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MESSAGE FROM DIRECTOR

On behalf of the sponsor, the U.S. Army Center for Tactical Computer
Systems (CENTACS), the conference committee, and the host college, Prairie
View A&M University, welcome to the 3rd Annual National Conference on Ada
Technology. In general, last year's conference was considered a success, S

with an attendance of over 240, which included representatives from 32
colleges, 18 government agencies, and 58 U.S, companies.

The Committee is quite pleased and excited over this year's technical
program, which includes a tutorial session, and six technical sessions. The ._iL"- -
tutorial session, "Technology Sharing and Standardization vs Profitability:
Are the Two Compatible?," with its distinguished panel members should be of
extreme interest to many attendees in view of the trend toward the use and - ..-

introduction of Ada into new design, management, and engineering practices. -

This annual conference provides the format and the opportunity to fuse
together many disciplines that are considered essential for promoting and S
accelerating the distribution of Ada knowledge, from the realm of the software
technologist to the realm of the system engineer and the software practitioner.

The 4th Annual National Conference on Ada Technology (1986) will be
held at the Hyatt Regency Hotel, Atlanta, Georgia on the 19th and 20th of
March 1986. The host college will be Atlanta University, Atlanta, Georgia.

The committee solicits the support of all members of the Ada family. The
future success of the conference will depend upon the continued support provided
by many individual organizations, government agencies, and participating colleges.
Your comments and suggestions for improving the conference are welcomed.

mer F. Godwin -, ,.
Director, Ada Conference "'
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TWO OPEN ENDED CASE STUDIES FOR ADA TRAINING
A REAL-TIME PROCESS MONITOR

AND AN

AIRLINES RESERVATIONS SYSTEM %

Philip Goldstein, Philip Caverly, Morteza Aabdollah

Ada Technology Center
Jersey City State College

Abstract stated, a partial analysis is given, a.
top-down approach to the solution is

This paper describes two case studies developed in reasonable detail, and
that have been developed at the Jersey portions of the program are produced.
City State College Ada Technology There is, however, no quarantee that the A
Center. The topics chosen are a Real- solution and analysis are optimal in any
Time Monitoring System and an Airlines sense of the word. The problems are .

Reservation System. The case studies open ended, as are real world problems,
*are educational in nature and are and students must provide some of their
* intended as a sequel for students who own analysis and design in order to .--

have taken the Introductory Professional complete the case studies. The problems
Level Ada Course developed earlier by may also be extended in various ways,
the Center. Both efforts were supported and students are encouraged to develop

*by the CENTACS division of Fort Monmouth. extensions of their own. The specific
topics for the case studies were chosen
because they are typical of the kinds of . ..-

projects Ada programmers will be working .
on, and because tasking is used in both
studies. Students who complete the case
studies will have gained some_7
significant insights on how real
problems are solved.

General.
Introduction

Case studies are important educational
This work was undertaken as part of a tools because they give students some
contract awarded by CENTACS, Fort insight into real situations. There are
Monmouth to the Ada Technology Center at two aspects to every case study: (1) The
Jersey City State College to continue analysis of the real problem that has to
the development of earlier curriculum be solved; (2) The synthesis and design
material developed at the Center. Under of the solution.
a previous contract with CENTACS, the in doing the analysis, students must -

Center developed two introductory Ada decide what is important, what is -

courses designed to introduce secondary, what can be ignored on a
programmers to Ada. One of these first cut. A methodology needs to be
courses, called the Professional Course, chosen for the design phase of the case
was designed for engineers, scientists studies. Ada supports many different
and advanced level programmers. The methodologies such as SADT, SREM,
project reported here involves the Parna's Method, the Jackson Method and
development of two case studies as Object Oriented Design. These are
extensions of the Professional Course. explored for possible use in the design.
The purpose is not to provide complete There are a wealth of practical
programs and documentation, but rather applications usinq the above
to develop a practical and theoretical methodologies in the General
framework with which students could Dynamics/Softec Case Studies Report
apply the principles of software using Ada Software Design Methods

*engineering in setting up, analyzing and Formulationl).
1% solving the problems. The specific

problems chosen are a Real-Time Next, a method for analyzing the design
monitoring System and an Airlines of each case study is required. Each
Reservations System. The problems are case study makes use of concurrent h

Annual National Conference on Ada Technology 1985 1



*processes and thus involves Ada's b. If the sensor malfunctions
*tasking facilities. Several methods are (fails to report), an alarm

being studied. one method uses finite must sound.
state machines to analyze concurrent
processes. An application of finite 2. Permit entry of commands from0 4
state machines in this area is given in the terminal. Typical commands
reference (2). Petri Net theory can also might be:
be used to analyse concurrent processes, a. Quit (Shut down system). ,..

it is important that the student b. Display most recent
developing the case studies be able to measurements.
take full advantage of the software C. Display measurement history.
engineering tools supported by Ada and d. Temporarily disable system.
not rely on limited experience in e. Change interval between

*dealing with concurrency, measurements.
f. Sound alarm.

In developing a strategy for solving
Real-Time Process Monitori~a2 System this problem, the student will note that

tasking is required; a sequential
This problem was chosen because process program cannot be used. one reason is
monitoring and control is a key feature that when a program unit performs an
of most embedded systems and of many input operation (GET from terminal), that . -

laboratory computer applications. It is unit suspends and cannot perform any
thus important for students to obtain other activities until the input request
some exposure to this field. The is satisfied. Having thus decided to

*student objectives for this case study use tasking, the student must then
*include: decide on what tasks are needed and how

they should communicate with each other. j
(1) To become familiar with First, we need a TERMINAL_10 task to

important concepts in permit communication between user and
real-time process management, system. It is also clear that we need a

MEASUREMENT_TASK to interrogate the
*(2) To understand the need for temperature sensor. Since this is to be

tasking in this application, done at regular intervals, a timer task -

is needed to "wake up" the measurement
(3) To develop requirements for the task. Also needed are a task(s) to log

system, acquired data to the log file and also
to read data from this file. In order

(4) To implement a system in Ada. to simplify communication between
tasks, most tasks communicate only with%

This problem is approached at different a COORDINATOR task. (Students are asked -.

levels of complexity. At its most basic to consider alternate approaches to the
level, a general purpose monitoring use of the COORDINATOR task). A
system(GPS) will, at regular time simplified block diagram showing the
intervals, sample the value of some tasks and communication channels is
p physical quantities. Sensors are used given in Figure 1.
to transduce the value of the physical
quantity to a voltage, which is then Since writing of code is the last step
measured by an Analog to Digital in the process, students must clearly
Converter(ADC). Often, the GPS will log indicate the purposes of each task.

*the data acquired onto a log device ( a First, they set up a table such as shown
recorder or a file) , and it can be setup in Figure 2 which provides a brief set
so that a measured value falling outside of the requirements of every task.
of preset limits will sound an alarm. Next, they set up a detailed

*For simplicity we initially assume that specification sheet for each task such
only one physical quantity is being as shown in Figure 3 for task
measured and that this quantity is MEASUREMENT TASK where the parameters '

temperature. The student is to develop a and purpos~i of each enty are specified. ~-
program that does the following: Next, students begin to write Ada code

for the tasks. Figure 4 shows a first
I. Read the temperature sensor at stab at coding the measurement task. At **

regular time intervals and this stage it is not intended to be
place the data and the time executable code. Note that the task
at which it was collected contains a SHUT-DOWN entry so that it.*
into a file. can terminate in an orderly fashion.
a. If a dangerous condition Here, when the SHUTDOWN entry is

arises (temperature out of invoked, it causes an exit from the loop
bounds) an alarm must sound. so that the task reaches its end

2 Annual National Conference on Ada Technology 1985
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*statement. Notice also that the task reserves a seat or decides to cancel his
contains a call to a procedure called request? What happens if RAI goes to
MEASURE TEMP which we assume is lunch and forgets to close out his
availabTe on the system either as a request? ls RA2 to be left waiting
separate compilation unit or is in an indefinitely? Clearly these situations
appropriate package. In our environment need to be addressed.
using Ada/Ed on a VAX we did not have

*any access to actual interface equipment Student objectives for these case
or sensors. Hence the student has to studies include:

*simulate the external environment in
some manner, possibly by storing the (1) To develop requirements for
data in a file. the system - what can the

reservations agent do?
Testing of the program to see that it is
"bug free" and does what it is supposed (2) To design the database.
to is an important part of the case
study. Students must develop strategies (3) To design the required tasks.
for determinig that the program works(4ToipentastminA.
properly, although complete checking may(4ToipentastminA.
not be possible.

Here also, the problem can be approached
The case study can be extended in in different levels of complexity.
various ways. For example, there might First, we might consider that there is
be more than one temperature sensor, or only one reservations agent, but this is
there might be a set of different types too simplistic. Hence, we consider two
sensors, or some element of control of reservations agents as the minimum

*some external devi'ce could also be number. Ideally, each agent should use
included. a different terminal, but it is also

possible to run the systems using one
Airline Reservations System terminal and simulate two agents.

initially, we can limit all flights to
The design of an airline reservation the same day. Further complexity can be
system requires that students design a introduced by:
data base and solve the passenger list
update problem. The data base structure 1. Allowing managerial personnel to
is related to the type of searches and cancel flights.

*updates that can be made by the
*reservations agent. A reservations 2. Storing flight information and ~

aqent should be able to: passenger lists for more
than one day.

(1) Determine if one can go from
CityA to CityB. Designing the Front End Task

(2) Determine if there are seats on A front end task is required to service
Flight XXX on date YYY. each terminal. The front end task

acquires input from the reservations
(3) Add passengers to Flight XXX. agent, and if a legal request has been

input, the request is then dispatched to
(4) Delete passengers from Flight another task that will then perform the

XXX. requisite action. The student must
consider whether to make the front end

Files should be structured so that file command driven or menu driven.
searches can be minimized.

Summary
The passenger list update problem is
illustrated by the following situation. The case studies will help the student -

On behalf of a customer, reservations bridge the gap between small text book
ag. RAI looks up seat ailbit on programs and real world problems. The
Flight 937 and learns that there is one topics chosen for the case studies are
seat left. While RAI's customer is representative of the type that will be

*mulling things over, another encountered in an industrial enviroment,
reservations agent, RA2, requests a seat but are specified at a level that the
on Flight 937. How should this student can model and simulate in Ada.
situation be handled? If the program using modern software engineering
does not enforce limits on seat sales, techniques: methodologies, methods of
the flight will be overbooked. On the analysis, charts, diagrams and
other hand, suppose the proqram holds mathematical analysis. *.

off RA2's request until RAI either

Annual National Conference on Ada Technology 1985 3
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FILE ACCESS TASK

MEASUREMENTTASK

COORDINATOR SENSOR
TERMINAL EMN-.

rTASK -

TERMINAL TIMER
1/O TASK TASK

-- Figure 1 --

Task Name Purposes

TERMINAL 10 1. To intercept keyboard entries and
determine their validity. Valid
keyboard commands are sent to the
coordinator task for further
processing.

2. Print messages.

COORDINATOR To coordinate the activities of the other
tasks. In case of sensor malfunction or
dangerous condition, sounds alarm.

MEASUREMENT TASK To obtain the data from the ADC (measure
the temp) and send the data to
COORDINATOR task. This task is normally
suspended.

TIMER Makes an entry call to MEASUREMENT TASK
at regular intervals.

FILEACCESS To send and receive data from the disk
file.

-- Figure 2 --
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Task Name: MEASUREMENTTASK

Requirements: To obtain data from the ADC (measure the temp) and send the
data to OORDINAXOR task. This task is normaly suspended. .'-.

Entry Name Purpose Parameter
(name, mode, type)

WAKE UP Causes this task to None
obtain a temperature
value from the ADC.
Then the time is
obtained and this
data is sent to the
COORDINATOR t as k .*° .-..

SHUTDOWN Results in normal None -..

termination of this
task. S

• We shall assume that this task calls a procedure named MEASURE TEMP
which reads the voltage signal produced by the ADC and then converts
it to a temperature value. The details would be system dependent and need
not concern us.

-- Figure 3 --

task MEASUREMENT TASK is --First version not intended to
entry WAKE UP; --be compilable code.
entry SHUT-DOWN;

end MEASUREMENTTASK;

task body MEASUREMENT TASK is

TEMP TEMPERATURE; --Global type ..
DATE : TIME;

begin
loop

select
accept WAKE UP do

MEASURE TEMP (TEMP); .

DATE :=-CLOCK; --Get current time.
COORDINATOR.GET MEASURED DATA (TEMP,DATE);

--This is a6 entry call to coordinator.
end WAKE UP;

or
accept SHUT DOWN do

exit;
end SHUT DOWN;

end select;
end loop;

end MEASUREMENT TASK;

-- Figure 4 --
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ADA AS A PRIMARY LANGUAGE
IN A LARGE UNIVERSITY ENVIRONMENT

B. Rvaas. V. A. Greaee J. i. V. Patterson, D. Rudd & J. Thomas

The Ada Implementation Group at the University of New Orleans
Department of Computer Science, Untverity of New Orleans

New Orleans, LA

Impemetedat NIa c m hose cat"lo
* *3S13ICt. fide has beon ImplemenUted as the description Is as folos IUNNW*

primarg~~~CW techn andproraminglanuagI

*n rt of~3 No ren.TeWl oI n Introduction to computer science
implmenatio 6rop ddresesa emer f mid programming using a pracodure-outentod

Issues Welols" o A 4mu In 8d WVpllmangtage. Elapll.51ze algorithm dalga
uniuorsil environment, Including the verification, and amlals. intondod pinmalg
differences brought about In Iiitlodinctorg for computer science ajors. (Prorequlsitos:
courses through thes use of Ids. Concurrent registration In Calculus or

Dascrete Structures.)

This towrs In coasidored hg us to ha the
equlnaloat of the CSI course proposed in
Illust79I and l aooa to ban most of the

This paper wil be duided Into four parts: features of the revised CSI propesal In Ikeff941.

(a) Results of the Implementation of a as The cowrs Is directed towards students
the prlmarg programiming language In the first lotos"n to maim' in Computor Science, aod
computer Science course; students majoring In other flids wre merulalgi

directed towards one of the other omtrg-lauei
* (b) Curriculum development and modification cous; heurene, students majerlag Is other

usin 11o as the primarg programming language disciplnes ma" ase enro in CSCI 1563 if the s
in the second Computer Science course; Chas".

* Ic) Current use of ads in other Computer Inane the cours Is directed to Computer
Science corsr Science majors, there Is on attempt to tomch tin

introductoig material iN a maoe profud way.
* (d) Proposed as@ of A In other Computer
* Science coures. Faew sections of the courn wore offered (bg

four of the authers of this article) to more them
120 students In the Fall 1984 Semester. (Four
sactions we ason be"n offered In tha Spring

UESULS OF 131 IW4LEEMITIN OF AN IN ESI Semester.) Thes teutheet ued Is ltcO4

The Iniuarhltg of Now Meanso (We) is on a Tho Wuniersltgl computing facilities consist of a
semester sgstem with most Computer Science NH 11-M3 cluster with four processors;

* c~ourseea"n three hour of lactern par ee, however, In the Fall 1964 Somoster, on afe
and offering three credits to the student. compilier (Tafosoft Ida Version 1.3 for 004)
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ITeuI3I was present n onIg an best; end, for £humeretiue
all Intents end purposes, the student users were Ovuerloading
Phgslcall connected to thet host ad the
sgtem served the users as though It were a
single stand-alone processor. flhe structure of Wde seems to encourage the

presentation of certae of these topics fromme
A concern expressed frequentig prier to the more profound perspective then previousig. As

beginning of the semester bg urious members en enemple, In our previous courses, discussion
of our tern wes whether or not the sgstem of 1-8 was lted to lile-orloated 1-0, end Nde
would be capable of handling the demand on famced us Into a discussion of streom-erloated
resources Imposed onmIt -- for, In addition to i -0, end the overloading of tie get end put
the student use of Ida, most ether Computer operations. Bath discussions seemed to he
Science courses requiring significant amounts of well-received bg students, thus leading to e
programnming (tgplcelig In Postal, FORMAN 77, mire sophisticaed understeadng of 1-6 at this
end l0111-I 11 ssembler) used the some processor. lvl

RN four sections of CSCI 1563 wire viewed bg Is a second umample, @do semst to dumgstifg
the Department of Computer Science and 816UNO the concept of a suliprm. RNg" *n oat.
as experimental; consequentig, there wes en end in out clarifies considurabig the robes of
allowance made for variation In the choice of parameters, and the entire discussion of ecoU &g
topics taught In the course. voluus end mcaI bg referencew con hand was,

emitted.
It should be pointed out that, in previous

yemr, the lntroducterV Computer Science course 8 third example irises in the teaching of
it UNS was taught using Pescal as a primrg arrgs. Thu Wea view of "un tpos as beig
language. Censequentig, In most cases, the intrinsicellg unconstrained, with the fimed range
sgiieas for the previous lntreductoing course of positions declared with the variable. This
was used as a starting point, seemed to provide a significant advantage In the -

understanding of ag as compared ta the
SYN1[SIZDCSI 153 compSaal subject matter taught usin Pascal.

lao of the proected benafits of Ida Is the
The Computer and Its Components consistang that the 1 luae impose$ because

MomerVj - Now 1pes ire Represented of Its ehig standardization ConsaquontIg, we
Tpes In a Uigh-Level Language (The Ida asked ourselves whether or not differences

Phllobephy) between the language and the compler forced
Empressions and Assignments us into mng spetchwarke In the coumm.

Dato Tgeos A Objects and Manipulation of
Objects Three Instances wore reported among the four

Central Statements: ff. cao (plus short circuit) sections of the course:
Loops: Cunditlocal Leap

Middle Exit Loop 1. Direct conversion between long ager
Deflalto Loop (for) and float tgpos was not supported;

Subprograms : proedures, functions
Introducto to aClass ofroeblem depteble to 2. There wase program Nrornj

Recursion
"us (Iml- and Muiti-Ilmonslonci) --- 3. mnumeraed 1-U was mat supparted.

Records (not variant records)
Subtgpes and Derive TV@*
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Juatsmi PerfAErMeo issues: Studem PeformiiiiiE

As mentioned above, concern was exspressed CSCI 1585 experienced -n everal 561 drepeat
prier to the beginning of the semester about the rate. This should be aalyzed in the content of
likellheed of system failure beceuse of the two considerations: 1) OWS bus at openi
demnd on resurces imposed by so ma" Ads admisuifs poicy, and students admtted to the
users. uiverity meg freely cheese their major, 2) the

predecessor coure to CSCI 1563 hed (end has).a
In general, this did net became a problem ido comparable drepout rate.

complies on our system were tpiclly moth
slower tha Pascal compiles, fer exemple, but C211MllM
the difference did net seem to bother stuidents.
(it did, however, bether some advanced for the Introductory cours in Computer
students, as wil be noted laer.) Science, It Is not only a reasonable proposal to

Use "de (as has been suggested In 1iuge31 ad
System failure could be traced to the Ads [KoffS4D, but It Is feasible In a large university ;

compilier a few times, but ouch time this was enviroment, using avalieble machines and
traced to peculiarities In the comuniciation compilers. Further, the use of Ida in the
between the compiler and the operating system, introductoqV course seems to Ieave students no
rather then failure because of an overload on worse off, end probbl better off, then similar
thme system students studying Computer Science using

W~tually all of the ether problem
encountered In the Implementation of CSCI 1563 CMRICULUM iBlD[LOPM[NT0 N IFICiTIGN FO
can be traced to weaknesses of Ilersien 1.3 of
the Teleseft Ada compiler.

Vlersion 1 .3 has now been replaced bygVersion
2.1, a uerslon certified by Telesaft un it UNO, the second course In Computer Science
submitted for valdation. It appears thot most, If (CSCI 2126) has en objective the Introduction of
not all, of these preblems have been resolved In am" software engineering concepts, and the

IVersion 2.1; then we do net expect to attempt to understand through programming the JL
re-encounter these uituations. difference between smell and large programs.

The catalog description of the course reads:
We are aso of the opinion that Persian 1.3 of

Teloeft Ida would lead to very serious CSCI 2121 Struicture of Ngorithus.
preblems In the Implementation of second and Prerequisite*: Computer Science 1513 and
third courses In Computer Science. Thus: Ilersian either credit In [Dfiscrete Structures] or
2.1 would Seem to be the minimal version concurrent registration In [Dfiscrete
required for a university envirooment primary Structures] and credit In ICeklcuie 1i. 4
programming language. second course In programming with

procedure-oriented languages. Introduces
A catalog of the weaknesses of Tllseft ida fundamental concepts needed for the..-

VesIon 1.3 that e likely to surface in en construction ad analysis if effective
introductory coure can be found in [[van@si, algorithms, and applies these Ideas to the
thus theg wil not be repeated here. modular development of large programs.

Annual National Conference on Ada Technology 1985 9



IM MOine of the actual topics taught (using Kerigha I P4. PMege, Mclrow-Uhl 1979.
Pascal as the programing language) In Full 1964
Is as follows (quoted from a Cours hadout 05. Program Stgle, buegs, Efficioacg. Ibougln,
prepared bv W. Patterson): and Testbn e vena n Tassa, Preatice-mma,

67Th1s Course Mg be described as failing Into
three major divisions:

Is Sp"~n 1965, CSKI 2126 Is being taught using :

'1. Dsed Pascal -- a studg In greater Id*. I number of modifications to the course " ~
depth of the features of the computer content have bae made possible end desirable
programming language Pascal. nldigsc becuse of the use of Aft
additional features as scaler tilpes, the case
statement, records, filies, sets, and pointers. The first pert of the course remains on

IntreductI0n to language features. In particular,
82. I stuig of goad progranming technique. variant records, strings, pointers, separate

This part of the course analges program stgis, compilation, packages, fIle I-0, and tasking arem
design testing, program uinicatlon. sIgn Introduced.
Issues are euamlned In sam detall; top-down
structured design Is studied. The discussion of program stgfe remains -

comparable.
m3. IlgOtthms -- folleowing from the studg of

top-dawn design, specific classes of algorithms The discussion of program design changes
such as recursion and backtracking are studied, fundementolIg because of the language support
a"on with case studies of classic large-scale for packages, generics. and separate
problems. comllatlan.

The development of olgorithus, end the
'Tootbooks discussion of program correctness is cemparable .

to the eatIlor coure.
'I. Standard Pascal - User Reference Manual,
Iug Cooper, W.W. Norton, 1963. There are currentlg two sections of CSCI 2126

taught using Oda. (11 third section use Pascal,
*2. Problem Solving a Computer ProgrammIng, for reasses of transition and also to serve

Peter Gragono a Sharon N. Nelson, majors from other disciplines requtng on
Iddlson-Uesleg, 1962. Introductoig coures in Poscaj

CURRENT USE IF MR IN MUEN COUBSES
I. Pascal, Nelg Dale BwDvM Wselck, loea,

19113. -

Three advanced coures currentig use Ida:
82. Pascal User Manua and Report Quill ad.),

Kathleen Jensen It Niklous Wirth, Sptinger, 1974. CICI 4996 Is a topics coure that wil be
taught 6 number of times, during this peled of

e3. Nuvanced Programming and Problem Solving transition. It Is en advanced Introductlon to Ida
With Pascal, 6.M. Schneider IS.C. lirell, Elleg, far sanlor level Com-puter Science students. it
loll. prevides a groat deal of programming

euperience as wall as a greater Insight Into the
*4. The Elaments of Programming stgle, Brian language than Is possible In the pregramming

languages coure (where the design principles of

10 Annual National Conference on Ada Technology 1985
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man languages ore studied). PROPOSED USE OF IO IN OliEN COMPITER SCIENCE

For eaemple, one topic discussed, with
corresponding programming ossignments, .
Involvued tasking --- afoeture not supported In Since for elf students In future goS, Ids will
the other languages avallable on our computer be their primoar language, Rdo will probalyg be
stem, chosen in courses where the language of

Implementation of programs Is left to the
Nn Interesting insight from a CSCi 4990 student.

student (whose primary programming language
hod been Pascal) was the following: "ide CSCI 2125, Date Structures, will be taught
complies or so slow, that now I nly comple as using Rdo, beginning not semester, as a
a lost resort." reference language (which means that Iode

examples wll be given, but that the students
The comment was offered as a criticism of Ado will be free to choose o ianguage for the

end/or Ada cempltls), got It seems clear that Implementation of their programs).
the and result was to cause the student to be a
great deal more careful about his design and Our senior level course In Software Design, Is
coding. It Is not proposed that compilers should eopocted to be offered in 1985-9D, end will use
be made delberetely slower In order to Ido.
frustrate their use as do fee& tout editors;
nevertheless, It seems that frequency of Other courses that mag use Ada In the future .
compilation should be considered as an Issue In ore Data Communcetinas and Networks,
the measurement of productlvlty in the Operating Systems II, and Systems
software life cycle. Programming.

Of course, the separate compilation (even of
specification and body) additionaily nd support
to the argument for the efficiency of Ida. DIEIIL CONCLUSIONS

* second advanced course to use Ido Is CSCI
4501, Programming Language Design. in this At this early stage, It ls too soon to Judge the
course, ida Is discussed only In the content of overall success of our experimont, however, It Is• •
Its design principles; since many ether languages generally felt that the level of Implementation9
are also discussed, little time Is spent analyzing to dote of an dae-based curriculum has been
ida In depth. successful, and we remained optimistic

(although not in an unqualified fashion) about
The third course to use 3da currently Is CSCI the prognosis for the later stages of our

4401, Operating Sgstoms I, where Ada enoampies curriculum development and modificatlon . -

heu been used to demonstrate the concepts of _
readazvowa and tasking In operating system
design.

3de 131 Reference Manual for the idAo.f -

Programming Language, United States
Department of Defense, Washington 1903.
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TEACHING ADA FROM A CONCEPTUAL VIEWPOINT

J. J. Buoni and E. S. Santos

Department of Mathematical and Computer Sciences
Youngstown State University
Youngstown, Ohio 44555

system, or a graphics package must be con-
Over the past fiew years in many cerned with many of the same issues that

Academic programs, the Ada programming are present in the design of a general-
language has been introduced in advance purpose programming language. The aspect
courses as a vehicle for instruction in of program design is often simplified if
presenting the principles of software the programmer is familiar with a variety O
engineering. There are several other of constructs and implementation methods
approaches to the introduction of the from ordinary programming languages. The
Ada Programming language in advanced approach taken by the authors is to start
courses. The purpose of this paper is with the overall language design princi-
to introduce the approach used by the ples, study them in relative isolation and
authors over the past three years; that then seek examples of these principles in
is, to introduce Ada in the "Programmin~g Ada and other programming languages. The
Language Design" framework. course entitled "Programming Language 0
Background: Structures" has followed this approach over

The following paper offers an alter- the past three years because we believe
native view to the instruction of Ada at that it is only by understanding the basic . -underlying concepts that meaningful ""'
the advanced undergraduate level which underinonce tat meangfuldeparts from the traditional "Software -.r-sm b-anAdadepartsefrom thepraditand other programming languages and
Engineering" approach. only then will Ada be fully understood.
Introduction:

The external enviroments of a pro- Central to this theme is the text by
gram during its execution may be termed Ledgard and Marcotty entitled
its operating enviroment. Batch-process- "Programming Language Landscape" which has
ing, interactive and embedded systems are been used in our Programming Language

. three different types of operating envir- Structures course for most of the past

oments whose different requirements have three years and which has recently been
an important influence on the language supplemented by the Ada Language Reference
desiqn. It is not unreasonable that pro- Manual5. This paper presents the experi-
gramming languages are designed with ences of the authors in the instruction of

- different designs. Over the past few Ada in the above setting over the past few
years in many Academic programs, the Ada years. Central to this course is the com-
programming language has been introduced parison between PL/I (a batch processing
in advanced courses as a vehicle for language) and Ada (an embedded systems
instruction in presenting the principles language). Developed in the early 60's it
of software engineering. There aresever- is not surprising that PL/I would not
al other approaches to the introduction stack up well against Ada. But in an edu- S
of the Ada programming language in advan- cational enviroment, it serves as a model
ced courses. The purpose of this paper for a language which is at the opposite
is to introduce the approach used by the spectrum of Ada; yet in some sense, Ada
authors over the past three years; that may be thought of as a logical completion
is, to introduce Ada in the "Programming of PL/I. This comparison becomes necessary
Language Design" framework. Few program- in the Programming Languages course as
mers ever think of themselves as language taught at Youngstown State University,
designers, yet any program has a user since the principle vehicle of instruction O
interface that in fact is a form of pro- has been PL/I and not Pascal.
gramming language. The user interface Scope:
consists of the commands and date formats PL/I and Ada are both block structured
that are provided for the user to commun- languages. The essentials of block struc-

of ture is a system of program units that de-icate with the program. The designer liiohfeino pormtx m
the user interface for a large program limit the region of program text amd a
such as a text editor, an operating method for specifying the names that belong
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to these regions. The conventional rules its scope includes all of Q. One is able

of lexical scoping which one may attribute to use selected component notation P.A to

to Algol 60 may be summarized as follows
3 : obtain access to P's variable A. It may

1.) The scope of a declaration includes be worth mentioning that this qualified

the block in which it occurs but excludes name mechanism does to some extent exist *
any block surrounding it. in languages such that one may be able to

2.) The scope of a declaration includes access the components of a record i.e. in

any block contained within the block in PL/I. Hence, one sees how Ada has filled

- which the declaration occurs but excludes a void which existed in the Algol 60 scope

any contained block in which the same rules.

identifier is redeclared. Parameter Passing:

These basic rules are quite complicated In the study of Programming Languages,

when applied to Ada 5. Yet to what extent one usually mentions five types of param- 9
do these rules hold exactly in Ada and eter passing. They are pass by name, ref-

PL/I is of much importance. PL/I offers erence, result, value, and value-result.

an escape to these rules with its Exter- PL/I supports pass by reference. Ada on

nal declaration concept allowing one to the other hand with its IN, OUT, and IN-OUT

introduce them into selected choices of parameter passing mechanism supports what

separately compile procedures. at first appears to be a form of pass by

On the otherhand, Ada's complex value, result and value-result but hides

rules for managing the name spacel leads the actual implementation with stern warn-

one to differentiate between Scope and ings when refering to a parameter whose

Visibility Rules. The scope of an entity type is an array, record, or task type. An

is the region of a program where its dec- implementation may achieve the results of

laration has effect and the visibility of IN, OUT and IN-OUT effects by copy or by

an entity defines where its name may be reference. However, the language does not

seen. In general, the scope of an inden- define which of these mechanisms are to be . - .

tifier starts at the point where the used for parameter passing nor whether dif-

indentifier is declared and extends to the ferent calls to the same subprogram require

block that contains the declaration, one to use the same mechanism. The execu-

Similar to PL/I, Ada offers a mechanism to tion of a program is erroneous if its ef-

escape these rules with the package con- fect depends on which mechanism is select-

cept2 ,5. Since the scope of the entities ed by the implementation. Such "Informa-

with the same identifier may overlap as tion Hiding" of the implementation is not

a result of overloading, the term 'visi- surprising to Ada and may be considered an

bility' has been added to the vocabulary analogue of the manner in which the multi-

which informally means that the visibil- dimensional Array implementation is hidden.

ity of an entity defines where its name Also, Ada has taken the attitude that

may be seen. In all cases, an entity is side effects are somewhat immoral. Thus

visible only within its scope
5 , it requires parameters passed to functions

have mode IN only.
Control Structures:

PL/ I Example 1: In programming Language Structures one

P:procedure; encounters the definition of RE(n) struc- g_
declare A,B; ture which is composed of basic actions,
Q:procedure; if-then-else, and loop constructs together

declare B; with an exit statements of the form ext(i)

end Q; where i is any integer between 1 and n and

end P; any group of the above statements is also
the traditional rules of scoping, pro- a basic action. That Ada supports RE(n)

By structures but not L-structures (L struc-
cedure Q's variable B creates a hole in tures contain unlimited goto's) is not
the visibility of procedure P's variable surprising. Recall that Ada's exit state-
B. Hence, P.B (notation borrowed from ment, defined as5 : L"1
Ada) is not known in the procedure Q. Ada W-.-_

has rectified this situation. exit::=exit[loop-name] [when condition]

Ada Eallows several nested loops to be exited
and Ada's goto statement

5

procedure P is goto-statement::goto label-name; S
A,B: float;

procedure Q is requires that the innermost sequence of
A: integer; statements which encloses the target

begin -- statement must also enclose the goto
end P; statement.

Similar to PL/1, the variable A defined Exception Handlers:

in P is not directly visible in Q; however, Exception handling have been class-
ified in two categories:
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1.) Those that return (unless otherwise BLOGIC:=true;
directed) from the error handler to the put(FILECBl);
vicinity of the error raising statement. get(FILEB,Bl);
PL/I provides this feature in many of its end if;
handlers, end loop;
2.) Those that Do NOT return to a vicin- exception
ity of the statement that raised the excep- when end-error >

tion. Ada falls into this category. loop
In studying the exception handling if ALOGIC then

capability of both Ada and PL/I one is put(FILEC,Bl);
left captive by the power of Ada in this get(FILEB,Bl);
respect. Exceptions in PL/I are used as a else S
normal programming technique. In contrast, put(FILEC,Al);
exceptions in the Ada language are intended get(FILEA,Al);
specifically for handling errors and limit- end if;
ing conditions. In both languages, execu- end loop;
tion of the normal part of a program is end; -- inner
suspended when an exception occurs; execu- exception
tion of an exception handler (if any) is when end-error=>close(FILEC);
initiated. It is at this point that Ada end main; .
and PL/I severely disagree. In Ada the While in PL/I the same type of program

program block unit terminates because Ada would be:
considers exception handlers as the logical Pt/I Example 2:
completion of the block unit, while PL/I
may take one of three alternatives unless MERGE:proc options(main);

otherwise directed, i.e. return to the dcl (FILEA,FFILEB,FILEC) file record
statement in which the error was raised sequential, (Al,Bl) char(80);
(on Conversion), return to the statement dcl (AEOF,BEOF) bit(l) init('l'b); P
after the statement that raised the error on endfile(FILEA) begin;
(on endfile), or return control to the AEOF='O'b;
operating system (on error). PL/I seems on endfile(FILEB) BEOF='O'b;
to have been the first language to provide read file(FILEB)into(Bl);

• elaborate exception handling facilities; do while(BEOF);
however, they are not uniformly treated. write file(FILEC)from(Bl);
Both PL/I and Ada propagate errors to the read file(FILEB) into(Bl);
next level if no exception is specified end;
and then proceed according to their end;
respective rules. Consider the following on endfile(FILEB) begin;
implementation of a merge sort of two BEOF='0'b;
sorted files. on endfile(FILEA) AEOF='O'b;

read file(FILEA)into(Al);
Ada Example 2: do while(AEOF); L~write file(FILEC)from(Al);

with TEXT-I0;use TEXT-I0; read file(FILEA) into(Al); -
procedure main is end: fieFLE)'toA"

FILEA,FILEB,FILEC:file-type; end
type DATE is array (positive range end;
1..20) of integer; open file(FILEA) input, file(FILEB)
1..20) of integer; input, file(FILEC) output;[[. AI,BI,CI : integer;
ALOGIC,BLOGIC : boolean; read file(FILEA)into(Al);
ALOICLGI :read file(FILEB)into(Bl);
package MY-INTEGER-I0 is new AEOF='l'b; BEOF='l'b; I
INTEGER-10(integer); do while ''use Y-INEGERTO;(AEOF&BEOF);...
use MY-INTEGER-I0; if Al>Bl then do;

Abegin write file(FILEC)from(B1);' create(FILEC,OUT-FILE 'FIILEB.DAT');
craeFLCOTFL.read file(FILEB)into(Bl); L.
open(FILEB,IN-FILE,' i.D.DAT'); end;
open(FILEA,IN-FILE,' 'ILEA.DAT'); else do;
get(FILEA,Al); write file(FILECdfrom(A):
get(FILEB,BI); read file(FILEA)into(Al);

* begin--inner block end;
loop

ALOGIC:=false; BLOGIC:=false; clsend;I.
if Al >= BI then close file(FILEA),file(FILEB),

ALOGIC:=true; file (FILEC);end MERGE; '-%

put(FILEC,Al); Tped M
get(FILEA,Al); i

else Given the fact that modern program-
ming language design theorist now seem to
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[5.] Reference Manual: Ada programming
Pascal Example: language, ANSI/MIL-STD-1815A, (1983).

.some declarations omitted... [6.] Reference Manual: PL/I checkout and
type VISA=(PERMANENT, TEMPORARY,VISITING); Optimizer Compiler, IBM Program Product,
NEWPERSON= (1976).
record
NAME:WORDS:
AGE:YEARS;
PRESENT:WORKWEEK;

case CITIZEN:boolean of S
true: (PENSIONNO:integer);
false: (STATUS:VISA;PASSPORTNO:

end; integer)
var FERGUSON,SMITH:NEWPERSON;
... some assignments....

FERGUSON.CITIZEN:=false;
FERGUSON.STATUS:=VISITING; . *
SMITH.CITIZEN:=true; •
SMITH.PENSIONNO:=2361;

whereas the assignment

FERGUSON.PENSIONNO:=87431; J.J. Buoni, Professor

would be illegal and cause a runtime error. Youngstown State University
The same example in Ada would be the fol- Youngstown, Ohio 44555--.
lowing: ,

Ada Example 3:

type VISA is(PERMANENT,TEMPORARY,VISITING);
type NEWPERSON (CITIZEN:boolean) is

record
NAME:WORDS;
AGE:YEARS;
PRESENT:WORKWEEK;
case CITIZEN is

when true =>
PENSIONNO: integer;

when false=>
STATUS:VISA;
PASPORTNO:integer; A

end case;
end record;

...sample declarations...
E. S. Santos, Professor

SMITH:NEWPERSON(true); Youngstown State University
FERGUSON:NEWPERSON(false); Youngstown, Ohio 44555

Structured Programming:
Ada and PL/I both contain ample ....

structured statements. However program-

ming style encouraged is different be-
cause PL/I contains an UNTIL clause and
also encourages the use of goto's in .'
exception handlers.
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ADA AND THE BUSINESS SCHOOL CURRICULUM

Diane M. Fischer

Department or Business Computer Information Systems
and Quantitative Methods

liofstra University, Hempstead, NY 11550 .

degrees. Of these, six are required courses and two
are electives within the department.

Abstract

The introductory course, required of all busi-The (urrent curriculum for business comput- ness school students, devotes one-third of its con-
ing is examined in view of including Ada. Con- tent to programming in BASIC and the remainder 0
straints are discussed. These include accreditation to computer literacy and business applications.
requirements and school-wide requirements for a COBOL. the main business language, is taught in
Bachelor of Business Administration degree. a two semester sequence. These serve as prere-
DIPMA an.] ACM model curriculum are considered. quisites for the advanced courses of systems
Ada is compared with popular business languages, analysis and design, management information sys-
COBOL. BA.SIC and FORTAN. Suggestions for tems and equipment selection. The two depart-
including Ada in particular courses are given. ment electives are chosen from six courses covering
Topics in Ada especially relevant to a first course the following subjects: FORTRAN, a collection of
are noted, as is the background material needed to several languages. simulation, minicomputers and
teach Ada. The business market is investigated in microcomputers, reading and research, and work
terms of programming needs. The university is experience in an internship. There are no further
considered both as leader and follower vis-a-vis electives, unless a student takes more than 125
this market. Trends in computing are noted and credits to graduate.
suggestions given for the use of Ada.

The School of Liberal Arts contains a Coin-
puter Science department. Business Computing - -

offers a computer science minor consisting of a set
of required courses to be substituted for a desig- .21. Business Computing Curriculum Accreditation nated set of otherwise required liberal arts courses.

Requirements n.. s

To discuss the inclusion of Ada in the Busi-
,*r' ' ne-s Con puter Information Systems (Business 2. Possible AdaCourse'

Computing) curriculum, one must look at con- With this background, one can address the
straints on the curriculum. Hofstra University's question of how Ada can be included in the Busi.

" School of Business holds accreditation from the ness Computing curriculum. Such a course would
American Assembly of Collegiate Schools of Busi- have to be included among the eight major courses
ness (AACSB) for both the undergraduate and gra- or taken as part of a computer science minor. To
duate programs. The Business Computing curricu- relegate the teaching of Ada to a Computer Sci-
lum for a bachelor's degree in business administra- ence minor would effectively remove it as a possi-
tion (B.B..) has been specially designed to meet ble course for the majority of majors, who do not
AACSB requirements. minor in computer science. It would remove the

course from Business Computing control. The
Presently a business student needs 125 credits course would be taught from a Computer Science " "

to graduate, of which 62 must be in designated viewpoint which is more technical and less
liberal arts areas. In addition, a student has 39 business-oriented than Business Computing. This
required credits of Accounting, Business Law, also assumes the Computer Science department .
Finance, Quantitative Methods, Management, would be willing to offer this course regularly. -

" General Business and Marketing. This leaves the Ada has been taught by Computer Science on an
24 credits (eight courses) which distinguish the experimental basis, but their main language is
Business Computing major from other B.B.A. PL/l. 0
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Ada for busiesapiainwolbste While not binding, the DPNIA model eurricti-
taught in the Business Computing department. lum for undergraduate education in Computer
Options include substituting Ada for one of the information ',Nstems has served as a guide for
languages presently offered and adding another course offerings. This model specifies COBOL but
course to the department electives. These electives emphasizes that the model curriculum is a 'living'-
are typically offered once a year and have minimal document 1pen to change. ACM curriculum
enrollment. Adding another course would spread recommendations for Information Systems does
the students thinner and place further burden on a not specify any language. 1 Both guides suggest a
heavy faculty teaching load. Faculty teach three wide range of computer science techniques for

*to four courses per semester. The faculty are often which no oneC existing languiage is adequate. File
understaffed because AA-CSB requires them to handling is best taught with COBOL. Sorting
have appropriate terminal degrees and because algorithms, hashing, stacks, queues and trees are

*competition for Ph.D.'s in Business Computing is better tauight with a scientific programming
*heavy. The option of adding an Ada. course is not language like Ada.

viable. The only remaining possibility is to substi-
tute Ada for a language presently being offered. Any course offering in Ada will require corn-
This is currently being done. In the past year, puter support. This includes a working compiler,
Ada has been included as one of the languages manuals and textbooks.2 There are Ada compilers
offered in the comparative languages course. available for a few machines. DEC has announced

an Ada compiler prevalidated for the VAX 11/780
The department has recently decided to col- running the VMS operating system. Hofstra runs

* - lapse the two FORTRAN and languages electives this compile.r on its VAX 11/782. The Business .-

into one course. It will be offered each semester
and ill overone f Ad, FOTRANor PscalComputing department bas a subset of Ada run---

each time. Students will be permitted to take the ningon Ire Pcac couters.tanuas andptext-g.
course more than once. This change reflects thebokarsccebuthsiainismpvng-
increasing importance of Ada, but the cgurse is an A colleague is currently under contract to write an
elective and majors can graduate without it.. . .

The remaining possibilities are to substitute The nwlyichosen tie busine curi- -'-_"
AdaOptfos ithe sBsi ting ordCOBoo the Ada or other major languages will be open to busi-
offered in the two required language courses. The ness students majoring in other departments.
format for the introductory course is constrained ese s ust he ad BSic , bu not

teach a subset of Ada to non-technical students totocmetpento sta e s of seeionlum
give them a general understanding of programminga r eettion o insion ays, lie .give sd sie dlerecords, and simple functions and procedures. An .and to cover the basic program structures. The overview of other language features such as pack-
success of Ada in an introductory course would ages, private types, tasks, exceptions and generic
depend on the level of the students. BASIC is 7. 10
easy to teach and one of the easiest languages to program uits may be-given.
learn. However, even this simple programming Thus far, this paper has focused on how Ada
component is very difficult for many students. It can be included in an AACSB accredited business
does not seem reasonable to offer a five week intro- school curriculum. Ada can and is being offered as
duction to Ada as a first language in that course. a language supplemental to COBOL. While it is

possible that the roles of Ada and COBOL could
The tso-semester COBOL course is a stan- be reversed in the future, there would have to be a

dard for bisiness computing. AACSB does not large amount of business programming done in
specifically require that COBOL be taught. Ada to justify this. The following section consid- .
Instead. for these and the remaining major courses, ers Ada's place in t.he business computing market.

cepts of Management Information Systems and of
computer applications. This is very general. But 3. Ada For Business Computins ID
inherent in their guidelines is the assumption that Ada was designed ror programming large- "- - " -
there exists a wide range of business applications scale, real-time embedded systems. As noted, it
written in the chosen language. Any substitution includes facilities for abstract data types, multi-
for COBOL would have to be justified in terms of tasking, generic program units and real-time con- -
what is usd in the business community. No straints. Its package feature that allows separate
najor change is forseen in the near future. compilation has lead to new ideas regarding the
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place of nesting in program design. A structured serve as both a microcosm and a source of this
programming language, it was targeted for replac- community. The traditional academic lines are
ing Pascal and FORTRAN for real time applica- Finance, Management, Marketing, and Business .-"-'
tions, not for commercial applications. However, Law. Professors in these disciplines rarely are
the power of the language lends itself to a broader interested in learning high level programming 0
range of applications. languages. They want user-friendly systems that ..-

are easy to learn to manipulate and that can easily ' -
In the past it has been easy to classify pro- interact with one another.

gramming applications as either scientific or data
processing. FORTRAN covered the former and Popular business programs include VISI- . .

COBOL dominated the latter. Modern applica- CALC, a financial spread sheet; MINITAB and
tions cannot be as easily classified. An example is SPSS, statistical packages; LINDO, a linear pro- *
computer-aided manufacturing. To facilitate this, gramming package; SHAZAM, a time-series pack- .'. '
we will see the roles of FORTRAN and COBOL age. These are the so-called problem-oriented
diminishing and more versatile languages being languages. Faculty use these types of programs in

7 classroom teaching and in research. Business stu-used.
dents learn these prograns and the techniques of

There are several factors which might limit using them. They enter the business community
widespread acceptance of Ada in the business com- with the knowledge that they can use computers *
puting field. A serious one is inertia. COBOL without having to master the arts of computer
began in 1960. An ANSI-Standard COBOL was programming. Articles on future trends 9

issued in 1974. COBOL 80 is in the process of emphasize attempts to make computers easier to
being made the latest national stand& rd, facilitated use for non D.P. professionals. The market for
by its acceptance by the international standards Apple's Macintosh computer indicates the power -
committee. There are compilers and manuals of easy to use computing systems. This market
available for this latest version of COBOL. The will increase as more software is available. Ada, asVAX under VMS runs one at llofstra. Regardless a complex and technical language, is not going to
of the availability of two much more powerful ver- meet this demand directly. This is not its primary
sions of COBOL, the great majority of the busi- purpose. If Ada can be used as a language behind "
ness community is still using COBOL 60. A dis- such packages, it will find a large business market "
cussion at a COBOL session at NCC 84 indicated willing to accept it. If it does, it will be even more - -
that companies are loathe to update their COBOL necessary to teach Ada to business students so •
programs. It seems clear that they will be even they can direct the development of specialized
less anxious to scrap their programs entirely to business applications in their business careers.
convert to Ada.

In summary, this paper has briefly considered -' "
What might soften this resistance is the avai- how to include Ada in a business school curriculum

lability of conversion packages from COBOL to and future acceptance of Ada in the business com-
Ada. Whether it makes sense to spend the man munity as justification for such inclusion.
power on a system to translate probably poor
patched, unstructured COBOL code into Ada is a
question beyond the scope of this paper. A better
idea is the provision of interfaces between COBOL Reference.
and Ada programs which would make such a tran- (1) ACM Curricula Recommendations for Infor-
sition less painful. mation Systems. Volume H, 1983.

In any case, for Ada to be more palatable to (2) ACM Position on Standardization of the Ada -
the business market, sophisticated I/O and file Language. Commun. ACM 25.2 (Feb 82) -
handling mechanisms need to be made available. 118-120.
These will probably come in the form of Ada pack- (3) Ada: Past, Present Future: An Interview *-" °'-
ages which can do COBOL-type file manipulation. with Jean Ichbiah, Principal Designer of Ada. -.
COBOL was designed to provide output for busi- Commun. ACM 27.10 (Oct 84) 990-997.
ness applications. Ada will have to provide similar (4) DPMA Model Curriculum for Undergraduate
output to challange COBOL seriously within the Computer Information Systems Education
business community. 1981.

One must consider the business community as (5) Hoare, C.A.R. The Emperor's Old Clothes.

a whole and not simply from the view of informa- 1980 Turing Award Lecture, Commun. ACM IA.',l
tion systems. Hofstra's School of Business can 24.2 (Feb 81) 75-83.
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ACADEMIC IMPLICATIONS OF ADA IN INDUSTRY*"

9-
Joan M. Sterling

Hampton University
Department of Mathematics and Computer Science

I Hampton, Virginia 23668

*As knowledge about the Ada language becomes which had two deadlines concerning software were
more widespread, the number of industrial organ- January 1, 1984 and July 1, 1984. The January 1,
izations using Ada increased accordingly. More 1984 deadline concerned the use of Ada for any and
companies are using Ada and considering Ada, as all new software being developed for defense
both a specifications and implementation language mission-critical applications entering Advanced
than ever before. As an exchange faculty member Development. The July 1, 1984 deadline concerned *-

during the summer of 1984, I had the opportunity the use of Ada for any and all software entering

*to observe some industrial requirements, with Full-Scale Engineering Development. Other types
respect to Ada, for software development. This of programs were encouraged to use Ada as soon as
paper is therefore a discussion of Ada's present and whenever possible. Although the Department of
position in various industrial applications, some Defense reset the deadlines, the use of Ada was
future industrial requirements and how Ada can and is presently a governmental mandate. There-
best be utilized to fill those requirements, as fore, this particular major industrial company was
well as some suggestions on how industry, col- working towards the development of software with
leges, and universities can work together to Ada so that they could maintain their governmental
produce a sufficient numberof individuals train- contracts.
ed in all aspects of Ada. These individuals The first concern, for this and other compan-
could then help meet the growing demand created ies I have talked with was the procurement of a
by the United States government and the indus- validated Ada compiler which was compatible with
trial world for Ada qualified people. The their particular computer system. Several compan-
supply of Ada trained individuals is low compar- ies offered Ada compilers but they were almost
ad to the very high demand, never delivered in completed form by the contract-

ad time. Partial compilers were usually delivered ..

INRDCINand updated over a period of time until the com-,-*.'.-
INTRODUCTION pleted software package could be delivered. The '.. 4

The nnul US. Amy ponoredFacltypartial compilers could compile programs composed

Research and Enhancement Program took place during oftePsa usto heAalnug: Hwvr
the erid Jne 0, 984throgh uly17,198 at these compiler packages did not have the source
the erid Jne 0, 984throgh uly17,198 at code necessary to implement some of the more dyna-

Tuskegee Institute in Tuskegee, Alabama. I was an mi an itesigfcltesoth lnug,
attending professor from Hampton University. Al- sc s nmrto yegnrcadtsig

thouh Ihadpreiou enountrs ithAdathrugh Consequently, this particular company was getting
two previous seminars (one 3 day seminar and one
4 day seminar), I did not really understand the aso tr ihisefr oad etn h

syntx o rel prpoe o thelanuag unil om- governmental mandate.
pyetion of te summoe course Thnue taimnt cof- The lack of a complete compiler did not hin-
knledgen ofro the insterucs cours e timtils der the writing of objectives and the creation ofknweg rmteisrcos oremtras small Ada source programs to teat ,~e aspectsa of
and various speakers who shared their experienceacoplr sth pies rivd i prtia-
with the participants of the AaSme Rsarhed in this facet o f the "move towards Ada". Two
Program has made me an Ada advocate. I am using types of code were of interest to this industrial
that knowledge to help me teach two Ada courses; organization, regular program source code and
An Introduction to Ada and Advanced Ada Programm- code to monitor the system efficiency as Ada pro-
ing. The advanced course incorporates many soft- gaswr opldo xctd h eua

wareengieerng pacties.program code was used to check the following and
more: to determine whether error messages occurr-

First Industrial Encounter ad when they should; to determine if various pro-
grams actually did turn control over to the sys-

Upon completion of the Ada Summer Research tam; to determine if the attributes really gave
Program at Tuskegee Institute, I became an ex- the required information; to determine if Ada's
change faculty member at one of the major indus- implementation of generics, packages, and tasking
trial companies which handle software contracts,
especially large contracts for the Federal govern- (1) See sample objectives and source code.
ment. The Federal government has issued a mandate
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were really the long awaited boost to software Ada programmers presently available and the number
engineering that they appeared to be; and last but of Ada programmers needed to meet the demands of
not least, to determine the real software engineer- industry. These demands were as a direct result
ing worth of the package. Packages were of special of the mandate of the Department of Defense per-
interest since it appeared that existing library tamning to specific areas where Ada should become
facilities could really be enhanced and/or updated the only language used to develop necessary soft-
with their use, ware. The academic world is, however, experiencing .~

The second type of code was system oriented some of the same problems which exist in the in-
code to monitor the computer's actions and reac- dustrial world- a shortage of competent teachers
tions as Ada code was compiled or executed. Of (programmers) of the Ada language and most impor-
special interest was how much of the system's power tantly the lack of a validated Ada compiler. A
was going to be required to implement such features few institutions have the Ada Ed interpreter dis-
as tasking, generics, unbounded arrays,and pragmas. tributed by New York University which does the job
This aspect of the testing went beyond my level of but is slow. The slowness of compilation and
expertise with Ada because I had only dealt with execution speeds are especially noticeable if
Ada from the programmer-software engineer side, several students are trying to compile and/or
Nevertheless, this aspect of the testing held a execute the Ada programs at the same time. There-
particular interest, fore there is no mystery as to why students tend

Educators teach languages and test for error to shy away from both introductory and advanced
situations, but very often th- slowness of the courses in Ada programming and Ada software
system is takeni as an ordinary daily occurrence, engineering. This trend tends to defeat a common
Industry on the other hand should not and cannot goal of industry and academics; to increase the
tolerate unnecessary slowness because some degree number of Ada educated computer scientists.
of efficiency is necessary. As in industry, partially completed Ada com-

Several programs were written in Ada to be pilers are available to the world of academics.
used on an IBM P.C. computer. The memory of the The frustrations associated with not being able
IBM P.C. was increased to 512K initially tc elim- to use the "Power house' structures of the
inate as many memory problems as possible before language, so that individuals themselves can deter-
they might occur. The IMB P.C.'s compiler pre- mine what they consider the full worth of the
sented a problem because it was only partially language, takes its toll on student enrollment.
complete thereby being incapable of testing those Rumors travel fast among students about a course
Ada facilities of most interest. Those features or its teacher. Ada student enrollment is on the
one could test with the system, for example: a rise at those schools where it is being offered,
minor program such as a prime number generator, but because of the reasons mentioned earlier Ada's
took hours to execute, From the time periods enrollment lags behind those of such languages as
involved in executing "small" programs with the Fortran, Pascal, and Cobol. Inspite of the major
mtcro, one could draw the conclusion that if the discouraging factors involved with an Ads educa- -

programs being compiled had contained the main tion, there is hope for the future for Ada in
software design features of Ada, the small system academics as well as in industry.
would have come to a virtual standstill or crashed.

Several months later, I had the opportunity Academic/Industrial Common Lfforts
to interact with other micros through the use of
Ada and the responses were very similar to those There are several Ada user's groups presently
mentioned above. It appears that the time has yet in existence, for example: the ACM group, the
to arrive when the micro and Ada will be compati- group at the University of Houston at Clearlake
ble. and some of them are involved with experiments -

Industry is presently experiencing a shortage which are attempting to test and evaluate Ada in
of personnel capable of programming in Ada. A various working environments. At present it
plausible reason for this shortage is that there appears that no major governmental agency, like
exists only a few individuals capable of utilizing NASA for example, is attempting any full scale
the language's capabilities to its fullest extent, software development with Ada. Yet the interest
Most of industry's beginning Ada programmers are in the language and its capabilities is very much
experienced in Fortran and Cobol programming. alive and well. Some NASA locations are experi-
Therefore, they tend to produce code in Ada which menting with such systems as the NTELL 432, Tele-
looks like Fortran or Cobol source code, respec- Soft, and Rom.
tively. However, after working with Ada for a Presently code is being generated for soft-
length of time, they start to use the more ad- ware to test Ada's feasibility for a number of *

vanced features of the language. IAdspte- areas. Some questions which need to be consider-
tial, as a software engineering language, is to be ed are the following.
realized by industry, then the number of capable Could it make the running of a space station
Ada programmers must be increased dramatically. easier than it presently is or harder? Would
The question is: How is this feat to be accom- flight programs become more manageable with Ada's
p1 ished? capabilities as a resource, especially tasking?

If Ada was used in a distributed network environ-

Academic Outlook ment and one of the members of the network failed,
could tasking recover the situation? Would sate- .-

Several institutions around the country are llite and other methods of communications benefit
trying to bridge the gap between the number of from its seemingly robust nature? Is it really -

true that several groups of programmers, each
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group in a different location, can actually create students discover that a company offers a high

segments of code for given modules of a relatively salary if a potential employee has been trained in

large project? Could the groups meet after an the area of Ada. Sometimes they offer free system

allotted period of time and turn the modules into maintenance for a period of time to a school which

a working program in 25 to 50 percent less time is struggling to implement a program in computer

than would be the normal time period by today's science independent of an offering in Ada program-

standards? Is Ada really the portable language ming. A faculty exchange program is also main-

the world hopes and believes it to be? Is the tained to allow both academia and industry to keep

ability to separately compile parts of a program abreast of each other's needs.

worth the overload? Can a group create software Various industrial organizations offer short

in a particular area, in-house and then offer that courses in Ada which encompass programming and

software to the world with minimum difficulty? software engineering. Others such as Digital

Each of these questions needs an answer, if Equipment Corporation are in the process of offer-

one of is to really become knowledgeable in the ing such courses. They also allow employees time S
Ada world. The world of academics is doing its during their regular work day to take courses.

share to answer some of the questions raised above Very often they reimburse tuition and fees to

and to supply competent Ada programmers to the those employees who take courses on their own time.

industrial/governmental world at the same time. Industry is working towards eliminating the short-

Not only is Ada being taught as a class at a age of Ada educated individuals.

rapidly growing number of institutions, these The number of Ada qualified individuals is on

institutions are obtaining grants and proposals the rise, but the number is not yet remotely close

to perform specific experiments that could indeed to the large number needed in the industrial world, •

give Ada that needed boost to remove doubt from if the Department of Defense's mandate is to be

the minds of many non-believers. The University met in the near future. Education and industry

of Houston at Clearlake, the University of must do more hand-in-hand work if Ada's future

Virginia, the University of Maryland, Hampton goals are to be met. Exchange programs which

University, Old Dominion University, and many allows institutions, which do not have any Ada

others in other parts of the U.S. involved with computing facilities, to access certain company - .

Ada ranging from the beginning teaching stages accounts in order to execute student programs

to the more complex areas of creating software might be implemented in a large scale across the

under proposals and contract with various govern- country. The duality of benefit would be the

mental agencies. For instance, the University of following: The institution would benefit because

Virginia is working with Ada in a distributed it could teach Ada with the excess cost of acquir-
network environment, the University of Houston ing an Ada compiler system not being present. The

and Maryland are doing some work to evaluate the company would benefit because individuals would be

language, and Hampton University is trying to trained in the use of Ada for programming and

develop some mathematical packages. software engineering. Academic institutions could

Many industrial organizations,who have little hold special courses for employees whose organiza-

or no governmental contracts at the present time, tions needed Ada for its company's governmental

are staying away from Ada. They considered it a contractual stability. These courses would also

dying cause even before its birth. However, those be available to companies who aspire to obtain
organizations who do a great deal of contractual governmental contracts but do not presently create

work for the government must turn to developing software for the government.

software using the language if they are to main- In conclusion, software engineering with Ada

tain their status with the government. They are is increasing in volume, however, it has not ,

willing to work with the world of academia to reached a level encompassing current needs.

obtain Ada qualified and software engineers. The following are samples of objectives and

Several suggestions have been offered: 1) Do source code created for micro compiler testing

not teach the language from the syntax point of and standard compiler testing.

view; 2) teach good software development method-

ologies, such as various design approaches, style Exceptions

of development, and usage of portability and re-

use capabilities during development; 3) interact Specify "exceptional" situations which arise -

more with various industrial organizations so during program execution. These situations are

that a student will be the recipient of a broad- usually caused by an error in the program.

based education thereby effectively increasing

his worth to any organization to which he may Some exceptions are predefined and others can be

belong, declared by the user. A programmer can raise an

Many academic institutions are trying to exception.

comply with industry's requests pertaining to

computer training. Academic institutions, how- The list of predefined exceptions is as follows:

ever, also need some assistance from industry.

They need incentives to offer potential Ada constraint error numericerror

students, such as workable equipment, good programerror storage_error

salaries, and good working environments upon tasking error.

completion of a course of study which included
Ada training. To a certain extent, industry Note: It is possible to use the pragma "SUPPRESS"

provides for some of these needs. Quite often to stop the raising of the above mentioned
exceptions.
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Constraint-error: Test Objectives: .- '

specifies that an error message be given if some 1. Check that the abnormal termination of a

entities go out of bounds previously set. server task causes this error in the "caller" task.

2. Check that abnormal abortion of the caller

Test Objectives: task does not raise an error. Ask

I. Check that each of the following causes the PRAGMAS:

correct error message to be printed: a) attempt

to violate a range constraint; b) attempt to Pragmas are used to convey information to the

violate an index constraint; c) attempt to violate compiler. They are allowed after a semicolon de-

a discriminant constraint; d) attempt to use a limiter but not within a formal part or discrimin-

record component that does not exist for the current ant part. The list of predefined pragmas are as

discriminant values. 2. Check that a null access follows: 0
value will cause the error in each of the follow-

ing cases: a) attempt to use a selected component Controlled Elaborate Inline

of the null object; b) attempt to use an indexed Interface List Memory-size

component of the null object; c) attempt to use an Optimize Pack Page

attribute of the object; d) attempt to use a slice Priority Shared Storage-unit

of the object. Suppress System-name

Numeric error: The pragmas memory-size, storage-unit, and system
deal primarily with areas which will not be

Raised when the result of a numeric operation touched upon by this group of tests.

exceeds the implemented range of some real type.Controlled:

Test Objectives:
Specifies that automatic storage reclamation must

1. Check that each of the following causes the not be performed for objects designated by values

raising of this error message: a) data underflow; of a given access type. .

b) data overflow; c) divide-by-zero.
Test Objectives:

Program _error
Syntax:

Raised upon an attempt to make use of a unit whose 1. Check that non-simple names of access types

body has not yet been elaborated. are not allowed. 2. Check that multiple argu-

ments are not allowed. 3. Check that this

Test Objectives : pragma is only allowed within the declarative S
part or package specification which contains the

I. Check that a raise occurs automatically: declaration of the access type. 4. Check that

a) call to a subprogram; b) attempt to activate a derived types cannot be used. 5. Check that the

task; c) attempt to elaborate a generic instantia- pragma declaration must occur after the declara-

tion. 2. Check that this situation occurs when tion of the given access type.

an exit from a function is attempted without using

a "return" statement. 3. Check that a raise Semantic:

occurs during the execution of a selective wait 1. Check that storage reclamation does not occur

that has no else part and all alternatives are during the duration of this program. 2. Check

closed. 4. Check that this is caused during an that in the absence of controlled automatic

erroneous execution. 5. Check that an incorrect storage reclamation follows the system default

order dependency causes this error. method.

Storage error : Elaborate:

Raised when storage allocated to a task or for a Specifies that the corresponding library unit

collection is exhausted during the execution of an body must be elaborated before the compilation

allocator, unit.

Test Objectives : Test Objectives:

1. Check that both of the following are causes of Syntax:

this error: a) when dynamic storage allocated to a 1. Check that only simple names denoting library

task is exceeded; b) when the space available for units can be used as arguments. 2. Check that

the collection of allocated objects is exhausted. this pragma is only allowed to immediately

follow the context clause of a compilation unit.

Tasking error 3. Check that each argument must be the simple

name of a library unit mentioned by the context

Occurs during inter task cormunication, clause. 4. Check that both single and multiple

arguments are allowed.
Semantic:
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%
I. Check that the components of the argument list Test Objectives:
are elaborated. 2. Check that an error occurs if
the necessary units are not elaborated. Syntax:

I. Check that it can be placed after a semicolon
Inline: delimiter but not within a formal part or discrim-

inant part. 2. Check that this pragma can be
Specifies that subprogram bodies should be expanded placed anywhere that a syntactic category whose .-.-
inline at each call whenever possible. (In the name ends with declaration, statement, clause, or '.
case of generics, this applies to instantiations.) alternative can be positioned.

Semantic:
Test Objectives: 1. Check that a listing of a compilation is

suspended or continued until a list pragma with
Syntax: the opposite argument is encountered.

I. Check that only names of subprograms or the Memory-size:
name of a generic subprogram can be used as an
argument. 2. Check that this pragma is only Takes a numeric literal as the single argument. It
allowed in one of the following three places: is only allowed at the start of a compilation and
a) at the declarative place of a declarative part only before the first compilation unit in a libra-
of a program; b) at the place of a declarative ry. It is associated with the package for the
item in a package specification; c) after a "SYSTEM". This pragma will not be dealt with by
library unit in a compilation but before any sub- this series of tests.
sequent compilation unit. Optimize:

Semantic. Specifies whether time or space is the primary
1. Check that the code for the members of the optimization criterion.
argument list is actually expanded at the place of
each and every call. 2. Check that no arguments Test Objectives: "
are passed, etc. as in the usual way that subpro- .
gram calls are handled. 3. Check that without Syntax:

inline, the expansion does not occur. 1. Check that this pragma cannot appear any place

in a program other than the declarative part of a '
Interface: block. 2. Check that optimize only applies to the

block or body enclosing the declarative part to
Allows a subprogram in another language to be which it belongs. 3. Check that the only argu-
called by an Ada program provided all communication ments allowed are either "time" or "space".
is achieved via parameters and function results. .aiISemantic:" "

Test Objectives: 1. Check that the system time becomes shorter

versus default time for the same amount of code.
Syntax: 2. Check that the amount of space allowed for a
1. Check that a language name and a subprogram are block of code changes if optimize uses space as an
the only allowable arguments. Check that this argument.
pragma is allowed at the place of a declarative Pack:
item and must apply to a subprogram declared by an -.
earlier declarative item. 3. Check that the Specifies that storage minimization should be the
above-mentioned declarative item and pragma must main criterion when selecting the representation
belong to the same declarative part or specifics- of the type being considered.
tion. 4. Check that this pragma must appear after
the subprogram declaration and before any subse- Test Objectives:
quent compilation unit when dealing with a library
unit. Syntax:

1. Check that a record or array type are the only
Semantic: possibilities as arguments. 2. Check that this
1. Check the system to determine how the acquir- pragma can only occur in the declarative part,
Ing of the subprogram in a second language is package specification, or task specification.
achieved. 2. Check the system to determine how 3. Check that any use of a representation attri-
the return to the Ada language is achieved. bute of the packed entity must appear after the

List: pragma declaration.

lakes one of the identifiers ON or OFF as a single Semantic:
argument. If a compiler listing is occurring then 1. Check memory allocated for the designated code
the use of OFF will cause it to cease until ON to determine whether the amount of space is
causes it to restart the printing of the given actually less than the default amount. 2. Check
file. that the amount of memory will correspond to the

default value if pack is not applied.
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Page Suppress:

Specifies that the program text which follows the Specifies that errors associated with the identi-
pragma should start on a new page if the compiler fier in the argument list will not be checked for, -
is currently producing a listing, unless it is too costly to suppress the checks. I

the identifier is followed by some entity to be
Test Objectives: worked upon, then those errors associated with the

entity will be suppressed.
Syntax: Test Objectives:
I . Check that this pragma can occur where any
other pragma can occur. Syntax:

1. Check that the identifier of a check is the
Semantic: only necessary argument. 2. Check that along with
I. Check that all text following the call to this the identifier, the following may also be present:

pragma does go to a new page if the compiler is the name of either an object, a type or subtype, a
listing, a program. subprogram, a task unit, or a generic unit.

3. Check that this entity is only allowed either
Priority: immediately within a declarative part or immediate-

ly within a package specification. 4. Check that

Specifies the priority of the task in which it the only allowed form is with a name that denotes
occurs or it specifies the priority of a main an entity (or several overloaded subprograms) de-
program. clared immediately within the package specifica-.. .

Test Objectives: tion. (Providing this pragma is to be used in a
package specification.)cs-

Syntax: Semantic:
1. Check that the only arguments are static ex- C t ex dh

pressions of the predefined integer subtype o. Check that the suppress extends from the place

priority. 2. Check that multiple arguments are of the pragma declaration to the end of the de-
not allowed. 3. Check that this unit can only clarative region associated with the innermost

appear: a) within the specification of a task enclosing block statement or program unit.
unit; h) immediately within the outermost declar- 2. Check that the suppression extends to the end

of the scope of the named entity when working with6 ative part of a main program.

a package specification. 3. Check that when an

Semantic: optional name is given (name of one of the entities
in objective 2.) the suppress applies only for:

I. Civen several tasks of unequal priority, check a) operations on the named object or on all objects

that the tasks are selected in order of highest of the base type of a named type or subtype;

priority to towest. b) calls of a named subprogram; c) activations of
tasks of the named task type; d) instantiations of

Shared: the given generic unit.

Specifies a variable which must be shared by more System-name:
than one task. Every read or update of the vari-
able is a synchronization point for that variable. Specifies system changes. Takes an enumeration

literal as the single argument and is only allowed _

Test Objectives: at the beginning of a compilation. In the case of

libraries it must appear before the first compil-

Syntax: ation unit only. This pragma will not be dealt
SClwith in this series of tests. It deals with theI. Check that only one argument is allowed.SSTM

2. Check that the variable involved is of type "SYSTEM".

scalar or access type. 3. Check that the vani- u The following is a listing of programs to be

able declaration must be followed immediately by to test various aspects of an Ada compiler.
s aThose programs with code for separate compilations,

this pragma in the same declarative part or pack- akgs rgaadtsigwr o sdopackages, pragmas, and tasking were not used on""
age specification.

micros. Several of the progra1s in part/and or p.
total are by Young J. Booch[-21 and Wiener4.

Semantic:
1. Check that the reading and direct updating of -U ia"
allowable variables is an indivisible operation. --Use interfacei

package interface.

Storage-unit: --Some computations are performed by Sqrt and exp.

Takes a numeric literal as its single argument. --Created August 22, 1984

It is allowed at the start of a compilation, be-
fore the first compilation unit. This pragma With Text io,interface; Use text-io;

will not be dealt with by this series of tests. Procedure Use-interface is
Num,Ansl,Ans2:float;

package fit_io is new floatio(float); use flt io;
Interin,lnterout: filetype;
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begin --Use interface Pragma Suppress(Division check);
Open(Interin,ininfile,"Interi.dat"); Pragma Suppress(range check, on = >temp);
Create(Inter out,out file,"Intero.ans");
Set input(inter-in); --Determine whether Suppress belongs here or inside
Set output(interout); of procedure roots.
Putline("Output answers created by a Al

Fortran Subprogram"); subtype Non negativereal is float range O.O..Float
Putline( ");----------------------- 'last; _

New line(2); subtype Posreal is float range Float'small..float'
Put line("Num AnsI Ans2 , last;
Ansl :=Interface.Sqrt(num);
Ans2 :=Interface.Exp (num); package flt io is new floatio(float); Use fit io;
New line;
Put (Num,5); a,b,c,rl,r2:float; S
Put (Ansl,5);
Put (Ans2,5); Pragma List(off);
New line;
Close(interin); function Sqrt (x value: in Nonnegative real;
Close(interout); eps: in Pos real:=O.0O1) return float is

end Use interface: __

-- Package interface displays the use of pragma --Only floating point numbers greater than 0.0 are
interface. It allows Ada to make use of a sub- accepted.
program in a different language. The language --Positive square root is returned with the speci-
used here is Fortran. fied accuracy
-- Created August 22, 1984 .

--the approximation method is used to find the
square root. S

Package Interface is

old value:float; --kth approximation
-- Ada specifications of Sqrt and Exp new value:float; --f+lst approximation

function Sqrt(x: Float) return Float; begin
function Exp (x: Float) return Float; old value:O.0;

new value:=x value/2.O --initial guessprivate-- -

--The Fortran Subprograms while abs(new value-old value)> eps

loop
pragma Interface(Fortran,Sqrt); old value:=new value;
pragma Interface(Fortran,Exp); new value:=0.5* (old-value + x value/

old value);
End Interface; end loop;

return new_value; .

-- Program except tests two exceptions and the end Sqrt; 
"w"le

pragmas suppress page, and list. Numeric error and
Constrainterror are to be tested. Pragma List (ON);

Pragma Page;
-- Messages will be printed if either of the
errors is encountered. Procedure Roots (A,B,C: float; RI,R2: out float)
-- The pragmas page and list will also be checked is
by this program.

Pragma Suppress (division check);
Pragma Suppress (range check, on temp);

-- Extreme data values are required to get
numeric error to appear. A divide-by-zero and a --Roots actually finds the square root.
number larger than the maximum system float value --Sqrt is called from this procedure.
will cause numeric error..-,
-- Use a=O and a=O.O0001 or some equally likely
candidate. temp:float;

begin --roots
-- Suppress and its parameters explain what

errors are being suppressed. temp:=sqrt (b*b-4.0*a*c);
rl:=(-b+temp)/(2.0*a);

With text io; Use text io; r2:=(-b-temp)/(2.0*a);
Procedure Exceptions is

exception 9
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* when numeric-error = Joan M. Sterling is a lecturer
put("Numericerror"); of Mathematics and Computer
new line; Science at Hampton University
put("overflow or divide by zero"); in Hampton, Virginia 23668.
new line; Ms. Sterling is a graduate of

when constraint error => the College of William and
put("Constraint error"): Mary and Old Dominion Univer-
new line; sity where she received aput(" B*B-4*A*C is negative"); Master's Degree in Mathematics,..•..

newline; and a Master's Degree in
end roots; Computer Science respectively.

Pragma Page;

begin --exceptions
get(a);
get(c);
Roots(a,b,c,rl,r2);
put("a= ");
put(a);
put(" ");
put("b= "); 0 4
put Cb);

* put("")
rLt("c= ");

put(c);

put("rl= ");

put(rl);L put("r2=")

put(r2);
new-line;

end exceptions; • "
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QUEUE-MANAGER, A Useful Example For Teaching Ada

David Rudd

Department of Computer Science
University of New Orleans

New Orleans, LA 70148

telephone lines numbered 1 through 10. Callers
Summary are all trying to reach an agent in order to have

their questions answered. We assume that only one
It is the author's belief that clear, well- person can talk to the agent at a time; the others
constructed examples play a major role in teaching (if any) remain on hold.
the concepts and methods of computer programming.0

*The purpose of this paper is to describe one The operator who initially answers the calls
such example (actually a progression of related places callers in a first-come-first-served queue
examples) that the author has found to be a and connects the caller at the head of the queue
valuable and useful pedagogical tool in an Ada to the agent when a signal is received from the

*course. The example consists of a package which agent. At any time, the operator wishes to be
can be used in queue management -- first a single able to do the following:
queue with a specified number of integer entries, 1 lc alra h alo h uu

*then an arbitrary number of queues each with a 1 lc alra h alo h uu

(possibly) different number of integer entries, 2) remove any entry from the queue

and finally an arbitrary number of queues each 3) connect the entry at the head of the queue
to the agent and have that entry removed

with a (possibly) different number of entries from the queue
of n abirar tye.4) list the entries in the queue, in order.

3. QUEUEMANAGER_1.

The first assignment is to write a package
which can be used for the original problem. A
possible solution is given below.

*1. Introduction. -- The purpose of this package is to manage
-- a queue of integers from 1 through MAXSIZE.

It is the author's belief that good examples -- The queue will be represented as an array
play a major role in computer science education. -- with 1 the index for the head and COUNT the
It is fine to discuss a general philosophical -- index for the tail. The package can be used
framework for a concept, why it is important, and -- to perform the following operations:
rules and methods for implementing it; but there -- 1) insert an entry at the tail of the
is no substitute for a clear, non-trivial example. - uu
Student appreciation and comprehension are greatly-- 2reoeay ntyfmth queue

aided by illustrative examples of concepts. - )dslyteetya h edo h

Sine he acageisthemaor ewfeaur o queue, then remove that entry
Sine te pckae s te mjorne fetur of-- 4) list all entries in the queue in

the Ada programming language, it is especially
desirable to incorporate packages into important -- ascending order.

examples and homework assignments in an Ada course, with TEXT_10; use TEXT_10;
* ~The purpose of this paper is to describe a series pcaeQEEMNGR1i

of packages of increasing complexity and utility poeueISR X:i NEE)
which can be used to illustrate such major features procedure RNEOV (NX in INTEGER);

of Ada as exceptions, generics, private types, procedure CONNECT;
unconstrained arrays, and variant records. The procedure LIST;7

*packages are presented as progressively more end QUEUE MANAGER 1;
*powerful solutions to the general problem of . .

managing queues.

*2. The Original Problem.

* In order to couch the problem in a reasonably
realistic setting, we consider an office with 10
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package body QUEUEMANAGER 1 is consist of only a single statement -- a

call to the menu procedure. Is this a good
package INT_10 is new INTEGER IO(INTEGER) ; idea? Show how to incorportate such a

use INTIO; procedure into the package. What'feature

MSIZE constant INTEGER : 10; 5) Since this package is going to be used by
COUNT : INTEGER range 0. .MAXSIZE := 0; human beings, who are by their very nature -'.-"

Q : array (. .MAXSIZE) of INTEGER; error prone, it is important to provide
some means for recovery from the inevitable such as

procedure INSERT (X : in INTEGER) is input errors (e-g. typing the letter 1" . .
begin instead of the number ) What feature"

COUNT := COUNT + ; of Ada gives the package the means to
Q(COUNT) := X- recover from such errors? (This is a good

end INSERT; way to see the need for exceptions such as
DATA ERROR. )°.•.".-

procedure REMOVE (N in INTEGER) is
begin 4. QUEUE_MANAGER 2. - " ""- ifor I in N.. COUNT- 1 loop ""' "

Q(I) : e(I + ); We are now ready to consider making our
end loop; QUEUE MANAGER more powerful, and in so doing we
COUNT = COUNT - i; introduce some additional Ada features. g

end REMOVE;thti [. " =
We can imagine thtour customer ispleased ::"

procedure CONNECT is with the package QUEUE_MANAGER_1, so much so in.
begin fact that he wants to use it to manage other queues

PUT LINE("head of queue is " ; PUT(Q(l)); still of integers but with different lengths.
REMOVE(l); Package QUEUE_MANAGER_2 is to provide this additdon-

end CONNECT; al capability. A possible solution is given below. -

procedure LIST is -- The purpose of this package is tomthe
begin -- manage an arbitrary number of queues of

for I in 1 .. COUNT loop -- integers, each with a (possibly) different .- '.-

PUT(Q(I)); NEW LINE; -- size. Each qeue Q will be represented as
end loop, -- an array with 1 the index for the head and"..-'.-

end LIST; -- Q.COUNT the index for the tail. .- -. ,'.

end QUEUEMANAGER_1I; -- The package can be used to perform the ... !
-': ~~-- same 4 operations as QUEUE_MANAGER_1. •"

.,The students might be presented with this with TEXT_10; use TEXT 10; ., -- -, - -

particular solution for purposes of discussion package QUEUEMANAGER_2 is ..-
Here are some suggestions for such a discussion.

type QUEUE (NUMBER OF ENTRIES INTEGER)
1) What is accomplished by declaring the is limited private;

array object Q in the body of the package? -- QUEUE is a discriminated private type with
(If it were declared in the specification, -- discriminant NUMBEROFENTRIES
the integrity of the package might be
compromised. For example, a user program procedure INSERT (Q : in out QUEUE; -
would be able to automatically insert phone X : in INTEGER);
number 2 at the head of the queue each time procedure REMOVE (Q i in out QUEUE;
it rang, or not allow number 5 into the N : in INTEGER);
queue at all.) procedue CONNECT (Q : in out QUEUE);

2) What happens if you attempt to insert into procedure LIST (Q : in QUEUE);
a full queue or remove from an empty queue?
How can exceptions be used to improve the private
robustness of the package? type QUEUEDATA is array (INTEGER range

<>) of INTEGER;
3) Supposed it is decided to change the type QUEUE (NUMBEROFENTRIES: INTEGER) is .- .

representation of the queue from an array record
to a linked list. What changes, if any, QUE : QUEUEDATA (1..NUMBEROF_
would have to made in the package specifi- ENTRIES);
cation, body, and user program? COUNT : INTEGER : 0;

end record; . -.

4) The package could be made more complete
by including a procedure to present the end QUEUEMANAGER 2;
user with a menu of choices. Then the
statement part of the user program could
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MODELING ADA TASKS - AN INITIAL SURVEY

R.M. Blasewitz and M.J. Gagliardi

.RCA Government Systems Division
Missile and Surface Radar

Abstract The initial desire to use concurrent programming languages
stemmed from attempts to write conceptually concise pro-

This paper presents the results of a preliminary investiga- grams that reflected or mirrored the structure of an algo-
tion into techniques and methodologies that support the rep- rithm. However, current interest is probably largely moti-
resentation of real-time system designs in Ada. It represents vated by the desire to take advantage of recent advances in
an overview of some widely disseminated methods, including the realm of computer architecture. These advantages
Buhr diagrams, Petri Nets, PDL code and flow charts. The materialize in many ways, namely:
objective of the research is to derive a means of communicat-
ing real-time processes in a suitable fashion across the life 1. More computing power per device per dollar is being
cycle of the software product. The paper also discusses some realized today.
of the problems encountered with the research due to the
present state of Ada tools and compilers. 2. Computing facilities offered by microcomputers or com-

puters on a chip rival those of larger minicomputers and
Introduction main frames.

3. Benefits of highly parallel hardware architectures and
The Ada* programming language provides a technique for concepts are accruing through support of concurrent op-
expressing potential parallelism as an approach to solving erations in an efficient and understandable manner.
the synchronization and communications problems of today's These benefits are now of concern in the scientific com-
major real-time systems. The name given to programming munity.
notations and techniques for expressing potential parallel- 0
isms is "concurrent programming." Concurrent program-
ming is important because it provides an abstract viewpoint Although concurrent languages offer aid to the programmer
from which to study parallelism without being buried by the in abstracting the functional features of a program from the

• details of a particular implementation. The ability to write implementation of an algorithm, the real (or unreal) "art" of
concurrent programs is very desirable for a number of rea- designing parallel programs is still undeveloped because we
sons: lack formalism and understanding of parallel programs. To

further complicate this matter, there are very few, if any,
1. Real-time systems, operating systems, data-base sys- acceptable methodologies or practices in current use to

- tems can be expressed in a convenient notation at a clearly and concisely represent real-time or parallel program
high level of abstraction. design. Although many methods have been proposed, few -- '-.

have gained wide acceptance within the software develop-
2. Algorithms that cry out for concurrency are best ex- ment community. Is the problem due to the complexity of

pressed using language features that support and model software designs, languages, concurrent programming
concurrent events. knowledge, or to a lack of acceptance of new programming

3. The complex reasoning involved in concurrency and ex- concepts and paradigms? Or is it a combination, subset or
ecution time constraints can be made more user friendly superset of those reasons? Obviously there is no universal
and hence understandable, answer to this question. A survey of existing methodologies

or practices in this broad arena leaves one more bewildered
4. Program execution time, efficiency and elegance can be than one would expect. The picture becomes even more fuzzy

greatly enhanced without pushing the state of the art of when Ada enters as a possible candidate for real-time pro-
fourth-generation hardware. gram development. The potential in all these techniques is

5. A certain class of problems can be most easily and ele- clearly very high, but we cannot expect instant solutions for 0
gantly solved by parallel communication processes in- embedded or large-scale computer program developments in
stead of the often-used sequential methodology, the real-time programming community.

