software
Engineering. engineering. [}
12. Other Cost Considerations - Design, [Cost consideration in these areas |These conditions are marginal jor impact and could restrict
Coding, Testing, Design Review, are minor impact. tmpacts. Hmplementation.
Config. Cantral, Deliyverahle
Documents R 8
WE [GHT SUMMATION 79

Figure 3. Ada Decision Matrix

90 Annual National Conference on Ada Technology

1985

FAP VS

ey

s

“
2
Cl
-
)

G
40,8 4 8

MO My

g
e h e ey

-

Well written Ada code will not in all likelyhood meet
deliverable documentation standards. Therefore the questions
left unanswered are what additional documentation will be
required and will module packaging provide a system overview
of systems and subsystems.

Using the twelve decision parameters a subjective set of
action statements was developed to produce a prototype Ada
Decision Matrix shown in Figure 3.

An example set of decision weights was applied to the
matrix to show how a decision criteria would evolve. Applying
the decision rule, Figure 2, the value 66 indicates Ada is the
acceptable choice. A future study will be to validate the
prototype matrix using the original software experts. Their
independent responses will be combined to justify a decision.

CONCLUSION

This paper investigated the feasibility of using Ada in
non-Ada environments. A systems analysis approach was taken
to develop a decision criteria. An Ada decision matrix and
decision rule was developed. The Ada decision matrix relates
conditions, which are the decision parameters, and actions to
establish a decision rule. The decision rule incorporates all the
conditions that must be satisfied for a related set of actions The
paper also exposes the need for Ada interface or linkage
mechanisms as one of the decision parameters.

James C. Heim received
the B. S. in Mathematics
and Physics from Missouri
Valley College, the M. S. in
mathematics from the
University of Missouri at
Rolla, and the Ph. D. degree
in Industrial Engineering,
Operations Research from
Texas A&M University in
1962, 1964, and 1972
respectively. He is

* presently a Senior Software
Engineering Specialist in the Flight Control Element of
Sofiware Systems with Ford Aerospace & Communications
Corporation, Houston, Texas. He has had twenty years of
industrial experience as: a member of TRW's Technical Staff,
Systems Engineering and Analysis Department supporting
NASA in navigation and trajectory analysis. a manager of
software applications with M&S Computing, in charge of the
Marshall Mated Engine Simulation Software. an integration
manager with McDonnell Dougias Technical Services Company
supporting the NASA Space Shuttle: a real time programmer
with IBM FSD supporting NASA on GEMINI and APOLLO
missions. He was an instructor in Mathematics at the
University of Missouri, Rolla, and has taught computer science
courses at Texas A&M and presently at the University of
Houston Clear lake. His areas of interest are operations
research, computer science, systems analysis and simulation
techniques.

5

S B G T T T T N T T Y e Ty T Y Y I Tw -y

YAt

REFERENCES

1 “Ada Progamming Language,” Department of
Defense, Washington, D.C., ANSUMIL-STD 1815A-
1983

2. Baker, D. B, "Ada Decision Matrix,"The Aerospace
Corporation, El Segundo, CA, March 23, 1984.

3 Barnes, J. G. P, "Programming in Ada," Addison-
Wesley, Massachusetts, 1981.

4 Blake, G. A, "Ada Implementation Plan for Deputy
FOR SIMULATORS (ASD/YW),"Wright-Patterson
AFB, OH, January 16, 1984.

5. Bouch, G., "Software Engineering with Ada,” The
Benjamin/Cummings Publishing Co., 1983

6. Habermann, A. N., Perry, D. E, "Ada for
Experienced Programmers,” Addison- Wesley,
Massachusetts, 1983.

7. Senn, J. A., "Analysis and Design of [nformation
Systems,” McGraw-Hill Book Co., New York, 1984.

8 Yourdon, Edward and Larry L. Constantine,
"Structured Design,” Prentice-Hall, Englewood
Cliffs, NJ, 1979.

Theda E. Cook received
a B. S degree in
Mathematics and Physics
from East Texas State
University, Commerce,
Texas, in 1965. Since 1971
she has been employed at
Ford Aerospace &
Communications
Corporation where she is
currently a lead software
engineer working on the
design of a Shuttle Control
Center for the Air Force. At Ford Aerospace & Communications
Corporation she has worked on various projects for the Shuttle
and served as task leader on telemetry data processing projects
for the Shuttle. Prior to Ford Aerospace, she was employed as a
member of the technical staff at TRW supporting NASA for
Apollo and Skylab

Annual National Conference on Ada Technology 1985 91

-

i
bR T ay
r":‘?‘::‘.-'
DRSS

Y

R

Ly

.
.
Pars

.

