



MICROCOPY RESOLUTION TEST CHART



AFIT/GAE/AA/85D-4

Ĺ

•



PITCH-LOCATION EFFECTS

ON DYNAMIC STALL

THESIS

Robert L. Dimmick Captain, USAF

AFIT/GAE/AA/85D-4

Approved for public release; distribution unlimited

AFIT/GAE/AA/85D-4

# PITCH-LOCATION EFFECTS

ON DYNAMIC STALL

## THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Aeronautical Engineering

| Acce                           | sion For                           | 1    |    |
|--------------------------------|------------------------------------|------|----|
| NTIS<br>DTIC<br>Unan<br>Justif | CRA&I<br>TAB<br>nounced<br>ication |      |    |
| By<br>Dist ibtio/              |                                    |      |    |
| Availability Codes             |                                    |      |    |
| Diut                           | Avail a: d<br>Specia               | / or | -1 |
| A-1                            |                                    |      | Í  |
|                                |                                    |      |    |

Robert L. Dimmick, B.S.

Captain, USAF

December 1985

Approved for public release; distribution unlimited

## Acknowledgements

While performing this investigation and writing this thesis I have become indebted to numerous individuals. I would like to thank Lt Col Eric Jumper, my advisor, whose patience, reassurance, and constant guidance made this investigation possible. I would also like to thank the personnel in the AFIT model shops who helped create the experimental setup. The exceptional talents of Leroy Cannon made the electronic complexity of this experiment possible, and the willing assistance of Jay Anderson and his knowledge of digital electronics was also deeply appreciated. Nick Yardich ensured the smoke tunnel was always operational and provided assistance throughout every aspect of this work. I would like to thank Capt Wes Cox for sharing his knowledge of wind tunnels and testing procedure and providing excellent guidance during this study. Capt Scott Schreck, my predecessor in this experiment, was always willing to help and kept me out of trouble on many occasions. Finally, I would like to express my deepest appreciation to my wife, Maggie, whose constant support and continual sacrifices have made this investigation a reality.

# Table of Contents

57.5

ことに、 してんままなななない。 ここのでのないので、

1

|                                     | Page     |
|-------------------------------------|----------|
| Acknowledgements                    | 11       |
| List of Figures                     | v        |
| List of Tables                      | ж        |
| List of Symbols                     | ×i       |
| Abstract                            | xii      |
| I. Introduction                     | 1        |
| Background                          | 1        |
| Objectives                          | 13       |
| II. Theory and Approach             | 15       |
| Dynamic Stall in Contrast to Static |          |
| Stall                               | 15<br>17 |
| Discretization of the Pressure      |          |
| Distribution                        | 21       |
| Integration of the Pressure         |          |
| Distribution                        | 22       |
| Determination of Force Coefficients | 24       |
| The Problem of Data Acquisition     | 25       |
| III. Facilities and Instrumentation | 27       |
| Smoke Tunnel                        | 27       |
| Velocity Measurement                | 27       |
| Airfoil                             | 28       |
| Transducers                         | 30       |
| Drive Mechanism                     | 31       |
| Data Acquisition System             | 32       |
| IV. Experimental Procedure          | 37       |
| Transducer Calibration              | 37       |
| Data Collection                     | 37       |
|                                     | 41       |
| Valorities and Reynolds Numbers     | 47       |

**iii** 

۷. Data Reduction and Discussion of Results . . 44 44 Data Reduction . . Discussion of Results 46 • Error Sources 75 VI. Conclusions and Recommendations 78 Conclusions 78 Recommendations 79 . Bibliography . . . 81 . Appendix A: Transducer Calibration . . . . 84 Appendix B: Software Package 91 . . . . . . . . . . Appendix C: Remainder of Plotted Results . . . 111 Vita 173

Ê

.

÷

.

D

(•

....