*Ada is a registered trademark of the U.S. Government Ada Joint Pro-
gram Office (AJPO).
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Where does Ada fit into this section ,,fthe software universe" Coupled with this look at Ada. initial conclus,,n. are drawn . ..'* .- -
It is generally agreed that earlier languages such as Pl. 1. regarding capabilitie. for real-time progranming represen-
Algol 68. Concurrent Pascal. Modula or even Euclid have tations using Ada as the implementation language
offered only rudimentary facilities for concurrent program-
ming. From a programming language viewpoint. Hoare's An Ada program that uses tasking ma suller from signifi-
proposal to use the rendezvous concept as the basis for con- cant portability problems ,due to instruction execution times
current programming was a major advance. from machine to machine', but this aspect of its capabilit.

was not considered a major issue in evaluating its present
Hoare defined a concurrent program as a collection of se- capabilities as a real-time language It is also assumed that
quential programs that can execute in parallel - all cooper- the current lack of full-capabilit% Ada compilers ,not to say
ating to implement a common objective. These sequential production-grade compilers) will soon be alleviated
programs or processes interact by first synchronizing and
then exchanging information. Synchronization and commu- I!. Major Approaches to Representin Parallel .1 P
nication are viewed as an integral activity that is called the Program Execution
rendezvous. This leads us to Ada. whose concurrency facili-
ties are based on Hoare's ideas with modifications and addi- This section examines a number of the six noted major tech- - -.
tions to deal with the realities of hardware and with other niques presently used to represent or communicate the be-
practical concerns such as error handling and program de- havior of parallel processing systems Included in this set
velopment. Ada is the first major general-purpose program- are:
ming language to provide high-level concurrent program- •
ming facilities based on the rendezvous concept. Ada and its 1. Petri nets
facilities are elegant and easy to use. but are untested and 2. Buhr diagrams
untried to any significant degree. Only time and practical 3. Flow charts
experience will lead to a detailed evaluation of Ada's capa-
bility in this area. This paper proposes to evaluate Ada's 4. PDL code
initial capability in this area and to offer a range of view- 5. State graphs " "
points for real-time design representation in Ada. However, .0
this research is somewhat weakened by the lack of Ada com- 6. Object-oriented design
pilers to support the concurrency features of Ada in total. As 7. Functional decomposition techniques
such. these observations are certain to undergo perturba-
tions as more efficient Ada compilers become available. 8. Mathematical notations

Although all of these techniques play an important role, the '' - 'The methodology employed by the authors centered around ability to represent design through good, clear diagrams ap-
the following considerations: pears to be the best communication tool. When systems are

modified, clear diagrams are an essential aid to maintenance
1. The basis of the study will he Ada in its present state and allow changes to be made with a better understanding of

,compiler state. the consequential effects of that change. Obviously, mathe-

2. Various approaches to representing real-time or paral- matical notations are important, but somehow lack the
lel program execution will be examined against conven- power of noise-free communication made available by clear
tional methods, diagrams, charts, etc. . _. .-"

3. Ada's usefulness in the concurrency programming do- The first technique investigated is the Petri Net, developed
main will be assessed, with emphasis given to its ability by the German Scientist Carl Adam Petri in the early 1960s
to implement algorithms in real-time, to study and model communicating parallel automation. """""'""

These nets have a mathematical side and a graphical, intui- , - "
Using the Ada designs as a basis, a real-time represen- tive side. As such, these nets offer a possible means of clari-
tation will be presented that combines the present fying the abstract concepts of parallel programming.
working knowledge of presently available real-time de-
sign representations. A Petri Net is a directed graph that contains two kinds of S

nodes: place nodes, and transition nodes. Place nodes are
represented by circles and transition nodes by means of bars,

The recommendations and conclusions regarding Ada as a small black boxes, or rectangles with statements in them.
real-time systems language rest almost entirely on design Figure 1 illustrates a simple Petri Net with four place nodes
experience gained from an operating system project that in- and three transition nodes.
cluded the modification of a vendor-supplied Ada compiler
for translation from VAX 11/780 code to Nebula code. Al- P1  ti P2  t2 P3  ta '

though Ada is the first language to use the rendezvous con- ,2 1' " 3

cept, it is the opinion of the authors that the compiler tech-
nology has not given Ada the chance it deserves. Very few of
the present Ada compilers implement full tasking (Ada's
concurrency facility) in a manner conducive to a fair and I4
conclusive study of performance or efficiency. Nontheless,
other aspects or issues of Ada can be evaluated, such as
expressive power, user friendliness, concurrency capability, Figure 1. A Petri Net Graph with Places and Transitions
and scheduling mechanism capability. L.beled.Labeled.","i. .'
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Before we can examine how Petri Nets model parallel proc- ' "
esses, let us clear up some basics about their operation. Arcs P2  t2 P3  13
that connect places and transitions are called directed arcs.
In general, a transition has input places and output places; a
place is an input place of a transition if that place has an arc
directed at its transition. For example, place P4 is one of the P 4
Input places for transition t 1 and one of the output places for
t, These input and output places can be mathematically
represented as:

I it, I {PIP4} where I itt I = Input place for Figure 4. The Second Firing of the Petri Net..
I 1t21 - P transition t1I Jt) { P , P , P , } is t h e s e t P , P , r e..

at the input or output places represented by the movements of tokens in the net. Without

and getting into the mathematical representations afforded by

() It, I {PJ where 0 It I Output place for Petri Nets, one can easily model sequences of statements by
transitions, the points between actions by places, and the

I to t value of a program counter by the location of a Petri Net
token. Before moving on to parallel program modeling, let us

Petri Nets can also be marked by placing tokens, repre- examine the use of Petri Nets in modeling sequential pro-

sented as small dots. in the net place nodes. The Petri Net grams consisting of sequence of statements, conditional . O ,

executes by firing its enabled transitions. A valid firing situ- statements, and loop statements.

ation is defined as one in which each input place must have a
token in it. Consider the following partial Ada code for division with

remainder:
Therefore. the structure and marking of a Petri Net deter- quotI.nt : ,0-
mines its execution. When the firing occurs, the changes are numerat~r : x
marked by placing the input tokens into each of the transi- denominator :z-

tions output places. Consider Figure 2. which is a marked hite nutor y toip

version of Figure 1. Quotiont :aQuotient * 1

,,,no uarator :v userator - denominato.

PI P2  t2 P3  t3 end 03

The Petri Net representation for this code is illustrative of
the elements of a sequential program. The sequential ele-
ments with their Petri Net representation are given in Fig-
ure 5. %

CODE PETRI NET REPRESENTATION

Figure 2. A Marked Petri Net Graph.

Now assume that enabled transition ti in Figure 2 fires. The SEQUENCE
new marking is then illustrated by Figure 3. P2  S1p, ,, t2 .,- -ts S2:

CONDITIONAL 

-" 
S2

Figure 3. A Fired Petri Net.

FC.F. .

If we again fire the enabled transitions, we have the Petri C TNet as represented in Figure 4. This sequence of events illus- LOOP fW ILE) C. I $I T .•"•-• ' ' '

trates the basic working of the Petri Net. Our next concern is S'
the actual use of these graphs in modeling computer pro-
grams.

To model the dynamic behavior of a system, the execution of
a process is represented by the firing of the corresponding Figure 5. Modeling Sequential Structured Elements With
transition as illustrated. The changes in system state are Petri Nets.
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The Flowchart for the Ada program is given in Figure 6 with is empty. This type of scheme can be used to model concur- ...
the corresponding Petri Net given in Figure 7. rent programs rather simply. To represent concurrent activi-

ties no new Petri Net mechanisms need be introduced. To

QUOTIENT: = 0: spawn new paths of control, a fork or cobegin is used, as
] NUMERATOR: =X ;  shown in Figure 9.

DENOMINATOR: Y;

IF NUMERATOR Y P1
FALSE

TRUE "
TRUE QUOTIENT: =QUOTIENT+; 

S2 NUMERATOR; = NUMERATOR-
DENOMINATOR;

P2 P3

Figure 6. Flowchart For Ada Division Program. ."-Figure 9. The Petri Net Cobegin or Fork (one path in, two

paths out). li

Using this mechanism we can represent two or more parallel

paths, where each path operates independently. Figure 10
illustrates a possible Petri Net for parallel activities and
precedence, since the completion of activities represented by

I $1 t.t,,t 6t must precede the start of activity t 4. -

FALSE t2  t4  ::::.:::

RUE tl t52 t'4 TRU: "5

2. . . . . .•

13.

B END

Figure 7. Petri Net For Ada Dicision Program.
Figure 10. Parallel Activities With Precedence For Petri Net

We have described classical Petri Nets up to this point. We Graphs.

can now extend the classical Petri Net with a mechanism for
"zero testing" a place; this mechanism is called the inhibitor Obviously. Figure 10 illustrates a straightforward and sim-

arc. An inhibitor arc from a place P, to a transition t, termi- pie parallel scheme. If we are concerned with shared re-
nates with a small circle, rather than an arrowhead. Figure sources or possible conflicts the Petri Net representations
8 illustrates the use of an inhibitor arc. become more complex, but are still representable without

deadlock. Of more importance is the case of concurrent tasks
Pi + 1 which need to communicate or synchronize with each other.

Pi In Ada this process occurs through the rendezvous. Figure 11 . .

illustrates how synchronization can be achieved by rendez-
vous.

The Petri Net illustrates that Task B does not want to fire its
t, and that task A does not want to fire its t2 until task B has
fired its t. If Task B reaches Pih before task A has fired ti,
task B will wait for task A. Task B detects that task A has

Pi + 2 fired tj by the presence of a token in Pb. Looking at task B
as a server task and task A as the clint task, the transitions

Figure 8. The Inhibitor Arc Extension For Zero Testing. have the following meanings: .' .

For tk to fire there must be at least one token in P, and zero A t, A requests service from B (A is suspended)

tokens in P .Thus the transition tk tests place P for zero. B t, B accepts A's request for service (rendezvous is
Simply. a transition cannot fire unless its inhibitor arc place initiatedi
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TASK A TASK B ACCESS CONNECTION

I '~ FTASK WITH ENTRY "SOCKETS"

Pla P3b lb

tI (D ® ORDER OF ACCESS

ti

P2a0 DATA FLOW

DATA
t2 C=q

Figure 12. Basic Pictorial Conv~entions for Concurrencyevt I~

Features.

As shown, pockets of tasks, known as entries in Ada, behave
like any other interface functionally, but have exclusivity ,.'- .,-
and timing concerns. The rendezvous mechanism requires

Figure II. The Ado Rendeztvus Mechanism. the calling task to meet with the accepting task, then wait
while the accepting task services the call. If the accepting., -

B t., B finishes performing the service for A Irendezvous task is busy, then it cannot accept a new call. The new call-
terminated, ers are then placed in a queue associated with that particu-

lar entry which ensures mutually exclusive processing of
A t2  A resumes operation after its rendezvous with B entry calls from different tasks. The basic symbols given in

Figure 12 are not sufficient for all purposes and Buhr recom-mends additional symbols (as shown in Figure 1)

This has been a quick and simplistic look at the modeling m s i yb ah n g 1
capability of Petri Nets. More detailed information is in-
cluded in citations 15, 12, 5, 24, 25 in the bibliography. UNCONDITIONAL

TYPICAL
The second description technique presented here is the ENTRY
method proposed by R. J. A. Buhr in his book Systems Design
with Ada. His objective was to provide a design-oriented in- B. r

troduction to Ada and to present a useful, graphical design ,

notation. His methodology is intended to be: CONDITIONAL RE" -.

1. an aid to conceptualizing the organization of a system in
Ada terms

2. an approach to communicating design approaches and SELECT
decisions B. REQUEST;

ELSE
3. a basis for computer-aided design of systems, using Ada ALTERNATE ACTION

as the specification andor implementation language. END SELECT
TIMED

The description techniques presented also include concur- T
rency representations and cover solutions to the basic prob-
lems of material exclusion, synchronization, scheduling and
deadlock. Only superficial knowledge of Ada is required to SELECT
understand this brief introduction to the pictorial conven- B. REQUEST;
tions concerned with concurrency. However, one should be OR DELAY T;
somewhat familiar with the concept of an Ada task and its ALTERNATE ACTION;
rendezvous mechanism. END SELECT;

r

Buhr presents a set of notations for use in representing Ada Figure 13. Structure Graph Symbols Expanded for Various € ., *.

concurrency, shown here in Figure 12. Types of Entry Calls.
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TI turther expand the svmbolog., entries that are accepted
0 a particular r'der a rv illustrated as in Figure 14.

FIXED ORDER LOGIC PROCESSING REQPKT COUNT = MAX

ACCEPT A 0

OTHER A PROCESSING
ACCEPT REPKT

2 AnOTHER 0 PROCESSING

TIMED ORDER COUNT = 0 DISK REQUEST
TIMED ORDER SELECT

ACC PT A
OTRER A PROCESSING DISK-START S
ACCEPT B,:--:-.OTHER B PROCESSING

END SELECT

CONDITIONAL
FALSE SELECT :1_

WHEN X 1 READ
ACCEPT A
OTHER A PROCESSING -S

Y FA OR 1

INDICATES WHEN YGURACCEPT

ENDSELECT .

TIMEOUT SELECT

ACCEPT A
OTHER A PROCESSING

OR
ACCEPT B
ACCEPT B PROCESSING

OR DELAY T ITRU

DEL AY PROCESSING
END SELECT START

OISKINTERRUPT HDLR ' i'. .2

Figure 14. Fixed. Timed, Conditional, and Timeout

Conditional Entries. DISK-COMPLETE AST-PKT

To illustrate the nature of intertask communication and the COUNT MAX

use of the rendezvous mechanism, consider as an example a FTh a s s
simple buffer (Figure 15). There is a consumer task, a buffer .- .

task and a producer task. The buffer task has entries for read ON EV'
and write to be used by the consumer and producer.

The symbols indicate the flow of data, the entries and mu- " '

tual exclusion of the two actions (read/write). To illustrate
the rendezvous mechanism, Buhr diagrams provide the di- -,
rection passed between the tasks as illustrated.

PRODUCER CHAR BUFFER

WRITE Figure 16. The Disk Manager Function Illustrated Using
Buhr Diagrams.

CHAR READ Obviously we have only touched the surface of Buhr's
methodology or symbology here, with the intent of avoiding

CONSUMER too much detail too early. Detailed analysis of the methods
are given in the following sections when Ada is formally

Figure 15. A Basic Buffer With Producer and Consumer introduced via examples.
Tasks Shown Pictorially.

To further illustrate the grace and simplicity of Buhr dia- The third methodology, examined in detail, is the state dia-
grams, we have selected as an example the interaction be- gram approach. This type of approach is useful when entity
tween tasks for a disk manager function. Using the symbol- tapes, variables or programs can be thought of as being in a
ogy presented allows one to pictorially illustrate the concur- given number of states. It has been used in the design of
rency of the system. Figure 16 illustrates the disk manager control program mechanisms, systems software and network
function using Buhr Diagrams. In this particular system, protocols. The basis for this approach is that a finite-state
there are six major tasks with communications occurring machine is a hypothetical mechanism that can be in one of a •
between the two major tasks, Disk start and Disk complete. discrete number of conditions or states. Events may cause it
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to change its state. In this manner, a process can be repre- CURRENT STATE( rCURRENT STATE%
sented as a collection of finite-state machines. This gives a
precise way to conceptualize and draw complex processes S2- INPUT
and to check that all possible state transitions have been OUTPUT
reconciled. 11/0 1[

1 3105---NEXT STATE 9~..*
State transition diagrams are used to represent the behavior
of finite-state machines. A finite-state machine is thought of -1 "
as a black box that can be in one of a number of possible S1  12/03 S3
states as illustrated in Figure 17.

INPUT 01 00 12/01 13/-
STATES W 02 O P

S1 .. Sm U T -0-
Figure 17. A Finite-State Machine With Finite Inputs, -.

Outputs and States. .

The finite set of input types is limited by allowing only one
input to be active at any time. This is usually accomplished Figure 18. Example Of A Finite-State Machine Transition .- - -
through a queuing mechanism which allows inputs to be Diagram Illustrating Outputs and State Changes.
handled one at a time. The state of the machine is a static
discrete variable which can change only at the instant when
an input is received. Algebraically we could represent the r
state machines behavior as: TABLE I. STATE TRANSITION MATRIX WHICH CON-

S It') = f IS (t,) I It,I TAINS THE INFORMATION ILLUSTRATED BY THE
STATE DIAGRAM

O It,) = f"2 (S it,), I it, I" -

where INPUT STATE "
NEXT "" "

t, = time that an input is received 1 2 3 4 5 STATE

s It,) = state of the machine at t, 2/_.-11 2/0 2 5/% . % "
I It,i = input at time t, OUTPUTOUTPUT .,.".-..

f, = function which dictates behavior of machine 12 - 4/03 1/01 (IF ANY)
as a response to S (t,j, I It,) 13 - 3/05 4/f 4  -_

13 4
S it, I = state of the machine for t or next state .-. '---

O ti = function of S it,) I it,), dictating the output at 14 - - 2/01 -

time t, 15 4/04 _ .

These two functions define a state machine. Using circles to 16 5/0
represent the states and arrows as the transition mecha- j -5

nisms, outputs can be clearly illustrated as shown in Figure - . .-.
18.

Applying these state mechanisms is rather straightforward
The arrows between the circlcz ,r,,wing the state transitions if one considers the various concurrent actions as states with . -

are labeled with the input that stimulates the transition and the transitions occurring as needed. As the concurrency be- --

the resulting output. Some inputs cause no state change as is comes more complex, however, or as the transitions among a
illustrated by state 5 receiving an l input. Sometimes more number of states become large, these diagrams become clut-
than one input can cause the same transition, as between tered and confusing. A possible approach in this case is to . -

states 3 and 4. Obviously the drawing of Figure 18 is useful use the so-called fence diagrams, where states are shown as .
for representing machine behavior, but it does leave some vertical bars and transitions are horizontal lines linked to "
possibilities unanswered, such as what occurs when a state the states by arrowheads. Another possible reason for avoid-
receives an input that has no transition arrow? In order to ing these charts is that they appear to be data flow diagrams.
complete the description of a system in this manner, a state which can confuse their true meaning. However, they are
transition matrix can be drawn as shown in Table 1. useful in showing the multiple states possible for entity
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types in data base systems. They are also useful for illustrat-
ing the behavior of systems with multiple inputs, complex REAL.WORLO
processing and synchronization requirements. They there- PROBLEM ENVIRONMENT
fore have their place in representing computer program de-
sign, although fine tradeoffs would be required to determine
their overall usefulness in representing complex concurrent
events found in real-time systems.

The sections following include a description called Ada Pro- MAGIC

gram Design Language (PDL) representation. PDLs present
an elegant possibility in the consideration of design repre-
sentations. They have certainly taken a step forward within
the software development environment presently and are DATA DATA MAT-

FLOW STRUCTURE EMATHICAL
becoming increasingly popular as design representation MODEL MODEL MODEL
tools and analyzers. The reasons for the popularity of Ada-
based PDLs include: MAGC-

1. the power of the Ada programming language is utilized DEC TION

in the design process 
T ION

2. communication is enhanced by using the same lan-
guage notation throughout the life cycle G000 PROGRAM STRUCTURE

3. various levels of design detail can be represented and SOMETIMES SOMETIMES USUALLY MAYBE
focused upon

4. a mechanism is provided for supporting the transition of Figure 19. Current State of the Art in Using Design

Ada based software engineering practice. Strategies.

Using the work accomplished by the IEEE working group in 2. consistent designs as a resultant output (not dependent

this area as the major reference (26, 271 allows us to summa- on personnel)

rize Ada's power as a PDL: "Ada provides constructs which 3. accommodation for partitioning of the design process
support modularity, abstraction, information hiding, concur- 4. correctness of individual design steps guaranteeing the
rent processing, generics, exceptions, strong typing, and correctness of the final combination g a" the
data description. These are many of the features required as c

a design language." The PDL examples illustrated in this 5. opportunity for innovation in the algorithmic stage, but
paper comply with Ada syntax and semantics, and are used controlled during the entire design process. -'.

to illustrate the essence of the method and the robustness
offered by Ada. The only certainty in all of the literature on design is that we

agree that we are not there yet. There is still too much magic
Other possible representation approaches include Object Or- involved in the design of software, whether it be real time or
iented Design, Flow Charts, Structured Analysis Concepts not.
i data flow design, data structure design), Functional Decom-
position, and Programming Calculus. I1. Ada's Approach To Parallel Programming

Many claims have been made about the different strategies In order to write programs that are concurrent or parallel in
for designing software. For functional decomposition, the nature, the programmer needs a way of specifying which
proponents have largely said "it is a good design, for sure." processes are conceptually concurrent. In Ada, the language
For data flow design methods, they have said "this design is construct used to group such sequences of actions is known
better than yours. Let me tell you why." For data structure as a task. Tasks are entities that operate in parallel. There is
design methods, the claim is that "mine is right, the others concurrent execution of two or more threads of control. How-
are wrong." In the programming calculus, the contention is ever, the concurrency may be actual, as in the case of sys-
that "Program A is probably correct, and the others are un- tems configurations that utilize multiple processors, or ap-
proven." All of this leaves an area for innovation in the area parent, as in a multiprogramming environment with inter-
of program design. If one restricts the design methodology to leaved execution or a single processor. Declaring a unit to be
real-time design, the above methodologies fall even harder. a task provides only logical concurrency; the language can-
The current state of the art was represented schematically not assure any assumptions about the efficiency or execution
by Johnson in the form of Figure 19. speed of these tasks. The operating system in conjunction

with the routine support system has the responsibility for
The design of real-time systems for the future will place scheduling different tasks and for allocating any resources - .
some requirements on a complete methodology, not just the they may need.
design representation chosen. These demands could include:

In Ada, tasks represent independent program units that can
1. a rational procedure for partitioning and modeling the execute at their own pace and are essentially isolated unless

problem the programmer specifies explicit synchronization points.
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The synchronization point serves as a place where one of the Task Specifications
affected tasks can "wait" for the other task process to rendez-
vous with it. This synchronization mechanism delineates the Tasks are program units that ma. opirat in parallel %ilth
code which is to be executed while the tasks are attempting other program units. A task spvclficatlln. hkv a paL'k,' " -
synchronization. In particular, most tasks can be broadly specification, defines the interface which ether related pr-
categorized as either servers or requesters. Usually, request- gram components use to interact with the taik. fh. ni.r ice
ers are the active elements of a system of cooperative tasks, consists of entry declaratin- that are simikir to the uhpr-
They are servers to accomplish certain defined functions gram declarations in a package specificatnon Sone im ipc.
Servers are generally passive, reacting only to the external examples of an Ada Tosk Specificat ion are illustrated fs.le - ..-..

requests generated by requesters. The Ada tasking mecha-
nism permits the user to define server requester relation- t as -- t s, .itN etri."
ships clearly and concisely. tly ft (inDjtfeC: 1', esai-)

-~tly li- (tm ~~ 9tIe ~ e

end J0' ,e

Tasks have three main purposes: " "

task ',-fer ii -- ias. .ithoa t etrios

en3 ju.-e1. they may model or control co-existing objects in the
problem domain " "

tdsk -,' er -- tds *iiloui entres .;.z.

2. they may serve as controlling or synchronizing agents, t _ , ..

providing the effects of semaphores and locks, buffers,
monitors, schedulers, controlling access to shared re- As illustrated above, some tasks have entries. An entry of a
sources, or synchronizing the actions of otherwise inde- task can be called by other tasks. A task accepts a call of one
pendent tasks of its entries by executing an accept statement for the entry.

Synchronization is achieved by the rendezvous mechanism

3. they may serve to define concurrent algorithms for and is discussed in the next section. The model offered by
more efficient execution in a multiprocessor architec- Ada is based on Hoare's Communicating Sequential Proc-
ture. esses, in which parallel processes synchronize and communi-

cate by means of input and output statements.

In Ada, tasks call upon the programmer to decompose a prob-
lem into a manageable group of independent threads of con- The Ada Rendezvous Mechanism
trol. Without any regard for the physical representation, the
abstraction of a solution with many tasks is a natural one, Synchronization between two tasks occurs when the task
drawn directly from our understanding of the problem space, issuing an entry call and the task accepting an entry call
The key in using tasks is being able to represent real-time or establish a rendezvous. The two tasks communicate with
real-world parallel activities within a level of our solution each other during the rendezvous. Entries are also the pri-
space. This is not a minor step, for many programmers/desig- mary means of communicating between tasks. To illustrate
ners are very comfortable with sequential solutions to prob- this mechanism, an example is given which is based on a
lems, but are not at ease with concurrent solutions to prob- creator/server of messages. The creator writes the messages
lems that could utilize concurrent actions. As a matter of and provides it to the server, who transmits it to some other
fact, we could state more directly that the art of designing location. Since the creator is providing the service, it must AL
parallel programs is underdeveloped because we do not un- have an entry into its process by which it can accept a mes-
derstand or perceive parallelisms clearly and we have little sage. This can be accomplished as follows:
knowledge to communicate about these designs.

task Creator is

The major topics examined in this section include task spe- entry rrTrsmor (6.: In essaq" - " -

cifications, rendezvous mechanisms, control mechanisms for end Ce. ator
the rendezvous, and task types and families.

This section assumes that the reader is somewhat ac- The task specification establishes the interface to the ser-
quainted with Ada and its basic constructs. Since tasks are a vices provided by the task body. The entry declaration is
unique feature of Ada and unlike any other feature found in much like a procedural declaration. It has the same format . . .
high-level languages, they merit some examination and ex- and may have in, out, and in/out parameters. The corre-
planation. sponding task body defines the processing to be done by task,

Annual National Conference on Ada Technology 1985 41

-: : '



. .. .- . ,.

% -5

IclIu(in, a accIpt t( tulfill the entry specification. The
', le tm OIi , above ta k spitificatmn is given by:

t4sk body Creltor iS
oiJtout~messace message

orocelure Transvit (d ymessaqet in messaqe) is
erc Tns 4 jt

dccept Transmitor (%: in message) 10

3U tout~messago :=m in
end Tras.itor ;
trfnsmit (OUtout-fessage)

en o1 0 -0
end , reator;

-" The specification and body of the Server task Is given betow.

task server

task body Server is
text : messagje -

procedure write (textout: out message) is .
nutl

e'd write

begi n
LOOD

Irite text)
irea t . tansmitor (tent)

end tooo

end Server ,

The call in the above code is given by Control Mechanisms For The Rendezvous
creator.transmitor (text);

and looks like a procedure call. However, the major differ- Each of the two types of tasks illustrated previously (the
ence is that server and creator are operating in parallel. This calling task and the called task) has a mechanism for con-
implies that the rendezvous does not occur until a task is trolling the rendezvous. For the called task, it is the selective
suspended. It will then wait for the called task to reach the wait, and for the calling task it is the conditional and timed
accept statement. If the task providing the entry reaches the entry calls. Each of these mechanisms will be described .-.
accept statement first, it waits until the entry is called. briefly.

When both conditions have been satisfied, the tasks are syn- The selective wait statement is very useful when it is neces-
chronized and the information is passed via the parameter sary to react to externally changing conditions that make it
list. In summary, the rendezvous brings together what had necessary to accept entry calls in an arbitrary order. The
been two independent threads of control into a single syn- selective wait statement permits the programmer to define
chronized thread of control. In this manner, the Ada rendez- several accept alternative actions to be selected. Since the
vous becomes the mechanism for task coordination and for selected wait contains accept statements, it may appear only "

sharing information. It should also be noted that the rendez- in the body of a task. An example of a selective wait is given
vous mechanism has an asymmetric nature, since: below for the example illustrated previously ' .* .

1. the calling task must know the name of the accepting task body NeMessase is
task as well as the specification of the entry point n.messae : ootesn fase

2. the task providing the entries and accepts is essentially begin -..o

passive; it provides a service to any task that knows to s_ .'
how to call it slc

ho ocl tdCCept gransuitor to: Inm essaae) so "
nutt

3. the accepting task does not know the name of the caller end Transmitor

4. a task providing entries may have a number of tasks nea.essase := true
queued waiting for service at a number of different en- when ne_mevsage
try points, accept Take out oessaqe) do

nuLL
end Take ,

This asymmetry allows us to distinguish between active and ne.,S $a&e Ttae"
passive tasks. Passive tasks provide services through entries end sel ect

eno Looo
and accepts. Active tasks use the services provided by issu- e"
ing entry calls. These active tasks are similar to application
tasks that may use the services provided by a real-time oper- The when clause stipulates that the condition new message
ating system. Passive tasks have the characteristics of oper- must be true for the take entry to be available for rendez-
ating systems and require considerable skill to design and to vous. The operations on new message ensure the correct or- A-
implement. dering of rendezvous.
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The calling task has essentially two mechanisms to allow it Task types are also like limited private types. Objects of task
to control the conditions under which a rendezvous may oc- types are constants and cannot be assigned to or compared
cur. One control mechanism is to issue an entry call only ifa for equality. Tasks can be passed as parameters; the actual
rendezvous is immediately available. This is the Ada condi- parameter and the corresponding formal parameter desig-
tional entry call. The following code illustrates the above nate the same task for all parameter modes. Ifan application
concept: needs to create tasks dynamically, then access types must be
'elct, *esi,~rc~ive,.rafltmi (used. For example, consider access type IndexDoSomething

(text) is access Dosomething: and variable AnotherIndex declared

ootiorsal seuence of statements as
Anotherlndex:Dosomething

"el• t se A task can also be created dynamically by calling the alloca- "* "%
..

ao atternatve action tor as illustrated by the statement
(coutd be nutt Anotherlndex:=new Dosomething;

Allocated tasks become active when allocated, and must
The result is that t!.e rendezvous will occur only if no other have terminated or be ready to terminate when the scope of
entry calls are queued for message receiver transmit. If the the block, subprogram or task in which the access type is
rendezvous cannot take place, the alternative action is exe- declared is about to be vacated. Otherwise. Ada prevents
cuted. vacating the scope section.

The second control mechanism allows the calling task to We have only briefly described tasks and some of their more
enter the queue for an entry. If the rendezvous does not occur important features. It is obvious that the subject of tasks and
within a specified time. the calling task leaves the queue and their potential use is a complicated matter. However, despite
continues execution. This is the Ada timed entry call. For their complexity. tasks are an important and necessary con-
example, cept. The control of concurrent processes is a necessity in
se ect real-time systems and Ada provides this feature at a high

aeos ae_receiver.tran,sit (te.t) level of abstraction within the higher level language.

optiOnaL seiuence oft stitements

etls IV. Illustrative Examples of Parallel Program
tl~i' 1'.! -- Ittay 1.o S~CC~5s Representations Using Ada

attaenative ootiont seiuefnce of

statements The ability to represent parallel or concurrent designs is
essential in communicating a designer's approach to solving

If the rendezvous occurs within 10.0 seconds, the rendezvous the real time systems problems of today. A sound knowledge
task will participate in the rendezvous, execute the optional of Ada's tasking programming constructs will enable design-

sequence of statements, and then exit the select statement. If

no rendezvous occurs within 10.0 seconds, the alternative ers to cope with real-time systems at the coding level. How-
ever, the understanding of design representation is en-

optional sequence of statements will be executed. hanced through pictorial representations when possible.
This section does not propose to answer all the questions
about Ada and concurrent processing, but does make some
pointed recommendations about design representations and

Ada allows the definition of task types for declaring multiple Ada. The key to success in this area is the ability to produce
tasks of similar nature, in the same manner as generics are Ada designs that are understandable to a broad spectrum of
allowed for subprograms and packages. It is also possible to interested parties. Eventually a concerned organization will

"" have a family of entries in which each entry of the family is derive its own specialized or tailored graphical notation for
to accomplish a similar function. Task types facilitate the representing concurrent designs using Ada.
declaration of similar tasks, since several tasks can be de-
clared collectively in an array or individually. The declara- This paper includes four illustrative examples of parallel
tion efa task type is syntactically similar to the declaration programming representations. These examples will be de-of a task, the only difference being the presence of the key- scribed using each type of representation: the Petri Net, the
word type in the task specification. For example: Buhr Diagram. PDL, and the Flow Chart.

tasi type 'o_$oeethin'i is
entry Dn this ; There will be annotated code for each example. The repre-
entry Dothat ; sentations will be compared with each other through these

end Do_-eret yn- texamples, thus exposing the strengths and weaknesses of

each. '-

The declaration
DSL DS2: [)osomething It is the belief of the authors that the information derived

declares that two tasks become active just prior to execution from state diagrams, namely state transition tables, can be
of the first statement of the subprogram or package in which derived from Petri Nets. This is accomplished by placing
they are declared. Arrays where elements are tasks are de- tokens in the nodes of Petri Nets for every configuration of '''"
clared just like arrays with other types of elements for each the Petri Net. firing the applicable transitions and marking -.-
element of array )S declared as the state transitions that occurred in the state transition

)S: array index i of Dosomething; table. Therefore. the following examples will not contain
is a task. state diagrams as a method of representation.
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The first example is a simple tasking program introduced by
J. G. P. Barnes. The example problem is to consider a family
going shopping to buy ingredients for a meal. The Ada code PICK-UP-ITEMS
for this example is shown in Figure 20. Suppose they need .
fish, salad, and wine. Provided there are three people in the
family, a simple solution may be implemented. The solution 0
is sequential in the sense that the family must pick up the
items (in parallel), agree to meet at a central location (near
cashier), then pay for the items. The procedure Pick Up
Items is invoked, the three tasks execute in parallel and the
procedure cannot return until all the tasks have terminated GET
i.e., all the ingredients have been found and the family has
met at the central location.

Procedure Shopping is

Procedure Pick_ULp tems is

task GetSaLad
task Get-Wine
task Get Fish

task body Get-SaLad is PAY-FOR-ITEMS S
begin F Ind and take saLad. STOP

nuLL

end Get_SaLad ;%. -Figure 21. Flow chart for the Shopping Program.

task oody Get Wine is -

begin p
Find and take wine. p.e.Sh ini

null procedure Shopping Is

end Get_wine procedure Pick.Up_ltess is

task body Get Fish is task Get-Sated is

begin Find and take saLad.

-- Find and take fish.
null end Get Satad 5

end Get-Fish, task Get-WVine i s

begin Find and take wine.

nuLL
end Get~dine

end Pick_ o_Items task Get.Fiah Is
task G.i ior'ste-

procedure PayForiltems is Find and take fish.

begin

;ive money to cashier arnd Get Figh

nulL
end Ptck.Up_1tems

end PayFor-Items
procedure Pay_For_Items is

Degin
Pick Up Items Give Ooney to cashier.

Pay For Items

end Shppingend Pay..Forltems
end Shopping ; Se~

begin
Pick-U-pItems

Figure 20. Ada code for the Shopping Program. pa-forIteas

end Sheopping

The flowchart for this program, shown in Figure 21, is
straightforward. The three subtasks (denoted by the parallel Figure 22. PDL code for the Shopping Program.
program with the double stripes on the sides) are contained A
in the procedure Pick Up Items (denoted by square box).
Control is passed outside of Pick Up Items when all the sub- The Petri Net for this example is also rather straightfor-
tasks have terminated, ward, as illustrated in Figure 23. The firing of transition T,

occurs only after the three tasks have terminated. This ex-
The PDL code for this example problem, shown in Figure 22, ample is a simple high-level solution to the original problem -

illustrates the similarities with straight Ada code. with no data passed.
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the other representation. However. representations are
needed for lower level solutions and inter-module communi-SHOPPING cation, which need to be included in the representation. This .6--.

will be shown in the next example, which takes us one step

PICK-UP-ITEMS lower into the design.

The second example is taken from the book Studies in Ada
Stvle281. The program is a console drive for a PDP-11 and is "
discussed in detail in the reference. In short, the functions

GET GET GET performed by this program are buffering of requests for the ¢.
FISH WINE SALAD device, ensuring the integrity and validity of these requests

and fielding interrupts from the hardware.

T1 A central problem in this example is implementing a syn- -

chronous process with the synchronous mechanism of ren-
dezvous provided by Ada. This is accomplished using three .

PAY-FOR-ITEMS explicit tasks that monitor requests from the program, inter-
DONE rupts from the input and output devices. All three tasks

communicate through shared queues as illustrated in the -

Figure 23. Petri Net for the Shopping Program. Ada coding example in Figure 25. : I0

The flow chart for the terminal driver is shown in Figure 26.
The flow chart and Petri Net representations could be suffi- This example shows that several Ada semantic constructs -

cient methodologies in this case. However, the Buhr diagram were not included in this representation, such as select state- ..
for this case, shown in Figure 24, illustrates the structure of ments, exceptions, and terminations. The select and termi-
the program and the sequence of procedure calls which adds nation constructs were added with little effort, with major
a level of information not given by the others. Since there is problems occurring with the exception constructs. The data - a.-"-'..-

no data being passed, this representation does not have a structures in this example 11!O buffer, hardware devices, .
distinct and noticeable advantage over the other methods. characters) cannot be represented in a reasonable fashion

because of the inability of flowcharts to graphically show
After reviewing the first example it appears that for a high- data structures and data flow. The flow chart is also weak in
level solution or a high abstraction process, flow charts and depicting the relationship between the interrupt handler -'-

Petri Nets are sufficient to represent the solutions with re- and the device driver.
spect to the central flow. Since there was no communication
between the program elements, the Buhr diagram did not The PDL code for this problem (Figure 27) is considerably 0 .
appear to provide any more insight into the program than simpler than the equivalent Ada code structure.

The Petri Net for this example (Figure 28) contains all the
major Ada tasking semantic constructs to model this pro-
gram properly. The notations used conform to the -
methodology representations offered by G. Cherry's Parallel
Programming in ANSI Standard Ada[51, and appear to be ,
adequate for this design. The weakness of the Petri Net rep- -.

resentation is its inability to relay data transfers among " ' "
LJLJL....J 1 design elements.

GETSALAD GETWINE GETFISH The Buhr diagrams now tend to give more useful informa-

tion graphically to enhance communications. For example,
the Buhr diagram for the terminal drive example, shown in

PICKUP ITEMS Figure 29, shows the structure of the terminal driver pack- S "
age and its subtasks. The data flow into and out of the pack-
age is depicted as well as the data exchanged between the .

subtasks. The Buhr diagram clearly illustrates Device
Reader task receiving the input character from the keyboard
hardware through its interrupt handler. The interrupt hand- -
ler then deposits this character into the input buffer. The

(2) Read Character entry for the device driver task can then •
return the input character from the input buffer to process
the call for this entry. Similarly the Device Writer is also -

clearly annotated. This example is not overly complicated
PAY FOR ITEMS and the Buhr diagram fits well on one page. However, for

S--PPING more complicated examples, Buhr diagrams begin to crowd -
SHOPPING the page and lose their readability. This example shows rela- -

tively easily the advantage Buhr diagrams have over other
Figure 24. Buhr Diagram for the Shopping Program. representation methods: namely, the control flow and the
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r 4

Package TerminalDriverPackage Is

task TerminalDriver is -. * -

entry ReauCharacter(C : out Character) ; .- *

entry WriteCharacterC : out Character) 
o

entry Reset ;
entry Shut Down ;

end TerminaLDriver ; *
end TerminaLDriverPackage ;

with Queue Package. Low Levwl DO 9.

use LowLeveL 10 - ""-

package body Terminal_Oriver Package is '. - -NJ

task body TerminatDriver is e 4

-- Group alL of the machine dependent constants together

Console Input Vector : constant : N 860N

ConsoLe Output Vector : constant :8 4640,
EnableInterrupts : Integer := 8#100a ;
WriteTimeOut : constant Duration := 0.5

Numberof_Lines : constant := 2

Line Length : constant := 132 a
task type DeviceReader is

entry Interrupt

entry Start_Up Done
for Interrupt use at ConsoleInputVector

end DeviceReader

task type OeviceWriter is
entry Interrupt
entry Start UpDone
for Interrupt use at ConsoleOutput Vector ;

end DeviceWriter I -. ,

package Char Quue Package Is new Queue Package(Character) "
use CharQueue Package -

type DriverState BLock is
record

InputChar Bufferv Output CharBuffer
BLocking Queue(Number of_LinesvLine Length);

Cur Reader : Device Reader ;

Cur Writer : Device Writer I
end record

type Ref to_BLock is access DriverStateBLock
Cur State : Ref to BLock ;,-

task body DeviceyReader is
temp input : Character I

oegin
accept StartUpDone
Send-Cont roL(ConsoleKeyboardControt,

Enable Interrupts) ;F -"'

Loop .. .
accept Interrupt do

ReceiveControLt(ConsoteKeyboardData, C ,'

Temp Input) I .
end Interrupt ,
Append(CurState.Input.CharBuffer

end Loop I TempInout); '6

end Device Reader I

task body DeviceWriter is

temp-cutout : Character '
begin

accept Start Up Done -

SendControt(ConsoLePrinterControL.

Enable Interrupts)
accept Interrupt
Loop t

RemoveiCur-State.OutputCha rBuffer,
Temp.Output )

Send Control tConsole Pr inter Data,
TeapOutPut)I

select
accept Interrupt I

or

Qelay writeTimeOut I

end select -
end Loop Iwk

end Devicewriter I

Figure 25. Ada code for the Terminal Driver Package.
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procedure ShutOownOtd is"19
raise Cur-State.Cur-Reader'FAILURE .0
raise Cur State.Cur Reafler'FAILURE sk.

Destroy_.Queue(CurState. InputCharBuffer)
Destr,....ueue(Cur_.State.Output_.Char_.BuIIer);

end ShutDownOLo'

procedure Start-up is
CurState :=new DriverState.BLock *9~

Init-gueue(CurState.InputCha...Buffer)
* - Initueue(CurState.OutPutChar...uffer);

Cur-State.CurReacer.Start.up.oofle
CurState.CurWriter.Start.Up..Done

end StartUp

begin j

Start Up

Loop

accept ReadCharaCter(C :out Character) do
RemovelCurState. InputChar Buffer,

end ReadCharacter
or

accept WriteCharacteriC :out Character) do
Append ICurS tate .out putChar Buffer._ C)

end writeCharacter

accept Reset do
Shut-Down-.OLd
St artU

end Reset
or

accept ShutDown
Shut-Down-OLd

or exit;

terminate

0,end selectend Lo
except ion

when Terminal DrivertFAILUER t>
Shut DownOLd

end TerminatDriver

end TerminatDriverPackage

Figure 25. Ada code for the Terminal Driuer Package. (Continued) .-- .

ACCEPT ACCEPT ACCEPT TEMA...

RED WRITE ACCEPT S T
CHARAC- CARC RESET DW NT

END END END END
AC C EPT ACCEPT ACCEPT ACCEPT

END SELECT

Figure 26. Flow Chart for the Terminal Driver Package.
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package Terminat LDriver Package is

* * task Terminal. Driver is

task Device-Reader is
send controL sequence to termina. %
Loop

wait for interrupt
DEVICE READER DEVICE WRITER appeno character to input buffer

i end Loop
ACCEPTend Devlce.,Reader

TARTUP STR-P.
DONE tDONEA task Device-Writer is

send controL Sequence to printer
wait f or int erruat

END Loop
END ACPT remove character from output buffer

ACCEPT seno character to Printer
* select

ACCEPT wait for Interrupt
4 1or

SEND INTERRUPT o

CONTROL time out Printer
end seLect

END end Loop
ACCEPT end leviceWriter

ACCEPT rocedure Shut-Down-Oid is
NERUPT destroy reader Queue

oestroy writer Queue
REMOVE end Shut-Down-Otd
SEND

RECEIVE COTOorocedure Start Uo is
CONTROL create reader Queue

create writer Queue
SELECT end 3tart _Up

END begin TerminaLJriver
ACCEPT ACCEPT DEA

INTERRUPT DEopAY Loop

accept Read-Character (c: out character) do
APPEN ENDremove character from input buffer

ACCEPT efid Read-Character;

accept Write Character (c: in character) do

END append character to output buffer
SELECT end write-_Character

or
accept Reset o

Shut-Down-Oto
Start-up

end Reset

Fiur 26. Flow Chart for the Terminal Driver accept Shut-Down
FigureShutOown_0kd

Package. (Continued) exit
end seLect

%, end tooo
end Terminal-Dr iver

end Ter m inatLor iverPac Lage

Figure 27. PDL Code for the Terminal Driver Package.

data flow are both clearly evident and identified. The nota- In summary form, Module A must communicate with Mod-
*tion may he a little rigorous in the sense that all the Ada ule B every 20 microseconds. Module C must communicate

tasking semantics must be depicted and many notations are with Module A every 40 microseconds. One possible solution -..

therefore needed, but that can be reduced according to need is; to implement a scheduler task which first delays 20 ms
*or complexity. and signals Module Cto communicate with Module A. The

scheduler then delays another 20 ins, signals Module A to
*The final example is a scheduling algorithm problem which communicate with Module B, then signals Module C to coin-

is again a step up in concurrent complexity. The timing dia- inunicate with Module A. This process is repeated indefi-0
*gram illustrated in Figure 30 depicts the timing require- nitely.

ments of this problem.
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-SELECT

ACCEPT ACCEPTTEMNE
READ WRITE ACCEPT ACCEPTTRMAE
CHARACTER CHARACTER RESET SHUTDOWN

REMOVE APPEND SHUTDOWN SHUTDOWN
OLD4

ENO END START ENl
ACCEPT ACCEPT UP ACCEPT

END

ACCEPT

IF END SELECTj

Figure 28. Petri Net for the Terminal Driver Package.

*4
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A A A A A A A tkbd chd~ri

------- t II--k 1k;.;-- ;I- IL;-I

-TI-ME LINE begin

-~ accept -Start

detay 20 m's 0
Figure 30. Timing Diagram for the Scheduling Algorithm. C.Signat

-- detay 20 ms
A.Signat
C.Signat-

The Ada code, flow chart, PDL, Petri Net and Buhr diagram end Loop 0
%for this solution are shown in Figures 31 through 35. end ScheduLer 0

task body A is
begin 5

package Init 2 is 0oo0
setect -5,-

task ScheduLer is accept SignaL
entry Start B.Com

end Sctheduter Ior

a ccept Comm
task A is end seLec t

entry Si gnat end Loop
ed entry Comm end A

tsk body 8 Is
task B is begin

entry Comm tool)
end B accept Comm

end Loop
task C is end 8 1

entry SignaL 
----ed entry Comm ts oyCi

begin

accept Signal.
A.Comm

end Loop
end C

begin
Scheduter.Start 0

end Init-2 1

DELAY-

20 VISSELEC

ACCEPTACCEP
Comm SIGNA

A.*' SIGNA IL COW
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package Init.2 is

took Stbeduler Is IGA

accept startcom

nLoop

selaect a~g accp Sga

at SIGNALt -

accept Comet

end loop~.\'
end A C INuTer

acpCacset Siue3ignrDigaefrteSceuint oitm(

accpt eignt thCceuinoloihmte sleaisedoarliguo

end AC intey fis-eaig2 nte aiga nr alt

and tt to. degaye 340 msuhen iagrmunirte Schdul Algori ther)

taskC aanter potiblve to is frcep comnctoenr od ls o m lMent

Figure th oefr h ceuigAloih 1. ue Adahi scheulin capoabl Tha ios Modue Bea los net

TASK A lCHMEoTS

SIleA C. Thssluiniswrales on ste ea de o

DELAY ZMSE ACCE C ENM ACCEPT G~.I

ENDCC REPAORTP EN ACET.AT ORRED

REND.
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exceed the delay duration specified. However, this is not cur-
rently guaranteed by Ada. The Ada code, flow chart, PDL,
Petri Net and Buhr diagram for this solution are shown in
Figures 36 through 40.

The first solution suffers from the same delay statement
problem; that is, it suffers from the fact that after a rendez-
vous has occurred in Ada, the task to execute next is not
specified.

In summary, Buhr diagrams are particularly useful in des- DELAY ACCEPT ACDELAY
cribing tasks and their interventions. Data flow between 4IMS COMM CMM 2S
tasks (through the Ada rendezvous) is included in this picto-
rial notation as well as control flow. This basic set of nota-
tions is sufficient for describing the full set of Ada tasking B. Comm
semantics with a few exceptions such as task termination
and dynamic task creation.

vackaqe Init-3 is EDSLC

task A is
entry Coemf

end A

task 6 is
entry Coem Figure 37. Flow Chart for the Scheduling Algorithm (2).-

end 6

task C
oackage init_3 is

task body A is task A is
beqin begi n

select 
seLect

detay 40 ms delay 40 ms
o .Comm or 8.co m

occeot ConM acceot Co..

end select end se Ct
eni 1oop no loo,..

end A eno A

...................... t ask 6 is -- •

task bod -j is beqin

beg in L00 ..
L aoa accept Comm

accept Com ena loopna to,0 1 end A "

task C J "

- - - - - - - -- -- -- -- -begin
task body C is L odi
beg in delay 20 -S

LOiD A.CoCm
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end Init_ Figure 38. PDL Code for the Scheduling Algorithm (2).

Figure 36. Ado Code for the Scheduling Algorithm (2).
this time Buhr is doing extensive research in this area and is
expected to have a product for accomplishing some automa- --- _

However, Buhr points out in his book that procedural access tion of his notation.
is only through packages. This restriction must be removed
in order for Buhr diagrams to handle tasks in subunits, This
is the case when a server task is needed that loops indefi- V. Conclusions
nitely, accepting entry calls to its service routines.

Concurrent or real-time systems are, by definition, systems
Buhr diagrams can be used throughout the life cycle of soft- whose proper functioning is dependent upon time-critical
ware, starting from top-level design to unit coding. The fact events. High-level language implementations that exhibit
that manual updating of Buhr diagrams may be tedious is large overheads will usually make the language unsuitable
forcing the issue of automated Buhr diagram processing. At for real-time programming. Many of the features found in

-la r. --. o
0
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Figure 39. Petri Net for the Scheduling Algorithm s2m.o'

of task scheduling policy. Other areas of concern involvetask handling of interrupts and scheduling of 1/0 requests ,

COM where fast response to external events is often essential to
DELAY 20 NIS the proper functioning and viability of the system.

On the positive side, Ada has an impressive number of proc-..A C ess control structures for real-time implementations. There,,,x..
are also mechanisms for awaiting any of several messages

~~and for the non-deterministic selection among messages./ ~ ~~However, as pointed out previously, there are no means for "" '"; 7direct discrimination among arriving messages, nor is there.".'"""

a mechanism for sending messages that can be received by
any of many identical servers.

Figure 40. Buhr Diagram for the Scheduling Algorithm (2). Although this paper addressed a means of graphically denot-
ing designs in Ada, it also pointed out the shortcomings of

Ada, while adequate for operating system design and gen- present compiler technology to support the acceptance of
eral applications, do not lend themselves easily to efficient Ada. This immaturity (or lack) of Ada compilers has forced a
implementation. In particular, dynamic task creation and retrenchment from Ada and, in particular, from its more
deletion is worrisome for a number of reasons. One major esoteric features (generics, tasking, exception-handling). In - . -

worry is the lack of traceability and hence the increased concert with this drawback is the very visible absence of Ada
ambiguity of design. Other concerns in real-time systems software engineering tools, graphical or otherwise. The Ada
could be the complexity and overhead associated with these market has not matured to the point where Ada tools and
features. Obviously as the complexity of the real-time sys- environments have been developed to aid rather than hinder
tern grows, the number of tasks may grow proportionately, large program development. With respect to real-time sys-
as will the possible need for message buffers (not provided by tems, which usually (if not always) require sophisticated *, -

Ada) and hence the overhead. It would also appear that to tools and design methodologies, Ada seems to be in its in-
diminish ambiguity, programmers must have better control fancy.
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The coupling of the Ada mission with its cry for environ- (14) Karp, R. M., and Miller, R. E., "Parallel Program Sche-
ments has forced software engineers to implement systems mata," Journal of Computer and System Science, 3,147-
in a manner that is less than desirable and unsupported by 195, 1969.
tools, including efficient compilers and translators. Accord-
ingly, any strong criticisms of Ada at this stage of its matu- (15) Hehner, E. C. R., "On The Design of Concurrent Pro-
ration may well be unfounded and too severe. It seems likely grams," Information, Vol. 18, No. 4, Nov 1980.
that the normal evolution of compilers and associated tool
sets will reveal the real ability of Ada to meet the demands of (16) Petri, C. A., 'Communication Disciplines, Computing
real-time systems. Indeed, it appears, at present, that the Systems Design," Proceedings of the Joint IBY and U.
support mechanisms as examined in this paper may well Of Newcastle Up On Tyne Seminar, 1977.
surpass the technology made available in Ada. Although
general in nature, the concepts behind a graphical notation (17) Wirth, N., "Toward A Discipline of Real Time Program-
seem both viable and worthwhile in the long run. These ming," Communications of the ACM, Vol. 20, No. 8, .
concepts, supported by the sophisticated automated tools un- Aug. 1977.
der development (e.g., Buhr's methodology) show real prom-
ise of leading the technology front. (18) Habermann, A. N., "Synchronization of Communicat-

ing Processes," Communications of the ACM, Vol. 15,
No. 3, 1972.
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Ada SUMMER SEMINAR--TEACHING THE TEACHERS

Dr. M. Susan Richman
The Pennsylvania State University, Capitol Campus

Dr. James N. Shoaf "i''.'
North Carolina Central University

Mr. Donald C. Fuhr
Tuskegee Institute

Abstract subcontract with Tuskegee Institute, providing a
fixed level of funding for the local administration

The Ada Curriculum Development Seminar was of the Program. SCEEE provided direct appointments
organized and conducted over a six-week period by a to the participants and paid them directly.
team of three professors. It was designed to

consider various aspects (organizational, Seminar Objectives 5
curricular, and laboratory) of an intensive program
and to evaluate them for applicability within an The objectives for the Ada Curriculum Development
academic environment. Both industrial and academic Seminar as stated in the subcontract were:
methods and materials were used, as well as various
video-based media. Detailed questionnaires 1. To provide graduate level Ada language
captured participant opinions regarding the instruction to qualified college faculty.
effectiveness and acceptability of each method of
presentation. Various system management techniques 2. To experiment with methods of instruction
were also tested in an effort to arrive at an for Ada for later potential use within
optimum support environment for such a seminar, academic institutions.
The results of these tests and evaluations are
intended to be used in the design of future 3. To explore curriculum and techniques
intensive programs as well as by the participants issues providing insight and recommendations
in the planning of Ada courses in their own for the introduction of Ada into college level
schools, computer science and/or engineering curricula. 9

4. To explore potential uses of Ada as a
Introduction hardware design language.

Program Background 5. To encourage the inclusion of Ada

instruction in those colleges represented by
The Ada Curriculum Development Seminar held at the participants. The participants will -'
Tuskegee Institute, Alabama from June 10 through perform a review at the conclusion of the
July 20, 1984 had its roots in three years of experimental program. The format will also
previous similar programs. These programs were include short presentations by Ada experts %%
sponsored by the U.S. Army Center for Tactical from Industry, Government, and Academia.
Computer Systems (CENTACS), and were held at Ft.
Monmouth, NJ during the summers of 1981, 1982, and Participants
1983. The objectives of all these programs were to '
propagate the Ada Programming Language into college Attending the Seminar were thirteen participants
and university computer science curricula by from seven different institutions. All but two of
providing an intensive learning experience for the participants possessed a doctoral degree, but
faculty members. That the tradition is growing is their backgrounds varied widely. Some had one or
shown by the fact that all three of the more degrees in computer science with commensurate
professional staff of this Seminar were experience. Others had had no prior experience
participants in the 1983 program, and most of the with higher order programming languages. This
guest speakers were involved in some way with one diversity in backgrounds caused a number of
or more of the previous efforts, difficulties in presenting the seminar and reduced

our ability to make it as effective as we would
Seminar Contract have desired it to be.

Funding support for the Seminar was provided by

CENTACS via an existing contract between the
Electronic Devices and Technology Laboratory at Ft.
Monmouth, NJ and the Southeastern Center for
Electrical Engineering Education (SCEEE) of St.
Cloud, Florida. SCEEE, in turn, negotiated a * -
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Planning Model Instructional Activities

NOTE: This is a synopsis of a document written Course Texts
before the Seminar as an attempt to capture our
thoughts at that time regarding program philosophy. Observations: As is traditional in a college
It is included here as an outline of what we course, texts were chosen based on the instructor's
intended to accomplish, assessment of their appropriateness for the .'

audience. They were followed fairly closely in the
The fundamental premise behind our planning for order of presentation of topics and supplemented as

* this Seminar is that college students and, considered necessary by the instructor. In this .'
theretore, college faculty need a different program the primary texts were:
approach to the Ada programming language from that
which is appropriate for wofking programmers. This An Introduction to Ada,
premise is based on the following observations: S.J. Young, Ellis Horwood Ltd, 1983

Software Engineering with Ada,
The vast majority of Ada training courses for G.Booch, B.Cummings, 1983
industry are only a few days in length, and do not
always include hands-on exercises. Essentially all Young is primarily a language text, while Booch
the information must be presented by the emphasizes software engineering. The two texts
instructor, with very little outside reading or complement each other nicely. Reading assignments
assimilation time for the students. We believe to supplement the lectures were included in the

that this leads to shallow learning of syntax and outline for the seminar; however, we determined as S
semantics, with little understanding of the the seminar progressed that the assignments were
theoretical basis for proper system design using not generally completed.
the language. We believe this approach is not
appropriate for teaching the language as a design A third document which was invaluable to the
tool. instructor, and to those students who made use of

the library copies available, was the "Rationale
College courses, on the other hand, emphasize for the Design of the Ada Programming Language".
individual study and research in conjunction with
lecture presentations. The result is that college Recommendations: There is no single text currently
students are taught to apply the language as a tool available that would be adequate for any similar
for problem solving and to draw inferences from program. However, new texts are continually being
this activity as to what new applications may be written and should be reviewed in planning for
developed. We believe that college faculty should future seminars. Until a single adequate text
be taught in the same way. appears, the combination we used is a workable

alternative.
We intend to test this hypothesis by teaching
selected topics such as Generics by both methods It is vital in a concentrated program with limited
and evaluating the group's reactions, time for digestion of new concepts that students

receive as many exposures as possible. Readings,
We believe it is important in teaching Ada to reinforced by the lectures and the laboratory
college faculty to take advantage of the varied exercises, provide a firm foundation for further
backgrounds of the participants. This can be done study and use of the language. The participants
by relaying questions to members who may be able to must be convinced of the necessity of completing
answer them, by having members give presentations, the assignments on schedule.
by having them help one another with programming
exercises, and other similar techniques. Use of the Ada Language Reference Manual

We believe that evaluation of student progress is Observations: The Ada Language Reference Manual
an essential element of all training, but (ANSI/MIL-STU-1815A), the only completely reliable
particularly in the college environment where source of Ada information, is a vital student
grades must be reported. We intend to explore the reference. It is essential that students become- -
opinions of the group regarding the impact of Ada familiar with it as soon as possible. However,
on the preparation and grading of examinations, and learning to use the Reference Manual is a
to discuss broader issues of effective evaluation non-trivial task.
of programming progress.

In the beginning of the seminar, the students
We believe that one of the most important ideas to answered questions of the form "What would happen
get across in teaching Ada is the concept of if .... ?" by actually writing a small code segment
software maintenance and how Ada simplifies it. We and trying it on the system. However, as the •
intend to highlight this feature by requiring the questions and the corresponding test programs grew
participants to modify existing code under several more complex (and computer time became more
different conditions. critical), the Reference Manual became the favored

source of information for the students. At first,
We intend to gather a large amount of data, via they found the Manual to be intimidating, difficult
various questionnaires, on the seminar to read, and not much of an aid in understanding.
participants' opinions regarding the various However, eventually they discovered that the
pedagogical issues that come up. information WAS accessible even if, after looking
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in five different places for the critical section, Various circumstances caused us to deviate from the .

one had to read that section t hree times before originally-planned order. The most important of
comprehending it. those were the need to enable the participants to

write programs earlier and the need to run
Many of the excellent examples in the Reference compilations and executions in batch mode which
Manual were used as illustrations for various necessitated earlier discussion of File 10.
lecture topics. An understanding of the structure
of the example provides a context into which the Recommendations: In setting up the order of

*student can fit the syntax and language roles, presentations in a programming language course
*making them more reasonable and understandable, there are several competing and conflicting aims

which most be balanced. Firstly, there is the
It was forther seen that the Reference Manual was pedagogical aim of not overwhelming the student
thle best source (not only comprehensive, but also with new information to absorb -- with the
quite readable) of information on Input/Output. By consequent risk of brain shut-down. In addition to

*the end of the course most of the participants had Learning to write the code, the student must learn
concluded that the Reference Manual was a great deal of information in order to interact

* indispensible for programming in Ada. with the computer system. He or she must learn the.

log-in sequence, operating system commands, file
Recommendation: A copy of the Reference Manual tor creation and manipulation, reactions to unexpected--
the Ada Programming Language should be provided for system responses, interfacing between files and
each student. Through whatever means are possible programs, creation and use of program libraries,
they should be encouraged to become familiar with and commands for compilation and execution.

*its style and learn to use it as a source of Secondly, however, it is essential that the student
information and as their final authority on begin writing code and testing it on the system as
questions about the language. early in the course as possible. These two goals

are in strong conflict. The best solution is to
Classroom Library reduce, in whatever ways possible, the amount of

information the student must learn in order to get
observations: Located in the classroom was a a meaningful response from the system to his Ada

* arly extensive collection of reference materials code.
* for use by the students. These materials included

numerous language texts, Ada reference books, Since the fundamental Ada concept of Packages
reference materials for VAX/VMS and the EDT editor, allows programmers to use tools without necessarily

*and some of the periodical literature relating to knowing all of the details involved in the
current activities in Ada and future Ada implementation, we recommend beginning the course

*conferences. The participants were thus able to with Packages and having the students write
evaluate many texts for appropriateness for use in programs which use packages previously designed and

*Ada courses projected for their schools, made available to them. This tactic will also
reinforce the principles of abstraction which are

Also available for use by the students were various so vital to Ada. An overview of all the data types
commercially produced video resources on Ada. available in Ada should come next, with just enough
These included: (1) a videotaped course detail to allow students to write programs
Programming in Ada" presented by Ichbiah, et. al. involving simple data structures. Input/Output

in 1980; (2) "The World of Ada Part II", and (3) incantations for all the different data types
"Ada Overview", a PLATO CAI course on a CDC 110 should be provided at this point with only minimal

*microcomputer. These were accessible to the explanation of the actual mechanics of 10.
participants in their free time and were used to Subprograms and control structures will then allow
reinforce and amplify other presentations. development of solutions to some significant

programming exercises. The details of structured
*Order of Presentation of Topics data types, such as multidimensional or

unconstrained arrays and discriminated records, can
observations: Since Ada is more than just another and should be postponed until the students have had

* programming language, in order to provide the an opportunity to work with the simpler forms.
* proper setting for the seminar, the lecture of the

first day was devoted to the background of why and Lecture/Laboratory Daily Format:
how Ada came into being. This was, perhaps, the one
topic that NOBODY felt should be moved to another observations: Throughout the seminar we
position in the syllabus. A language overview was experimented with lengths and times of lectures.
then given, followed by an exhaustive treatment of In the beginning of the seminar the morning was
each of the components that go to make up an Ada devoted to a lecture presentation and the afternoon
program. The objective was to build a complete set to laboratory work. For a time, the ratio of

*of tools beginning with Lexical Elements and lecture to lab time actually increased because of
progressing through Data Types, Data Structures, our efforts to stay on schedule. It soon became
and Subprograms to allow coding of increasingly clear that there was insufficient laboratory time
more complex programs. This was essentially the for the students to practice using the language
order in which the topics are treated in the features. As a result, much of the detail which
SofTech course L202, Basic Ada Programming, which was covered during the lecture was not fully
we were using as an experiment in methodology, absorbed and retained. The ultimately most

successful mode was that of two or three lecture
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SCHEDULE---PROGRAMMING EXERCISES Information on the NYU Ada/Ed compiler was given in
two parts. A short introduction to compilation and

Day I Day 2 Day 3 Day 4 Day 5 execution of Ada programs was the second part of
the first laboratory session. Only a minimum
background was presented, because of the diversity

Week I Ex ,2 Ex 3,4 Ex 5 Ex 6 and bulk of information given at the first-day
orientation laboratory. In the second week, the -
laboratory director discussed Ada/Ed program

Week 2 Ex 7 Ex 8 Ex 9 libraries.

The VAX EDT editor was the tool used for source
Week 3 Ex 10 Ex II Ex 12 code entry. On the first-day laboratory the basic ..

_ _ _ _operations of this editor were presented. TheI Ilaboratory director followed this on day two with
" Week 4 holiday information on more advanced features of the

We4 speakel
",editor--information that was found to be not very

worthwhile.

SCHEDULE---PROJECT Programming Exercises

Day I Day 2 Day 3 Day 4 Day 5 The twelve programming exercises were graduated in
difficulty and based on most-recently-presented Ada

Ifeatures from the lectures. As minor changes
Week 4 speaker . holiday4 projecti occurred in the lecture topics, corresponding

dist. changes were immediately incorporated into the
exercises. Also, the last six of the exercises

Ex I1F ExhIF Ex F were structured so as to serve as preparation for
Week 5 !speaked | speaker speaker the team projects. The Ada or environment areas

!.team pr ect development featured in the exercises are shown in the table -

_________,__below. .
speake-

Week 6 speaker speak eview presen. project PROGRAMMING EXERCISE FEATURES
guid. guid. pres.

_ _ _ _ _ _ _ Exercise Ada or Environment Features

Ex 11F = a group of two people finish Ex. 11 1 VMS commands, basic EDT operations, basic
Ada/Ed operation

Environment
2 10 Package instantiation for integers,

Each computer user required an orientation to the string output
working environment, plus specialized information
on environmental aspects when deemed necessary. 3 FOR loops, local subprograms, type
The environment consisted of the computer system, conversions
the text editor, and the Ads compiler. 4 Same as Exercise 3, plus constants and
Background system information was divided into emphasis on modifiable code

three parts. In addition to a basic introduction
to the system, there was a special presentation on 5 IF and CASE statements, enumeration

running batch jobs, plus many short presentations types, integer ranges
on individual system features (called VMS Minutes).

6 FOR !op, arrays, local subprograms,
The first-day environmental orientation began with overloaded GET and PUT

the computer interface step--the local login 0
procedure followed by the VAX user-account 7 file I/O, VMS files, WHILE loop
initialization. Afterwards came an introduction to
VAX/VMS commands for handling files. The 8 packages, Ada/Ed libraries,
information presented had three parts: the notion function calls, WHILE loop, file I/0
of file directories, a set of eight basic commands,
and a small set of practice exercises. The 9 records, enumeration types, packages
practice exercises included steps preparatory to
running a simple Ada program. 10 variant records, integer ranges, 0

exceptions
Information for submitting batch jobs for -,-

compilation and execution came at the end of the 11 access types, packages, tasks
first week. The remaining system information was
presented in the format of VMS Minutes. Each of 12 generic subprograms with a formal generic
these short presentations by the system manager subprogram parameter .*

usually centered on one useful system feature.
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periods of approximately one hour each, interleaved Terminal access for each student during the lecture

throughout the day with laboratory periods. This periods can be a two-edged sword. While useful for

provided a better mode for retention and illustration and as a teaching tool, terminals can

comprehension of the information presented in the also be distracting. if terminals are available in

lectures and also resulted in more efficient use of the classroom, the capability of deactivating them

the lab time, since batch compilations and would, at times, be valuable.
executions could be going on during the lectures.

Guest Lecturer Program *.*-

* ~Methodology In Presentation of Topics .-

A valuable component of the seminar, the guest

observations: In teaching Ada, the methodology lecturer program was designed for experts in .

-. used is closely related to the topic sequence, various aspects of the Ada world to share some of

particularly the issue of *.top-down" VS. their expertise with the participants. The eight

*bottom-up". In the uae of the SofTech materials speakers provided valuable insights and were well
we followed the bottom-up approach, treating each received by the participants. This program should

topic in great detail, then progressing to the next be part of any similar seminar, and should be

*topic. it became clear as the course progressed expanded if seminar constraints allow.
that not even a class consisting of Ph.Ds can

*absorb great amounts of detail after hearing it
*only once, or sometimes even twice. It was evident Laboratory Activities

by the questions asked and the programs written
that not all of the concepts were grasped and Overview

*appreciated right away, not even by the moat
experienced computer scientists in the group. it The laboratory activities consisted of three

-. is often necessary to hear something several times, interrelated parts: an introduction to the

preferably in different ways, before it makes a programming environment, the solution of twelve
lasting impression. For this reason we found it graduated programming exercises, and a team

advisable to change our approach to provide a project. These activities were synchronized with
variety of exposures to the basic information: the corresponding lecture presentations. Together
lecture, discussion, in-class exercises, laboratory the lecture and lab work gave the seminar

*exercises, reading assignments, and videotape participants a fairly thorough background in Ada.

presentations all contributed to the assimilation The particular schedule and choice of topics were
of the material. selected on a day-to-day basis because of changes

made in the original organization of seminar

*Recommendations: The course should begin with an topics. This offered the advantage of using the
*overall view of the Software Crisis, Software latest Ada features from the lectures in a

Engineering, and the History of the Ada Programming laboratory exercise.
Language. Sending the participants advance

*materials to read on these topics may make this The first four weeks were devoted to the
*presentation more effective. The course should programming exercises and environmental

*progress from there into an overview of the introduction, while the last two weeks were spent
language covering, without much detail, program on the team projects. A simple schedule for each

*structure, the different data types, and control part of the laboratory activities is given below.
structures. One might supply students with a Following paragraphs supply details for the

package or packages and have them write program(s) scheduled activities indicated.
*using the facilities in the packages. It seems
-best to introduce new topics by giving simple SCHEDIJLE---ENVIRONMENT

examples, giving the basic facts, reinforcing these
by means of exercises whenever possible, and using Day 1 Day 2 Day 3 Day 4 Day 5

* ~the spiral approach of returning to previous topics______ __ _ __ _ _

with new perspectives and insights. I.
Week I Ada/Ed EDT * I VM

In place of exhaustive detail, it is better to W L EDTVM

explain the "why" and the "how" of the concepts.
It is reasonable to expect the students to locate Week 2 * Ada/Ed Ada/Ed *

in the Reference Manual, and in other reference ___ ___

sources, some of the detail which they will need in
order to complete their programming assignments. Week 3 * * * *

The instructor should encourage the independent use________
of videotaped lectures and other course materials
for multiple exposures to topics as needed. *=VAX/VMS Minutes --.

*One should supply 10_Incantations as soon as they%
-are needed for programming. There is no need to

postpone 1/O operations until the students have the
-background to fully appreciate generic packages and %,.* ~*

Text 10. The use of limited-function,
a adread-instantiated "Easy__ID" packages is at best
a stop-gap measure, and at worst misleading and 4

*confusing.
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Of the participants in the seminar, six completed The project solution and review presentations on
all of the exercises, two completed eleven the laat day showed several creative and workable

*exercises (with Exercise 11 80% finished), and the approaches to the project problem. Each team
*other four completed 7-9 exercises. These results followed the instructions to present a hierarchical

reflect the varied programming background of the chart of program units to aid in explaining the
participants, some loss of programming time for overall nature of their project design. The main
guest speaker presentations, and the above average differences occurred in the division of the tasking
difficulty of Exercise 11. aspect of the problem. Some of the main Issues ...

raised about the project solution development were .. * -

Team Project mino r confusion on the initial requirements,
completion of the design occurring in the midst of

The team project was intended as a small software the major coding, and that ease of design
engineering experience in which the key Ada development corresponded to a good working
features of packages, subprograms and tasks are knowledge of the tools available. The modification
used as tools. The seminar group was divided into presentations mentioned at least one aspect in each
4 groups of approximately equal talent. Each team project solution in which some Ada feature would
was given some general software engineering have made the proposed modification easier. Each
guidelines in addition to the project problem review team mentioned that modifications would--
description. The particular problem consisted of sometimes require considerable searching through
simulating the operation of an airport with two the code to insure complete correctness of
runways, controlled by one air traffic controller, modifications. Each team, from both a design and

modification viewpoint, learned much about the
The project guidelines and problem description were significance of software maintenance
distributed on the last day of week 4. At that considerations.
time the majority of participants were in the final

Nstages of Exercise 11, having finished Exercise 12 Conclusions
earlier. Project planning began immediately while
Exercise 11 was being completed. During week 5, Overall the main goal of the laboratory activities
the teams made progress reports. At the beginning was accomplished: first-hand experience in using
of week 6, it was decided to give the teams more the powerful main features of Ada, in a team

*work time, postponing the project solution and setting, The secondary goals of completing the
*review presentations until the last day of week 6. team project, getting familiar with all the

advanced Ada topics, and gaining skill in writing *-

The project problem was based very heavily on the easily modifiable code were reached with varying
* Ada features used in Programming Exercises 9, 11, degrees of success. A few modifications in the

and 12. Exercise 9 presented the basic data seminar structure would improve the chances of --

structure with input and output. Exercise 11 achieving these secondary goals:
presented a chance to become familiar with access
types in setting up a queue and with tasks 1) adding two weeks to the length of the seminar
involving a third-party task that manages a shared in order to schedule speakers well before the
data resource. Exercise 12 provided an opportunity project development period and to allow for

to sea enriccopiatonunit. hepoctadequate exposure to advanced Ada features;
brought all of these concepts together in a team
setting. The two major constraints of the problem 2) providing an additional orientation session to. ,'..

were a generic queue package for setting up plane the environment for novices, less information ,

arrival and departure queues and the concurrent on the advanced editor features, and sample
processing of planes on the runways and in the two code with or without compilation errors;
queues.

3) requiring more programming exercises of short
Each team encountered three major hurdles in its length so as to provide better feature exposure
work: setting up the basic plane flight data and to emphasize abstraction and software
structures and accompanying 1/O operations, setting engineering through the use of interesting
up the generic queue facility using access types, package problems;
and the tasking component for controlling the

*accessibility of the queues. By the end of day 4 4) providing more guidance and background on key
of the final week, one team had overcome all three aspects of software engineering relating to the

*hurdles. The other teams were involved with the team project--better preparatory exercises,
last hurdle, making it possible for each team background information on efficient ways to

* project solution to be realistically reviewed by develop software components and test them, and >1

another team. tips on using Ada and other tools in program
design.

The review process involved each team passing its
completed code to another team. The second team
was to implement a change in specifications in the
code. The objective was to demonstrate the ease
with which good Ada code can be analyzed and the
ease of localizing the effect of modifications.
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Computer System Support Batch operation: To strike the best balance N..

between memory limitations and CPU contention, we
System Configuration operated with three batch jobs running

simultaneously from one queue, allocated 2500 pages .'%.
Hardware: Computer support for the seminar was (1.25 MBytes) of memory each. Running fewer than
provided by a dedicated VAX-ll/780 which contained three jobs uses memory inefficiently; running more * 4
8 MBytes of memory, 512 MBytes of disk storage, and causes a bottleneck at the CPU.
40 ports. The 16 classroom terminals were
connected to the computer through a MICOM Micro600 Command Procedures
Port Selector. This hardware configuration proved
to be adequate for this size program, and probably Since this was in large part a research
for a group of up to 20 participants. environment, we realized that we would need ways of -

changing the operating parameters of the system
Software: Initially, the seminar used Version 1.1 quickly. To this end, several command procedures ._4
of the NYU AdaEd interpreter running under VMS. were developed before and during the seminar to
This worked well enough, notwithstanding its make this easy and reliable.
well-known slowness and the various documented
bugs. Later, we used Version 1.4, with only ADAUAFCHG.COM: Used to modify entries (such as
moderate gains in speed, but much more reliable quotas and privileges) in all group User
performance. Along with Version 1.4 came a faster Authorization File records with a simple,
parser, which provided exceptionally quick syntax interactive procedure. O
checking. AdaED supported the seminar well, but
required constant monitoring to prevent ADAQSTOP.COM: Used to change the operational
unacceptable system performance degradation. parameters of the batch queues as needed.

User quotas and privileges: Most user COPYFILES.COM: Used by the faculty to send files
authorizations in effect were the defaults provided containing useful examples, lab assignments, and
by VMS. Exceptions are as follows: other information to all participants.

A 1300-page (650 KByte) memory allocation was COPYLOGIN.COM: Used to add entries to each
necessary to allow interactive Ada jobs to run participant's LOGIN.COM file when the function was
without overwhelming the system with page needed, but the explanation would not have been
faults. understood.

It was necessary to increase the PGFLQUOTA to MAIL distribution files: Three files for mass
13000 from the default 10000 value in order to mailing were made available to all: one containing
allow Version 1.4 to run correctly. only the Usernames of the staff, one containing -*

only the Usernames of the class, and one containing
All users were given GROUP privilege in order all Usernames in the program. These were used
to allow them to stop their own batch jobs extensively for broadcast communication among all
when they behaved erratically, three groupings.

Each user was given Read access to the system "." 
"

Accounting data file and instruction on how Seminar Logistics
and why to use it as a last resort in P_.
troubleshooting a problem which cannot be Classroom/laboratory facilities
isolated between VMS, Ada, SetL, and
programmer logic error. A dedicated classroom was provided for the program.

One terminal was provided for each participant, one
System parameters each for the Lab Director and Academic Director,

and one spare. The system printer was remoted into
Interactive operation: The first day in lab, in the classroom for hardcopy output. A coffee bar
order to test the limits of the system, we and break area were set up in one corner of the
deliberately had all 13 participants start an room, and videotape machines and demonstration
interactive compilation at once. After thrashing microcomputers in another corner. Two overhead
for about 2 1/2 hours, the jobs finished and the projectors were available. Access to the classroom
system recovered. We concluded that the system was provided from 8:00 am until 11:00 pm Monday
would not support 13 jobs needing the same resource through Friday, with weekend hours as requested by
at the same time, but if the jobs were started in a the participants. The room was locked whenever it
random fashion as would normally be the case, the was unoccupied, protecting the equipment and
system would survive. This proved to be true for enabling participants to leave materials there if
the rest of the seminar. The problem with desired. The facility was deemed adequate except
interactive work is that the user's terminal is for some temperature control problems. %
disabled for the 15-30 minutes or more that a "'.
compilation takes, preventing work on another
compilation unit or exercise while waiting for the
first to complete. A partial solution is to
perform compilations in batch mode. This releases 0
the terminal as soon as the system accepts the job.
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* Budget Speaker Critiques

The budget total of $62,000 for Tuskegee Institute A questionnaire was distributed on each day when a
covered faculty salaries and expenses, computer guest speaker was scheduled. This was not so much %

operation and maintenance, seminar logistics, intended as a speaker rating, but as a measure of ____

review and coordination meetings, and overhead, the value of the presentation to the program.
Actual expenses were within budget, although the Summarized results from these questionnaires are as.-:..,
distribution of expenses among budget elements was follows:
considerably different from the original estimates.

The group overwhelmingly rated the guest
Seminar Staff presentations as understandable and useful,*,..-..

appropriate for the program and for the time
A total of six people performed various tasks in in the program, not too technical, and worth
support of the seminar. The Academic Director was the time allocated. Even the somewhat less4
the primary instructor; thus, the primary selection dynamic speakers were rated high. Many of the
criterion was lengthy teaching experience, group, while approving the speakers, also
including the teaching of Ada. The Lab Director complained verbally about not being able to
developed and administered the programming work on the team project as much as they would
exercises; thus, the primary qualifications were have liked. This would seem to make a good

*facility with the language and ability to work well case for a longer program.
with people. The Systems and Logistics Director's
job was to handle all system actions and logistics Final Program Survey
arrangements. The qualifications for this job were
primarily managerial. Due to the critical The end-of-seminar questionnaire was designed for
importance of good computer support, it is somewhat more free-form responses. There were some
essential that this person occupy a position of numeric categories, but most of the questions
authority with respect to the computer system and required write-in answers. The group, as had 1-'en
the people who directly operate it. other the case throughout the program, was most reluctant
personnel involved were a technical specialist who to write much. We will use some of the specific-
operated the system, a secretary who performed the comments as indicators of possible improvement
clerical support, and a statistician who designed areas, but they are not amenable to statistical

*and analyzed the participant questionnaires. analysis. Those numeric results that are
significant are as follows:

*Analysis of Participant Responses The participants were asked to rate themselves
on 13 background and academic-related factors -

The seminar participants were asked to provide compared to the others in the program. The
* written reactions to the program in four different results showed a very high correlation between ~

formats: 1) A daily questionnaire during the their opinion of their computer-related
*lecture phase; 2) A mid-point questionnaire at background and Ada ability and the opinions of
*the end of the third week; 3) A questionnaire the staff regarding their relative performance
*each day on which a guest speaker appeared; 4) A in the program.

final questionnaire at the end of the program.
The seminar was rated overall as being very

Daily Questionnaires worthwhile by 92% of the group. They were _
completely ambivalent about whether it should

These surveys were used to keep a daily pulse on be restricted to particular skill levels. All
the participant reactions to the seminar. They of them felt the seminar was well organized. -

were used to determine the need for changes in
*approach or sequence as the program progressed. 92% of the group agreed that the lab
*Because of this utilization, they reflected assignments greatly aided understanding of

opinions on specific topics, and showed a steady Ada. This response from a group of academics
improvement throughout the seminar, is strong evidence that adequate lab work is

very important to Ada instructional programs.
Mid-course Survey

All of the group rated the instruction
This questionnaire was administered to capture the excellent to outstanding in being
thoughts of the group at the point at which they well-organized, presented clearly, not too
had been exposed to essentially the entire general or theoretical, and informative and
language, but before they had an opportunity to useful. 83% said it was aimed high enough,
work extensively with it. We tried to quantify the but one participant strongly disagreed with
comments we had received informally regarding topic that premise.
order and lecture/lab time proportions. The
quantified responses to this mid-course survey The ratings for the Instructors were similar
indicate that, In most areas, the program was to those for instruction, All of the group
successful up to that point. There were no major rated them excellent to outstanding on .

problems identified, at least none that had not competence, attentiveness and understanding, .

been addressed by the staff. There were no signs being well-suited for the course, and

*of real dissatisfaction from anyone, effective use of audio-visual aids.
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The participants rated the individual lab Contract Timing
assignments as generally being about right for
complexity, tending toward the complex. They We strongly recommend that the fun, ng source,
reported having problems understanding Labs contract mechanism, and host site(s) be identified
10, 11, and 12, but gave the others good marks as early as possible, and that the contracts be
for understandability finalized not later than mid-January. This would

allow selection of participants by mid-March
VAX/VMS information was rated excellent to (before they have other summer commitments), and
outstanding by 83-100% of the group as being sufficient time for pre-seminar preparation.
necessary, adequate, and timely. They were
undecided as to whether it would have been Academic Considerations
better in one chunk. EDT Editor information %

was rated as necessary and adequate by all of Our experience leads us to believe that Ada should
the group. be presented using a "top-down" approach, but not

by the definition normally applied to that term. A
The computer was found by 75% of the group to language overview is important at the beginning,
have provided adequate support and to be easy but it must include enough detail so that students
to learn to use. can start to write programs very early. One should

take advantage of Ada's Information-hiding features
All of the group rated the guest speakers to allow students to write small programs using
overall as valuable, a welcome change of pace, packages already in existence without fully
and experts in the field. A slightly smaller understanding how they work. Then, as they gain
number, 83%, felt that they did not detract more knowledge and experience, they can be assigned
from the lab work. The vocal comments on this to develop the packages to support larger systems.
matter were not reflected in the It must always be remembered that an overview does
questionnaires. not prepare one to write code, and an extremely

detailed lecture does not illuminate the big
The seminar was judged to have been worth the picture. A view of the entire puzzle is needed,
time by all of the group. 83% felt it should with just enough detail to enable the students to
he at least 6 weeks long, and b7% voted for 8 begin to assemble the pieces for themselves.
weeks. The seminar format was highly approved
over other media such as videotape. The group Laboratory Considerations
was undecided as to whether the seminar was
too challenging or ambitious, but they said it Our experience reemphasized the need for adequate
lived up to their expectations, laboratory facilities and time to support the

instructional effort. The facilities available for
The end-of-program survey results reflect overall this seminar were deemed adequate by us as well as
satisfaction with the program, as well as a desire most of the participants. The final daily schedule
on the part of the participants to provide of 1 hour of lecture followed by 2 hours of lab,
constructive criticism in order to improve it. The repeated in the afternoon was the consensus choice
results are in general agreement with our by both participants and staff.
assessment of the program's strong and weak points,
and with our perception of the group's reactions. One area we believe should be improved is that of

VMS/EDT familiarization. With the diversity of

backgrounds among the participants, there were some
Conclusions and Recommendations with extensive VAX experience, and others with no

appreciable experience with any computer. Even
Program Length and Composition with a more homogeneous group, this could be a

problem. Our recommended solution for this problem
The six-week length of this seminar was minimally is to offer a pre-seminar tutorial the day before
adequate. We covered essentially the entire the official seminar opening for those who wish it.
language, but there was not enough time to *
adequately cover the advanced topics. Most of the Group Size and Composition -
participants needed more laboratory time in order
to become really fluent with the language. The group size of 13 was easily accommodated for

this program. The wide diversity in background
We recommend that the seminar be scheduled for among the participants caused some difficulties and
eight weeks. The first three weeks of this time necessitated some compromises in depth and speed of
should be spent on a basic coverage of the language presentations. This reduced the benefits of the
together with many lab exercises illustrating the program in various ways for most of the group. A t

specific language features. The next two weeks larger group with the same diversity would have
should be used to expand upon the advanced been very difficult to handle. We believe that a
features, emphasize graduated exercises using these more homogeneous group composition is very
advanced features, and include most of the guest important to the overall success of the program.
speakers. The final three weeks should be allotted This should be achieved by stating a minimum
for the team software development project. We qualification of fluency in a higher order
strongly believe that this project is essential to programming language for applicants. If desired, a .. '
giving the participants insight into the full power separate seminar should be offered for those
and utility of the language, learning Ada as a first language.
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The feasible size of a seminar group depends Conclusion
largely on facility availability. Assuming a
homogeneous group, we believe that 20 participants This Ada Curriculum Development Seminar was deemed
could be accommodated with the facilities at our by all participants and staff to have been very
disposal, successful. Our plans were generally effective,

anticipating most problems that arose. We worked
Budget Considerations hard to ensure responsiveness to participants'

concerns and made numerous in-progress adjustments
The total budget allocation of $62,000 (not as a result. We strongly recommend that seminars
counting participant compensation) for this seminar of this type be continued at this and other sites "'.'.
was adequate, and would probably be adequate for as the best way to prepare faculty to teach Ada -.
another year at this location. Most of the effectively. We believe that, if government '. '
planning factors are specific to location, and funding cannot be made available, various
would vary depending on how much setup work needs progressive industrial firms would be willing to do 0
to be done. It is importantthat the overall funding their part to assure the flow of well-educated
for the program include compensation for the computer science graduates fluent in the Ada
participants. If a qualified pool of applicants is language.
to be attracted, some form of income for the summer
is necessary in order to attract those who might References
have other summer employment opportunities.

1. Booch, Grady: Software Engineering with Ada,
Benjamin/Cummings, 1983.

Our complement of three direct professional staff 2. Young, S. J: An Introduction to Ada,
plus three support staff was adequate. We believe John Wiley, 1983.
that three is the minimum number of professional
staff required to present an intensive seminar such 3. Ichbiah et al: Rationale for the Design of
as this. The heavy (and sometimes short notice) the Ada Programming Language, Draft for
duplication requirements necessitate clerical editorial review, Honeywell and Alsys, 1984.
support on nearly a full-time basis. The need for '-"
a system operator depends on local management 4. SofTech, Inc: Course Notes, Basic Ada
structure. The need for a statistician depends on Programming (L202), U. S. Army (CENTACS), ". " "-"-
data analysis requirements. 1983.