Asaly
"" .
LNy
0

e
l

»
-
b
¢
[
-

LI

General Dynamics Ada-based Design Language

Thomas S. Radi, Ph.D

General Dynamics/Pomona Division

Abstract
Trys raper describes :r. Frcaram
Larguage kazed on * ‘a language, the
Cereral [wvramice & Design Language
CimiL and how 1 .ei.dec to be uvzed -
zupport of th- iscipiineq Scttware
fe.elcoment wpproach methodolcav at tre
Femsaa T1sizron of G- ersl [oramice, wda
ts are (:z2d to define tte
the soluticn. m "quasi-freefors’
Lanjueqe Tio 18 uced to
1es1gn irtent, "ne alacritha
bliw ES SN I LT jevel thar
Tme Ada par ¢ an wda fDL s
te Lrogram stiucture and to
20rects. The PDL rart ot an
s Jefine the proo tounit £
ctere an3 the prog unit

lecilr

P, zyr3 ‘commert compatitle” svnvax t23r the
M Zesiriptions., rne design 1ntent 1%
emtedde? ir tne tinai source code., thereby

mavi-L totr e maintenarce enhancement tasi
A-t vre fczgentatiar update task a little

azi. the SLADL processcr. has
teen Je.sicped to assist the desian team 1n
co+twere de.eiopment. The GDADL processor
capabilities are brietly described.

o ilrtware b

Introduction

T~ere *as been & o0ocd deal of nterest,
recert.., 1n the Ada language. especially 1n
the asrea o2t ueing Ada as a d + language.
Severai argantzations, no .. . the [IEEE
spcnscred, ~da as a PUL worving group, and
the 5i6wda ttormerly AdaTEC) supported.
lesi1ar Language worbing groups have been
tormed 1rn >rder to address that very 1ssue.
General Iyramics has been 1ntimately involvec
1r both the TEEE and SIGAda efforts.

92 Annual National Conference on Ada Technology 1985

i fraer to rorce contractors te get a
readetert or uiing &da. the government has
reaun to require the use of an Ada FDL 1n
sheir latest Requests fcr Froposal. These
requirements dao not specity which Ada/FDL to
vse, how to use 1t, or what fore the design
stould tate eafter using 1t. This lack of
detinition 1s understandable since no

2e tacte standard vet exists.

Several questions arise naturally when we
lach at the situation:

What causes all this enthusiase to use Rda as
a Uesian Lanquage”

what 15 the real advantage of wusing an
ada FOL®

Are ail Ada FDLs just as godd, oOr 1s anv oOne
tetter’

Let me trv to answe: some ot these questions.
But before I do, let me insert one caveat
tthat means let me hedqe mv answer). I anm
ewpressiry onlv mv opinion, and not the
position or opinion of the General Dvynamics
Caorporation. Oh ves, ane other point: my
optntan & ver. sound.

What causes all this enthusiass to use Ada as
a Design Language?

The answer 15 very simply - Ada.

I¥ there were no Wda., there would be no great
desire to use Ada as a design language. This
answer 1s not as flippant as 1t may at first
appear. The qoal for those advacating the use
of Ada as a design lanquage 15 to produce
*good Ada designers” and qgood Ada designs.

LR LIRS 40 gl

+

W RE, YL Y, R

)
»
.
.
S
b

v T oe v Tvmm TV

-~

The most efiecti.e meanz of groducing those

aood desigrers 1t to start using the concepts
tound 10 the «&de language as early as
pocssible 1n the current software developaert

c.cle. Frogram fesian Languaqes, when
properly used, pravide an excellent vehicle
for canveving software des1ans n a
consistent manner., nn Ada-based Des:an

Language nas the additional benafit of
iorcing desigrers to use the Ada zgnstructs
and ‘eatures, such as strong tvping,
pactages, ang tachs early 1n the design
ghace.

What 1is the real advantage of wusing an
Ada/PDL?

The advantage of wsing ar Ada -FEL 15 learning
row to use Ada to dezian acod software. The
1dea. tor the opresent, 1s to force our
desianers to use what some have lavelled “"the
Rga mindset" when designifg our software
g,etems. In the future. oance we all are
vamiliar with Ada, Ada-based Desiqn langusges
will ottar the addrtiocnail benef1it of
providing an e.ceilent means of CammuAlCcAating
tot= the struztore of the program and the
algcrithms that describe the prcdram contro!

flow.