Seminar Results vs. Planning Model 5. Reference Manual for the Ada Programming

Language, ANSI/MIL STD 1815A, 1983.
The objective and subjective appraisals of the S
seminar support the hypothesis stated in the
Planning Model: That academics learn better and
are more satisfied with a program taught in the Biographical data
academic mode compared to an industrial-type
program. The participants were not pleased with M. Susan Richman is chairman of the Mathematical
the SofTech approach of presenting all the detail Sciences Program at the Capitol Campus of the
in the lectures. When we changed to shorter, less Pennsylvania State University, Middletown, PA. Dr.
detailed lectures supported by reading and practice Richman is a graduate of the University of
they responded better, and seemed to learn more. California, Berkeley, and received the Ph.D. in

Mathematics from the University of Aberdeen in
Several of the test methods we had intended to use Scotland.
fell victim to the shortage of time. We did not
feel we could afford to teach the same topic twice
using different meLhodology, particularly since the James M. Shoaf is Associate Professor of
group so thoroughly disapproved of the SofTech Mathematics at North Carolina Central University,
approach. There was also strong resistance to Durham, NC. He is a graduate of Pfeiffer College
examinations, at least the recording of scores, and received the Ph.D. in Applied Mathematics from
Therefore, our objective of research on testing North Carolina State University.

issues was not met.

Donald C. Fuhr is Director of Computer Services at . '.
We were able to take much advantage of the superior Tuskegee Institute, AL. He is a graduate of Oregon
experience of some members in helping the others, State University and received the M.S. degree in
but we found that the slower students were Engineering Management from the University of
reluctant to ask for help from the others. Alaska.

The modifiability and reusability of good Ada code
* were made clear to the participants via exercises

requiring modification of previously-written code,

team exercises, and use of previous exer,-ise
results in the team project. These activities were
very successful and gave the participants a good
appreciation of these significant Ada features.
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Some Practical Experience in the organization %~
of a Library of Reuseable Ada* units

Randal Leavitt

LAIOR Data Sciences Ltd., Nepean, Ontario

*Ada is a trademnirk of the US Government, Ada Joint Program Office

*Abstract: b. lead to improvements in our software
developments methods,

This paper summarizes the steps being
taken by one real-time software firm to c. reduce our system development costs,
prepare for the new Ada marketplace. By

*concentrating on the creation of a library d. produce bette- quality systems for our
of reusable software we are beginning to customers, and
use the new methods best suited for Ada
programming. Tool acquisition costs must e. lead to the development of some
be carefully compared with potential long marketable software products.

2 term savings during this transition
period.

It is interesting to note that the very
readable Ada language can contribute to I

PL reduced maintenance costs, but this does
not directly benefit us since we are

0 seldom required to maintain our delivered
systems. The creation of a library will,
however, give us an opportunity to take .

full advantaqe of the maintainability of
9. Ada software. This kind of change may lead

Goals: What We Expect to Achieve to a complete transformation in the way
real-time systems are acquired and

Our company is a relatively small software maintained in the future, with more of the
*engineering firm that develops real-time maintenance work and responsibility for

systems. We take a very competitive correct performance falling on the
approach to the marketplace, maintaining original developer.
our lead position by employing

*exceptionally talented people. We do not
have an excessive amount of money to What We Have Accomplished So Far
invest in capital goods to support our
work (ie, our offices are not the most A library of reusable software can be a
elegant one possible), yet we are very very complicated system. Recognizing this,
much aware that we have to make some we have begun the development of our
sizable expenditures to prepare for the cret lbay a rttpn
coming Ada transformation. Ada will experiment. We expect to continue with

Lrequire a significant amount of "up front" this "build as you go" approach until we
work in order to be successfully used. have a good understanding of our actual

requirements. At that point a thorough
revision or a new beginning may be called

Our situation, therefore, is a typical one for, Consequently, we are adding to our
in the software industry, and we hope to library as fast as possible, responding to
contribute to progressive developments and feedback about suggested improvements, and
also to learn as much as possible by making notes about where we should be

*discussing it openly. headed in the future. This approach to
* library development requires very little

We initial expense, and since it has alred
Wehave decided to create a library of led us to a few mildly surprising

reusable Ada software to focus our Ada conclusions we feel that it is the best .

5.conversion, with the expectation that this strategy to follow at this time.
will:

a. enhance our reputation as experts in We began with perhaps the simplest
*the most advanced forms of software possible definition of a library, namely a

engineering, collection of Ada program unit source

r - %
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files. Our library now includes about future updates and revisions.
twenty-five different units covering:

a. mathematical functions packages, Some Preliminary Decisions

b. complex arithmetic abstract type, The process of actually attempting to put
together a software library forces

c. user interface procedures, decisions to be made. These constitute the ."*- "*

primary lessons learned from our
d. development tools such as protoytping exercise. We are recording

prettyprinters and communications them carefully for later analysis. So far
support programs, they can be summarized as follows: I

e. discrete Fourier transform procedures, a. The library will only contain text S
and files to keep its organization and

maintenance as simple as possible.
f. various utilities such as sorting and Users will take copies of the routines

searching routines, they want and compile them as needed.

b. A database is needed to keep track of
We then decided that each library unit all the relationships between the
must be accompanied by at least one library elements. This ensures that S
demonstration or test program. Such a revisions and updates are properly
program may also require test data files. followed up on throughout the library.
We have now added these to our library as
well, and set up a small database showing c. There must be at least one test program
how these files are related to each other. for each library unit. These tests will
A library such as this very quickly be as self contained as possible so
develops its own complicated internal that simply running or will give a
dependencies. The complex arithmetic clear indication of whether or not the
types, for example, are used in the library is correct.
discrete Fourier transform package, and
the user interface routines appear in many d. A common header block will be used for
of the test programs. every Ada program unit in the library.

The sections in this header will
provide enough information to allow an

We have also written a brief user's guide experienced programmer to use or .
for the library. It lists the library maintain the unit.
contents under various categories,
describes access procedures, and gives the e. Ada project managers will be required
style rules followed while writing the to use the library extensively. They
library entries. Each library unit has a are also expected to identify areas
standard header block, which is also needing enhancements.
explained in the user's guide. We expect
this guide to be just as useful for those f. Contributions to the library will not
making new contributions to the library as be written as part of any particular "-
it is for those drawing on the resource, project's work. There must be no doubt

about the ownership of the library
contents.

The next step was the announcement of a
company policy requiring Ada project g. A database will be used to record who
managers to have an early design review has used the library resources so that -
with the library manager for each project. future updates can be properly
This review will help guarantee that the distributed.
library is used as much as possible, and
that library enhancements will be made to h. Library program units will be written
meet real project work needs. We intend to using the entire Ada language, even
establish the tradition of reuse right though we only have a subset compiler
from the start with our Ada work. at present. Full compilers will soon be

available.

Finally, as one of our accomplishments, we
have recently made our first Ada software Findings Related to Reusable Ada
sale, using our library components to Components
construct the delivered product. Based on
this we are now setting up another In the process of putting together our
database to keep track of which library prototype Ada library we have noted the
units have been drawn out and used. This following interesting points:
will allow us to properly distribute
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a. Ada compilers must eliminate f. A library must be much more than a
unreferenced subprograms, data objects, collection of Ada program units. Test
and unreachable code in executable programs and data, specification
program images. This material has to be documents, and user documentation must
included in library units to provide also be stored. Database facilities are
the needed generality, but often is not needed to keep track of relationships.0
fully used in any single application, between library elements, of users
The lack of this feature in an Ada requiring updates, and of
compiler creates a severe restraint for classifications and categories used to
truly generalized library development, organize the library contents.

b. Library generic units are very
difficult to write. The requirements Future Considerations
are often complex, vague, and
conflicting. Generic units are seldom As we are building our current library we
produced as a by-product of regular are beginning to formulate some ideas
software development since the effort about the ideal system we would like to
required to properly generalize them is have.
usually significant. Since it seems to
be practically impossible to get them
right the first time some process of First of all, our current project is
gradual introduction into the library loading the library from the bottom up.
may be needed. Specialists should be This does not appear to be the most
employed to create usable, reliable, profitable approach. Most programmers can
and well documented generic units. produce low level building blocks quite

easily, often with less effort than it
c. Generic units are also difficult to takes to query a complicated library. What

use, especially when they have many we seem to need is a library loaded from
interrelated parameters. The parameter the top down. We are considering now if
matching rules can be very subtle, this might be feasible using an Ada PDL to .-.

Also, since a generic instantiation document designs which we can store in the
does not show the actual interface (ie, library. These standard designs may
the procedure parameters or the package provide very good starting points for' -.
specification items), instantiated future development work.
units are easily misused. These
problems incline programmers away from
generic units. Ada training courses it is also obvious that the interactions S
should emphasize generic unit use. of our software engineers with the library
Generic unit documentation must include system are similar to those that a
complete examples of instantiations. specialist in any field will have with an

expert system. An expert system front end .''
d. The generic package is the most may be very helpful to both those drawing

complete unit to use as the common from the library, and to those adding to ,
library generic unit. Generic it. It may also be feasible to have the
procedures, for example, cannot library store only very generalized
propogate exceptions to the calling templates which are used to guide the
program in any useful manner. This can output of a particular Ada program
be done if a generic package is tailored to the user's stated
provided to make both the exception and requirements. The potential for " - -
the subprogram names available. Since productivity improvements appears to be "- -
this approach must be taken to very large using these methods.
effectively create generic tasks, it
simplifies the library if all generic B
units are implemented as generic Present day software development
packages. methodologies do not assume that software

reuse is the fundamental operation;
e. Since the instantiation of some generic instead they are based on new development.

units can be troublesome, it seems to This must change if we want our Ada
be a good idea to have some library library to be really beneficial. We have
units which are typical intstantiations already begun the investigation of how to
of existing units. For example, a make these changes.
generic trigonometric functions package
with a floating point type parameter
could be instantiated as another Many of the benefits of a software library
library unit for the standard type can be realized with other programming
FLOAT. This second unit can then be languages as well. Whether we should have
referenced as a simple package. This a different library for each language, or
approach can be used to simplify the one Ada library with automated translators
use of library entries, is currently an open question. Our
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preference would be automated translation, "Automating Software Development: A
but the cost of developing this is beyond Small Example"
our means at present. S. Fickas

Symposium on Application and Assessment
of Automated Software Development Tools.

Formal methods involving proofs of 1983
correctness are too expensive to be
applied on project work. However, the cost "Reusable Software Engineering: Concepts
equation changes if we consider library and Research Directions" -
units which may exist for many years and P. Freeman
which may be distributed to many systems Tutorial on Software Design Techniques
which are very difficult to update. We Fourth Edition
anticipate the need to use much more IEEE Catalogue Number EH0205-5
formal and rigorous methods to build the 1983
solid core of a library.

"Some Practical Experience with a Soft-
ware Quality Assurance Program"

Finally, data communictions must be G.G. Gustafson
included as an important feature of our R.J. Kerr
library service. We must be able to fill Communications of the ACM
up our library from external sources, and Volume 25, Number 1
able to deliver to these sites as well. 1982 S
Without this capability we will not be
able to load our library adequately. The "Contemporary Software Development
principal difficulties in this area are Environments"
those concerned with ownership and W.E. Howden
liabilities. Communications of the ACM,

Volume 25, Number 5

Conclusions 
-198

Our initial attempts to create an Ada
software library have been very exciting
for us. There is good reason to believe
that this project will radically change
the way we do our work in the future,
leading to new methods based on reuse and
requiring much more formalism and
precision. We expect that this will be a
very satisfying environment to work in. On
the other hand, the general lack of demand
for Ada programming up to this point has
made it difficult to justify major efforts
for our library. We have had some minor
successes, such as as initial delivery of .
a program based on library components, but
in general the mood remains tentative.

Author: Randal Leavitt

We expect this situation to change now PRIOR Data Sciences Ltd.
that the Ada compilers have finally 39 Highway 7
arrived. Our response to a strong demand Nepean, Ontario
for Ada software will be based on our Canada S
library and on our policy for software K2H 8R2
reuse. We feel that this is the best way
for a company like ours to participate in Telephone: 613 820-7235
the Ada culture.

Mr. Leavitt is in charge of Ada
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DEBUGGING ADA TASKING PROGRAMS

Robert A. Conti

Digital Equipment Corporation

Symbolic debuggers permit a user to debug The three major sections of this paper,
a compiled program in terms of the the respectively, describe the typical kinds
original source code in which it was of bugs and problems that occur when
written. A symbolic debugger for Ada must programming with Ada tasks, list
also be able to cope with the multiple requirements on the debugger, and describe
threads of execution represented by Ada the debugging commands that aim to satisfy
tasks. This paper describes the typical the requirements.
kinds of bugs that a user of Ada tasks
will encounter and lists a set of
requirements for a symbolic debugger. Typical Ada Task Debugging Problems
Finally, the special commands and features
that have been developed for VAX DEBUG Clearly, it is important that a debugger
(the VAX/VMS (tm) symbolic debugger) are be able to help with the most frequently
presented. occurring bugs. In this section we review

what, in our experience, seem to be the
more frequent kinds of tasking bugs and

sh jw how they generate requirements for
the debugger. Note, we are not faulting
the Ada language in any sense here -- -. -"£

tasking is just another language construct .
with its own characteristic set of bugs, .-

Introduction just as infinite looping is a bug .- .

characteristic of while loops.
VAX DEBUG is the multi-language debugger
that executes under the VAX/VMS operating
system. At the time of this writing, VAX
DEBUG supports the Ada, Pascal, FORTRAN, Deadlocks
COBOL, MACRO, C, PLI, RPG, and BLISS
languages. Support for Ada was Ada tasks can deadlock in many ways. (In
incorporated into the debugger this paper we use the term deadlock
concurrently with the development of the loosely, to mean that one or more tasks of
VAX Ada compiler. Much work had to be the program are waiting forever. Our use -
done because Ada is different in many ways of the term is wider than its usual
from languages that the debugger definition which is restricted to the
previously supported. Special features existence of a "circular wait").
were needed for Ada's tasks, packages, S
subunits, overloaded subprograms, Probably the most common bug when using
attributes, and exceptions. tasking is a deadlock initiated by an

unanticipated exception. Ada rules
This paper discusses only those debugger require that a task that propagates an

features developed to support Ada tasking. unhandled exception must first wait for

-• .--,
r Ada is a registered trademark of the U. S. Government, Ada Joint

Program office.

tm VAX and VMS are trademarks of Digital Equipment Corporation.

The information in this paper is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.
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its dependent tasks, and then must This example points out some Ada-specific
terminate. It is often the case that a debugging needs. First, the termination
reading of the program indicates that the of a task by exception, while "simply
program is deadlock free, but the reader another Ada rule", surely seems to be an
has overlooked the possibility that some unusual event. It would be nice if we

exception can occur at run-time and cause could tell the debugger to let us know if 5
deadlock. this ever happens. Second, at the time of

the deadlock, the program simply stalls

A simple illustration of deadlock due to with TFRMNAL HANDLER terminated, and

unanticipated exception follows. In this BACKGROUND COMPUTE and the caller of

example, one task handles commands from INTERACTIVT SOLUTION in wait states. If

the terminal, and another performs the debugger could show us the state of -

computations in parallel. As the program these tasks (i.e. terminated, waiting,

is written, there appears to be no and waiting, respectively) it would help. S
deadlock. The procedure If the debugger could do more, and show us

INTERACTIVE SOLUTION waits at its end for the detailed reason for each wait,

both tasks -to terminate, The terminal including the name of the entry (waiting
handler initializes for the problem, and for dependents, waiting at accept of

then starts the background compute task by START), that would even be better. It

calling its entry START. After proceeding turns out that satisfying the simple needs

with further work, both tasks terminate of this example goes a long way to aid

and the procedure completes. task debugging.

Unfortunately, if an exception occurs in Another set of deadlocks arises from the
the region labelled "initialize for Ada rule that propagation of an exception
problem", a deadlock will result. If such must wait for dependent tasks.
an exception were to occur,
TERMINALHANDLER would propagate the This is illustrated by the following
exception and then terminate. Task program. In this example, a NUMERIC ERROR
BACKGROUND COMPUTE, however, is programmed exception is raised by the computation
to wait unconditionally at the accept for 3/2, a divide by zero. As in the previous
entry START. The premature termination of example, the exception leads to a deadlock
TERMINAL HANDLER prevents the expected by causing an entry call to be omitted.
call to that entry. Ada rules require

* that a procedure such as procedure THISISMAINPROGRAM is
INTERACTIVE SOLUTION must wait for its -
dependent Tasks to terminate. Thus, if task PARALLEL COMPUTE is S
such an exception were to occur, the entry START;
procedure will wait forever for end;
BACKGROUND COMPUTE to terminate, and
BACKGROUND-COMPUTE will wait forever at X integer;
its accept. Z integer := 0;

procedure INTERACTIVESOLUTION is task body PARALLELCOMPUTE is

begin -,

task TERMINALHANDLER; accept START;
task BACKGROUND COMPUTE is -- ... do work here

entry START; end;
end;

task body TERMINAL HANDLER is begin
begin X := 3/Z; -- raises exception

initialize for problem PARALLELCOMPUTE.START; -
end;

BACKGROUND COMPUTE.START;

talk to the user, etc. What is different in this case is that the
" end; exception never propagates. This is

because Ada rules state that the exception

task body BACKGROUNDCOMPUTE is must wait for the termination of all
. begin dependent tasks before propagating. The

accept START; exception propagation is held up until
-- ... do the work here task PARALLELCOMPUTE terminates. This .. ,

end; example points out a need to have the
debugger show us when a task (in this

begin case, the environment task that is
null; automatically created to call the main

* end; program) is waiting for dependent tasks
because of an exception.
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Another kind of deadlock is associated Again, the debugger should
with errors in calls to an entry which is display entry names when tasks
a member of a family of entries. An entry are suspended at an entry call or

*in an family is used by specifying its accept.
index on the entry call and also on the
accept. If the computations on each side 2. A task not being programmed to

*of the rendezvous produce different terminate. Perhaps the task goes
values, a deadlock will result. The into an infinite loop. By Ada
following fragment illustrates such a rules, the task that is its
deadlock, master cannot terminate.

BASEINDEX :integer 1;Here, about all we can ask the

-- te cal i tas A:debugger to do is show when a
-- th al n ak :task is waiting for its

B.SOME FAMILY(BASEINDEX + 2) (P) dependents and show the current
statement being executed by any

*-- the accept in task B: task.
accept SOMEFAMILY(BASE INDEX + 3) (P)

3. Busy-waiting on a variable used
as a flag that is to be set by a

No rendezvous can occur because the call lower priority task, which never
*is to entry family number 3, but the runs because some higher priority
*accept is for entry family member 4. This task is always ready to execute.
*kind of bug can be hard to detect by This kind of deadlock is a bit

reading the program if the index more "dynamic" than others
calculations are complicated. Therefore, because tasks remain in compute

*another debugging need is the ability to states and don't suspend.
inspect the index value for any task
suspended at an entry call or accept for The debugger should allow a
an entry in a family. running program to be interrupted

asynchronously. It should allow
Another set of problems arises from select one to find out what statement
statements. Run-time calculations can be any given task is currently
specified for the entry indices, when executing. It should also allow
conditions, and delay statements of a changing of priorities so a
select statement. In addition to correction can be implemented and
previously mentioned deadlock because of tried without the need to0
wrong family indices, deadlock can also recompile.
result from a condition being permanently
computed as FALSE. Excessive delays can
result if the delay expressions are other Tasking Problems
incorrect. Ada-specific debugging help is
needed here to make condition values and other kinds of tasking problems are:
delay expressions readily available, non-repeatable execution, races, loss of

access to a task, task starvation, stack
Another problem related to select overflow, and excessive context switching.

*statements is their non-deterministic
*nature. if several accept alternatives Non-repeatable execution can occur if

are open and callers are enqueued on each, tasks in the program execute delay
the choice of which rendezvous to accept statements, or do asynchronous I/O that
is arbitrary (up to the run-time system). depends on some external hardware device,
when a task is waiting at a select, the or if time-slicing [see note below] is

*debugger shouid provide a means of enabled. This can be especially
suspending execution before any statements pronounced while debugging if the
of the chosen accept alternative are execution ot the debugger slows the
executed, program down relative to external events.

The debugger should allow a user to force
Other cases of deadlock arise from: any execution order that might occur

naturally. The user should be able to
1. Entries in a task being called in prevent a task from executing at any time

the wrong order. For example, (ignoring any asynchronous events directed
task A waits forever on a call to at that task, or waiting for events to be
entry ONE, but task B executes an delivered to some other task), and be able
accept for entry TWO. to switch control to any task that is

Note: Time-slicing is not required by the Ada language. VAX Ado~
by default uses FIFO scheduling, and provides a pragma TTMF SLICE
to enable round-robin scheduling and specify the time quantum.
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eligible to execute (allowing the task to statistics such as the total number of
acknowledge the asynchronous event), context switches. Statistics can be used
Combining these capabilities with being both to improve performance and to find
able to execute commands at breakpoints subtle bugs.
seems sufficient to force any desired
execution order that can occur in
practice.

Requirements for the Debugger
A race is the accessing of an object that
is shared between two tasks in the wrong A symbolic debugger for Ada must allow a
order, or by both tasks concurrently, user to both observe and modify program ..
btcause the tasks are not properly behavior. Ideally, to the maximum extent
synchronized. When there is only one feasible, the simple act of observing a
physical processor, a suspected race might program should not also modify its • 4
be verified if a user is able to change behavior.
task priorities while debugging, thereby
causing one task to execute in preference A symbolic debugger must, of course, offer
to the other. Alternatively, commands many other features not directly related
that force explicit task switching and to tasking, such as the ability to display
suspension may be helpful. Another way to source program lines as the program
detect a race is to be able to set a executes, to use names of program objects
"watchpoint" on the shared data. A rather than merely their addresses, to 0
watchpoint is a way for a debugger to be cope with overloaded subprograms, etc.
invoked on any attempt to read or write Here, we shall concentrate only on
the data. The debugger could then show debugging requirements pertaining to Ada
which task was executing at each tasks.
reference.

A proposed set of requirements on a
Loss of access to a task can occur when debugger for Ada tasks follows. The C
one has declared an access type debugger should: •
designating a task. After the program has
assigned an access variable (pointer) to 1. Provide a way to uniquely
point to one task, the program may then identify tasks in debugging
assign it a different value. Ada rules commands that is independent of
state that the task can continue to variable names.
execute even though the access variable
has been reassigned, or the scope 2. Display a detailed reason why a
declaring the access variable has been task is suspended.
left. Clearly, the user needs a way t-
name such tasks on debugging commands To merely show that a task is
independent of the use of program suspended, or to display the
variables. Some unique and universal way program counter is not as useful
of naming tasks is needed, as to give a ,more detailed

reason, such as, "suspereled for
Task starvation can occur when higher an entry call", "suspent*.d for a
priority tasks prevent a lower priority delay", etc.
task from gaining access to the processor
for long periods. This can be detected if 3. Show the name of the entry and
the debugger can find out how much "CPU the index for a task suspended on
time" a given task has received, or a an entry call or accept of an
count indicates how often a given task has entry family.
run. Being able to change prioritie-
would allow the starved task to exe,:ute. 4. Show the state of when

conditions, delay values, entry
When an implementation uses fixed length indices, and entry names for a
stacks for tasks, stack overflow can task waiting at a select
occur. The debugger should display the statement.
amount of stack space currently consumed
by a task and how much total space is 5. Show the amount of stack
available. The debugger should also currently consumed, and the
automatically monitor and report if stack amount of stack space available.
overflow is imminent. Automatically watch for impending

stack overflow. (This applies
Excessive task switching may result from primarily to implementations that
the way the program is designed. This can allocate a fixed amount of space
arise from the improper assignment of for the stack at The time a task
priotities, or specifying too short an is created).
interval for the scheduler time slice.
This illustrates a need to maintain
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6. Provide a way to select, for It must also be possible to
display, a subset of all tasks in disable round-robin scheduling.
the program based on priority and
scheduling state. It is advisable to attempt to

eliminate unnecessary sources of
In some applications, there may non-repeatability within the 0
be hundreds of tasks in a run-time system. -, ---

program. Clearly, an easy way is
needed to determine which tasks 13. Provide a way to invoke the
of a given priority are in the debugger on various unusual
ready state (and thus might take run-time events, such as
control of the processor). It's termination of a task by
also informative to know what unhandled exception.
tasks are terminated, suspended,
etc. There should be a way for the

user to tell the debugger to
7. Provide statistics on the number perform some action when one of

of tasking-related operations these events occurs, such as halt
executed, such as context the program.
switches, entry calls, accepts,
etc. 14. Detect deadlocks when they occur,

or upon demand.
Providing a report on the total
number of context switches can 15. Measure execution progress, such -

help a user learn how as CPU time, in each task.
modifications might increase or
decrease overhead. These numbers
are readily available to the .

tasking run-time system, but very
difficult for the user to obtain Debugging Commands
otherwise.

In attempting to satisfy the above
" 8. Be able to restrict all but a requirements it was necessary to define • ..°...
V. chosen task or set of tasks from only a handful of new commands (plus

the processor. qualifiers) for VAX DEBUG.

Putting tasks "on hold" allows A command SHOW TASK has been defined for
one to debug a task or task set the purpose of observing task states, and
in isolation without interference a command SET TASK has been defined in
from other tasks that might order to modify task states. The existing
change the state of the program, breakpoint and tracepoint commands (SET
or, worse, abort the task being BREAK and SET TRACE) have been modified so %
debugged, that interesting tasking events can invoke

the debugger. (NOTE: A breakpoint
9. Be able to observe and modify any suspends program execution and causes the

variable in any task, at any debugger to prompt the user for debugging
time, commands. A tracepoint merely displays a

message and continues execution. VAX
10. Be able to control the scheduling DEBUG provides numerous additional

discipline (round-robin or FIFO) options, including automatic execution of
while debugging. a command sequence when the event occurs).

11. Allow changing priorities. Preliminary Definitions S

12. Help the user cope with A user must be allowed to examine the
non-repeatability by allowing a variables of a task that is not currently
user to generate all possible executing. To provide such visibility, a
execution orderings, command was defined to allow a user to

make any task the default task for the
It must be possible to: place debugger's commands that observe and
any task on hold, switch control modify vaiiables. This task is called the
to any ready task, set visible task.
breakpoints, and execute
debugging commands at The task which is running on the processor , '.% -
breakpoints. These appear to be is called the active task. When the
sufficient to reproduce any debugger is invoked, the visible task is '.- .
possible natural ordering, made the same as the active task. Using

debugging commands, the user can change
which task is visible (can be observed and
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modified), and which task is active (will substate is the Ada-specific state
execute next), information.

Requirement 1 above points out the need to task object is the name of the task
generate a unique way of referencing a object in the program.
task. To satisfy this, the Ada run-time 0
system increments a counter each time a
task is created by the program. A
construct called a "task ID" is defined by The substate field can assume any one of a
VAX DEBUG. A task ID has the format %TA.iK long list of values. A suffix [exc] and
n, where n is the count. A user can use a [abn] are appended to indicate if the
task ID, as well as a task object name, on state was obtained because of an exception : .

taske deugin command.as o a xcpto
any task debugging command. or abort. The full list of substates and

explanations follows: ....
The debugger has also defined some useful-explantions ollows
task-valued functions. The functions Abnormal Task has been aborted.
%ACTIVETASK, %VISIBLE TASK, and
%CALLER TASK evaluate to the active task, Accept Task is waiting at an
visible task, and the calling task in a accept statement.
rendezvous, respectively. These are
especially useful in conditionally Activating Task is elaborating
executing debugger commands. To its declarative part. S
illustrate, the following command sets a
breakpoint on line 10 such that the Activating tasks Task is waiting for
breakpoint is triggered only when the tasks to finish
executing task is named DRIVER. Without activating.
this feature trying to debug a subprogram
called by hundreds of tasks could be Completed [abn] Task is completed due W1.
pretty tedious! to an abh'rt statement,

SET BREAK %line 10 but not terminated.
WHEN (%ACTIVE TASK = DRIVER)

Completed '(-x×z Task is completed due
to an unhandled ex- '..-.
ception but not

The SHOW TASK Command terminated.

The SHOW TASK command has several Completed Task has completed .
qualifiers. Without qualifiers, it normally.
illustrates the current state of the normally.
visible task, as illustrated in Figure 1. Delay Task is suspended at a

In the display of Figure 1, dlysaeet

* idiate te tskisDependents Task is waiting for
theicative task i dependent tasks to

th ciets.terminate.9

task ID is the unique ID for the Dependents [exc] Task is waiting for
task, dependent tasks

because of an
pri is the task's current unhandled exception.

priority.

Entry call Task is waiting at
hold indicates if the task has an entry call.

been placed on hold.
I/O or AST Task is waiting for ~ 7state is the language-independent I/o completion or

task state. This can assume software interrupt.
the values RUN, READY, SUSP,
TERM, CREA for running, Not yet activated Task is waiting to be
ready, suspended, activated.
terminated, and created. S

SHOW TASK

task id pri hold state !ubstate task object
%TASK 3 7 RUN EXAMPLE.PRODUCER .

Figure 1. The SHOW TASK Display
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Select or delay Task is waiting at a The qualifier /FULL causes more detailed
select statement with information to be displayed, as shown in -'-
delay alternative. Figure 3.

Select or term. Task is waiting at a In Figure 3 we see detailed information
select statement with about the task. Information is displayed 0
terminate alternative, about the task's waiting for a rendezvous,

its type and creation, its task control
Select Task is waiting at a block, and its stack usage. The .'

select statement with rendezvous information satisfies
no else, delay or requirements 3 and 4 regarding the display
terminate alternative, of details about entry indices, delay

values, etc. For example, in Figure 3 we
Shared resource Task is waiting for see that the entries in the select are _ -

some shared resource, named and entry index values are
displayed.

Terminated [abn] Task terminated by
abort. Qualifiers /PRIORITY = n, /STATE = s, and

/HOLD can be used separately or in
Terminated [exc] Task terminated by combination. They restrict the set of

unhandled exception. tasks that will be displayed to only those
that satisfy all these selection criteria. * 4

Terminated Task terminated For example, SHOW
normally. TASK/PRI=7/STATE=READY/NOHOLD, displays

all tasks of priority 7 that are in the
READY state and have not been placed on

A command qualifier /ALL can be used to HOLD (SET TASK/HOLD is discussed later).
obtain a brief display of all tasks ,--.

currently in existence. This is The qualifier /STATISTICS changes the
illustrated in Figure 2. nature of the SHOW TASK display. Instead .

SHOW TASK/ALL

task id pri hold state substate task object
%TASK 1 7 SUSP Dependents 121036
%TASK 2 7 SUSP Select or term. EXAMPLE.WORKER I

* %TASK 3 7 RUN EXAMPLE.PRODUCER

Figure 2. The SHOW TASK/ALL Display

SHOW TASK/FULL %TASK 2

task id pri hold state substate task object
%TASK 2 7 SUSP Select or term. EXAMPLE.WORKER

Awaiting rendezvous at: select with terminate.
The select has 4 arms.
When Alternative, 'VAL(index) Do Part Next Stmt

true PRIORITIZEDWORK(i), 4 0000061E 000006DF
true MORE WORK 00000624 000006DFS 4
false PRIORITIZED WORK(i), 3 0000062A 000006DF
true Terminate

Task type: WORKER
Created at PC: EXAMPLE.%LINE 8
Parent task: %TASK 1
Start PC: EXAMPLE.WORKERSIASK BODY
Task control block: Stack storage (bytes):

Task value: 1104528 RESERVED BYTES: 3072
Entries: 13 TOP GUARD SIZE: 5120
Size: 1598 STORAGE SIZE: 30716

Stack addresses: Bytes in use: 352
Top address: 1155584
Base address: 1186300 Total storage: 40506

Figure 3. The SHOW TASK/FULL Display
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" of displaying the state of a particular variable VARI in task T3 while some
, task, it displays global state unknown task is active, then it restores
. information, most important of which is visibility back to the active task.

the number of context switches that have
been performed. This is illustrated in SET TASK/VISIBLE T3
Figure 4. EXAMINE VARI 0

SET TASK/VISIBLE %ACTIVE TASK
Other qualifiers are as follows: ."

The qualifiers /HOLD and /NOHOLD allow one .-
/TIMESLICE Displays the number of to place any or all tasks on hold. A task l

seconds in the round-robin on hold will not be permitted to run. SET : :
scheduling interval. TASK/HOLD can be used to keep other tasks

from interfering while debugging a
/CALLS Displays the name of each particular task. Examples of its use are:

routine called by the task
and the current line Put all tasks on hold: -
number in that routine. SET TASK/HOLD/ALL

Release only the task numbered 4:
We have shown that the SHOW TASK command SET TASK/NOHOLD %TASK 4
satisfies requirements 2 through 7.

The qualifiers /PRIORITY and /RESTORE
The SET TASK Command complement each other. To illustrate, the

following command sequence sets the
The SET TASK command allows modifications priority of task T to 8 and then restores
of certain attributes of tasks. its natural (declared) priority.

The qualifier /ACTIVE switches the active SET TASK/PRIORITY = 8 T
task (the task that is currently SET TASK/RESTORE T
executing). Like any VAX DEBUG command,
it can be used in conjunction with a The /RESTORE qualifier eliminates the need
breakpoint command. The following command to remember the task's original priority.
illustrates some of the power of VAX
DEBUG. It sets a breakpoint on line 30. Other qualifiers for SET TASK are:
The breakpoint is honored only when the

" active task is Y. If so, a task switch is /ABORT Abort some task
performed (from Y) to T3. /TIME SLICE= t Change the round-robin

time-slice interval; ,
SET BREAK %line 30 a 0 value causes FIFO 4

WHEN (%ACTIVE TASK = Y) scheduling.
DO (SET TASK/ACTIVE T3) ,, * h.

The SET TASK command satifies requirements
The qualifier /VISIBLE is the one SET TASK 8 through 12.

"' command that doesn't really modify the
behavior of the program. This command is
used to make another task visible for

- debugging commands. For example, the
following command sequence examines a

SHOW TASK/STATISTICS *
task statistic.

Entry callb. = 2 Accepts 2 Selects = 1
Tasks activated = 2 Tasks terminated =0
ASTs delivered = 7 Hibernations = 5
Locks tested = 39 Locks that blocked = 12, 30%
Total schedulings = 19 ''°'*"

Due to task activations
Due to suspended entry calls = 2
Due to suspended accepts = 2
Due to suspended selects = 1
Due to waiting for a DELAY = 5
Due to scope exit awaiting dependents = I
Due to delivery of an AST = 7 %

figure 4. The SHOW TASK/STATISTrCS Pisplay
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.7..4.
Commands for Detecting Tasking Events display, and remains in the debugger.

It is desired to invoke the debugger upon SET BREAK/EVENT=EXCEPTIONTERMINATED
detection of events known only to the DO (SHOW TASK) i.
run-time system, such as termination of a --
task by unhandled exception. There are numerous tasking run-time events *

that can be detected. The list of event
One would like to be able to halt the names and definitions appears in table 1.
program as well as pause it and execute
commands. The existing command to halt The /EVENT qualifier satifies requirement
the program is SET BREAK. For example, 13.
SET BREAK %line 10, halts the program
before line 10 is executed. The command
to pause the program is SET TRACE. The 9 4
normal parameters to these commands are Possible Future Commands
program addresses.

Of the requirements list, only "
These commands have been modified by requirements 14 (automatic detection of
adding a /EVENT qualifier. The event deadlocks) and 15 (measure task progress)
qualifier allows the break or trace action have not been met by one of the commands
to occur not when an address is reached, described above. We hope to fill this gap
but when a particular run-time event in the future.
occurs. For example, the following
command causes the debugger to be invoked Deadlock detection can be either
when any task terminates by unhandled continuous or on-demand. With continuous
exception. When the debugger is invoked detection, considerable run-time overhead
by such an event, the command SHOW TASK is is incurred to ensure that a deadlock is ..

executed to display which task is detected as soon as it occurs. With ...

terminating. Since a breakpoint is on-demand detection, a small amount of
recuested, the program halts after the continuous overhead is incurred, but the .

user must specifically request an analysis
for deadlocks.

RENI)LZVOUSEXCEPTION Triggers when an exception begins to
propagate out of a rendezvous.

DEPENDENTSEXCEPTION Triggers when an exception causes a task
to wait for dependent tasks in some
scope.

TERMINATED Triggers when a task is terminating,
whether normally, by abort, or by
exception. J-1 I

EXCEPTION-TERMINATED Triggers when a task is terminating due
to an exception.

ABORTTERMINATED Triggers when a task is terminating due
to an abort.

RUN Triggers when a task is about tc run.

PREEMPTED Triggers when a task is being preempted
from the RUN state.

ACTIVATED Triggers when a task is going to run for
the first time.

SUSPENDED Triggers when a task is about to be
suspended.

READY Triggers when a task has become ready to
run.

TABLE 1. Event Names and definitions -
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Both forms could be implemented within the Acknowledgments
framework outlined earlier. The first
command to follow would invoke the The author would like to acknowledge the
debugger when the next deadlock is contributions of other members of the VAX
detected. The second command would Ada compiler project and the VAX DEBUG
analyze the current program state and project toward this effort.
report all deadlocks.

SET BREAK/EVENT=DEADLOCK

SHOW TASK/DEADLOCK References

Measuring task progress could require a

relatively expensive operation be [] Ada Programming Language, 4
performed at each task switch. To ANSI/MIL-STD-1815A, U.S. Government,
minimize the impact of this monitoring on 10 December 1980.
programs not needing such monitoring, a
command is needed to enable or disable the 121 Developing Ada Programs on VAX/VMS,
monitoring. This could be done via a SET Digital Equipment Corp., Maynard,
TASK/MONITOR=CPU_TIME. If this command Mass., 1985.
were invoked for some task, the elapsed
CPU time would appear in the SHOW TASK [31 VAX Ada Programmer's Run-Time
display. Reference Manual, Digital Equipment

Corp., Maynard, Mass., 1985.

14] VAX Ada Language Reference Manual,
Implementation of the Commands Digital Equipment Corp., Maynard,

Mass., :985.
The run-time cost associated with these
commands has been very small. ..

Much of the information displayed by SHOW
TASK was already embedded in the tasking
run-time system. A few additional
instructions had to be added, for example,
to specify a reason code for a task
5uspension. Most of the overhead, for
example, converting binary to symbolic --
format, and much arithmetic, occurs only
while debugging.

For SET TASK, it was necessary to add some •
tests of a few master flags, that mean
for example, "DEBUG changed some
scheduling info", or "some event is Robert A. Conti is a member of Digital
enabled". Only if the master flag is Equipment Corporations's VAX Ada compiler
found to be set is more detailed code development team. His responsibilities
executed to fully analyze the particular included the implementation of tasking,
situation. task debugging, and general Ada debugging.

Prior to joining Digital, Mr. Conti
worked at Westinghouse Electric
Corporation on software for several

Conclusion military programs, most notably AWACS. He
received the BS in Engineering from Case

This paper has described typical bugs that Western Reserve University, the MS in
occur when writing programs using Ada Electrical Engineering from Johns Hopkins
tasks. A set of requirements for a University, and the MS in Computer Science
debugger of Ada tasks is listed. Finally, from the University of Maryland. He is a
a set of debugging commands to address member of the IEEE and ACM.
these requirements has been described. We
have shown how a few simple commands can The author's address is: Digital 0
add tremendous power in the ability to Equipment Corporation, ZK2-3/N30, 110
debug Ada tasking programs. Spitbrook Rd., Nashua, NH 03062.
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THE ADA* LANGUAGE SYSTEM

Dennis J. Turner

Center for Tactical Computer Systems (CENTACS)
U.S. Army Communications-Electronics Command (CECOM)

Fort Monmouth, New Jersey

The Ada Language System (ALS) is an integrated, amounts of primary and secondary memory and very
rehostable, retargetable and extensible pro- high speed peripheral devices.
gramming environment for the Ada language.
Significant benefits are expected to be derived Support systems typically are comprised of a S
through extensive use of the ALS as a common general purpose commercial mainframe computer, an .-

environment across Army Battlefield Automated assortment of peripheral devices, a vendor
Systems (BASs). This paper provides background supplied operating system and a collection of
on ALS activities to date, current status and software (some vendor supplied, some government
future plans. developed) which programmers use to develop

application software for the target computer. The
support programs, (such as text editors and lan-

Introduction guage translators) which programmers use to
develop applications software, are often referred

A great deal of attention has been given in to as "tools." Just as a carpenter uses a variety
recent years to the growing costs which can be of tools to build a house, a programmer uses a var-
directly associated with the proliferation of iety of (software) tools to design and implement
programming languages and computer hardware application programs.

within Army Battlefield Automated Systems The life cycle costs of a support system primarily
(BASs). However, there is another aspect of are composed of:

BAS proliferation which is considerably less
visible but, is also a source of significant a. The cost of maintaining the vendor supplied
Cost. host computer hardware.

b. Costs for initial licenses and the recurring
Every BAS, whether it includes a large mainframe support costs for vendor supplied software
computer or a deeply embedded microprocessor, has (operating system and tools).
an associated support computer and a set of c. The cost to develop and maintain additional
computer programs which collectively comprise the government required tools.
so-called "support system." The term support
system is something of a misnomer because, while The life cycle costs of "b" and "c" can signifi-
it would seem to refer to a post-deployment cantly exceed those of the mission program,
period, it actually refers to the entire cycle of depending on the extent of the tools and the size
a BAS. and complexity of the application.

Figure I illustrates the relationship between the An Army contractor typically chooses a support
support (or host) computer and the fieldable (or system as a function of the programming language,

* target) computer. Programmers use the support target computer and programming staff experience.
computers to prepare and integrate programs which With little Army constraint imposed on these sel-
will ultimately execute on the target computer. ection factors, it is no wonder that we have found
Program preparation can include text editing, ourselves in a situation where nearly every BAS
language translation, linking, simulation and a has a unique support system associated with it.
variety of other activities including config-
uration management. The separation of activities Even with the advent of the Ada programming lan-
across these systems is dictated by the different guage, there is little reason to expect a signi- S
demands which are placed on the computers. ficant reduction in the proliferation of support
Target computers are designed and configured to systems, even though they may all share an Ada
accomodate the needs of Army field users and of theme. In anticipation of the vast market across
the mission environment. These needs are government, industry and academia, at least 35
typically very different than those of U.S. and 15 foreign initiatives are now underway -.. . .

programmers, who work in a laboratory environment to produce Ada compilers and Ada support tools.
and who require interactive terminals, large Each of these initiatives represents a subst~htial

*Ada is a registered trademark of the DepartmTit of Defense (Ada Joint Program Office) OUSR&E (R&AT).
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amount of software. For the most part, they will Key Characteristics
accomodate only a narrow range of computers and
are considered to be proprietary in nature. In June of 1980, CECOM awarded a contract to
Unless very deliberate steps are taken to con- Softech, Incorporated to develop an Ada Language
strain the choices that can be made for use on System (ALS) which could satisfy three primary
Army systems, it is likely that a large number of goals: reduce the proliferation of support envi-
these very distinct compilers, tools and host ronments for Army BASs; improve the productivity
computers could become associated with Army BAS of programmers; and improve management control "-'-
(see Figure 2). over the software life cycle. ..

In anticipation of this difficulty, the U.S. Army The ALS has several important characteristics that
Communications-Electronics Command (CECOM) set out serve as the basis for meeting these objectives: *

Lo develop a solution. integrated environment, rehostable, retargetable
and extensible.

Each of these characteristics now will be des-
cribed in greater detail.

Integrated Environment
"SUPPORT" ... FIELOABLE" "-' '

The ALS is first and foremost an "environment."

SYSTEM SYSTEM This is a commonly used term which refers to a
support system which consists of a large variety

MANUAL of tools to assist programmers in a wide range of

AUTOATIC activities. Most of the current U.S. and foreign
LINK Ada initiatives seek to develop only a compiler.

Tools beyond support of language translation
typically are not included in these initiatives.

The ALS includes a rich set of powerful tools

ROGRAMS PROGRAMS w1iich support activities such as command process-
ARE PREPARED ARE EXECUTED Ing, data base management, language processing,

AND INTEGRATED ANDTESTED program analysis, configuration control, text pro-
HERE HERE cessing, file operations and other miscellaneous

activities.

Figure I In order to appreciate totally he notion of an in-

tegrated environment, one must have had some ex-
perience with more traditional systems, where tool
design has been approached in a manner that can
best be characterized as ad hoc. In these systems
tools ahve been developed independently of one

RESOURCE another, with no common design philosophy or ob-
REQUIREMENTS U T jectives. As a result, they are difficult to use,PROLIFERATION modify and expand.

Figure 3 illustrates the integrated nature of the
ALS. Here, all tools communicate with the user
through a common and friendly command language

COMMONALITY, processor. "Inter-tool" communication occurs
*m POWERFULTOOLS through a common data base and through standard

interfaces. The result is a cooperating system

of integrated tools which are easy to use and
which can be modified and expanded in a straight-
forward manner.

TIME

RESOURCE ISSUES: * LIMITED FUNDS
. LIMITED POOL OF PEOPLE

0-

Figure 2 . Support environment.

'S.,.. .-
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USERS USERS ..

COMMON

INTERATED 
q ACROSS ALL

COMMAND LANGUAGE "

.. MACHINE 4
""1 cooI-;11- DEPENDENT-

TOOL TOOL .. TOOL *-t ~INTERFACES
2 N

m m ....-1.--LJI HOST
OPERATING OPERATING OPRTN CMUES

SYSTEM SYSTEM S"STE,

COMMON DATA BASE HARWARE ARARE HARDWARE

MACHINE MACHINE MACHINE
12 N

TOOLS TO SUPPORT:
* PROGRAM PREPARATION
* PROGRAM TESTING THE ALS CAN EXECUTE ON ANY (SUITABLE) COMPUTER RE.HOSTABLE

* MANAGEMENT THE HOST IS TRANSPARENT TO THE USER AND TO THE TOOLS

*Figure 3. ALS characteristics: integrated. Figure 4. ALS characteristics: "rehostable."

Rehostable Retargetable

A support environment which can be moved Most support environments are developed to accom-

(transported) from one host computer to another modate a particular target computer or, at most, -

i~ithoatminimum of difficulty is said to be a narrow family of target computers (typically re-

"rehostable." The ALS achieves its rehostabil- presenting the products of the associated vendor).

ity through two primary characteristics. First, A host environment which can accommodate an arbi- -

all of the tools are written in the Ada language trary set of target computers is said to be "retar- "-.

and need only be recompiled for a new host. getable." The ALS is such an environment.

Secondly, as illustrated in Figure 4, the tools
to not communicate directly with the host op- As illustrated in Figure 5, the tools of the ALS

erating system. Instead, all tools communicate can be divided into two categories: those that

with a "kernel" which maps the tool interfaces contain dependencies on the target computer (e.g..

into the services through the underlying operat- compiler, assembler, linker, debugger, etc.) and

ing system. This approach "decouples" the tools those that do not (e.g. text editor, configuration
from any dependency on the operating system or control tools, command processor, etc.).

the host hardware (computer).

The most significant target dependent tool is the .

In order to rehost the ALS, one only needs to Ada compiler itself, The compiler translates Ada

implement a kernel for he new host. The tools source programs into the instructions that are

(which represent the bulk of the system) can be understood by the target computer. In the ALS,

moved without modification. A second advantage the compiler has been deliberately designed to

to this approach is that the underlying operating consist of two primary pieces. The first, called.
system and host hardware is transparent to the the "front-end," performs lexical and syntactic ,. ..-..-.

ALS users. Since users communicate only with ALS analysis and translates the Ada source code into -

tools and not with the host operating system, an intermediate language representation called .'-.%-*-*

they see the same interface, independent of what DIANA. The second piece, called the "back-end," " -

the host may be. takes the DIANA representation (which is indepen-

dent of target computers) and performs semantic

Rehostability is a particularly attractive fea- analysis, optimizations and ultimately produces

ture of the ALS because it can be used to accom- a program which can be executed on the desired
modate concerns for hardware competition and for target computer.
hardware technology insertion.

Only the back-end of the compiler contains target

computer dependencies. With this approach, it is

possible to associate a single front-end with O

multiple back-ends, where each back-end is tailor-

ed to the characteristic of a particular target - .

machine.

In addition to the basic structure of the compiler, ~
all the target dependent tools have been carefully *.

designed to isolate those dependencies and to

place them in tables (as data) rather than in

-.:-,.-.- .
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algorithms (as code). System Administrator's course and a textbook, are
also being produced.

The design approach, taken in the ALS for retar-
geting, makes it possible to accommodate an arbi- One of the most significant statistics that can be
trary number of target computers, This is a nec- associated with the system is the fact that it
essary characteristic if the ALS is to succeed as currently consists of over 500,000 lines of source
a common environment, code. This puts it "on par" with the softwareacommonenvironmen. contained in some of the Army's major BASs. The

size of the ALS is one of the more important rea-

TARGET sons that the Army must begin to control the pro-
INTPENDENT COMPUTER liferation of support environments. We simply
TOOLS cannot afford to manage an arbitrary number of

1 them.

USERS - - - - -TARGET
TGT 1 COMPUTER Figure 7 illustrates the categories of tools which

TARGET T- will exist within the ALS. There are currently
U DEPENDENT TGT 2 some 75 distinct tools distributed across these

S TOOL.S ----
categories.

TGT N COMPUTER

Figure 5. ALS characteristics: retargetable.

Extensible i-",i

Extensibility, as depicted in Figure 6, refers
to the ability of an environment to accept ad-
ditonal tools as new requirements are identified
and as technology advances. The extensible na-
ture of the ALS is derived from the standard
interfaces within which the tools function.
Given a clear definition of how a tool must com-
municate with the user, another tool or the ker-
nel (recall that the kernel maps tool require-
ments into the services provided by the host op- .2
erating system), it is a very straightforward
matter to either modify a tool or add a new one.

In this day of rapid technology advances, no sup-
port environment can hope to survive for very
long if it cannot keep pace with those advances.

The extensible nature of the ALS has been de-
signed to meet this need.

-- - - ,I - -Figure 7. ALS components. .
I The ALS is currently hosted on a Digital Equipment

EXISTING NEW Corporation (DEC) VAX-11/780 with the VMS operat-

TOLSTOOL S EXTENSIBLE ing system. The version of the compiler which is
targetted to the host was validated by the Ada
Joint Program Office (AJPO) in December 1984. Con-

tinuing development activities will produce targets
for the Intel iAPX286 and a "bare" (no resident

operating system) VAX by early 1986. Plans are
*INTERFACE REOUIREMENTS WELL DEFINED also underway to retarget the ALS to the Motorola
'CAN BE WRITTEN EITHER IN ADA OR (POWERFUL) COMMAND 68000 family. That effort is expected to be ini-
LANGUAGE tiated before the end of 1985.

Figure 6. ALS characteristics: extensible. In the summer of 1983, an ALS Early Release Pro-
gram was initiated to help insure the ultimate

Recent Activities and Future Plans success of the product. Advertisements through -7
the Commerce Business Daily offered an interim

The ALS is being developed to provide a compre- version of the ALS, including source code and docu-

hensive set of design and user documentation, in mentation, to U.S. industry in exchange for com-

accordance with MIL-STDs 483, 490 and 1679. The mitments to pursue rehosting and/or retargeting %

system is government owned and written in Ada; activities. The response to this program was far
Ada also has been used as a Program Design and greater than expected. Approximately 60 U.S.
Language (PDL). Training material, to include a companies are participating in the program. 0 4
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The advantages of the participating companies are a. Translated application programs will execute
obvious: they have received a significant amount with a different performance characteristic.
of software at no cost and have an early oppor- b. Previously nonexistent errors will Appear
tunity to tailor it to their products. In this (because the source programs were designed to - " -
way they can establish a competitive position for accomodate the errors of only the first compiler).
future Ada based contracts.

For these reasons a transition from one compiler r... 4 
, 

W I

There are several benefits for the Army. First, to another after any major test could negate the
the Early Release Program will cause new hosts and conclusions derived from the test. An attempt to
targets to appear sooner than they would have transition prior to testing defeats the whole pur-

_ otherwise. This can only help to accelerate the pose of pursuing a transition.
use of Ada in Army BASs. Secondly, it will estab-
lish a competiti.e base for future ALS extension A technical solution to this problem does not
activities. Thirdly, it is likely to focus some currently exist. However, if certain technology

• industry IR&D expenditures on the ALS. advances were to occur, the tools which influence
the performance of Army mission software could be

There are a nuwber of near-term activities which should approached in one of two ways:
be pursued to enhance the recently validated base-
line system. First is the commitment which the a. One set which could "plug in" to any vendor's
Army has made to continued improvement of the environment.
performance of the system. Second is the need for b. One set which could be accessed from any
continued development of new hosts and targets for vendor's environment.

* the ALS. Third, a standard Ada program library
needs to be developed and managed. This library Until technology advances enough to provide these
will provide the mechanism for promoting the reuse solutions, it would appear that the only affordable
of common Ada software. Another benefit from such strategy is one which encourages the ALS for dev-
a library would be that it could serve as a elopment and support of Army BAS. When sufficient
proving ground for functions (which have been justification exists, other environments could also
monitored for stability and popularity) that are be used but the preference would be clearly for the
candidates for implementation in hardware (e.g. ALS.
Very High Scale Integrated Circuits). Successful
establishment of such an Ada package library in- Request for Copies of the ALS
volves both technical issues (how to specify such - -
programs) and business concerns (how to motivate Request for copies of the Ada Language System,
contractors to reuse software). documentation or any of the Ada or ALS training

material developed at CECOM should be directed to:
Other needs include:

Commander, U.S. Army CECOM

a. the development of a more comprehensive set ATTN: AMSEL-TCS-ADA
of environment tests; Fort Monmouth, NJ 07703-5204

b. the automation of training material;
c. the incorporation of intelligent work Summary

stations; and This paper has focused on the software support
d. technology to support distributed host and environments which are used to develop and main-

target considerations, tain computer programs in Army BASs. Considerable
proliferation and unnecessary costs have been
incurred from past practices. In order to promote

a greater degree of convergence in the future, the
An ideal strategy for the ALS would be one in U.S. Army CECOM is developing the ALS.
which industry would be free to use any Ada
support environment for BAS development purposes Technology advances are required before it will
and then transition to the ALS for the post be possible to exchange software across dissimilar
deployment period. This would maximize compe- support environments. Until those advances occur,
tition for development and still provide a common the ALS is expected to become a common environment
and affordable post deployment environment, where across Army systems.
the impact of proliferation is felt the most. The
obstacle to achieving this strategy is subtle but Biographical Sketch
extremely important.

Mr. Dennis Turner holds BSEE and MSEE degrees from
The difficulty has to do with the Ada compiler and Monmouth College, West Long Branch, New Jersey.
other language processing tools which influence He has been a member of the U.S. Army -
the performance characteristics of programs which Communications-Electronics Command for twelve .-. -
ultimately execute in the Army mission environment. years and is currently the Chief of the Software
No two compilers translate a given source program Technology Development Division within the Center
in the same way. Further, no compiler is error for Tactical Computer Systems.
free, and each compiler contains a different set Mr. Turner has held industrial positions with "- . '"
of errors. It should not be difficult to see that DIVA Incorporated, Electronics Associates h ,.

-

a transition from one compiler to another will Incorporated, and Frequency Engineering S
cause at least two problems: Laboratories.
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ADA IMPLEMENTATION IN A
NON-ADA ENVIRONMENT

J. C. Helm T.E.Cook

Ford Aerospace & Ford Aerospace &
Communications Corporation Communications Corporation

ABSTRACT The Structured English method uses one of three basic
types of statements to reach a decision. First, the Sequence

At NASA's ,Johnson Space Center, existing software structure is a series of single steps or actions necessary to reach a
systems containing millions of lines of code are planned for decision. Second, the Decision structure is used when two or
continued use in projects that span the next decade. The more actions can occur depending on values specified for specific
software systems and tool sets that are under configuration conditions. Third, the Iteration structure is used when certain
control, are proven, reliable, and operable. For NASA, recovery activities are repeated while a given condition exists or until the
of as many software systems as possible appears to be cost condition occurs.
effective. Since Ada is mandated by the Department of Defense
as the future language, and due to Ada's portability and life cycle The decision analysis strategy and the decision matrix in

*cost reduction, it is being considered as a language for particular was chosen because it identifies existing software and
modification to existing software systems. hardware conditions and suggests actions to be taken based on

-. the conditions. The decision matrix establishes a decision
criteria based on the actions and incorporates all the conditions-
to form a decision rule.

D. B. Baker developed an Ada Decision Matrix comprised
of two parts, a worksheet, "Project Risk Potential in the Use of
Ada", and a "Risk Priorities Matrix" (Reference 2). The decision

INTRODUCTION matrix addressed three risk areas when considering the use of
Ada for mission critical software: technical, acquisition and

This paper investigates the feasibility of using Ada and economic.
newly developed Ada packages in existing non-Ada software0
environments. An existing group of software environments was The decision matrix concept developed fur this paper
identified. From these environments a feasibility criteria for contains rows and columns that show the decision parameters
implementing Ada code in a non-Ada environment were and associated action statements. The action statements
determined. The criteria consist of aset of parameters that were indicate selections to make when certain conditions exist. The
used to develop metrics. The metrics provided management with matrix also contains action values and weights applied to the .-

an Ada Decision Matrix to use in determining if new modules action statements. A decision rule is formed from the action
planned for integration into an existing non-Ada environment values to establish a decision criteria.
should be written in Ada.

To build the decision matrix the following steps were
Further, this paper demonstrates the need for interfacing taken:

Ada packages into existing non-Ada environments, which should
result in interface or linkage mechanisms being provided as a I) Determine the most relevant factors to be considered, that
part of the standard Ada tool set. The paper analyzes the is, identify the condition statements for the decision .

interface mechanisms required for a selected software parameters.
environment.

2) Determine the most feasible steps or activities that apply
TECHNICAL APPROACH to each statement. These form the action statements.

A systems analysis approach was taken to identify a set of 3) Study the combination of action statements for each
*decision parameters and establish a decision criteria. The condition and assign appropriate weight.

particular decision analysis tool applied was the decision table or
matrix (Reference 7). Two additional design concepts that were 4) Fill in the matrix with possible action statements
investigated before deciding on the decision matrix were the
I0ecision Tree and Structured E'nglish methods. 5) Apply a rule with assumptions,

The D~ecision Tree method diagrams conditions and
* actions seqluentially showing the relationship and permissible
* ~action of each condition. .
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The decision matrix shown in figure I contains the ADA DECISION MATRIX

condition statements, action statements, action values, and
decision weights The condition statement section identifies the A systems analysis methodology using a decision matrix
relevant decision parameters The action statement lists a set of strategy was developed. To construct the matrix six NASA

events or selections that exist for each condition statement. The software environments were identified. Experts from each

action values specify a range of choices and assigned weights environment were interviewed and an on-site inspection made

that apply to each action statement for a condition. The decision Using the gathered information, a set of 12 decision parameters x
weight column is filled in based on the value chosen from the was established and used to construct the condition statements

action statement list, for the decision matrix. The decision parameter, . el.ctd, were "

* Existance of a validated Ada compihfir to pr(d0(c1, target -.

code

DFEi'Ei4 N DF(ISION CRITERA D Coupling and cohein .I , .ting .- ftm.r, .,,it rnmim nt

PAPAMF-TEP WEIGHTS

ACTION VALUES di 0 Efficiencv of compliler prodiu d ,d i) ,t . .I tim em

environment

CONDITION Proven reliabili . 4 1 f h, - ,p. 'o T i . ,'t are

STATEMENTS ACTION STATEMENTS environments "

* Adaptability ofthe,, n-'im ,:

- - -_-_-_-_-_ Remaining software c ,

WEIGHT SUMMATION
________ * independlence ofthi- oft.arv Atdi -i

Figure 1. Ada Decision Matrix - Form * Potential reusabilit v ofth. ,ftirv -

- Cost effectiveness of retraining

A decision rule is developed from the decision weight I Interface mechanisms
column The formula for the decision is:

* Necessary or desired language features

I n
A= , d, 0 Other cost considerations

nxw i•
Each condition is further discussed to evaluate and clarify

where n number of decision parameters (12) its potential contribution to the action statements and the
decision rule.

w = normalization weight factor (10)
A major concern was the existance oi a validated Ada

d = decision weights compiler to produce target code. Several validated Ada
compilers now exist that will allow formatting and transferring

The decision rule plot is shown in Figure 2. Ada program files from a host computer to a target compatible -
computer. This will not be a future concern due to the effort

An assumption is if one or more of the decisions is zero, being expended by software vendors, however it must be
automatically reject Ada. researched.

The coupling and cohesion was a concern to existing
FORTRAN software environments. Ada with its strong typing,

ADA DECISION abstraction, generic definitions and seperate compilation will
- simplify the previous problems encountered with module

DEFINITE cohesion and modules coupled by common or global variables.
Coupling is defined here as a measure of the strength of

POSSIBLE interconnection between one module and another. Common
environment coupling is when two or more modules interact with
a common data environment. Cohesion is the degree of

NO_ functional relatedness of processing elements within a single
0.0 0.5 1.0 module. The seven levels of cohesion are coincidental, logical, S

temporal, procedural, com municationalI, seq1 uent ial, and
functional (Reference 8). For existing software modules that a-c
highly coupled it will he difficult to integrate new Ada nmodult

Also, if the existing software has ni identifiable cohesive form,
Figure 2. Decision Rule Plot integrating an Ada nodule would not be practical

8n

"i: 88 Annual National Conference on Ada Technology 1985 ,O

i0

......... ......................... . .. ' .- ..-...............



RD-RI64 338 PROCEEDINGS OF THE ANNUAL NATIONAL CONFERENCE ON ROR 2/3
(TRADEMARK) TECHNOLO.. (U) ARMY
COMMUNICTIONS-ELECTRONICS COMMAND FORT MONMOUITH NJ

UNCLASSIFIED CENT .. 1985 F/G 9/2 N

mohmhhmmoEmiI



-

iunnn1.0 Lu

L,.- L3 2

"I..

111 A. 28 .02

"% 

,

1.4

MICROCOPY RESOLUTION TEST CHART

-T'NAt BJP'" ~ "NDADS-196 A



In a real time environment analysis must be performed on The Object Importer is used to bring into the Ada

the Ada compiled code to determine if the compiled code would development environment binary modules produced by other ...
degrade the efficiency of the computer. The following equation languages. FORTRAN 77 is probably the only language
could be used: considered at this time. The Linker combines Ada-binary with

Libraries and Runtime Support Packages to create Ada Program
Files. The Exporter tools are responsible for formatting and 0 4

Cmx Ce + E < 100% U transferring Ada Program Files from the host environment to -

the target environment.where 
,'"" .

There are no standard library packages defined for Ada
Cm =Current machine utilization as a percent the other than those given in the language reference manual * - ,*" ia,

machine is utilized for non-Ada (Reference 1. Predefined packages must be supplied for
standard math functions, statistical packages and common

Ce =Compiler efficiency, a factor computed between Ada abstract data types. Special standard math packages will be 4
and non-Ada required for particular applications similiar to scientific -if

subroutine packages. For avionics applications matrix and
E = Percent of CPU required for future expansion quaternion math routines will need to be developed. .. ,

U = Central processing unit utilization I/0 packages are provided by means of predefined
packages (chapter 14, Reference 1). The generic packages
SEQUENTIAL_10 and DIRECT_10 define 1/O operations

Even though validated Ada compilers exist, the validation applicable to files containing elements of a given type. Text I/O
process does not prove the reliability of the compiler. The are supplied in the package TEXT_10. The package
compiler could compile code that contains faults that go IOEXCEPTIONS defines the exceptions needed by the above
undetected during testing. Therefore, for life critical software three packages. A package LOW LEVEL_IO is provided for - - -
environments the decision to use Ada should be based on its past direct control of peripheral devices.
performance

4 For existing software systems, the remaining software life
Careful consideration must be given to the adaptability of cycle must be considered. Large software systems, with no

the existing tool sets or a transition to Ada tools before making foreseeable need to upgrade, should be left intact and maintained
the decision to implement Ada. There are three catagories of tool until they become obsolete and can be phased out. Ada should be '
sets most vendors have or will be developing The three sets are considered when the additional cost to implement in Ada is less
data base control, application, and target development tools, than the life cycle cost savings over the remainder of an existing

project.
The Data Base Control Tools are divided into three areas,

the Data Base Manager (DBM), the Configuration Control Softwareforlargesystemsiscontinuouslychangingdueto " " "
Management (CCM), and the Librarian. The UHM predeines design changes either in hardware or software. For independent a
data base premitives and allows definition of user premitives. It software modifications, Ada permits program units to be
also provides services for creating, accessing, modifying, subdivided into units that can be modified, coded,checked out,
relating, and deleting all Ada development environment 1ADE) integrated, and documented (Reference 3). The Ada software
data base objectives The CCM provides control over the modifications must conform to the basic program units %I

manipulation of AI)E data base objects, including archiving and independent of the software in the system. Otherwise further
revision control services. The Librarian is responsible for consideration must be given to the logical grouping and the .
controlling the logical grouping of objects comprising Ada library heirarchial compilation,
units and subunits, as well as controlling access to those objects.

When a software package has a high po'ential for
Application development tools include the Editor, reusability beyond the current project, it is a candidate for Ada, ...

Formatter, Pretty Printer, File Maintainer, and Debugger. The even though it might not be cost efficient on the current project.
Editor is used by programmers to enter Ada source text, as well This becomes a cost saving factor realized on future projects due
as other textual materials; it must be capable of Ada-indenting to DOD's commitment, the language's portability and
and format control. The Formatter processes text files and maintainability
reformats them into documentation files. The Pretty Printer
prints Ada programs in a logical Ada format and highlights Ada Since Ada is the language of the future, it will be cost S 4
reserve words, etc. The File Maintainer allows comparisons of effective to train in Ada tReference 4). The initial
object programs; text files and typeless files can each be implementation of Ada will require a substantial investment in
compared. The Debugger provides a symbolic debugging facility training This is due to Ada's programming language strength,
to aid in testing Ada application programs potential as a development tool, and its maintenance - - -

requirements Personnel should he trained at levels compatihh r
Target development tools are configured to support with their level of involvement Five possible levels are for

specific target machines The tools include the Ada compilers managers, support personnel, basic, intermediate and system O
themselves, Runtime Support Packages, Assemblers. Object software engineers IReference A)
linkers, and Exporters The Ada compilers with unique rode ,.. .

generators will (eventually) be available for target (P's A The Ada vendors have developed object importers to .
unique Runtime Support Package must be , ipplivd for each import non Ada c(de into Ada Very few have provided for Ada
target environment Each target .Ii require, it., own to be called by other languages, handle exceptions and share
Assembler The assembler must he available, a, .i cross data with non Ada code through parameter arguments calls.
development tool also global variables or common blocks One vendor. Digital %
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Equipment Company, using VMS operating system, has The decision criteria called other cost considerations
*provided these capabilities. The DEC VAX Ada conforms to the includes, software design specifications, coding specifications,
*VAX calling standards, which provides the ability to call and be software testing, software design review, software configuration

called by code written in other languages. VAX Ads is also ahle control and deliverable documentation.
to handle exceptions from non-Ada code, generate exceptions to
be handled by non-Ada code, and share data with non-Ada code The software design specification should address the use of04
through global variables and common blocks (psects). Ada as a programming design language (PDL), the best way to J

package systems, subsystems, and guidelines for module
Telesoft, another Ada vendor, supplies a system interface composition. 5,

program. The program allows an experienced programmer to
* interface between Telesoft Ada and another language based on Coding specifications and coding style guides will be .n 5

the VAX operating system. Special modifications must be made required to insure that the delivered code is readable and ~
to the interface routine. The routine must be recompiled and maintainable.
linked with the assembler runtime support package.-

Software testing becomes a factor since Ada encourages -

The decision to develop a module in Ada must be based on separate module development, compilation and independent ~
the host and target computer, the operating system and the Ada testing. The module, package, subsystem and system level -

compiler vendor. In all probability a system level interface software test hierarchy becomes a time phase factor for
mechanism will have to be developed, integrated testing.

Two important issues concerning necessary or desired Software design reviews will require engineers to be
language features are programming methodology and software knowledgeable in Ada so they can analyze code specifications for
engineering (Reference 5). Programming methodology is their area of expertise
concerned with the structured programming, program
verification, information hiding and hardware representation. As compilers are upgraded the question of placing
Software engineering is concerned with the issue of large system software under configuration control becomes important. A
construction and maintenance Ada was designed to support and criteria must be established to determine when a compiler and
incorporate both of these issues, an Ada tool set are sufficient to begin full-scale development.

6p

ADA DECISION CRITERIA
DSEC IS ION
PARA5METERS __T _ GOOD FAIR__ WEAK UNACCEPTABLE DEC I sin"

The exIsiunce of a aldated Ada Cow, iler exists for Host and Ta'gei Cmiler exists for Target Compiler "ot validated for either-
cou. Ily to pr-oduce Tar-get Code computer. Roth operating systems comuter and Nest however both target/hutt compute,.

?The (cotin9 and cohesion of to.Ii Iail meopl foul ~ou pling and cohesion of modules Existing software highly coopled or
Exsin of-reE0rnens cohesive and compoents can be resolved with modificati ons modules ame not cohesive.

1.-ea~m .ionette C Tpied c ; is efficient, ivns If COW ied code iffficiet nhsisiedoe rwxon wost biut Isefficirncy of the code the compiter real time, on target computer and com"tible with target but is not vol trge t efficient.
producrs all Ions for expansion- efficient doesn't allow for expan-

i. ~ for lif ctcaSooae Fst performance has proven the The compiled code is still In a The compiled code has not been
tnvironments the psooen reliability compiled code to be fault free, test and checkout Phase. To ful 'ted or us s tested and Isww
of the comepiler (S yearsl sears valid ,on critical, noyeliable . U less.. then 1 er 4

6The adotablity of the existing The following toot sets exist: Sam Of the toot set% are In the tools sets hove been
-Tool Set Data Base Control. Appilication ptace or am -nder development. identified and so exist or

_____ Devetopmnt,_Target Deelomet _________________ planned._____________ 4
6. The renamin Soft-are Life Cycle Additional cost to implement Ada Is Ada ImpleefA66tov and LCC sowing :ost to implement In Adla greater

less than Life cycle cost sowing are equivalent. then LCC toning foe reminider of
ver "Wminde, Of existing Froject. si~gs~iet

I.IndePendence of the Softoesre Modification dinide In to program flodificativi reqoire Improvisions piificatitos are very difficult to
Hoifitinunits for coding. checkout, to be devisibte into program itegrate part of Into existing

integrition and docuamentation. units. ro7m Is

P, Potential Reusability of the Reosabte beyond current project. Suftore might be reusable bat has oftwore wilt not be ree..
so ft .81e not bees identified.

- 0._4 Cost iecoeesoRtrnng Adequate reSoarces aoitfobe Limited resurces anailable to reetlf ylei hr n

poctliecyctjuife traie number of key Individuals esources not available.
trainingq effort, for project.

-0 i ntorcorihhansn Selected computer. compiler and Interface mechaniisms can be 10pronisions ovalblfu
operating System hone interface deneloped or work aroundts nterfacing. Talfo

tehanisms. established.
1t. Nec essary or Desired Language Supports bath Progra.Ing Hoed either programming anguages features not supported.

Features Methodology and Software methodology or softor
Engineering, engineering.

* IT~~~1 Other Cost Considerations -fsigo. Cost consideration in these areas These conditions are maria _ Juqrimatodcudrsit
Cod ,nI tes ti ,g. DPsq Aeio are miOr impa ct.n impacts. fs fnain
Config. Confent. Tixliver~hlo
Doc umeints

WEIGHT SUMMNATION

Figure 3. Ada Decision Matrix
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- Well written Ada code will not in all likelyhood meet REFERENCES
deliverable documentation standards. Therefore the questions
left unanswered are what additional documentation will be I "Ada Progamming Language," Department of
required and will module packaging provide a system overview Defense, Washington, D.C., ANSI/MIL-STD 1815A-
of systems and subsystems. 1983

Using the twelve decision parameters a subjective set of 2. Baker, D. B., "Ada Decision Matrix,"The Aerospace , _
action statements was developed to produce a prototype Ada Corporation, El Segundo, CA, March 23, 1984. %
Decision Matrix shown in Figure 3.

3. Barnes, J. G. P., "Programming in Ada," Addison-, . "*
An example set of decision weights was applied to the Wesley, Massachusetts, 1981.

matrix to show how a decision criteria would evolve. Applying Irr
the decision rule, Figure 2, the value .66 indicates Ada is the 4 Blake, G. A., "Ada Implementation Plan for Deputy
acceptable choice. A future study will be to validate the FOR SIMULATORS (ASD/YW),*Wright-Patterson .4
prototype matrix using the original software experts. Their AFB, OH,January 16,1984.
independent responses will be combined to justify a decision.

5. Bouch, G., "Software Engineering with Ada," The
CONCLUSION Benjamin/Cummings Publishing Co., 1983

This paper investigated the feasibility of using Ada in 6. llabermann, A. N., Perry, D. E.. "Ada for
non-Ada environments. A systems analysis approach was taken Experienced Programmers," Addison- Wesley,
to develop a decision criteria. An Ada decision matrix and Massachusetts, 1983.
decision rule was developed. The Ads decision matrix relates
conditions, which are the decision parameters, and actions to 7. Senn, J. A., "Analysis and Design of Information
establish a decision rule. The decision rule incorporates all the Systems," McGraw-Hill Book Co., New York, 1984.
conditions that must he satisfied for a related set of actions The
paper also exposes the need for Ada interface or linkage 8 Yourdon, Edward and Larry L. Constantine,
mechanisms as one of the decision parameters. "Structured Design," Prentice-Hall, Englewood

Cliffs, NJ, 1979. ""
"
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General Dynamics Ada-based Design Language"0

Thomas S. Radi, Ph.D

General Dynamics/Pomona Division

Abstract . .: er t o, orce contractors to oet a
T"'is riaer describes 'r Prorse :en:r readstar, Or, USino Ada. the government has

a 4. -h based on a lanQLaQe. the :e3 ,n tz require the use of an Ada FDL in
1e-er a [,namics A Design Lancriade '%e Ir latest heguests for Froposal. These

&:-:L and how I _e dec to be U.seiJ I' -eguirements do not specity which Ada/POL to
* 3,p;ort of te- :-cciolineg -:+twa'e use, how to use it. or what fore the design
e eo ent pproach ethodoloov at the sro ld ta Ie after using it. This lack 0f

Fcinon C II ,I=or o A-- vrvl [,nraics. -da definition is understandable since no -

* rY - e cr,5 t- c_ e _d to deline tie ,ce 'ato standard vet etists.

e + the solut I . "Quasi-freefor,
5 o' .r i n L arage 1 is used to Several Questions arise naturally when we

-he -, "e os iQr, rtert. he alacr I t loo at the situation:
f'tfl level thar

e de. The Ada par 7. n MdaFDL is What causes all this enthusiasm to use Ada as

--e t'e :roram structvhe and to a Lesion Language-
. .. e - o . The PDL r;rt ot at-

_ed W e define the pro. ! unit z what is the real advantage of using an
... the prOo uni t Ada OL" '

Are ail Ada F[,Ls just as good, or is any one

I conimert ccoatible s, nt a. r the better'
; tionS. 'he design intent Is

erret 1? .r the +Inai source code. therebv Let me try to answe, some of these questions. *21
m . -' ' e maintenar,ce enhancement tasf But before I do, let me insert one caveat

c:,ienatior vodate task a little that means let me hedqe my answer). I am

e- , oressir j only vm opinion, and not the

position or opinion of the General Dynamics * a---
-0' twue to:. the ;LADL processor, has Corporation. Oh yes. one other point; mV

b.,een Ie.ecPed to assist the design team in opirion is very sound.

5o-,' de.elocment. The GDADL processor - "

:p ab:I i ties are br;e+v described. What causes all this enthusiasm to use Ada as

a Design Language?

Introduction The answer is very simply - Ada.
t
hee 'as been a oood deal of interest.

recert,, in the Ada language. especially in If there were no Ada. there would be no great * I
the area :t using Ada as a d, language. desire to use Ada as a design language. This

ze'era, oro ani:ations. no . the IEEE answer is not as flippant as it may at first

sponscred. -da as a PL wor i ng group, and appear. The opal for those advocating the use

the ;G-ja formerIv AdaTECL supported, of Ada as a design language is to produce

:esiar Language worfIng groups have been 'good Ada designers" and good Ada designs.

formed it, order to address that verv Issue.

Be-era .,vramics has been intlmately involved

ir both the IEEE and SIGAda efforts. .

*,a.-4h.,-.

' ;oo$" - .°c
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The most effect i e means ot croducino those Sener1 L,nanics "da baseO Iesion Lanua e

oood desiarers is to start uslnc the concet't. ,GAfL i a:. 'In. G6'AI L wL1 corn orn ' a t ',e

found i, the ;da langagt e as earlI, as IEEE Ada rIL re:cannended oract:ce tor tre

possible in the current software de-elopmert de.elopment ot -ja-bAse: Prcram Desion

ccle. Prooram Desion Languages, when LanQganes [I]. The laioLans itsel. '3 ,bL, '

p-operl used. proide an excellent ,ehicle would be onI . ot minor interest if a
for con~eina software designs in a .--cessor dii not e st in order to proside .. -

consistent manner. Mn Ada-based Design the desiQn aids we rave ccme to e pect from

Landuage has the additional benefit of Prcoram Lesicn Langueae processors st :h as

forcing designers to use the Ada constructs Caine. Farber. and 3crdon s FDL '1 I I and

and ;eatures. such as strong typing, Henr fleine s SDOL '_]. While it is possible

paclaaes. and tasks early' in tie design to design in Ada usinG onl / GDAE'L, :.e. --
hase. without processing the design usino An

a. tomated tool * such a tool provides man" .

bene-its to the designer.

What is the real advantage of using an

Ada/PDL? F DL processor allows the desior team to

produce reports which aid them in checifino " .". -.

The advantaoe of usino an AdaPDL is learning the vaiity and ccnsistencv ct the desion.

row to use Ada to desion oood software. The These design reports pro.ide the reade with

idea. for the present, is to force our an up to date Ziew of the le.ed cf desid ..

desioners to use what some hae labelled "the refinement and detail. In other words, the

Ada mirdset" when desiQninQ our sottware PDL processor pro.ides a design disclosure.

s stes. in toe future, once we all are

familiar with Ada. Ada-based Desion lanouanes Table I is a list of some of toe 4eat',res of ,

will offer the additionai benefit of the GDADL processor, as well as a list of the

proidino an e.ceilent means o, Communicatino reports which the user ma. reouest to Le

bctn the structLre of the program and the aenerated bt, the GDA[L processor. w.

alucrithms ttat describe the prcram control.

t Ilow.

Are all Ada/PDLs Just as good, or is any one

better?

The lack o+ a standard for the Ada /F'EL is s

regarded in some quarters as a cause for

concern. Mv own opinion is that until a

standard set o Quildelines are developed and

aporoed. an -da PnL should be considered to

be acceptable if it clearl conveys the

desioner s intent. Remenber the purpose of a

OLL is to -or,u _te a solution and to

communicate the so1Ltion at a higher level of

abstraction than lines of code.

Of course, in FDLs as in anything else there

is acceptable and there is acceptable! Let me

paraphrase George Orwell s Animal Farm, "All

PDLs are equal. but some are more equal than , " . C

others." The General Dynamics Ada-based

Design Language (GDADL' fits into the latter

category.

SDADL incorporates features from existing

The General Dynamics Pomona Division and Data

Systems Division are finali.ing the

development of an "Ada/PDL". which we call

S. 
-

CA'...

...-...'..-....
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Table I GDADL was developed after a thorough
6DADL processor Design Reports evaluation of commercially available products

such as [I and (2] and the Byrorn product (3]
Program unit and tasI entry invocation trees developed b Intermetrics. GDADL combines
shows the structure of the program what we consider to be the best features of I. - :* .

each of those languages and their processors. t":
Prodram unit and task entry cross reference witt some orloinal additions, into a format . -.
table thrt provides the designer with an easy to
shows where the actual invocations are use, and easy to re-use, means of epressnin

made) multiple levels of desigr abstraction. ' .

Object declaration and usage cross reference Using GDADL means using Ada as it was S
table intended to be used
all object declarations are legal Ada .
re-erences to objects made either in design GDADL was designed with two crimary qoals in
statements or parameter lists are listed) mind-

Undefined design items (TBD) cross reference i. Hvoid unnecessary repetitjon pf Ad
table items when transitioning from the design
hlhlights all TBD items) phase to the coding phase.

'ser defined cross reference table 2. Male the design !tert visible as
uv1 in ted number of items can be cross hae integral Qet of t sourc code. This is
referenced' accomplished by defining the PDL, in

"comment-compatible" format in the prolog
Flow of control arrows (right side) ano page section of the final source code. keeping the
re~erence numbers of) all subprogram PDL control flow information in the same
inocations and task entr, calls physical file as the source code. allows for S.

easy modification of both the code and the
E it arrows (left side, on all loop eits and design description during the maintenance .-

*returns phase of the software lifecycle.

Summrv o' errors detected in the design
description 'incorrectly nested if..end if . Figure I. shows an eample of an Ada program
lovp. .end loop. etc unit after the design o the unit hay been 5

completed, and before the coding stage is
Pret t-printed design document comIplete. The design intent is described in
tlevel of indentation selected by User, the prolog of the program unit. thereby .'

enabling the reader tc readily understand the *." -
Data Dictionary code which follows.
'automaticallv generated dictionarv arranged
alphabetically! One of the biggest dangers in using a Program - .

Design Language is to drive the design too
Subtype. derived type, base type reference far towards code. One of the main reasons for
table using a PVL is to provide a higher level of
(shows all subtypes and derived types) design disclosure (abstraction). When the

design begins to loo, like code, it is time
Generic instantiation report to review the level of definition of the
shows all instantiations and the applicable design being used, and probably backup to a

generc - higher level of abstraction.

keyword enhancement and high-lighting A good rule to remember is that PDL should
'highlihts Ada kevwcrds by underscoring or not contain assignment statements.
bcld+ace printinoi

I should note here that procedure STOPLIGHT . . .'-.'-.

Ada Idertifie, hIgh-li hting of Fioure 1. will compile without error, but
'.Il idertifiers are automaticallV will not e, ecute correctly until the
hioh li hted in the FDL and in the enumerated 'TBD) types are defined.
4da declarations,

-.*'0.-.-.

94 Annual National Conference on Ada Technology 1985 -

,0



How and when should we use GDDL?

GDADL is intended icr Une in both the dezon ian
and maintenance ohanen of the software
lifecyole. During the desion phase the
desidner z intent in donumertej _mireq G D DL
D, emteidirn the desliptio; ov t-, design in-.
proloa portion o tre source cooe. * ary

so tware chanaes ale sbsoe.art. cdnj tc. ce
necessar. first the ?4abedded de I an
description is updated tc reflect the Cne
desion intent and ten the novrce code
chanoen are made. I, -,ani the desn i an
description and the actual source code ir. the

same bl ace. we try to i r, se tat the code

Ryp ~ ~ ~ ~ ~ ~ i aR t Fhe FORE ERERFF0AT IJO.*Sesign.

.......... ,. 0 GDADL was originall, de~eloped to supportEvo.*A.t E.Th.

the Disciplined Software Developmert Apcroa:h
TDSDAr. the software desian methcdol,3o, tor

E:ST ,yREFRsty,' I OFS,090 , FR,.,,I , 0the deselopment of software which IS
c1.rrentl: teln ;mplemented at the Pomona
t tDiiSIn. Fiure 2 is a pictoria

representation of the 3SDA methodology. DSDAiIRRR0LFI LOAZAI~y . LURFOOR CR900 I LOCAFOO R,, ESl

requires that the software requirements are

cdefined and documented using Data Flow

Di agrams. State Transition Diagrams, data
,.m ,t.; dictionaries, and mini-specs [Sj. before the S

SF00, design phase is beau-. In other words that

the requirements are well understood.

F The design phase of the DSDA reslts in the
Sdeselopment 04 three staoes ot design

refinement as showr i,, Fiqure '. Each stage
y,..,, yFRF0 oo°F- builds upon the p ev ous st age, and is

RF .........~ sw. R*Fdocumented usino GDADL .. ..

.... . ..... .. °,,F,. ..... R ,,F , Durino the first stage of the refinement the
11 11 1 A'no FTSRTrO

desioner definen the structure of the
solution. In Ada terminology, the top level

FIT~ y F~T(RLTIIR F-OIFI FEFR9FFFRFE0F'FTIIREyEAT E program units are defined so that. initiaAl . .

,Rs I Fl
0*0
, -FS ,OSSECFFIRE EREFI 05CRa set of packages is designed, where each

ER"o t S~oAI.... IR.,NE,, package satisfies a set of requirements that
could logicall, be orouped together. In order

-nI to insure that all of the requ~rements are
E satisfied a requirements allocation chart

RSR9RROFFIAFE wFFNRSOCF which cross references all requirements to

."d E ,F Ada program units should be developed at the

same time. This initial panfaoin o of the top
ST level architecture is enamined to determine

.. . the best implementation for each pactage.
R"oR POWEER e.g. a tasf. suborograe, generic or paciage.
•r.. so w The top level set of progr am units Is

subseg,,ently eopanded and further defined.
"DiREEFll F0E All "isible" parts of these program units.

i. e. ves, objects and program uits s
declared in the specification part are

defined ir as much detail as possible.

In stage two an E ecutive Module is designed - --.
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IBM-PC BASED ADA SYMBOLIC DEBUGGER A -,a

Daniel W. Lyttle
Rockwell International

Collins Government Avionics Division -
Cedar Rapids, Iowa 52498

Abstract Implementation

A symbolic debugger has been developed at Rockwell International Other Ada symbolic debuggers emphasize debugging Ada code on
(Corporation, Collins Government Avionics Division, for use in the the host machine. Cross-debugging for an embedded computer may
development and testing of avionics systems. The Debugger, an be supported by simulation of the target machine architecture, if at
Adat * )program running on an IBM Personal Computer, monitors the all.
real-time execution of Ada software in an embedded computer sys- In contrast, the Rockwell approach emphasizes debugging in the
tem. The Debugger is part of a programming support environment embedded computer environment, where real-time Ada software in
built around the VAX-hosted ICSC (Irvine Computer Sciences Corp) the target computer interacts directly with hardware I/O devices.
Ada compiler. This section describes the hardware interface between the target

This paper concentrates on the Debugger implementation, describ- computer and the Debugger, and the symbol table interface with the
ing the connection to the system under test, generation of symbol compiler. The Ada-to-PC cross compiler is elaborated, along with
tables by the compiler, development of the Debugger software, and several sticky design problems and their solutions.
the user command interface.

Target Interface

An eventual design goal is the capability to debug various target
Background computers, including several commercially available microproces-

sors and the CAPS (Collins Adaptive Processing System) family. An
Since 1971, Collins Avionics has successfully used High-Order Lan- additional requirement is the ability to test factory-assembled units,

guages in the development of avionics computer systems. The use of where all chips are permanently soldered in place. The cost of a test
HOL for the design and coding of a complex program offers clear station should be minimized, so that a project can buy an adequate
advantages over assembly language, in productivity and in the relia- number of work stations. -
bility and maintainability of the resulting system. This combination of requirements led to the decision to develop a

Unfortunately, systems programmed in HOL are often debugged flexible multitarget test interface, as opposed to purchasing off-the-
at the assembly level. Embedded computers generally do not include shelf microprocessor emulators.
a keyboard, printer, or disk drive for a convenient software debug The target interface consists of custom-designed cards inserted in -'- -
interface. Instead. a hardware adapter is connected to the CPU or its the expansion slots of an IBM Personal Computer. (An XT or AT -, - -

bus to allow the programmer to monitor the execution of the model is preferred.) The first card provides control functions, includ- . - - -
software. ing signals to reset, halt, run, and step the target, facilities to

The traditional test interface provides commands to examine and examine and modify target memory locations, an execution history
modify memory locations and to set breakpoints at absolute buffer, and address-matching logic for breakpoints.
addresses. The programmer needs assembly listings and a link map, The second card is optional and contains 160K bytes of address-
a hex calculator, and an in-depth understanding of the target mappable RAM to supplement or replace target memory. These first
machine instruction set. Debugging at this primitive level is time- two cards are common for all target systems.
consumi-, and expensive, especially with the growing complexity of A third card is connected directly to the target, isolating target
softwa. systems and microprocessor architectures. dependencies from the rest of the system. For the Intel 8086 proces-

A symbolic debugger extends the more productive high-order Ian- soc family (including the 8088, 80186, and 80188, with or without a
guage environment to the laboratory in the software debugging and numeric coprocessor chip), the interface is in the form of a "personal-
testing phases. The debugger insulates the user from such details as ity module" pod, attached via a short cable to a connector provided on
the addresses of variables and peculiarities of the machine architec- the edge of the CPU board. Address/data lines and control signals
ture. It filters and formats the information presented to the user. are brought out to this connector when the CPU board is designed.

Collins Avionics recognized the need for a symbolic debugger, and This approach eliminates the need to remove the microprocessor chip
in 1980 began to develop a symbolic debugger for CAPS-6 (a proprie- from the board.
tary stack-architecture avionics computer) and source languages The CAPS processor family uses an asynchronous "Transfer Bus"
AED )an ALGOL-60 derivative) and PL/I. It was successfully with generous timing constraints, so the unit under test can be con-
employed in the development of an experimental active controls sys- nected via a longer cable to a CAPS personality module inside the
tem. PC. -.

Although the advent of Ada has shifted the emphasis of debugging In order to display subroutine parameters and local variables, the
to the new language, the experience and feedback from users of the Debugger needs to have access to certain registers inside the CPU.
original tool have significantly influenced the design of a new Ada- namely the program counter and stack frame pointer. Some of the - ."

oriented symbolic debugger. CAPS processors can dump their registers to memory at a signal on

(*)Ada is a registered trademark of the Department of Defense (AJPO).
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Software Implementation File Manipulation Commands

Early in the project, it was decided to write the Symbolic Debug- The LOAD command reads the linker-created user program load
ger in Ada and to host it on the IBM Personal Computer. No suitable module into target memory for execution. The module table is also
Ada compiler for the PC was available at that time, so the Debugger loaded into debugger memory.
was implemented using the ICSC Ada-VAX compiler. The Debugger, The DBLOAD (DataBase Load) command loads the module table
running on the VAX, communicated with the PC and the target inter- for debugging a program already in read-only memory. 0
face via an RS-232 line. Avionics software was developed over a The VERIFY command compares target memory against the load
period of several months with the Debugger in this configuration. module on disk.

The ICSC Ada-S086 cross compiler can generate code for the IBM-
PC, since the PC contains an 808 processor. Assembled object mod- Execution Control Commands
tiles are converted from an ASCII Hex format to a binary format on
the \ AX. downloaded to the PC, and linked using the standard MS- The RESET command asserts a hardware reset signal to the tar-
DOS linker to produce an executable (.EXE) file. The "Medium" pro- get. RUN releases mastership of the bus, or the HOLD signal to the
gramming model is used, permitting multiple code segments and one processor, allowing the program to execute. GO combines these two .4
64K byte data segment. commands, to execute the program from the beginning.

Program initialization and exception support routines were imple- The HALT command requests bus mastership or asserts HOLD to
mented in assembly language. Ada-callable assembly language util- stop the target processor. The current program counter is printed in
it% packages were developed to interface MS-DOS interrupts for I/O, symbolic form, as a module name, procedure name, and line number.
to perform 32-bit integer arithmetic and logical functions, and to The target interface hardware maintains an execution trace buffer
access absolute memory locations in the PC. Ada packages in the of 2047 bus transactions. The HISTORY command displays selected
runt ime library include STANDARD. TEXT 10, CALENDAR, parts of the trace buffer (by default, the latest 16 entries). History is
sequential and random-access disk I/O, heap management, and interpreted in a symbolic format, along with the traditional hex-
string manipulation. adecimal address and data trace. Data accesses are printed as a

Several projects besides the Debugger have taken advantage of variable name and its value in the appropriate data type. Fetched
this V\AX-hosted Ada cross compiler and runtime library. PC-based instructions are disassembled and the address is interpreted as a
tools and application programs are being developed, and avionics module name, procedure name, and line number.
algorithms are being checked out on the PC. The EXECUTE command allows the target to execute a few

The Debugger program is written entirely in Ada. Due to careful instructions at a time and prints the line number of each line exe- _-
design, few changes were required when moving the program to the cuted, STEP gives a more detailed trace in the symbolic history
P'. format. Both commands will print a given number of lines and/or • -

The predefined type INTEGER is implemented as 32 bits on the stop at a specified point in the program.
VAX. but as 16-bit words on the PC. To avoid relying on INTEGER,
types BYTE. WORD, and LONG are used extensively. The efficient Breakpoint and Watchpoint Commands
16-bit WORD type is used where possible, while the 32-bit LONG is
used when the extra precision is needed. Type LONG is defined as a A breakpoint causes the target to halt at a certain point in the
record on the P('. with a complete set of conversions and overloaded program. (Actually, the tester hardware requests control of the bus
operators, when a specified address is detected.) Breakpoints can be set on

The allocation of dynamic storage is carefully controlled, to avoid execution of a given Ada source line number or procedure, or when
exhausting the 64K bytes of available data memory in the PC accessing a variable defined in the Ada program. Data breakpoints
medium model. Functions returning arrays and strings, including can be further qualified by Read, Write, and value comparison.
the built-in "&" operator. are avoided. Packages where storage is Breakpoints can also be set at absolute addresses and address .. J
allocated maintain a list of discarded objects for re-use, ranges.

The symbol, line, and module table files are received front the VAX When a breakpoint is reached, the target halts and the Debugger J
and stored on disk in a compact binary file format. The first time a prints a message giving the breakpoint address and symbolic infor-
module is referenced, its files are read and converted to an easily mation. A watchpoint is like a breakpoint, except that the target is
scanned internal format. For example, symbol tables are stored as restarted immediately after the message is printed.
linked lists of variant records.

Access types are not used to manipulate symbol tables since the Data Manipulation Commands
61K data model would limit the size of user programs. Instead. a
"database- package defines a "database pointer" record type (a block The DISPLAY command can be given the name of a variable
number and an offset within the block . and procedures to allocate, declared in the Ada source program. The Debugger looks up the
store, and retrieve objects. Blocks of the database are stored on the address of the variable, reads target memory, and prints the value in
PC in a random-access disk file, with several recently used blocks a format appropriate for the vari'%ble's type. For example, integers
cached in memor-,. tOn the VAX, database blocks are simply allocated are displayed in base 10, access variables in hex. and floating-point
from virtual memory, variables in decimal notation with the proper number of digits.

Booleans are displayed as FALSE or TRUE, and a value of enumera-
User Interface tion type COLOR might be displayed as BLUE. , -

Scalars, strings, entire arrays, entire records, and record compo- , -
The user enters commands and the Debugger prints a response to nents can be displayed. Complex Ada expressions can be evaluated,

each command. The commands can be classified as File Manipula- along with Ada attributes such as 'ADDRESS, 'SIZE 'RANGE, 'POS, " "
timon. Execution Control, Breakpoint, Data Manipulation, and Miscel- and 'IMAGE. For 8086-family targets, the processor registers can be
laneoi.s commands, displayed.

To reduce the number of keystrokes needed to enter a command, After a variable or expression is displayed, entering DISPLAY
any command name can be abbreviated. Many frequently used com- alone will evaluate the same variable or expression again.
mands have one-letter abbreviations. In addition, the names of sym- The SET command sets a variable to the given value. The value can
bols from the Ada source program can be abbreviated, including be a literal, a named constant, another variable, or an expression.
module, procedtre, and variable names. The MONITOR command adds a variable or expression to a list of

Most commands can be aborted by pressing the Escape key. items to he continuously displayed while the target is running. Each" .
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item is re-evaluated and printed at the top of the screen, at a rate of Several users have asked about an Ada debugger for PC-hased
" about 10 items per second. When the target halts or the user enters a applications; this would also facilitate changes to the Debugger

command, the items will scroll off the screen. itself. Such a debugger could be implemented either like the standard
The DUMP command displays a range of memory locations in hex PC DEBUG program, or with a modified target interface pod and a

. and ASCII formats, second PC.
The DASM command disassembles a block of memory or an Ada As part of an avionics project, a PC-based tester has been devel-

procedure. The source line number of each new line of code is printed oped which simulates aircraft sensors and instruments via high-
along with the disassembled instructions, speed ARINC I/O. The Debugger will he integrated with this system

to provide a powerful tool for running "canned" test sequences.
.Miscellaneous Commands Users would like more sophisticated breakpoint functions and

more hardware support for real-time program analysis and
The SHOW command has several options. SHOW BREAKS prints optimization. Features may be added if/when the tester hardware is , ,

a numbered list of the current breakpoints. SHOW CALLS inter- enhanced.
prets the stack to print a chain of subroutine calls. SHOW MODULE Possible new features include a target memory diagnostic routine 0
prints the starting and ending addresses and other info for a given and a command to save the Debugger state and exit to MS-DOS -"-2
module. SHOW SCOPE displays the module and procedure where the temporarily. The command file feature may be expanded to include
Debugger will look first when searching for a variable to display, parameters, loops, and conditional execution.

A disk file containing a list of Debugger commands can be exe- The RS-232 link used for downloading files from the VAX is ade-
cuted by preceding its name with "C". quate. but not especially convenient. Several alternatives are being

A JOURNAL file feature causes all commands entered to be writ- investigated, including a smarter downloader which sends only the
ten to a journal file on disk. The journal file can later be executed as updated files. A PC-to-DECNET link, or a similar high-speed hard-
a command file. ware connection to the host, would be ideal. 0

A LOG file feature causes all commands and responses to be writ- It would be convenient if the Debugger were able to display the
ten to a log file on disk, to be examined or printed later. The journal, Ada source code in a history or disassembly listing. This would be
log. and command file features can be used in combination to build easy to do. except for the increased time needed to download the
p,,werful automated testing sequences. source files, or expanded Line Table files, to the PC. With a faster

The HlEI.P command accesses an on-line help file, essentially downloader this would be feasible.
printing sections of the Debugger user's guide on the screen. HELP The Debugger has limited support for variant records, discrimi-
can he displayed for a given command or topic. nants, and fixed-point. These areas will be enhanced as the compiler

The TYPE and PRINT commands send a text file to the screen or is upgraded to full Ada. ICSC plans to validate the compiler in 1985.
to the PC printer respectively.

Summary
Future Plans

This Ada Symbolic Debugger is a tool designed to improve produc-
Although the PC-hosted Ada Symbolic Debugger has been tivity in software development and testing, in a real-time embedded

released to users and is being used to develop actual real-time computer environment.
emibedded computer applications, improvements will continue to be The Debugger is currently being used to develop several major p
added. avionics systems based on 8086-family microprocessors. Interfaces to

The first .Ada Debugger targets implemented were the Intel 8086 other target machines are planned or underway.
family. The next step, now underway, is to implement targets in the The Debugger is written in Ada, and is based on the inexpensive -.-

('APS family. including the C'APS-7 and CAPS-10 processors used in and readily available IBM Personal Computer. Application software
Rockwell (PS equipment, AAMP iRockwell's single-chip CAPS is developed on the VAX host using the ICSC Ada compiler.
processor , and Advanced CAtPS, an Ada-oriented stack architecture A secondary result of this project is a system for cross compiling
machine. Ada programs on the VAX for execution on the IBM-PC.

Other targets. for example t6SO) and MIL-STI)-1750, may he This system is being used to develop other PC-based tools and
implemented, depending on project and contractual needs. application programs.
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PARALLEL PARSING USING ADA
0

W. H. Carlisle and D. K. Friesen

Texas A & M University

multiprocessor environment. A design goal
Abstract was to seek an algorithm that remains

powerful enough to concurrently parse

A parallel parsing algorithm for a grammars whose description is reasonably

grammar is developed and implemented in close to that of current computer

Ada. The parse of the string of languages. It was deemed desirable not to

terminals produced by the grammar try to force a redesign of the traditional

achieves parallelism by making two syntactic constructs in order to make

assumptions of the grammar; first, that concurrent parsing easier. The realities

if the leftmost son of a production has of parallel parsing, however, suggests

been Parsed, then the production redesign of certain syntactic constructs

generating that string is uniquely is a direction worthy of study.

determined, and second, a scanner is
able to determine the end of the string Parallel Parsing Algorithms

produced by this production. At thisa.l k
stage the parsing of the string can be Lexical analysis itself breaks into

" split into two tasks, parsing terminals two natural subprocesses, scanning the

- derived from the production and (assume text (comparison) and analysis (for .'

this task will successfully complete) example table look-up). These two

continue the parse of the string using processes are so closely interrelated that .-\ ..

the production as the leftmost son of this does not appear to be a natural place .

the next production, to divide the work of parsing. Instead an

The algorithm is implemented in Ada for alternative approach is to divide input
a simple expression grammar, and perform the same parsing task on the ',

divided input. A similar apqroach was
announced by Mickunas and Shell but our "%.'

The laboratory for Software Research work differs from their approach in that

at Texas A&M University is involved in the the breakup of the string to be parsed was . -
study of concurrent programming not based on a uniform length breakup of
methodology. The Ada programming language input. Uniform string division requires
has been an integral part of this study, communication between adjacent parsers in

for Ada has raised the language level at those situations where the breakup does .-.

which parallel processing algorithms can not correspond to terminals derived from a
be coded and evaluated. One area under common ancestor. Our approach was to seek
investigation is that of parallel to divide the string to be parsed along

compiling. Considerable research and the family lines of the parse tree, thatknowledge exists about the subject in a is divide the string according to subtrees '-"""'

single processor environment, but there is whose root is a nonterminal of a
a lack of research concerning compilers production. For example, consider the
capable of using parallel architectures, following BNF description of a conditional " -

The following is a report of the statement:
preliminary work done in thisinvest igation, conditional _statement::= if condition then ,°"' . -

A natural approach to the problem of true statements .

parallel compilation is to break into elsetasking units the distinct phases of false_statements 0

classical compilers - lexical analysis, endif;
parsing, etc. so that working in parallel
the code can he parsed sequentially by Upon recognizing this construction a .,..,..,

these phases. This investigation, however Parser can begin a parallel processing of
has proceeded in a different direction, the true-statements and of the
focusing on the parsing phase of false statements and the condition..,-...

compilation, and looking at the design of Raghavendra has proposed a completely

an algorithm to perform this one task in a different approach to parallel parsing.
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Parallel Parsing by Productions would have to be met by the granvmar being
parsed. For determinism, a unique

Both top down and bottom up parsing Production must be established by the

was considered. From the top down, initial scan, and in order to maintain the

starting at the root, the approach would string breaks along the ancestor lines of

be to determine the production, and break Productions, It was decided that a

the string apart according to the Production of the gramm~ar would be

terminals and nonterminals of the determined by the next symbol after the
production, and produce associated scanner had processed the leftmost son of

subtasks to parse the parts of the string the production. Having chosen a

so determined. For the above example, in Production the scanner must be able to
a top down approach a "statement_handling find quickly the end of the string
task" would parse the "if" and recognize determined by the non-terminals of the
the conditional statement construct. This production. This forces restrictions on S
task would then break apart the string the grammar directly related to the
being processed according to the "then" complexity of the scanning process. Most

the "else" and the "endif" occurring at programming language syntax productions
the same nesting level. The task could have a terminating indication that,
now spawn the "condition task" and two combined with level counting to handle
"sequence of statements tasks" to process nesting, provides the necessary
the divided input, information for a scan based only on

Bottom up parsing would be compare and count. A unique symbol found

conceptually the same except the direction at level 0 determines the end of strings

of motion would be up along the leftmost generated by the production.

sons of the parse tree, spawning tasks to An Em
complete the parse of strings produced An Example
from the non-terminals (in the same bottom
up manner). Continuing the example, but A grammar that satisfies the

now bottom-up, the parent task encounters restrictions required for a bottom up
the "if" once again signaling an "if parse of the type we have been discussing

again anis the familiar expression grammar for LR
production". A division of input is again psinge3
possible using the "then" the "else" and parsing
the "endif". Four bottom ip parses can be I. E -> E + T

initiated, one for the string representing 2. E -> T

the condition, two for the strings 3. T T*F

representing the sequences of statements 4. T -> F

and one for the remainder of the string to 5. F -> (E)

bp processed. Both top down and bottom up 6. F -> id

approaches are made possible with Ada The parser is table driven, and has as
tince all tasks would be of the same type, input 'an initial state representing the
n Aa taspould bef tsame type state initial to the parse, a state

and Ada supports dynamic task type representing the state after the parse of
instantiation.

nart of the string (the leftmost son of

Top Down vs Bottom Up Parsing the production to be determined), the next
symbol under the scanner, and the end of A

Top down parsing is conceptual ly the string to be parsed. The task accepts

simpler, and this approach needs further this information and by table lookup
study and Consideration. However, the determines the production. The scanner,

hottom up approach was hosen because the based on knowledge of the production scansh o t m t p a p o c a h e Ft o f in d t h e e n d s in t h e s t r in g o f ' : ''

proces, of dividing inplut (scanning) t fd h ns n e t go

appears to he more difficult when one is terminals derived from the non-terminals
ear the tor, of the parse tree. To cnme of the production. At this stage parsers

up with I rpasonibie algorithm seemed to may spawn subtasks to parse these strings. •

he forcing rF-,trirti(ns on the description For the remainder of the string to be

of the lantualge tc. he Farsed that was processed, two possibilities arise: the

strnngPr than that desired by the goals of task itself can continue parsing the

the studjy. Prir edilrg from the bottom up, string or the task can create yet another
one needs to scan only enough of the Parser to perform this task. If parsing is

*tring to determine a production. Without the only goal of a task, then the parser

analysis the srcarnr cnl d then determine should take on the work of continuing the

the limits of trip string terminals parse. In anticipation that attributes

generated by the prodirtior, and the task should be considered alonq with the parse,delay to wait for subtasks to establish
of, Parsin rouild he broken into several these attribute- might be undesirable.
tasks to handle this string. The task Spawning another task to go on with the

itself could then reinitial ize to rontinup parse and waiting to handle attributes of
parsing the remainder of the string or the producti

-4iawn~~~th productits t pror teon is in this situationspawn yet another task to perform the desirable. Both approaches were coded in "' '
remainder of the parsing. To maV~ke the Ada to anticipate experimentation with ,
approach work, the following rpstrirtions attribute handling.
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I. a

a~ A look at the parse of the string a + and as a driver:

a*a . ...... will illustrate the action of begin
the parser for the example grammar. The MAINTASK := new PARSER;
needed tables to trace this part of the MAINTASK.INIT(O,PARSETABLE(O,
parse are the GOTO table and the INPUT(l)),2,STRING_LENGTH);
production table, end;

non-terminals The body of the parser task type Is
E T F to accept initialization and to parse

GOTO: state: o I 2 3 until the next symbol being scanned is the
end of the string being parsed.

terminals
+ while NEXTCHR < ENDOFTEXT loop

production states:(0,1) E-> E+T PARSE (BEGINSTATE,ENDSTATE, •
NEXT CHR,ENDOF _TEXT);

end loop;

Entering the parse after the end PARSER;
productions F->id; T->F; and E->T have
been applied, the parser has initial state The call to procedure PARSE is essentially
0, final state GOTO(0,E) which is I and table lookup to determine the production
symbol under the scanner is +' . and new task instantiation if necessary.

E The case for the first production and the
associated scan and task instantiation is

E~ included here.

E Tbegin
Tb n-case PRODUCTIONTABLE(BEGINSTATE,

END STATE,INPUT(NEXTCHR)) is

string + .\ when I => -- production is E -> E+T
-- so find end of T and

parsed new -- parse

parser COUNT := 0; -- level of nesting
NEXTCHR := NEXTCHR + 1;

scanner next SCAN := NEXT C-CHR;. sn scanner whii, SCAN <= END OF TEXT and not
DONE loop

now parsed case INPUT(SCAN) is -
Table lookup determines that the next when "$' '+' >
production is E -> E + T. The scanner now if COUNT = 0 then
knows that the + symbol (in the follow of DONE == TRUE;
T at level D) will end the terminals else
derived from T. A new parser can be SCAN := SCAN + 1;
initialized to parse the string derived end If;
from T, here (a*a), and either spawn a new when (' =>
task to go on (assuming T parses
correctly) or restart itself with begin..
state 0, second state I = GOTO(0,E) (the
left hand side of the production) and next end case;
symbol '+' (the next '+' in the string) end loop;
and continue the parse Itself. Note that if not DONE then
each task has a goal, that of the main ERRORHANDLER.SCANERROR(SCAN•I);
task being the start symbol, and that of NEXTCHR := END OFTEXT; -- to
the subtasks being the non-terminal that -- terminate graceful ly
spawns the tasks. The implementation else -- initiate a parse of T
should check for this goal, and one coding STATEA PARSETABLE(END STATE,
of the algorithm Incorporated this idea. TERMINALS'('+'));

STATEB .- PARSETABLE(STATEA,
Ada Code INPUT(NEXTCHR));

SUBTASKS := new CHILD;
The Ada code implementing the parse SUBTASKS.INIT(STATEA,STATEB.

was run on the validated NYU Ada/Ed NEXTCHR+I,SCAN); 7.
compiler/interpreter version 1.41. The ENDSTATE := GO_TO(BEGIN.STATE,

% version initiating the fewest number of "E');
tasks has as parser type: NEXT CHR SCAN;

task type PARSER is end if;
entry

INIT(STATEISTATE2,NEXTSYMBOL, ... " .
END OF STRING:In INTEGER); •

end PARSER;
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Error HandlIing W
A minimum of error handling was "

incorporated into the code, in that a
table lookup error merely reported this to
an error handler task. Appropriate

errorhandling for the algorithm was not
addressed.5**-

Future Directions

Further work is to he jone with
attributes (such as codp generation or. W.H. CARlISlE s an Assistant
value for this example). The primrarv Wofes of CoRyter Si-ene at Texas A&M

problem in attribute handl ing is that f Pnivesrt whrer e at fer fou

co unication. In orm p parsing, if awhre h has taght for four
task creates subtaSkm to perform re year. He holds a Ph.D in mathematics
parsin oreat subt s, ten the rfor th from Emo, y Unlversity. His research
parsing of subtrees, then the attributes interest inr lude abstract data
are establ ished by mulch later generat i on s. I  ructures, algor ithm anaIysIs, (rinctjrrent
Completed tasks must then spPnd their timp roura ng, and languagli. oncrren
gathering information from their rhi lren ra nn g
and returning tiils information to their Department of Computer Science
parents. A more distributecd attribute Texas A&M Uni esity
gathering mechanism would he dPsirahile, Cilleg- Station, Texas 77841
but this would mean linearizing the (4114) R45-481
returned information. This COUId be
accompl ished by communicating the I imlIs-
of the string along with the associated
informat ion, nut would he computational ly

expensive. Care woultjdIl have to be taken so.-.

that the information gatherer did not
serialize the performance of the parsers.
Additional work cnLJd also be clone in
evaluating more carefully a top down

approach and what rptrirtions would need

to be made on the grarmmrar to effectively
parse a string in this manner. Attribute *
handl ing in this situation Should be
simpler. .K. FRIESEN is an Associate-'

Professor of 7omputer Sci ence at Texas &M '.-.

Un ivers ity where he has taught -nr K
years. He holds a Ph.D in mat( at cs
from Dartmouth Co lege and a pr . in
compu -r scence from the Unlversity of -
Illinois. His research interests include
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A DYNAMIC PROGRAM PROFILER FOR TESTING ADA PROGRAMS

ANIL KUMAR SAHAI ---.

DEPARTMENT OF COMPUTER SCIENCE, PLYMOUTH STATE COLLEGE

ABSTR LT suggests forking the execution in various
paths simultaneously after a decision statement,

It is a well known fact that testing and which is not practically possible, especially if
debugging account for a major part of the total there are many possible paths after a decision
cost of design and development of a reliable expression (eg: case statements). Finite Domain
software. Seldom is that software adequately Testing [2], is another technique for program SO .
tested before it is placed in the production. The testing which is mainly of theoretical interest.
major reason being the absence of implementable It is claimed that all but a small class of errors -

and efficient techniques for the above purpose. In can be detected by this technique. Functional
this paper, I discuss some of the existing Program Testing [3] is another approach to provide
techniques in the context of the Ada language. It a tool for software testing. It is close to being
is proposed how a dynamic program profiler can be practical but it assumes the knowledge of the
used to produce the necessary run time statistics language structure on the user's part, which is -

C¢f t-he control flow of program to help in program not practical in the real world. The idea is to
testing, debugging and possible code optimization. break the program into a series of small functions .' -

computing certain variables and the sections of
the program and then the whole program can be
thought as the aggregate of these functions. It is...
suggested to is to compute these functions and
then test for the correctness of the whole .. '.-
program. But the user has the responsibility of "
locating these small functions in the program. .
Finally, there is Software Probes [4] technique.
This technique can be readily applied in practice,
but the technique was developed in the context of

i. I FORTM and thus has its shortcomings. I have
attempted to extend this technique and the idea of

The auestion of determining whether or not a dynamic program profiler [5] to produce the run
aiven program will do exactly what it was designed tine control flow graph of Ada programs. In
to do is not only intellectually challenging, but section 3, I discuss the design of dynamic program"
is also of primary importance in practice. profiler, the statistics produced by the profiler
Obviously, an ideal solution would be to develop and how this tool can be used for testing and
techniques that can be used to produce a formal debugging of Ada programs. I have also suggested
proof of the correctness (or incorrectness) of the that with slight modifications, how this technique
program. There have been considerable efforts to can be used for software testing on
develop these techniques, and several techniques multiprocessing systems.
have been reported. But all of them have been of
theoretical interest, or they have not been 2. E iIM
developed to the point so that they can be readily
applied in practice. The main reason being: in In this section I describe some of the
developing these techniques, the basic approach existing program testing techniques in the context
has been to translate the problem of proving of Ada. While discussing these techniques, I give
proaram correctness into that of proving a certain examples from Ada and propose some changes in the
statement is a theorem in a formal system. In techniques to incorporate testing for Ada
section 2, I discuss some these existing programs. It will be seen that in spite of these 0
techniques in the context of Ada. Symbolic suggested changes, the techniques can not be
Execution III is not practical in that it is developed for practical implementation.
difficvlt to implement efficiently. This technique
suagests running the program using symbols in 2. Symolk Ez e.tim 12.-
place of the input values and storing intermediate The notion of symbolically executing a " %
values of the variables in an algebraic expression program follows quite naturally from the normal
form. The problem of efficiency is the amount of execution. The basic assumptions are:
time spent in these manirulations. It also
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WMIN: 11 IF K M N TMN 1. Coincidental Errors: The basis of the program
12 TI.A(M); testing is that from the observed correctness of
13 ELSE V :- 3; the program over a small set, we infer that the
14 TI.A(K); program is correct. For example: J := 12 will
s15 EN IF; produce the same result for I=K or -K or for any ..

16 K. The idea is that if the program produces the
17 ... correct output using the wrong computations at the

test points and it leads us to believe that the
TASK: 4 ACCEPT A(T:INTEGER) DO program is correct, the basis of inference is

5 K : 7; destroyed. This phencmenon is a basic obstacle in
6 END A; producing a completely reliable programs. However,
7 ED Ti; in a practical sense, the choice of wide range of

41 the input test data minimizes these kinds of
errors.
2. Transformation Errors: Sometimes the value of a

12 5 variable is computed incorrectly and consequently
that variable used in a decision expression leads

ri+ the program into an incorrect flow of execution.
% f ini~~c j(rr 3. On the other hand, if a variable is used to

Ckc ceH nc L-Y. uf 1hemt). evaluate any other output variable and that
Even if 7 executions are forked at the 'if' variable is never used, it is not possible to - -

statement, only one of them will be able to check it by following the execution flow.
perform the rendezvous because after that the task 4. Missing Path Errors: Sometimes, there should be
finishes and the other forked execution in the one more test along the path, typically when one
program (line 14) will wait forever for the condition has been omitted. These types of errors
'accept' in the 'already finished' task. Symbolic are called the 'missing path errors'. These types
execution was proposed using the notion of of errors can not be checked but the function '- -
concurrent activities so that different parts of domain strategy takes care of all but a small S
program can be forked at the same time. But if the subclass of these kinds of errors.
language itself provides a tasking facility, the The following table surmarizes tne kinds of
problem of testing with the help of symbolic errors:
execution becomes even more severe. More work will
be needed to be done in this regard to take care
of the taskina. Class Domain Tramsformation

2.2 !inite Duin Strateg 1 1 Correct Incorrect .5
It is clearly obvious that the only

completely effective strategy is an exhaustive 2 Incorrect Correct
testing (to test the program for all possible set
of input values), which is totally impractical. 3 Incorrect Correct
Even a simple program to add two numbers will take
a very long time for exhaustive testing. An idea 4 Incorrect Correct
could be to view a program as a function from N-
dimensional input variables to M-dimensional
output variables. Because of the nonfeasibility of Assuming that the missing predicates are
the exhaustive, testing, it is suggested to select simple, we can form 3 subclasses of the missing
a small svbset of the domain of the program path errors. (1) Inequality predicates, (2)
function and then test for the program Equality and (3) Not equality predicates. If we
correctness. The finite domain strategy is used to have our test data in a plane region, these
determine the necessary set of input values for predicates are the hyperplanes, cutting the region
testing and is shown to be successful in detecting under the test. Also note that inequality
all class of errors except for a small subclass predicates will be on one of the sides of the test
called 'missing path errors of reduced data plane. The Not equality will account for all
dimensionality'. The program is executed with the minus the test data hyperplane. In any event, we
small set of 'chosen' test data. If the program can discover these kinds of errors but equality
produces an incorrect result, the the program is predicates will be some where we do not know. Also
incorrect; otherwise that the program is correct. note that this hyperplane will form subregion of
Obviously, the confidence in the above inferences measure zero in comparison with the entire region,
will depend depend upon how well the stated as hence these types of errors can not be detected. 0
follows : 'Given no information other than the Obviously, some these errors can be detected by
program to be tested, generate a small set of expanding our set of test data. The following
sample input data which if processed by the help figure explains the concept: -
of program will insure with a high degree of
confidence that the program is correct'.

Broadly speaking, there are 4 classes of ( ' ":.iiii]
errors:
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I. There is a programing language and a call, the execution will be suspended if the
normal definition of program execution of related execution has not reached the required
that language. step for rendezvous. But there still exists the

2. The program are not to be modified for problem of deadlocks and livelocks. These problems
the symbolic execution, have been discussed with an example in this -

section under comments.
The idea is to use algebraic symbols in place of The control flow of an Ada program can be ." -
the input values (other constants of the program represented by an execution tree using the
can assume their values). Once the program has sequence of execution. Each executable statement
been initiated with these 'input' values, the is represented by a node of the tree. The node .' *

execution of the program can proceed in the normal also carries the algebraic expressions in the
fashion except when the symbolic inputs are terms of symbolic variables and the value
encountered. But this could happen on each step, functions. If the statement is a decision making
directly or indirectly. For example consider statement, several branches coming out of it will S

represent the different executions forked at that
1 READ(XW step. Each node also carries the expression for
2 Y X + 2; PC, so that the user can check those values for
3 Z :Y - 2 ; the program correctness. For the Ada programs with

parallel executable tasks, a synbolic execution
Here the symbolic input X does not appear on line tree could be like a distributed network of trees
3 directly, but the variable Y is computed using X such that there are communication lines between
on line 2. The evaluation in the terms of the two trees for passing information in the event of
input variables can occur in two cases: a rendezvous. This will help the representation of

the 'accept' and 'entry' calls. The following
1. Computation of expressions: The idea here figures shows an Ada program segment, with the

is to delay the evaluation of the expression and symbolic execution tree.
the results are stored in an algebraic form. For
eg: Y = V(X) + 2, then Z = Y - 2 -> Z = V(X), MAIN : 4 X := 10; -'-
where V is the value function. But this process 5 TI.A(X);
could take a lot of time because it has to do some 6 IF X = 10 THEN .
polynomial arithmetic in the intermediate steps. 7 Y := 7;

2. Conditional Branching: Let us take an 8 EISE Y : 8;
example of a decision making program statement. 9 ED IF;

10 ..
IF El THEN SI; 11
FISIF E2 THEN S2;
ELSIF E3 THEN S3; TASK :21 1 := 7; •
EISIF E4 THEN S4; 22 ACCEFF A(K:INTEGER) DO

23 K := 10;
IF En-l then 5n-l; 24 ENA;

else Sn; 25 IF K > l0 THEN
The Ei's are boolean expressions of the 26 K := 100;

language and Si's are the statements. obviously, 27 ELSE K := 0;
the value of El will depend upon the actual values 28 END IF; T
of the input symrbols (if any, in El). Hence, VWED 29 ... 4could be either 'TRUE' or 30 ...

v(E) = Fl( v(A), V(A2) .... V(An) ) ,m Lii e t ae" "

where Fl is some algebraic function and Al, A2, FG)'.QLttAY' 7
A3, ... An are input variables. Therefore the 'Tre 7"
control flow of the program will depend upon the
values of the expressions Ei's. The idea here is •
to fork the execution in 'n' different 19 Zo

statements, and store the values of each V(Ei) and
complement of the expression V(E) AND V(E2) AND 2.1.1 Coments King (1] accepts that the

In Ada, other decision statements such as the a loop in the program controlled by an input
'case', 'loop', 'while' etc can be similarly variable. The technique is far from being applied
ixplemented because any of these statements can be in practice. The problem of saving and
implemented using the 'if' and a 'goto' statement manipulating the algebraic expressions at each
(this is a fundamental result in the theory of step will normally increase the cost of testing a
computability), program tremendously. Also, in case of Ada, this

Tasks in Ada provide a parallel computation technique may lead to a deadlock in the system as
fa'ility. Since in the symbolic execution we use evident from the following section of code
the idea of forking execution in several
directions simultaneously, tasks can be easily
incorporated. In case of an 'accept' or 'entry' .'

Annual National Conference on Ada Technology 1985 109

.-. .. . . .-~~~ . . . . . . ....- - - - - - - - -
...... ....... .. .. .. . .. .. .. . .. .. .

• ;-v ..v ...-"-.N :--..'-. -..-.- .- .. -.; . - -....- ... --. . .. .-- - , .-.- .-. ... , . . .. . .. .. . • .- , . .



Rectangles represent the test data region. 2..1 TestzM Fucin in Context Suppose
In A, RP will account for data > or < test data, that a function f is part of design of a program P
therefore one of the sides of 'Hyperplane' H. and one of the input variables X is a part of the .0*
in P, R' will account for <> test data, there it function f. Suppose f is invoked when X < 2 and X
can be on the either sides, ie; >' or <. can assume any value in the main program. If the
But in C, data could be anywhere in the region program is tested for the arbitrary values of X,
because missing test is for I=' comparison, we shall be testing the function for the values of

2..2A~~~~~~~ >~~t h omi etn 2 also, which would be illegal. This problem *
strateg offea alenTve tomathe eastive of determining the context of function being .

strteg ofersanaltrnaivetotheexhustve tested imposes another problem to all the
testinc, but on the other hand it assumes that techniques discussed so far, as in selecting the ~
each path will be taken at least once. However the test data we do not take care of this. Also note
numrber of possible paths could be extremely large that if the context of a function is defined in
even in a program of small size. The problem of terms of a complicated expression of other
coincidental correctness has been identified as an functions, it will become extremely difficult to
inherent theoretical limitation to any testing evaluate the context of the function. Another
procedure. A 'path selection strategy' should have problem here is to represent tasks as functions
been suggested because an incorrect computation in because of the fact that tasks execute
a path predicate can effect the subsequent path simultaneously with the other procedures. Also the
predicates. The technique is of more theoretical presence of entry calls will contribute additional
interest than to be applied in practice. problems to determine the context of this

Each program can be viewed as a coubination 2..2 QgMM=~ There are three key steps
of smaller modules such that each module computes in this approach to program testing as suggested
a function. The idea is to represent the program in the paper:
as a concatenation of these functions and then to
test its correctness, it is required that complete 1. Identification of input and output data.
set of functional tests are produced for each of 2. Functional decomposition of the data structures
the functions which are the parts of the program into design structure.
design. The design functions can be classified in 3. functional decomposition of program into design.0
the following three categories: functions. C.

1. Some functions are parts of the program design So far as the practical applications are ....
and will correspond directly to the sections of concerned, this technique provides little help to
the program and cani be easily located. For example a commo~n user. The technique assumes that the user
functions and procedures in Ada. The following has a thorough understanding of the program
figure shows such a function and the dotted line structure (which is almost impossible in case of
denotes the return of the control, large programs) and also the user has the

be I" itsc'n' responsibility of decomposition of program into
smaller functions.

2A1 Soflzare rI This technique is not intended for the 1
2. Program could be broken into series of codes, program validation, but rather it is meant to %..
where each part corresponds to a small function, gather the necessary run time control flow
The following figure shows such a function, statistics to facilitate the user in program

* - -testing. The user is responsible for looking at
the program code, the control flow and inferring
the correctness of the program. The technique is
primarily designed for inserting probes in the

- - .-.-..> ........ ~..FUMWA programs and thus has its limitations in
3. The above two- types of functions are the context of Ada. The restrictions are
computational types and can be easily located. But
some programs exist in a program in a subtle ways. 1. each program has single entry/exit point.
Recursive functions come under this category. 2. no functions in the computed 'goto'
Control of the flow of execution is not only in statements.
the main program but it is also there in the 3. no provision for recursion or parallel
.procedures themselves. These are called control executable tasks.

functions. The following figure shows one of such
functions. ~.2..1i £rErm Q" ---nat± The

idea is to represent each executable part of each
statement of the program as a node. The program
graph is constructed as follows:

__________________ "First statement is assigned a node numb~er. Then W.%
every new executable part of the next statement isS
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assigned the next number. Arcs are drawn from a was due to the test data or inherent in the logic
node to other nodes to represent the control flow" structure of the program.

This technique can be applied to produce the 2.4.3 U nts This technique does not
program graph of an Ada program, with the provide automatic probe insertions and hence the
following additional steps: user has the responsibility of inserting probes.

The user is expcted to have the knowledge of the
1. a recursive procedure or a functional call can language structure to understand the graph tree.
be represented by a cycle. At the same time he has to locate the points to
2. tasks can be represented as separate pot the probes and assign the node numbers to
trees/graphs with communication links to other various executable parts of a statement. Because .".
tasks to perform the rendezvous. The tasks are of the above mentioned problems, this technique is
numbered so that the parallel execution with other far from being applied in practice for a common
tasks can be inferred. For example, the following use.
figure shows an Ada program with a recursive
function call and an entry call, and its program a ]M P".-
flow graph.

It is evident from the previous section that
FUNCTOV FACT(I:IN OUT l'VEGER) IS none of the discussed techniques provides a
BEGIN practical solution to be applied in practice for

I IF 1=1 THEN testing and debugging of Ada programs. I intend to
2 FACT := 1; improve upon some of the techniques and implement
3 ElSE I := I-1; a feasible solution. This profiler combines the
4 FACT := FACT(l)*I; M AN Tj technique of gprof(5) and the idea of software

MIF l A, '- probes[4]. The profiler produces the statistics
END; Iabout the run time calls and transfer control in a

M? AIN- :- -&l software probes required that the user inserts the
V ,probes at the right places. My profiler produces

these statistics automatically. I had to improve
10 J 5; 4 the compiler of Ada at various places so that it
11 PUT(FACT(J); becomes independent of the source program and
12 Tl.A(J), 4,,produces the results for any program of the
13 ""(J, language.

O~iodQC. k1 Desin The dynamic profiler was designed
21 K :=7; Cjt e by adding code to the various phases of an Ada

interpreter. The interpreter is implemented in the
22 DO ACCEP r A(I:IINTEGE) 6 n- t". II,,kf, following phases:
23 T := 9;

END A! 1. Lexical Analyzer: to pick up the tokens of the
language.
2. Parser: It is a 'Bottom Up' table driven
parser. It produces a file called 'triple',
specifying the reductions to be carried out.

2.4.2 Probes Insertin To produce the 3. Code Generator: Thin t hase produces an
program graph, probes have to be inserted at intermediate code (quads) by carrying out the
certain strategic locations in the program. A semantic actions corresponding to the reductions
software probe is of the form performed by the parser.

4. Interpreter: To interpret the quads generated
CALL <probe name> (nl,n2) by the code generator.

where <probe name> refers to the special auditing Tim Statistics Each node of the
program and nl, n2 are the number of the execution tree is denoted by a statement line
executable parts of the statement before and after number, so that any common user can understand the
the probe call. This auditing program prints out output from the profiler. When a program i-
the pair (nl,n2) when invoked, executed a file called 'Runtime' is produced with %

The probes are inserted at every branch of the following information in the chronological
the program graph. An arc between two nodes is order (Real time, CPU3 time and System Tire).
called as Decision to Decision (DD) path. When the S
prooram is executed after inserting these probes, 1. Transfer of control is represented by a pair
the results include a sequence of pairs, denoting (m,n), denoting the transfer of control from line
the ME paths of the program. When the program is number 'm' to line nurter 'n'.
run for a sample of test data, these pairs can be
used to test the correctness of the program. There 2. If a line contains an 'if' or 'while' or 'exit'
miiht be a case when a MO path is never taken for statement, it prints out the value of the
a sample test data. Tt can then be checked if this conditional expression.
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3. If there is a 'case' statement, it prints out of -"
the value of the 'case' expression and prints out m-. .
the line number where the 'case' expression was , -
matched. I .,:

2 taskI is
3 4ot,. .4t: 1. Wt dt.tev ll

4. If there is a 'for' loop, it prints out the ' WWI.

value of the control variable, each time loop is s 14 m-..

executed. 7 I~k: ,nt..(; *- .
a kk 1 ze.t~l:;5 2 ,o ,. .-.y- p.-,l,,-.'.

5. In case of a procedure call, it prints out the oo ,:,.
name of the procedure called, the types and the I "ta'O '. \a.,

values of the parameters passed. When the control 12 ., S
is returned from the procedure, it prints out the 14 U 1,.
values and the types of the returning parameters. 15 (k); .. o.

In case of a recursive procedure call, it also 1 76 .. t .3.3 : ,t ai.fl,) 0-

prints out the level of recursion. is ..no. -

20 .n tu
6. If the program contains any tasks, it prints 21 3.,

out the currently executing task on each n : 4:.,;.

executable line. 24 "W;
25

7. In case of an 'entry' or 'accept' call, it mmoommwnm ,,oun "
prints out the names of all the tasks in the ready 1 T Sttstics of t, -m Prop•

queue and suspended queue '

The acccmpanying figure shows an Ada program
and the runtime statistics produced by the Real T"
profiler. Each transfer of control to other line --- Ia----- -- --- -T,-. V -- ,-
is denoted by a pair (m,n) as mentioned before. By
looking at the runtie statistics and the program 00!41:23 993 133 (2,22)
listing, runtime control flow can be easily 0::23 993 ISO a1. 2n'tr, Call
traced.

athwn tasks status

3. PrQg Tetng Howden [3] has defined Th. sk , t, , sa
two broad categories of program errors under the Th., tak, - L,,d:

names 'Domain Errors' and 'Computation Errors'. A -.---... ..................
domain error occurs when a specific input follows
the wrong path due to an error in the control h follo.ne taks a. .n P, ,0a da

statement. A computation error occurs when an -................................

input follows the correct path, but because of 4. 9 -'%3'..2'...
error in computaticn statements, the wrong 9wm task 9-tara iI
function is computed for one or more of the output 00:43:,4 91 ISO (13,14.

variables. The most important data required for 0033:14 933 IS O n Is .aKl ,t "

program testing and validation is the frequency of 00:3:24 0 5 .,.,1, 1 ., %n t.. n, 0

occurrences of different types of errors and their 00:43:., 166 1" 4,.0)

severity. It is a reasonable to assume that the 0,3:4 90 93 30.33)

number of decision statements increases as the T:. t... 23-
00:4:,124 900 303 '.t"'-. - t. , I3 ... I w 2size of the program . The other types of errors 3: 4 too 0 91 "5,. - .

like incomplete specification, erroneous data ,- , .',i a, -.accessing, erroneous automatic coputations etc., 0:43t24 300 193 1,. 3 '.n' .I t.-.

can be detected using compilers and debuggers. The o0., ,,,,14,s.$
following table (reproduced from [6]) shows the .............
frequency of sequencing errors found in programs.

T. 1....... 4 t ... , . 114M:

Error Category Total Number Percent 00!43:24 33 :MO 15-1,

-l. tI~O , M 's It
Branch Test Incorrect 28 20 0:43::, 33 : ., 3a 34 ',, 1.,.i.,

Ccmputation in the 9 6 00143:24 3393 233 ,.,0 _0
Wrong Sequence 0.:3:2, i33 23 33.33)

Th, task -. ".ot~ (. I

Logic Sequence 98 71 30:Z4:14 1100 233 ..t n4,i i as *i- 1 tia, a.4 33

Incorrect n.33 233 ;lt :t -
TM, t l Is 33.00-33 334.2

Branch Test Set Up 2 2 N , , ,- if % . 0 ,1 - " :...m,

- - - -34,4,.,.3 - . -
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It can be seen from the table that 91% of the 3iA Pgr a ugi, The program profiler can
sequencing errors are caused because of either be very well used for program debugging. Most of
incorrect branch test or wrong sequence of the common mistakes are; 'if' expressions testing,
com~putation. These types of errors can be easily wrong values of passing and returning parameters,
tested using the results of the profiler. For wrong values of 'for' loop variables (being a
example the following section of code tests ccommn technique for specifying the indexes of an
whether a year is leap year or not. Notice that if array), infinite loops, wrong calculations and
the year is divided by 400 it is unnecessary to matching of the 'case' expressions etc. The
check for the division by 100. Hence the logical runtime statistics produced by the profiler
expression formed by the conjunction of two provides all the information needed to detect the
conditions is equivalent to just the second term above errors. The most important thing is that the
alone, user does not have to put any probes to produce

the control flow. Since the output is in terms of
16 RE4 :YEA -4 *(YEAR/4) the line numbers the output can be used by any
17 RM1400 YEAR - 100 * (YEAR/l00); commron user for program debugging. Deadlock
18 REM'400 YEAR - 400 * (YEAR/400); problems in case of the tasks can be detected
19 IF (REK4 =1) OR ((RF24100 =0) AND (REM400 =0) while looking at the tasks status at the time of
20 TH4EN DAYSINM2 28; an entry or accept call.

21 ELEDYIM 9 . g QWLimizna.ion The number of decision
...... statements increases as the size of the program.

It has been seen that in large programs many
...... statements are never executed because the path

following to those statements are never taken for
The profiler prints out the values of the most of the input data. The profiler produces the

input in parameters and the output parameters list of statement numbers which were never
after the procedure call. These values can be executed. This information my be used for code
tested to locate the errors due to parameter optimization. The code for these statements may be
mismatch. Sometimes the parameter passing errors omitted from optimizing in order to reduce the
are because of the wrong types of parameters. For overall code optimization cost and hence the
example, if an 'in' type of parameter is used to incurred execution cost will decrease. For
retrieve a value from the procedure it can be example, in the large database programs som of
tested and checked using runtime statistics. A the special routines are rarely invoked. Then
user can see the types and the values of the there is no need of optimizing the codes of these
'going in' parameters. The presence of 'infinite routines.
loops' is particularly easy to detect using the if the user finds that for most his input
control flow information produced by the profiler. data only a few 'case' alternatives are executed,

he may want to change the code by replacing the
The profiler prints out the status of all the 'case' statements by an 'if' statement. This is

tasks at each 'entry' and 'accept' call. if one particularly significant when the cost of
finds that, at all the 'entry'/'accept' calls, no implementing a 'case' statement is much larger
other task was suspended, he can infer that his than that of a group of 'if' statements.
program may be in a deadlock situation. Since an The runtime statistics can be used to detect
entry call has to be matched to an accept call, if there was any true parallel computation. This
there should be at least one task suspended at can be inferred if it is found that it was never
some entry or accept call. Also if he finds that the case that two or more tasks were executing at
at any time no two tasks were executing, it can be the -cane time . For instance, we can determine the
inferred that there was no parallel execution. percentage of 1/0 time and the CPU time and let
Obviously, this will always be true on a single the operating system use these figures to select
processcr system, because at any instant only one an appiropriate job mix.
cal execute.

'MTe profiler produces all the required M. Liiain The profiler developed could
statistics of Software Probes[41 technique. it generate the runtime statistics for any program in
also produces sm additional information about the language accepted by the parser. I have added
the conditional expressions, loop variable values, additional variables in the different phases so
case expressions. Vence the statistics completely that the actual code of the interpreter is not
determine the runtime flow graph of a program, affected. In order to do that the size of profiler
Since all of the data is generated in increased a lot. I also had to pass line number
chronological order, the user can determine other with each token to the parser and with each
timring statistics of the program execution. For semantic action to .he code generator. This has
example, he can determine the execution time in increased the execution time of the interpreter. I
the terms of the various units, he can find out added the fifth field to each 'quad' so that the
the inter leave time of tasks, he can also infer code for profiler can be added to interpreter.
the scheduling policy and finally if there is any Probably, quads could be generated for this
time slicing he can determine its effect on (1) purpose. I avoided it so that numbering of the
program execution time, (2) executions of the quads is not effected while doing 'backpatching'
tasks, or inserting 'jumps'. The profiler was running on
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a sinqle processor system, hence the tasks status 6. Raymond J. Rubey, Joseph A. Dana and Peter W.
information will not be of much use, except that Biche, Quantitative Aspects of Software
the status can be checked at the multiple CPU's, Validation: IEEE Transactions of Software
the chronological order will not make much of a Engineering, Vol SE-I No 2. June' 1975
sense since each CPU will have its own tine. As
the profiler itself will be running under some CPU

*and hence it will not be able to print out the Mr. Anil Kumar Sahai
other tasks' information running under different was born on April 28,
CP[s. I suggest the method of polling other CPU's 1960 in Mirzapur, India. . -.

for status and time stamping each executable He received a B.A.
statement. The profiler can be implemented as a (Honors) degree in
monitor, while the tasks execute and transmit Mathematics from St.
information to it. Much work needs to be done in Stephen's College, S
this area. _____ Delhi, India in 1979,

a M.S. degree in
4. OONCLI iMath/Computer Science

. from Ohio University,
In this paper I have discussed some of the . A Athens, OH, in 1982 and

existing techniques for program testing in the a M.S. degree in
context of Ada and pointed out that none of these Computer Science from - -
technique is implementable and efficient for University of Pittsburgh, PA in 1983. Currently,
proaram testing. Either a technique is of he is an assistant professor in the Department of
theoretical interest or it is not suited for the Computer Science at Plymouth State College,
various control structures of the language. The Plymouth, NH. His areas of interest include
use of software probes [4 was a good attempt programming languages, software design and
towards the solution of the problem of software testing, database management systems and compiler
testina, but its applications are restricted to construction.
the Fortran lanauage with some more restrictions. He is a member of Ada Methodman Review
I have explained how a dynamic profiler [5] can be Working Group, IEEE, NHACES and the honor society
used in testing and debugging an Ada program. The of Phi Kappa Phi.
suggested solution is supported by the results I
have obtained by designing a profiler and running
it. I have also explained how the statistics
obtained from the profiler can be used for program
testing, debugqing and possible code optimization.
These statistics can be used for many different
purposes by the variety of users for their
interests. The main idea of the paper is to
purpose an efficient and impleentable technique
for program testinO using a dynamic program
profiler. It is shown that the run time
information produced by the profiler completely
explains the control flow of an Ada program. The
purposed techniqu is impleentable and can be S
readily applied in practice for producing reliable
software.

* 1. James C. Fing, Symbolic Execution and Program
Testing : Research Report, R 5082, Oct' 1974
2. Fdward Cohen and Lee White, A Finite Domain
Strategy for Computer Program Testing : IEEE
Transactions on Software Engineering, Vol SE-6,
May' 197P, 247-257
3. William E. Howden, Functional Program Testing
TEEF Transactions on Software Engineerina, April'
1980, 162-169
4. M. R. Paice and Marshal K. Mckusick, The use of
Software Probes in Testing Fortran Programs
Computer, July' 1980
5. Susan L. Graham, Peter B. Fesslerand Marshal
K. Mckusick, gProf: A call Graph Execution
Profiler- ACM 1982
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AN ADA* DISTRIBUTED SYSTEM

Yul J Inn and Mark Rosenberg

5-."

ESL, A Subsidiary of TRW_
Sunnyvale. CA 4

Abstract -- This paper describes an approach to using This type of system architecture has a number of advantages

Ada to program applications which execute in a distributed over a system with centralized control:
computing environment. Package specifications from the dis- (1) Graceful degradation: Since the system responsibility of
tributed application program are scanned by a preprocessor each computer is limited, a single computer failure has
to generate additional Ada code which facilitates interproces- limited system impact.
sor communication with subprograms and tasks on remote
processors. Advantages of this approach include tran- (2) Localized contention for resources: Distributed systems

sparency to the programmer, use of existing Ada compilers. i-an be designed such that the resources required for

and hardware independence. A prototype demonstration of some subsystems are isolated from other subsystems

this Ada distributed system on an Ethernet based network not requiring their use thereby leaving the performance

of 68000 microcomputers is planned for the second quarter of of one subsystem relatively unaffected by use of

1985. The software for the system will be a collection of another.
. APSE level tools which can be used to develop distributed (3) Ease of system expansion: Additional subsystems can be

application programs. Candidate tools include the aforemen- readily added to the system. The ease with which such
" tioned preprocessor, a reusable distributed software library, a additions can be made is a consequence of the modular-
. distributed interactive debugger. etc. ity and interface standardization which is required to

support communication between networked computers.
Introduction A further consequence of the standard subsystem inter-

faces imposed by networking is that new subsystems
proviing greater performance or new functions can be

The traditional approach to building systems has been added to the system with little or no redesign.
to have a centralized computer which is responsible for the (4) Modular reusability: Subsystems developed for one sys-

" control attd processing of all subsystems. Ilowever, the con- ten can be used in another without change if both sys-
cept of centralized control has a number of inherent tems employ compatible network interfaces and control
weaknesses: philosophies.
(I) Poor fault tolerance: Should the central computer The decreasing cost of microprocessor based computers

become inoperative, little system capability remains coupled with increasing performance provided by advances
available. in hardware technology make the distributed system

(2) Resource contention: Since all subsystems share a single approach practical as well as attractive. The software
computer, each competes with the others for cpu cycles, development environments for such systems have, however,
disk accesses, and other resources. As a result, response not advanced as rapidly as the hardware technology. There
time and system throughput are hard to predict and are only a limited number of high order languages suitable .
generally degrade as system activity increases, when programming distributed systems. The choice to use

(3) Limited modular reusability: Incompatible hardware Ada (together with its associated programming support
interfaces may constrain the reuse of an existing subsys- environment) as the language to program distributed appli-
tem in a new system which employs a different type of cations was made for several reasons: (I) Ada supports cer-
central computer. Similarly, applications software con- tain necessary features required of a distributed program-
taining operating system calls requires extensive reim- ming language, (2) Ada compilers will be available for a wide -" .
plementation when transported to a computer using a range of target computers, and (3) the DoD is strongly back-
different operating system. ing the use of the Ada language. • q

" The distributed system approach partitions the system The Ada language offers the necessary features for a
control and processing over a number of computers. A typi- language which is to be used in a distributed environment.
cal distributed system might consist of a hierarchical local Multitasking provides the langutge level support for con-

* area network of heterogeneous computers each of which has current programming. Exception handling provides the
limited responsibilities, means to deal consistently with errors arising in the distri-

buted environment. Finally, separate compilation allows the " -""

o Ads is a registered trademark of the t S Government (Ada Joint Program division of complex processes into tasks and supports the
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nMapping of these tasks onto distinct physical processors for There are n illiero us ad% ant aKes of I ransparency to the

parallel (execiution. programl iner| For one. the progratnner need not be con-

In directive 5O0.31, the il)D prescribes Ada as the pro- cerned whether his application programi dl run on a single

gramoming language for all if its mission critical software. conputer or wi be dis!rdoit d acriss a nettwork of ' tnput-
hi oe n iu,i i f I'S L 's w ork is s)l) reated , A da is a langtuage ers h t e context of the life-c yelh f a sing le s st nli this

which is firm].% embedded in our future plans In addition, results ilt millinial modiuation t, source code it pn

this has ltcd to a large effort by conipiler writing cornlian recoiigiiratioin and Ii little .r i' s-ftwarr iiodifatioi

to prodie Ada comilers for inany of the tniniconmputers when upgrade to liore po'.erful processing elements is iliad'"

And. r:i .prcessors availatble today Thus there will not be - 'Ossihle Lirough technological ad atcc li"- hard are The

a shortage of Ada compilters for tie programming of the reusabilit y of software btven wells'nsems is also increa.sed"

* lheterogeneous di.stributed s's+tets of the future, The Il)oi) \Vhen building newer, sundlar sstems. d<higged ahti...titi,

directive is als,, the ha sis for thil seletion of Ada over other software from previous systems can he reuised % til veryl ttle

Muohern languages %hicl support concurreit progralnliniig rework sitice it does tiot reflect the system hardyA are

(such s Nlodula-2 17, for Xatullle configurationi.

lThe decisio to use Ada as a distributed programnling Transparency similarly reduces other software life cycle

language is not without its plrobTilemts howe'ver Although the costs. There is less training required for application pro-

Ada language does support ultitasking, the language refer- granmers since they will have to learn neither new language

ence nanualt des not require that. the compiler support constructs f .r distributed programuning nor details of operat-

parallel ex(cit!ion oti distinct physical processors even when Ing system and network commlnunication priitntives Mllin- .

the target system hLas niultiple processors. At the present ized program debug tite, also a result of transparency. is 0
lime. there are [to announced plans for compilers which will another factor which leads to further cost reduction. Ptro-
support execution in a distributed multiprocessor environ- gratn debug can be performed without source code

ment and iven when such compilers do become available, modifications on a uniprocessor before the final test on the
distributed system. Since debug techniques on distributed

system is a network of heterogeneous processors. target systems are less well understood and not as refined as
+ti iatitwrofetoeouprthose on single processor systems, overall code debug time is ".

'I'luTe strengths of distributed systems and the reasons minimized. r
for using Ada a.s a distributed programming language which
have been outlined above tootivate our investigation into It would be impractical to write an entire Ada compiler

this problem. This investigatiot has been the object of a for a distributed targets: that would be an extremely com-
plex task and would extend far beyond the scope of this pro-

research project ovt-er ii- past Iwo Years. It) thle next sectionp
the goals and requirements of this project are discussed. In jeet Ideally, the use of Ada to program adistributed system
tlie following two sections we present an approach to the use would require no modification to the compiler itself. This

of Ada in a distributed environment. Finally, til, current would derive the maximum benefit from existing Ada com-

status of this project ahong with our future plans are plers and their assoriatred run-time packages. Since many

described and (ihe results of our investigation into the use of compiler companies are currently working on compilers for a

Ada as a distributed programming language are presented. variety of target processors, obtaining compilers in the future
for any of the processors in the distributed system should
not be a problem.

In order to make the Ada distributed system program-
Goals ing environment portable to different hardware

configurations, the Ada level programming of such a system 0 _

should be independent of the underlying hardware. Rewrit-

*+" The use of Ada as a programming language for distri- ing hardware drivers is typically required when porting . -.-

- buted systems is our primary goal. To reach this goal, it is software from one hardware system to another. If the Ada

necessary to design and implement interprocessor synchroni- distributed system approach is structured to isolate

zation and communication mechanisms which provide run- hardware dependencies, then porting application software

time support for dtstributed Ada programs. The design must onto new hardware systems would involve modification to

le practical and the implementation efficient; practicality low level drivers but no change to the application software

will lead to reduced software development costs while and would therefore require the minimum possible effort.

efficiency will guarantee the sitill :lit.v of the implementation Thus the reusability of the application software is increased

for real-time applications. In c ' o achieve these goals, we and the cost of building similar systems in the future is

have identified, (luring the design phase of the project, three decreased.
further objectives: (I) transparency to the programmer, (2)
use of an existing Ada compiler .as a code generator, and (3)
hardware iudependence.

('onplete transparency to the programmer, i.e. having Ap~roah

-" the distributed nature of the target system be invisible to
the programmer, is a very desirable property. It. would be

• ".extremely difficut, if not impossible, to provide complete Previously proposed approaches to the use of Ada as a
transparency within the scope of our project. Therefore, we distributed systems implementation language provide vary-
have strived to provide the maximum transparency possible ing levels of transparency to the implementer, It is to be
within the limits of our other objectives, hoped that in the future run-time support for distributed
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Ada programs will be standardized so that large applications a special high performance RTC transport protocol is

can employ a wide range of different computers, network separated from the more hardware-dependent network driver

technologies, and compilers without explicitly considering the software.

problems imposed by network unreliability and the possibil- This alternative to supporting network shared memory
ity of remote failures. The difficulty of these problems sug- provides highly transparent support for a wide range of Ada

gests that such a standard is not likely to emerge in the near control transfer primitives including subprogram calls, task

term. entry calls, and exceptions. However, the absence of net-

Unlike languages designed to support distributed sys- work shared memory imposes restrictions on program strue-

ters such as Argus8 and NILIO, Ada contains features which ture and the type of parameters which may appear in calls

are difficult to support efficiently in a distributed system to remote subprograms and tasks. Designers are required to

environment. In addition, the semantics of other features structure their application into disjoint collections of tasks
are difficult to extend consistently from a uniprocessor or which share an address space. Access and task type parame-

tightly-coupled multiprocessor to a network of loosely- ters must not appear in remote calls since these types require 0
coupled processors. Before describing our approach in detail, the callee to access the caller's address space.

* we will outline some of these problems and compare various If it was necessary for implementers to write surrogates

other methods which have been considered. for all modules which make or receive remote calls, the addi-

Perhaps the greatest obstacle to providing complete tional effort required, to say nothing of the increased oppor-

network transparency that is imposed by Ada is the result of tunity to introduce bugs into the system, would make RTC

the ability of Ada subprograms and tasks to be nested and impractical and ineffective. Fortunately, surrogate genera-

share variables declared in an outer scope. If such software tion can be automated to a very high degree. A preprocessor •

modules are to be arbitrari!y distributable, consistency can generate appropriate surrogates for remote clients and

between multiple copies of shared variables must be main- servers from interface information present in Ada package,

tained or some means of mapping remote addresses into the task, and subprogram specifications with minimal input from

local address space must be provided. Several distributed an implementer.
operatng sy t

0 
16 ' rvde suchsevcburqieaoperating systtms provi h service but require a One of the attractions of this approach is that modules

network of homogeneous processors. special hardware and/or adhering to this discipline may be collocated without the

* microcode to do so. Such a reliance on homogeneity makes need to involve surrogates or other non-standard Ada run-

incorporation of new subsystems based on new computers time support. Run-time efficiency is not sacrificed in the

more difficult if not impossible. loneywell's approach
4  interest of the configuration flexibility provided by the abil-

requires this level of support to meet their transparency ity to collocate distributed programs.' This capability is use-
goals and may be satisfactory if their goal is a networkable ful during development when software destined for embed-

hI oney oiwell processor and distributed system architecture led targets with limited debugging support can be debugged

which provides transparent supp)ort for distributed Ada pro- using APSE tools resident on a development host. In addi-

grams. tion, it provides an Ada-oriented framework for software S
An alternative approacht

5 6 5 13 requires considerably reuse in a distributed computing environment. Since the

less run-time support and provides correspondingly less net- semantics of remote communications models that of local

work transparency. This technique has in the past been communications, designers need not learn and relearn

referred to as transparent remote procedure call (RPC)
9  methods of utilizing operating system monitor calls or ad hoe

despite the fact that other types of remote transfers of con- message-passing packages.

trot are supported. For this reason, in this paper, we will

refer to this method as remote transfer of control (RTC). We believe that Ada RTC can support a variety of dis-
tributed systems architectures. In particular, it is especially ._

The essence of this method is to provide surrogates
1 5  well suited to a free market

8 model Ailere clients negotiate

for procedures and tasks that are remote to a caller. These and receive service from remote servers. In such a system.

• iurrogates provide interfaces that are identical to their servers registheir eir availability with a network-wide service

remote couinterparts. On the calling machine, a surrogate directory, Clients can then acquire the address of a required - - " -

for the callee processes a call by marshalling the in parame- service by importing the service from the directory. Such

ters into a packet for transmission to the remote callee. run-time binding of servers and clients provides the founda-

W When this packet is received by the callee machine, a surro- tion for dynamic system reconfiguration in response to par-

gate for the caller unmiarshals the parameters from the tial system failure.
packet and calls he actual callee. After the call returns to

this surrogate, the out parameters are returned to the Since RTC is intended to ie used as a low-level primi-

relnotcaller via a similar marshalling, network transmis- tive for constructing distributed systems, run-time perfor-

. sifm. nimarshalling process mance is a critical concern Previous studies 14 suggest that

The transparency supported by this method and the the end-to-end protocol selected to support RTC at the Iran-

layering of its run-time support is apparent from Figures la sport level has a profound effect on performance. Moreover.
." aiid Ifi Figure Ia depiictsa normal Ada rendezvous bietween general purpose transport protocols, especially those requir-

tasks executing on a single processor. Figure 1b shows that, ing explicit connection set-up and shut-down or those -

when these tasks execute on different computers, they inter- oriented toward bulk data transmission can be utilized only

face with the surrogate level in the same way that they at considerable expense at run-time.

interface with cacti other within a single computer The While not ii the best interests of high performance, a -

munderlying run-time support is layered such that interproces- lavered RTC run-time increases the practicality of providing

sor communication OP(1 ) kernel software which implements language-level homogeneity in support of large systems
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' employing a variety of processor types and network techno- Many features of the Ada language support this
logies. In addition to isolating hardware dependencies within approach. Ada's separate compilation facilities permit the
the lowest layer, this architecture enables the machine gen- generation of individual surrogate activity packages. Ada's

*eration of the application-dependent surrogate layer. The multitasking support provides the ability for distributed pro-
possibility of implementing high-performance RTC run-time grams to call each other without locking competing tasks
support coupled with the potential to improve both software from using cpu resources while the call is in process. Ada's

* reusability and system fault tolerance has resulted in ES~s exception support enables remote errors to be reported to .

*commitment to prototype and evaluate the Ada RTC the client in a manner which is consistent with local error
*approach to distributed systems implementation. reporting.

For example, suppose that a server task raises
TASKINGERROR. If the server is collocated with the

Ada in a Distributed Environment client, the standard Ada rules for exception propagation
apply. When the server is remote, the exception is pro-
pagated to a surrogate which prepares and forwards an

We are currently working toward a demonstration of exception packet to the kernel for transmission to the client.
*Ada RTC in a distributed system composed of a smnall When the packet is received by the client computer,.the sur-

number of Sun workstations which communicate via Ether- rogate can re-raise the exception which will then be pro-
net. This section describes the particulars of our methods. pagated to the client. Contrast this transparent exception

As nted prhibtingshaed ariblesbeteenmodles mechanism with application level checking of status codesAebsde ined messagesin transitte byiale aewe mesagepacage
resident on computers with physically disjoint address spaces ebde nmsae rnmte yamsaepcae

avoids the difficulties of implementing some form of network Consistent handling of local and remote error condi-
virtual memory but requires that applications be decomposed tion is but one of the reasons that we prefer Ada RTC over
into disjoint collections of tasks which share an address msaepsigsses irr akg hc ol
space. When such collections of tasks are not collocated provide tasks with the ability to send and receive messages
they must communicate with each other solely via Ada between processors could ce'rtainly be implemented. Such
RTC. These collections of tasks we call activity packages. fclte r rqetypoie yra-ieeeuie n
According to our methods, each processor in a distributed operating systems for uniprocessors. However, the semantics

systm eecues n itegal nmbe ofactvitesof message-passing are inconsistent with respect to Ada's
The surrogate generation software is the primary tool procedure call and task rendezvous semantics. This incon-

which supports the activity abstraction. We have avoided sistency drastically reduces the flexibility with which existing
the use of an auxiliary configuration language in favor of a application software modules can be partitioned and recoin-
simpler mechanism which utilizes several pragmas of our own bined to fit the topology of different distributed systems.
definition to specify activity constituents and remotely acces-
sible entry points. Since the Ada language standard requires Run-time support for RTC is provided by the IPO ker-
that the compiler ignore any unrecognized pragmas, activi- nel, the binder, and low-level network support software.
ties can be compiled together without preprocessing and run Among the most important of our design objectives is perfor-
in a single processor environment. mance and support for run-time binding of clients to servers.

In esene, he mplmener isers aprama ntothe Although an exhaustive description of our design is beyond
In esene, he mplmener isers aprama ntothe the scope of this paper, some of our design decisions are

specification of an activity package which instructs the worthy of discussion here.
preprocessor to generate surrogates for the specified task
entry, subprogram or exception. A block diagram of the sur-
rogate generation process is shown in Figure 2. The Ada sur- Tasks are required within the kernel on both client and
rogate preprocessor (ASP) consists of three passes. The first sevrmcissotathkrnlanntaepoesngf
pass takes as input an activity package specification and one call without locking out others. In order to optimize
generates the surrogate code and some intermediate source performance, the kernel needs to create and destroy tasks
code which contains local activity information. The second sparingly due to the high overhead associated with initializ-
pass links together the local intermediate code with those ing a task's state, creating control blocks, etc.. In our
from other activity packages. Finally, the third pass pro- design, tasks are managed by the kernel and dynamically
duces global tables containing global identifiers, packet, con- asigned to incoming and outgoing calls.
tents, etc. Since the overhead associated with transmnitting and

ASP output is comoprised of modules which are destined receiving packets coupled with the latency of the network
*to reside on both client and server processors. The context medium is considerable, it is desirable to minimize the

clause of the client activity package contains the name of the number of packets needed to support RTC. Reliable,
server activity package. W'hen both packages are to be col- connection-oriented protocols such as TCP11 require explicit
located this name corresponds to the actual application connection establishment prior to data transmission as well
package written by the implementer. When the client and as explicit disconnection when the connection is no longer

* server are dlistrib~uted, this name corresponds to the .surro- needed. In addition, acknowledgement packets are sent for .-

*gate se-rver generated by the preprocessor. Since the server data packets. Such protocols have their place in support of
h has no static knowledge of who its clients are, surrogate remote file transfers and other bulk data transfers but are%

*software which calls the actual server on behalf of a remote inappropriate for RTC implementations where performance
client is not referred to in the server's context clause, is a major concern.
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We are implementing a transport protocol for RTC In order to create a productive software development
which is modeled after that used by Xerox's CEDAR pro- environment for distributed programming, it is desirable to
ject 2

. This protocol relies upon an underlying unreliable develop an APSE specialized for use in programming distri-
datagram service and is designed to minimize the number of butcd target systems. The adoption of Ada RTC as the pri- *

packets necessary to support the most prevalent types of mary means for communication between distributed pro-
RTC. If packets can never be lost, damaged or duplicated, grams strongly influences the nature of this toolset. We .. 9...
the minimum number of packets required to support a have already described the Ada Surrogate Preprocessor
remote procedure call is two: one to transmit the call and which is essential to relieve the implementer from the tedious
one to return the results. When remote communication is and error prone task of writing surrogates. We now describe
unreliable, both call and return packets must be ack- other tools which belong in our set of APSE extensions but
nowledged. However, since call and return packets are are yet to be realized.
paired by the semantics of procedure call, receipt of a return The initial binding of activity packages to computer is
packet indicates to the caller that the callee received the call a task that currently must be done manually. For each com- - -
packet last sent by the caller. Since the calling procedure puter in the distributed target system, this involves assem-
cannot have two calls outstanding at once, the callee may bling its activity packages together with the surrogates for
interpret the receipt of a new call packet as an indication those activities which are located on remote computers. The
that the previous return packet was received by the caller, necessarv tools to automate this process would not be

Timers are used to trigger packet retransmission when difficult to construct and would enhance the development
these implicit acknowledgements are not received. When process.
retransmittt I packets are received, the kernel immediately Debugging distributed programs is notoriously difficult.
returns an acknowledgement. Timeout intervals are var- One source of these difficulties is that even the best unipro-
aLle. At Xerox, the first retransmission interval is set to a cessor debuggers fail to provide the appropriate level of
value slightly greater than the round-trip time between granularity for program control and data inspection
machines. Subsequent retransmissions are issued after Debuggers for distributed targets need to provide a set of
increasingly long delays until after approximately ten capabilities which are analogous to those provided by unipro-
minutes, retransmissions are issued every five minutes. cessor debuggers. The means of monitoring and controlling
(Communication failures and remote crashes will be detected the interaction of software executing concurrently in a distri-
but no indication of server problems such as deadlock, buted system should be as convenient as that used to inspect
infinite loops. etc. will ever be provided. This is as it should local data areas and monitor subprogram calls.
be if the caller and callee are collocated, the caller will ' .".
receive no indication that the callee will never return. This Since all Ada-level interprocessor communication util-

protocol optimizes what is expected to be the most frequent izes surrogates, the Ada Surrogate Preprocessor could gen-
case. a one packet call is processed quickly and a result erate additional code which would permit the inspection ofpacet retuned betore cran s is cessedquicklyanar esult remote call parameters and allow processors to be halted

upon remote call or return. The demonstration environment . P
During initialization of an activity package, entries in a we have selected provides an attractive setting for such a

network-wide directory of available servers are inserted by distributed interactive debugger. In particular, the Sun's
each server which is available for remote access. Clients windowing capability could be utilized to provide separate
import the network addresses corresponding to the server windows for each processor.
they require from this directory. Fault tolerant capabilities
can be supported by this mechanism by providing exception There are limitations imposed by our approach to the
handlers in clients which attempt to rebind to another server use of Ada in programming distributed systems. Program-handersin lien ts w T a ttemp tRRo ereindptono r s r ming within these limitations is currently the responsibilityof the programmer and only limited protection from the use

of illegal constructs is supplied during the development pro-
cess. It would be desirable to provide automated support for

Status the detection of shared variables between activity packages,
access and task type parameters in calls to remote programs,
and other constructs which are anathemas to our Ada RTC

At the present time, we have completed the preproces- implementation.
sor responsible for generating surrogates. Preliminary A further consequence of these limitations is the
designs for both the binder and the IPC kernel have been activity package. If a library of reusable, distributable Ada
specified. programs designed according to our approach is maintained.

A demonstration of an Ada distributed system proto- it will consist largely of activity packages and associated
type is planned for the second quarter 1985. The demonstra- documentation and test routines. The inclusion of the reus-
tion will consist of a distributed application which has been able software library and manager in the APSE will allow L "-

programmed in Ada and is hosted on a collection off Sun the APSE to grow and provide greater support to applica- S
workstations interconnected by an Ethernet. Each Sun tions as experience is gained in the use of the Ada distri-

workstation is a 68000 based microcomputer running Berke- buted system. .
ley 4.2 BSD UNIX*. The application program will make use
of remote transfer of control as the basis for interproceas ..
communication and its surrogate level will be automatically
generated by the preprocessor. * UNIX is a registered trademark of' Bell Laboratories.
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Conclusions The software development environment for the Ada dis-
ributed s.ster consists of the Ada compiler and support

Our experience has indicated that despite shortcomings together with a collection of APSE-level tools
with respect to standardized run-time support for d mstribted for distributed programming In addition to ASP. a distri-

wit repc to stadarize run-ractme supportr fo disriutdresgbutedra
systems. Ada is nonetheless suitable for programming distri- buted interactive debugger, a distributed design cheker, ard
buted applications. The iii plementation of a distributed a reusable distributed software library ard narager are
run-time system which supports the entire Ada language is required to maximize programmer productivity

difficult and, in our opinion. impractical when the objective Our first Ada distributed system iprototype will execute
is support of heterogeneous distributed systems. On the on a network of Sun workstations connected via iin Ether-
other hand. confining interprocessor communication support net. We expect to complete this prototype by mid-1985 and

to an Ada library package restricts software reusability by are confident that empirical data collected at that time will

requiring intertask communication to be achieved by two confirm that distributed systems cart be cost-effectively

independent mechanisms. Our intermediate position is prac- developed using Ada RTC.

tical for heterogeneous distributed systems and provides a
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AN ABSTRACT MACHINE SPECIFICATION FOR THE PROCESS NODE
SECTION OF THE COMMON APSE INTERFACE SET (CAIS)

Chandra S. Srivastava 0 -

and
Timothy E. Lindquist
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Virginia Tech, Blacksburg, Virginia 24061

ABSTRACT Capability it is essential to have a clear
This paper describes the use of an and complete specification. A preliminary
Abstract Machine approach to specifying study of APSE validation needs [2] has
kernel software interfaces. To provide a indicated that CAIS specification should
specification that is appropriate for not be limited to syntax and functional-
developing a validation mechanism, we ity. Subsequently, Lindquist (3] pre-
describe the functionality of the opera- sented a specification technique in which
tions in the process node model of the the interactions that exist at the inter-
Common Ada* Programming Support Environ- face and pragmatic limits must also be
ment Interface Set (CAIS). Each operation specified.
is described by an Abstract program in an
Ada-like package body. In this paper we This paper uses the Abstract Machine
present the technique, describe CAIS Pro- approach to specify the Process Node Model
cess Nodes, and show the Abstract programs of CAIS. This approach aids in construct-
for two of the operations. ing a CAIS validation mechanism. Example A

Abstract Machine descriptions of Process , -
Management are given to present CAIS Pro-
cess Nodes.

INTRODUCTION
ABSTRACT MACHINE SPECIFICATIONS

The Ada language has been developed ,
by the Department of Defense to reduce the Among the methods that could be used
software costs of embedded computer sys- to describe the functionality of CAIS 9
teins. To achieve this objective, the Ada facilities are natural language commen-
project has extended beyond the develop- tary, formal semantics, and abstract
ment of a programming language to address machines. Although natural language com- .-

the Ada Programming Support Environment mentary is easy to construct and compre-
(APSE) and the kernel facilities needed to hend, the major drawback is that the .- '-
support an APSE. The underlying concept intended audience is often left to inter-
of this development is: If a common pret key semantic issues. The validator
interface to the underlying kernel is used or the implementor may either make arbi-
then programs, tools, and data will be trary decisions based on interpretations
more transportable over different APSE's. or ignore key semantics.
To address this problem the Ada Joint Pro-
gram Office (AJPO) has formed the There are several formal methods for
KIT/KITIA (Kernel APSE Interface Team / specifying semantics. Examples are axio-
Industry and Academia) and the APSE Evalu- matic specifications, denotational seman-
ation and Validation Team (E&V). The tics, or validation assertions. The meth-
KIT/KITIA have designed a preliminary ver- ods use mathematical formalism to define
sion of a kernel interface set to support semantic information and are subject to
APSE tools. This interface set is called mathematical analysis. In the axiomatic
the Common APSE Interface Set (CAIS) [11. approach, axioms are designed in the form

of logical statements to describe the
The APSE Evaluation and Validation functionality of the operation. This

Team (E&V) is developing a CAIS Validation approach, while quite expensive and time
Capability (CVC). This suite of test consuming to construct, is precise and
tools will be used to assess the implemen- rigorous.
tations of the CAIS in a manner similar to
the Compiler Validation Suite used for
Ada. To develop the CAIS Validation

Department of Defense Ada Joint Program
*Ada is a registered Trademark of the US Office. _
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With Abstract Machines, the CAIS Process Management by an Ada-I ike
functionality of an operation is defined Abstract program. In constructinq the Ada
in terms of a program, which describes program some operations and data are
what the operation does. The program is needed which are neither convenient to
written for an Abstract Machine, which if detail nor part of the Ada langua -e.
executed would exhibit the function of the These operations and objects are treated 0
operation. This approach is more formal as primitives of the Abstract Machine. -"-
and concise than natural language commen-
tary and easier to understand than other We us Ada because it is rich in con-
formal methods. trol constructs and typing, for example,

separate compilation units (packages) ' - .
There are two drawbacks of the tasking for concurrency, and exception "- % %

Austract Machine approach. One drawback handling. Further, users of a CAIS speci-
is that it is bottom-up, which means that fication will be familiar with the seman-
the instructions and the data recognizable tics of the Ada language.
,)y the Abstract Machine must be designed
;),fore the operations can be understood. Our Abstract Machine proqrams for
ve describe CAI3 functionality in an Ada- Process Management make extensive use of
IiK Abstract Machine which is familiar to other CAIS operations. For example, the
the intended audience. The second draw- abstract program for SEN) uses OPEN,
Ddck is that Abstract Machines tend to CLOSE, and KIND, which belong to
bind the implementor to a specific imple- CAIS NODEMANAGEMENT. We assume that .
mentation technique. While an Ada-like these operations are fully specified. The
Astr act Machine program may suggest an specification includes an implementation
implementation, functionality is defined package for Process Management. This
iy the effect of executing the instruc- package defines the data structures and
tions not ny the instructions themselves, procedures used in the Abstract Programs.

The implementation package can oe viewed
CAIS ABSTRACT MACHINES as containing elements private to detail-

ing The Abstract code for processes.
We nave defined the operations of

ROOT-PROCESS

IDOT A DO

SrRUCTURAL PROCESS CURRENTJOB

- -- PROCESS

Figure 1. CAIS Nodes.
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CATS PROCESS NODES requires.

The CAIS can be viewed as a manager A process is identified by providing
for a set of entities such as files, pro- a pathname to its node. A pathname con-
cesses, and devices. To manage these sists of a sequence of relation/relation-
entities four types of nodes have been ship-key pairs that traverse a path to the 0
defined: structure, file, process, ind node. There are at least three predefined
device. Nodes are distinguished by their relationships associated with each process
contents, and structural nodes nave no node. The CURRENT JOB relationship refers
contents. Contents act as a carrier of to the root node for a process node's job.
information about the entity beinj The CURRENTUSER relationship refers to
described. Figure I shows the various the user's top level node. The
nodes in the CATS environment. CURRENT JOB and the CURRENT_ ISER relation-

ships are maintained by CAIS. The 0
Process nodes represent the execution CURRENT NODE relationship refers to a node

of an Ada program by means of its code and which represents the process node's cur-
context. A single process node represents rent focus or context and can be manipu-
all the tasks associated with a program. lated by the process. These relations
'nenever a user enters the APSE, a root provide a convenient means for accessing
process node is created dynamically as the other CAIS nodes. Figure 2 shows a pro-
top level node for the user. The root cess node and its relations together with
process node acts as the root of the tree the program and tasks associated with it. -

for all dependent processes created by the
user. Whenever an Ada program is invoked, The current state of a process which
a process node is created and attached to is known as its PROCESS STATUS, can be
the parent process. Thus, the process determined from another -process. CATS
structure ;rows and shrinks as programs defines READY, SUSPENDED, ABORTING, and

s-n and complete execution. TERMINATING states for a process. CATS
also defin-s facil ities to perform the

Wh en compared to other kinds of following process management functions: •
nodes, process nodes are active rather
than passive. They have parameter passing - management of Ada program execution
and suspension/resumption capabilities. - interprocess communication
Resources are dynamically bound to the - process monitorinq and control
pr, cess node during execution. For exam-
pie, memory, cpu capacity, files, devices, CATS Process Manaoement packaoes have been
and otner processes are bound as a process defined to achieve these three objectives.

0

PROCESS PARENT " ' " " "

RELATIONSHIPS CURRENTUSER

"CURRENT-JOB
z.. q . , / CURRENTNODE..."

CHILDREN

ADA TASKS NODECONTENTS

00
VARIABLES

Figure 2. Process Node.-
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The CAIS PROCESS DEFS package defines Control returns immediately to the calling
types and definitions associated with the process without waiting for the processes
process nodes as needed by the other pack- to abort. The process node is not deleted
ages. This paper presents sample details when ABORT PROCESS is used. Instead, it
of the specification of routines from has to be explicitly deleted. 0
PROCESSCONTROL.