Are all Ada/PDLs just as good, or is any one
better?

The lack of a standard for the Ada/FLL 1
reqarded 1n some Qquarters az a <cause for
concern. My own opinion is that until a
standard set of aquitdelines are developed and
apsroved, an ~da FOL should te considered tc
be acceptable 1t 1t clearly cZonvevs the
designer ¢ i1ntent. HNemember the purpose of a
t{L 1: to foraulate a sclution and to
cammunicate the solution at a higher level of
abstraction than lines of code.

0f course, 1n FDLs as 1n anvthing else there
15 acceptable and there 1s acceptable! Let me
caraphrase George Orwell s Animal Farm, “All
FOLs are equal. but some are more equal than
others." The General Dvnamics Ada-based
Design Language (GDADL! fits 1nto the latter
category.

6DADL incorporates features fros existing
PDLs

The Genera! Dvnamics Fomona Division and Data
Systems Division are finali1z21na the
development of an "AdasPDL", which we call

genaral [vmamizs wda bazed Lle¢lan Liahlvage

REeDly 21,090 GCAIL will condora to the
TEEE Ads FIL re:zommended practice éor the
de.elcpment ot wda-bazes Frooraam Lesian
Lanquages (&), The lasquaze 1tzelf, 3S0A7L,
would te onl. c©f @incor interest 14 3

pracesscr di1d not e 15t 1n order tc provide
the des:an ai1ds We nave cCme tc e pect +rom
Frogram [esign lLancuene processcre svzh as
Cairne, Farper, &nd OGordeon s FOL/G1 (12 and

,

Henrv bleine s SO0L (i), While 1t 15 possible

to dec13an :n Ada wusiro onls GDADL. :.e.
Without processing *the des:ign using an
automated toal, such a tool provides Mman,

teretits to the cecianer,

»w fLL processpor allows the desigr team to
produce vreports which a1¢ them 1n chelhing
the validity and ccnsistency ct the aesxan:
These design reports pro.1de the reade with
an up tao date view of the le.ei ¢t desigr
retinement and detail. In other words, the
FLL procescor provides & desian disclocsure,

Table I 15 a list ot scme of the features of
the GDADL processer, as well as a list of the
reports which the user ma. request to te
generated bty the GDuIL procescor.

Annual National Conference on Ada Technology 1985 93

.
‘
.
.
.
N
.

- v v 5
+ Te Te s

E &
v e Ve

Ta

et 8

Table 1
6DADL processor Design Reports

Frogram unit and task entry 1nvccation trees
tshows the structure of the program:

Fraogram wunit and task entry cross reference
table
:ehows where the actual 1nvocations are
made)
Object declaration and usage cross reference
table

tall cbrect declarations are leqgal Ada,
reterernces to oblects made either i1n design
statements or parameter lists are listed)

Undefined desian 1tems (TED) cross
table
*hraghliahts all TBD i1tems)

reference

User defined cross reference tatle
runfimrted number of 1tems can be
referenced)

Crocs

Flow of control arrows (right side! anc page
reference numbers of all subprogras
invocatione and task entry calls

Ex1t arrows (left side' an all lcap exits and
returns

Summarv of errors detected 1n the desian
description vincorrectly nested i1f..end 1f ,
loop..end loop. etcy

Frettv-printed desi1an document
tlevel of i1ndentation selected by user:

Data Dictionary
tauvtomatically
alphabeticallv:

generated dictionary arranged

Subtype,
takle
(shows all subtypes and derived tvpes)

derived type., base tvpe reference

Generic instantiation report
tehows all 1nstantiations and the applicable
generic?

tevword enhancement and high-lighting
thighlights Ads tevwcrds bv underscoring or
bcidtace printingi

fda Identi1fier high-lighting

tmll 1dertitrere are automatically
high lighted 1n the FOL and 1n the
wda declarations:

94 Annual National Conference on Ada Technology 1985

GDADL wac develcped after a thorough
evaluation of commerciallv available products
such as (11 and [2] and the #vron product [21}
developed by Intermetrics. GDADL combines
what we consider to be the best features of
each ot those languages and their processors.
with some original additions, 1nto a formsat
thst provides the designer with an easy to
use, and easy to re-use. meanz of e.preszsing
multiple levels of design abstraction.

Using GDADL ameans
intended to be used

using Ada as it was

GDADL
mi