Processes can be suspended from the
CAIS PROCESS CONTROL ready state or resumed from the suspended

state I y using SUSPEND PROCESS and
CAIS PROCESS CONTROL provides for RESUME PROCESS. The state of a process

invocation, suspension, resumption, and can be viewed from another process, using
termination of processes. Each time an the function STATEOF PROCESS.
Ada program is invoked a new process and a
process node associated with it are CAIS PROCESS CONTROL includes func-
created. The new process may oxecute tions JOB INPUT - and JOB OUTPUT which
synchronously or asynchronously by using return the standard input and output files
INVOKE PROCESS or SPAWNPROCESS respec- as defined at the initiation of the root
tively. process tree.

Processes may complete their execu- Our Abstract Machine programs use Ada
tion by one of two methods. The first one tasks and objects to represent CAIS pro-
is normal termination, which is accom- cesses. The NODE data structure, as
plished by RETURN TERMINATED. A process defined in the CAIS IMPLEMENTATION pack-
calls RETURN TERMINATED to cause normal age, defines the contents of a process
completion of itself after completion of node. The node contains the data neces-
its dependents. The second method is sary to manage the process and the tasks
abnormal comple-4.n which is achieved by needed to support program execution, pro-
RETURN ABORTED. Here, the process and its cess synchronization, interprocess commu-
descendent processes are forced to abort. nication, and process interrupts. Figure

3 shows the node data structure in which
ABORTPROCESS is used to abort a pro- circles represent tasks and boxes repre-

cess along with its descendant processes. sent data.

SPAWNPROCESSTASK
CHANNELINDEX CHANNELQUEUE

)0

: ~~~~STATE [:j ..-

• ~~~STATUS -'--:-,I .t ~ ~~~RESULTS .::.LFT}
-'"PROCESS )PARAMS

SSTDIN ' ~~STDOUT-•...

INTERRUPT-MANAGER ADA-PROGRAM -.

Figure 3. Process Tasks. -
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The task ADA PROGRAM is used to SPAWN PROCESS

represent the execution of a PROGRAM asso-

ciated with the process. The parent makes As examples, the Abstract Machin.
an entry call to this task in the proce- specifications of SPAWN PROCESS and
dure SPAWN PROCESS and the cal ls return AWAIT PROCESS are presented. A call to
immediately- The execution of the program SPAWNPROCESS results in a new node and a S
is started in this task. The task new process being created to represent the
SPAWN PROCESS TASK is used to achieve syn- execution of the specified program. Con-
chronization between the parent and the trol returns to the invokino process, and
child process. To wait for a child pro- no technique is provided for coordinaition
cess to finish, t e parent makes an entry of the new process with its parent, except
call to an entry within this task. When for communication and termination. Termi-
the child process completes, it also makes nation of the parent will not be completed
an entry call to this task providing the until all children are terminated or
RESULTS and the COMPLETION STATUS. The aborted. Similarly, no technique is pro-

parent is then awakened and returned the vided for returning a result strinj to the
parameters of the child process. invoking process.

procedure SPAWN-PROCESS (PROGRAM in PROGRAM-STRING;
PARAMS in PARAMSSTRING;
NODE in out NODE-TYPE;
KEY in out RELATIONSIJIPKEY

UNIQUECHILDJKEY;
STDIN in FILE-TYPE :=

CAISTEXTIO. CURRENTINPUT;
STD-OUT in FILE-TYPE

CAI STEXTIO. CURRENTOUTPUT;
STD-ERR in FILETYPE

CAI STEXT IO. CURRENTERROR; S
CURR-NODE : in NAME_STRING

"'CURRENT.NODE") is

IS-UNIQUE BOOLEAN TRUE;
NODEC,NEXT NODE z NODE-TYPE;
FILE-TYPE CAISLIST UTIL.LIST;
ITERATOR NODEITERATOR;

begin
OPEN(NODE, PROGRAM);
if KIND(NODE) /= FILE

then CLOSE(NODE);
raise NAME-ERROR;

end if;

GETNODEATTRIBUTE(NODE,"filetype",FILETYPE); -..
if CAISLISTUTIL.IDENTIFIER(FILETYPE) 'executable-image'

then CLOSE(NODE);
raise NAME ERROR;

end if;

CLOSE(NODE);
OPEN(NODEC, CURRENTPROCESS);

ITERATE(ITERATOR, NODEC, KIND =>PROCESS);
while (IS-UNIQUE and MORE(ITERATOR)) loop

GETNEXT( ITERATOR, NEXTNODE);
if PRIMARYKEY(NEXTNODE) = KEY

then KEY := UNIQUECHILDKEY;
IS-UNIQUE := false;

end if;
end loop;

CREATE PROCESS(NODE-C,KEY,NODE, PROGRAMPARAMS, ".
'ready' , STDIN, STDOUT, STDERR, CURRNODE);

CLOSE(NODEC);

end SPAWN-PROCESS;

Figure 4. Spawn Process _t
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GRAM FOR SPAWN PROCEsS tution of prr irams. We ha.e shown how the
tfunc tional ity of operations that managie i

4 1s the Abstract Machine code mu] ti -Process proir am development environ- -
0iC, E S S. Toe pathnme to the ment an be detailed in terms of Ada task-

p , 1 t, exeucue tioe PROGRAM par m- in An exe,-utinI Ada prooram toqethor
r is irst teost id to assure that it is with al I of its tasks are represented by a

.yn t i-tlcal ly 7 rre,-t that the file sin g e CAIS oprocess In our description,
x 1s t, nd tit it i:; in executav)le form. eih rrocess is represented by a qroup of

ERROR is raia, d it it is a syntac- Ada tasks, needed to manane the proarnm's
tI,,al I, incorr,,-t pathinamo or if it is not inter-Actisns with the CAIS environment. A
,_x,-cuta:oe. ii Dfrent systems have diffe- sinqle task within the iroup is used to
re nt con%.-n t ,ns for the executable imaqe represent the parent of all tasks in the
deptndin-j -n the protocol with the linker. executing Ada3 prooram. Thus, a CAIS envi- 0

ronment of several acti,,e processes is
I' RA rE MORE, and GET NEXT proce- defined by our specifications with a clus-

Aures ,f the CAIS NO')E MANA(EMENT package ter of Ada tasks for each process. Ada
he en usd to traverse all the exist- has proved useful in des.-ribinq the Pro-

i] ; chi' J processes to Jetermine whether cess Manaqement fac il ities, and the ren-
tne Kt, suppl ied by the user is unique. dezvous mechanism of tasking has been used
1, tli

. 
us.,r supplied key is not unique (or to define synchronization and communica-

It tIn', user Joes not specify a key] then tion among CAIS processes.
:Y sster qenerates a unique key for the

sp- wned" process. A p roced uro REFERENCES
CEA E PROCESS (wh i-h is not shown) is

ad create the process node and neces- 1. Common APSE Interface Set (CAIS) Draft
sary tasks for the spawned process. The Mi l itary Standard, Prepared by the
parimeters, standard input, standard out- KIT/KITIA CAIS Workini Group, Version
ut and standard error as specified by 1.4, Ada Joint Proqrsm Office, October

tne p3rent process are stored in the 1984.
spawned process. The state of the spawned
p roess is mado READY. The CURRENT _NODE 2. Kafura, D.C. ; JAN Lee; T.E.Lindquist;
)ft te spawned process is initial ized to T.Probert, Validation in Ada Program-
the CURR NODE of the parent. The execu- ming Support Environments, in KAPSE
t ion of the PROGRAM, which is passes as a Interfacce Team Public Report Vol. II,
.parametor by the parent process, is initi- NOSE, pp. 30-1 to 10-59, October 1982
ated by the task ADA _PROGRAM. An entry
:al I JET IROGRAM is made from the 3. Lindquist, T.E.; J .L.Facemire, and
CREATE PROC-ESS procedure to this task to D.G. Kafura, A Specification Technique
ind icate what program to execute and to for the Common APSE Interface Set,
indcato that the execution may begin. Journal of Pascal, Ada and Modula-2,
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ADA AS OUTPUT FROM SOFTWARE CAD SYSTEMS

T. A. Mizell
H. S. Osborne

Teledyne Brown Engineering

Huntsville, Alabama 35807

Abstract the system designer can significantly improve 
-

productivity and efficiency by seeing the compo

This paper describes the theoretical concept nent fit into the whole.
of a project by Teledyne Brown Engineering to It is recognized that defending the thesis

develop a unique set of tools for systems engi- that systems designers should use graphical

neering that both improves productivity and notations for system design that use Ada as

lowers the error rates. While there are many an intermediary will be difficult in the eyes

. efforts underway to build tool sets for productiv- of many traditional programmers who see Ada

ity improvement, none are based on using the as a super programming tool. Teledyne Brown
Ada language as an intermediary in system con- has already developed this process, which is

struction. The sum total of this attempt has now being refined. This is based on the recogni-

been to impose a yet higher order graphics tool tion that Ada can be much more than another - '
between the user and the Ada language, thereby coding tool; it is indeed of such power that

producing labor savings and error reduction, it can be used in new and revolutionary ways
It is important to emphasize that this paper that were not foreseen when it was first - -

; deals only with using Ada as an intermediary conceived. * 1
language and the human interface and not with Ada has been simultaneously hailed and
the general characteristics of the toolset as cursed as a high-level programming tool since

a whole. its conceptual beginnings in the mid-70's. Many

felt that it was too inclusive in that it

attempted to incorporate the strongest features

The Human Interface of all common coding languages, including COBOL,

FORTRAN, CMS-2, JOVIAL, PASCAL, and TACPOL. -

There are a number of ways in which the They argued, among other things, that any compiler -_
interface between people and machines could that incorporated all the strong features of

be improved. Instead of having a program in these languages would be, by necessity, so complex

ASCII streams, for example, it would be more that it would become burdensome in terms of

- productive to have a graphics "front end" to the required overhead that it would not be pos-
improve readability, maintainability, and provide sible to meet requirements of reasonable compila-

living specifications. The main reason for tion and execution speed. While some of the

graphics should be obvious -- a quick synopsis concerns about Ada have been borne out, it should

of the activity is provided. Second, the system not be thought that Ada is just another coding -.-
development process could be facilitated by tool. Ada is complex, but necessarily so given

using a natural math notation, via graphics, the requirements laid down by those who conceived

rather than the typical kinds of mathematical it. To this end, it is argued by the current

expressions found in programming languages. authors that Ada is the best'higher order software

Algorithm development and refinement are two tool yet devised. It should also be noted that

of the more significant tasks to be accomplished the tool is just one component of an entire

in scientific programming. Graphical displays programming environment, the Ada Programming

of the algorithmic procedures using natural Support Environment (APSE),which, at this writing,
math notation facilitate the process, saving is still under development and beyond the scope

tedious checking in a programming language. of this paper.
Third, the human interface could be greatly An interesting aspect in the development
improved by installation of more elaborate diag- of Ada is the fact that it was a Department

nostic aids, such as the highlighting of errors of Defense effort to bring the cost of system

found using such tools as MACPASCAL. Fourth, software development back into acceptable limits.

the graphics front end should show a system However, the same range of studies pointed out *
* at a time instead of a program at a time, which the exorbitant costs were not due to the available

typically happens at the present. If the system coding tools, but rather to problems of require-

is very large and complex, as a typical DOD ments and design. Some coding tools were thought

system, it is impossible to see the "big picture" to be obsolete, specifically COBOl. and FORTRAN,

without some sort of visual representation. but they are still the most common coding tools

If the graphics can show not only the main compo- in the DOD environment. However, if one must .-

nents but also the algorithms, timing constraints, carry out requirements and design with a coding 'inJ4.-.
data characteristics, and flow of control, then tool, the problems associated with software
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cos t overruns will continue to grow. Experience applications, with respect to both the ability
has shown that any project exceeding 20K lines to build new packages and to convert existing
of code becomes difficult to manage, given tradi- ones. Not all COBOL compilers are optimized,
tional paper and pencil methods. In addition, since speed of performance is rarely a critical
designing with a coding tool invariably leads ingredient in that environment. "Scientific"
to failures in expectations, confusion, and compilers, on the other hand, may have to have
low morale. some additional refinements, in terms of optimiz- .(,~.

Inarans n omeril omilr evlometing compilation and execution speed, setting
InvariantsinCommercilCompilerDevelopmen them slightly apart from the rest of vendor- -*.

supplied software deliverables. It is argued,
Compilers are a necessary part of any digital therefore, that cost and not schedule becomes

%system, since they greatly facilitate the develop- one of the significant drivers in commercial .

ment process of any large computerized activity, compiler development. The value associated
Those familiar with the MIS world today know with a commercial compiler is constant, usually
that some huge data processing shops in the some percentage of the value of the hardware.
insurance and banking industries still code A vendor, therefore, needs a particular kind

*in assembly languages, since they will not shut of compiler in a cost range that enables him
their operation down long enoughi to develop to market the hardware successfully, and it

*and test the code in a higher order language. is this value that becomes the significant driver .

*The inertia found in some of these operations in what he is willing to spend for the product
is a source of bewilderment to those familiar to be developed. This reflects what the customer
with the advantages afforded by compilers, high- is willing to spend.

* level design toolboxes, and sophisticated editors.
*However, in their behalf, it should be noted Better Ways to Spend the Compiler Effort
*that the cost constraint precludes many things
*that the scientific world assumes that it could Despite the obvious advantages of Ada as
*not live without, e.g., testing. a programming or coding tool, questions are

A commonly observed, if not readily explain- still raised about its effect on the current
able, phenomenon in the development of compilers software crisis. The problems that produced
in commercial environments is that the level Ada -- need for embedded systems tools, prolifera-
of effort seems to be a constant. Across a tion of coding languages, transportability,
wide range of languages that vary in complexity, cost of development, and maintenance of computer-
it generally takes about 3 man-years to develop ized systems -- are going to continue. They
a compiler from base zero to minimum function- have nothing to do with Ada, or any other coding
ality. No attempt will be made in this writing tool for that matter. The problems just mentioned
to provide a statistical analysis of development are significant, indeed, but they will not be -

time for other software products than commercially solved by widespread implementation of Ada alone.
-available compilers, so it should be borne in In the large programming environment (here arbi-

mind that we are not directly addressing other trarily defined as any system larger than 20K
*software difficulties. In addition, experience lines of source), coding is around 10 to 15%.
*has shown that to move from minimum functionality of the total effort. Much larger problems portend

to production requires 2 additional man-years. in the requirements and design of the system,
*These figures are for an operational compiler; from which the code is supposed to flow logically.

any enhancements and 'bells and whistles" will Therefore, no additional coding tool, regardless
invariably add but little to that minimum. (The of the power, will be able to do much about

- Ada compiler development effort has taken longer the problems that really plague this industry.-.
* -- so much longer, in fact, that it is difficult Like other systems engineering firms, Tele-

-to estimate the delta. A plausible reason is dyne Brown Engineering is concerned with two
*the enormous amount of testing and validation simultaneous and highly related problems: over-

required by the DOD.) One of the authors of coming unclear specification documents and incor-
this paper has been part of six major language porat jog the Ada language into its programming
projects, ranging from a BASIC interpreter to environment. Ada is indeed the most powerful
a COBOL at ANSI level I1 compiler with some coding tool yet developed, but it does require

implementations us ing standard tools such as a little more "front-end" design work than other
LEX, YACC, and some ad hoc parsers. By all languages before the coding can begin. It has
rational expectations, such a wide range of been the experience of many in the Ada community
deliverables calls for a corresponding wide that it takes an experienced programmer from

*range of schedules, yet the observable final 3 to b months of involvement in Ada before the
totals were all within 25% of 5 man-years. Others tool i s used effectively. The learning curve
may have had different experiences, but we have in this sense is slightly slow, if one is to
found that those efforts requiring more than do "Ada in Ada and not FORTRAN in Ada." Ada
5 man-years may have had some hidden costs rolled is, after all, a methodology as well as a
up into the final figures. language.

The explanation of the 5 man-years from But becoming an efficient Ada programmer
* conception to delivery may have more to do with does nothing for overcoming problems of undeci-..

corporate requirements than language requirements. pherable specification documents. It is this
*New language products are implemented for a logical intersection between Ada as a coding * *.,

variety of reasons. A COBOL compiler enables tool and systems engineering design tools that
*ingress by a vendor into a wide array of business has intrigued Teledyne Brown Engineering.
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Ada as Intermediate Code is not a dominant requirement. One GENERIC

routine, for instance, may serve a given, fixed,

As noted earlier, it generally takes about floating, and even complex number function,

5 man-years to move a commercial compiler from where three routines would be required in a

the conceptual phase to production quality, more traditional solution of the problem.

From the designer's point of view, it is irrele-

vant what the compiler produces as intermediate 3. The major, and potentially overwhelming, °- "

code, if efficiency does not matter. Following h m r d t a o ei
benefit of Ada as a "pseudocode" is the near

are three areas in which the use of Ada as the elimination of the largest single piece of work

* intermediate language in compiler design can

subtract from the 5 man-years expectations given in a commercial compiler: namely, the code
generation phase, which is about half of the

total effort of compiler development. Direct

1. Parser emission of functional Ada in the semantic inter-

While this is not the major area of savings, mediary phase has been found by us to be no

it is interesting to note that the grammar rules more complex or laborious than the more normal

of a new language can be significantly shortened emission of triplets or directed graph updates, .

in the area of operator precedence handling, which usually characterizes this phase. The

This can be accomplished by the expedient of true code generation phase then becomes someone

riding "piggyback" on Ada's precedence handling else's compiler, thus deferring the traditional

capability. Depending on the character of the and very painful problems of register allocation,

expression, decomposition required, and the code efficiency, and so forth. Essentially,

style of the BNF grammar with which the compiler the new language's implementation has the char- O

writer chooses to construct the parse engine, acter of a translator, rather than a compiler,

as many as two dozen productions may be saved, which would seem to be a realistic way of breaking

with corresponding reduction in the semantic the invariance expressed earlier. The expected

support associated with these productions. development cycles should drop to about 3 man- -

2. Built-ins years, and perhaps less.

The amount of run-time code required to 4. The Sore Spot .--.-

support a new language obviously varies widely The technique of emitting Ada is remarkably 0.
with the nature of the language. It should pointless for the compiler of a conventional

* be noted, if only in passing, that several spe- programming language. At this writing, Ada

cific benefits could ensue by emitting Ada as should be given that market segment for its

intermediate code rather than another kind of own, being the "programmers' friend," until " "

code. First, the kinds of languages that could a different and superior idea comes along. How-

profitably use the Ada emission techniques sug- ever, the observed convenience of the technique

gested here are typically very high-level lan- is an open invitation to the language designer

guages with correspondingly heavy run-time support (more than the compiler writer) to attempt to ' .

requirements, well suited to Ada implementation. develop ways of representing systems at higher

Second, even in the context of "conventional" levels. Roughly speaking, an extra 2 man-years

sets of run-time support, Ada could be a fine are freed from machine considerations, which

medium for implementation, given that efficiency may be reinvested in the system design.

* ". *-

66
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REUSABLE GENERIC PACKAGES
DESIGN GUIDELINES BASED ON STRUCTURAL ISOMORPHISM-

Mfcheal Mac an Airchinnigh

N Generics (Software) Limited, - -
Unit 7, Leopardstown office Park,

Foxrock, Dublin 18, Ireland. S

Abstract of related program units, (iii) abstract
data types, and (iv) abstract state

A fundamental criterion for reusa- machines. He also points out elsewhere
bility of an Ada(R) package is that it be that in order to include tasks as library
generic. The generic package encodes units, they must be encapsulated in pack- S
abstract structure. All instantiated ages. We call such a packaged task the
structures are then said to be iso- incarnation of an agent abstraction.
morphic. Different classes of generic Naturally, Booch's taxonomy is immedi-
package give rise to different kinds of ately applicable to generic packages.
abstract structure. A taxonomy of such
generic packages based on formal parame- The construction of a taxonomy of
ter classes is presented. Special atten- generic packages from the perspective of
tion is given to agent abstractions which application domain is a valid and
are dynamic objects encoded as tasks worthwhile approach but not the only one.

" encapsulated within generic packages. We have complemented this work by focus-
ing on the kinds of abstract structure
and functionality which is rendered

(R) Ada is a registered trademark of the feasible by generic packages. Such pack-
" U.S. Department of Defense, Ada Joint ages are templates from which actual

Program Office (AJPD). instances may be "stamped" out. In this
sense there is an analogy between the

latter and the construction of a mould
and the kinds of objects cast from the
mould. In particular, the more complex
the structure of the object to be cast,
the greater the difficulty in the design

Introduction and construction of the mould. Further-'
more, the mould incorporates the required

"Finally there are generics and the structure in an non-obvious manner. That
whole question of parameterisation. is, by looking at the mould it is not
Should we write specific packages or very possible to perceive immediately . the
general ones? This is a familiar problem structure of the resulting casting.
with subprograms and generics merely add Although the analogy is useful in consid- -

. a new dimension. As stated at the begin- ering the relationship between generic
ning of this section there is as yet lit- package and instantiation, it can not be
tle experience of the use of Ada and so carried too far. In the case of the mould
it seems somewhat premature to give the structure of the casting to be is the
advice in this area."(l1] space to be filled - an inverted struc-

ture, whereas the structure of the
It is approximately four years since instantiation to be is directly given by

the above remarks of J.G.P. Barnes were the structure of the generic package.
first penned. We have now had at least
four years exposure to Ada, two of which From an educational view-point, most
with ANSI MIL/STD 1815A. Examples of gen- classes of generic package arise as a S
eric packages have mushroomed in the Ada result of applying the piagetian princ-
literature and tentative guidelines as to ple of "concrete-to-abstract" evolu-
their design and construction have tion[4]. Thus, STACK OF(REAL NUMBER),
already appeared[21. In his textbook STACK OF(COMPLEX NUMBER), STACK OF-
"Software Engineering with Ada", Booch[3] (MAILBOX), etc.,-all suggest the classi-
explicitly recommends four different cal abstraction STACK OF(...). Each
applications for Ada packages - (i) named instantiation has the structure of STACK '

collections of declarations, (ii) groups and thus it may be said that each is I
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structurally isomorphic to the other. The rules against it, then Ada must be deemed Z'
mathematical principle of isomorphism is to be seriously wanting in the applica-
central to modern algeb-a and has its tion domain of reusable components for

. counterpart in the design of generic real-time systems.
packages. Isomorphism literally means
"same structure". One can readily

- develop such packages for hardware colour Reusability
models, coordinate systems, vector spaces
and classical computer science struc- "The very concept of reusability
tures. How-ver, just as in mathematics, must be defined more rigorously, in terms
the elegance and simplicity of the of the dependence of the component on
abstraction provided by the generic pack- enclosing or higher level environments
age is counterbalanced by the greater (probably defined in terms of number and
semantic burden that is placed on the complexity of algebraic structure parame-
package designer, implementor, and end- ters). It should be possible to develop
user. metrics for the measurement of such com-

ponent dependence, enabling quantifica-
In constructing guidelines for the tion of potential reusability."[6]

design of reusable generic packages we
have found it useful to distinguisn The concept of generic package is
between the Ada programmer roles just inextricably bound up with that of reusa-
mentioned, even if the same person should bility. The success/failure of Ada as a
at present play all three. In the future programming language in competition with
we would consider it desirable that dis- existing and yet-to-be-defined languages
tinct programmers are assigned distinct depends to a large extent on the degree
roles with respect to a given package. of reusability of Ada software components
Such role separation forces one to look that can be achieved. With respect to
carefully at the relationships that Ada, the desideratum of reusability has
(ought to) exist between the generic for- been nooted in the context of the DoD
mal parameter list, the package specifi- STARS Program[7,8. There are many aspects ...
cation, visible part, the package imple- to the concept of reusability. First, -.-
mentation (private part and body), and there is the issue of granularity of the
the package instantiation and end-use, reusable Ada software component (RASU)

At the macroscopic level one can forsee
The remainder of the paper is RASCs as complex as, say, lexical ana-

divided into three sections. First, we lyser generators such as Lex(9] or parser
consider the issue of reusability of Ada generators such as YACC[10). On the other _
software components. Second, we provide a hand, the concept of reusability is
taxonomy of generic packages based on the applicable at the microscopic level -
form of parameterisation. Third, we con- that of individual generic packages. I
sider a taxonomy of agent abstractions hypothesise that it is at this latter
which are incarnated as single tasks level that the issue of reusability for
embedded within generic packages. Ada is most crucial. Therefore, we have

proposed and adopted the following funda-
A note of caution is in order. There mental principle:

is a considerable amount of Ada code
presented in the paper. We believe that Pl. To be reusable, a package must be
it is correct with respect to the Ada generic.
Language Reference Manual(5]. In designing
the generic packages presented here, we A second principle immediately follows as
had much difficulty in interpreting the a corollary to the first:
"semantics" of the English language text
3f the Reference Manual. There are many P2. All generic packages are reusable to
fine details that must always be kept in a certain degree.
mind. It is not easy to present these in
a written paper of this nature and we Second, there is the issue of domain
'ave Jecided to treat them in the oral applicability of the RASC. Reusable
presentation. To illustrate the kind of software components have proved success-
difticulty we had, let us consider a typ- ful in the past, chiefly in the area of
ical problem. In the case of the mathematical software(8]. It is not diffi-
KEYBOARD DRIVERMODEL example where cult to prophesy that classical computer
addresses are passed as generic formal science structures such as STACK OF(...)
objects we believe that it ought to be QUEUEOF(...), etc., will give rise to
valid Ada even though generic formal RASCs. However, let us consider the
parameters are never static. Should it SET OF(...) example which appears fre-
happen that the Ada Language Committee queitly in the literature to illustrate
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Ada's generic package capability[i,3,11]. which is an illustration of the principle
The degree of reusability of this example of enrichment[131 A good introduction to
is restricted by the domain of discrete the issue of reusability of software in a
types. It is not reusable if one wishes general setting may be found in the spe-
to have sets of structured objects. For cial issue of the IEEE Transactions on
example, it cannot be instantiated to Software Engineering, vol.SE-10, no.5, -

give SET OF(RGB COLOUR) where RGB COLOUR September 1984. Finally, it is important
is a limited private type exported from a to note that the design of reusable gen-
package that incarnates RGB COLOUR as an eric packages will require extensive
abstract data type. If we wrsh to have a education/training in Ada, computer sci-
generic package which handles sets of ence, and mathematics, and also extensive
structured objects, then we must rely on experience of and familiarity with many
some implementation such as hashing and kinds of existing generic packages.
the simplicity of the implementation for
the set of discrete type objects is lost.
This causes a real dilemma with respect
to reusability. Either we use the more
general set package to cover all applica-

* tions or we have two separate set pack- Taxonomy of generic packages
ages - one for discrete types and one for -
structured types. Of course, the domain We restrict our taxonomy to generic *
of applicability for such generic pack- packages only, thus excluding generic
ages will be determined by the generic subprograms whose usefulness is limited
formal parameter list. It is clear that and possibly redundant. Furthermore we
there are degrees of reusability and that assume that a generic package will have
perhaps one can find a measure thereof, the form:
Such a measure may be determined from the
structure and applicability of a generic
package. Hence, we propose: -- some with/use clauses

generic
" P3. A measure of the "genericness" of a -- zero or more formal parameters

package will provide the basis for a package Z MODEL is
measure of reusability. type Z -- possibly parameterised

is limited private; .
Now we come to the problem of determining -- functions/procedures
the genericness of a package. To achieve private
this goal it is essential to have a tax- -- FOR IMPLEMENTOR'S EYES ONLY1
onomy of generic packages, to identify end ZMODEL;
those significant features that contri-
bute to the genericness and a mechanism At first glance generic packages having ... ".
to map features on to values in some this form may seem to be excessively res-
numerical measure space. Similar propo- tricted. However we have found it to be
sals towards the determination of a meas- sufticient to cover a wide variety of
ure of reusability in the context of Ada data abstraction incarnations - the
appeared in[6]. In this paper we focus on abstract data types, agent abstractions, .
a taxonomy of generic packages with par- and state abstractions. Moreover we
ticular emphasis on the abstract struc- hypothesise that only generic packages of

* ture which it encodes and the parameteri- this form will ever really be reusable. .-.
sation of that structure via the generic Whereas in this paper we present our .. -

formal parameter list. The structure analysis in the context of limited
encoded by the generic package is essen- private types, a requirement-of our Ada
tially an abstraction of the structure of Software Methodology, similar results may
all possible instantiations. There are be obtained in the weaker context of
two distinct possibilities that arise, private types, except for the treatment
The generic package may abstract on the of agent abstractions, of course, which
maximal functionality required by the involve tasking. Note moreover that
instantiations. Those which require less according to our design philosophy, the
than the full functionality may be package is treated as an envelope for the

*obtained by using a generic package in abstract object being encoded. The type Z
the role of filter[12], which is an illus- defines the object in question and the S
tration of the principle of derivation, corresponding package name is this type
On the other hand, the generic package name suffixed with " MODEL" to make this
may abstract on the minimal functionality clear. There is in alternative design
required by the instantiations. Added approach wherein the package itself is ...-.
functionality may be obtained by using a the encoded object and there is no type
generic package in the role of kernel of focus in the package specification. -. '-
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An example contrasting these two distinct other objects in the USASL neither avail-
approaches is that of the STACK which is able for nor visible to the end-user. .
presented in the Ada Language Reference However, the USASL is not a.i Ada library
Manual, pp. 12-15, 12-16. in the sense of the Reference Manual

though it does share many of its proper-
There is an obvious partition of the ties. It is convenient to think of it 0

set of all (possible) generic packages coexisting with the usual Ada library for "'.-">.
into two disjoint subsets - those which a given software assemblage. Before a ".*-'.*-*'.
do not have a generic formal parameter candidate Ada module .ay be entered into ".
list, denoted GP0, and those which do, the USASL it must be validated by some
denoted GPI. Let us first consider GPO. standard body, whether within a given e*.-,.

company or organisation. The geographical
GPO - Parameterless Generic Packages extent of reuse of such a module depends

entirely on the geographical extent of
There are three distinct kinds of the body imposing the norm.

parameterless generic package. First,
there are those which have state and may Third, there are those generic pack-
be used in a multi-tasking environment, ages which encode structure that is truly
The classic example which has been cited an abstraction of existing or potential
is that of the package which provides the instantiations. Such instantiations are
incarnation of a pseudo-random number distinct and structurally isomorphic sub-
generator(14,151. All instantiations of ject to either derivation or enrichment.
such generic packages are identical in The first example of this form of package
structure which is that of the generic that we actually used was the incarnation
package. This gives us our first design of hardware colour, an abstract data type
guideline: which had actual instantiations RGB

colour, CMY colour, and YIQ colour[l3].
DGI. To be reusable, packages with state Another obvious candidate is an ordered

must be generic, pair of reals which has potential instan-
tiations complex number and real coordi-

Second, there are those packages which nates. Such generic packages usually
are incarnations of abstractions of fixed arise as a result of applying the piage-
dimension and fixed element type. Many tian principle mentioned above to exist-
Ada packages which are incarnations of ing (non-generic) packages. The follow-

. abstract data types - the ADT packages, ing is the generic package specification,
belong to this class. We call such pack- visible part only, for HARDWARECOLOUR:

* ages potential instantiations of a gen-
eric package. For example, a B6zier bicu-
bic surface patch may be incarnated as -- some with/use clauses
the ADT package BEZIER BICUBIC MODEL[16]. generic

* To render it reusable, we prefTx it by package HARDWARE COLOUR MODEL is
the keyword generic, install it in the type HARDWARE _OLOUR -s limited private;
universal standard Ada software library function MAKE(X,Y,Z: REAL NUMBER)
(USASL), provide a default standard return HARDWARE COLOUR;-
instantiation BEZIER BICUBIC MODEL INST function SELECT XTC: HARDWARE COLOUR)
and use that in place-of the 3riginil in return REAL NUMBER;
the software assemblage. All instantia- -- etc., --
tions of such packages are identical in function IS EQUAL(Cl,C2: HARDWARECOLOUR)
structure which is that of the generic return BOOLEAN;
package. This gives us our second design procedure ASSIGN -- CL := CR

- guideline: (CL: in out HARDWARE COLOUR;
CR: in HARDWARE COL:UUR);

*-- DG2. Fixed ADT packages are by definition --

deemed to be reusable. They are private-
entered into the USASL as generic -- FOR IMPLEMENTOR'S EYES ONLY!
packages and a default standard --

instantiation is provided for the end HARDWARECOLOURMODEL;
end-user.

To obtain, for example, the RGB COLOUR -
A note on the status of the USASL is in MODEL we proceed in two stages. First,
order. From the end-user's point of view, we instantiate HARDWARE COLOUR MODEL to
the USASL contains only reusable generic give a kernel package RGB COLOUR MODEL -

* packages which may be instantiated for a KERNEL. This resides in the USASL-but Ts
particular application or it contains protected/hidden from the end-user.
standard instantiations (not necessarily Second, we build the RGB COLOUR MODEL
default ones) for direct use. There are from it by (i) renaming the *Eype (using a .. ,
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subtype declaration) and functions of the generic .
generic package, and (ii) enrichment[13]. -- DIMENSION attribute
The resulting package is generic and a N: POSITIVEINTEGER; -- N >= I
default standard instantiation provided --
as before. This leads to our third design package Z MODEL is
guideline: type Z -s limited private; •

DG3. Packages that are perceived to be
structurally isomorphic may be The majority of encoded structures are
replaced by standard default instan- linear, i.e., possess only one dimension.
tiations of a generic package sub- The number of dimensions d contributes
ject to derivation or enrichment, directly to the "genericness" of the

package. Let us consider a particular
There is one observation to be made that instantiation of Z MODEL for some N = NO.
has an important impact on the end-user. Then objects of type Z produced from this
Let OLD MODEL INST and NEW MODEL INST be instantiation are all of the same fixed
produced according to DG2 and DG3, dimension NO. In other words, object
respectively, where both are incarnations dimensionality is established at instan-
of the same abstract data type. Although tiation time. This approach is particu-
they have exactly the same type and func- larly appropriate for the encoding of
tion names, the syntax differs consider- vector spaces, general linear groups
ably. In the case of OLD MODEL INST, the (i.e. group of invertible nxn matrices),
structure and functionality is explicit etc.
and independent of any other package,
except for context clauses. On the other An alternative approach to the
hand, in NEW MODEL INST, there is a ker- incorporation of the dimension attribute
nel that is clearly dependent on a gen- into a structure is to use Z as a
eric package instantiation. Furthermore, parameterised type. The general form is:
there is no private part! The syntax of
NEW MODEL INST may be constrained to be '
identical to that of OLD MODEL INST pro- generic
vided the end-user is wilfing to pay the
price for an extra level of function call package Z MODEL is
for each function in the kernel. From type Z(NR: POSITIVE INTEGER) -- N >= 1
the point of view of the end-user's con- is limited private;
ceptual model this approach is moreappropriate. It results in replacability

of code even at syntactic level! Let us In this case, dimensionality of objects
now turn to GPl - those generic packages is not fixed at instantiation time but at
that have a non-empty formal parameter declaration time. This approach is par-
list. ticularly appropriate for conceptually

infinite dimensional vector spaces - the
GPl - Generic Packages with Parameters space of polynomials is a typical exam-

ple. Considerations such as these lead us
We have identified four distinct to formulate our fourth design guideline: --

classes of attribute with respect to
which the abstract structure encoded by a DG4. In the encoding of a structure where
generic package may be parameterised - it is required that all objects of
dimension, element type, functionality, that type have the same dimension,
and structure. In general, the more com- then one must use a dimension param- '.
plex the formal parameter list, the more eter N of subrange INTEGER, N >= 1,
abstract is the encoded structure of the in the formal parameter list.
generic package. Parameters serve a dual
purpose - they are generally used in the One word of caution is in order with
implementation of the package, and they respect to the use of the parameterised
ought to have significant semantic conno- type approach. Suppose that one wants to
tation for the end-user. We will discuss encode a structure with dimension N where
each class of parameter in turn. the implementation is required to use a

task type - the buffer is the classical .. -
DIMENSION: Stacks, queues, buffers, example. We hypothesise that it is impos-

vectors, etc., all have the attribute of sible to use the parameterised type . -
dimension. The Ada language mechanism we approach in such a case and we leave it
use for dimension is a generic formal as a challenge to the reader to try to
object of discrete type which is a prove us wrong.
subrange of INTEGER. The general form is:

ELEMENT TYPE: All of the examples
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cited above for dimensionality are also with..
usually parameterised with respect to
element type. The Ada language mechanism type ELEMENT3 is limited private;
that we normally use for element type is with ...
the limited private type and conse- --

quently, in such cases, we insist that package TREE MODEL is
one use a limited private type for -- named arter the tree concept of VDM
instantiation. As a result, the introduc- type TREE is limited private;
tion of such an element type raises the function MAKE(El: ELEMENTI; ..
question as to whether or not we will E2: ELEMENT2;
require operations to test for equality E3: ELEMENT3)
and for assignment. The most general form return TREE; ... r
is:

Note that whereas the TRIPLE could have
generic been derived from an encoded vector space

because it is homogeneous with respect to
-- ELEMENT TYPE attribute element type, such is not the case for
type ELEMENT is limited private; the TREE. Here we have reached the upper
with function ISEQUAL(El,E2: ELEMENT) limit of the expressiveness of the gen-

return BOOLEAN; eric package construct - it cannot handle
with procedure ASSIGN -- EL := ER arbitrary dimensional structure which is S

(EL: in out ELEMENT; hetereogeneous with respect to element
ER: in ELEMENT); type. A similar limitation will arise in
... the case of the next class of parameter -

that of functionality.
The number of element types e contributes
directly to the "genericness" of the Now we must address the issue of
package. It is frequently the case that providing guidelines to cope with the
e = d, i.e. the number of element types wide range of levels of abstraction such -
is conumerous with the number of dimen- as that above which are possible. Because
sions. Again, many structures are linear of the replacability concept developed
with respect to element type. above as a result of DG3 we propose the

following:
Let us look once more at the

HARDWARE COLURMODEL given above. It is DG5. The level of abstraction to be
clear that we can abstract further from encoded should match the "computing
it to give a TRIPLE MODEL where the maturity" of the package designer at
dimensionality is fixed at 3 and the ele- that time.
ment type is general:

A direct consequence of Lhis is that
designers of generic packages must be

generic highly skilled and have a strong
type ELEMENT is limited private; mathematical and computing science back-
with function IS EQUAL ... ground. By DG3 evolutionary development
with procedure ASSIGN ... in levels of abstraction are possible if

package TRIPLE MODEL is desired or required. In order to inforce
type TRIPLE Ts limited private; this kind of evolution, we propose
function MAKE(A,B,C: ELEMENT) another design guideline to count~rbal-

return TRIPLE; ance DG:

DG6. The level of abstraction to be
From this package it is possible to pro- encoded should be just adequate to
duce the various colour models. Finally, fulfill the requirements of the
one further generalisation with respect current software assemblage develop-
to element type is possible, keeping ment, taking previous assemblages
dimensionality fixed. Instead of a homo- into consideration.
geneous triple, we could develop a
hetereogeneous triple: In other words, one should avoid being

"too abstract" in the context of a par-
ticular project. We do not think that S

generic abstraction for its own sake is the
type ELEMENTI is limited private; proper criterion for generic package
witn ... design. Hence, when we used Ada for

interactive computer graphics software,
type ELEMENT2 is limited private; we began with the concrete packages RGB -
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COLOUR MODEL, CMY COLOUR MODEL, and YIQ - "Since the language rules do not
COLOUR-MODEL. At the -next stage, the permit the declaration of tasks as
software evolved to the level of the library units, we often encapsulate a
HARDWARE COLOUR MODEL. Both TRIPLE MODEL task inside a package"[3]
and TREEMODEL are too abstract for our
needs at present. Agent abstractions are encoded in ,. - ,

Ada as generic packages which encapsulate
FUNCTIONALITY: This attribute is tasks. Considering the package specifica-

most often associated with those generic tion, visible part only (PSV), it is not
packages which encode agent abstractions, possible for the end-user to determine...,.
examples of which are to be found in the from the syntax whether the implementa- "*"'
section on tasking below. The usual Ada tion is a static one, using non-task Ada
language mechanism is the function or constructs, or a dynamic one, using task-
procedure. It is necessary to state this ing. Furthermore, if the designer and
explicitly since we have shown[161 that implementor roles are played by distinct
there is a large class of mathematical programmers then there is nothing in the
functions which can be abstracted as PSV to tell the implementor that tasks
objects, encoded as ADT packages and thus are to be used in the case of an agent
passed to other packages as element abstraction. Clearly, there is a need
types! Functionality parameterisation for the development of the principle of
requires that one also have element type "information revealing" which is the
parameterisation. Furthermore, the number direct opposite to the often cited prin-
of arguments is fixed at the generic ciple of "information hiding". Naturally,
package design time. One typical form for such revelation cannot be done by allow-
a function of one argument is: ing the end-user to see the imlementa-

tion. This would be contrary to the
spirit of Ada packages. What is required

generic is a formalism for expressing the dynam-
type ELEMENTI is limited private; ism of the encoded object in question. We

are currently experimenting with concep-
type ELEMENT2 is limited private; tuai graph notation[17] (CG notation),

which can be used as a knowledge
with function TRANSFORM(El: ELEMENTI) representation language, for that pur-

return ELEMENT2; pose. Among those things to be revealed
by the CG notation at PSV level are (i)
the object is dynamic, (ii) the calls

The number of functions f, times the made by the agent to other agents, (iii)
number of their respective arguments a, the selection strategy by the agent of
contributes fxa to the "genericness" of calls made to it by others, (iv) timing
the package. and guard conditions. Of course, all of

this information is directly available as
STRUCTURE: This attribute is com- the task body. However, since it is for-

monly employed in the use of a generic bidden to reveal it directly, then we
package as a filter for further derived must present the essential information
structure and as a kernel for further necessary for the proper use of the pack-
enriched structure. An example whereby an age by the end-user.
equivalence class structure is imposed on
a group structure is given in(6]. The encoded agent abstractions
Mathematical structures lend themselves presented below were designed by adhering
to this form of parameterisation in a to the piagetian principle of concrete-
natural manner. We do not know the range to-abstract. We took existing tasks from
of applicability of this approach beyond the literature[l,3,18], identified those
the mathematical domain at the present elements which were a fixed part of the
time. We will identify generic packages agent structure - calls on the agent
by the parmeter configuration (d,e,f,s) (which were incorporated as procedures in
where d,e,f,s denote the number of dimen- the PSV), and internal data structure
sions, element types, functions or pro- (which was incorporated in the implemen-
cedures, and structures, respectively, tation part). Note, that in this respect,
appearing in the generic formal parameter the agent bears a strong resemblance to
list. an abstract data type. The variable ele-

ments in the tasks were identified to be
calls to other agents and their identies,
plus the type of data to be passed at '-

rendezvous time. These were randidates
for the generic formal parameter list.

Embedding Tasks in Packages Finally, dimension and functionality
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parameters were considered to complete their callers. I present two simple exam-
the encoding. We have adopted a single ples - the MAILBOX which is a generalisa-
paradigm for the encoding of such agent tion of that to be found in[l] and which
abstractions. The PSV is almost identical has already appeared in(19], and ttue
to that of an ADT package and similar to KEYBOARD HANDLER qhich Is a generalisa-
the Z MODEL outline shown above. Pro- tion of- that to be found in[18). First, 0

cedures NAME1, NAME2, etc., are used in let us look at the MAILBOX. The generic
the PSV and correspond to the entries package is:
NAME1, NAME2, etc., of the task being
encoded. In the private part we use a
CONTROLLER task type: generic

type ITEM is limited private; -. "
with procedure ASSiGN(IL: in out ITEM;

private IR: in ITEM);
task type CONTROLLER is package MAILBOX MODEL is

entry NAME1 ... type MAILBOX is limited private;
entry NAME2 ... procedure DEPOSIT(MB: in out MAILBOX;

I: in ITEM);
end CONTROLLER; procedure COLLECT(MB: in out MAILBOX;
type Z is new CONTROLLER; I: in out ITEM);

private
This paradigm is taken directly from the -- FOR IMPLEMENTOR'S EYES ONLY!
BUFFER example of Barnesl].

end MAILBOX MODEL;

Taxonomy of Tasks The MAILBOX has the parameter configura-
tion (0,1,0,0), i.e., is parameterised

Ada tasks and therefore agent with respect to one element type - ITEM.
abstractions can be partitioned into Note in particular the parameter ASSIGN
three distinct classes: which provides assignm'nt. Since this

procedure is only used in the package
1. Those tasks which are called but do body then the package designer must pro-

not call (CN tasks) - purely passive vide a rationale for its occurence that
tasks: is meaningful to an implementor on the

one hand, and an end-user on the other.
- MAILBOX This may be accomplished by specifying -.

that the semantics of depositing and col-
- BUFFER lecting imply that of assignment. Let us

now look at the actual implementation:
- SCHEDULER

- KEYBOARDHANDLER private -
task type CONTROLLER is

2. Those tasks which are not called but entry DEPOSIT(I: in ITEM);
which call (NC tasks) - purely entry COLLECT(I: in out ITEM);
active tasks: end CONTROLLER;

type MAILBOX is new CONTROLLER;
- TRANSPORTER

- USER package body MAILBOX MODEL is
task body CONTROLLER is ®

3. Those tasks which are called and STORE: ITEM;
which call (CC tasks) - mixed active begin
and passive tasks: accept DEPOSIT(I: in ITEM) do

ASSIGN(STORE,I);
- SERVER end accept;

accept COLLECT(I: in out ITEM) do
Let us consider each of these classes in ASSIGN(I,STORE);
turn. end accept;

end CONTROLLER;
CN TASKS: Such tasks are among the --

easiest to encapsulate as generic pack- procedure DEPOSIT(MB: in out MAILBOX;
ages. This is simply due to the fact that I: in ITEM)
they need never know the identies of is
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begin some doubt as to the legality of the Ada
MB.DEPOSIT(i); package presented. For completion, I

end DEPOSiT; give the details of the implementation:

procedure COLLECT(MB: in out MAILBOX;
1: in out ITEM) private 0

is task type CONTROLLER is
begin entry TAKE(CH: out CHAR);

MB.COLLECT(I); entry KB DONE:
end COLLECT; for KB DONE use at DONEINTERRUPT;

end MAILBOXMODEL; 3nd CONTROLLER;
type KEYBOARD HANDLER isnew CONTROLLER;

Our second example is liable to be some- new CT L

41hat controversial. It is the KEYBOARD - package body KEYBOARD HANDLER MODEL is -.-.
HANDLER MODEL:

task body CONTROLLER is
BUF: CHAR;

with SYSTEA; DBR: CHAR;
generic for DBR use at CHAR ADDRESS;

DONE INTERRUPT: SYSTEM.ADDRESS; begin
CHAR ADDRESS: SYSTEM.ADDRESS; loop

package KEYBOARD HANDLER MODEL is accept KB DONE do
type KEYBOARDHANDLER Ts BUF := DBR;

limited private; end accept;
accept TAKE(CH: out CHAR) do

procedure TAKE CH := BUF;
(KBH: in out KEYBOARDHANDLER; end accept;
CH: out CHAR); end loop;

end CONTROLLER;
procedure KB DONE

(KBH: in out KEYBOARDHANDLER); procedure TAKE
private -- much the same as for MAILBOX

-- FOR IMPLEMENTOR'S EYES ONLY! procedure KB DON"
-- much the same as for MAILBOX

end KEYBOARD HANDLER MODEL;
end KEYBOARD HANDLER MODEL; 9

Note that this package is parameterised
with respect to addresses. However, NC TASKS: These are among the most
since dimension, element type, func- difficult to encapsulate as generic pack-
tionality, and structure is fixed or ages simply because they must know the
non-existent, then this generic package identity of those agents which they call.
is assigned the parameter configuration We will consider the TRANSPORTER which is _
(0,0,0,0) which is in agreement with our taken from[18]. A transporter task calls
intuition about the genericness of such another task to collect some item. It
an object as a keyboard handler. Typical then calls a second task to receive
usage might look like: delivery of the same item. We encapsulate

it as the MESSENGER which has the form:

with KEYBOARD HANDLER MODEL;
package NADIRKEYBOARD HANDLER MODEL generic

is new
KEYBOARD HANDLER MODEL type ITEM is limited private;

(DONEINTERRUPT => 8#100#, --
CHAR-ADDRESS => 8#177462#); type SENDER is limited private;

S: in out SENUER;
with procedure COLLECT

(SI: in out SENDER;
It is this form of instantiation where I: in out ITEM);
the actual parameters are constants that --
leads us to suppose that the approach type RECEIVER is limited private;
ought to be valid. But as mentioned ear- R: in out RECEIVER;
lier, since generic formal parameters are with procedure DELIVER
never static, then there appears to be (RI: in out RECEIVER;

1 A. u N' % o
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0

I: in ITEM); with function TRANSFORM(II: IN ITEM)
return OUT ITEM;

package MESSENGER MODEL is --

type MESSENGER is limited private; type MAILBOX is limited private;
private with procedure DEPOSIT

-- FOR IMPLEMENTOR'S EYES ONLY! (MB: in out MAILBOX; -
-- ~01: in OUTITEM);rrr

end MESSENGER MODEL;
type MAILBOX ADDRESS is

The MESSENGER has the parameter confi- limited private;
guration (0,3,2,0), i.e., is parameter- with function OWNER
ised with respect to three element types (MBA: MAILBOXADDRESS)
- ITEM, SENDER, RECEIVER, and of func- return MAILBOX;
tionality of order 2 - COLLECT, DELIVER. with procedure ASSIGN 4
These two operations in turn imply the (MBAL: in out MAILBOX ADDRESS;
types of agents to be called and their MBAR: in MAILBOX ADDRESS);
identities which in this case are to be --

supplied as the actual parameters for the package SERVER I MODEL is
formal objects S and R. Note the simpli- type SERVER i Ts limited private;
city of the PSV. It consists solely of a procedure REQUEST
type! Let us consider the details of the (S: in out SERVER 1;
implementation where we have kept the MBA: in MAILBOX ADDRESS;
name TRANSPORTER in preference to CON- II: in IN ITEM),
TROLLER: private

-- FOR IMPLEMENTOR'S EYES ONLY!

private end SERvER 1 MODEL;
task type TRANSPORTER;
type MESSENGER is new TRANSPORTER; The SERVER_1 has the parameter configura-

tion (0,4,2,0). One important observation 0
must be made. The actual parameter to be

package body MESSENGER MODEL is used for MAILBOX ADDRESS is supplied by
task body TRANSPORTER is an object from an- instantiated generic

POUCH: ITEM; ADT package that essentially provides
begin handles (or identities) for any kind of

loop object encoded as a limited private type.
select This package provides one level of
delay 0.0; abstraction above the access type. There . .-

COLLECT(S,POUCH); is a function which generates "addresses"
DELIVER(R,POUCH); much like the gensym function of Lisp,

or and is implemented using an allocator.
terminate; The function is invoked by a USER agent

end select; requiring service. Another function is
end loop; used to dereference the object from the

end TRANSPORTER; address. It has the comparable effect of
end MESSENGERMODEL; ".all" on a value of an access type. This

function is used to instantiate the OWNER
function given above. The name SERVER I
is used to signify that the job to be

CC TASKS: To illustrate this class performed is done by the TRANSFORM func-
of tasks we will look at the generalisa- tion which takes 1 argument. Note that
tion of the server task presented in[l], this generic package can be used as a

paradigm to replace many of the generic •
subprograms often cited. Details of the

generic implementation follow:

type IN ITEM is limited private;
with procedure ASSIGN private

(ILL: in out IN ITEM; tasK type AGENT is
IIR: in INITEM); entry REQUEST(MBA: MAILBOX ADDRESS;

Ii: INITEM); ,
type OUT ITEM is limited private; end AGENT;
with procedure ASSIGN type SERVER_1 is new AGENT;

(OIL: in out OUT ITEM;
OIR: in OUT ITEM); ...

-- -- package body SERVER _ MODEL is -.. ,
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' task body AGENT is start with many concrete examples of good
- REPLY ADDRESS: MAILBOXADDRESS; non-generic packages. Just as in any

JOB: IN ITEM; learning situation, the piagetian princi-
begin ple of concrete-to-abstract is applica-

loop ble. In the training of Ada programmers
accept REQUEST who will be responsible for the design

(MBA: MAILBOX ADDRESS; and implementation of generic packages,
II: IN ITEM) we consider it essential that they be ..

do exposed to a wide variety of the same. In . ...
ASSIGN(REPLY ADDRESS,MBA); the first instance, we have indicated . . -

ASSIGN(JOB,II); that any non-generic package may be
* end accept; immediately converted to a generic one of

DEPOSIT(OWNER(REPLY ADDRESS), type GPO and a default instantiation pro-
TRANSFORM(JOB)); vided in its place. This process ought

" end loop; not to give rise to any significant com-
end AGENT; pilation or run-time overhead, and it has

the advantage of introducing the concept
procedure REQUEST and use of generic packages as painlessly

(S: in out SERVER 1; as possible to the new Ada programmer. A
* MBA: in MAILBOX ADDRESS; second source of generic package of type

II: in IN ITEM) GPI is also immediately available - these
is include the classical computer science
begin structures.

S.REQUEST(MBA,II);
end REQUEST; We have also shown that it is possi-

end SERVER_1_MODEL; ble to provide an evolutionary develop-
ment in levels of abstraction whereby

This work that we have carried out in instantiations are replacable without
relation to encapsulating tasks in gen- affecting the end-user. We have asserted .
eric packages leads to our final and ten- that reusability of Ada software com-
tative design guideline: ponents is inextricably bound to the

degree of genericness of a given package.
DG7. In providing tasking for a software To measure such genericness we have pro-

assemblage, one classifies the task posed a taxonomy based on the form of the
to be used and encapsulates it into generic formal parameter list and identi-
a generic package. fied four classes of parameter - dimen-

sion, element type, functionality, and S
This is a tentative guideline in so far structure. The parameter configuration

" that we are unsure as to the level of (d,e,f,s) is presented as a first attempt
" granularity to be employed in encapsulat- at such a measure.

ing tasks. As stated above, we use one
task per package at present. It may be To illustrate our approach and pro-
the case that task clusters, rather than vide comprehensive examples, we decided
single tasks, might be more appropriate to concentrate on the area of agent
for encapsulation! This implies that we abstractions. Much work has already been .-
need to find a higher-level of agent done for the encoding of static objects.
abstraction with respect to interaction. As a first step, we have identified agent
This is one of our current research abstractions with single tasks and pro-
directions. Finally, note that in the vided a simple taxonomy thereof. The PSV
task taxonomy we have ommitted any men- of encapsulated tasks requires a greater

" tion of tasks with entry families. Again degree of supplemental information for
this is meat for further thought. the end-user and the implementor of such

packages than the comparable PSV for
static objects. This was the principle of
"information revealing". Work in this
area is essential and urgent if such
agent abstractions are to be (re)usable

Conclusion at all! Finally, we must look at the
possibility of identifying higher levels

Formerly, we held the view that the of abstraction of interaction units and
. package was the principle building block the consequent encoding of task clusters

of the Ada programming language. Now, in rather than single tasks in generic pack-
view of the need for and desirability of ages.

*. reusability, we qualify the word package
with the adjective generic. In order to . V
design good generic packages one must

14 A a N.-.
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THE USE OF ADAR iN IMPLEMENTINt _______

A RAPID PROTOTYPING SYSTEM

Guylaine M. Po, lock
Sal le Sheppard

Laboratory for Software Research

Department of Computer Science
Texas A&M University

Abstract Ada was selected as the
" implementation language because the

The use of Ada in implementing a packaging and generic constructs
rapid prototyping system for software available in Ada provide an attractive
metrics is evaluated by focusing on the environment for the development of
p'oject issues dealing with Ada and reusable software. This approach follows
discussing advantages and disadvantages the reconvendation of current literature
incurred by the utilization of Ada. The which advocates the utilization of
procedure used in conducting the work reusable software parts and heavy
consisted of defining a set of kernel parameterization as possible techniques to
primitives from which the prototyped use in the develpment of rapid
software is constructed and defining prototyping systems. Implementing the

* procedures to facilitate implementations system in Ada has also provided an
from the kernel primitives. Generic Ada opportunity to evaluate the use of the *-4"'

I packages have been designed to incorporate language in constructing software .. ft
. the kernel primitives and define the development tools. Preliminary

structures and operations necessary for experiences Indicate the attractiveness of
their manipulation. The implementation Ada for this and similar projects. The
utilized in developing software avantages and disadvantages experienced . . '

illustrates the feasibility of rapid because of the utilization of Ada are
' prototyping via reusable software parts. discussed after a brief description of the

Based on experiences with the prototyped system being Implemented.
system, an evaluation is presented on the
use of Ada in developing rapid prototyping System Descriotion
systems.

The basic premise of the system being

developed to support the rapid prototyping
of software metrics Is that metrics within

Introduction common classes tend to measure the same
objects. Traditional Implementation

A rapid prototyping system for the strategies have often led to a duplication
development of software metrics is of effort in constructing software tools
currently being designed and implemented to collect data for analysis of the
in Ada within the Laboratory for Software various metrics. This duplication of
Research at Texas A&M University. This effort is evident in current literature in
system supports the development of both function and language as described
software metric prototypes from the reuse below. Duplication of effort due to
of software components called "kernel function is intuitively obvious as one
primitives" predefined within the system would expect metrics that measure similar

which can be optionally extended by new qualities to be somewhat similar in form
- components provided by the user. The and function. This duplication occurs

resulting prototype is used for initial frequently in software complexity metrics.. .. ,..

analysis of the metrics being studied and Twenty-two software complexity metrics

may be altered repeatedly until a were examined to test this hypothesis.
promising model has been devised. Certain measurements were found to be

comnon to nearly all the metrics, while S
each individual metric had some
measurement common to at least one of the

"R" other metrics. For example, an incidence
Ada is a registered trademark of the matrix is common to nearly all of the
Department of Defense, Ada Joint Program metrics although the Individual metric

Office. definitions do not Indicate this fact;
that is, the construction of an incidence

This material i's based upon work funded In matrix is useful in deriving many of the •
part by a research grant from IBM. metrics even though the metric definitions
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seem to indicate other methods of languages or provides language tokens

evaluation. Utilization nf the incidence and semantic rules for new languages.

matrix may, however, require a slightly Thus similar measurements can be made on

different algorithm in evaluating the programs with a minimum of regard to the
resulting data. code language.

The other area of duplication in the Althougn some researchers have
current development of software tools for advocated the use Of Ada in developing
metric research is language. Many rapid prototyping systems whereby the

* research efforts heretofore have been prototype eventually becomes the 3 final

concerned with developing previously product after successive iterations , the

defined and implemented software tools to system being developed at Texas A&M
collect data on programs written in a Universit utilizes a different

language different from the coded language approach. Once a prototype that warrants 4
lo pgams d thee originalm softwred tongulse further study has been developed using the
of prdeveloped tho measureiginal or ftwexamine tooA predefined kernel primitives and user
review of metric literature illustrates extensions, the prototype is typically
this duplicity: researcher A has developed discarded and research continues by
thist duplicty: reercherA as develod incorporating the metric model into a more

*a system to collect and analyze data from efien sotae ol frfuhr
FORTRANefficient software tool for further

metric; researcher 8 has developed a experimentation and analysis. Rapid

system to collect and analyze data from development and fine-tuning of the 0 4

COBOL programs according to Halstead's prototype in this manner frees the metric

metric; etc. Although duplication of researcher from an initial large

effort is clearly evident, it has been development time in implementing a

largely unavoidable due to limitations and software tool to model new metrics until

restrictions imposed by available preliminary analysis identifies a
computing environments. promising model for more intensive study.Thus the approach used in the design of

The rapid prototyping system this system consists of the development of . S
developed in this project attempts to kernel primitives or reusable software
reduce or eliminate duplication of effort parts to be utilized as building blocks In

developing a desired prototype. The
in both function and language. The system technique is somewhat similar to
accomplishes this goal through the approaches qegcrlbed in reusable software
definition and subsequent utilization of literature.
reusable software modules or "kernel
metric primitives". The kernel primitives The procedure used in this project *
perform certain predefined operations consists of defining a set of kernel

- . common within chosen metric classes. ~ 'iiprimitives from which the prototyped
Typical classes of metrics include software metrics are constructed and . - -

software complexity, software reliability, defining procedures to facilitate
and software quality. To avoid implementation of metrics from the kernel
duplication of effort due to function, the pimlemetati . Gerc Am pkaes

riI eseacher utilzes s may ofthe primitives. Generic Ada packages .-... '.
researcher utilizes as many of the incorporate the kernel primitives and
predefined kernel primitives as possible encapsulate definitions of the structures
in developing software to collect data for and operations necessary for their
a new metric. Many metrics tend to extend manipulation. Approximately 3000 lines of
ideas found in previous metrics, thus the code have been Implemented with an

same code may be useful in many different estimate of 5000 lines of code as the size
instances. The objective is to define of the completed system. The system

. primitives to serve as basic building includes ten packages.
blocks in constructing new software.

Important parameters are also defined and AotA prototype of the rapid prototyping---

abstracted out of the primitives allowing system is being developed on a Digital
redefinition with a minimum of effort. Equipment Corporation VAX 11/750 under VMS
Thus the researcher has the capability to Erion 3 the ste deoMnt

reein hepimtve n prmtie version 3.5. The system development . .
* redefine the primitives in a "primitive" was started on version 1.1 of NYU's Ada/ED

fashion. This system characteristic also System and was transferred to version
*'1 facilitates the fine-tuning of metrics 141 a more recent validated version. In

during validation without full scale addition, attempts have been made to run
software development, the prototyped system on version 2.1 of

the TeleSoft Ada Compiler under VAX/VMS
Duplication of effort due to but have been unsuccessful up to this

differences in the language being measured point as generics and tasking are1 2 not yet
are avoided by abstracting out the concept fully implemented in version 2.1.
of language from the kernel primitives.
The metric researcher instantiates an Definite advantages and some %
appropriate version of the desired kernel Dfnt datgs ad sm

oprite forsany of the piredkeined disadvantages have been encountered duringT- primitives for any of the predefined sytmdeopnt ueoth ueofA =*-'

system development due to the use of Ada
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as the implementation language. Overall generic
the decision to use Ada has been type QELEMENT is private;

considered to be advantageous, package QUE is
Implementation of the system design has type PNTQ ELEMENT is access QELEMENT;
been greatly facilitated by the use of type QUEUE is private;
Ada, and the disadvantages experienced Procedure INIT(Q : out QUEUE);
are rather minor as the causes are Procedure PUT(ENTITY : in PNT_Q_ELEMENT;
transitory in nature. Consequently, Q :n out QUEUE);
they should not impact future research to Q :in utQUEE.

the same degree. procedure GET(ENTITY : out PNT_Q_ELEMENT;

Q : in out QUEUE); %
Advantages of Ada private

type LINKRECORD; _ __

Many of the constructs and type LINK is access LINKRECORD;

capabilities available in Ada have type LINKRECORD is 4

record
enhanced the development of the system ELEMENT LOC : PNT_QELEMENT;
design and implementation. These include NEXT : LINK;

features such as tasking, concurrent PREV : LINK;
processing, package specifications, end record;

separate compilation, generics, naming type QUEUE is
conventions, and typing facilities that record
allow data abstractions and strong typing SIZE NATURAL; ..

restrictions. Although several other EMPTY BOOLEAN;

languages do provide some of the HEAD LINK;

capabilities listed here, none of those end record;
languages provide as many of the end QUE;

attractive capabilities and constructs as
are offered in Ada. The impact of several with QUE;
of these features on the rapid prototyping procedure EXAMPLE Is
system that is under development will be .
examined to illustrate the benefit of package INTEGER-QUEUE is
implementing the system in Ada. new QUE(QELEMENT => INTEGER); .

use INTEGERQUEUE;

Generics. -- creates new queue for integers

The generic facilities in Ada provide type JOBDESCRIPTION is

one of the greatest advantages of the record

language for the construction of reusable -- a suitable description

software parts. This is evident by end record;

considering the applications of the
generic parameters to reusability. Three package JOB QUEUE is
types of generic formal parameters are new QUE(QELEMENT => JOB_DESCRIPTION),
possible: types, objects, and use JOB-QUEUE;

subprograms. Generic types present the -- creates new job description queue

most obvious reusability aspect as too
frequently in the past numerous routines begin
have been rewritten simply because the -- desired processing

data to be manipulated by the algorithm end EXAMPLE;

was In a form different from that utilized Figure 1: Generic Queue Facility

by an already coded and debugged routine.
Figure I gives an example which
demonstrates the value of generic types In •
promoting reusability in the package

specification of a generic queueing Identified at the point of instantiation.

routine and a procedure which employs Generic types thus allow the abstraction

multiple queue elaborations based on the of Implementattonal details such as the

given specification. This package is Internal representation of data from the

available for use in the metric algorithmic representation, providing

prototyping system and a modified version reusable code. This code may be reused

has been used in aimulation package multiple times within a single

implemented in Ada. 4, 
'  

mu napplication or may be utilized In many
different applications that require the
functional abstraction provided by the

The generic package QUE provides a generic unit.
template for the algorithm to create and
manipulate a queue of objects. An Generic objects and subprograms %
Instance of the package created by extend the power of this type of

Instantiation defines a queue for specific reusability. Generic ibjects specify
objects, the form of the objects being global values to be utilized within the
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generic unit while localizing the access information to the caller, a task is

of the value to the generic subunits, invoked to process remaining details while

Specification of the types of these the retrieved information is passed back

objects may be postponed until elaboration to the calling routine. Following •

of the unit. Generic subprograms permit this procedure mandates the necessity of a

the definition of operations that are not guard or proctor task to prevent access to ! 4
provided within the language for user the structure before all housekeeping has -. '----

defined data types. This allows full been completed. An example of these task . -

freedom of data abstraction in generic structures is given in Figure 2. ..-. %. -.

units. However the generic definition may

place restrictions upon the types possible task GUARD is

for specification by the user. For entry SEIZESTRUCTURE;

example, the underlying form of a generic entry FREESTRUCTURE;

type may be restricted to a type such as end GUARD; J
character, integer, or real, task body GUARD is

begin

In developing new systems, loop

implementation time is reduced by accept SEIZESTRUCTURE;

incorporating previously written and accept FREESTRUCTURE;

debugged code that is functionally end loop;

reusable, thereby improving software end GUARD;

development productivity. However, time

is still wasted in converting old code task HOUSEKEEPER is

into different representational forms even entry CLEANUP (DUTIES in JOBLIST);

if the code is functionally abstract, end HOUSEKEEPER;

Generics eliminate this need if the task body HOUSEKEEPER is

abstraction is properly defined when DIRECTIONS : JOBLIST;

initially implemented. The kernel begin

primitives defined within the rapid loop .
prototyping system are generic constructs, accept CLEANUP(DUTIES : in JOBLIST)do

allowing a user to instantiate new DIRECTIONS := DUTIES;
versions of the primitives based upon the end;

format of the data that is being measured. GUARD.SEIZESTRUCTURE;
Furthermore, the generic facilities -- execute duties from given directions

combined with other aspects of the GUARD.FREE_STRUCTURE;

language definition permit the definition end loop;

of primitives that demonstrate semantical end HOUSEKEEPER; 0
and syntactical reusability. The

primitives support changes in the Figure 2: Example of Tasking Usage

definitions or meanings of the data that

is being processed in addition to changes Perusal of this example illustrates a
in the syntactical form, thus permitting typical use of tasking that is quite

the abstraction of language from the straightforward. Note that the rendezvous

primitives so that software tools consists only of obtaining a copy of the
constructed From the prototype may be entry parameter. This releases the

processed on programs coded in different initiating routine to continue in parallel

languages. with the task execution.

Tasking. Although utilizing tasking program

structure degrades performance if
Tasking has been used within the performed on a serial architecture, it

system as a means of encapsulating related offers the advantage of actual parallel *
functions and operations. This allows the execution where multiple processors are
logical separation of functions which can available. In such cases the tasking

be performed in parallel. For example, approach potentially improves the

several of the kernel primitives operational efficiency of the metric
encapsulate data structures which contain prototypes.

multiple linkages to desired information.

Many of these structures require As many of the kernel primitives

substantial housekeeping functions to contained within the rapid prototyping 1
maintain the required links. Often the system are designed to be lOw level -

requested information is determined before functions, certain primitives when
the housekeeping functions are performed, utilized to construct a metric prototype

Such housekeeping functions are performed may be performed concurrently. The
by tasks in order to allow these duties to tasking facilities within the language

be logically performed in parallel with definition provide the ability to .- '-
the operations performed by the calling incorporate concurrency aspects within the
routine. Instead of completing all system in a relatively simple and '

necessary operations before returning the straightforward manner. Thus concurrent
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processing of primitives may occur in Furthermore, this language trait is very
* addition to the concurrent processing of useful as it allows the metric definition

housekeeping Functions such as )ink facility to create new primitives through
maintenance in various encapsulated modifications to existing components
structures, without having to recompile other

primitives contained within the same
Packages. etrsfcltt h encapsulation as long as the modified

components are nongeneric.

aplcto f standard software In addition to aiding utilization of
*engineering principles such as the system, separate compilation supported

abstraction, information hiding, and development and improved morale by *.-

principles of modularity. Most kernel permitting faster implementation ofIprimitives are encapsulated by packages various components and forcing earlier
*which allow multiple procedures and spcfatos f eat prgmin'

structures to be utili7ed in defining the interfaces. Furthermore, having parts of
primitives and at the same time offer a the system up and running rather quickly
simplistic method of elaboration to the promoted a sense of accomplishment.
user. By including an elaboration of the
primitive package within the declarative Other Features.
section of a metric definition, one is
automatically provided with all Other features of Ada were useful in
declarations and procedures crucial to the system development such as the naming
obtaining either a particular metric or a conventions which helped to promote
particular primitive. Thus not only is clarity during implementation, and

*the user freed from having to famiIliarize statements that helped to encourage good
*himself with unnecessary detailI concerning structured programming techniques. These

the operation of the elaborated primil've, features were definitely supportive; the
pas essential information is clearly first 800 lines of code contained only

dentified within the package three logical bugs. Obviously, the
specification, hut he is unable to alter language does i ndeed promote the
any aspects of the data collected by the incorporation of many software engineering
primitive except through the defined principles such as modifiabilIity,
operations, efficiency, reliability, and

understandability as ad ocated by visible
Typ ing. Ada language proponents.

Typing facilities provided in the Ada Disadvantages of Ada
language definition aided the .*.

simplification of data specifications for The disadvantages encountered as a
the prototype system and promoted clarity result of selecting Ada as the project
of use by prototype developers utilizing implementation language for the rapid

thesysem. The strong typing cntats prototyping system were mainly caused by
assisted in restricting usage of the the status of the state of the art of Ada
primitives in the manner for which they implementation. Specifically, the dearth3
were defined. These language defined of production quality compilers and the
constraints help maintain the integrity of impact of the validation procedures proved
any objects exported by the primitives by to be the largest inconveniences of the
regulating the operations instigated by language selection--inconveniences which
the parent unit upon the object, are dlue to the fledgling status of the
Furthermore, if there is a dependency language implementation and are hoped to
between procedures based on generic be transitory in nature. These problems
parameter data types, it is strictly are briefly discussed in order to identify
enforced by the language. problems similar research projects might

expect to encounter if developed in a
Separate Compilation, similar environment.

*The separate compilation feature as Compiler Quality.
provided by Ada advances development of
the prototype in that many of the The NYU Adla/Ed System is an
components are already compiled. Thus the excellent tool for educational trainingS
construction of a prototype with the but as stated in the u5er's reference 7
system is quicker and allows Faster guide is not intended to be used as a
modifications or fine-tuning in the production quality compiler. Designed for
resultant prototype as changes do not accuracy more than efficiency, the Ada/Ed
necessarily mandate recompilation of All System is slow in operation. Pedagogical
routines. Obviously the desired problems are not as adversely affected by
modification greatly impacts the magnitude this slowness as are larger, application
of the requ ired rprompilations. oriented software. Future version-, of the
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compiler will provide Improved efficiency; Initiated on an older version of the

improvements are already evident between compiler which meant that there were known

earlier versions. errors in the compiler being utilized but

the exact errors were basically unknown. .-

Ada/Ed's size restrictions constrain This had the effect of promoting

the volume of Implementable code In terms occasional interpretation of obscure 0
of lines of code and number of procedures errors as defaults of the compiler rather

contained within a package; certain memory than possible misinterpretations or

constraints depend upon the available SETL misapplications of the language

workspace. The size restrictions are definition.

disheartening to encounter if unknown, as
they may require redesign of various "'% "

aspects of the system and may prohibit Language Definition.

project completion. Other piojects have S
also experienced this problem. The language definition states "an

implementation may also require that

Error detection by Ada/Ed is quite subunits of a generic unit be part of the

good with excellent error messages that same compilation" which indicates that

direct the user back to the appropriate separate compilation of units contained

location within the language reference within generic units is not necessarily

manual that indicates the aspect of the sLo0ortPd 8-v all implementations of the

language definition being violated, language. Consequently, this feature 0

However, the user must be prepared to must be avoided by generic units in order

differentiate between error messages to satisfy the requirement of portability

generatedt as a result of a language for the metric prototyping system.
compilation error, a language execution Separate compilation would be an extremelyerror, a languge euon useful feature in this particular
error, or a SETL execution error.onstitute
Furthermore, it is possible to encounter application as generic packages constitute
discrepancies between the compiler actions the primitives and generally contain

and the language definitions, or "bugs" multiple subunits.

within the compiler. This possibility is
One technique available for the

decreasing with time but was particularly creation of new primitives is the
troublesome in early work with Ada/Ed. mdfation of exiti c s.modification of existing components.-,

Version 2.1 of the TeleSoft Ada Because separate compilation of subunits

compiler does not fully Implement generics within generic units is not allowed within

and tasking; among other problems, the system design, any such modificationsan akn; mn ter polm, require recompilation of the entire
recursive data types within generic units reqe piage, of th tie

aegeneric package, even if the
are not accepted by the compiler, modifications are supported by the metric
Consequently, the prototype metric system definition editor. This disadvantage also
development was unable to utilize this occurs during development of completely
compiler. new packages. While debugging new

primitives under development, the entire 2.
Compiler Validation. Package must be recompi led after each

subunit alteration even though coexistent
Annual compiler validation, a subunits maintain consistent states.

characteristic of the Ada language
environment, also created some A final disadvantage incurred by the
disadvantages for the implementation of language definition was the inability to
the rapid prototyping system under interface with programs written in other
investigation. The major problem was the languages, forcing the recoding of
need to modify previously completed code standard applications that had already
in order to transfer the system onto the been implemented so that they could be --
newer compiler. Although only minor utilized within the system. This is also

changes were required in this instance, a transitory problem as other languages
modifications were necessary throughout will define interfaces with Ada as more
every program unit. As the changes were applications begin to appear which require
made, the units were also executed to make them.
sure that additional errors were not
introduced inadvertantly while upgrading Conclusions
the code. For an application of this size
a couple of days were required to perform The main consensus on the evaluation
the transfer, If the necessary changes of Ada as the project source language is .. .
had more significant impart upon the that Ada has enhanced the project through
design of the system, more time would have the advantages provided by various ."'

been required, features contained within the language -. -"
definition. The inherent disadvantages

The concept of validation also encountered due to the language selection
affected morale in that the project was are largely transitory in nature and
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impact of the revalidation process.

7. Pollock, Guylaine M. "Evaluating the
Feasibility of Software Metric
Prototypes Via Reusable Software

References Parts", Ph.D. dissertation, Texas A&MUniversity, 1985. 
--

1. Basili, Victor R., Nora Monina

Panlilio-Yap, Connie Loggia Ramsey, 8. Reference Manual for the ADAChang Shih, and Elizabeth E. Katz. "A Programming Language, U.S. Department
Quantitative Analysis of a Software of Defense, Ada Joint Program Office
Development in Ada", Dept. of Computer (MIL-STD 181%A), January 1983, P.
Science, University of Maryland, 10-10 (10.3.9).
TR-1403, May 1984.

2. Booch, Grady. Software Engineering 9. Sheppard, Sallie, Patricia Friel and
with Ada. The Benjamin/Cummings Donna Reese. "Simulation in Ada: Anwihn Ada. The }Benn /Cummings M oImplementation of Two World Views", ..Publishing Company, Inc., Menlo Park, Simulation in Strongly Typed
California, 1983. Languages: Ada, Pascal, Simula, Vol.

3. Duncan, Arthur G. "Prototyping in 13, No. 2 (February 1984) pp. 3-9. " "
ADA: A Case Study", ACM SIGSOFT 10. Sheppard, Sallie, Usha Chandrasekaran
Software Engineering Notes, Vol. 7, and Karen Murray. "Distributed "
No. 5, (December 1982) pp. 54-57. Simulation Using Ada", Proceedings of

the Conference on Distributed •-4. Friel, Patricia and Sallie Sheppard. Siu ation, Vol. 14, No. 3 (January
* ~"Implications of the Ada Environment Srualn o. 1,N.3(aur

for Simulation Studies", Proceedings 1985).
of the 1984 Winter Simulation I. Taylor, Tamara and Thomas A. Standish.
Conference, (December 1984) PP. "Initial Thoughts on Rapid Prototyping

Techniques", ACM SIGSOFT Software
5. Lanergan, Robert G. and Charles A. Engineering Notes, Vol. 7, No. 5 10 .

Grasso. "Software Engineering with (December 1982) pp. 160-166.
Reusable Designs and Code", IEEE 12. TeleSoft ADA Compiler, Version 2.1
Transactions on Software Engineering, Users Manual for VAX/VMS (Preliminary
Vol. SE-ID, No. 5, (September 1984) drft), A r (Octobe 3Pr 1984)
pp. 498-501. draft), ADA-USER-06 (October 30, 1984)

Version I.1.

A n .N r ..

. . . . . . . . ... . * * .- . .. '. ,

............. ,



,.. ... -.....

GUYLAINE M. POLLOCK is a Ph.D. SALLIE SHEPPARD is an Assoc i ate ", -
candidate at exas A&M University. In Professor of Computer Science at Texas A&M
1979 she joined the Computer Science University where she is director of the

faculty at Texas A&M University where she Laboratory for Software Research. Her
is an instructor. Her dissertation research interests are concurrent high ..
research is in rapid prototyping of level languages, software engineering and .

software metrics. Other projects she has simulation. She is currently principal
worked on include analysis of the space investigator on a National Science •

shuttle software, design of database query Foundation project which will utilize
languages, compiler design, simulation multiple microprocessors working in
modeling, and heuristic gaming techniques. parallel. A research grant from IBM has

Current research interests are high level been recently received to investigate the
language design, data abstraction, use of Ada in rapid prototyping of

distributed databases, and software software metric systems. She was the

engineering. She was named Outstanding Halliburton Professor of Computer Science
Student of the Year in 197R-79, received in 1983-84. "
the Gulf Oil Foundation Fellowship in
1979-80 and was a . reripient of the Department of Computer Science
National IEEF/Computer Society Scholarship Texas A&M University

for scholarship and nrganizational College Station, Texas 77843
activities in 1982-83. (409) 845-5466

Department of Computer Science
Texas A&M University . -:

College Station, Texas 77843
(409) 845-4306

152 Annual National Conference on Ada Technology 1985

%0

.. . . . .- .

.. . . . .. . .:.-..-
* .--....f, . . ... o..., -.... . .



* - -.- 7 -7 7.1 - ..

Analytical Approach to Software Reusability

Deanna G. Whinerv Gary H. Barber
Ford Aerospace & Communications Corporation Intermetrics, Incorporated

Abstract Technical Overview

A recoverability analysis procedure is defined which may he This Recoverability Analysis is composed of six major
used to systematically evaluate whether existing software is cost activities, which are illustrated in the data flow diagram in figure
effective within a new design. The procedure assumes that there is 1. The activities are supported by automatic tools and structured
an inventory of candidate software elements and that the system methods (indicated by the larger arrows in figure 1.)
requirements are well defined and have been allocated to computer
program configuration items. The proceduie consists of: mapping * Activity I - REQUIREMENTS MAPPING.
the requirements onto the candidate software; determining the
quality of the existing software through documentation evaluation, This activity determines which system level software
maturity analysis, and complexity analysis: determining the requirements are at least partially satisfied by existing
modificati',.:s required to meet design requirements; evaluating the software processors from the software inventory.
language to be used: the difficulties of interfacing with Ada. and
costing the implementation via the use of an industry standard 0 Activity 2- REQUIREMENTS ANALYSIS
development cost model and a unique documentation cost model.
Finally, the cost is compared with the budget for that configuration This activity applies computer program configuration item - -
item. If the cost is less than budget, the design proceeds, otherwise (CPCII level software requirements to the software candidate(s)
redesign is required. and determines what modifications are required for recovery of

the candidate(s)

0 Activity 3 -QUALITY ANALYSIS.

An evaluation of the complexity, maturity, and existing S
documentation of recoverable candidate(s) is performed by the
quality analysis activity.Introduction "". ".-"

0 Activity 4 - COTS COST ANALYSIS."-°*'"'

There is significant interest today in the cost of software "Atiy-.C SOTA LYI
development. Anyone who makes use of software products (that is, This activity determines the acquisition cost of a Commercial .r
nearly the ,ntire population) would like to have them at a lower O)f-the-Shelf(COTS) software candidate.
price. Functionality has increased significantly in the hardware 

,(a

community with a coincident decrease in cost resulting in large * Activity 5 - MODIFICATION EVALUATION.
Fpoductivity increases But the improvement in software
productivity has been very nmch slower The software community This activity determines what modifications are required for
has made advances, via language development, generating recoverable candidates based on a specific host candidate
languages with abstractions more capable of representing the (target machine). These modifications are consolidated with
problem domain. The advent of Ada promises to improve modifications due to requirements for a total modification
productivity through the software engineering techniques of evaluation of the recoverable candidate(s) for the target
abstraction, information hiding, and packaging coupled with a environment. The development cost is determined based on
rigidly maintained language definition But Ada will not overtake modifications, source code complexity, and documentation
the software world overnight. There will he a transition period in upgrades.
which it will be cost effective to reuse existing software. The
hardware community has been making use of reusability in chip Activity 6 - NEW DEVELOPMENT ANALYSIS.
and board design for some time Reuseability has equal potential,
although greater problems, in the software world. This paper This activity determines a new development cost for those CPCI
describes an approach to analyze existing software to determine its level requirements. which are not met adequatel by
applicability in a new but similar system. The procedure provides a recoverable software candidatets.
consistent and docum,,nted selection procedure, quality review, and
cost comparison to determine whether the potential recovered The recoverability analysis is to be executed for each CICI and
software would be less costly than new development. The paper its associated host candidate (target machine) within the current
also describes a procedure to select an appropriate language for new design for the torggt environment Before the analysis is initiated,
development and describes how Ada may be interfaced with a software inventiry of software processors that may become
existing languages. candidates for recovery to the target environment is generated.
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c) New Development. his familiarity with the software candidates, and his analysis of the . .

CPCI requirements. It is recommended that the same technique .

A CPCI for which no recoverable software exists that is discussed in Activity I for automated documentation of the

acceptable to the target environment. New design, coding, and software engineer's mapping decisions also be used in this activity

do,.umentation are required. The language and target machine to document CPCI level requirements mapping to recovery
will be selected. candidates. When the mapping process is completed, recoverable 9

software candidates will be associated with a target CPCI. The

The associated development cost base through FQT (Final engineer must determine delta requirements between the recovery

Qualification Test) is also determined for each CPCI. candidate(s) and the target CPCI(s). The determination of what
modifications need to be made to the recovery candidate(s) in order.

Commercial-off-the-Shelf Software to meet target CPCI requirements is based on the software
engineer's technical judgment and analysis of target CPCI

Commercial-off-the-shelf (COTS) software is evaluated before it requirements which have not been adequately satisfied by recovery
is entered into the software inventory. This evaluation screens out candidate(s). -

software that is not applicable in the target environment or which
comes from unsuitable vendors. After placement in the inventory, Interface Control Documents (ICD's) are considered
a COTS software processor is analyzed just as any other recovery requirements and should be assessed in this requirements analysis

candidate by the Requirements Mapping activity and the activity. The engineer must determine whether any modifications
Requirements Analysis activity. If a COTS candidate meets to the rehost/transfer candidate(s) are necessary to meet interface
requirements, it is sent to the COTS Costing activity where it is requirements in the target environment as defined by the Design
evaluated for a specific target machine and where its acquisition Synthesis. Interfaces should at least be defined to the CPCI level in
cost is determined. Finally, the COTS acquisition cost is sent to the order to make an adequate assessment of a software candidate for a
Modification Evaluation Activity for integration into the particular target CPCI.

appropriate CPCI development cost base.
A CPCI summary form is required for each CPCi to be

Requirements Mapping delivered. However, an extremely large CPCI should be
decomposed into Computer Program Components (CPC's) of a

The first activity in the analysis is the mapping ofsystem level manageable size (small enough to be developed by a single - "

requirements of the target environment into software processors programming team). Each CPC will be costed separately using a

from the software inventory. The requirements mapping process is development cost model and the documentation costing model. In

based on the technical judgment of the software engineer and his this case, a CPCI Summary Form would be generated for each CPC
familiarity with the software in the inventory. The software included in a CPCI. Then, at completion of the entire recovery
engineer's mapping decisions must be documented. It is analysis, the CPC forms are integrated into one form for the
recommended that this documentation process be automated. For associated CPCI. The CPC forms are then attached to the CPCI

example, if an automated requirements management system is forms for supporting information to the customer. In addition, an
being used on the project, a technique for documenting the mapping input form for the cost model should be initiated for each block of
of existing software processors into the target requirements in the software specified on a CPCI/CPC summary form.
data base could be devised. This technique should provide a method
of documenting the percentage of a software requirement that is Quality Analysis
satisfied by a candidate processor In addition, the technique
should provide a method of showing traceability between the target The purpose of this activity is to perform an evaluation of the
requirements and the software inventory existing documentation, complexity, and maturity of the

rehost/transfer candidates, which will be assigned to a target CPCI.

The software engineer's mapping decisions are the basis for This quality analysis activity is composed of three types of

selection of software candidates from the inventory which will be evaluations to be performed on recovery candidates (documentation
further analyzed for recovery to the target environment. Any evaluation, complexity evaluation, and maturity evaluation).
system level requirements not mappable to recovery candidates are
sent directly to the New Development Analysis activity. Documentation Evaluation

Reouirements Analysis An analysis of the existing documentation of rehost/transfer
candidates is performed to determine the quality of the

This activity applies CPCI level software requirements to the documentation. This evaluation is intended to determine the

rehost/transfer candidates identified in Activity I and determines completeness, consistency, and accuracy (agreement with current
what modifications are required for recovery of these candidates to source listings) of the documentation. It is recommended that this

the target environment. In order to perform this activity, a target evaluation be done with a set of questionnaires which are oriented

architectural concept and its associated requirements allocation to the following three major types ofdocumentation. requirements;
must have been determined and entered into a requirements data program description: and test. When the evaluation has been
base. Additionally, the allocated system requirements for the completed, the existing documentation quality will be quantified
architecture must he decomposed at least to the CPCI level so that with a number between 0 and I representing a "goodness factor".

requirements are assigned to CPCI's. When the requirements There will be three "goodness factors": one for program description *
decomposition has been entered into a data base, then the same documentation, one for test documentation, and one for

procedure as recommended in Activity I should be used to requirements documentation. These factors will be used as input to

document the mapping of CPCI requirements to rehost/transfer the documentation costing model.
candidates.

Complexity Evaluation
The CPCI level requirements are mapped into the

rehost/transfer candidates identified in Activity 1 The mapping An analysis of the existing source code of rehost/transfer '.

process is based on the technical judgment of the software engineer, candidates is performed to determine the complexity of the code.
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Sft waire ciompoI' vt refers to the di fficul ' v to comprehe'nd and an swered in the a 'firimativi' to enter the itemn to, the in venthort
hereby- ma irita intideveltip a given piece of software Complexity da ta hai'(

* hits several different aspects. It can refer to 1) the complexity of the
problem to he olved, 2) the complexitv of the algorithms used to
sitive the problem. 3) the complexity of the program's response to its 1. Does the software perform a function which has reasonable - - Z
intlronitient 6 ei real time, multitasking), 4) or the complexity of' likelihood of being required in the target en .ironment 9

the logic structure of the code. Since it is clear that complexity has
a hearing tn the cost to develop ir maintain a piece if software, it 2. Is it marketed by a stable vendor" 'That is, has the vendor been
would be bteneficial to find a way to measure this factor in all of its in business for at least 5 years9 I., there reasonabile probability thai
different facets. In the case of software tithe newly developed, only the vendor will still be in .business 5 years from now"

o 
0

the first three aspects apply Nione if these are amenable to
Satitomated assessment tr evaluation by a measurement algorithm. 3. Is it hosted on a computer and operating system which is likely

Only guidelines ti form boundaries o n the subjective judgment of to appear in the target environment?
independent evalualtors can be provided. These guidelines are
typic.ly ae part of the input to the software oust model. The fourth 4. Is the user documentation adequate"
aspect dif complexity has hope if being automated, This aspect
applies only to existing code and would therefore benefit mistly the 5. D it provide for open-ended growth to include external""

eter mination of I fe/cycle stipport cost. Conrol constructs can be interfaces, new functions, and increased capacity?
measured to prduct e a netric (eg., McCabe's metric), or the
number of iperators aind operands in a program can he measured to If the software item receives an affirmative answer to all the
indicate the level ofeffort to comprehend it (e.g., Halstead's de etric), above questions, it should be entered into wt software inventory
Both of these meastres have been automated, ard evaluators are data base.

oncuraged to use such automated tools for measures of source code
coimplexity. The costing is broken into two parts: acquisition and support.

In the acquisition area, the costs of licensing, installation,
Maturity Evaluation modifications, and documentation should be determined In the

support area, the costs of warranty and subscription should be
asThe maturity if a software processor is defined as an indicator determined.
of the potential cost to maintain a processor's functional

*performance capabilities. Given that software functitonal Miodification Evaluation
performance errors ir failures are a res of unaccomnodated
esvironmental stress (input congitions under which the software 'rhe purpose of this activity is to determine the total

Fails to perform as expected), and given that operation will produce development cosz base for a CPCI based on modifications required
such unaccommodated stress, then stware maturity is a measure of recovery candidate) i which compose the CPCI.
iif the amount if operational stress a software processvr has •

* successfully endured. 'Target Machine Evailuatiitn

It is important to obtain a maturity measure for the The first step in this activity is to evaluate the recovery
renhostransfer candidates during this recoverabiltiy analysis for candidatte(.) which compose a CiCI in terms of a specific bost
the following reasons candidate (target machine). This evaluation is based on the

techtnical judgment of the sioftware engineer. For example, the
Sn identification fhigh risk software areas software engineer may need tt perform a CPU loading study to

validate that performance requirements of the software
Sl*ife cycle cost itplications candidate(s) comprising a CPCI can be met on the target machine.

The percent modification information on the CPCI Summary Ftorm -
0 effects on the projected cost to rehist a software processor from will change for some software and must be updated appropriately.

the current to the target environment The more machine dependent a block of software is, the ntore likely
it will he affected by this target machine evaluation.

* test criticality matrix implications
Software Deveooment Costing

The procedure for obtaining a maturity measure on an existing
software processr is to ex itmine the rate history of Discrepancy When the software engineer has determined all modifications

hReport (DR d traffic associated with that processor The time required for recovery candidateis) composing a CP CI, a software
correlated trend of DR's is ctmpared with the current number of cist model is he used to determine the development cost of each
otitstanding DR's tot arrive at an estimate if the number iof lDlf's per hliock of siffware identified on a CPiCIICPC Summary Form.
month which can be expected. If the trend is increasing the
software is less mature than if the trend was decreasing In the The specific cost model in tise should be examined carefully to
event that the )R history is not availahle the procedure ea i r ides deternine exactl N what portions inf the development cycle are
an algorithm for determining a statility rating 'fhis stati it: covtred by the model and which are not. For example, if the model
rating is based on the snftware enginier's best technical judgment does, not cover the development if the requirements specification,
"fiser sitisfaction and assessient ofre iire nt chingi' this effort must he estimated ond added to the total cost for each

CPCI A convenient method for doing this is as a percentage of the
Cf )'fs Coist Atniimii re ma tnderifthe deveom ptment effort

'The pur pose tf th is act ivit 'v is to it-t ni, the .i it iti v-1 If a CeP was decoimnpsed i nt e CPC's for applying the

-f i CfIesift wa re processorr Thi pril i n ri ati in pro- devilipnment cost model, thi cist ifintegrating thiose CPCia to form
is i cntnded t prto ide a first eirdnmr fltenr it hi in, itulinous COTS the CPCI mit he calculated 'T is CPC I integration cost is then
softwari items that exist 'hi following quii ns must all he added to the tcst of each Cis C tot arrive at the total software
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development cost of the CPCI. It should he noted that the sum of produced is found by multiplying the quality rating (as a .. .'
the C PC I de ve lopment costs i s stiII not Ihe tota Icost o f the software. percentage of perfect) by the expected page count. An engineering
The final integration and test costs will still have to be added, estimate is then made of the effort required to reformat the

documentation. The pages requiring rewrite are found by . :....
Documentation Costing multiplying the estimate (as a percentage of the effort to write the

original documentation) by the expected page count. The upgrade
It is frequently the case that software, which is otherwise a good page count is determined by the difference between the expected

candidate for reuse, will he poorly documented. Typically the page count of the upgrade standard and the minimum standard.
documentation will have neither the minimum information content The page count for each standard can be converted to a cost by using
nor be in the format desired by the end user The cost of upgrading the database to determine atypical number of man-hours per page.- "
to a minimum standard must he determined in order to arrive at
the total cost of reusing the candidate software. This is complicated New Development vs. Recovery
by the fact that the software development cost model frequently .
includes documentation to a standard, which is likely not the same The software engineer must determine whether a CPCI should
as the minimum standard. It may also be desirable to define be considered for new development rather than being recovered. .
alternate costs for multiple documentation standards. The Acquisition cost as well as life cycle cost must be considered
developing organization might have a minimum standard and a Maintainability of recovered software, its maturity rating, and its

* . proposed standard with stricter format requirements or more complexity are critical factors in life cycle cost considerations For
S"information content. A method for arriving at the documentation example, if a recovery candidate is extremely unstable (has a low

costs is described in the following paragraphs. maturity rating), then it should be considered a high risk piece of -
software for the target environment. The cause of the instability -.

The standards to be costed should be defined by the should be located and the modifications required to "fix" the .
organization analyzing the project. It is assumed that the software should be costed for implementation. This cost may be so
developing organization will also have a data base of previous large that new development should be considered. Therefore, at
projects done with the various standards used to cost against A this point in the recoverability analysis the software engineer must """ -
linear regression technique is then used to relate the alternate evaluate recovery versus new development based on all the -

* -documentation standards against that used in the development cost previous software attributes obtained during the analysis:
model. This will result in an average number of pages per thousand
lines of source code for each of the documentation standards. The * complexity rating
effort required to produce existing documentation to one of the

[ given standards will consist of a fix portion, (to get minimum • existing documentation quality rating '-
information content), a reformat portion, and an upgrade portion ", . -
(see figure 2). The fix portion is determined using the numbers • maturity rating
derived from the documentation quality rating, which used
questionnaires oriented toward the minimum standard. The * acquisition cost of the modifications necessary to meet target
expected size of the minimum documentation is found by requirements and to accommodate a specific target machine "'.'..
multiplying the average page count per thousand lines of code by - S -

the candidate source lines The amount of pages that have to be 0 cost to generate maintainable, accurate documentation .

'* -,. . • .

DOC(UMENT

IGR.DOCUMENT ATO OTN

.:...................... ..... .. ... -.

-.... !7 , "-h - --. ''-..'--..-

*MINIMUM,""-/" I F0X STANDARD ,

DELTA "1) DOCUMENT .

STANDAR

FIGURE 2. DOCUMENTATION COSTING !
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New Development Analysis 0 Multiple run-time system maintenance. The multiple run-time
system problem involves the fact that each language provides

The purpose of this activity is to determine the development its own mechanisms for exception/error handling, may require
cost of performing new software development based on: preinitialization, and may conflict in basic requests made of the

operating system for run-time support
I. Target CPCI requirements for which there is no acceptable
recovery candidate(s) 0 Input/Output (I/O1 ) Interactions. The I/O interaction problem is ' ". -.

actually a subset of the multiple run-time system issue, "-. "*-

2. Target CPCI requirements for which a cost comparison is relating to what happens when both languages want to *- *-"- .

needed between modification cost of a CPCI composed of recovery communicate with the same /Odevice ... .-.

candidate(s) and new development cost of the CPCI. %
0 Linking. The linkage problem involves getting one linker to

Language Selection recognize the linker formats, libraries and external symbolic 5
names for routines in more than one language

The software engineer must select a programming language for
the CPCI to be developed. The potential languages should be The area of interfacing Ada to another language other than r-

picked with an attempt to minimize the proliferation of languages assembler is a difficult one. It is important to find the most severe
in the final system. The languages should be evaluated for their restrictions that can be lived with, to reduce the complexity of the
technical capability to support the problem environment problem, and insure a reliable solution. The first suggested
requirements and for the development tools which are available restriction is that Ada be the master program because it makes the
with the language. Ada is a viable candidate for most new most demands on the operating system, and of its own run-time S
development. However, interfacing Ada with other languages can system. The second suggested restriction, is that Ada calls other
be difficult. The following paragraphs discuss some of those language routines, but not vice versa. The third suggested . - .. "
difficulties. restriction, is that only scalars be passed as parameters and return - -

values, if any are passed at all.
Ada provides a mechanism for interfacing other language

subroutines to Ada, called "pragma interface". This capabaility is Summary
intended to allow a programmer to define an Ada subprogram -
specification in the usual manner, and then specify that the body is The final result of this procedure will be a cost for each CPCI
not in Ada, but is to be provided in some other (foreign) language- within the system making maximum utilization of existing
Support of this pragma is entirely at the option of the compiler software which may be adapted to fit the new system. This cost
implementor, who may make any restrictions he wishes. may be compared with a budget for each CPCI that could trigger

some redesign of the system or a reallocation of the budget. In
Passing of data to/from foreign language routines will be addition, the procedure has generated information that may be

easiest via parameters and function results. This conflicts with the used to estimate the cost to maintain the software after
common practice of using global data and will likely require major development. This evaluation will also lead to tradeoffs in new
rework of routines which do use global data. Routines that make development versus recovered software. -'

use of system level calls will need to be reworked also since the
services they are requesting will now need to be provided through References
the underlying KAPSE or run-time kernel. The scope of this
rework may make it more attractive to consider converting the I) B. Wilcox, "Pragma Interface Complexities", Internal

. foreign language routines to Ada where it is determined that a Intermetrics Memo, September 1984.
•waiver is not appropriate. .. .- .

2) W. Harrison et.al , "Applying Software Complexity Metrics to
There are several key issues/problems in interfacing Ada to Program mainterance", IEEE Computer, Vol. 15-9, September

other languages. I 1982, pages 65-79.

0 Calling conventions and register usage. The issue with calling 3) B. Boehm, "Software Engineering Economics", Prentice-Flall, " .'
conventions is how to pass data back and forth between routines New Jersey, 1981.
written in other languages, which are likely to have different
assumptions about data structure layout and register usage.
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The Marriage of Ada* and an Adaptable Multiprocessor Architecture -0'W- ''O

Dan Malek and Gary McIntire -.

Ford Aerospace and Communications Corporation
Space Information Systems Division

Houston, TX "
,. .,. .

Abstract design and development. But computers
available in the general marketplace are

The data processing needs of the ill-suited to many custom data processing
government often require custom systems needs. Therefore, NASA and the DoD often
that incur the high cost of design and find it is less costly to design and *
development. Examination of the custom develop a new specialized system to meet

. equipment expected to be needed for NASA's performance needs than to implement a sys-
Space Shuttle and Space Station programs team that uses misapplied commercially
leads us to the conclusion that there are available equipment.
indeed similarities in hardware and

* software functions, and that these func- Rapid technological growth also
tions can be supported by modular, reusable increases the cost of data processing to
hardware and software. Consequently, we the Government, because capabilities of 5
have devised a "building block" approach to existing ground support systems must change

* creating custom data processors that is frequently to meet the technological
flexible enough to meet new and changing advances in the spacecraft they are sup-
requirements, and will provide a means to porting. Design and development of these
combat the high costs of the technology system upgrades are expensive.
race.

Custom data processing systems are, by
definition, systems that can't be bought .e

commercially. How are they different? How
do the numerous "custom solutions" differ
from each other? How are they similar?

Introduction How can components of one system be
"reused" in another system to reduce costs?

General-purpose computers are not well Can concepts of "reusability by virtue of
suited for those data processing applica- modularity" be applied to a diverse range:""'

tions that combine high performance, real- of custom systems? These are some of the• .
time computing, and sophisticated near- basic questions we contemplated before
real-time and batch processing. Ground- designing our system.
based spacecraft data processing require-
ments results in systems that are typical Our company has designed and developed
of this situation. Computers that are most of the custom processing systems in
large and fast enough have simple inter- NASA's Mission Control Center. Examination
faces and are one-task oriented; those that of the custom equipment already in use and
have sophisticated user interfaces and are expected to be needed for the Space Shuttle
adaptable to many tasks don't have enough and Space Station programs leads us to the
speed. Custom data processing equipment is conclusion that there are indeed similari-
then designed to provide the required data ties in hardware and software functions.

processing functions. We also believe that these functions can be
supported by modular hardware and software

If the Government could use commercial which can be reused. Consequently, we have
off-the-shelf hardware and software in devised a "building block" approach to
these spacecraft data processing systems, creating custom data processors that is
they would not have to bear all the cost of flexible enough to meet new and changing

requirements, and will provide a means to
combat the high costs of the technology "" -

*Ada is a registered trademark of the race.
United States Government (Ada Joint Program
Of fice) We have incorporated many state-of-

the-art methodologies, along with some 5
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novel techniques, to reduce the costs of concepts of virtual memory and virtual 1/0.

custom data processing systems. Although These capabilities provide a significant
our particular target is ground-based degree of protection from the costs associ-
spacecraft data processors, we feel the ated with inadequate, late, or changing

products of this project apply to many requirements.
problems which have a combination of ,

sophisticated, flexible needs coupled with Definition of Terms.

high-speed, real-time needs.

The definition of multiprocessing
System Design related terms are not unanimously agreed

upon. Although we perceived the following
General Approach, definitions to be generally accepted, other

authors may disagree, so accept these
Our approach uses multiple VonNeumann definitions only in the context of this

microprocessors in tightly coupled and dis- project.

tributed multiprocessing arrangements. A
key aim of our concept is to avoid any Distributed Multiprocessing. A dis-
rigid architecture by using combinations of tributed multiprocessor system is an
these two processing arrangements. The arrangement where each processor has its 

software is designed to work in these dif-
ferent arrangements without modification.

VonNeumann vs. Non-VonNeumann. Our

research turned up many interesting Dual bus architecture

research and development projects that are
not based on the VonNeumann concept of a
central processor unit (CPU) executing Multi VME
instructions from its main memory. bus M - M] I - bus L
Although those projects will ultimately I

lead to new and better computers, the

state-of-the-art of such projects currently
limits their utility in the immediate

future. Consequently, the multiprocessor

approach chosen for this project is based
on current and near-future state-of-the-

art" hardware and software put together Three bus architecture
with some interesting twists. .p Si

Avoiding A Rigid Architecture. One of VME
the primary reasons that one processing .... b bus
system is more suitable to a given problem
than another is that the arrangement of * -
CPU's, memories, 1/0, and their intercon- Multi

necting bus structures more closely maps to bus ID [mj [P] jSj
the problem than the less suitable machine.

Processing systems can't be measured only
in terms of million instructions per second

(MIPS), memory size, and I/O capacities;
" the crucial factor of system performance is Two distributed processing centers

how closely the architecture fits the prob-
lem. Every commercial system known to us
has expansion capabilities, but is fixed, VME -1

with respect to the architecture initially ,I- bus .designed. P

One of our principle design rules has ,,W-L-'-'
"'" been not to presume a fixed architecture • {-.'L.is-'

but to support all architectures we can "-._-
imagine; a few examples are shown in Figure M"
1 . This rule extends to the capability of 0
changi ng the architecture after a system is-
installed because its requirements have

" changed. This rule is supported by Figure 1. Example Hardware Configurations
hardware with dual bus boards connected by
ribbon cable buses, which can literally be
changed overnight. This rule is also sup-
ported in the operating system by the
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own memory with I/O channels to communicate Our system concept currently addresses
with other processors. Processors need not distributed multiprocessing and tightly
be alike and do not necessarily run the coupled multiprocessing. We refer to the
same type of operating system. There is an tightly coupled arrangement as a "process-
a priori assignment of tasks to processors. ing center" and allow multiple processing 0
A typical example is a host processor, with centers within a system. These processing
another processor handling disk I/O and centers interact with one another in a dis-
another handling terminal I/O. Advantages tributed manner.
of this are the functional separation (phy- "',. -.

sical as well as logical) and expandability We have not concentrated our efforts
(since processors have relatively low on the NOS because we view the need for . -. ',
bandwidth communication requirements). distributed and tightly coupled multipro-
Disadvantages are that the a priori assign- cessing as more immediate. We also view 0
ment of tasks to processors is time consum- NOS as requiring more effort than our
ing and subject to large oversights, that budget allows, and there is another local
inefficiences result from processor work- effort underway that directly addresses NOS
load imbalance, and that there is inflexi- and considers our system as part of its
bility with regard to changes (it is diffi- processing resources.
cult or often impossible to shift a task
from one processor to another). MIPS, "Buy em by the yard."

Tightly Coupled Multiprocessing. A Most computer systems offer memory "- - "
tightly coupled multiprocessor system is an expansion capabilities. As more users are
arrangement in which several processors added to a system, memory boards are added
share a common memory and common I/O chan- to accommodate the extra memory require-
nels. Although this can be logically con- ment. This allows the customer to upgrade
figured like a distributed system with a as needs increase. Eventually, however,
priori task/processor assignments, the the CPU becomes compute-bound. The custo- A.
advantages of this arrangement are best mer is forced to throw away the old com-
realized with a symmetric operating system puter and buy the latest, greatest computer
(described below). The advantages are he can afford. Often this requires that
dynamic task/processor allocation, software be rewritten and users retrained.
automatic load balancing, and ease of Being able to add MIPS by plugging in
upgrade. Adding MIPS is simply a matter of another processor board greatly increases
plugging in another processor board. The the system's lifetime and reduces costs.
disadvantages are that the common memory • |
and common bus become bottlenecks, limiting Multiprocessor Operating System.
the expansion capability, and that proces-
sor boards, buses, and memory must be The functional capabilities of a 1 mul-

designed with this arrangement in mind. tiprocessor operating system include:
The everyday, off-the-shelf boards will not
work in this arrangement. o Resource Allocation and Management

o Table and Data Set Protection '-

Network Multiprocessing. Architectur- o Prevention of System Deadlock . .1
ally, a network multiprocessor system is o Abnormal Terminations
similar to distributed multiprocessing but o 1/0 Load Balancing
does not imply fixed task/processor assign- o Processor Load Balancing
ment. It also does not imply that a Local o Reconfiguration
Area Network (LAN) is used. Hardware real-
ization may be accomplished with a LAN, but
higher performance can be achieved with The three basic operating systems for
what is often referred to as "network in a multiprocessors are master/slave, separate
box", where processors communicate over executive, and symmetric. In the
multiple high-speed parallel buses. A Net- master/slave system, only one processor
work Operating System (NOS) governs all executes the operating system and performs
processors and resources, Advantages are the I/O; the "slaves" are assigned work by
that this system can be expanded almost as the master and can spend a large amount of
easily as a distributed system, that more time waiting. With separate executives,
processors can be added than in the tightly each processor has its own operating system *
coupled system, and that higher processor and functions like a single processor sys-
utilization efficiencies can be achieved tem with its own resources; a process

than in a strictly distributed system, assigned to run on a processor runs to com-
Disadvantages are that processor utiliza- pletion on that processor. Symmetrie
tion efficiencies are much lower than the operating systems are the most powerful and
tightly coupled system, good load balancing reliable, offer the best utilization of
is difficult, and tuning the NOS can be a resources, and have inherent load balanc- .
long and arduous task. ing. The operating system "floats" from
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one processor to another, and many proces- the performance and flexibility that is in
sors may be executing the operating system the design from the beginning.
at the same time. For this reason, the
operating system must be reentrant and make Multiprocessor Ada.
use of mutual exclusion techniques. A pro-

cess running in a symmetric system may be There seem to be as many ways to sup- 0
run at differ t times by any of the pro- port an Ada host or target system as there
cessors. All of the processors may aro host and target systems. Several
cooperate in the execution of a particular approaches were considered early in the -.
process. system design, but these quickly dwindled

to one best approach. The final design -'

Symmetric Operating Systems. The sym- decision was to purchase an Ada programming
metric operating system was chosen for this environment and adapt it to a small mul-
project because: tiprocessor kernel operating system

developed exclusively for this hardware. A
o Identical microprocessors are used major advantage with this approach is that

o Hardware configuration is flexible the system is not dependent on one particu-
o Powerful, high performance operating lar Ada tool set vendor. A new Ada tool

system is possible set can be quickly adapted to the multipro-
o No old system constraints are imposed cessor kernel with minor modifications to

the Ada support kernel, without the loss of
existing Ada support.

One requirement for a symmetric
operating system is to have similar proces- The Multiprocessor Kernel.
sors. Since identical Motorola MC68010 or
MC68000 microprocessor boards are used, the The operating system plays a major

operating system many run on one or many of role in the performance of the overall sys-
the processors without any changes. This tem. It is always required to do a maximum
approach also eliminates the need to design amount of work with a minimal amount of
a processor communication protocol that all overhead, while providing a standard user
processors can work with, now or in the interface. Additional requirements for
future. The responsibility for this design this system were to support multiprocessors
was placed on the NOS group, and the chosen Ada kernel with minimal

modifications to the Ada kernel software.
There can be many different hardware The UNIX* System V operating system was

configurations. The differences may be in chosen as the starting point for symmetric - -

the number of processors or location of the multiprocessor kernel for many reasons.
processors within the system. Since all of This operating system is amiable to mul-
the processors are the same to the sym- tiprocessor modification and is readily
metric operating system, it doesn't matter available for the target microprocessor.
if they move around in the system. The It also provides the very important kernel
symmetric operating system works with any support to many of the Ada programming
number of processors in the system, whether environments currently available.
it is one or many.

Virtual Input/Output.
Some of the uses of this system demand

the performance that only the symmetric When the system hardware configuration
operating system can offer. The perfor- changes, the software should not have to
mance is provided by making best use of the change unless I/0 devices have been addedThe~~~~~, prcssr ar ee at r. . . .- %
processors. The processors are never wait- or removed. For example, if a disk device .. -.
Ing for something to do, they are always is in the system and is located adjacent to -~. -.
"Out looking for work." Any process may a processor, moving the disk device so it
execute on any processor, so the processor needs to be accessed through a memory dev-
looking for something to do simply starts ice or another processor should not impact
working on the first process that is ready, the software. In order to provide this .
All of the processors are capable of doing function, the operating system kernel con-
input/output. This capability allows the tains system topology information that it
balancing of the input/output and elim- collects on initialization or reads from
inates any bottlenecks in this area. the disk if the system is too complex.

Data is transferred between a user and a •
Since this is a new system, there is device through the most efficient virtual

no requirement to provide upward compati- channel, similar to a distributed system
bility of software. This is one problem "_
that forces many designers into using other
operating system organizations. Starting *UNIX is a trademark of AT&T Bell La-

with a symmetric operating system organiza- boratories.
tion allows future systems to benefit from "-
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communication channel. The user will not benefits come alive in the multiprocessor
notice any changes, except in the response case. After processor A uses the bus to
times due to path lengths, request data from memory 2, processor B can

use the bus to memory 1, processor C to
Design Summary. memory 3, etc. The memories return the

data in much the same manner. This decou- -. -
The design of this system was based on ples bus bandwidth from memory access

evaluation of custom real-time systems in delays. It also allows effective exploita-
use today and expected to be needed in the tion of concurrency among memory boards
future. The hardware flexibility is pro- thereby allowing two memory boards to
vided by a few hardware devices configured appear to have twice the memory bandwidth
as required by multiple system buses. Ada of one board.
provides the software flexibility since the S
packages that exist in libraries can be Interleaved Memories. Rather than .
easily used and new packages can be added assigning a processor board to a memory
as necessary. The high performance of board, as in the above example, it is
these systems is provided by the use of better to assign even addresses to one
multiprocessors in both tightly coupled and board and odd addresses to another board.
distributed configurations. Adapting a In this manner, a processor executing a
commercially available Ada system to the linear segment of code uniformly distri-
hardware was viewed as a difficult task, so butes the load across both memory boards. S
a multiprocessor kernel was developed to This is called 2-way memory interleaving.
isolate the Ada programs from the hardware We also allow 4-way memory interleaving, if
by providing the required software inter- at least four memory boards exist in the
face. svstem. A more subtle benefit occurs when

a contention arises (two processors trying
Hardware Design to access the bus and the same memory at

the same time); one processor is forced to
Minimizing the Bottlenecks, wait momentarily. This delay causes it to ,

be momentarily delayed in requesting data
In the processing center, the tightly from the second memory. If all accesses

coupled processors use a common shared are to alternate memories, the multiple
memory for storage of both instructions and processors would fall in step behind each
data. The processors are addressing the other avoiding any more contention delays.
memory almost constantly; this shared In practice this situation occurs for a
memory and connecting buses form the limit- while but is disturbed when one processor
ing bottleneck. Several hardware tech- executes a branch and the others do not.
niques minimized the impact of these Since most code segments are sequential the
bottlenecks. Solutions included the fol- benefits of this effect occur the majority
lowing: of the time.

Cache. Each processor board has an on Dual Buses. The principal function of
board 4Kbyte, associative cache. The cache the dual bus boards is to allow the flexi-
has two major benefits: ble architectures as described earlier. An

added benefit is having twice as much bus_- "
1. It allows the processor to run at bandwidth, eliminating more of the
full speed most of the time. bottleneck. The buses can also be inter-
2. It unloads the shared bus and memory leaved, with even addresses on one bus and
by reducing the number of accesses to odd on the other, with benefits similar to
main memory. interleaved memories. A second type of 4-

way interleave can be done here if the pro-
Split Cycle Synchronous Bus. With cessor board and two memory boards are con-

common microprocessor buses, a processor nected by the same two system buses. Up to
places the address on the address lines, sixteen devices, which are processor,
holds it while the addressed memory board memory, disk controller and I/0 adapter
looks up the data and then transmits that boards, can be connected on one system bus.
data word to the processor. The processor There is no limit to the number of system
then relinquishes the bus allowing another buses.
processor to use it. The split cycle bus
requires the processor to relinquish the Processor Board Local Memory. Each S
bus as soon as it has transmitted the processor has up to 64K bytes of on board
address to the memory board. When the fast memory to store frequently used code
memory board looks up the requested data, segments redundantly. This offloads the
It momentarily acquires access to the bus buses and common memory even more. It also
in order to return the data word to the creates a deterministic environment neces-
processor. While this is rather compli- sary for accurate calculations of response

cated for a single processor bus, its times for interrupts. While this seems to
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violate the tightly-coupled concept, it page map information and provides the 24-
actually does not because the local memory bit virtual to 25-bit physical mapping.
mirrors the common memory as long as the Some of this information in the ATU deter-
corresponding area of common memory is mines how page faults should be generated
unaltered. and what pages should be cached on this

board. The P-board also contains interval 0
The above techniques are used to timers and a serial communications port.

enhance the performance of the processing Both the P-board and the M-board provide
center, allowing more processors to exist fault isolating diagnostics on command.
in the tightly-coupled environment. How
many processors? Our calculations with The D-board and the I-board.
12.5MHz MC68000's show that 16 processors d

would perform at about 80% efficiency The hardware building blocks for I/O
yielding an effective value of 12.8 proces- are the disk controller and the I/0 adapter
sors, or about 12 MIPS. boards, referred to as the D-board and the

I-board. The disk controller board allows
MIPS ratings are a source of ambiguity SMD-type disks to interface directly to the

in the literature. Reduced Instruction Set high speed system buses. The I/O adapter
Computers (RISC) can execute more MIPS than board provides an interface to industry
Complex Instruction Set Computers but the standard Multibus and VMEbus.
RISC machine generally takes more instruc-
tions to do the same job. The The D-board features an intell~gent,.-'--

MC68000/MC68010 microprocessor is rated microcontroller architecture based upon the
between .8 and 2.5 MIPS by different OEM same 29116 processor that is contained on
vendors. The 12.5MHz MC68000 can actually the M-board. This gives it the flexibility
execute 3.1 million register to register to support disk drives with different den-
adds per second. But for ballpark com- sities and data rates and to implement cus-
parison to 32 bit minis and mainframes, tom programming for unique job require- --
this project assumes the MC68000/MC68010 to ments. This board can support up to six-
be a 1 MIPS machine, teen disk drives and be can commanded from

up to sixteen different sources (P-boards). --

The P-Board and the M-Board. Multiple commands to be completed in
sequence can be linked together. This

The hardware building blocks developed board also contains 128Kbytes of dynamic
are the P-board and the M-board. We often RAM that can be used for data buffering.
re fe r to the se a s th e p ro ce s s o r b oa rd an d - o d s u--n-a t

the memory board, although each board has The I-board is used to interface to
both processor and memory, commercially available devices that utilize

industry standard buses. The I-board basi-
The M-board has .5 Mbyte of access cally provides a one-to-one mapping between

protected, error corrected dynamic RAM that the system bus and the standard bus. This
is usually used as common memory to the P- board contains an ATU like the P-board,
boards. In addition the M-board contains a that can be loaded externally (by the
very fast 29116 processor. This 16 bit operating system) and provides logical
processor is organized similar to cascaded addressing of the system by the devices on
bit slices. It is programmed in microcode the standard bus. This is especially use- _....
(70 bits wide) and executes 8 million of ful for devices with limited 16- or 20-bit
these 70 bit instructions per second. It addressing capability. The devices on the
always acts as a parallel coprocessor to standard bus appear in some physical
the P-boards, Its purpose is to provide address range on the system buses. The I-
the high speed, unsophisiticated processing board also provides interrupt management
that is so common with real-time data pro- from the devices on the standard bus that
cessing. The processing functions allows the balancing and directing of
currently assigned to these processors are interrupts among the P-boards. One I-board
bit/byte pattern matching, direct memory can only support one type of standard bus,
access (DMA) data moving, semaphore primi- but multiple I-boards each supporting a
tives, and M-board access protection set different standard bus can be used in the "
up. As many of these 29116 processors can system without difficulty. Standard bus ,-

be operated in parallel as required. bandwidth problems can be eliminated by "-."-
using multiple I-boards. The I-board sup-

The P-board is basically the processor ports bus and memory interleaving like the
board but contains memory as described ear- P-board to eliminate system bus contention
lier. Though we refer to the processor as problems.
the MC68010, the P-boards not requiring
demand paging can use the pin compatible
MC68000 to gain some performance. An
address translation unit (ATU) contains
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Software Design The symmetric operating system isa

Ada "Buldiassisted" by several hardware features that
* Ad "Buldin Bloks",provide high performance and ease of imple-

mentation. The 29116 Processor manages the
Ada packages provide the software Dijkstra-style semaphores and guarantees

building blocks for the system. Since it atomic oprtos by the processors. The
is easy to use existing Ada packages, new I-boards were designed to manage external
systems can be more quickly developed interrupts for the entire multiprocessor
because there is much less software to system, which greatly simplified interrupt

*implement and te s t. The operating system handling. The disk cache buffers are .

kernel was designed with the Ada package mapped to the RAM on the D-board. This
concept, but the commercially available eliminates DMA data transfers across the
systems provided an absolute minimal kernel system bus between the disk and system
most of which was not written in Ada. buffers.
Since research and development support for
the kernel did not exist as a vendor The operating system kernel makes use
option, it was decided to develop a kernel of other hardware features to improve sys-
that could maximize the performance of the tern performance. The virtual address niap-
hardware and provide the user interface the ping capability provides a means of imple-
Ada programs needed. The operating system menting interprocess communication with
kernel was then developed from the existing full protection. The mapping capability
UNIX System V/68 operating system. With also eliminates many data copy operations
this approach, a commercially available by being able to "Just shuffle the pages"
sy~tem could be easily installed on this in a logical address space. This is very
ker~tel, and any system could be supported helpful in the network interface functions
that generated code for this target proces- because data messages can be reassembled
sor. f rom the ir packets (that don't always

arrive in the correct order) very easily
The software building blocks that without the overhead of copying or buffer-

exist today are a single processor kernel, ing. The virtual mapping makes the operat-
*a multiprocessor kernel, and Ada applica- Ing system immune to changing hardware con-

tion packages. This still supports our figurations by making the physical devices
building block concept very well, since the appear in the same virtual address space
operating system kernels d o not require regardless o f the system configuration.

*modification and the Ada application pack- Virtual mapping also provides the capabil-

a ges change to meet the needs of the new ity to implement demand paging, although
processing system. Since the latest corn- this was not the primary design goal.
piler prhsdsupports all features of
the Ada language, the operating system ker- Just as the virtual address mapping -. '

nel is scheduled to be implemented as Ada provides the capability to handle different
packages in the near future, hardware configurations at the P-, M-, D-,

and I-board level, the virtual 1/O provides
The Multiprocessor Kernel, distributed processing centers the capabil-

sor -ity to handle different I/O configurations.
The operating system kernel was The virtual 1/O concept may be best

designed with three major goals in mind, explained by using the example of the tw.
One goal was to support an Ada embedded distributed processing centers in Figure 1.

application or host development environ- Suppose that hardware configuration exists
ment. A second goal was to develop a sym- because the processing center on the left
metrical operating system to efficiently is heavily involved in pre- and post-

manage the tightly coupled hardware and to processing of data transferred across the
pprovide distributed capabilities between several high-speed parallel Interfaces on

processing centers. The third goal was to the industry standard bus. The system on
develop an operating system that could be the right is involved with the storage and
used on radically different hardware confi- retrieval of this high rate data as well as
gurations by changing only the configura- program storage. The virtual 1/O subsystem

Ktion information tables in the kernel, exists in much the same way as a LAN exists
between two workstations, except that the

Supporting the commercial Ada systems virtual 1/O subsystem is simplified in its
requires standard kernel interfaces and any commands and data transfers. The system onS
utilities (editor, linker/loader, et c.) the left knows that a disk i s available
that the vendor does not supply. Some ker- through one N-board to N-board link and the .'

nelI data structures and processing policies system on the right knows that a serial .~

were mod ified to provide better supoort for terminal port exists through a same link. "
multiprocessor Ada. A user could log into the system on the .

l ef t and use the virtual disk capability, ,.*. -
or log into the system on the right using
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the virtual serial communication capabil- References.
ity. In either case, the system depends on
the DMA capability of the 29116 processor 1. Enslow, Philip H., Jr., "Multiprocessor
on the M-boards and the distributed system Organization - A Survey", CACM, Vol. 9, No.
configuration information (system topology 1, March 1977, pp. 103-129.
and virtual device paths) in both systems.

G. Mclntire and D. Malek, "Advanced
Multiprocessor Ada. Microprocessor-Based System Design", Ford

Aerospace and Communications Corp. R&D
Installation of an Ada run-time sup- Report, 1984.

port kernel on the multiprocessor operating
system kernel usually requires no meaifica-
tion of the Ada kernel. This environment
does not make very efficient use of the

* multiprocessor capability since all of the
Ada task and memory management is performed
by the run-time kernel. If the data pro-
cessing is an embedded application consist-
ing of only one run-time kernel, an
increase in performance can't be gained in
the multiprocessor environment since the
Aaa run-time kernel is perceived as one
process by the operating system.

To provide true parallel tasking and
to take advantage of the multiprocessor A&
performance, the Ada run-time kernel is Dan Malek, Senior Software Engineer, has
modified. These modifications include the previously worked on software development -

moving of the inter-task communication, for the Shuttle Downlink Telemetry Prepro- 5
task management, and memory management cessing Computer Complex. He holds BA
functions to the multiprocessor operating degrees in Computer Science and also in
system kernel. Since the multiprocessor Chemistry from the University of Northern
kernel already provides these functions, Iowa. His mailing address is:
the modifications to the Ada run-time ker-
nel are to map Ada system calls to the Ford Aerospace and Communications Corp.
appropriate multiprocessor kernel system P.O. Box 58487 M/S M3B "
calls. Any information contained in the Houston, TX 77258
Ada run-time kernel required to support Ada
tasking that is not contained in the mul-
tiprocessor kernel, was moved into the mul-
tiprocessor kernel for protection and ease
of access. The multiprocessor kernel func-
tions contain minor modifications to best
support Ada tasking. Other functions of

0~
the Ada run-time kernel are not modified,
unless some of these functions required the
use of information moved into the multipro-
cessor kernel. This information is made
available to these functions by standard
multiprocessor kernel system calls.

Future Research.

We are currently studying the approach Gary Mclntire, Senior R&D Engineer, has
to implement Ada tasking with the use of previously worked with several microproces-
networks, and a network operating system is sor projects in support of the Space Shut-
beginning to emerge as a system goal. A tie Telemetry Downlink. He holds a BS in
multiprocessor kernel supporting a standard Electrical Engineering from the Lamar
Ada interface is planned when the specifi- University. His mailing address is:
cations become available. An interface to .
the system bus is being designed to handle Ford Aerospace and Communciations Corp.
high speed telemetry data streams. System P.O. Box 58487 MS4B
performance is increased whenever possible Houston, TX 77258

by using the latest hardware and software
technology feasible.
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VHSIC HARDWARE DESCRIPTION SYSTEM oVERVIEW

Alfred S. G~ilman

Intermetrics, Inc., Bethesda, Maryland

Summary: simulating five "benchmark" descriptions in VHDL.
Texas Instruments has contributed to the language

The Department of Defense-s Very High Sneed requirements and the system architecture. They are
Integrated Circuits (VHSIC) Program is sponsoring implementing the VHDL simulator. TE is also coding
the design of a hardware description language and and simulating three benchmark designs. Team-wide

the development of some tools to support its use, review is used on critical decisions.
The purpose of this language, the VHSIC HardwareS

Description Language (VHDL), is to become the The VHDL design effort started on July 31,
standard medium of exchange nf design data for VLSI 1983. The design was completed on July 31, 1984

devices used in defense electronics and for and was reviewed by a group of experts from DoD
systems/subsystens employing these devices. This organizations, universities and private industry

*paper provides a brief introduction to the language during August and September. Based on the
and tools with particular emphasis on the favorable response from the reviewers, the DoD has

4applications of Ada technology in the VHDL authorized the team to proceed to implement the
development and the potential for synergy between VHDL. An initial capability to use VHDL will be

-the support environments for Ada and VHDL. created by support software deliveries scheduled
for November 30, 1985.

The Language:
- Background:

The VHDL incorporates some important modern
Early in the VHSIC program it was decided that language concepts I These include the ideas

a standard medium of expression was needed to of independent semantics, hierarchical description, -
definitize and commuinicate the massive amounts of and configuration management. Independent

*design data associated with designs of VHSIC semantics means that the language is fully
*complexity. Therefore the DoD defined language specified as to its semantics, independently from u'*-

requirements for the VHSIC Hardware Description the tools that support it. The hardware
Language (VHDL) and initiated a two-phased description is complete and definitive from the

*Procurement of VHDL and its support environment, text written in VHDL and the definition of the VHDL
One requirement stated that VHDL should make use of as a language 2 . Hierarchical description is*
the Ada* language whenever the necessary construicts an integral part of the overall organization of
were present in Ada. VHDL. This is evident in the modularity of design

afforded by the design units of the language
The team of Intermetrics, IBM, and Texas (analogous to compilation units in Ada). It is -

-Instruments was awarded the contract to design VHDL also evident in the breadth of levels of -. ,

*and to Implement the VHDL support environment abstraction supported by the language by the
*software. Intermetrics is the prime contractor for inclusion of strong, user-defined types and the

this program, with particular responsibility for exclusion from the language of any presumption as*
designing the latigiage, and establishing the VHDL to primitive design units. Good support for
support environment architecture. Intermetrics is hierarchical description is an absolute necessity

*also implementing the VHDL analyzer which reduces when dealing with designs of VHSIC complexity. The
the VHDL source text to the Intermediate form from modularitt of the language, together with features

*which the simulator runs. IBM is directing the in the language and support tools supporting the
*language requirements analysis. They are also tracking of variants and versions of designs lay a
-developing usage scenarios and coding and firm foundation for the implementation of

.. .................................. configuration management of designs described In 7S
VHDL.

*Ada is a registered trademark of the U.S.
* Department of Defense.
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Design decomposition: The primary language quantitative representation of physical time as
abstraction fur representation of a hardware experienced hy the hardware being modeled. The -

component is the design entity 3. Adsgmir-time scale is in effect a unit-delay mode and
entity is composed of an Interface and one or more is not measurable in terms of macro-time; there may
alternative bodies. The Interface of an entity be an arbitrary number of micro-units of time
defines all of that entity's external within one macru-units of time. Thus the
characteristics. Each body represents an micro-time scale allows the user to define the time
alternative description of the entity. This degree order of actions performed by concurrent statements -

of freedom - - the simultaneous existence of without having to quantify the precise delays.
alternative bodies -- allows the language to 4

capture related high-level and low-level A VHDL description of a component specifies an
descriptions of the same entity. It may also be instantaneous mapping from the past and present
used for competing design approaches to realizing values of its inputs to the future values of its
the same entity. All bodies must conform, however, outputs. That is, given a set of inputs, a VHI)L
to the characteristics estahlished in the description predicts the expected outputs at future

*Interface. points in time. As time advances, these projected
outputs become actual outputs at which point they

The design entity interface contains not only are propagated along data paths to become Inputs tu
Its externally visible characteristics, such as other components.
ports and generic parameters, but also standard
items applicable to all bodies of that entity. Evaluation of a VHDL description Is
Ports define the channels of real-time event-driven. That is, the description of a
communication between the entity and hardware component is evaluated when an event occurs at one
outside itself. Design entities may be defined to of its inputs. The result of evaluation is a new
be parametric or generic by the inclusion of set of projected values for the outputs of the
generic parameters in their interface. The component. This stimulus/response approach to
description of the entity adapts to the values computation is a natural way to describe the
supplied for these parameters. behavior of hardware in the digital system to logic

gate range.
A body of a design entity completes the

description of that entity, working within the Features of the Language: In order to support
constraints laid down in the entity interface, the wide range of descriptive capabilities required
Aside from declarations and specifications, a body to model hardware in the logic gate to d ig italI
is built up out of both concurrent and sequential systems range, VHDL incorporates a number of useful
statements. The execution of a VHDL description is features, including user-defined data types,
Performed by the execution of one or more signals as well as variables, attributes,
concurrent statements. Sequential statements serve assertions, regular structures and packages.
to define a single concurrent statement by a
sequence of steps to be performed. The sequential A type is a collection of values and a set of
statements within a single concurrent statement are operations on those values, Like Ada, VIDL
executed in the order in which they appear, provides the capability for the designer to define
Concurrent statements, on the other hand, execute the data types he needs. VHDL also allows the user
independently with respect to other concurrent to define types with units, called physical types.
statements. Because of the intended use of VHDL as a definitive

description of hardware, the precision of
A VHDL design entity is a template to be used computation with discrete types is fully defined in

*in creating specific instances of a component. The the language without dependency on host arithmetic - --

component instantiation statement creates these types . Arbitrary precision is supported for
instances, Identifying the actual signals attached discrete types, which Includes all physical types.-.-
to its ports and the actual generic parameters for Thus the semantics of arithmetic in VHDL is more --

that particular instance. Portable than the semantics of arithmetic in Ada. -

Time-Based Execution: Time is one of the most Signals provide for information flow between
important aspects of an HDlL, because the timing concurrent processes In VHOL. A signal has a
characteristics of hardware are difficult to history and a future: historic values of the
represent in a textual description. There is signal are visible but unalterable; future valo"c
massive parallelism that can exist in a description are alterable but invisible. Assignment to a
of hardware. The language must express the dynamic signal may change the projected (future) values of --

behavior of one hardware component over time, and the signal, but not the current or past values of
it must also capture the correct tetrporal the signal. A signal may be assigned a single
relationships of all the interactions among the value, delayed In time; the time specification is
components involved in the design, the time relative to 'now' at which the new value

Is to take effect for that signal. A signal may
There are two time scales In the execution also be assigned a waveform, which Is expressed as

Model for V1DL: macro-time scale and a a sequence of values and associated times.
micro-time scalIe. Th e mac ro- t Ime scale is a-
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Signals that are driven by multiple sources interoperability standards for their designs so
are called buses. In order to resolve the values that the resulting devices may be used in
supplied by multiple sources into a single value combination without regard to the originating
for the bus, VHDL allows the designer to specify a company. The interoperability standards for these
bus resolution mechanism to he associated with each chips are an example of an abstraction which one
bus in a description. would want to express in one or more VHDL packages. .

VHDL also provides variables for use in The Tools:
abstract computations. Variables have no
relationship to time, so they have only a single Part of the definition effort in Phase A of
value that is both visible and alterable, the VHDL program has been to define a support . .-

Assignment to a variable changes its value environment for the language. This support
immediately, and therefore variables can he used in environment is both an open-ended integration •
algorithmic descriptions. While variables may be framework for what is hoped to be a growing list of
either static or dynamic, they are not used for tools organized around VHDL, and a specific set of
inter-process communication, software which is being implemented in Phase B of

the program.
One of the goals of VHDL is that all of the

information contained in a data sheet for a Recall that the mission of the VIISIC Hardware
component be expressible in VHDL. VHDL provides a Description Language is to support insertion of
general-purpose mechanism that allows the designer VHSIC technology in military systems and to S
to define attributes of objects. This allows the facilitate hardware design. To carry out this
designer to 'decorate- a description with extra mission, the language user needs tool support so
information about a component or its parts, that he can record and communicate digital designs,

and verify digital designs by simulation. In order
Assertions allow a designer to specify for VHDL to serve as the standard interface to a

conditions that are expected to be true in the growing spectrum of design automation tools, the
course of executing a design. They allow the kernel support software implemented initially will

* designer to specify information about the intent of construct and make available for interfacing to
a design so that errors can be detected close to other tools an intermediate form of hardware
their source. An assertion definition consists of description derived from the VHDL description
a boolean expression that specifies the condition written by the user.
being asserted, optionally followed by a severitv
level and an error message. The VHDL support software being implemented in

the current phase (B) of the VHDL program consists
A regular structure is a pattern that is of five tools and a design library. Four of the

repeated many times. VLSI designs often contain tools manipulate design descriptions. These tools
regular structures. In order to facilitate are an analyzer, a reverse analyzer, a profiler and
description of such structures, the language a simulator. The design library is a collection of
includes the generate statement. This statement data representing hardware descriptions. The fifth
functions like a macro expansion capability within tool is the Design Library Manager which the other
*a bodyv. Often, the houndaries of a regular tools use to manage and access the common data in
structure exhibit slightly different connection the Design Library. The Analyzer checks hardware
patterns than the rest of the structure. The descriptions for static errors, I.e. those that
conditional generate statement is used to described are evident without simulating the passage of time.

* this variation in structure. It also translates VHDI, text to intermediate form

and places this in the design library. The reverse
A package contains a group of declarations analyzer produces VHDL text descriptions from

that are related in some way. These include type intermediate form descriptions in the Design
and subtype declarations, attribute declarations Library. The Profiler collects modules of hardware
and specifications, and function declarations, description to build a unified model of a hardware

* Packages do not declare signals or variables. This design. The Profiler reduces the layers of
exclusion enforces the requirement that hierarchy in the model representation in the .5

communication channels between components be interest of simulation efficiency. The Simulator
explicitly declared as ports in the design entity computes what would happen as the modeled hardware
interface. Once a package is defined, it may he executes and detects dynamic violations of the

* referenced by other descriptions to share its language semantics and user assertions. It does

declarations. this by transforming the model representation into

an Ada program which computes the dynamic behavior
Packages are a convenient way to encapsulate of the whole model. The Design Library consists of - -.

all the declarations relating to some abstraction, the intermediate form of already-analvzed hardware
- For example, the contractors developing descriptions and Is supported by the library access
" submicrometer technology tinder the VHSIC program and management routines of the Design Library - -

i will he describing and simulating their device Manager.
designs tising VHDL. These three contractors must
also collaborate on defining and following
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The Analyzer functions can be divided into representation internal representation of VHDL,
syntactic and semantic analyses. The Intermediate library-organization functions organized around a
Form is constructed in the course of these two network file-system model, and a few other
analyses. The core structure of the Intermediate utilities. 'e
form is an Abstract Syntax Tree (AST). This is a
tree-form representation of the syntactic structure Applications of Ada Technology:, - -.
of the VHDL description being analyzed, using an
abstraction of the full language syntax. The final The support tools for VHDL being developed by
Intermediate Form consists of this tree structure the VHDL team are to be implemented in Ada. The
with semantic attributes and relations added as chief reason for this is for the portability it
decorations, affords. Moving the tools to a new host with a

full Ada implementation is relatively easy. To
The VHDL language gives the user the demonstrate this portability, the VHDL support

capability to associate both high-level functional environment will be delivered on two hosts, both
descriptions and more detailed, decomposed VAX/VMS and an IBM 370-class machine with MVS.
descriptions with the same entity being designed.
Design entities can also be incorporated in other The Design Library Manager is the collection
design descriptions as components. This gives a of library control and access services which all .'. .

very flexible hierarchical description capability, tools use in order to have a correct and high-level
Using the modular, hierarchical form of description interface to the Design Library. The Ada package .. _-_-
with embedded variant descriptions at various concept provides a natural and effective mechanism
levels, the user can construct from the same for collecting, isolating and sharing this common
library of descriptive modules a wide varfety of code.
simulatable models -- at various levels and of
mixed levels. This very high level of programming The separate specification and body facilitv
in terms of design entities is accomplished with a of Ada is being used to structure the top-down
language capability called the configuration body design of the support environment software. The
and a tool called the profiler. The configuration principal medium of design is the source library
body is analyzed into the design library by the itself. Essential facts for the program
analyzer as with any other VHDL design unit. maintenance manuals are extracted from the source
Operating from this information, the profiler fileg by the Byron(tm) system. .- :"
creates a unified description of the aggregate
model. The portable virtual file system employed in

the Design Library is drawn from the CAIS, or
The purpose of the Simulator is to compute the Common APSE Interface Set This is a virtual

successive signal values which occur as a result of operating system interface proposed as a standard

the time-dependent behavior of a particular tool interface for Ada programming environments.
hardware entity, as described in a VHDL model of This model provides an organization which is
that hardware. effective for the needs of the current tools and

flexible enough to allow the Design Library to grow
The simulator draws the definition of this as tools are added.

hardware Unit Under Test (UUT) from the
Intermediate Form representation in the Design The detailed internal representation of VHDL
Library. This hardware model is exercised in the design units employed in the Design Library is, as
context of a simulated test bench environment of described above, a decorated abstract syntax tree.
signal sources and receptors, and a controller. Thus the VHDL intermediate form bears the same
This test bench equipment is predefined as part of relationship to VHDL as Diana bears to Ada. In
the Simulator. The user can also add pieces of fact, a common language, the Interface Description
user-defined test equipment by describing these in Language (IDL) is used to formally specify the data
VHDL and invoking them as components in a VHDI mgdel employed in building both intermediate forms
description of the total test bench. The Simulator
will be capable of simulating any hardware behavior
within the scope of the dynamic semantics defined Unified support:
in the language specification.

Use of the CAIS and IDL technologies developed
The design library In essence defines the initially for Ada programming support environments

integration framework of the VHDL support has been effective in the design of the support - "

environment. All the tools communicate through the environment for VHDL. Thus the core of common
data in the design library. The design library details required in a tool-integration framework
houses the intermediate form representation of VHDL for Design Automation tools gathered around VHDL "
design nits analyzed by the analyzer. The Design and for Ada programming tools can be the same.
Library will also contain the Intermediate Form of Both languages are targeted to the same
the flattened structure constructed for a model by application, intelligent Defense electronics. The
the Profiler. The design library manager functions systems of the future require close coordination
Include detailed representation access functions between the design of the hardware and software for
organized around the abstract syntax tree a system, including the capability to trade
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hardware and software capabilities late in the
system development cycle. Both the user . .. ,

requirements and the software interfacing resources
thus point toward a common standard tool , e.
integration framework for tools addressing hardware
design (expressed in VHDL) and software design 0
(expressed in Ada).

It has not proven possible to have VHDL he,

just a collection of Ada packages and still meet
the fundamental hardware description requirements. .'.
Still the application of Ada technology in the VHDL -,.

program has been fruitful, and the prospects for a
common tool integration framework spanning hardware

and software design automation appear good.
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SOFTWARE QUALITY ASSURANCE AND ADA

BRUCE BROCKA ----

U.S. Army Management Engineering Training Activity
Rock Island, IL. 61299-7040 4

The life cycle may be divided into
the following five phases:

Abstract
o Requirements Definition

Ada was designed to be o Design4
life cycle oriented; one o Code
outgrowth of life cycle o Test and Integration
driven software develop- o Operation and Itfaintenance
ment should be the ready
application of software Although hardware reliability
quality methods and concepts have been around since the
metrics. Current soft- 1950's, such ideas as mean time
ware quality measures may between failure or sample testing
be applied to Ada, in have no meaning when applied to a
concert with the program system of intangible thoughts or
management environment. instructions. Further, reliability
This paper discusses the typically applies to the design
application of software phase, quality assurance to the
quality methodology to production phase. Thus the
Ada and is intended to distinction between reliability and
stimulate how quality quality assurance becomes blurred in
improvement is intrinsic practice when dealing with software.
using Ada. This paper explores ways in which

Ada can be used throughout the life
cycle, and how Ada can be used for
quality assurance activities which
last throughout the life cycle, such e.

I . INTRODUCTION as configuration management andj
verification and validation.

Ada was designed with software
engineering principles and the The existing software
software life cycle clearly in mind, environment is rapidly growing
Because of this, software quality i n terms of lines of code per
assurance techniques are more readily program and embedded software
applied to Ada than to other applications; weapons systems are
languages, particularly those becoming software driven. This
languages available for real time leads to a sharply increased need.2
systems. Ada i s unique i n its for better software management,
conception in that it is applicable particularly in the areas of:
to more than one life cycle phase, - ~
and the Ada Program Support o configuration control
Environment (APSE) was designed to o contractual specifications .~*

assist the program development o integration into hardware
*process. o productivity

II. EXISTING QUALITY AND

RELIABILITY TECHNIQUES

This section examines how

* daisaexisting quality assurance
Ad saregistered trademark of techniques may interact when applied -

the U.S. Government -Ada Joint to Ada. We examine the techniques
Program Office.
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first by each life cycle and then by Ada may be directly used in
activities that encompass the entire this phase as a program design
life cycle. language (PDL). There are several

advantages to this:
Part of the overall problem with 4

software quality assurance is that o Program documentation is - -

each software project contains many being provided while design-
components, each of which may be ing the program, allowing
unique to that particular for better configuration . ..-.-

application. This leads to control. %, N

difficulty in measuring or assessing _,,______

the software and thus determining o The PDL can virtually be the
product quality. Further reason why program code, thereby almost
a large portion of traditional eliminating the coding
quality assurance techniques must be phase.
abandoned is the lack of a production
phase; a phase in which traditional o The integration testing
hardware quality assurance techniques phase can be provided for by
play a major role in determining means of designing stubs
product performance. and/or drivers. (This *

aspect is not unique to -

Requirements Phase Ada.)

The goal of the requirements o Traceability is increased by
phase is to produce a set of software naming conventions appearing
specifications, which will provide at this stage.
sufficient detail to be fully -
testable, yet the requirements should Ada as a PDL can improve the
not design the system. overall quality due to the early

documentation generated, and a
Ada assists in this phase by consistency of style, usage and

providing a common language, and a concepts at an earlier stage. Using
way to document the software using Ada (or any language) as a program
the program unit specifications. design language is not a panacea;
Using this method should increase the persistent problem areas still
traceability of the requirements exist: •
throughout the rest of the
development phase. o Confusion between "struc-

tured english" and "pseudo-
Traditional methods for develop- code". Since the design

ment of requirements are not obviated process requires several
by the introduction of the Ada iterations, it seems logical
discipline. User documentation to proceed from a more
quality must still be developed and abstract, high level de- .
evaluated using structured methods scription (i.e., "structured
that interface well into the Ada english") to a more code
context. like description (i.e.,

"pseudo-code").

Writing compact, testable, and
easy to design from specifications o Design is constrained by
may be achieved by using Ada and syntax details. * 4
structured methodologies, as Ada -
allows for a structured format. o What portions of the

language to emphasize (e.g.,
Design Phase interface-definitions,

modularity, tasking, etc.).
This phase produces the detailed

design from which the programmers
will produce the code. Obviously, if
this phase is done well, the coding
effort becomes relatively simple.
The design phase, however, typically
undergoes several iterations before
the programmer can begin work.
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o Requiring a code like de- program design, global vari-
scription of everything. It ables can be reduced to
may be advantageous to minimum, further increasing
describe "traffic control" each modules coherence and
modules differently from reduce coupling. Ada also 0
modules that perform a very does not limit identifiers .
specific function, and are to 8 characters, so identi-
readily described by HIPO fiers may be given a compre-
charts, or some other tool. hensible name.

So in using Ada as a PDL the o Exception handlin is a very
disadvantages are the same as those important eature in real
that would be encountered in any time systems which rely on
other language. data from input sensors,

particularly sensors prone
Other techniques that may be to failure or damage.

applied at this phase are such struc-
tured methods as structure charts o Separate comp ilation may be
which aid measures of cohesion and us e to test the program in
coupling, use of Nassi-Schniederman units, thus eliminating or
charts, Warnier-Orr charts, Jackson reducing the need to create
techniques and interface documenta- stubs or drivers.
tion.

Coding walkthroughs, reviews
Coding Phase and inspections have proven to be a

very valuable means of detecting
There are advantages to coding errors that occur during the coding

in Ada even if the target language is phase.
not Ada. Ada is highly structured,
and it is fairly easy to proceed from Other actions that are appro-

*a structured language to an unstruc- priate at this point are configura-
tured one. Eventually, automated tion control, and the establishment
tools should assist (if not complete- of a program library.
ly convert) the code from one
language to another. On the other Testing Phase
hand, it is very difficult to convert 9

• from an unstructured language to a Testing may be applied in three
structured one, particularly if one phases: unit testing, integration.-.
wants to take advantage of such testing, and operational or accept- . .
features as parallel tasking. The ante testing. The first two phases
advantages of Ada over traditional would correspond to the traditional .
declarative languages are, in terms military concept of development test
of quality assurance: and evaluation, the latter to opera- .1, "

tional test and evaluation.
o Modularity which is conducive

to readily readable, testable Testing planning is made easier
and maintainable code. With by the prior documentation. Inter-
program modules, however, faces should be known, and glass box
interface documentation testing performed on critical
becomes more crucial. modules should have readily defin-

able inputs and outputs. Testing
o Parallel tasks can provide order can be determined from the

for a fast run time environ- structure charts or diagrams. Care
ment increasing the real time should be taken to allow time to
capability of the program. adequately test the software, and

that each unit be tested in some
o Type and variable declara- measure before any integration test-

tions must appear at the ing is made. If the testing phase
beginning of the program and is not initiated until all units are
the program units. This coded and integrated, disaster is
forces the programmer to put likely to result.
all type and variable refer-
ences in an easily locatable
spot. With care in the
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One of the major causes for cost o Standardization since Ada is
overruns in software is the failure rigidly controlled in its

i to detect requirements errors prior implementation, Ada source
to release of the software. Since code programs should be
Ada was used as a backdrop throughout highly transportable from -.

- the development life cycle, require- one system to another.
ments should be readily traceable
from the requirements phaser through When Ada is compared to other
to the testing phase. Because of popular higher order languages
this, requirements errors should be (HOLs), it is clearly a language
detected at the unit testing or designed with maintenance and docu-
integration testing phase. Methods mentation tasks in mind.
for unit testing include:

Since the Ada Language System
0 Path Analysis is very structured, it is very suit-

o Cause Effect Graphing able to such total life cycle
o Boundary Value Analysis activities such as configuration
o Equivalence Partitioning management and verification and

validation.
integration of the units may be .

achieved in one of three basic wasy: Reviews, Walkthroughs, Audits
top-down, bottom-up, and the
"big-bang". In the first two Reviews, walkthroughs and
methods, either stubs or drivers must inspections are useful tools in
be created, respectively, but the eliminating errors in the design and
pay-off is high in that errors are coding phase. Because Ada can be
easier to locate, and testing made readable, preparation time for - l"
procedes in a logic and comprehen- the walkthrough should be minimized,
sible fashion. In the big-bang as well as misunderstandings arising
method, the entire program is tested from poorly structured and named
as a whole. The disadvantages of code.
this are obvious.

Configuration Management
Operation and Maintenance Phase

Configuration management is the
Ada is well suited to be consistent labeling, tracking and .

modified because of the following: change control of the computer
program configuration items (CPCIs).

o Modularity as mentioned Configuration management involves
earlier, code that is written the careful tracking of the docu-
in a small module (somewhere mentation and version history. This
between 60-200 lines of code) is simplified in Ada by use of the
with few global variables is APSE. Revisions are automatically
easy to maintain, and new logged, access can be controlled, -5 4
modules may be readily and previous versions can be
added, recreated.

o Consistency in types and Verification and Validation
variables since the location . .-. j...l
of all variable and type Validation refers to the
declarations are known, and activity of ensuring each end item
with the help of the APSE, product functions as specified in
data item dictionaries are the requirements. Verificaiton - -
easily m ade and maintained, ensures that the current development

phase proceeds correctly from the
o Interfaces tracing interfaces intentions of the previous phase.

is made easier by the inter- Again Ada is useful in Verification
face documentation. and Validation activities because of

its structured approach.
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III. FUTURE RESEARCH INTO ADA Author

QUALITY IMPLICATIONS Bruce Brocka is currently a

I faculty member of the United States
This section outlines some areas Army Management Engineering Training 0

of potential future research and Activity,located on the Rock Island
- exploration. Arsenal. He received a B.S. in

Physics from St. Ambrose College,
Requirements Phase Whose func- Davenport, Iowa, in 1981, and a M.S.

tion should it be to write the speci- in Electrical and Computer Engineer-
fications; an analyst, programmer or ing from the University of Iowa in
user? How extensive should the 1984. Mr. Brocka has taught various JO

system be specified? How ca i Ada be courses in computer science and S
used in specifications; as structured engineering.
english using Ada reserved words, or

. something more extensive. What de-
velopment time is required to write

*n specifications using an Ada backdrop?

Design Phase Ada may be used as
a PDL, but what structured methods •
work best with Ada? Ada introduces
timing or rendezvous considerations
and real time constraints are not
always considered in structured
methods.

Coding Phase How does the pro-
ductivity of a programmer coding in
Ada compare to other languages? Is
error detection and correction
easier?

Testing Phase Due to the prior
measures taken with Ada, is it easier
to test and integrate an Ada program? p
Without prior measures, is Ada easier
to test? Are any testing methodol-

.. ogies especially well suited to Ada?

Ada may be used throughout
almost the entire life cycle of soft-
ware. The advantage in doing so is
that a common background provides for
easier control of a project, and the
highly structured aspects of the
language allow it to be maintained
and managed with a minimal amount of
difficulty.
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Software Management Control System
SMCS

(An Ada Approach)

Raymond J. McGlynn

Center For Tactical Computer Systems (CENTACS)
Fort Monmouth, New Jersey

ABSTRACT of all items loaned and identifies the
borrower. When an item is borrowed the

The Software Management Control System loan date and due date are recorded for
(SMCS) is a set of automated tools every borrower.
designed to support Army Life Cycle
Software Support Centers (LCSSCs). These Library F-nction
tools have been written in Pascal and as The user will give some command to 0
they are reworked in Ada, SMCS will activate the tool such as the word
ultimately be available within the ALS. LIBRARY and will then have to enter a
Currently the Library tool is being correct System code, user name and
written in Ada and designed to be password. This type of security is
portable, flexible and maintainable, required to avoid unauthorized people
This paper describes the purpose of the from gaining access to the listings of
SMCS set and the detailed functions of the library where sensitive information
the Library tool. Two approaches to may be stored. The tool will check the
using an Ada Program Design Language user name and password against an
(PDL) are discussed and details of the authorized user list. If the name and
selected approach are presented. passwords do not match, then an exception

routine will handle the error and thus
inform the user. On the other hand if
the name and password match, then the
user will gain entry to the tool and a

SMCS Descrlition main menu will appear. The Library tool
The concept of a Software Management operates through the use of multiple menu
Control System evolved out of driven screen forms which contain
studies into the needs and problems of highlighted fields for data entry. Three
managers at the Army LCSSCs. There are screen forms and three reports can be
seven automated tools within SMCS: selected from the Main Menu. Any
Baseline Controller, Tracker, Project selection opted, except Exit, will return .._
Status Reporter, Tracer, Scheduler and the user to this Main Menu. The
Library. Each tool performs the function Control_Y sequence can be activated for
implied by its name. Creation of a fast, emergency exits from the tool. The
common data base provides displays and Exit can return the user to the operating
reports of system information. The tools system command level or can log the user
are written in Pascal and operate on the off the system depending upon the
VAX 11/730, 11/750 and 11/780 under VMS. preference of the particular

installation.
Library Tool Dgecription •

The SMCS Library tool was chosen to be The Item Maintenance screen form
written in Ada first since it is maintains a file with a record for each
representative of a medium level tool in library item. The user options of Add,
terms of programming difficulty and the Delete, Update, View and Exit are
number of functions performed. The supported. The Disposition Screen form
following sections describe the functions maintains the variant portion of the
of the Library tool. This Library tool Library Item record. Its function is to
allows the user to maintain an inventory record and display those items on loan to S
of items in a software collection. An users of the Library. When selected, item
item is composed of number, title, records are expanded to include
owner, media, volume, copy, subject information of the Disposition screen. ...
and classification. Item location, Options of Add, Delete, Update, View and
expiration, author, vendor, system Exit(to main menu) are provided. The .
and language are also specified. The View option lists information of all .'.". --

item descriptions are kept in an item items on loan. When the screen becomes
file. The tool also maintains an account filled with information during the view

8 a .r o...T..,9
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option, the user is prompted with a Alternative Approaches
*message to "Press RETURN to Continue or One approach to this design would be to

SPACEBAR to Quit". The Owner/Holder place the emphasis of design on the -

s creen form displays information on programmer. This would require less
library items as related to the owner or detail and time during the program design

*holder of the items. For example, all phase. The Ada software design can
the software and manuals borrowed (held) consist of a package structure of the
by John Smith can be displayed. All the program. Package specifications and how .

items in the library owned by another they relate to subprograms and other
installation can also be displayed. library units can be depicted in the

design. Exceptions that handle a system
Four printed reports can be generated wide scope of error conditions must be
which can be printed on 8 1/2 by 11 inch designed in the system at an early stage.0
paper. The information contained in the The mention of the program units and --

Item Maintenance screen form is the same subunits that raise and handle these
as that given in the Inventory report, exceptions can be given as comments.
This report prints all the items in the Among the generic packages used in the-
Library tool. The Disposition report high level design, only subprograms that .

produces all items currently on loan with provide an independent function as
the repective due dates. The Expiration expressed through the package
report lists items contained in the specification need be mentioned.
Library which are on loan from other Subprogram units used as subordinate

*owners. The report corresponds to the modules to such independent functions
*Owner/Holder screen form and lists all should not be identified for high level

items that the Library is holding and design. Such an approach produces the
whose dates have expired. The Overdue following effects.
Report lists the Holders who have held a. LESS INFORMATION IS CONVEYED to the
items past the item due date. The phone programmer and reviewer. While this may
number of the holder and title of the be suitable for an overview of the system
item are given. Listed below is a the user or designer would need more
summary of the Library tool functions. information closer to the actual product.
1. A display is maintained to identify This is comparable to a community
all items of the software collection. developer who formulates the layout of
An item can be given an I.D. number, the streets, houses, schools etc. in a
title, owner, volume, subject etc.. planned community. The homebuyer or

housing contractor needs to know much
2. A display to record all existing more specific information to base their

Library items on loan to borrowers. respective decisions upon. Likewise,
while it may be desirable at first to see

3. A display to show all Library items the overall layout of a system, the
of a specified owner. For example, software builder or buyer cannot afford
ma ny people or groups of people could the luxury of dealing only in highly

onitems contained in the Library. abstract terms.
b. The design is at a HIGHER LEVEL OF

4. CRT screen forms will be implemented ABSTRACTION. At such an abstract level
using a menu driven scheme to of design, full advantage is not taken of
maintain the three displays described features existent in a high order
above. Addition, deletion and language. The PDL will not contain the
modification of the data will be expressive power of the higher order

6'supported. language which can be used to express the
structure of the design.

5. Hard copy reports will be generated c. FEWER CONSTRUCTS would be needed in0
using the data from the three the Program Design Language and might
displays above, only consist of package and procedure
a. Inventory Report -Lists all specification parts. Consequently, the

items in the library, resultant design is likely to be less
b. Disposition Report - Lists all robust and flexible than would be

items on Loan, desired. Too much design work is left to
c. Expiration Report - Lists all the programmer who is already

items held belonging to other overburdened with implementation details.
Owners. d. A LESS ROBUST AND THOROUGH program

d. Overdue Report -List all overdue design language results than would be
items. desired. Powerful tools cannot be used

to check the design at the various stages
of development. For example, an Ada
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compiler would not be feasible to check must not be visible to other parts of the
such a design at the data flow level. program structure.
Traceability and visibility (two
important features at high level design) During the low level design every effort
cannot be checked without a thorough should be made to take advantage of
program design which is close to the existing routines previously developed.
implementation language. Also, operations that can be used in many .',* -*.

e. IMPLEMENTATION IS HARDER to achieve parts of the program should be identified
for the programmer when only a general as far in advance as possible to make use
outline of the system is given. The of the commonality of fan-in library
programmer is forced to analyze the modules.
situation himself to fill in the missing n az-
portions of the design. Thus the The Ada based PDL used for this
programmer becomes an analyst and systems application strives for a rigorous
designer. Even if the same person by syntactic and semantic definition of all
himself performs the three functions the Ada constructs in the Ada Language.
mentioned above, the same concepts hold Such a method can be used to state the
true. A more general high level program system requirements as well:
design language will make it harder for "(It was interesting in this context,
that person to implement. That person that through a rigorous specification of
will be forced to deal with the more requirements in Ada, one contractor •
specific design decisions later in the saved a significant amount of time in the
life cycle and coding will be started detailed design and coding phases.)" (5).
earlier. Using such a rigorous approach to

formulate the Program Design Language
Deferring the program design is not a produces the following characteristics:
vice at high levels of abstraction. To a. MORE INFORMATION IS CONVEYED if
defer detailed program design until needed. Simplicity and understanding of
implementation time by using a lax the design can be maintained if the S
methodology or a liberal PDL does not reader decides to review the
take full advantage of the features specification sections first before
existent in a higher order language nor investigation of more detailed body
the tools available to process design parts. Since the syntax of the Ada
work. Disagreement exists yet as to the language closely resembles that of the
relationship of Ada to the life cycle English language, its constructs are more
development phases. However much readable and understandable. The syntax
research has been produced to show that of the Ada design language constructs are 0
Ada can be used as a specification compatible with the syntax of the Ada
language which applies to most phases of programming language using this approach.
software development and support. For b. MANY LEVELS OF ABSTRACTION can
this reason an Ada Program Design be obtained. By drawing upon the .-
Language would have to be used even if strengths of the software engineering
this first alternative approach were concepts used by the designers of the Ada
taken. programming language, the Ada design

language inherently possesses the same
The second alternative approach, which expressive power. The constructs
has been chosen, is to place the emphasis supporting design characteristics such as
of detail on the designer to bridge the modularity, abstraction, information
gap between the design and the hiding, generics, exceptions, strong
implementation. At a low level of typing and data description are provided
design, stepwise decomposition of high in Ada. These characteristics can be
level design is carried out until coding used to express both high level
is ready to begin. Such decomposition requirements of a system and detailed
can be performed entirely in Ada since system specifications. Such features are
the high level design can also be not only desired but required in a design
specified in Ada. Information hiding can language at all phases of the life cycle.
be increased through the use of When abstraction of all the details of
decomposition and stepwise refinement, the implementation language are expressed

at a higher level the problem is theBodies for the procedures and packages of tendency to start actual coding of the

a high level design are elaborated for system while laying out the design.
the low level design. As this is done, However, if the various levels of
other packages and procedures to be used abstraction are followed throughout the
as subordinate modules emerge. Any newly design then this problem can be avoided.
declared exceptions during this process No standard rules have been adopted that
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specify when the design stops and the construct of the Ada design language need
coding begins, already exist in the Ada programming '---.

" c. MORE CONSTRUCTS available in the language.
PDL provide the designer with more It has been shown many times in the2 expressive power. This expressive power history of computer program development
can be used to specify the detailed that the more time and effort spent in S
design which is close to the the design phases during system
implementation stage if so desired. An development results in reduced time and
abundant amount of constructs of the cost of implementation, maintenance and
implementation language should be used as enhancement. This is the primary reason . ,,
the Ada based PDL at this level to why the second approach was chosen.
accomplish this. Constructs from both
the specification section and body Ada Program DesiM Lanamage Usage
section of an Ada program unit are used. The following sections describe some of S
The semantic meaning of the Ada PDL the constructs which are useful and

• constructs must have the same exact desired in an Ada Program Design Language
meaning as the Ada programming language for this SMCS Library application. The
specified by the Ada Language Reference use of an Ada based program design
Manual (LRM). language for this application can be seen

d. A ROBUST DESIGN can be produced as a tool for software design. The Ada
by subscribing to the conventions of the based PDL is used to express the
target language. A major issue to deal structure and design of the software to
with between the two alternative be programmed. Due to the advances made
approaches is the choice of using a in software engineering in general and
relaxed syntax format versus the exact the Ada programming language in
syntactical requirements of the Ada particuliar, PDL's can now express more
language. The latter was chosen for the than just local algorithmic information.
reasons discussed below. First, the Projects utilizing a PDL in this manner

• Program Design Language was envisioned as realize gains in productivity, debugging
a subset of the Ada language and and maintenance efforts. The four
therefore the exact syntax of the possibilites of using the Ada language as
language is desirable. Second, it may be an Ada PDL as portrayed graphically by
desirable at times to compile the design Grau and Comer of the Harris Corporation
segments at various stages to aid in the (5) are: the Ada PDL can be exactly Ada,
creation and correction of the evolving a subset of Ada, a subset of Ada plus
design product. Third, if and when a extentions or a superset of Ada. There
legal requirement is adopted that insists is no doubt that not every construct of
the Ada design be machine processable the Ada language is needed during design;
then this Design Language (DL) will however,an Ada PDL that incorporates more
satisfy such a requirement. Verification Ada features will be of greater use to
of the design throughout the development the Ada community. Extentions and
phases can be checked by a compiler and additions to the Ada language can be
other design tools. A design program used to supplement the Ada PDL. Although
processed in this manner can be used to some of these extentions and additions
locate interface errors, scope and are not exact duplications of features
visibility errors, and procedure and existing in the Ada language, they can be
function definitions. The effort to compatible nevertheless through the use
actually code the design is bridged with of the Ada comment. it is intended that
less difficulty when the syntax of the the Ada based PDL remain as the
design is the same as that of the commentary for the source code once the - .-.-

LI. implementation language. The system has been Implemented. It should -'"-* -

compatibility with the Ada language is be noted that the Ada design language can
obtained by the following mechanisms: Ada be used for systems which will be
syntax, Ada semantics, Ada compilability, implemented in languages other than Ada.
Ada extentions and Ada tools. The Ada based PDL is used to express the

e. EASE OF IMPLEMENTATION from the structure and design of the software to
design is produced especially if the be programmed. The PDL can be used with
target language is the same or similar other documentation as a basis for the
to the design language. Every construct Preliminary Design Review (PDR) andin valid Ada is acceptable to the design Critical Design Review (CDR). For each

language. On the conservative end of the construct of the PDL host language, Ada0
spectrum, this means that every construct the following will be discussed: first,
of the Ada language can be processed by why the construct in the Ada design .
the same tool used to process the design language is useful for this type of
language. This does not mean that every application; second, the operational
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effect of using the construct and third, data dependency.
the cost effectiveness for the use of
each construct. Scalar Types

Scalar types cannot be decomposed and
Predefined Types objects of these types can only assume
Predefined types as defined in package one value at a time, such as the type
STANDARD of the Ada Language Reference Option shown above. 'First, 'Image, and
Manual are boolean, integer, float, 'Val are some attributes available for .
character, natural, positive, priority, scalar types. Attributes are applied by '.-
string and duration. Literals can be of preceding the attribute with the
type character or numeric. Character appropriate type; for example
literals use a single quote for Option'First.
identification as shown in the example 1. Ada scalar types are utilized to • 4
below of type Option. Double quotes reference single value objects according
denote character strings such as: to some attribute.

2. Readability and ease of maintenance
Rectype.Title := "TAGGED FOR DELETION"; are affected mostly by this construct.

3. The cost savings exist in the form . -

Numeric literals can be integer or real. of increased productivity, especially in
Boolean types have two possible values the maintenance phase.
True or False. Natural types can assume S
only positive integer values. Cgposte Types. .
1. The predefined types are easily Composite types group logically related

employed due to the ease of use with parts of data. Composite data objects
package Standard. consist of multiple values. Item-rec,
2. Character type, which is a predefined shown below, is a record type which

type, is essential to have since the combines the components into an ordered - -
application deals with character set. The operators: =, 1= and := are
input and output processing. used with record types. -.
3. The cost savings can be realized by type Itemrec is

using the package STANDARD and thus record
avoiding the development cost of Item : integer;
producing a generic package for the Title : string(l..30);
predefined types. Owner : string(l..15);

Version : string(l..5);
EnumeratLon Trzes Media : string(l..10);
Enumeration types are discrete types that Subject : string(l..10);
elaborate a complete list of all values Daystored : integer;
for the data object. The operations of = Month stored: string(l..3);
/=, , <=, >, >= and := can be used with Year-stored : integer;
enumeration types. The following
statement represents a user defined
enumeration type based on the predefined
type CHARACTER in the package STANDARD. end record;

Each component of the record has an
type Option is ('A',a','U','u','V','v', object identifier which is declared of

'D','d','E','e'); type String or Integer.
i. This type is used due to the

The procedures of Add, Update, View, necessity of having record types and
Delete, Help and Exit for each screen arrays for this particuliar application.
form are selected by the user with a Records need to be defined for database
one character input which can be an upper manipulation and arrays for the extensive . 0
or lower case letter. string processing which is needed.
1. This construct type enables a 2. This allows operations on an ordered

programmer to list the legal set of set of several parcels of data pertaining
values of an ordered list for the defined to a particular type. Also the operations
type. of equal, not equal and assignment can be
2. This type enables a complete list of performed with array and record

data values to be specified components.
alphanumerically with operations which 3. Savings are realized since every •
can be performed on the objects of this component of a composite type need not be -. -
type. specifically referenced for the file
3. Enumeration types effectively reduce operations of READ and WRITE.

the cost of expressing data abstraction,
data structures, parameter interfaces and A slice is a consecutive portion of a one .
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dimensional array. Slices and procedure P (Proceed:in out semaphore);
assignments of one dimensional arrays are procedure V (Proceed:in out semaphore);
useful as shown by the example below: end ReadWriteRecord;

procedure EditField package body ReadWriteRecord is
(Astring : in out String) is procedure P(Proceed:in out semaphore)is

Que : String(l..l); begin
CR : Character :.' ASCII.CR; while (Proceed.all = false) loop

- Count : Integer := 1; --Last char pos. null; -- waiting.
Blank : String(l..30); --Longest field, end loop;

begin Proceed.all := false;
loop end P;
getline(Quel);
if Que(l) = CR then procedure V(Proceed:in out semaphore)is

Astring(Count + 1 ..Astring'last):= begin
Blank(Count + 1 ..Astring'last); Proceed.all := true;
exit; end V;

end if; end ReadWriteRecord;
end loop;

end EditField; A danger exists if there are several
processes operating concurrently. One

This Edit Field procedure accepts a process may check to see if Proceed is
variable length string and detects when set to TRUE and if so continue to set
the user has entered a carriage return. Proceed to FALSE. If another process at
If so, the remaining slice from the last the same time has checked Proceed and
character entered to the end of the found it to be TRUE, then two processes
Astring is padded with blanks, would enter a critical area at the same

time. - --

Derived Types 1. Access types are used by the Ada PDL 0
1. The derived types and subtypes are since the application may require linked

used in the PDL to enable the designer to records.
create new types from old types which 2. This will obviously affect the
have the same properties. application as described, and result in

2. This will have the effect of easier manipulation of linked records and
restricting and constraining the newly pointers.
derived types. 3. This feature is an efficient

- 3. Such derivation of types will mechanism for linked data structures in
maintain consistency of data and provide the application where dynamic processing
to the compiler a means of checking such of pointers to records is desired. Access
consistency. Since the data is strongly types should be added to this PDL in the

* typed, checks by the compiler or other future once the exact design for linked
design tools can point out flaws before records in the application is defined.
effort is expended building upon them.

Private Types A second method which guarantees mutual
1. This type is useful in an existing exclusion, at the record level, is the

PDL because the details of packages and use of tasking. If one process is
procedures developed in the application writing, then another process is not
need to be hidden from the users of these allowed to be reading or writing.
packages and procedures.

2. This feature could affect the package ReadIWriteRecord is
operation of the Library tool by allowing Value : Datatype; _
certain parts to be untouched by users of procedure Read (Info : out Datatype);

* the common utility packages. procedure Write(Info : in Data-type);
3. Limited private types will not allow end ReadWriteRecord;

any operations in other program units to
affect the data objects declared, package body Read Write Record is

Commondata : Datatype := Value;
Aces Tpm

, The method shown below makes use of procedure Read ( Info : out Datatype) is •
. semaphores to protect data at the record begin

level. This method utilizes access types. Commoncontroller.Read(Info);
end Read;

package ReadWrite-Record is
type semaphore is access boolean; procedure Write (Info ; in Data type) is
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begin 2. This region improves the resultant
Commoncontroller.Write(Info); design and implementation of the

end Write; application. Each software unit can be
identified as well as the internal and

Task Commoncontroller is external interfaces.
entry Read (Info out Data type); 3. The specification part supports the
entry Write(Info in Datatype); design characteristics of abstraction,

end Commoncontroller; dependency and traceability through its
use.

Task body CommonController is
begin with text io; use textio;

select package Screen is
accept Read (Info : out Datatype) do Video : filetype; S

Info := Common-data; Bold,Rev,Off : string(l..8); -- escape
end Read; Home : string(l..3); --sequences

or Que : string(l..l);
accept Write (Info : in Datatype) do -- Highlight
Common data := Info; Blankl string(l..9); --1 char. field.

end Write; Blank2 string(l..10); --2
end CommonController; Blank3 string(l..11); --3

Blank5 string(l..13); .
end ReadWriteRecord; BlanklO: string(l..18);

Blankl5: string(l..23);
Three observations can be made about an end Screen;
Ada design which includes tasking. Package body Screen is

1. The major packages would operate begin
independently. open(Video, Infile,"W.");

2. The designer may need to know if get(Video,Home); get(Video,Bold);
certain data types have to be guarded get'Video,Rev); get(Video,Off);
against multiple access. close(Video);

3. It is unclear if new tasks should Blankl := Rev & " & Off;
be introduced during the refinement of Blank2 := Rev & " & Off;
the high level design. Many dynamic Blank3 Rev & " & Off;
tasks spawning other tasks can disrupt Blank5 Rev & " & Off;
timing constraints making it impossible BlanklO:= Rev & " & Off;
to calculate the effects in a real time Blankl5:= Rev & " '*&Off;
system. End Screen;

Specification Parts Procedures can be encapsulated within a
The Ada specification region of a module package. The subordinate relationship . -

*or package contains information about the can be viewed from the specification part
subprogr&ms and parameters which are as shown below.
passed in and out of the package. In an
Ada based PDL there may be times in the with directio;
high level design when only the with text io, screen;
specification portion of a package will use text io, screen;

" be used. For low level design the body package ItemScreen is --subordinate
parts for both packages and procedures procedure Display_ItemScreen; --module
should contain at least the basic data end ItemScreen;

* structural outlines to be used. Data package body ItemScreen is "
types and objects can be declared in this
specification part. The example below procedure DisplayItem_Screen is - --.
shows an outline of the specification and
body parts of a package. Note the begin
importation of the package textio by the
'with "; and "use "; clauses, end DisplayItem_Screen; I
1. The specification region for program

units serves as a commented header to begin --Package Itemscreen.
each module of the application design.
Information about the interface end ItemScreen; S
parameters can be clearly stated. A
global view of the next layer of Condtiorml Constructs.
partitioned modules as well as horizontal There are two kinds of conditional
use of other packages can be clearly seen constructs, the If statement and the Case
using this construct, statement as shown below.
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by the additional control of execution
if Que(l)='y ' or Que(l)='Y' then and algorithm flow. This control makes
put("ITEM TO BE DELETED AFTER EXIT"); implementation and maintenance easier and

elsif Que(l)='n' or Que(l)='N' then more understandable. - -

put("DELETION ABORTED");
end if; Ilock Construct

A simple sequence of statements can be * "
case MenuChoice is grouped into the basic building unit

when 0 = Exit; called the BEGIN block. This BEGIN block .
when 1 => DisplayFirst Screen; is used to formalize a series of
when 2 => DisplaySecondScreen; statements in a functional structure. .i. '
when 3 => DisplayThirdScreen; The format is:
when others = null; begin •

end case; Ada statements; -.
1. The IF statement is utilized to

prevent forward jumps used by the end;
conditional GOTO construct of other 1. The BEGIN .... END block construct
languages. The CASE construct can allows grouping of statements into
reference previously defined procedures functional building blocks.
and thus prevent the use of the GOTO for 2. Control flow and data structure are
backward jumps. The CASE structure improved through its use. The executable ,
provides a set of mutually exclusive statements for each program unit are
choices for each of the predefined clearly outlined. Such a block construct
actions. is also useful for loop control where

2. Maintenance is improved by these errors occur and exception handlers are
*constructs. The programmer and designer needed while still iterating in a loop.

do not have to deal with intertwining 3. The cost of implementing the Library
code. The flow of control is more easily tool and maintaining it is reduced
followed and organized. through the ability to clearly define . ..i

3. The cost of debugging the begin. .end blocks without calling a ".. -
application for implementation or subprogram.
maintenance is reduced. Finally the cost
of maintaining, modifying and enhancing Stubs
the design is greatly minimized. This construct is very useful for

progressive stepwise decomposition of a
Repetltive Constructs software system into smaller units. For
The repetitive constructs are: example: lip

loop ... end loop; package Library_Tool is
procedure DisplayMain Menu is separate;

• while < > loop ... end loop; end LibraryTool;

for < > loop ... end loop; can later be elaborated as:

1. The loop, while loop, and for loop procedure Display MainMenu is
perform iteration of execution on a Top : string(l..80)=" MAIN MENU
sequence of statements. This repetition One : string(l..80):=" 0 - Exit e
can take place zero or more times as Sec : string(l..80):=" 1 - First Menu"; ..
specified in the <conditional expression> begin
by the designer. The loop construct put(Home); New-line(5); . -
continues execution repeatedly until some putline(Top);
condition within the statements of the put line(First);
construct causes an exit to occur. The put_line(Sec);
while (condition) loop, will iterate end Display__MainMenu;
until the boolean expression is
satisfied. The for <condition> loop, 1. The "is separate" construct assists
executes just once for each discrete in high level design and stepwise
value in the expression. Exit from any of decomposition where abstraction is
these three constructs may occur by using critical.
the "exit;" statement. 2. Dependencies of packages and |

2. The operational effects of these procedures can easily be traced in the
three constructs are: control flow, specification part by using this feature. ,' ' "%'

- algorithm control, data flow and reusable The construct supports abstraction in
data structures. both the early design and can be kept

3. Cost for the application is lessened through to the implementation phase.
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3. Costs associated with vertical and of an Ada PDL, some of which were -
horizontal tracing can be lowered with discussed above, and the supported design
this feature. The time spent in characteristics very well.
determining the scope and visibility of a
module is also lessened. Language Features and Constructs

EA Packages I Comments
Exceptions can be added to the BEGIN B Subprograms J Private
block for error handling and other C Tasks K Exceptions ..-.

exceptional conditions. An exception can D Spec/Body L Rep Specs
also be forced to occur by the use of the E Pragma M Allocations
raise statement: F Types N Generics

G Objects 0 Predefined Pkg
* raise numeric-error; H Stubs/Is Separate

An exception handler can be added at the Design
end of a "BEGIN END;" construct to Traits A B C D E F G H I J L M N 0.
negotiate an occurence of an error as Abstraction A A A A A A A A A A A
shown below: Data Flow A A A A

Control" AA At
procedure DisplayMain Menu is Alcqorithm A * A A - .t. ,

Top : string(l..80):=" MAIN MENU "; Data Desicrn AA At AA A *
One : string(l..80):=" 0 - Exit "; Data Ref. A A
Sec : string(l..80):=" 1 - First Menu"; Interfaces A A A A A A A A A A A A
Junk: string(l..l); Dependencies A A A A A A A A A A
Que : integer; Reusability A A A

begin
loop --Bad input is As shown above the Ada approach to an S
begin --accepted by Junk application, such as the SMCS Library
put_line(...); --and loop execution tool, greatly minimizes the cost and
get(Que); --continues. complexity through the use of a rigorous ".
exception Ada design language. A subset of useful-**
when data error => get(Junk); constructs in the Ada language were

put("ERROR MESSAGE"); presented to illustrate this point. As -
end; Ada is put to greater use in other area

end loop; applications more insight into the use of
end DisplayMain Menu; Ada as a design language will be

revealed.
If the user enters an error at the '
get(Que); statement then an exception Acknowleements- ..
raises a data error. The exception The author wishes to acknowledge the
handler can display an error message, reviewers of this paper: Mary Bender,
accept the incorrect entry and resume Andrea Cappellini, Mike Crawley, Frank
loop execution. Laslo, Anthony Serfarty and Thomas
1. Exception declarations and exr-ption Wheeler. The opinions expressed herein

. handlers provide localized as well as are those of the author and should not be
global handlers of error situations, construed as policy of the U.S. Army or

2. Effects of operation on the design its Center for Tactical Computer Systems - "
are; control of execution and algorithm (CENTACS).
flow, and interfacing dependency
requirements. For example, if a local B I A
procedure does not contain an exception 1. Ada Case Studies II. United States
handler for a particuliar error, then the Army Center Tactical Computer Systems
error is propagated to the exception (CENTACS), January 1984.
handler in the calling procedure.

3. Handling of error situations at the 2. Ada a & DLL. IEEE Working Group on -.

desired level of dependency avoids Ada as a PDL, July 1984.
redundant code and allows the designer
greater flexibility. 3. Ada PDL Is The Answer. (But What Was

The Ouestion?). N. Lomuto, Softech, Inc.,
May 1983.

. The matrix which follows, was taken from 4. Ada Primer. United States Army
" the IEEE Ada PDL guide(2). The matrix Center For Tactical Computer Systems

displays the relations between constructs (CENTACS), January 1984.
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and P.B. Dyson, Harris Corporation, acmue"cnts'JJ'
Melbourne, FL., March 1982. in the Center for ___-___

Tactical Computer

6. Ada Programming Design Language Systems (CENTACS) at
Survey, Final Report. Naval Avionics Fort Monmouth, New
Center, October 1982. - Jersey where he has

be employed since"- --,.,.
7.Ada Software Desigrn Methods 1952. He is responsi-
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Center For Tactical Computer Systems Ada as a DL. Mr. McGlynn received his
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Computer Science from the State
9. Case Study I1 Final Report Developed University of New York (SUNY) at Geneseo
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States Department of Defense, January
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ABSTRAC Our approach to achieving this goal revolves around two
key metrics design rules. First, each metric should

ADAMAT. an Ada Measurement and Analysis Tool, provides measure the expression of a good software quality

immediate assistance for 1) improving the quality of Ada principle. For example "When using fixed point types

software, and 2) training Ada programmiers. The under- with a DELTA that is not a power of 2. always se a

lying metrics framework is hierarchical, based on the length representation clause for SMALL that is the sane

McCall metrics frameworK, tailored to the Ada language, as the DELTA ... . Booch841. Second, each metric

and formally defined using Prolog. "he automated data Should be defined in terms of specific features of the

collection component is automatically generated using Ada language. For example, based on the above quality 4
compiler generation techniques, which include a descrip- principle concerning fixed point types, define a metric

tion technique for describing pattern matching in a to be the percentage of fixed point types with DELTA not

we:-defined language. The quality analysis component, a power of 2 and without a length representation clause

based on the formal definition of the metrics, provides for SMALL = DELTA.

users with interactive analysis of the metric data, and Since Ada was designed to support software qualityal:-ws users to step through the Ada met r ics h erarchy SneAswsdsge ospotsfwr ult """-
[o practices (Ada831, metrics can be devised that measure

to pinpoint problem areas, the expression of good quality principles in Ada source

Keywords code and that relate quality directly to features of the
Ada language. Moreover. such metrics are less dependent

software measurement on validation, and hence, immediately beneficial. These

softarl tis, sof tware maae unAlit, Prlgmetrics measure the degree to which an Ada development
toos.so~wae angemnt Aa. roogeffort is adhering to the software quality principles

Ada was designed to support. Thus, the metrics address
this question: is the programming in the spirit of
Ada "

I. INTRODUCTION Section 2 describes our approach to the desiqn of an Ada

metrics framework. Section 3 describes the Quality
In the future, software metrics will provide a basis for Analysis Assistant, a tool based on the Ada metrics
making scientific predictions of software project para- framework that provides analysis capabilities for S
meters. The time to completion of a project, the pinpointing software quality problems. The Data Collec-
additional spending required to increase product quaity tion Tool, .hich analyzes the Ada source and collects -'"-

by x amount, and the foreseeing of problems before they basic data values is described in section 4. Finally,
are out of control are examples of predictions critical the status of Ada metrics and tool development is
to the successful management of software. Metrics described in section 5.
relating cost to quality will support the isolation of
cost-drivers involved in software development and the
evaluation of cost-benefits of alternative resource

allocation strategies Dunham83]. 2. Approach to Ada Metrics

U'nfortunately, most of these kinds of benefits of We applied a formal top-down approach, illustrated in
software quality metrics are contingent upon validat.on. fiqure 1, to develop the Ada software metrics framework.
That is, one must have a high degree of confidence that In.tially, each element of the McCall metrics framework
the metrics actually measure the software character- was reviewed with respect to users' needs, adherence to
istcis that affect software users and developers. Vali- metric design rules, applicability to Ada, automation .
dation requires gathering sufficent data to demonstrate potential, cost-effectiveness of implementation, and
solid relationships between measured quality and actual impact on the data base size. Then the resultant Ada .- . "
quality. Metrics researchers are in the early stages of metrics were defined in terms of features of the Ada .
gathering this needed data. Software quality metrics langauge, associated with software quality principles, t " -
have been applied on only a handful of projects; and formally specified in first-order logic, using the
metrics specifically for Ada have been introduced just logic programming language Prolog. The formal defini S
recently. tion ensured a complete, consistent definition of the 7.T

metrics before automation, permitting a balanced
Our approach to developing Ada metrics is to develop treatment of metrics design rules against automation
metrics and metric tools that provide substantial concerns. The executable specification allowed us to
benefits even in initial applications, before valida- experiment with the behavior of the metrics before
tion. Program managers have been reluctant to introduce automation of the data collection. '.

software quality metrics into their projects because of
concerns about the cost-to-benefit ratio of applying Section 2.1 provides an overview of the metrics
metrics not yet validated. Metrics and metric tools framework that forms the basis for the Ada metrics
with immediate benefits can get us over the :nitial framework. Section 2.2 describes investigations that •
cost/benefit hump, leading to the widespread application established the foundation for Ada metrics development.
of metrics. and ultimately to a set of validated Section 2.3 illustrates some of the metrics that
metrics, resulted from our development approach. The formal " m.

def inition and a tool supporting understanding and .-..--... *

Our basic design goal is to develop a software quality modification of the formal definition are described in ',.- ,
metrics framework that provides the user with sufficient section 2.4.
details to ident ify the cause of indicated quality ".?. .
problems. We believe that the assessment of low quality
must lead to the identification of the cause of the " *e..a x.. 'i
problem. thereby enhancing the ability of managers and , T '
engineers to maxe decisions affecting software qual;ty.

188 Annual National Conference on Ada Technology 1985 -

% %.%.

e___- !. el
w.~r r- .!-i.-



6

00

S;..-' -'5 2

*o . . . %

o-.d-.. ..>.
-n .,,.r%. %.

Figure 1: Approach to Ada Metrics
" 1.

*2.1 Base'.:no Metrics Frane'wors .us WC!WI~d0

The software quality frameworK developed by McCall and
extnded by RADC [Bowen83] and DRC 'San AntonioaS' forms
the basis for our metrics framework. The McCall
framework results from a thorough analysis of software cmnha---n -.. _
quality concepts and terminol cgy and incorporates
software characteristics Important to users. developers,
testers, and maintainers of Ada software. Quantitative
measurement of software Iuality has been conducted based
on this framework :San Antonio83L u1muauy.

The McCa. framework is hierarchically structured. The .... .. .-. -

various levels of the hierarchy are described below, and
the rinterconection of different levels *s illustrated infiguore 2
Factors are management-iriented terms, such as O ms RON

i. na IDa!na IIty. testability, reiIabil:ty, and reus-
ab it7, that represent mportan: software quaities. Figure 2: Metrics Framework Hierarchy
Fa'ch factor is ,composed of one or more criteria.

Criter~a are software-orilented terms, such as
_-mrpcty. generality. self-desnriptiveness, and Our investigation of metric users focused on the needs

modularity, that relate sofuware characteristics to of managers in the software areas of acquisition,
factors. Each criterion may support more than one development, and training.
facrnd .s composed Af one r more metrics.

Acquisition managers are interested in developing
Metri-s are olective measures cf software character- objective software quality requirements and in measuring

.Eah metr:: may support more than one criter- software for compliance with these requirements. Thus,

ion, and may be subdivided Into metric-elements or be the acquisition manager needs metrics that assess the

a ated directly from one or more data items. overall quality of the software product and that
indicate the difficulty of testing, porting, and

Da a tems r... p ..... ve softw .are easures. directly maintain ing the software product. He requires metrics

-e"ve-d from the software source. Each data item may that provide the basis for an acceptance criterion ot

" support 7cre than ;ne metric Dr metr:-element. the software product, and that form the foundation for
the sof'ware science of predicting the :ost of
instaling the software, the lost of ma.ntaining the

2.2 Needs of Metrczs -sers software. ard the expected error rate when "sing the
product. !V".

To establish a solid foundation for designing the
metr:cs framework, we conducted an investigation of the Development ma-agers are interes'ed in 'rac-ing Iuality

needs of metrics users. The investigation allowed us to i rng- .are .e.e cpment. 7ncs, the development

pstab:ish a set if metrics design guidelines, described -a-ager cequires met rI-s 7ma' pr iv.de -nstant'

in 3otion 2.2.1. that nelp to ensure that users' needs assessen - the qualtV, 'hat p.oro'e early dete.. .n

d re addressed. The investigation also allowed us to of qual t, problerms ar d had quaz:ty trenJs. ha,

fir- p our .nderstard'- of the relationship between pinpoint areas ..... S.. .... . . -here I' -it"
-atIards ard metrics, described in sectior 2.2.2, and .xprovemen" s css.be. and that so:ate Ir)ups or

" -. stinguish several classes of metrics, described in 1nd.,¢idua is se o rvt maoie ms autg a negative

* on 2.2.3. impa t in ;.a . ' y.
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Triin aner are interested in determining which tnereny precluding the establishment o f corresponding

in iv u S an ha e tresreuire tr i g software standards. However, metrics provide a means of % % 0.
at anguage features require trainng measuring compliance to a quality principle in theand in evaluating the effectiveness of training in both absence of such evidence. Furthermore metrics based on Q

areas. Thus, the training manager needs metrics that 41
provide information concerning the use of features of quality principles can be used to gather the data

the language, that pinpoint 7onstructs of the .argage necessary to determine meaningful thresholds.

being abused, misused, or ignored, and that .si.ate
groups or individuals that improperly use aspects of the 2.3 assoMti
language. 2.2.3 Classes of Metrics

Our analysis of the metrics in the baseline framework
resulted in distinguishing three classes of metrics.

2.2.1. Metric Desig Guidelines
Absolute metrics are measurements of the absolute amount

Although the metric design rules of relating metrics to of asoTvare characteristic. Many of the traditional
quality principles and to features of the Ada language metrics fall in this category. Examples are: 1) the
provided the greatest impact on the definition of our number of lines of code, 2) number of operators, and
Ada metrcs framework, the following additional metric 3) the number of branches. Absolute metrics support
design guidelines were also important. comparisons between problem spaces, comparisons of "

interest to acquisition managers. The value of most
When possible, define a metric to be collectible on a absolute metrics is calculated using the rule, I / (N
program, module, or construct basis. For example, the 1), where N is the number of occurrences of the language
qality of commenting should be measureable for all feature.

modlesandallconstructs, for a module over all
constructs, and for a construct over all modules. Relative metrics are metrics that measure actual quality
Metrics that are defined for individual modules or t to an ideal or potential quality. These
constructs support pinpointing a quality problem to the metrics address quality within a problem space or
area of the source code where the problem occurs, problem solution. Examples are: i) the percentage of

non-complex boolean expressions, 2) the percentage of
When de.ining a metric, consider the consistency of the composite types which are private types, and 3) the per-
-cits of the data items. For example, when formulating centage of globals referenced by a subprogram that are

a metric for the use of boolean expressions, the ratio declared in the body of the package containing the
of the number of -omplicated boolean expressions to the subprogram. Relative metrics support comparisons within .
nunber of boolean expressions has better unit problem spaces and solutions, comparisons of interest to
consistency than the ratio of the number of complicated development managers and training managers. The value %
boolean expressions to the number of executable of most relative metrics is calculated using the rule, A
statements. / P, where A is the actual number of occurrences and P

is the potential number of occurrences of a language
All metrics in the framework should be represented by a feature.
value between , and i, where I represents the highest . m e na n
uai ty. Moreover, any metric directly calculated from Language-use metrics measure how and how many language

a Jata item should be monotonic with respect to that f-eatures are useT. Examples are: 1) the number of
ia -erm. For exarple, the metric represent:ng the generic packages, 2) the number of fixed point types,

- c.,nter If branches should be normalized, such that an and 3) the percentage of types used that are not
:-:rease .n the "umber of branches results in lowering predefined. Language-use metrics are primarily of
.'ch trc value closer to zero. Metrics which are interest to training managers and may be either relative
strt~v mnotonic with respect to a data item are more or absolute metrics.
Jes~rjDt e -he- 0.oary metri:s, since they provide better ' -L
rtn:i..t;on, 3. i.,wng users to isolate areas for
.7 p.z~ 2 , qu l t' n -

2.3 Definition of Ada Metrics

2.2.2 Relat.on of Standards to Metrics The definition of our Ada metrics framework involved a

review of each metric outlined in RADC's Guidebook for
Cur desire to associate metrics to software quality Software Quality Measurement [Bowen83]. To illustrate
principles c'aused us to examine the relationship of how our metric design guidelines and the unique features
software standards and software metrics . f the Ada language affected the definition of our "

resultant Ada metrics, our definitions of several
Most software standards, such as 1 ) never use GOTOs. metrics, associated with the criterion simplicity, are
2) declarations must be commented, 3) two statements discussed below.
must not appear on the same physical line, and %
4) statements within a decis:on block must be indented, Some Guidebook metrics apply to Ada without any need for
correspond to metrics that have fixed thresholds, modification. One such example is the maximium level of
Standards tools can be viewed as calculators of binary nesting of branch constructs within a module. The value
metr.c.s. where the values 0 or 1 indicate noncompliance of our branch nesting level metric is calculated by the
Dr -ompliance. respectively, rule, I / (N - 1). where N is the maximium nesting level

of branch constructs in the module.
Lrher sof.ware standards are formed by combining a
,uality prin:iple with empirical evidence. For example, An example of modifying a Guidebook metric to satisfy 0
the software standard, "a max:miun of 10 branches are units consistency is our metric for measuring the number
allowed ~c a subprogram.* combines the quality of complex boolean expressions. The value of our
pr.rzip.e, "avoid the excessive usage of branching complex boolean expression metric is calulated using -he
"orstr-,cts 1. a subprogram," with the empirical rule, N / (C - N). where 14 is the number of non-complex
evidente, *subprograms containing more than 10 branch boolean expressions in the module, and C is the number
corstr.cts stow extecsive lose in quality" (Walsh79]. of complex boolean expressions in the module. The
Again, complareto ttese standards can be measured; Guidebook proposes the rule, C / S, where C is the
however, such validation will not differentiate between number of complex boolean expressions in the module, a"
a nodule containing -' branches and a module containing S is the number of executable statements in the module.
2. These standards measure 'he number of instances
where extensive quality is lost due to branching. A Cur metric for measuring module flow top to bottom
tetric - n neascres 'he amout of branching better differs from the Guidebook's proposed metric. because of
7cfle:ts 'he jia.i-'y ,f 'he software, with respect to our desire to define strictly monoton.c metrics when .".
"oftwa-e factors sucn as testaotility and maintain- possible. The value of our top to bottom flow metri- .s
ao-.;ty :alculated using the rule, 1 (N - I). where N Is the

tumber of branch constructs which cause backwards .. '%
Prese-t ly. 'tere is ins.ff!*;ert e'pirical evidence -a branching in the module. The Gu;debook proposes a

.assocate .xe. tI neshods wth n..st ual it. prc iples, b inary metric hndicatnng the existence or absence. o .f
bacewards branching in the module.
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Some Guidebook metrics always have the value i for Ada. to this goa. are Dest li stratd by example. Cons.der
For example. the metric Ihat meas -es 'he number of 'he metri. "Aiount of fixed point types with a lengtn
odified loop indicies with a. .dule,... guaranteed to clause for al:l" which we -nose .t measure, obe-ause

modixee loopt indicie within., a mcdt els s guarntee toe
al.ways nave a value of I for Ada, s: e the :op indices f'be t aas tn a :eat'/ clate forpsme:s ard
* f a for loop cannot be modified in Ada. 7his s eb]et to vartz . h ons in accrasy betaeet ompilers an dhe

wn:cn :s based on the quality pri -:p e, "ca j:dlces macnines. The metric is onv:ousiy a furction of he
at are modified decrease s:,p:;-:'", 'o7-i .o.-es to ntm er )f f:xed po:ct types ni a module and toe ic-mber

San overall measure of absolte ua t t es not if e, rth :auses for smal: ill a module. However. tre

aid in measuring -he proper se of Ada. However. a new 1,r of het 0 Tggreqate se va e ontojs a
for a set of modules vs not OBVIOUS. Poss:b.e

-uality pr~nc:pie. oased ,on toe previous n1e. that -and~da'es are: average In':' FI : 
I
, or sun:,

supports measuring the proper se f Ada is, ")oos that .. .. ) sm a :. F''. i for 
t
he . .m dule, w er L is

are guaranteed not to nave modified :nd ,es 3re simpler *ne Iumnen enq'h clauses for smal And F "te number
than those tha arne' no,."frsal n e:br '"

than those that are nor." of fixed poit types. The formal definition -ust

A metric based on this princ:ple is, (T - L*/T, where L specify one cI "nese two choices.
is the number of loops that should be written as for In
loops, and T is the total number of loops. The precise In most cases, for metrics of this kind, we selected the

meaning of "should be written as for loops" is beyond first definition, because the value of the metric for a

the scope of this paper. Nevertheless, the example set of modules is comprised of values of the same metric
illustrates how the tailoring of metrics to Ada :an for the individual modules in the set (a property not

increase their usefulness for measuring Ada software, shared by the second definition). This property sup-
ports our goal of decomposing metrics into their

Another example pertains to the mix of variables in a constituents in an _nderstandable manner. r.

module. The Guidebook states, "From a simplicity point
of view, local variables are far better than global In spite of the selection oh the first definition as the

variables." We defined two merics based on var!ations definition of this metric, it may be advantageous for

of this quality principle. The first metric is defined the user to view components of the second definition. e
by the rule (L / V), where L is the number of unique For example, the value, sumi) (Lli)), ight be useful,

local variables referenced by the module, and V is the even though this quantity is 'ever used in another

number of unique variables referenced by the module, metric. Consequently, we define '_ for a set of modules

This metric is identical to the metric proposed in the as a sum.

Guidebook. The second metric is defined by the rule (GL"
G )1, where GL is the number of unique global variables Aggregation of basic counts, such as the number of

referenced by the module that are declared in the body length clauses for small, is usually a sum, and

of the package containing the module, and G is the aggregation of higher metrics Is usually an average.

number of unique global variables referenced by the Although these are the normal form of aggregaton, our

module. This second metric shows how special features goal was a metrics-definition language that allows

of the Ada language allow quality distinctions not sufficient expressive power to express metr1cs that do

possible in other languages. not follow this pattern, as well as allowing expression
of basic counts that are sums of other basic counts, and

The Guidebook proposes measuring if the structure of the expression of weighted averages.

code reflects a top-down design, based on the quality
principle, "each level of the tree structure should
reflect a lower level of detail." We made this principle
specific to Ada as follows: "if package P WITHs 2.4.1 Metrics-Definition Languag
packages 1, B2 ... , Bn, then no package Bi should WITH
a package B]." Our desire for monotonic metrics caused We chose the logic programming language Prolog as the
is to count the number of packages WITHed by package P basis for the metrics-definition language. The metrics-
that violate the pr:nciple. The top-down metric for a definition language is expressed in Prolog notation,
package P which WITHs BI, B2 ... , Bn is defined by the using a set of predicates designed to define metrics.

rule iI -, ' W)1, where N is the number of packages The use of Prolog notation allows us to capitalize on
wiTHed by package P that satisfy the property that Bi :s the Prolog interpreter for the easy development of a set
W:THed by B:, and W is the number of packages WITHed by of automated support functions, collectively called the
the package P. Since this metri:c depends only on the Framework Assistant, This section describes how the
package structure of the Ada source :ode, the metric can specialized predicates for defining metrics satisfy
be applied early in the coding cycle, goals one and two, and the subsequent section describes

how the Framework Assistant supports goals two and
three.

2.4 Formal Definition Each metric is defined as a function using two predi-
- - cates. "vdef" for defining the domains of the function.

The development of a formal def:nition for the metrics and "value" for defining the calculation. "vdef" is an

was approached by building a metrics-definition language n-ary predicate, where the first argument is the name of

that supports a set of predetermined goals. the metric, and the second through nth arguments are
sets. For example, consider the definition of the

The metrics-definition language was molded by the three metric, "Amount of fixed types with a length clause forgohes esrilanled by tsmall." The name of this metric is "aftwlcs". and the
goals described below. domain definition is:

Ii The formal definition must explicitly describe a
sufficiently wide variety of operational views of the vdef.aftwlcsmodules,
metrics to allow the user to dentify specific
quality-related problems with the software. Kinds of
views include decomposing metric valuesicatn that "aftwlcs" is defied for the set of
constituent parts, views of metric values by module or .diles. Each set is defined using the predicate:
for a set of modules, and views of metric values by mo

construct or for a set of constructs.

2) The formal definition must provide an unambiguous setdefinition(,setname ,.iist_of_elements).

specification of the metrics that is easy to under-
stand and modify. The formal definition is the
specification for implementing the automated metrics There are three predefined sets currently in the
data collection.

3 ) The formal definition must be executable to allow "modules", the set of modules in the analyzed system.

experimentation with the behaviour of the framework :s defined by the Data Collection Tool; r-

before implementation of 'he automated data collec- "constructs", the set of language cnnstructs counted
,on. by ADAMAT, is defined as part of the formal

definition: "'"'"[ ''
The first goal deserves further clarification, since it "-oninio°
iS central to the ADAMAT design. The issues pertinent
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"constructs oeeding comments", "cc set r .u;3W In addit ion to one f.an. Jei. i",a far eart metr:c,
constructs tar wn:5 comme-ts are : si: teu. :et::e the metrics-def,nit.an .a'"4ace pr-ioes !,r assoc-;ating

as part af "he-ral Jet noto-a!t. several other Kinds af .n-rmat f 
a

O O', ear:n metric. ""V.
Figure 3 snows a campiete ,let.O.- 'O' at the metric

he "s,- Iet i7i, no" pricate is -oc as:s 0 r "lioerals". Eas t of the pred:ates aviinab.e for
jr-cid;t; oro apart o Je:te ss et. Oeftning a metr:c are }escr:oei ne:lic * -

The domain definitions are used to check that a query on m name The "7y name" ;:edicate ''r.dures the metric ,
the value of a metric is a legal query. iThlier and a longer, more Jes~rpt.ve name. The

prdct, wee te des-r~pt:ve oame" :s asci for intertar;.4 'a the user. V .-

he pred icate "value" is an n-ary pred icate , where the n. 
.f r. ., t- -

first argument is the metric name, the second through descri:on The "Jes-r:pt:sn" predi:ate provides a "-,"

In-ith are formal arguments, and the nth is the result e eta;.cd iglisn :es-+rpt - n one metr :.
at the calculation. The calculation is specified in two at ae h rone pd"e.w n
parts, an expression for the calculation, and a part for ratonae The "rationale" pred i,-ae a"ows the
describing the values in the expression in terms af Jefier to document what aspe- af sof"ware ;uality is t
oter metrics. The "value" predicate for "aftwlcs" is measured by the metric, hcw tne me~ri_ measures this
specified by the following rule: aspert, and why the part:_.ar .orm af --rma zation

.as hoser. The ratioca.e .s made ava aD le "o "he
,ser. " " •."

ralue(aftwlcs,modules,Val) : r . i 1 r"emeo

f r allmodule,modules), -etnod cf im:pro veerot The "me-td ,f ipr verert
"

value(noc,module,leogohr :ause f)r _smallN), predifcate ass -aaets a iescr.ot ,r sf -ha ges - at -an

vaiuetnocmodulefixed_point type.t), be made t,) toe s-atare ,a 7pr've tne a :re ; ' s

a v e . .e ( ( N / T ) ) . m e t r .

Ada related improvemeno The "Ada rea'e" mpr-erre t
toine 4 :ah'a:as the expression, and lines 1-3 descr-ba prediate spe TLs Ada lan;aqe ns" -s a an • h
he constituent vanues. Toe "for at." operator on line be used to :mprve the metnir s tre.
m,-s "e regarded ;nru t ve.y as a subscripting

r . Relaton to other metrirs Toe "re:ated !o "'-er me"-
7f~" rdi ti3Su mert s t.'sely 't a e er.-s.
e.g., metrics that may be cfluen .. d y sw.are

fto 1ilee. S e) -hanges made to :mprove oh:s 7e-r.c.
,q S ,-11 ,j S (:)) . .... ;(S 111) .... v'S (ln ' . Default The 'default" predicate allows the sper:fi-

rat ion a default val.i for each data .tem. Defaul"
"tar all" is either the "value" predicates values for data tems help control -e volume o f data

r n. "ra.'s" hat ollw, produced by the Data Collection Tool. 1t a ol'erted
data item has the corresponding default value, "he

-ne .'ie" predi-are on Iine 2 stares "ha" tJs" he Data Collect ion Tool does it emit that data item.
he me "no" I"Narber -t ,cr-urren-es of a the Quality Analyis Assis ant assumes the nores

r__ - !.r a ;:yen "tcd,:e" aci toe ranson. pondiog default value for any data item not emitted.
: ase r ina:.". Finally. "ce "average" pred Note that default values for Jata ".ems are nmrnton. . .

* ate s a - mon.-g operator -nat computes the averaie For example, consider "he ,cruer of floatiog pon "
.."he et : a: . is N TI detined ty l.es .-3. Tw "ypes in a test processing pro . ..rar.

'""Cr. m :o.ag n perators are av'a:iable. "s mmat ;,n" 1d-

2.4.2 Framework Ass:s-an"
The delr':t (an a "t+wlrs" I s a agagregate of "he art "" "--" "
average,:r Nt T':n . The alterr:ve aggrega" :on The Framework Assistant is a sollection At .tities
dlscussed . sect ie 2.4 : .e. , isuml N, ) *sn,; written in Prolog that s-pport the onuerstanding and
7, I, may be expressed as follows: mod:fication of the formal definition. The utilities "

may be div ded into th ree -atagor:es: interactive
quer es, automat: -r o-rue - a- :,n, and automa" r vat ida -

-ca ,uel' ,r ,)d : s, le gth -lause for sma:. NI, , on.

v,I no,:,! rr !s..+ xed "p e .Tn y,,' 7' :nteract:ve Queries

The Framework Ass~star
,  

omb:os the .nteractive
A-;reqa-:on f -he va:ues if+ " -,;"ver Todules as a s 'M querying capabilities of Prol.ag with specialized predi-

Agrgt th a st'o"aendlsa .a'es for manipuat ing strJt ures :n the met ri cs-
tar "lenth -lause for small" and for "ftedpont ,ype" definition language. This romination provides capa-
is deterrei to the -ef:tro:on of -.oc". bil:ties to access and nanipulate the formal definition

and results in a very tlex~ble assistant. The user is
Not e trat the jet ...... ats for "a, twl %" are hot roast, n r.str.rted to "he eryg operators developed "na'vry

Sc- e ""e" are unPe f -""d .or . . Two predi-ates are specificalIy for the Framework Assistant. Essentially,
pr.ic td tr cnda :'gd sng-ular .es. Toe pre. i ate any lnformalino that can be derived from the framewore
"rf to "'.se" is a 4 ary prerica'-: the trst argotte"t def:nition is available to the -ser.

a.. - - .... ' e sa-od is the value at the res .it if
1ir 'odtan ; s true. ' he third is the ,alue atth The user of "he Framework Assistant is assumed to have a

aSes." .t "'to randit's' :5 f alse, and toe fourth is the basi : understanding of Prolog. This is not a problem,
vs.h, f te rest.". A tore robust deinihtion af since the Framework Assistant is used internally by a
,.'.rs" ;s small number of metrics developers to modify the

framework. i Yva ~e ,a , s mod u 1 s ,Val I -" ." - "' '

v at . mo dJ lm sV .- s A fu ll descr ip t ion oa the que r ies ava ilab le in t he . '

', .e ; ,:module, en th la ,se f r s a~l N , Framewo rk Ass istant is beyond the scope o f this paper,v'aue'no ,.modu~e,fixed_poin!t ype,T )$, but we can illustrate by example some o f the capa-

v. elnoc mldsleT xNT oint typeTI. bilities. A user can ask directly about any of the
averae 'V:. predicates in the metrics-definition language. For

example, the query

The "suco 'Oar" predi-a'e prav:des f)r rpf;n:og "Oe set
of .a yaes to :ch the expressinn part applies. rationale(literals,X).
"such tat" .s a Iary predicate w;th a :ondition 'or , ,

its ,, e ........ evokes the rationale for the netric "literals", i.e..
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XS

The fewer number of literals used in a module', me .:ri-r is' hltrl the c-,re code.
the mo re breat h of function for that module.'
Expaning the capabilities of a module that', '~. -ls r:Snosed! c tte tuirer of literals used
'contains literals (eq.. increasing array sizes', 'he Td t. l.>er als n c..,de 1 neger :i t era ls 'eq. . " 3.2 , rea.
'or increasing precision) requires modification', . c : -I. .. rrerat.ori c ral 'eq., 'red''.

'of all relevant literal usages.] rSa .ea s .e- . a'cd strinqs eq.. . .. ' '

Sy asking .Ir s 'q ; -.

df r,.er of integer terls,-

ddfmtr:_jAr..metcostructs(. sO '$ rc.ner 2real :iterals
e henier of euerat ion nrs. , . -

-here :nat t is t th n t7ter of character literals
eusr ca.re L s toe trner of string iterals

r cts as te secon -argumenh fThe fewer nrur of literals used i. a module the more bre'h.
Tfe .o.e breat . f t mule. Ea pdi g toe ca abi i es of.a

e t r i n . comrents, mod-e that cortans Iteral (eg., increasing array sizes,
oer" modules, or incrm-rq preisionn requires modification of all relevan

- hero. usa.ges.

-h ot are na be improved by hyspe-' .h each ase of a.n asking i:teraIe t hhe module to deter.re i replacement of
toe literal by a ,onstant. a't: ,ste, or parameter is

veectettnsetrArc dDe cor ., Ada.providestseo.ra: features tha. alo.a..... usagero. n ,

-~~~~~~~~ . 1e e- m.the F:RS.eanm:e t alo--Lerton ! er- "-

heras ft.t: d LS attr ibtes are appro riate

"essr -aosfor :teraes asci-ated with the "0' and- ',

aonr a o'i neo descrph'onst, e.,.
sote cases, a literal is appropriately replaced by a

pata hter with default; thEp inreasing the geecality

a~~~ , o° -. .•rb

Mo r o r '' 1, ' the ,rocul nhost1 scresi-q the coplnt othe

Des- : interface fur the simple
eo,' 7m e ont - .oes tn a nodu e', case e

t .r aeanere Diandu lenes' :n m asesa l soterals should be repaced by Ada corstant.s.
r fs ara not .oun"ed.'

d :a!-- eesra operator is mva lable. Figure 3: Descript eion of Literals
a: iraa cepIs one argument, a metro identifier.

an A a Ons a 5 rett printed descripti in of t he me t r c

.a .o .

Au'-olra' ot h .- .

he 'ramewor Ass'z s' ant automatically provides a values for the calculations i n the framework areP
p'e. e set of documentation for the framework. computed by directly executing the framework definition

generation of the framewor documentation with the Prolog interpreter. Direct execution means
o pp'r, s ,ain'ectance of .p-'o-date documentat on. The that metrics developers can determine the behavior of

command is te most important command new metrics Immediately after the new metrics are
e t in g tt e f w v defined. Several predicates are needed to support"''

"e'- -,r th a ,etr: dentier, produces a complete direct execution of the framework definition: rules'
--n of 'he metr ,- .eg. te command 'd ca-ument that check if a requested value is a legal request, and

a. '' . prodes tne o rp:ete esr ption check if a requested value is the result of an average.
A:.L'era.s. sh tn f*re 3 summation, or maximum operator, a basic data item, or aIdefault value. The 'collect.ed' predicate indicates
ahe 't-rs ca- be do i.en'ed ic various orders, whether a data item is collected by the Data Collection
le -d.%' 7n", re par! L ar do- mect nig c:itciand. The Tool. If a data item is collected, but no data value

a "o-mext al rnv s 'ut •t he -e-r:cs in for a given data item and domain is found, then the data
T rder they appear he atework definion. The item defaults to the default value. if a data iten is
ccnoac'f ' et framewo"t out the me rics in not collected by the Data Collection Tool, then values
the cner of a tepth-i-s' '-ace-sal of the f raame-work. may be supplied by the user. This approach supports
The comma n-document sor'ed", ou'pus toe metrics in incremental development of the framework definition and
l e-n m eraphical order, Data Collection Tool.

. tor zo : d ta ton Our goal for the user interlare as to pprov de
convenient accoess toe all o kf the values that can be

The-"val.dhon'he command rnecks !h. each met"ric as a computed from the data uems n accordane with 'e
I tL defintio en f" predi.ate, a calculation formal definition. We felt this was essential for
'''-aloe' prediatea, and a description ('description' pinpointing software quality problems.
Th re t.and that every used metric i s defined.

The value for all elements of the domain of each netr -

can be obtained by using the "ask' zommand, which is of
e eethe form.

K3 . diLa A. n .alysis Assistant aseetricid(arq .Dargoles

The Qua ity Analysis Assistant is a collection of where arql 'hrough argo are predefined o r usr-defined
1ut o t es,'a i t ten n Proog, that provides the user sets. aso returns the value wf the metor e for the

w:es analysis capabilites to pinpoint software quality s t he sets may be denoted explcity
p rob:dems. The analysis capabilities can be divided no icy is' .tq Ihe element s or referred to by tame. The - '-
two groups, the computation of factor, criteria, and 'set defnh i;on .mmand aelws users teo defi ne new.
metric values; and a user interface providing access to se

t
s. _ o, taer rrands allow isers to obtain a list of-

the factor, cr:neria, mtetric, and data item values that values ct a nehr: - ' tine elements of a domain, and a
usrs need toiesolate problems. sist of .a. ws less that a threshold.

p. 5 °.
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l's 6 ". ". [

Repeated typing of metric ids and argument lists, as offma. •
required by the "ask" command, is inconvenient. M.Ain . .
Moreover, the user usually wants to know the constituent is
values that comprise a requested metric value, so CAl M,., x.s m %tH I TIEiiIaIs , nEt Wi1 l£
quality problems can be isolated. The concepts of a aie( 10 I I W"ILAT IGO

stored "view" and a "breakdown" of a view increase the M affi al,', a nt s - uins - oH I* I s WiIl.W I

ease with which quality problems can be isolated. IT isT .. a W W IT MY ("SHIN @mts WIH

a,,0 w'tr1iems lalH .. io tsa iAII% I le aISMIAlION A * ImI.

A view is a metric id associated with a set of fi*I 0 l .ii t Ian WmIAIION aU I CIaTS Is
arguments, i.e., "metric id(argl,....argn)". A view may ]Astmoln (antsm WAsTWma MFAm.

be stored by using the "set view" command, 'set view ',,1..Mill -. , 0 ill m1ts uu. sA FRO" - . -

- (metric id(argl,....argn))". The current view is shown
by asking "currentview". Figure 4: Reuseability

Once the current view is established, the user can
obtain a break-down of the view by using the "breakdown"
command. The response to a breakdown command is a
metric value for the current view and metric values for S
the metrics at the next level down in the metrics mIaIN OF 61aRAI ITY IEtSi 0 S/ .6
hierarchy. Figure 4 shows the response to a breakdown IS
command for the view "reusabi : ity(modules) ". The break- -.SSWIXIUIAAL (IHAIlITY IMIKAS) -0 2' OHEHALII WITH ISIl? 10 lullsf

down command creates new views of the metrics that enter STlMKT

into the calculation of the value for the current view: IJ llNK UHNMIT ,p[ilTIES, u0 s qi UMMITWITHHhI10 (IliuLn hs case, generality(modules), independence(mod-
u4esl. etc. The argument lists of the new views are
derived automatically from the argument list of the Figure 5: Generality
current view based on the metrics -alculation.

7he breakdown command allows users to decompose a o
gu~al-ty deficiency into more specific deficiencies. in SINTIC IIAURITHUI '1OMx il 0
figure 4, poor simplicity and poor self-descriptiveness is
are shown as ma'or detractors from reusability. II MUDAFS, 0 I ITI ISI SI""IS

PA JIIItTs I S 0 IH PHASHIiS IN MIHItS

A user _an further decompose a deficiency by using the
"downin " command to select the nth view and go further
do.n into the metrics hierarchy. For example, "down(5)" StrctralGeerait
would oreak-down the values contributing to the value Figure 6: Structural-Generality
for simplicity. :n addition to producing a break-down,
-he "down" command sets the current view to the selected
view: n this case, "s.mplicity(modules)".

By using the "down" command to decompose metrics values
and the "set view" command to narrow or widen the ,
oma i ns inder exploration, a user can conveniently
*solate quality deficiencies to specific software char-
acterist:cs (as expressed by metrics or data items) of a ins,'"e

oarti:coar module or set of modules. Complementary rem n "
commands facil:nate exploring other quality deficiencies 9t- "
:n the same run of the Quality Analysis Assistant.
- cluding the "up(n)" command, for returning to the nth
prevous view, and the "history" command, for listing a
history of the views.....

A s C o t F O H J JK L I MN

3.1 s of Quality Analysis Assistant

The following scenario illustrates how the interactive
analysis capabilities of the Quality Analysis Assistant Figure 7: Literals Metrics for the Modules
can help a user pinpoint quality problems in a software
product. This scenario also shows the benefit of a
hierarchical framework structure and the importance of
defining met: ics in terms of both individual modules and
sets of modules. RIAMUi1 Of.." "

I lERAKS 11611 0.11 IIT1[RMS IN TaE "ME
Suppose that a development manager, responsible for the Is
implementation of a software library, is interested in
the reusability of the software be:ng developed. ----IINTIFCR IITS6) ' S R Of RE lIIRFRALS 1 lE NMIa
:ntially, the manager can view reusability with respect I N ll ' 0 NIESAG REM LIINEf iIE HIC". "
to ail modules in the library. Such a view, illustrated I l (II I 0 USROF [ERISNRAIIONIIIERAIS IN IE* t l IIN
n fIgure 4, indicatesthat rus. a ity is negatively ,HF1 0CIALIRIIRAh IN TIE m10el
*ffected by the generality, simplicity, and self- STRING I I15((,) 0 PWR of SIIIG t IlllALS IN THE I
uescr ptveness of the modules. Clearly, a deeper SRI
analysis of each of these three criteria is warranted.
Assue -hat the generality of the modules is the first Figure 8: Literals
r:teria sele-ted for further examination. The view of

genera1 ity. f igure 5, indicates that the structural
;enera':ty of the modules :s low. A breakdown of the
str - ura. ge~erali°y of the modules, fiqure 6,
ind:cates -ha" lcie Ase of literals is contributing Now, 'his informat:on can be combined with facts not in
negatively. A Iraph o I he literals metric for each 'he frameworK, such as the prolect is in a new phase of
nodule. figure ndicates n"at module G has the worst software life-cycle or tne personne, is different, so
.se If :'erals. Further nvestigation, figure 3, "hat a decision can be reached about the actual cause of
rcvas car T, -.-e i-or ains severa. integer literals. toe problem. In this case, the development manager
"Nx' "ce feul ,pment manager m:ht wish to detxrmine if -ri-:uded that the cause of the rapid rise in literal

.nx .:e-i• ,sase s a recent prob em. A graph of the ;sage was related to an influx of new hires. Actions
rer ..tr.S .- 7 o.de G with respect to were then tacen to locate and train the new hires

-e. .' i .. es 'a' 'ne n .mber )of .n.eger respcns:ble for the literals problem.
.... ... - '9 -....... r. n snarp. y. Moreover, a
rpt " er t .tra.s .- all modules w.t Movement back p the franewore hierarchy would allow the

,. . a'es tha, -he re ent examination )f simplic:ty or se'f-descrlpt:veness to be 0
t -rrs -s a ays'em wide pr-tie

,
". .nducted in a simil:ar fash:on.
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too Figure 10: Litral Usg nth oue

L-IV'.....-.°*

pd n T -he-.'-- x

Figure 10: Lterals Usage in the Modulesitems."".--it

Figure 9: Integer Literals Usage in G "r--e-i-z-ofd

productions. Tcere are two -uyt ng operators the
4. Data Collection Too descr:pt~on lanquage at tnts tine: add ,for add "g

,-a tem counts, and max, for ta the caxr'un of

The Data Collection Tool anayzes Ada source code and data 1ter counts.
produces a set of values for ia tes. The dt tm ~ eonzn prtr pcf ntaia o fdt

*values can be input into the Quaity Anaiys~s Assistant -- "
to support quality analys+s. The Data Coller-t~on Too tern counts, usually correspond:na "o the recogn~t~on of -
.as designed for high fexbtlty and high portability. Pates. The recognizing operators specify the va-e

e f hf the data item count for the left-hand-side symbols of
High flexibility is a goal beca-se of the need to add or a particular production, in terms )f the data item
modify data items collected oy the tool. Metr:cs ounts for the right-hand-side symbo:s 3 f that
technology is still young, and as we gain insight into product:on. Note that although counting -perators apply

toe metrics from experience, the metrics will ebe o all productions, recognizng operators apply to a.

modified. Furthermore, our experience in applying met- Partc~a production. Essentially, recogn:zinq oper- qsod, at dC indicates thiat metrics are most valuable ators specifydwhen a production is part of a pattern - -
when tailore! to specIfic protect needs [San Antonio83. !hat should be recognized.-
A salient esample of the need for tailoring is the ta huderon d
collection of data on Ada program design languages, many
of which incorporate annotations for addressing issues There are currently six recogniz:ng operators: "One".
not supported by Ada. "asn", "incr", "comments", "name", and "zero". Each of

these is described below.
H:gh portability is a goal, because we want the Data
Collection Tool to run in the development environment t

whenever possible. Measurement within the development onei<productionIn
environment improves turnaround time and simplifies
configuration management.

Specifies that the data item count for the left-hand-The desired portability can be accomplished by using Ada side of the production be set to one. -.-...-
as the implementation language and avoiding the use of si oteru one ton.,
the non-portable features of Ada. The desired flex-
;bil:ty requires a more sophisticated approach, asn'-productioniright-hand-side,,data item,) - -.

described in tne next section.

Specifies that the data Item count for the left-hand -

4.1 Compiler Generation Techniques side of the production be set to the -data item, countof the right-hand-side symbol. " .

We used several compiler generation tools to 
"g+ ".'.'.-+s--ol

automatically generate the Ada implementation from high-
level description languages. The conciseness of and the Init(<production , rl -hand-side, data Item,) "+"'+ 

'

descriptive rather than procedural nature of the high-
level description languages makes them easy to modify. N

Same as ash, except Increments the 'data Item- count
Lex~cal analysis and parsing of the Ada source code by by i.
the Data Collection Tool are supported by well-known
compiler generation tois, a scanner generator and
parser generator, respectively (Aho7 8. The regular :omments<<production-,.riht-hand-sde- - -
expressions, input to the scanner generator, were newly
developed based on chapter 2 of the Ada Reference Manual
[Ada83]. We found the use of a scanner generator Specifies that the data Item count for the left-hand-

beneficial for the Ada language, particularly because side of the production be set to the number of
the wide variety of numeric literal tokens were easily comments immediately following the right-hand-side

described using regular expressions. The Ada grammar we symbol.
used is based on the LALR(l) grammar developed at NYU " .- -
[Charles82:. Several modifications were made to distin-
guish between constructs to support measurement of data namel~production,,,right-hand-usde, nane- *
items.

A pattern recognizer was developed expl:citly for Specifies that the data :tem -ount for the left-hand-
recognizing and counting ata items. The pattern side of the production be set to l if the
recognizer reads in a high-level description of data 'right-hand-side' equals 'name-.
Items. Each data item Is described by a data item
Identifier, a counting operator, and a set of
recognizing operstors. The operators are specified in zero(-production)
terms of product ons in the LALR(1) grammar. Counting
operators specify the value of the data item count for
the left-hand-side symbol of all productions, in terms Specifies that the data item count for the left-hand-
of the data item counts for 31' symbols of all side of the product ;on he set to I.
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TRANSITIONING TO ADA: THE CHALLENGE FOR SOFTWARE ENGINEERING

0

THOMAS J. WALSH

TELEDYNE BROWN ENGINEERING

TINTON FALLS, NEW JERSEY

ABSTRACT INTRODUCTION
ADA's IMPACT ON THE SOFTWARE CRISIS

Ada* is an evolutionary advance in pro- AND SOFTWARE ENGINEERING
gramming languages and serves as a catalyst
for a radical change in the landscape of The terms software crisis and software
software engineering. The Ada technologies engineering are used extensively in the
now emerging have dramatically shifted soft- literaturel-5. Software crisis has become
ware engineering's focus from acceptance of synonymous with the aggregate of difficulties _
any adequate solution representation to a associated with large software systems.
careful examination of the complex problem Software engineering is the technical disci-
solving process itself. However, this sudden pline whose mission is to resolve this crisis
shift of emphasis has exposed multiple gaps and allow the production of cost-effective,
between inflated expectations for the new reliable, and maintainable software products.
technologies, and the availability and Although these are very popular terms, there
mastery of these technologies within the is often some confusion as to the essential
software engineering domain. At present, natures of each and the relationship between
these gaps in technology introduce signifi- them. Thus, a short discussion of the soft-
cant risks which must be addressed by project ware crisis and software engineering seems

. management. Clearly, software engineering justified to establish the proper perspective
must mature rapidly to allow software proj- for viewing Ada's impact.

ects to derive the full benefits of the Ada
technologies. The software crisis has two salient

characteristics (quantitative and qualita-
The key software engineering components tive), and a number of underlying causes. .

effected can be classified in problem solving The quantitative characteristics of the
parlance: development methods, tool avail- crisis can be well illustrated by two popular

- ability, and recognition and mastery of graphs. Mr. Boehm's graph
6 

nicely illus-
problem solving environment. The components trates (Figure 1) the inversion of the hard-
are examined highlighting issues and concerns ware/software cost relationship over a
which must be addressed for successful proj- thirty-year interval. The correlated rise in
ect management. Additional efforts are seen maintenance costs is also significant and
as necessary to ensure Ada's evolutionary ad- provides supporting testimony to the lack of
vance. Industry especially must commit software engineering rigor. The second expo-

- significant resources to pragmatic research nential graph
7
, shown in Figure 2, portends

and Ada product development. The planned an ominous future if a rigorous and even . ... -
" products of one company (Teledyne Brown Engi- radical response is not manifested by soft-

neering) for 1985 are described, ware engineering. On the positive side,
these exponential curves represent powerful
economic forces for the rapid evolution of
software engineering technology.

Qualitative characteristics or typical

complaints include:

o Cost is excessively high and often

unpredictable by software cost esti- V -
mation models.

o Deliverables are often late and
suffer a shortfall of capabilities

in relation to the perceived origi-

nal requirements.

0 Software products do not inspire , .
*Ada is a registered trademark of the U.S. confidence in reliability, port-

Covernment - Ada Joint Program Office ability, and maintainability.
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FIGURE 1 COST TRENDS FOR SOFTWARE AND HARDWARE
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o Sotwar sytems are becoingAda's impact on the software crisis and
largr, ore mbiiou andmor ~-its contribution to software engineering is .

plex.through the recognition of software as an
intellectual activity with many similarities

" Personnel turns over at a rapid rate to problem solving as performed in any engi-
(less than 2 years). neering discipline. Relevant problem solving

books are listed as references 8 9 ,9p1 0 . Key .-.

*Although these characteristics are often ingredients for problem solving include .
* cited, the underlying causes also need to be availability of tools, methods of problem

identified. These include: representation and solution, and recognition , -.

and mastery of the problem environment. This..
1) Proliferation of progrming lan- conceptual framework allows us to view the

guages. Ada software engineering response to the
above underlying causes, as follows:

2) Lack of portability in programs,
programmers, and technology. o Software Tool Availability (1, 15,

16)
3) Lack of skills in project personnel.

0 Software Development Methods (4, 5,
4) Requirements that are ambitious, 6, 7, 8, 9, 10)

ambiguous, and often changed. 0 Rcgionand Mastery of ProblemIA, .
*5) Design that lacks precision, struc- Environment (2, 3, 11, 12, 13, 14).

ture, and abstraction.

6) Code that lacks precision, structure WYAAI NEOUINR DAC
and rigor. IN SOFTWARE LANGUAGES .

7) Testing that does not ensure a mini- Ada is an evolutionary advance in pro- f
mum level of reliability. grammning languages and serves as a catalyst .

for radical change in the landscape of soft-
8) ainenace hic uner-ware engineering. This strong assertion is.8)Mitnne practices whc ne-supported by the following reasons: ..

mine system reliability. .'

Docmetaio tat s utatd nd0 Ads contains a collection of uniqueV9)Dcmnainta sotae n advanced features.

inadquae.o Ada contributes to greater software
*10) Software products that lack visi- structure and abstraction.

bility and control.

0 Ada features and constructs support
*11) Proposed system missions that are its use as a design language.

not veil defined or excessively com-
plex. 0 Ada shifts software focus from a

solution representation to the prob-

*12) Non-recognition of human limitations lem solving process.
for precise logical thought. *

0 Ada is reforging the technical com-
13) lImmature state of software engineer- ponents of software engineering. .. ~

in tcholgialfondtinso Ada is inspiring hardware and soft- .

14) Immature state of software engineer- ware methodology convergence. %7
ing training curriculum.

Ada has the capability (data structures
*15) Lack of program support environ- and control structures) of most preceding

ments. general purpose high order languages plus a
unique set of advanced features. These

*16) Lack of automated support tools, featuresll are mostly new and include:

Clearly, there are multiple and diverse
causes underlying the software crisis. it 0 STRONG TYPING
follows that the standardization on one pro-

* gramming language (no matter how powerful) -Logical partitioning of objects
will not directly solve all these problems. b ye
it will need to be supplemented by other b ye
software engineering technologies that span -Precise set of acceptable values
the problem solving domain. This is and operations
precisely what is happening in the Ada tech-

- nology ares.
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0 PACKAGES life cycle including software design, soft-
ware specifications, software requirements,

- Collection of related entities and system designlS,l
7
.

- A building block component Ada shifts the software focus from the

analogous to the hardware chip acceptance of any adequate solution represen- 0
tation to a careful examination of the com- ..

o TASKS plex problem solving process itself. This ' -" - "
shift is due to the strength of the language
(abstraction, structure, and expressive N.

- Concept allowing for problem power) and the multiple components of the Ada
representation via parallel pro- technology (environment, design language,
cess execution methodology, and automated tools). Ada is an

excellent design language with facilities
- Communication and synchroniza- supporting interface specifications, concur-

tion provided via rendezvous rency and multi-functional black boxes
mechanism (packages). So pervasive is Ada's impact on

software engineering that it is literally
o GENERICS reforging the discipline with major emphasis

on the following technological areas:
- Common logic created from a

single template independent of 0 Software language features and con-
type structs

- Generic subprogram unit may be a Sophisticated error checking com-
subprogram or a package pilers

0 EXCEPTION HANDLING o Programming support environment

- Ability for software to recover o Design language
from the unexpected

o System development methodology,',
- Provide handler routines for

system and user defined excep- o Automated support tools

tirons

Software languages have traditionally o Training and education

served multiple purposes. First, they con- Finally, Ada is inspiring hardware and
tan specific instructions to tell the com- software methodology convergencelS

1 6
. For

puter what to do. They also serve as a means the first time, a general purpose programming . ..-

of communication among project members and language supports well-defined interface
perhaps most importantly, they serve as tools specifications, package specifications and
of thought for designers. As a tool of bodies, concurrency representation with
thought, the concepts of abstraction and facilities for synchronization, and communi-

structure are powerful concepts. There are cation. Ada can be used to represent system O___
multiple precedents for software language design before the hardware/software tradeoffs
evolution. As Figure 3 shows, the history of are evaluated to determine the implementation

programming languages can be viewed as a con- medium.
tinuous process of embedding abstraction and
structure capabilities in languages so that With these constructs in the software " ".
human beings would be more comfortable with language, the hardware and software method-
the communication medium in representing ologies can converge toward a system method-
problems and implementing solutions. ology. Corresponding graphical and mathe- •
Barnes

1 2 
refers to evolutionary advances in matical notation promises to allow computer

terms of abstraction (expression abstraction, system design to be far more rigorous and
control abstraction, data abstraction). independent from implementation considers-
Shaw

13 
provides further elaboration on the tions.

value and necessity for abstraction in lan-

guages.

Ada incorporates the design principles In summary, due to the broad spectrum
identified in the sixties and seventies into impacted by Ads and its associated tech- N
its features and constructs

1 4
. Consequently, nologies, project management must seek a

the Ads programming language is a very thorough understanding of the Ada technolo-
attractive vehicle for use as a textual gies and the problem solving domains ad-

design language. Presently, there are sub- dressed. This knowledge should be applied to "

stantial advocates for using Ada as a design ensure the successful execution of Ada pro- e

language in various phases of the product jects. 0.

"-.'-'-'-,"
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FIUE3 -PROGRA141ING LANGUAGE EVOLUTION PRECEDENTS 'P

ADA

PASCN A

FOR rIURAI' A'(fl

1i ~ ~ ~ I MAHNLAGAI

-~: A S"iqur

TIME p

THE CHALLENGE FOR SOFTWARE ENGINEERING development: methodologies, automsated tools,
and the software engineering curriculum to

The challenge for software engineering support these essential technologies. These
*is to provide the tools, methods, and prag- areas can be further classified in problem
*matic knowledge of the overall problem en- salving parlance:

vironment needed to completely master soft-
ware's abstract and complex nature. The 0 Tool Availability (Compilers, Sup-
multi-faceted Ada technologies now emerging port Environments, Automated Tools)
represent a challenge of significant scale
and dimensions for the software engineering o Dvlpet Mtos (ein Ln
discipline. Ada, unlike preceding software 0 Dvlpet Mtos (ein Ln

*languages, has shifted the software engineer- guages, System Development Method-

-. ~ing focus from acceptance of any adequate oois
solution representation to a careful examina- a RcgiinadMseyo rbe

*tion of the complex problem solving process . 0 ecnviionnt ( star ofngin eern

However, this sudden shift of emphasis hasCurclm
* exposed multiple gaps between inflated ex-

pectations for the new technologies, and the
availability and mastery of these technolo- The Ada technologies promise many bene-

*gies within the software engineering domain fits, but also require that these key com-
(Figure 4). In fact, these gaps in tech- ponents of software engineering and the many
nology introduce significant risks which must interrelated issues and concerns be addressed
be addressed by the project manager for Ada b rjc aaeet e on ob

relatd proects.emphasized and understood is that the issues 2relaed rojets.described herein would have existed even if
Clearly, software engineering must Ada did not emerge. They have been present

mature rapidly in a number of key techno- for some time, but were often eclipsed by
logical areas to allow software projects to other inadequacies inherent with language

* derive the full benefits of the sophisticated proliferation, the abstract nature of soft- .V

Ada language and its associated technologies, ware, and confusion concerning the problem
The key technological components effected solving software process. Ada has simply .

are: compiler construction, programming sup- highlighted their presence and illustrated
port environments, design languages, system the inadequacy of software engineering today.*'*-. *,
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FIGURE 4 - THE SOFTWARE ENGINEERING TECHNOLOGY GAP ---
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ADA PROBLEM SOLVING METHODS Ada is having a large impact in the area

of methods. This is a direct result of the
Problem solving capabilities strongly consistent integration and enforcement of the

correlate to a knowledge of methods, avail- design principles identified in the recent
ability of tools, and accurate perception and past into Ada. Ads strongly supports many
mastery of the problem environment. Ideally, forms of abstraction, information hiding, and
problem solving methods should precede and
forge the characteristics of the problem modularity

5
'
14
. Adherence to these prin-

solving tools. In practice, however, an ciples and the availability of considerable

iterative process usually replaces such an expressive power contribute to Ada's natural

exact ordering especially with the advent of use as a design language. There are many

a new technology such as Ada. This section benefits that result from using Ads as a

explores the role of methods, Ada's enhance- design language including:

ments to former practices, and unresolved 0 Utilization of Ads's powerful con-
structs to influence software archi-

The role of software problem solving tecture

methods is twofold. The first role is to
assist in problem analysis and definition; 0 Enhancement of project communication

the second role is to assist in an iterative, by using the same language notation

precise, and eventually complete solution in multiple phases of the life cycle

formation. A key point is that methods rep-
resent a process that results in a documented 0 Analyzability of design by Ada auto- .-
product. The recorded product or output from mated tools (compilers and ana-
such methods is known as documentation and lyzers) -. .
may take the form of an B-specification, data
flow diagram, or design language description. o Encouragement of design rather than . . -
Thus, methods represent the thinking process coding on projects

that influences the final form.
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o Establishment of a bridge between as KETHODMAN
2 1 

and is part of the DOD STARS
methodology and code program

22
. One of the largest impediments to

be overcome in this area is the large number

At present, several corporations and of competing methodologies which must be
universities have developed design examined. A British nepartment of Industry
languagesl

8
,l

9
. The number and divergence of study

23 
reveals 37 unique methodologies. An 

these design language definitions emerging examination of the literature and corporate - :.
represent another possible proliferation proprietary products reveals hundreds, if not ..-' .
problem. Thus, the Institute of Electrical thousands, of unique variations. System .
and Electronics Engineers (IEEE), through the design methodologies vary in their form
Working Group on Ada as a Design Language, is (textual versus graphical), life cycle
developing a Recommended Practice to provide applicability, machine processibilit support "5
pragmatic guidance for the project manager

17  
factors, and their orientation toward data

in evaluating or developing a design lan- flow, data structures, control flow. control .., , .

guage. This document represents a technical structures, or some combination thereof.
consensus among the working group members
from industry and government. Issues of the compatibility of Ada to a

methodology are often due to the fact that
There are many unresolved issues and the methodology was derived before the advent

concerns with the use of Ada as a design of Ada. Accommodation of Ada's unique fea-
languagel

9
,
2
0. A few deserve comment here tures such as tasking, data abstraction, and

since they are acting as serious impediments generics must be reflected in design method-
to progress. They include: ology techniques. For instance, structure

charts do not usually possess a represents-
0 Lack of a standard for use of Ada as tion for the tasking construct. Outstanding

a design language methodology issues include the following:

0 Form and content divergence among 0-a b-,th A-.-
proposed Ada design languages o Compatibility with the Ada language

0 Life cycle phase applicability of an o Proven use on production proiects

Ada design language o Ease of use by managers and pro-

o Relationship between the design lan- gra ers
guage and the implementation lan- Support for automated tools

guage

o Relationship between system design 0 Applicability to ll life-cycle

methodology and the design language

o Compatibility with an Ada design
The last two points require further language -. 1

elaboration. At present, a number of systems
are employing Ada as a design language, but o Support for project documentation

they are utilizing a different implementation o Recognition of inherent methodology

language. Such a case implies a lack of one- limitations
to-one correspondence between features and
constructs of the design language and imple- In suary, Ada problem solving methods
mentation language. In this situation, a
software standards document should describe include Ads as a design language and an Ads
guidelines for mapping of the design re- compatible system design methodology. These
flected in the design language to the imple- represent the two technological components of
mentation language. The last issue addresses software engineering which will be most dif-
the larger mapping problem between the system ficult to mature into a rigorous discipline
design methodology and the design language. in support of Ads. Eventually, classes of

The design language must serve as a critical compatible system design methodologies should
bridge between the project's system design be established which view the Ads design Ian-
methodology and the implemented source code. guage as a critical bridge to reach the Ada
Again, the software standards document must implementation code.
address this relationship with guidelines and

evaluation criteria.

Ada is also reforging the area known as ADA PROBLEM SOLVIN4G TOOLS

system design methodology. A system design eidth sena tolfagdpr
methodology can be viewed as a set of Beside the essential tool of a good pro-

methods, practices, techniques, and heu- gramming language, software engineers need
ristics which govern the way in which the the assistance of problem solving tools. Ada
rsticar which gov erte. way inhih thes problem solving tools can be found in the

areas of compilers, support environments, and
area is supported by the Ada Joint Program automated tools. Although often presented as

Office. The results are in a document known separate entities, they are actually quite
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interrelated, sharing host/target archi- This group of tools at present is mostly

tecture, data base, and operating system. system level production tools (Figure 5). It

The role of these tools include the amplifi- should be recognized, however, that Stoneman %

cation of the human being's capability to is an interpretive document and environments " -
manipulate yet another tool - the computer. will differ in their available tool and
This section discusses these three areas and especially in their implementation of these
highlights unresolved issues, tools. A key concept of the Ada environment

is that it is extendable as new tools emerge ... :6.
Ada compilers translate legal Ada syntax in the future. The project manager needs to

(ANSI/MIL-STD-18I5A) into machine language address the following environment issues: -. .* -
for a given architecture. The DOD has estab- ' v _
lished a process of compiler validation to o Availability of support environments
guard against language subsets and exten-
sions. The lack of production quality com- 0 Compatibility with Ada compiler

pilers for a wide variety of machine archi-
tectures to date has been the most signifi- o Compatibility with Stoneman require-
cant impediment to the widespread usage of ments
the Ada language. The project manager needs
to also address the following compiler o Completeness of APSE tool set
issues:

o Lack of well-defined standard inter-

0 Completeness of Ada features sup- faces between KAPSE and MAPSE thus

o Validation status of selected com- o Ease of use and training require-
piler ments

o Speed of compilation and execution 0 Cost effectiveness and reliability

factors
o Clarity of diagnostic messages

The last area discussed is automated
o Dependence on run-time environment tools. It could be argued that these are

actually part of the extended environment.
o Efficiency and optimization of gen- At present, however, these candidate auto-

erated object code mated tools are closely linked to the syntax

of Ada and are more application oriented.
o Cost effectiveness and reliability Sample automated tools might include the fol-

factors lowing:

o Limitations and issues of the valid- o Object and Type Cross-Referencer
ation process o Project Completeness Analyzer

o Package Dependency Analyzer

This last compiler issue (validation) 0 Automatic Test Case Generator
actually has a set of issues associated with
it including: The issues associated with these automated .

tools include:

0 Validation represents only a sample
group (presently 2000) of all pos- o Availability of automated tools

sible tests of feature combinations. 0 Compatibility with chosen support

0 Compilers can only be validated for environment

host. (The original host-target 0
pair concept has not proved workable o Ease of usein practice):"''' /'

o Cost effectiveness and reliability

factors
0 ACVC tests do not measure per-

formance or capacity factors. archite.ture
o Compatibility with host architecture

0 Some legal considerations are un-p-'
resolved. In su-mary, Ada problem solving tools

are interrelated and have a number of impor-
tant issues associated with them. The rich

The next area of Ada problem solving syntactical complexity and multiple component
tools is support environments

2  
, The support parts of Ads contribute to formidable '.

tools is support environmentise s a haer'sppr tstrength, but will also require a significant
environment iding ao a tools fr number of automated tools for human beings toworkbencmbe prviin automated tools for human beings-.to

wrkbe pre construction from the design precisely manipulate and control. It can be
reliable system reasonably expected that application level
to the maintenance phases• tools will rapidly mature in the near future.
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tion of advanced language features and the solving methods include design languages and
associated technological components identi- system design methodologies. Problem solving
fied in this paper have the distinct capa- tools include compilers, support environment
bility for changing the landscape of software tools, and automated application tools. An
engineering. In addition, Ada's impact cas- Ada software engineering curriculum is essen-
cades into the field of computer systems tial to support the multi-faceted Ada tech- S
engineering. nologies. In addition to significant

training, pragmatic research is also neces-
Ada, unlike preceding software Ian- sary to resolve issues and fully master Ada

guages, has dramatically shifted software technologies (Figure 6).
engineering's focus from acceptance of any Te lrst ip mnt to rbe
adequate solution representation to a careful The largest impediments to problem
examination of the complex problem solving solving are the limitations that problem sol-
process itself. However, this sudden shift vers place on themselves. Software problemof emphasis has exposed multiple gaps between solving is no exception. Too often, simply
inflated expectations for the new tech- arriving at an adequate minimal solution isnologies, and the availability and mastery of the goal of software projects. A direct
these technologies . At present, these gaps result of this limited effort is softwarein technology introduce significant risks systems which are not maintainable. Withwhich must be addressed by the project adequate training, methods, tools, andmanager for Ada related projects. Clearly, creativity, software people can achieve maxi- S
software engineering must mature rapidly in a mum expectations and make quantum leaps innumber of key areas to allow software pro- productivity.
jects to derive the full benefits of the
sophisticated Ada language and its associated To this author, the Ada technologies
technologies, represent a unique challenge to forge a

disciplined software engineering field with
It has been advocated here that project maturity similar to other established engi-management utilize problem solving concepts neering fields. This would necessitate more Sas a framework for viewing the emerging Ada rigorous standards and a firm quantitative

technologies. Key factors include methods, basis. Software engineering must rest ontools, and educational training. Problem precise mathematical foundations. Pre-

FIGURE 6 - PRAGMATIC RESEARCH AREAS FOR SOFTWARE ENGINEERING
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0

viously, there has been considerable work
done in advocating and establishing a mathe- o 502 of course hands-on computer

matical basis for software
2 5- 28

. These math-
ematical foundations need to be extended into o Proceed from the familiar to the un-

the domain of Ada technologies. In addition, familiar

software metrics
2
9, especially those with a 0

firm mathematical basis, need to be applied o Utilize Ada's strong typing mechan-

to Ada software in an effective manner. The ism as a learning vehicle

importance of mathematical abstraction in
software problem solving should not be over- 0 Emphasize design as well as program-

looked. Mathematics can serve as both a tool ming through case studies
and as method. a Utilize multiple instructors and lab

Ada will be widely utilized beyond assistants in delivering courses

defense applications in the commercial sec- (typically 4 instructors)

tor. Jean Ichbiah
30  

cites productivity,
reliability, and maintainability as strong The specific educational courses and ex-

motivating factors for commercial acceptance. pected availability dates are:

When this occurs, academic institutions will
need to strongly integrate the Ada technol- o Ada Fundamentals Course (August

ogies into their curriculum to prepare 1984)

students for the workplace of tomorrow. Ada -
has the potential to help reduce the risk a Ads Advanced Course (2nd Quarter

described by the National Commission on 1985)

Excellence in Education, "the educational
foundations of our society are presently o Ada Concurrency Course (3rd Quarter

being eroded by a rising tide of mediocrity 1985)

that threatens our very future as a Nation
and a people'

31
. The Ada philosophy and o Ada Design Language Course (4th

technology provides a firm foundation for the Quarter 1985) Y
software engineering discipline.

o Ada Real-Time Course (4th Quarter
Finally, none of the issues identified 1985)

in this paper should he construed as an

invitation to despair, but as a challenge to The first initiative, the one week Ada

software engineering to establish firm found- Fundamentals: A Pragmatic Approach course

ations. Additional efforts and cooperation has been taught since August, 1984, approxi-

by industry, government, and academia are mately every two weeks. At the end of 1984,

necessary to ensure Ada's evolutionary sixty employees from Teledyne Brown Engineer-

advance. Although each of these sectors has ing and twenty customers have completed the

a unique role, industry especially must course. The outline (Figure 7) reflects the %
commit significant resources to pragmatic above educational philosophy. The student ' -

research and Ada product development in the materials include a bound package of all

outlined technological components. This slides and a textbook
32 

compatible with the . .

should be done not only to aid software educational approach. The other courses will

engineering in meeting the Ada challenge, pursue a similar tack. In addition, seminars .

but to ensure the technological lead of the (1-2 days) will usually be available before

United States in an increasingly competitive the complete five-day course. This is nec-

world, essary to meet an urgent need for pragmatic
education immediately.

In addition to educational courses,

TELEDYNE BROWN ENCTNEERING'S ADA INITIATIVES automated tools are very attractive products
for realizing the productivity gains promised

Teledyne Brown Engineering is comaitted by Ada. Automated tools for Ada should have - ..
to a series of Ada Initiatives to build Ada the following goals:

products through internal research and dev-
elopment funds. The primary motivation for o Early detection of software errors

this effort is to regenerate and enhance the
skills of technical personnel, and to main- o Increased productivity by project

tain and expand the company's traditional personnel
business base. The company sponsored initi-
atives fall into two main areas, educational o Better structuring of software sys-
courses and automated tools. tems

The educational courses (each of one o Decreased software maintenance dif-
week duration) comply to an educational phil- ficulties
osophy which includes the following:

o Increased software product visi-
0 Adhere to the pragmatic approach bility
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Teledyne Brown Engineering plans to Because Ada is being used as a design

$begin construction in 1985 of a set of auto- language as well as for source code, these

mated tools (Figure 8) including the fol- tools will accept design language as well as

lowing: source code input. These tools can be util-
ized by project development personnel,
quality assurance personnel, and project man-
agement to better control Ada software

o Dependencv Analyzer development and maintenance.

o ComplexitY Analyzer ACKNOWLEDGEMENTS
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FIGURE 7 - OUTLINE FOR 4--

ADA FUNDAMENTALS: A PRAGMATIC APPROACH

MONDAY
MODULE 0 INTRODUCTION
MODULE I SOFTWARE CRISIS AND ADA RESPONSE

MODULE 2 ADA LANGUAGE OVERVIEW
MODULE 3 ADA PROGRAM STRUCTURE AND SYNTAX

MODULE 4 ADA PROGRAMMING ENVIRONMENT • -

PROGRAM WORKSHOP I

TUESDAY
MODULE 5 INTRODUCTION TO TYPES %

MODULE 6 INTRODUCTION TO STATEMENTS

MODULE 7 ADA PROGRAM DESIGN CASE STUDY I
PROGRAM WORKSHOP 2

WEDNESDAY
MODULE 8 TYPES REVISITED
MODULE 9 SUBPROGRAMS
MODULE 10 ADA PROGRAM DESIGN CASE STUDY 2

PROGRAM WORKSHOP 3

THURSDAY
MODULE I COMPOSITE TYPES
MODULE 12 PACKAGES
MODULE 13 ADA PROGRAM DESIGN CASE STUDY 3

PROGRAM WORKSHOP £4

FRIDAY
MODULE 14 INPUT/OUTPUT CONSIDERATIONS
MODULE 15 ADA ADVANCED FEATURES
MODULE 16 ADA TECHNOLOGY EVOLUTION

MODULE 17 SUMMARY ..

PROGRAM WORKSHOP 5
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DEVELOPMENT OF AN EMBEDDED COMPUTER SYSTEM (ECS) APPLICATION IN Ada* A CASE STUDY

Ronald Rathgeber and Dr. Bruce Burton

Intermetrics, Inc.
Huntington Reach, CA 92649 O 4

ABSTRACT ECS applications software.

This case study examined the An important element of our IR&D
development of ECS software in Ada. The investigations involves the analysis of
study was performed by redesigning and the methodologies available for the O
reimplementing a portion of the Space design and development of Ada real-time
Shuttle Fault Detection function in Ada. programs. In order to examine these

- This case study focused on two main methodologies, a case study was
areas: Suitability of current design performed. This case study focused on
methodologies to support Ada in ECS the implementation in Ada of a subset of
applications and Ada Program Design the Fault Detection and Annunciation
Language (PDL) support for an ECS (FDA) portion of the Space Shuttle
application. Results of these studies Backup Flight System. The

are presented and strategies for future implementation was not a simple -
Ada ECS studies based upon our findings translation of the HAL/S code into Ada; . -

. are outlined. a complete redesign was performed and.
documented through two different'... .

Ada-oriented Program Design Languages
INTRODUCTION (PDL's). This new design was then _.

implemented in Ada. This report
With the completion of describes the FDA case study and

production-quality Ada compilers documents our findings.
approaching and the DoD directive
requiring Ada to be used on all TABLE 1. Ada TR&D Im MSTGATIOI

mission-critical DoD projects beginning iin 1984, the day when Ada is to be used E^ TASK TASK
NAME DESCR IPTION OBJECTIVE(S)is here. The primary application area _

for Ada is intended to be the area of da To redesign and is- To analyze the atrenghts
real-time Embedded Computer System (ECS) DA plement in Ada a rep- and weaknesses of current . . .
software development. The utilization tnvestigationresentative program methodologies for the

1used on toe Space deelgn and development of
of an unproven language such as Ada for Shuttle real-tme Ada programs
ECS applications raises many issues that1 "* """"
need to be resolved in order to minimize Ada TO investigate tools To identify the short and ". -

Reusability land techniques that long ter. actions that a
risk on a large software project that ,nvestigationfcan be used to factil- copan? Should undertake
will be implemented in Ada. Along these itate reuse of Ada to achieve a high degree
lines, we at the Intermetrics packages of Ada package reuse

* Engineering Systems Group have committed Ad te -
Ada To Study, the caps- To examine Ada conatructs

some of our IR&D funds to the study of Reliability ,blitie of Ada to such as exception hand-
Ada in the ECS applications area. In Investigation enhance program ling. rendezvous, and

reliability and ease others, to evaluate ho

Table 1, the major Ada issues that we of verification they affect fault toler- "
are currently addressing are presented ante and verification
along with the objectives of each
investigation. The broad objective of Ada To analyze the To identify and resolve,

Real-Tme various problems if possible, several prob-
these studies is to gain insight on how Investigation associated aith the leas associated aith the
the Ada language and its tools may be use of Ada in real- real-time use of Ada. To

time applications identify the ma or advan-
used to achieve the cost-effective tages/disadventages in an 4. .

*. development of reliable and efficient Ada real-time executive *

Ada Language To assess the matur- To collect information on-'u

atrity ity of the Ads quantity and quality of .* % %*5

*Ada is a registered trademark of the investigation language tools that available Ada compilers~~~are comrcially and associated tools for .b% a, ,
U.S. Government (AJPO) :aairale ECS development
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REOUIREMENTS DEFINITION on; however, the current state of all
three fans is displayed. For the APU.
Speed parameters, multiple upper limits

The first step in the FDA study was are checked. In addition, checking of
to define the requirements that would be the lower limit is disabled until an APTJ
used to guide the redesign. The basis has been on a specified period of time,
used for creating the requirements was or after the APU has exceeded a shutdown
the Program Requirements Documents of limit. For the REAC Valve parameters,
the Shuttle Backup Flight Systeml. the states of two sets of valves

(hydrogen and oxygen) are "ANDed"
The functions selected for together to determine the state of the .'..'

implementation included a subset of the REAC valves. For the Fuel Cell
Fault Detection, Annunciation, Scaling, parameters, one of three upper limits is S
and Display Task (FDASDT). On the selected based on a computed power
Shuttle, FDASDT performs range checking, level.
limit checking, and annunciation of
out-of-limits conditions on a set of In addition to defining the specific
predefined parameters. It also scales requirements to be implemented, it was
the parameters for a cockpit display and also necessary to define the system
sets a status indicator for each scaled under which the FDASDT subset would run.
parameter. The status indicators This system definition included a 0
signify whether each parameter is specification of all interfaces between
in-limits, out-of-limits low, the FDASDT function and the outside
out-of-limits high, out-of-range low, world. For consistency and comparison,
out-of-range high, or contains invalid the system that the FDASDT subset runs
data. Tf a parameter contains invalid under is modeled after the system
to invalid data, and the last valid data System (BFS), i.e., the Backup Operating N

for that parameter is displayed. System (BOS).

The FDASDT function processes over The BOS performs all input/ output
150 different parameters. These include for the BFS. All data that is input
both analog and discrete parameters, from or output to a specific hardware
Limit checking and range checking are device is stored in shared memory areas
not performed on discrete parameters, via HAL/S compools. For example, all
Instead, each discrete parameter is data intended for the cockpit displays
inspected to determine whether it is in is stored in the Display compool by the
an undesired state. If it is, the application functions (such as FDASDT).
parameter's status indicator is set to This data is subsequently accessed by
out-of-limits low, and the error is the SOS and output to the display.
annunciated. Scaling of the discrete
parameters requires only that a display (A complete definition of the FDASDT
value be set either to true or false, requirements used for this case study is
Most of the analog parameters use linear given in Intermetrics California S
scaling, but a few require cubic Internal Report Number 014.)
scaling.

TOP-LEVEL DESIGN
Since the objective of this case

study was to analyze techniques, not to The next step in the study was to
create benchmarks, and due to the perform a top-level design of the FDASDT
limitations of tools currently subset. Several design methodologies
available, a subset of 40 parameters was were considered for use in performing S
selected for processing. These 40 this design. Among these were
parameters were selected to represent Object-Oriented Design 2 , Modular Program
each of the major types of FDASDT Construction Using Abstractions3 , and
parameters. This subset included analog Structured Design4 . A brief description
and discrete parameters, with both of these three design methodologies is
analog lin, -ind cubic scaling, presented below.

In addition to the major types of Object-Oriented Design was
parameters, four sets of parameters that popularized by Grady Hooch as a design
require special pre-conditloning were methodology specifically targeted for
also selected. These were IMU Fan, APU use with Ada. In Object-Oriented Design
Speed, REAC Valve, and Fuel Cell an effort is made to match design "
parameters. For the three IMU Fan decisions with our view of the real %, .'
parameters, fault detection is performed world. With this method, the design is
only on the fan that is currently turned decomposed into a set of software
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objects and related operations. These either the designers or the reviewers to
objects become our data, and the start this project.
operations become procedures that
operate on this data. Object-Oriented The design was generated with no
Design is tailored to specifically take major problems. The Review Committee
advantage of Ada's package concept, and suggested several minor modifications,

* thus supports information hiding and but the overall design was accepted.
abstraction concepts. Due to the limited scope of the problem

being implemented, several areas, such
The Modular Program Construction as real-time considerations, were not

Using Abstractions method of design was closely examined. Since Structured dY d'
also considered. This methodology is an Design was not specifically designed to
enhancement of stepwise refinement, support the development of Ada programs,
which was developed by Wirth 5  and special effort was made to support the
Dijkstra6 . This methodology performs design of Ada-like constructs.

. modular decomposition based on
recognition of useful abstractions. It DETAILED DESIGN
involves an iterative process where each

- abstraction might be further decomposed The next step in the case study was
by repeating the process, to perform a detailed design based on

the top-level design. In order to
* The Structured Design method provide a comparison of Program Design
- developed by Yourdon was our third Languages (PDL's), two separate detailed

candidate for a design approach. The designs were generated using two
first step in developing a structured different PDL's. The two PDL's used in
desig:, is to devise data flow diagrams the study were Byron "7 and the Software
for the problem. These data flow Design and Documentation Language8

diagrams are then transformed into (SDDL) developed by the Jet Propulsion -
structure charts by identifying the Laboratory.
afferent nodes (input), efferent nodes

' (output), and central transforms Byron" is an Ada-based PDL and, in
(processing), fact, any legal Ada program is also

legal for Byron'. Byron' provides the
In analyzing the various design user with a set of keywords that

methodologies, several evaluation expresses additional descriptive design
criteria were used. Important criteria information that can't be written in
included: the ability to model the Ada. The user details a module's .
problem, ease of use, previous detailed design as a collection of

*successful uses, ability to deal with Ada-like constructs augmented by the
real-time aspects, and support for nyron keywords. yron performs
advanced Ada concepts, such as data interface checking (even on separately
encapsulation. In surveying existing processed modules) and provides
design methodologies, none was found formatted source listings and
that satisfactorily met all the cross-references. Byron' will also
criteria. Older methodologies, although generate design documents, such as C5
u used successfully on many projects, were specifications, in a user-specified

- developed before Ada and don't provide format.
- support for advanced Ada concepts.

Newer Ada-based design methodologies SDDL is a conventional PDL that
have had limited use to date. All of allows the user to specify the keywords
the candidate methodologies were found that it will recognize. For this study,
to be deficient in the area of real-time a set of Ada-like keywords was
support. developed. A module's detailed design

is then written in pseudo-code using
After a substantial amount of these keywords. SDDL will provide the

analysis, it was decided to use the user with a design document that
Structured Design method for the includes a table of contents, formatted
top-level design. The main reason for source listings, and a module hierarchy
the use of the Structured Design tree. Interface checking, though, is
technique was that it is already being not performed by this tool. In S
used successfully to solve a wide addition, SDDL does not allow nesting of
variety of design problems. Also, some modules, so a workaround was needed to
work has been successfully performed by allow procedures and tasks to he nested
other companies using this method with in a package.
Ada. In addition, our personnel had
experience with this method and, Each of these PDL's has advantages

* therefore, no training was needed for and disadvantages. Byron" provides the
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user with many features that are tasks. This procedure was then executed
important on large projects with many cyclically. However, due to the lack of
programmers. Most important of these is garbage collection, each time the tasks . *

comolete interface checking which allows were executed they would use a new
the interfaces to be checked during the section of run-time memory. After a few
design phase. This facilitates cycles of execution, the run-time memory.*
detecting design errors before would overflow. In order to complete
development begins. On the other hand, testing, it was necessary to execute
SDDL is a simple PDL that offers a each task individually. Also, instead '. .*-

limited number of features. on a small of executing the tasks cyclically, each -

project, SDDL's ease of use might task was rewritten to contain a loopjoutweigh its lack of features, that executed the task until the test
was complete.0

When comparing these PDL's, however,
the cost of use and size must also be Another problem encountered with the
considered. Byron" is a large and Ada system used involved the lack of any

*fairly expensive program. The IBM debugging tools. All debugging had to
version of Byron' that was used required be done by inserting debug code that
over one megabyte of memory and, would write values, etc., to a file.
therefore, is restricted to running on Other inconveniences included a lack of
large computers, Conversely, SDDL is enumerated 1/O and unexplained system
small and inexpensive. SDDL has even crashes.
been successfully hosted on an IBM
Personal Computer. Except for problems attributable to

the limitations of the compiler and
CODE IMPLEMENTATION run-time system, the implementation of

the FDASDT code in Ada went fairly
Next, the detailed design was smoothly. Most difficulties were due to

*implemented in Ada and tested. A lack of knowledge on certain Ada
popular Ada Compiler available on the constructs. These problems can be
IBM Personal Computer was used for the prevented on future projects by
implementation, Unfortunately, the providing additional Ada education
compiler used supported only a subset of earlier in a project.

*the Ada language. The version of the
compiler that was used did not support SUMMARY
many important Ada features, including
generics and enumerated 1/O. The FDA case study has proven useful

in examining methodologies for
Only one major implementation implementing code in Ada. As well as

*problem arose because of the use of Ada. showing the need for extensive training
This problem was due to the requirement before Ada is used, the study has also
that all system I/O be done through the shown some areas of software development
B OS. In the RFS this is done by where more research needs to be done.
creating 1/O compools that serve as the
communication region between the BOS and Perhaps the area where the most work
the application programs. In order to is needed is in the top-level design.
follow the spirit of Ada, it was decided There are many top-level design
to avoid using packages as mere methodologies, including some that were

*compools. Consequently, packages were designed expressly for use with Ada;
set up that contained declarations for however, none of these proved to be
all the variables in an I/O compool adequate for general use. When
inside the package body. Procedures real-time applications are considered,
were then written that would read from these methodologies are even less
and write to these variables. The acceptable due to their lack of

*procedures were included in the package mechanisms for expressing timing
specification so that programs could use considerations.
them to access the variables within the
package. In a production system, these Detailed design is probably the best
procedures could use the INLINE pragma supported software development phase.
for efficiency. The Program Design Languages (PDL's)

currently available should support the
*Other problems occurred due to the users' needs. These PDL's range from

compiler and environment. The most fully functional PDL's, like Byron", .

serious of these was due to the run-time that support the Software Development
system's lack of garbage collection. Life Cycle from design to maintenance,
The FDASDT module was originally written to simple, PDL's, such as SDDL. The ~
as an Ada procedure that contained six user can choose among the wide range of
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PDL's based on project needs and user This case study resulted in a
tastes, successful reimplementation in Ada of a

portion of the Space Shuttle's Fault
The main support needed for the Detection, Annunciation, Scaling, and

implementation phase will be Ada Display task. This reimplementation has
training. Although Ada is similar to been useful in examining methodologies .. .
other High Order Languages, Ada's new of implementing a typical ECS
constructs, such as packages and application in Ada. Although it is
generics, will require user education, beyond the scope of this study to define
For programmers who are inexperienced a definitive software development % ..

with High Order Languages, more methodology for Ada, the study has
extensive training will be needed. All provided a knowledge base on software
programmers, regardless of their development methodologies involving Ada. 0
previous experience, will need education This base of knowledge will be useful as
in the proper use of Ada, including further efforts are made to define a
program design methodology, comprehensive software development

methodology for Ada.
The test and maintenance phases were

not explicitly covered by this case BIBLIOGRAPHY
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continued investigation of Ada compilers Studies in Data Processing No. 8,
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IMPLEMENTING WATCH DOG TIMERS IN ADA FOR TOLERANCE
TO CERTAIN CLASSES OF REAL TIME FAULTS

Christian Wild

Old Dominion University
Department of Computer Science

Norfolk, VA 23508

treating residual software design faults.
Many projects which use Ada will

require high reliability and real-time One important class of failures in a
response. One important class of failures real-time system is failure to respond
in a real-time system is failure to within the required time frame. The .
respond within the required time frame, causes for the failure to respond may be
Because of the difficulty of ensuring due to programming errors, hardware
real-time response by prior analysis, tim- failures or congestion within the system.
ing failures are usually detected at run This class of failures is interesting to
time by watch-dog timers. The provision study because it deals with the opera-
for a generalized time-out facility will tional aspects of the system rather than
require the restoration of a consistent its functional characteristics. Issues - "- -
state before normal processing can con- involved with the specification and verif-
tinue. Ada provides only a limited time- ication of performance requirements have
out facility which is related to the dif- received little attention in proof metho-
ficulty of providing state restoration. dology for program correctness. In fact,
The relationship between watch-dog timers much of the work in formal verification is
and the more general problem of software limited to "partial" correctness; that is,
fault tolerance is shown and the specifi- correctness if the program terminates.
cation and handling of timing faults is Even if a program terminates and functions
integrated into a uniform methodology for acorrectly", it may fail to meet critical
fault tolerant software. The use of stan- mission objectives if deadlines have been 0
dard Ada to implement a generalized time- missed. Because of the difficulty of - .*

out facility is also discussed*. ensuring real-time response by prior
analysis, timing failures are usually -. ,..'
detected at run time by time-outs (or

S watch-dog timers). Provision for a gen-
Introduction eralized time-out mechanism poses several

interesting problems. How should the tim-
Since Ada was designed to be used in ing specifications be made? What are the

embedded systems, it is likely that there semantics associated with a timing fault?
will be a requirement for high reliability And what implementation considerations are
in many applications. The achievement of there?
high reliability is made more difficult if
these applications also require real-time Our work integrates the specification
response. Many of the features of the Ada and handling of timing faults with a gen-
language and support system were designed eralized and uniform methodology for fault
to support reliability. However tradi- tolerant software [2,3,4,5]. An important
tional software engineering design and concern is the restoration of a consistent
testing methodology has not achieved the state before normal processing can con-
degree of reliability desired in critical tinue. The need for state restoration is
applications [il. Present day technolo- particularly apparent if the system is in
gies have been unsuccessful in eliminating a critical section updating a shared vari-
software design errors from a complex com- able. Issues involved with state restora-
puter system. Design faults which elude tion are further discussed in section 2.
the development and testing phases
compromise the reliability of the system. Ada provides only a limited time-out
Software fault tolerance attempts to facility. These limitations are related
achieve high reliability by detecting and to the difficulty of providing state res-

toration (see section 3). The need for
This work was sponsored in part by the state restoration within Ada has been .''

NASA Langley Research Center under grant addressed by other researchers (6]. With
NAG-I-439. a facility for state restoration, Ada
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would be able to implement atomic actions Still be necessary to provide for state
and thus provide a design framework known rsoain
as Idealized Fault Tolerant Components
(see section 4). Section 5 shows how tim- To understand why state restoration
ing fault detection might be integrated is needed for a generalized approach to
into this design framework, We can also the handling of timing faults, let us con-
show how standard Ada can be used to sider what might happen if a time-out ""

implement a generalized timing facility occurs while a process is in a critical
*through careful control of state changes. section. A critical section is a region

The overhead of such an approach is also of a program which must have exclusive
discussed (section 6). We also note that access to some shared resource. While one *-

watch-dog timers are a specific instance process is in its critical section, no
of the more general concept of watch-dog other process is allowed to enter itsSprocesses (section 7). critical section to access that shared

resource. If a process dies while in a
Imotac DI stt retrto critical section, all other processes

which require access to that particular
The importance of state restoration resource would deadlock. Therefore, most

for software fault tolerance has been existing work on critical sections assumes
noted elsewhere [7]. However since almost that a process is "well behaved" when it
none of the existing languages and archi- is in its critical section. For instance,
tectures provide state restoration primi- it is generally assumed that a program
tives, it may be useful to discuss the will not execute an infinite loop while in
reasons for state restoration. If there the critical state. Although it may seem
were no faults* then there would be no desirable to abort a process which is not
need for state restoration. However after well behaved in its critical section, such
the detection of a fault, it is necessary action is fraught with danger. The state
to restore the system to a consistent of the shared resource after a process is
state. One way to restore a consistent so arbitrarily aborted may be unknown. In
state is by using forward error recovery fact many program proving methodologies
in which the current inconsistent state is consider a critical section to be indi- -

corrected by compensating for these incon- visible (also known as an atomic action).
sistencies. Forward error recovery works Assertions about the state of the resource
if the fault is in some sense anticipated are only true if there is no process in a
(for example a zero-divide fault) and critical section on that resource.
suitable inverse or compensating opera-
tions can be programmed. Many times, how- Given that the shared resource may ber
ever, the only sensible strategy is to in an inconsistent state, what actions
roll the computation back to a previous shudbtae? Frrd ror ecvy
(hopefully consistent) state and start seems difficult since we do not know how
from that state, far in the computation the offending pro-

cess has gone. Therefore it seems that
Because faults do occur, state res- backward error recovery by restoring the

toration is provided in some form in every state to a previous one, namely the stateUcomputer system. Checkpoints and audit on entrance to the critical section, is
trails are instances of state restoration,. h nyraoal cus fato. I
A cold start reboot is an extreme form of the shared resource is a data structure,
state restoration. However most existing then the easiest way to insure the
practice is limited to restoration in the integrity of the shared data structure is
preec fhrwr radw. Tene to treat changes to them to be atomic
for state restoration to tolerate software acin [8. Tsiseuvlt tor-
(and hardware) design faults is less obvi- toring the state of the data structure to
ous. There is a school of thought which that on entry to the critical section.
considers tolerance to design faults to be
foolhardy and will settle for nothing less .1. Stna &dA Tiin facilites
than perfection. This school of thought
is~ exemplified by the program proving While Ada does allow some time-outs
methodology. We do not wish to take sides to be specified using the "delay" state-
in this controversy except to point out ment, a facility for time-outs is not
that in the case of timing faults, because integrated in a general fashion into the
they cannot yet be eliminated by the tech- lagge Onytenryioarndz
niques of formal verification, it will vous can be timed out in a reasonable way. .

I-____ ____Such a time out is allowed because the%
7 Faults include hardware breakdown, computation will be in a known state on
hardware and software design faults and ety t edzos ihr ts
environmental faults. Environmental involved in a rendezvous can time-out*-
faults include sensor and actuator before initiation of a rendezvous (i.e.
breakdown as well as human error, before the other process reaches the ren-0

dezvous point). However the semantics of
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Ada prevent two processes engaged in a designer controls the amount of error
rendezvous from executing simultaneously detection and the kind of error recovery
(this is necessary to ensure the atomic techniques most appropriate for the appli-
action semantics of critical sections). cation. The work of Cristian [4 and 3]
Because of this the language provides no investigates properties of correctness and
way for the calling process to terminate a robustness which are applicable to IFTCs. •
rendezvous once it has begun. If a ren-
dezvous has started and the machine the Figure 1 shows an IFTC.
serving process is on fails, then the cal-
ling process will wait in the rendezvous
forever. Several researchers have recog- '".
nized this problem and have proposed a
solution [91. However the problems of
software and timing failures have not been -
addressed. The inability of Ada to deal Service Normal Interface Failure
with time-outs within rendezvous are requests response exceptions exceptions
related to a lack of state restoration " -

primitives necessary for aborting a criti-
cal section. It as been suggested [10] return to <-that one use the rendezvous only to make I normal s ri-. -''
service requests and to get service s4results. The actually processing of the F
service would not be performed in a ren- V V
dezvous. This minimizes, but does not -."__ __._-__-_

eliminate, the problem.
I normal I exception

Extensions of Ada's time-out facili- I activity I handlers .
ties would be useful in real-time systems
[11]. For instance it may be desirable to -- -- -
time an intra-process procedure call [12].
This would be useful both for guarding V -
against infinite loops and for meeting internal
deadlines within procedure calls. it exception
should be noted that, in general, state V

restoration would be required for restor- Service Normal Interface Failureing a consistent internal state for a pro- requests response exceptions exceptions

cess if a time-out did occur. Presently
timing violations within a process could Figure 1. Ideal Fault Tolerant Component -
not be detected within standard Ada. In
dealing with timing faults in a real time
system, a more general timing mechanism is *
needed than that provided by the Ada stan-
dard.

T. dealized Fault Tolerant Components _.

Service requests are made to an IFTC in
One of the issues explored in this the normal way (i.e. by procedure call or

study was the relationship between the message, etc.). If the requested service
handling of timing faults and software can be provided without faults, the IFTC
fault tolerance. In order provide the gives a normal response. During the ser-
background for this integration, a brief vicing of the request the IFTC may itself
discussion of software fault tolerance make requests of subcomponents. These
methodology will be given. subcomponents may also be IFTCs. Thus

IFTCs provide a recursive structuring
Much of the work in software fault principle.

tolerance can be integrated into a design
framework known as Idealized Fault If a fault occurs during the process- -
Tolerant Components (IFTCs). IFTCs are an ing of a request and the error caused by
attempt to incorporate software fault that fault is detected, an exception is
tolerance principles into the accepted raised within the IFTC and an exception •
practices of hierarchical design and handler is called. If the IFTC can handle
encapsulation with minimum impact on the the error internally, then the fault is
normal software development process. They masked and activity returns to normal ser-
are a combination of modular hierarchical vicing. Error recovery can be forward or
structuring techniques, atomic actions and backward. Figure 2 shows how forward
exception handling [2. and 5]. IFTCs error recovery can be handled with an
provide a unified framework for many of IFTC. .- ' '.
the proposed software fault tolerance
techniques [7 or 13]. Using IFTCs, the
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process being timed. In the case of a
time-out, the timing process must be able
to abort the execution of the timed pro-

* cess, restore the run-time environment to
a consistent state and return control to
the exception handler. Semantically, a

[inconsistentassert -> forward_correctl]; time-out should be treated like an asser-
tion or acceptance test which failed [14].

or However, the implementation is quite dif-
ferent because of the nature of the con- ' .

Fix -> forward_correct2]; current monitoring by the timing process.
In the case that the calling and called

For example IFTC are on different processors or com- 4
puters, extensive housekeeping operations

b = 0 -> b = very-small]; must be performed to restore the system to
x := a/b; a consistent run time state. Buffer

queues may have to be flushed, late mes-
or sages will have to be discarded and the

serving IFTC will have to be resynchron-
x := a/b [zerodivide -> x MAX]; ized.

If a procedure call was timed-out,
then the appropriate action would be to

Figure 2: Forward Error Recovery abort the computation, execute the "reset"
command and signal the exception "time-
out". If the computation was a remote

****************************************** procedure call, then the action would be
to notify the executing processor of the
requested abort operation and have the -
remote machine abort the offending IFTC,
execute a "reset" command and signal the

The statements between the brackets define exception "time-out". Howeve because of
the exception handler. The section before the delays in communications, it may be
the "->" is either an assertion or a pro- necessary to simulate the propagation of
pagated exception. The statements after the exception "time-out" from the remote
the "->" are the action portion of the procedure call in order to attempt
exception handler. Internal checks for appropriate action on the requesting pro-
consistency or interface preconditions are cessor in a timely fashion. This can lead
made by assertions ("inconsistent_assert" to the following situations.
and "b=0" in figure 2). Subcomponents can
also return exceptions (subfunction "F" 1) The remote procedure is aborted,
returns exception "X" and function "/" state is reset and time-out is pro-
returns "ZERO_DIVIDE"). In the case shown pagated. The supporting system on
in figure 2, forward error recovery masks the requesting processor will need to
the fault and the computation continues ignore the propagated "time-out" - -
normally. since it has already been simulated. - -".

Since an implicit recovery point is 2) The processor on which the remote
defined on entry to an IFTC, the state can procedure call is being executed
be rolled back to this point by executing fails, the underlying system attempts
a "reset" command. Thus the "reset" com- to restart the computation on another
mand provides for backward error recovery, processor. The request to abort the S
If the exception handler cannot mask the remote procedure will have to be •
fault, then the exception can be expli- redirected to the new processor.
citly propagated to the calling computa- This will require that the underlying
tion where it can be masked or propagated, system have the mechanism for binding
More inforrition on IFTCs can be found in names in presence of a changing
[7 or 13]. hardware environment. %

. tgrating Watch-DQg Timers with IFTCs 3) An abort for time-out is requested S
but the remote procedure has already

The problem of integrating watch-dog finished. The underlying system
timers is that of providing the appropri- should recognize that this has
ate mechanisms for concurrent monitoring occurred and ignore the effect of the
within the hierarchy of IFTCs. IFTCs as remote computation. This may involvE
defined above only deal with exceptions the use of time-stamps or other
which occur within one process. The mechanisms to uniquely identify each
time-out activity is a concurrent process request for service.
which can cont, ! the execution of the
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4) Several processes are involved in the
computation. This is discussed in
[13].

When aborting remote computations with a
simulated "time-out" exception, it may be 0
difficult to reset the shared data struc-
ture (depending on where such data struc-
tures are stored). If the requesting pro- nextpos.compute [timeout(onesecond) ->
cess tries an alternate computation, then nextpos.approximatel;
the shared data structure must be reset
and the "aborted" computation must not be
able to access the shared data structure Figure 3 Specifying Timing Constraints
any more. Because of communications
delays, assuring that the proper actions
take place under the constraints of real-
time deadlines can be very difficult.

Another concern with proper timing is
whether the calling or called IFTC should
specify the timing limit. In the case of The procedure "nextpos.compute" and
a timed recovery block [14], we would like watch-dog "time-out" are executed con- 0
to allow enough time to execute the alter- currently. The monitor "time-out" can be
nate (or in some cases the primary). This thought of as making the assertion
implies we know how much time the alter- "nextpos.compute took less than
nate might use. If t. programmer can onesecond". If this assertion becomes
define some limit on the number of loop false, then "nextpos.compute" is aborted,
executions (as could be done using the state is "reset" and the exception
Dijkstra's variant function for proving "timeout" is propagated. This exception
loop termination [15]), then the returns control to where the "time-out"
compiler/run time support system should be monitor appears and thus executes the
able to estimate the time for execution action following the exception, namely
[Il]. Thus it may be possible to place "nextpos.approximate".
loose but useful limits on the execution
time of components. This timing would be While the semantics for watch-dog
a function of the called routine. However timers is consistent with an assertion
in real-time systems, the reasonableness test (although done concurrently) and the .
of the execution time may not be as impor- syntax for handling exceptions from N
tant as the meeting of a deadline. The watch-dog timers can be integrated into
calling routine is usually in a better IFTC as shown above, the implementation of
position to specify the deadline. Another watch-dog timers is quite different from
argument for including the timing function serially detected exceptions. To execute
with the calling routine is in the case of a computation, the exception handler must
hardware failures where the calling and be examined for those exceptions pro-
called routines are on different machines. pagated by watch-dog timers and those O
Timing on the machine of the calling rou- watch-dog timers must be started con-
tine would allow for continued timely currently with the execution of the moni-
operation when the computer supporting the tored computation.
c a l led ro ut in e fa iled . In i n. -. '

. Implementation in Ada .'.'-

Figure 3 indicates how timing specif-
ication might be achieved using the nota- Ada cannot be used to implement IFTCs
tion of IFTC. directly. The major missing language

feature is the lack of state saving and
restoration primitives. In addition Ada's
exception handling does not implement the
single level terminating exception
handlers required by IFTCs. Several
researchers have suggested modifications
to standard Ada to deal with these inade- 0
quacies [6). In this section we will
illustrate what can be done to implement
watch-dog timers in standard Ada and com-
ment on the efficiency of this approach. "--

It may be argued that generalized
time-out facilities can be achieved in Ada .: *.i

through the use of the "delay" and the
"abort" command. Each computation which
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is to be timed is executed as a new task consistent state when errors are detected.
instance. The results are returned by a This restoration is particularly trouble- -

rendezvous with the timing task. The some in the case of time-outs since the
"accept" clause in a "select" statement timing process is not aware of the pro-
with a "delay" clause. If the "delay" gress made by the offending computation.
clause is reached, the timed task is The safest (and perhaps only reasonable)
aborted (illustrated in figure 4). action is to restore the state to its pre-

vious value (atomic action rollback). To
make matters worse, the values of IN/OUT
parameters after an exception occurs is
implementation dependent. The Ada run
time support system can choose either call

TSTYEtpa;by reference or call by value with copyTASK YPE tpea;out of the updated value. Thus the state
TASK timer-of-a IS of an IN/OUT variable in the calling pro-

ENTRY output from a(...); cedure when an exception occurs depends on
END timerof..a; the implementation chosen ([16] argues

that the choice should be under programmer
TYPE access-a IS ACCESS type-a; control).
a access a;

In the absence of system provided
TASK BODY timer of a IS primitives for recovery points, the pro-
BEGIN grammer can provide for atomic actions by

* copy input state; acp-in cp-out discipline for those
a NEW type-a; items of the global state which are to be
SELECT modified. Making changes only to copies

ACCEPT output from a(...) of the state will allow those changes to
update-output-state; be easily abandoned if an error is

OR detected. If the computation terminates
DELAY timeout; normally (with no residual errors

ABORT a; detected), then the changed values can be
-other actions for used to update the global state. Note
-- exception handler however that the state update is a criti- -

END SELECT; cal section and must not be interrupted.
END timer of a; This implies that timeout must be turned

off when the computation enters the update
Figue 4 imin a Cmputtionphase. Figure 4 illustrates this form of

Fiue4 Tmn- optto programmed state saving and updating. One
objection to this scheme is that it can
considerably slow down normal processing*..

* In fact the time for update of the state
on normal termination might cause the
missing of a deadline which would not have
happened otherwise! If the computation
has a permanent internal state, this would .

There are at least three objections to have to be copied also.

this approach. The first is that timing a
computation is awkward to specify since Although it is possible to perform
two tasks must be defined. The second is state restoration purely by programmed
that such a mechanism is likely to intro- actions with no help from the underlying
duce considerable overhead and probably system, such an approach seems fraught
would not be appropriate for timing ordi- with danger and a source oL unreliability.
nary procedure calls. Thirdly and more The performance of these programmed state -

seriously is the question of state con- restoration methods may not be adequate
sistency after aborting the timed process, for real-time systems. It would seem that
The topic of state restoration is dis- a system supported (automatic) state
cussed next. recovery mechanism should be made avail-

able.

p 2. Wat.b-DQ." R1&1CgD. 0
Ada contains no recovery point primi-

tives. This leaves the issue of state ______________

restoration up to the programmer. We have *Ideally we would like software fault
already discussed that state restoration tolerance implementations to have
is a critical and often ignored aspect of minimal impact on the normal processing
reliable programming. Without help from activity. Efficiency for abnormal pro-
the language and underlying system, the cessing, which should occur rarely, is
individual programmer is left to his/her not so much a concern.
own methods to restore a computation to a
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A watch-dog process can be defined as critical section) will require state res-
a process which monitors the behavior of toration. We have shown that the limited
some other process for the intention of facilities in Ada for time-outs is related
detecting faults in the monitored process. to the lack of state restoration primi-
One reason for studying watch-dog timers tives in the standard language. While not
is that they represent a specific but necessarily advocating the use of software .
important subclass of the general concept fault tolerance, we noted that a general- . .
of watch-dog processes. Other classes of ized time-out facility could be integrated
watch-dog processes have received less with the design framework of an Idealized
attention. Perhaps this is due to the Fault Tolerant Component. The implementa- .- ,...
constraints imposed both by current com- tion of Idealized Fault Tolerant Com-
puter languages and architectures. With ponents will require modifications to Ada.
the declining cost of hardware, there is However through the careful control of
increased potential for watch-dog process- state changes, standard Ada can be used to 0
ing. For example, it would be possible to simulate Idealized Fault Tolerant Com-
interface a special processor to the ponents. Whether this simulation will be
memory bus to monitor memory address feasible for real-time applications will
references [7]. This could be used to depend on the application.
detect erroneous control flow sequences[17 and 18]. Other possible uses of References
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WHY NOT UNIX*? THE CASE FOR THE ARMY SECURE OPERATING SYSTEM ___._"-"

Eric R. Anderson .,

Ruth M. Hart

TRW Defense Systems Group --
Redondo Beach, CA 90278

Abstract What Does the Army Need?

The Army Secure Operating System (ASOS) project The Army needs operating systems that will
Is building a set of secure operating systems which will support their future tactical applications systems. Such

support tactical applications written In Ada**. We have systems have four basic characteristics. First, they will
sometimes been asked to Justify the need for such an he coded in Ada. Ada is the language of choice for all
operating system' in particular, to explain why an future Army tactical systems. Second, they require real.-
existing operating system such as UNIX could not be used time response. Battlefield operations must he able to --
Instead. This paper answers this question from the respond to events quickly or they lose their usefulness. .'-
perspective of the Army; It examines the Army's needs In Third, many of these systems will need to be multilevel . - -

the area of support for Ada, performance, functionality, secure. A number of battlefield applications must handle .
and security, and shows how ASOS meets those needs multilevel data, with cleared and uncleared Military . ..

and why UNIX does not. Operational Specialty (MOS) types of troops. Finally. .
such systems must execute on Army approved
archltectures.

One other characteristic of Army tactical systems Is
Background

In August 1982, TRW was awarded a contract by development environment. Thus, these operating systems a
the U.S. Army Communlcations-Eloctronics Command do not need to support such activities as compiling,

(CECOM) to develop requirements and top level design of assetmbling, and linking. In fact, program development

two operating systems. Both operating systems are to be features must often be removed from fielded systems.

written In Ada and are to be designed to support tactical One consequence of this Is that while a command

Ada applications. The Dedicated Secure Operating Interpreter may he part of such a system, It Is likely to be

System is Intended to be run In either a dedicated or very application dependent, and thus is provided as part

systems high mode, and Is to be optimized for efficiency, of the application rather than part of the operating -.- *..

while the Multilevel Secure Operating System Is to be syqstem. It Is only necessary that the operating system

designed to support multilevel secure applications. At support execution of command Interpreters.
present, we are prototyping a subset of the Dedicated
Secure Operating System. The rest of this paper examines how UNIX and

ASOS provide support for these basic characteristics.
As our design has progressed, we have sometimes UNIX

been asked to Justify the need for these operating
systems. In particular, we have been asked to explain The following subsections look at UNIX as a
why an existing operating system such as UNIX could not possible operating system for supporting Army tactical
be used Instead. This paper answers that question. applications. This iN somewhat difficult to do, because

UNIX Is really not a single operating system, but rather a -

collection of operating systems which share a common

kernel design. When the ASOS project moved from a
computer supporting Berkeley UNIX 4.1 to a machine
supporting Berkeley UNIX 4.2, many of the tools that we

UNIX k a tradtrnark ,t Mt1t tlatorr considered part of the operating system no longer worked
In the same way. Thus, while some of the assertions In

Ada s a trademark of the V.S. (;overnnwnt, Ad, Joint I'rgrui the following subsect ions may not be true for all versions
orne of UNIX. they all are true for some versions of UNIX.
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Support for Ada obviously imposes a performance penalty. As mentioned

There Is nothlng to prevent Ada programs from above, In order to support Ada on INIX, tasks are
scheduled secondarily to programs, which means that all

run inrg untdier VN IX. In fact several Ada t ranslatinrs.
includling the Aal:d interpreter and the Telesoft and tasks within a program halt If one task within the

Irvine (ompittr Solbtwes (Corporatlon (ItS() c(omilihrs program Is waiting for i/O. Finally, having many layers
are curre ntly hosted in i NIX. in t lose c ihirs. t he of sortware between the applications program and the
Ads utlttuen Supplort l.ihirary (ISI.) exec('utes on top of hardware causes substantial execution overhead. - .

INIX. as pictured In Figure I. Security

Each Ada program (where a program is simply a UNIX security leaves much to be desired. In his

collection of Ada compilation units that have been linked paper "On the Security of UNIX."
' Dennis Ritchie. one

together) Is equivalent to a VNIX process. This has the of the original IUNIX developers,. p(iints out that UNIX

f<llowln consequences: w',as not developed witi security In mind. In particular.
UNIX Is weakest In protecting against crashing or

1. A two level scheduler is required. That Is. crippling the operation of the system, for example.

first a particular operating system priwess through excessive consumption of resources such as disk
running an Ada program Is schedultied, and storage, swap space, or processes. In addition, Ritchie S
then an individual task witin that program. points out that it Is possible for any knowledgeable user

As a result. If one task In a given Ada to assume superuser status and thus sabotage the system.

program Is waiting for I/O. all other tasks With regard to the Trusted Computer System

%ithin the program are suispetided as well.2
Evaluatlon Criteria established by the Department of
2efense Computer Security Evaluation Center, UNIX2. A separate 115l. (code and data) may be

for ,ii Ad proutrii. could not even be certified as a C2 system, let alone be r
certified as multilevel secure. Not only does UNIX not

have any mandatory security, Its discretionary security is
not sufficient to be certified as C2. This Is because C2

ta ruixt are. it Is nt,:i.arN to traverse tma ny
itr, of softwhr(, security requires access lists, e.g., a file would have

associated with It a list of users allowed to read It. -'-'-

another list of users with permission to write It. and a 7-Thus, alt hough there is no conceptual problem with third list. of users ailowed to execute it. All other users --

executing an Ada application under UNIX, It Is not would have no access to the fie. In UNIX, on the other

efficient to do so. In addition, because there Is no hand. discretionary security Is performed at a coarser
hardware separation between the Ada program and Its granularity. In particular, the list of possible users Is

associated RSL, the Integrity of the RSL may be divided into mutually exclusive groups. Different

compromised. permissions may be given to the owner of a file, to all
other users within the owner's group, and to everyone

else, but It Is not possible, for example, to give a user

UNIX was designed as an operating system that outside the owner's group read permission to a file unless

would execute In a timesharing environment. It Is widely every other user outside his group Is given read
recognized as having superior program development permission as well.

features (although not a good user Interface). As pointed

out earlier, however, these features are not Important In ASOS

an operating system that supports Army tactical
applications. Instead, It Is Important that such an Support for Ada

operating system provide real time response. In this TIIW's ASOS Is an Ada op,,ratlng system. By this ' -

respect. UNIX has several problems. we mean that It Is specifically tailored to support Ada

applications. In particular, ASOS has a single level
One such problem Is the granularity of the system scheduler, one In which an Ada task Is the same as an

clock. Although different versions of UNIX vary In this ASOS task. Thus, tasks are scheduled Independently of 

respect, some versions of UNIX only support a one second the programs In which they exist. Figure 2 depicts the %

clock granularity. This will severely degrade the response ASOS three domain architecture. The operating system.
to an Ada delay statement, for example. A second which Is a superset, of the Ada Runtlme Support LIbrary,

problem Is that the basic UNIX kernel supports only one is Implemented In two domains, the kernel and the

type of file, namely a stream file of characters. Although supervisor, which contain the security related and non- '

It Is certainly possible to construct record files and security related portions of ASOS, respectively. Each

indexed files on top of this basic file structure, doing so Ada program has Its own copy of supervisor data. but the
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supervisor code Is shared among all Ada programs. References %
Furthermore, unlike UNIX, there Is hardware separation I] Ritchie, Dennis. "On the Security of UNIX."
between the application and the RSL. which aids security. UNIX Programmer's Manual, Section 2, of UNIX"

AT& T Bell Laboratories.

An applications program can Interface with ASOS , B.el L-ooi,

In three different ways: implicitly, through Ada language [2] Department of Defense Trusted Computer -% I

semantics such as tasking or exception handling, and Systems Evaluation Criteria, CSC-

explicitly, through Ada standard packages such as those STD-001983. 15 August 1983. r r.
for Input/output and through ASOS packages which <-%,41%:

provide capabilities beyond those which are part of Ada, Acknowledgements .;& ,
such as those described In the next subsection. Therefore, ,
ASOS serves as a replacement for and extension of the This paper Is the result of research conducted as
Ada RSL. The real time and security requirements part of the Army Secure Operating System (ASOS) .' .'-

imposed on ASOS dictate that much of the RSL be project, which Is sponsored by the United States Army
replaced. Communications-Electronics Command (USACECOM)

and the Department of Defen.P Computer Security ._-.

Real Time Response Center, under Contract No. DAAPt)7-84-C-K541.

ASOS is designed to support real time applications, ..

not program development. This support takes two forms.
First, we have added functionality to the operating
system in the areas of deadline scheduling, semaphores,

and keyed I/O. The user accesses this functionality by
Issuing Ada subprogram calls from within his applications r -,
program.

Unlike many current Ada systems, ASOS provides
support for communication between tasks In separately

linked programs. Our Interprogram communication

facilities are based, Insofar as possible and appropriate, on - .

the Common Ada Programming Support Environment S

(APSE) Interface Set (CAIS) being developed by the
Navy's Kernel APSE Interface Team (KIT). Our

multiple program environment will enable ASOS to be
easily extended to a distributed computing environment.

Security Eric Anderson has 15 years experience at TRW, as

ASOS will support both dedicated secure and both a software manager and developer. His areas of

multilevel secure applications. In particular, the expertise include real time operating systems and

Dedicated Secure ASOS has been designed to meet the computer security. Currently, he is the TRW ASOS
requirements of a C1 system as deflned by the Trusted Project Manager. In the ASOS concept definition phase

Computer System Evaiuation Criteria
2, whiie the he was Deputy Project Manager and chief designer of

both the Dedicated Secure Operating System and the
Multilevel Secure ASOS has been designed to meet the Multilevel Secure Operating System, and designed the

requirement ofr Oarain Sysem snydesgnem.h
requirements of an Ai system. Task Management portions of both systems. He

previously managed the "Security Kernel for Secure

Summary Operating Systems" IR&D project. He was a subproject
manager on the SENTRY project operating system and a

ASOS functionality supports tactical applications work package manager on the MIFASS project real time
rather than program development. Its response Is operating system. 'reviously, he was the project
designed to support real time requirements rather than manager or the Kernelized Ielational Information and
tinesharing. Finally, It will provide C1 level security for Storage System (KIIISS), and a work package manager of
dedicated secure and systems high applications and Ai the Kernellzed Secure Operating System (KSOS). lie has
level security for multilevel secure applications. In an A.B. degree in Computer Science from the University
sumnary, with regard to each of the characteristics of California at Berkeley and an M.S. degree In Computer

required of an operating system to support future Army Science from the tUniversity of Southern California.

tactical systems, ASOS is superior to UNIX.
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Integrating Ada into IMuti-linguai Systems:

Michael J. Horton and Teri F. Payton

System Development Corporation
Research and Development.

Paoli, Pa -

to take the solution that was suitable for a particularimplementation language and perform a literal trans-
This paper summarizes one particular Ada* tran- laLion to Ada. It would not typically Lake full advan-

sition study and extrapolates the ,ssulls to identify tage of Ada's strong typing, encapsulation facilities,
areas of common concern in multi-lingkal systerns generics or other capabilities built into the language
with Ada. It provides a discussion on modeling exist- to facilitate maintainability and reliability. The third
ing tasking and data access bct.'i, r with :'da con- approach of incremental rewrite permits a phased
structs. Characteristics of the scheduler/dispatcher migration from existing languages to Ada. Several
of an Ada run-time system are discussed. Of particu- strategies have been suggested for this approach
lar concern is the dispatching/preemption strategy such as:
for tasks of the same static priority which is left a) rewriting or translating each foreign language
undefined by the Ada reference manual. Crucial procedure to its Ada equivalent maintaining the .
areas for interfacing Ada and other languages are basic program structure
explored. This includes areas of concern at system
generation time for linkage and data configuration, in b) defining major logical sections and
the program level interface for data sharing and sub- redesigning/rewriting these sections in Ada
program invocation, and in the system-level interface c) maintain existing code in the foreign language
to effectively utilize the Ada run-time system. These and implement new code (major upgrades) in .
areas are explored with respect to both importing Ada _-# _' •
foreign code into an Ada system and importing Ada In any of these approaches the degree aid -
into existing syst.ens, means of interfacing Ada with the foreign language * 4

must be addressed. Issues such as program strur- .
ture. tasking models and data sharing arise. Among
the most interesting existing syst ,rr t- av nrinr a.-

1. INRDLJON the real-time, multi-tasking applications. Fistori-
Overview of the Traensitioning Problem cally, each major development project specified its

and Transitioning Models own executive closely coupled to thet application and
application designers view of tasking. Such real-time -Ada- the DoD common HOL - possesses many programs were often charact,.r!;ed .,s a set o! .•.J

features supportive of software engineering princi- cooperating yet. independent tasks where scheduling .7
pies such as packages, generics, and exception han- techniques are a critical component and the
dling that the Ada software community believes will sequence of task schedulings may bc dependent on
lead to reliable, maintainable software systems. Ada external stimuli. Typical implementation languages
addresses the problem of programming-in-the-large had no direct provision for a tasking rnodl ;;i thw
and there are many existing large DoD software sys- executive the maso.hdi"-heeuieprovided temeans for s 'heduhirg, inktr
tems fielded or under development in different. pro- task communication and interrupt handling Mt of
gramming languages that may take advantage of Ada. the functionality of such basic run trmo, ise.utvt - t,- -
Various transitioning approaches have been dis- inherent in the Ada language itself ,,hruati7:, thti
cussed in past studies 1-2. Approaches to transition- need for an executive to drive the sy stt .i
ig include: Thus in the incremental rewrile or nulti-lingual

a) Complete redesign/rewrite approach several views (as depicted ,n figur. 1- 1 f

b) Automatic translation the Ada system, the foreign code and the exeut ie -

c) Incremental rewrite which may involve a multi- are possible. Figure ]-a portrays I h, virw ii whr,h "" " "-

lingual system capability Ada tasks are fairly well separated frorn foreign-i
language tasks. The Ada tasks utilize the Ada run-

The complete redesign/rewrite approach pro- time system; the foreign language tasks titilm It'.
vides the most benefit from the use of Ada features existing executive and the degree of interaction nmy
yet may be the most costly to implement. Automatic be minimized. Such a view is feasi'. wh,,n on,, is .

*.' translation runs awry when system executive calls, rewriting major logical sections of the - .code.
*. multi-tasking and direct code are involved. Addition- In Figure 1-b, the Ada run-time support ,il, te .- '-.

alMly, an automatic translation approach only serves built on top of the existing executive. Such a view

*Ada is a regl esrred trnde'nrk of the J S. ,Dept, o mefense may be extremely useful if we consider the strathg)
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a; separation of Ada tasks and b) Ada run-tine or, top of existing c) exenative interface on top of

foreign language t ask, executive Acia runt'mv

Figuire J-1: Views of Appiioxtion'System level interfaces ., M'ulti-lisgual Systems

of using mulhplu Ada programrs aF I. lit hbaswci n RNll)S in Ada. It was assumed that existing RNTI[)S
interfacing with foreign language tasks iss opposed to tasks wiritten in k . S-2 miust be viable wvithiout soure
multiple Ada tasks within a single Ada Proiranii. Tttt changes in the ctombined CM'd.". Adai environmnent,.
underlying executive would then continue to Pivd(Tus existing C'MS-2 tasks retain the same interfae
the necessary "tasking" semantics. Th~s vii i wnuld to visihle executive functitorts to handle executive .,r
require validation of the Ada system utilizirii the vice requests.
existing executive.Twapriiis ee nlyd-

Two ppr~v.-iuswere-Anly/e - ho initiltipro-
Figure I-c depicts a viewpoint istcru the Ad a grarnring approach with tich task seit an Ada pro-

run-time support provides the basic executive capa- grain tntd thf- viiportxp;:F~t 1 i igurt, 1-1( it Aih
bilitics arid an interface is provided wvd 1; ;ii, the Ada run-tune systemn serving as lie undcilying
ing systems functions into Ada primiitives. Tliec executin.e. A summary or this ease slhidy is provided
foreign language tasks need no mo[ 10ie '.rt (viT in Section 11. We believe the case stutdy raises severil
retain their existent. system. level colls thr ough t1ti- issues with respect, to:
interface. The Ada compiler and run-time would nuot-Adruiindesosthtacitprsbd
necessarily require mnodifluatiori arid thus if void-1 d ythlanugerfeeceatru
on the particular hardware target, no revalidation b h agaerfrnemna
weuld he required for use in the coo I-ig~ pt ntcrtask comrsunieation and datra sharing
tion. -Task dispatch arid terminaition

These three views differ in the level of intense- -System level and program envil imterfacrn 'in a
tion bietween Ada tasks and fore~gr ag~~IeI multi-lingual environment.
and the system-level interfaces. Art Iriterusietrics

recomendsSection III addresses these and other issues of
study 1 eomnsdisallowing the intfermiixing ofimotneiingrigAdin ul-igals-

% ~~~Ada and existing CMS-2 tasking code due to consider- tempotneis.egagAai ulilnulSs

able technical difficulties. This paper summarizes an
in-depth study of one particular CMS-2 multi-tasking Pl. RNtsTS C.: so :,r
systeni RNTDS (Restructured Naval Tactical Data Sys- The Restructured Naval!a ca... a Sy'",~
tern) in an attempt to qualify these technical (KNTOCS is a:- ex~san4 \.W vo:
difficulties and determine the technical feasibility ofir M2.IrusoonA YK cm trunr

*intermixing of tasks in the two languages while main- t~tn- 7iI ruin-t rn1, n-rat! v
taining the existing tasking model.

RNTDS includes a large co1 1
ect'on 'hbray of

During 1983. we conducted a study 3 for the Navy build:;-ng blocks - individua. a ro- - r__.-
FI,TCOMBATDIRSSACT Dam Neck, Virginia concerning ou s typC2:; of Naval sheps b
transitioning RNTDS to Ada. The opinions and conclu- informnaion. II is instructive to lank at, RNTD-, to -P
sions expressed in this paper are those of the authors to what extent, if any. the use o, Ada can be mtro-
and do not necessarily reflect the official position of duced into the RNIUS program, since. 'ike many -

FIXTCOMBATDIRSSACT. That study focused on two other existnng programs written in languages o ther
major areas: than Ada, it. has its own taskirig v..e. ....

*1) the development. of an Ada strategy for modeling from Ada's. its own concept of data sharing, and it's
full RNTI)S tasking and data access behavior owAn mat hod for cnstructing systems.
addressing all RNTDS requirements in an
integrated approach. RNTIJS Tasking Model

S )tedvlpeto taeisfritgaigThe basic unit of work in RNTDS is the (single
Ad n *- n ND rgas purpose) task. Ther are three categories of tasks.

Ada nd CS-2 n RTDS rogrmsapplication. 1/O. and system control.

KTeetoaesoivetgto adrse anThe bulk of RNTDS tasks are application tasks
* ovral gol ofinsrin th fvsibiit~ nftransittiningwhich perform functions related to carrying out the

RNTDS to an Ada framework while niaintaining ttie
behavioral characteristics of ant RNTDS program exu- program'~s mission: the processing. evaluation,
cution. The viewpoint from which thtits study was con-dspaecofttildt. .

ducted considers an incremental transitioning 1/0 tasks perform I,/ O operations on behalf of
approach rather than a redesign or translation of application tasks for a specific peripheral device.
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There are several categories of s) ''ci out r-l Scheding TSCs
tasks which include executive tasks called exectiive A TSC may be explicitly scheduled by another
service routines (ESRs) which pr firm 1y4tTri MeT- task. possibly with a delay, via a call o an executive
vices such as task scheduling and dispatching; error service routine, or can be implicitly s,'heduled upon
processor tasks, which respond to syslcrn or the detection of a particular type of event such as
application-detected error conditries: orad ("'Uirton the detection of an error condition or an interrupt.
Service Routines (CSRs), which n general provide Time-dependent tasks can also be scheduled at regu- s
system support (such as pcrforr,: "i r i.'., :, i. I1 lar intervals - triggered by real-time clock inter-
calculations), but could also be used to share rupts.

*."" tactical-oriented code between sl-aratr, dl~l',,, ii Each TSC is scheduled at a particular dynamic
tasks. priority level which indicates the "tactical .,

In RNTDS, application tasks are schidirled for significance" - and, therefore, relative importance of
execution in groups of tasks called task ;.et chrs - that particular scheduling instance of the TSC. O
(TSG0), rather than as independent tasks. The order That dynamic priority is "inherited" by all tasks in
in which the tasks within the "'l'St are dispaehed the chain and facilitates task dispatching. Each
(executed) is built into the definitions of the indivi- scheduling of a task set chain may be at a different
dual T('s. priority level.

The set of TSCs in any given RNTDS program, as TSCs which are explicitly scheduled by another
well as rnakeup and ordering of each individu ' TWC, TSC's task are added by the run-time system to a sys- - .
is static arid is specified as part of the p; ograin tern queue for later dispatching. After that point, the
specification process. The RNTDS system designers scheduling and scheduled TSCs are totally iidepen-
have rormplete fredorn to group appliation tasks dent of one another: they will compete against one
out of its library together into "complex" task set another for system resources (including CPU
chains since application tasks are, by design, totally resources) and can terminate in any order.
oblivious of what the other tasks arc in any TSC, and r
since the same application task may be included in The same TSC may be scheduled any number ofsincentheesame apicaton tsk may be includedintimes concurrently - each instance possibly at a

different priority - the only practical limitation being €. _

Within an individual TSC, the tasks are linked determined by the size of the run-time system's .-

together, possibly including loops, and are dispatched scheduling queue. The run-time system supports
and executed in the order in which they are linked "planned prioritized degradation" whereby it disre-
together. The component tasks of a TSC are parti- gards previously scheduled, low priority TSCs in favor
tioned into sets of tasks, and the sets are further par- of higher priority TSCs when it encounters overload
titioned into subsets. The subset boundaries are situations.
significant because the tasks within a particular sub- T T hr Phltit
set are allowed to execute in parallel (on separate
processors) if a sufficient number of processors are The RNTDS run-time system supports three lev-
available. The set boundaries are significant because els of execution: Normal D~vpteh (the lowest level),
these represent points at which the execution of a Interrupt, and Error (the highest level). The vast
TSC can be terminated: Any task within a rsc can majority of RNTDS tasks execute at the Normal
issue a call to the Terminate TSC executive service Dispatch level. The Interrupt and Error levels are .

routine(ESR). When such a call is made, the TSC exe- primarily reserved for the run-time system's initial ".
cution will be terminated at the end of the "current" response to the detection of an interrupt or error
set of tasks - where the current set is defined as the condition, respectively; most typically, the run-time . '

set which includes the task making the terminate system's response is to schedule the appropriate
reauest. interrupt handler task or error processor tasks for

Figure 1I-1 is an example of a TSC. which includes later execution (dispatch) at the Normal Dispatch -
two set-, one of which includes two subsets. This level.
cxamplc also illustratcs a loop maning that poicn The run-time system maintains a queue of tasks
tially, this TSC would conlinuie to execute "forever" which are ready and waiting to be dispatched at each
on"" it s-.hed,,ied -0 ,oess oce of 1he t within execution level. Each task in the dispatch quene has
the hamn calls the 7/rminate "'CE R. a priority associated with it; more precisely, each
start of chain instance of a task within the queue has a priority

ak> ...-------------+ associated with it, since the same task may be in the
dispatch queue any number of times. Whenever a

tak subset I set I
task 2 j CPU becomes available because the task executing on . -

------------------------- it completed, the run-time system assigns the e "
highest priority task within that queue to that freed

v up processor.
------ > -- -+-------------+ One important requirement of the run-time sys- 5

I task -3 + subset t 2 tern is that individual tasks will, in general, be------------ -------------. set 2 . .
[ task 4 I subset 2 I allowed to "run to completion" without being

I task 5 [ preempted by any other task at the same execution
.-----------+-------------+ level. This means that when a task within a "low"

[v priority TSC schedules a higher priority TSC, the
v scheduling task will regain control of the CPU and will

................. go to completion without being preempted by the e "
first task(s) in the newly scheduled TSC. Another 0

Figure 11-1 Example of Task Set Chain requirement is that no individual task will be execut-
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ing concurrently on two or more CPUs. The onLiy CPU taak body typicaljIsc is
preemption that the RNTDS run-time system sup-

ports is the preemption of a task executing in the begin
Normal Dispatch level when an interrupt or error is

detected, or the preemption of a task executing in begin -- first set

the Interrupt level when an error is detected. declar first subset in first set

Inetn DaaCmuncto ti: PKGI.taskj; .#,

______________________t2: PKG2.task_2;

RNTDS tasks are, by design, rather limited in begin ... end; 
Z"

their ability to communicate with one another. end; .-

The primary data communications medium while ESR__ERMNATE.has.otileenrequested loop

among RNTDS is the common data base (CDB). All begin -- second set

data which is valid beyond the execution of any indivi- declare -- first subset in second set

dual task (i.e., all residual data) lives in the CDB. It is t3: PKG3.task3; .

a shared memory resource available to every RNTDS begin... end;
task. In addition, a task which is scheduling another

TSC can pass a data packet containing information declare -- second subset in second set

about that specific invocation of the scheduled TSC. t: PKG4.task_ 4;

That packet will be available to each task within the t5: PKG5.task_5;
begin ... end

scheduled TSC. end;-end;

Ill. Transitioning Issues and Approaches end loop

Run-Ume Support Issues in Transtoning to Ada end typical_sc;

In our RNTDS case study we encountered several Figure 111-1 Ada Code Fragment Describing Sample TSC

aspects of its run-time model which we found at odds
with or undefined in (i.e., left to the implementor's An aspect that cannot be as simply modelled in -

choice ) the Ada model- These aspects included: Ada is the delayed activation of task set chains, where .

one task can schedule another set of tasks for later
1) task scheduling, activation. Ada does support the delay statement;

2) task prioritization and dispatching, however, such a statement cannot be used in a task

3) "graceful degradation" under overload situa- which wants to delay the activation of another task

tions. set chain, because the activating as well as activated
task(s) would be delayed, violating one of the RNTDS

4) intertask communications, tasking requirements that application tasks, once

The following subsections will examine these started, are supposed to run quickly to completion

issues more closely and will, whenever possible, pro- without delay (i.e., without any preemption).

pose possible ways of modelling these aspects of However, one can model the scheduling delay by
RNTDS in an Ada framework - i.e., though interaction putting the burden for initiating the delay onto the

with the Ada run-time support.. scheduled task set - by putting a delay statement at

Task Scheduling the beginning of the task set chain body, and by hay-

In RNTDS. application tasks are always scheduled ing the amount (if any) of the delay to be passed (via .

in groups within a task set chain. This aspect was rendezvous) to the scheduled task set chain.

quite easy to model in Ada: Each RINTDS task could Task Prioritization and Dispatching

be defined as an Ada task type, with the task body RNTDS (and many other existing systems written
performing the intended function. The task set chain in languages other than Ada) assumes a particular .. -

could also be defined as an Ada task type, whose body model for task dispatching that differs from Ada's

would control the order in which tasks were executed model. Repeating some of the characteristics of the

by activating them in the appropriate order and by RNTDS run-time system:

making use of Ada tasking semantics which define

points at which one task would await the completion dynamic priorities

of other task objects which it activated. The use of multiple scheduling of task set chains

task types in representing RNTDS tasks and task set task lock-out - the same task will not be exe- "

chains would easily permit one to create any number cuted concurrently on different CPUs.

of separate "instantiations" of the RNTDS objects con- tasks of a given execution level (normal. 1/0 or

currently as required in the RNTDS model, interrupt) are non-preemptable by tasks at the

Figure 111-I illustrates an example of what a task same execution level.

set chain description could look like in Ada, model- The Ada run-time characteristics as specified in

ling the behavior of the task set chain described in the Ada reference manual include the following: .

figure 11-1. Note that the requirement that. RNTDS Static priorities may be assigned to an Ada task

tasks within the same subset arc potentially uxecut- type and are associated with every activation of

able in parallel is easily encapsulated in Ada by a task object of that type.
activating ll of the tasks in the sni su t within a s o f tate (e.,

the same Ada block statement.-Thrisngurne(i..plc)dfednte
Ada standard that would ensure that objects of
that same task type could not be dispatched on

different CPUs concurrently.

The Ada standard leaves the CPU preemption

policy up to the run-time implementor's choice.

* .. 'I ,
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We do not see any way to use Ada's static priority and which shares data amongst tasks in a "common
scheme to support run-time requirements such as database". We are convinced, based upon our earlier
RNTDS's, except to the extent that static priorities study, that such communications schemes can be
could be used to distinguish application. 1/0 and sys- modelled in Ada using the rendezvous and shared %
tem control tasks from on another. If Ada is to be data.
transitioned into systems with similar requirements, There is, however, an aspect of RNTDS's 'inter-
we see the need for at least the necessity of imple- task communications" that is not easily expressed in " .
menting a customized scheduler/'dispatcher into the standard Ada terms: One task (in a task set chain) is
Ada run-time system, possibly going as far as imple- able to signal the system (and indirectly, the other , .

menting a multi-programming system which could tasks in that same chain) that execution of the tasks
allow multiple Ada programs to be executing con- in that chain is to terminate after all the tasks in the
currently. current set are finished executing. An RNTDS task

A customized scheduler/dispatcher would be does so by calling upon a system service routine and
needed to guarantee that an existing system's CPU it does so "anonymously", i.e., without identifying
preemption policy were enforced - at least for those itself to the system service routine - relying on the
tasks already written in the "foreign" (i.e., non-Ada) fact that the system knows which task set chain it is
language. a part of.

To implement a dynamic priority scheduling pol- In figure Ill-i we show an example of an Ada
icy similar to that built into RNTDS would take more model for a task set chain "type". For a "child" appli-
dramatic action: cation task to signal the parent that it is to terminate

If one tried to support dynamic priorities in the itself at the next set boundary - and do so
context of a single Ada program, one could add a anonymously, without identifying its parent - would

system-level package similar to that specified in require direct support from the run-time system,

figure 111-2. Such a package, which would have to be again in the form of a system-level, applications-

accessible to applications code, would allow that visible package.
"non-standard" attribute to be passed down to the
run-time system. A routine such as setjtrriority could logistics of Interfacina Ada with Other Languages

be interpreted, for example, to assign a "dynamic The evolutionary transition of large DoD multi-
priority" to the Ada task making the call, or perhaps, tasking applications from a foreign . -
to tasks which the current task wntdd Iater activate, language/executive combination to Ada involves
Within the same static priority level, the customized interfaces at several levels. These include: - - -
dispatcher could use this new attribute of a task in a) system generation - linkage and data
basing its dispatching decisions, configuration level

package SCHEDULER is b) the programming level

maxpriority consant integer := iTpl. defined c) the system level_
type prioritylevel is integer range O..max.priority; At the linkage and data configuration level,poedure set-priority(dyn_.priority: priority-level); : .:::
proce several views are presented regarding the integration

-additional scheduler specs go hereend SCHEDULER; of existing system generation capability (such as
exhibited in RNTDS) with standard Ada tools. At the

Figure 111-2 Specification of SCHEDULER Package programming level, the need for sharing data and
interfacing calls between components of the various

In a multi-programming environment which languages is discussed. At the system level, an
allowed one program to initiate the execution of executive,/Ada interface is explored to interface
another Ada program, one could presumably include between service calls by the foreign language rou-
a "priority" to be associated with that newly tines and an Ada run-time support. The
scheduled program. Such a priority-scheduling pol- executive/Ada interface is considered as emulating-. -

icy is very common in multi-programming environ- necessary executive functions by transforming exe-
ments, and is outside the scope of the Ada standard. cutive actions into actions supported directly by the

Graceful D Uodt Ada run-time support library.

In RNTDS, when the system load becomes "too System Generation - linkage and data coi f.g.
high" and the run-time queues are full, the run-time The primary aspects of this phase considered in
system is allowed to terminate the execution of lower our case study are:
priority task set chains in order to permit higher 1) the linkage of object modules of different
priority tasks to continue to run. languages - assembly, Ada and other high level

The Ada standard does not specify behavior languages
under similar overload conditions, yet it is an issue 2) the determination of segments
with implementations for at least small, memory-
limited embedded systems. We believe that a run- 3) the modification of code to utilize appropriate -

time system could be implemented which could abort base registers.

or raise a system-defined exception in low priority These aspects of the system may be addressed
tasks when it was unable to activate a higher priority from two points of view:
task because of a "system overload" situation. 1) system generation of the foreign code system"

Intertask Communications prior to (separate from) Ada linkage! -

RNTDS has an intertask communications scheme 2) system generation of a single integrated applica-
which passes packets of information between tasks Lion system.
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Generation and Link Tme Considerations The disadvantages which appear to make this

In our case study the existing system generation approach untenable are:
process utilizes the RNTDS information bases to a) no foreign language task or assembler routine%

configure the system, selecting appropriate library ,d -

tasks and determining program and data segmenta-
tion. Once the designer has selected task sets, the b) since no foreign task could cause the initiation of
process automatically performs the remainder of the an Ada task set, the designer must consider the , . -.

functions for generation - !ink, program and data implementation language when determining pro-

segmentation and base register setup. Two cessing paths
approaches were considered: c) the system generation process itself must be

1) use the existing system generation process for cognizant of the language associated with each

existing task sets whose tasks are all foreign set of tasks.
language routines and to rely on the Ada linker This view treats Ada as a special language, the 4
to select appropriate tasks from the library and primary language of the system, an approach which
perform the segmentation for new task sets may not be suitable for an incremental transition
implemented in Ada. strategy.

2) a single integrated system generation regardless System generation is a process to be applied to
of implementation language. an entire application system and thus this separation
Figure 111-3 depicts the point of view of the sys- of activity based solely on choice c! implementation

tem generation process preceding linkage with Ada. language should be questioned as a viable mechanism

This is the view postulated in the early RFI4 for ALS/N for transitioning. The construction of systems (the

for integration of MTASS. Note: the total view taken in genpration procrsF) should be independent of thit -..

the ALS/N and in the Army's ALS' is that if an inter- implementation language of subcomponents of the . - '
system. At the post-compilation phase, modules are

face to foreign code is permitted on a particular sys- available in relocatable object code destined for the
tem, then the foreign code is linked into one unit inwhc l xtra eeene aebenrsle.same target machine. The formal, of the relocatable "' ''-.
which all external references have been resolved, object module may differ depending on the

compilation/link system used and thus require refor- 3 .
[M" I ORYAWAN -"-matting to "import" the code into the system. We sug-

gest an integrated approach whereby multiple seg- -
ments of object code may be imported prior to the
resolution of external references. As depicted in Fig-
ure 111-4, this can be viewed in two veins:

1) importing foreign language code into an Ada sys-
&Su tern

2) importing Ada code into the existing system gen- -
eration process.

AV The first approach is consistent with Ada
-------- language requirements. The language reference

manual8 does not specify the linking procedures. We
advocate this approach when the view of a single Ada '
program as the encapsulating system structure is fol-
lowed.

SHOL
ONlj- Ccd. Obmftt

vs.
IMP~rIRPORMI

c/7t.'

Figue 11-3 St Obec Cede . '-".

either the existing system generation process or .
the standard Ada linker", .. ,N'

b) since the Ada tools remain intact for handling im xm.s,,,,6 a%""' ,,Ada. no revalidation of the Ada system would be
required f
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This second approach is extremely reasonable if is a prime component in the underlying design of
the multiprogramming Ada model is followed. The many existing systems and cannot easily be avoided
advantages of this approach are: in an incremental transition.
a) Ada is viewed as an implementation language on The shared data areas act implicitly as a file to

the same level as the other languages used in serve as a storage area between different accessing •
the system agents. Ada packages describe the CDB in a mannr

b) the system generation process continues to have analogous to existing CMS-2 sys_dds constructs.complete control of data and program segmenta- When foreign language routines are invoked from Ada -

Lion the Ada global data is not visible to the foreign rou-
tines unless data items ePre explicitly passed to the

ge foreign subprograms as dictated by the Ada refer-
a) A validated Ada compiler consists of the ence manual.

compiler/linker and run-time support. This In a multi-lingual system, routines in either 4
approach provides an alternative mechanism for language may require access to the same data seg-
linking and may require re-validation of the Ada ments. For example, sys._dd descriptions can be util-
system although in the case of a multiprogram- ized in a CMS-2 task while equivalent Ada packages
ming model the issue of combining multiple Ada are utilized in the Ada tasks. The CMS-2 compiler
programs to form a system has not been utilizes the sys..ids. The Ada compiler uses the pack-
addressed with respect to Ada validation, age. The system generation process can utilize
Machine Dependent Characteristics: either. It is important to insure that Ada language

Segmentation. Base Register rules have not been violated. This approach provides
On small machines with limited memory, issues an aliasing capability between the languages. Yet, it

can be viewed as similar to the legal case where
such as segmentation become important. In our case abeveeasimarothlgacsewre......,
suc a tation beco iont. in oura representation specifications are utilized to access astudy, a tool - the Configuration Control File Genera- particular location which may also be accessed out-
tor - determines the segmentation of data and pro- side the scope of the Ada program. Indee3d. after the
grams and the setup of appropriate base register system generation process, representation
information, specifications could be automatically inserted in the

A standard Ada compiler/linker will need to util- Ada code to achieve the same effect in a perhaps less
ize the available base registers. In RNTDS. the deter- clear manner. In the multiprogramming view, the
mination of segments and choice of base registers is CDB can be viewed as an in-core file that is accessed
primarily a post-compilation activity. An Ada system by multiple programs, thus there is no conflict with
will need to support comparable notions. The ques- Ada semanties. r t-r-c-w
tion is the level of control available to the user or
automatic system generator. Various options are pos- It is important to note that this model of data
ible: sharing does not explicitly enforce synchronization.
a) complete control of the segmentation and base Indeed, in RNTDS, synchronization is given by the

rgismplte detrminohsetation t t he task set structure (signaling the initiation of sets ofregister determ ination is left to the• . i - " "1

compiler/linker tasks when data is available) and not via explicit
locks on the data. The stimulus-response paths

b ) the compiler supports an implementation- defined by RNTDS task sets are retained in the multi-dependent pragma for control of segmentation lingual model.
c) the user (either by hand or automatically) Subprogra Invocation

includes representation specifications for data The invocation of subprograms from the foreign
and tasks (this may necessitate an additional l
compilation after the generation process which language must be examined in the context in which • -
determines the segmentation) they could logically occur. In our case study, we

determined it was not necessary for application-level
d) the linker accepts user commands to assist in CMS-2 tasks to directly invoke application-level Ada

this determination. subprograms or tasks. In this case, each task was a
To uphold existing system semantics, we believe small, indivisible sequence of instructions (100-200
linker commands are the appropriate approach. The source lines) that is single-purpose. We recom-
segmentation information is truly a system-wide mended that while we support the intermixing of
activity and thus in addressing separate compilation tasks written in different languages to form specific
and programming-in-the-large, it is a post- task sets, intermixing high-level languages within a
compilation activity, task (calls) did not seem necessary. A minimal level

Program Level Interface of effort would be required to convert the entire task.
Note: in our case study, activation of other tasks was

At the source program level, aspects or both accomplished via system level calls. We recommend _data sharing and program invocation must be foreign language application tasks be permitted to
addressed, invoke Ada system-level routines or foreign language

Data coded system interfaces be allowed to call Ada .-
The RNTDS model, similar to many real-time system-level routines.

multi-tasking DoD systems, incorporates the notion of system Level Interface -
a common data base (CDB) which is accessible by S-8W" -", Ir
different, independent tasks. This notion comprom- In the modeling of RNTDS behavior in Ada that
ises the reliability of the system as compared with was undertaken in the case study, no modification
the more controlled access features inherent in Ada's was to be required of existing foreign language appli- 0
scope and visibility rules. Yet, the common data base cation tasks and thus the '"-iing tasks continue to
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utilize executive calls to perform system functions. IV. Summary and Conclusions- -
Ada tasks will rely primarily on the Ada run-time sup- The issues raised in this report can be largely
port library. The executive and the Ada run-time sup- handled within the bounds of Ada semantics. Yet, a . .
port each provide the necessary task management particular compiler system may thwart transitioning
functions. To support a single application system, we attempts as the Ada language reference manual per-
require a common underlying task management sys- miLs the implementor a high degree of freedom in -
tem or data structures. To achieve this mechanism, choosing strategies that effect important transition ", - - ,
we studied interfacing the existing executive to the topics such as task management, linking and inter-.-.
Ada run-time system- the executive being an inter- face to foreign code. The following paragraphs out- % . -

facc bctwccn thc forcign languagc tasks and thc Ada line issues in these areas that must be examined in
run-time system. The application system then con- the particular compilation system for incremental "
sists of both Ada and foreign language tasks execut- transition and potentially for new development of .0
ing ill a uo!l-bive evlViulonment. i je f is large DoD application systems.
environment is the Ada run-time system. The "glue"
of this environment, providing the capability to inter-
face existing tasks, is the cxecutivcAda interface. Task ManAgement

A crucial issue to the implementation of the With respect to the Ada run-time system two

executive/Ada interface is how one envisions that areas are critical to transitioning:
interface. It can be conceived of as: 1) the structure of the run-time system

a) an interface sitting strictly on top of the Ada 2) the scheduling/dispatch algorithms for tasks of
run-time support (i.e. no special access - simply the same static priority. S
an Ada program). It would not directly be The run-time support system should be struc-
involved in the task scheduling/dispatch process tured in a manner facilitating the interfacing with
but would act as a buffer task indirectly causing other system-level functions, permitting system-level
the scheduling of desired tasks through the Ada functions external to the Ada run-time support
run-time system. library to invoke system primitives. Such primitives

b) an extension of the system level capabilities might include: '_
which is permitted access to a selected set of scheduling of a task or an I/0 request
run-time support routines and data structures.

Both these views are forms of the approach given determining the parent ofa task
in Figure 1-1 in which the executive/Ada interface setting and interrogating executive-specific flags . "

sits on top of the Ada run-time system. We believe associated with a task control block (dynamic
that the interface implementation as well as the Ada priority, task set termination) . . - .
run-time system must both have access to the sys- modifying base registers to change segment -"" -
tem data structures for efficient task management access.
purposes. This can be accomplished in several ways: The Ada language does not prescribe the

1) direct code to access specific memory locations behavior for scheduling tasks of the same static

2) system data structures are visible to the priority. The scheduling algorithms for dealing with

executive/Ada interface tasks at the same static priority level should be a
replaceable unit - the chosen implementation con-

3) Ada run-time procedures or entries are visible to relle byith he c ation clar,trolled by the application manager. Tn particular, "-'---'-'
the executive/Ada interface, task lock-out, time-slicing, task pre-emption and task

Case (3) is the cleanest and most preferable selection from a list of ready tasks are not.
mechanism. It fosters the Ada concept of an abstract addressed. Existing systems in transition m-y --
data type. Rather than choosing case (2) and giving require or forbid the strategy chosen by the imple-
the interface direct access to the data structures,an mentor. This may have ramifications ith respect. to
Ada package can be provided encapsulating the data validation. With respect to priorities, the language
structures and the visible operations on those rtruc- reference manual does not prescribe a range of
tures. As in an abstract data type, the data struc- priorities. The range permitted b; a patti-Al,r Ada
tures themselves are hidden and the visible subpro- i-E-..-* ' ,-- - . "
grams provide a controlled access mechanism to sys- tion system ode under fransi'.
tem structures. The disadvantage of this approach is

that the design and packaging of the standard Ada 1A ing/lnter:ace to Forein Code
run-time system becomes important.. The granular- - .--fae -"'. "
ity of the Ada run-time system should be such that. Te in0p~em.or nas

necessary primitive operations may be made visible choice as far as user commands to e Ie
to this extended system interface. The exccutive/Ada level (if any) of suport r fo .... "*. ...

interface must be able to engage in activities such as: mentation of the I\, 7 , .

The implementation is aso per-,ted ,_o p.ecv -es-
- scheduling a task trictions on the allowable forms and placeen! Ur'
- determining the parent of a task parameters. Thus an implementation w.c es su

- associating bits of data such as flags for termina- port the INTEFACE pragma c e..c , _'.

tion of task chains or dynamic priorities with front Paasing any inforrm.jtiai, and a.ia -

task control blocks simply as a trigger of the foreign an ag' t " ..

Ada largue.ge re'erence 7, ...."
- scheduling an ]/0 request fo sign code from invoking Ada routintes nor dc,.s 't %""

- modifying base registers to change segment state a means of doing so. C ' F':
access. are left to be defined by other lanwuage proce scr,%.
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-Thus, with rcspcct to linking and intcrfoec t~o forcign

r--ust d retermnine in the context of 'he app~ica'mon

W11at is required and seek an miplemieO'.tiof that- ;s

suflicierntiy qlexible to meet the requirements.
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EXPERIENCES IN ACQUIRING AND APPLYING ADA TO THE SUBACS PROJECT

Oliver Cole and Steven North

OC Systems, Inc., 119 S. Ingram St., Alexandria VA 22304. -

Abstract of the software architecture to
support the isolation of major

Ada (i) is being used on the DoD functions.
Submarine Advanced Combat System
(SubACS) project, a large-scale, The system is distributed.
embedded DoD system. The intent of Programs are dynamically assigned
this paper is to give a high-level processors and memory resources as "
view of the Ada being used on SubACS, they are run. Lastly, the system is
and to share some of the experience multilingual. SubACS is using Pascal,
that we have gained from our effort. CMS-2M, Ada, SPL/I and 3 different
The SubACS project is briefly assembly languages.
described, followed by a description
of the Ada being used. As of February -'

1985, SubACS Ada will be in production
use by thirty programmers. Experiences The Ada
acquired during the production use of
Ada on the SubACS project will be
published at a later time; the results The Ada used by SubACS is vanilla "
so far are encouraging. Ada. There are no

implementation-specific features, such
as representation specs or address
clauses. There is a single

SubACS implementation defined pragma: an
interface pragma. The Ada on the

The SubACS project will integrate AN/UYK-44 is virtually identical to
the combat and acoustic subsystems of the Ada for the 68000 except for the
a submarine into a single system target operating system calls, which
capable of making combat related the user accesses via an interface
decisions based upon sensor data. It pragma.
is a large project, requiring hundreds
of man-years of effort in software and Currently, SubACS is using a
hardware development, subset of Ada. This subset excludes

floating-point, exceptions, and much ..-
The system will consist of of tasking. The syntax of single

AN/UYS-1 and other signal processors tasks is retained by the subset. As a
communicating acoustic processing data result, SubACS tasks are declared as
to AN/UYK-44 and Motorola 68000s. Ada tasks and share data and code
The primary means of communication according to the visibility rules of
between the processors is a redundant Ada. The alternatives to using the
fibre optic bus running the "length" Ada single task construct were
of the submarine. ungainly.

The system is fault tolerant. An The Ada being used by SubACS
error in one portion of the system consists of the TeleSoft-Ada
does not propagate. Hardware and Front-End, and three 0
software controls ensure that a faulty code-generators: one for the
program cannot crash the system. The System/370, one for the AN/UYK-44, and
runtime environment includes one for the Motorola 68000. There is
multiprogramming and multitasking. single Ada Front-End for all three
Multitasking is required by the nature targets and it comprises about 70 "
of the real-time SubACS application, percent of the bulk of the compiler.
and multiprogramming is used as part There is no AN/UYS-1 Ada code
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generator. The AN/UYK-44 and 68000 code debuggers, and good V. %

are being developed as targets; the machine-code/source-code listings are %

System/370 is used as ahost, needed. Unfortunately, the attractiveoptimizations in a monolithic code * 4

The three different generator result in a great deal of %
code-generators were developed in code-motion, making the listings

parallel by different sub-contractors substandard. For example, the

and have different designs. The monolithic code generator emits the
AN/UYK-44 code generator generates library package body statements and

assembly language for an existing set main program elaboration code in a

of support software called MTASS/M. single procedure, saving the procedure

The code generator is broken into two linkages that are required in a 4
halves: the first half transforms the non-monolithic code generator. The

graph representation output by the resulting machine-code is difficult to

front-end (called Low Form) into a correlate to the original source,

sequential, pre-fix, largely however.

machine-independent representation
(called Sequential Low Form) form. The last of the three code

The second half of the AN/UYK-44 code generators, the System/370 code

generator generates the AN/UYK-44 generator, transforms the Low Form - -

assembly language from the Sequential into System/370 code without an

Low Form. This design has proved to explicit sequentializing stage. The
be lowest risk and conceptually the code generator makes a recursive

simplest. Most of the sequentializing descent over the Low Form, and outputs
half of the code generator can be assembly language or object code.

re-used for future retargets.
Overall, the sequentializing

The 66000 code generator is non-monolithic style of code %f-- -.

monolithic; it is invoked once during generation seems to have turned out

the program build process, and best. It is easiest to understand and %

generates code for all library units to re-target, and is producing good
at that time. Because of this design, quality code. The monolith style has
a number of optimizations are advantages in some types of
available, such as eliminating optimizations, and the overall

un-called procedures, using minimum generated code organization is
sized addressing, and rearranging simpler, but the added cost of
elaboration code to produce a single unnecessary code generation seems to
procedure" to elaborate the main outweigh the other advantages. It is

program. Additionally, to support the still early, however.
requirements for reconfigurability,
the machine code for the 68000s must %
be position independent. The 68000 Testing
does not allow 32-bit displacement in
the position independent addressing IBM has put significant effort
modes, but the monolithic code into testing these compilers. The
generator style can easily handle full intent of IBM's testing is to provide

32-bit code displacement when it SubACS with a useable Ada, not
occurs, whereas a non-monolithic code necessarily a quick AJPO validation.
generator cannot. Issues such as performance and . . -

capacities take precedence over the
Unfortunately, the monolithic implementation of unneeded features. S

style forces code generation to occur
on all code, even if unchanged. SubACS Ada is intended for
Program re-builds are often desired embedded processors and has no need
after relatively minor code for human readable I/0. The target
modifications and it is unnecessary to hardware for SubACS Ada is not
require such extensive completed, and, in any case, is not
recodegeneration in such cases (Ada intended to be a software testbed.

compilers are slow enough already). Testing for the 68000 and AN/UYK-44,
therefore, is done with hardware

Listings are also a problem with simulators running on a System/370.
the monolithic style of code The tests for the System/370 compiler
generators. Much debugging will be are run on the System/370 directly.
performed at the hardware level in '..'.
SubACS due to the lack of good source -

'S - %
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Because of the multiple testing comments:
environments, a specific commenting
guideline was adopted for all tests to --date August 17, 1984

allow simple test usage. Special -- X 7

comments are included in all tests, -"'vU HARRY

and are defined as part of the '-PPP

guideline as follows: -# test problem report 541

--www Test name mean that this test was last modified.' '

August 17, 1984. This test returns a

Test name is the identifier of 7, if successful. The package HARRY

another test. The --www must be compiled before this test.

comment is a directive to This test need not be compiled, it ..V
compile the named test before will be mentioned by a --www comment

this one, in another test.

--ppp By adopting this strategy, a
simple command file can be written,

A --ppp comment specifies that for sny host, which runs all the tests

this file should be ignored until automatically by looking for special

it is mentioned in a --www comments. The simplicity Of this

comment by another test. A -- p scheme has greatly eased the

test has no meaning, except in maintenance of our continually . -

the context of another test, evolving test library; we would soon

When mentioned specifically in a be overwhelmed without it. .-

--www comment, then this test isEalintedvopntfth
compiled normally, and any specialEalintedvopntfth
comments (except the --ppp) are compilers, simple tests were written

honored, to test basic compiler functions.
These tests rely heavily on code

--xxx integer scraps from the Ada reference manual,
are typically a few lines in length,

All tests are written as and teat a single function. The

functions that return an compilers have since progressed beyond

integer. The test, when run, these tests, and they are no longer

must return the same integer used; larger test cases have replaced

as the --xxx comment, or the test them. These tests will be useful for

has failed. The test itself may initial testing on new code

be arbitrarily complicated, but generators, however. .

the result itself, is a simple ' ,

pass/fail. Compiler capacities were the b.

subject of much debate. Specific

--date Month Day Year capacity requirements for the b~ '

compilers are not known in detail; the

A --date comment describes the only requirement is to compile SubACS.

last date the test was changed. In general, capacities were
overemphaized for fear of running into

-- < text > a brick wall. Over-sized capacities
will be adjusted during maintenance,

A -- ### is a single line as part of an ongoing effort to

description of the test. increase compile-time efficiency. A
number of the tests are designed to

Additionally, a file naming validate our "~best guess" of the

convention is used. The first letter required capacities.
of each file name determines the type
of a teat: an X indicates that the There are hundreds of tests in the

test should compile and execute, a P current test library. Some are from ,

indicates that the test should fail in the ACVC test suite, most have been

compilation, a K indicates that the written to test specific functions or
test need only compile to pass. These capacities that are critical to

character assignments have been chosen SubACS. It is our understanding that

so as not to conflict with the ACVC IBM will make these tests publicly .

naming conventions,.vilbe

For example, the following .

Annual National Conference on Ada Technology 1985 241 r



Operational Prototypes were implementation, and 2) the SubACS

developed to test the operability of project could not afford to wait;

the two Ada targets. Multitasking critical-path pieces of software could

SubACS "applications" were written, not wait until Ada became available.

and run on SubACS prototype hardware. It was necessary, then, to choose

There operational tests are run on other languages to use until Ada could % . P1

each new compiler delivery and have replace them. Pascal and CMS-2M, are..-.
become de-facto acceptance tests of being used; Pascal was chosen for the

new compiler deliveries. The 68000, and CMS-2M for the AN/UYK-44.

prototypes are not large, but they are SubACS Ada co-exists with Pascal on

good tests. Because SubACS defines the 68000, and with CMS-2M on the

many pre-runtime and run-time AN/UYK-44.
interfaces over and above those of

*Ada, the early development of Normally, this co-existence is at

operational prototypes was critical to the program level, i.e., a single
the testing of SubACS Ada. SubACS program (of which there are

many) contains only one language:
A Heap Sort program is used as a Ada, CMS-2M or Pascal. At run-time,

rough measure to gauge code quality as however, a single 68000 (or AN/UYK-44)
the compilers progress. The will likely be running one or more Ada

Ada-Europe Guidelines tests for code and Pascal (or CMS-2M) programs, 9-.
quality were implemented and are used simultaneously. Logical communication
to guide optimization efforts, links between the programs are
Currently, the Ada compiler for the established at runtime. These
PN/UYK-44 generates code of quality inter-program communications
better than that of the CMS-2M primitives perform block transfers
compiler. The 68000 produces code of between programs and are language
quality approximately equal to that of independent. The pre-runtime software
the Language Resources Pascal compiler, does not realize that these transfers .'- ' --

at this time. cross language boundaries.

In the most ambitious testing Co-existence can also occur
scheme, IBM wrote a random test case within a single program. An Ada
generator. The test case generator program can call a Pascal (or CMS-2M)
produces random, yet equivalent, procedure, but a Pascal (or CMS-2M)
Pascal and Ada tests. The two tests program cannot call an Ada procedure.
are run and the results are compared. An Ada procedure environment is much
If the two are equal, the test case richer than that of a Pascal (or "-'1
passed. If the two are not equal, CMS-2M) procedure environment;

. something, somewhere, is wrong. The supporting that environment was not
tests are constructed from templates feasible using the existing Pascal (or

- and quite a number have been CMS-2M) implementations. The
generated; enough to effectively interfaces are mainly intended to '

exhaust simple control flow related provide access to machine code and to MW
* bugs. reduce the overall risk with an

immature Ada compiler; interfaced
It seems that a good testing procedure calls are discouraged.

,* environment is the first step towards

a good development environment. An interface pragma (as defined .- ":

* Testing uncovers deficiencies in the in the Ada Reference Manual) is used
development tools as well as finding to "co-exist" with Pascal on the
language bugs. It is absolutely 68000. One of two languages are

essential to automate the running of allowed as an argument to the SubACS
tests during compiler acceptance and 68000 interface pragma: LRS Pascal or .

" testing. 68KOS. The LRS Pascal interace pragm

allows access to procedures written in
Language Resources Pascal (or assembly

Co-existence language). For each LRS Pascal

procedure, the compiler emits a
SAlthough IBM made an early symbolic reference into the machine

committment to use Ada in SubACS, code which must be resolved at a later
other languages were included for two time. The other interface, the 68KOS-
reasons: 1) it was unreasonable to interface, is designed to give fast ... ,. ,,

link the success of the SubACS project easy access to the underlying non-Ada ,.
to the success of an Ada compiler operating system by generating a TRAP

.J . %":* -. ' V"%
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instruction in-line. A single Ada program corresponds
exactly to a single NOS process. An

The AN/UYK-44 compiler produces Ada program is not distributed. Many
relocatable assembly language as its Ada programs may be executing on a
output; the package bodies that single processor, but a single Ada 0
represent the interfaced procedures program will not run on more than one
can be swapped before being assembled, processor at a time i.e., all tasks '

so the interfaced procedure becomes contained within a program execute on %
"part of" the Ada program, the same CPU and share memory. Ada -

programs synchronize and communicate 4
The SubACS Ada run-time amongst themselves by NOS primitives.

environment will co-exist with the NOS primitives provide low-level I/0
current Pascal (or CMS-2M) environment capabilities, such as OPEN_.PORT,
by providing a common task priority CLOSEPORT and TRANSFER DATA between
definition for all tasks, regardless Ada programs. Calls to NOS to perform
of language. Ada tasks will compete I/O may be synchronous. If one task .. ...

for resources on an equal basis with in an Ada program is waiting for a
Pascal (or CMS-2M) tasks and if synchronous NOS call to complete,
possible, Ada rendezvous will co-exist other tasks in the same program may be
with existing multitasking primitives, dispatched by the local operating
Unfortunately, the two targets have system.
dissimilar executives; the executive
on the 68000 is preemptive and
provides a WAIT/POST event mechanism Observations and Recommendations
for task synchronization, whereas the
AN/UYK-44 executive is cyclic and Our overall impression of the Ada
non-preemptive in nature, consistent language is extremely favorable. The
with the Navy RNTDS philosophy. Ada compiler is immature and slow, but

Ada is wholly sufficient for the
The existence of multiple requirements of SubACS, and seems to

languages in SubACS has complicated be integrating well into the complex
the interfaces, but has reduced the SubACS environment. It is still early
overall risk and shortened the in the life-cycle of "ubACS, however. .. .
schedule. If SubACS was starting
today, it would still be beneficial to We are impressed with the software
introduce different languages to allow engineering facilities provided by
an objective measurement of Ada in Ada, especially packages. Smart Ada
terms of existing languages. consumers will emphasize the package .

concept. The package is the basic . -

building block of programs and the
4 Distributed basic unit of re-usability. When - ..-

purchasing Ada software, contractually -.
The SubACS application is specify the existence of specific

distributed over a number of 68000 and useful, re-useable packages in the
AN/UYK-44 processors. The deliverable product. With a little
distribution is intended to increase foresight, an Ada package store will -

reliability, availability and develop naturally as each new software
computing power. project adds one or two re-useable .

packages. Think packages.
A "single" operating system, N.

called the Network Operating System
(NOS), controls the distributed Acknowledgements
system. NOS assigns jobs (called
processes) on a dynamic basis to local We would like to thank the
operating systems for execution. The following people for their reviews
local operating systems are largely of this paper: Dick Drake, Lori .

autonomous; NOS is itself largely Govelitz, Paul Kohlbrenner, Paul
implemented as a number of NOS Popick, and Nancy Vesper.
processes. These NOS processes use
Process Create and Process Delete r-

primitives to start and stop other NOS
processes. CPU time limits and strict References
interprocess memory protection provide

fault tolerance. The "Ada-Europe Guidelines" is
available from the National Physical
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Laboratory as NPL Report DITC 10/82,
ISSN 0262-5369. It was also reprinted
in Ada Letters, Vol. III, No. 1
(July/August 1983), pp.37-50. We
highly recommend this for anyone
involved with Ada acquisition.
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