#### Page

# List of Figures

| figure |                                                                                                                                           | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.     | Data Summary of Deekens' and Kuebler's<br>Results for Quarter-Chord Separation                                                            | 5    |
| 2.     | Data Summary of Daley's Results for Guarter<br>Chord Separation                                                                           | 8    |
| 3.     | Data Summary of Schreck's Results and<br>Daley's Results                                                                                  | 12   |
| 4.     | Airfoil Pressure Transducer Locations                                                                                                     | 23   |
| 5.     | Airfoil Endplates and Pitch Locations                                                                                                     | 29   |
| 6.     | Airfoil Drive Mechanism and Position<br>Potentiometer Mounted on Test Stand                                                               | 23   |
| 7.     | Experimental Equipment and Data Acquisition<br>System                                                                                     | 34   |
| 8.     | Airfoil Dynamic Stall Pressure Distribution<br>( V = 29.07 fps, a = 22.1°, à = 118 °/sec )                                                | 47   |
| 9.     | Airfoil Dynamic Stall Pressure Distribution<br>( V = 29.07 fps, a = 27.5°, à = 118 °/sec )                                                | 48   |
| 10.    | Airfoil Dynamic Stall Pressure Distribution<br>( V = 29.07 fps, a = 30.8°, à = 118 °/sec )                                                | 49   |
| 11.    | Airfoil Dynamic Stall Pressure Distribution<br>( V = 29.07 fps, a = 37.0°, a = 118 °/sec )                                                | 50   |
| 12.    | Airfoil Dynamic Stall Pressure Distribution<br>( V = 29.07 fps, a = 38.8°, á = 118 °/sec )                                                | 51   |
| 13.    | Combined Dynamic Stall Lift Curves<br>dND = .021, .027, .036 Respectively<br>V = 29.07, Pitch Location #3 ( .50c )                        | 53   |
| 14.    | Combined Dynamic Stall Drag Curves<br>dND = .021, .027, .036 Respectively<br>V = 29.07, Pitch Location #3 ( .50c )                        | 54   |
| 15.    | Combined Dynamic Stall Pitching Moment Curves<br>à <sub>ND</sub> = .021, .027, .036 Respectively<br>V = 29.07, Pitch Location #3 ( .50c ) | 55   |

Figure

. .

| 16. | Data Summary for Pitch Location #1 ( .08c ) 58                                                |
|-----|-----------------------------------------------------------------------------------------------|
| 17. | Data Summary for Pitch Location #2 ( .25c ) 60                                                |
| 18. | Data Summary for Pitch Location #3 ( .50c ) 63                                                |
| 19. | Combined Data Summary for Pitch Locations 1-3 65                                              |
| 20. | Data Summary for Pitch Location #4 ( .61c ) 68                                                |
| 21. | Combined Data Summary for Pitch Locations 1-4 69                                              |
| 22. | Data Summary for Pitch Locations 1-4<br>Using the Pitch Location Angular Rate (d*) 71         |
| 23. | Data From Static Stall Lift Curve<br>V = 30.0 fps, Pitch Location #1 ( .08c ) 72              |
| 24. | Combined Data From Static Stall Lift Curves<br>Pitch Locations 1 - 4, V = 25.0 to 40.4 fps 74 |
| 25. | Pressure Transducer Calibration Chamber 85                                                    |
| 26. | Airfoil Mounted on Calibration Chamber<br>Baseplate                                           |
| 27. | Data From Test Run 1 - 1                                                                      |
| 28. | Data From Test Run 1 - 2                                                                      |
| 29. | Data From Test Run 1 - 3                                                                      |
| 30. | Data From Test Run 1 - 4                                                                      |
| 31. | Data From Test Run 1 - 5                                                                      |
| 32. | Data From Test Run 1 - 6                                                                      |
| 33. | Data From Test Run 1 - 7                                                                      |
| 34. | Data From Test Run 1 - 8                                                                      |
| 35. | Data From Test Run 1 - 9                                                                      |
| 36. | Data From Test Run 1 - 10                                                                     |
| 37. | Data From Test Run 1 - 11                                                                     |

vi

c

| igure | Page                                                                                    |  |
|-------|-----------------------------------------------------------------------------------------|--|
| 38.   | Data From Test Run 1 - 12                                                               |  |
| 39.   | Data From Static Stall Test Runs<br>Pitch Location #1 ( .08c ),<br>V = 25.0 to 37.9 fps |  |
| 40.   | Data From Test Run 2 - 1                                                                |  |
| 41.   | Data From Test Run 2 - 2                                                                |  |
| 42.   | Data From Test Run 2 - 3                                                                |  |
| 43.   | Data From Test Run 2 - 4                                                                |  |
| 44.   | Data From Test Run 2 - 5                                                                |  |
| 45.   | Data From Test Run 2 - 6                                                                |  |
| 46.   | Data From Test Run 2 - 7                                                                |  |
| 47.   | Data From Test Run 2 - 8                                                                |  |
| 48.   | Data From Test Run 2 - 10                                                               |  |
| 49.   | Data From Test Run 2 - 11                                                               |  |
| 50.   | Data From Test Run 2 - 12                                                               |  |
| 51.   | Data From Test Run 2 - 13                                                               |  |
| 52.   | Data From Test Run 2 - 14                                                               |  |
| 53.   | Data From Test Run 2 - 15                                                               |  |
| 54.   | Data From Static Stall Test Runs<br>Pitch Location #2 ( .25c ),<br>V = 25.2 to 45.0 fps |  |
| 55.   | Data From Test Run 3 - 1                                                                |  |
| 56.   | Data From Test Run 3 - 2                                                                |  |
| 57.   | Data From Test Run 3 - 3                                                                |  |
| 58.   | Data From Test Run 3 - 4                                                                |  |
| 59.   | Data From Test Run 3 - 5                                                                |  |
|       |                                                                                         |  |

vii

Fi

4

( •

| gure |                                          | Page          |
|------|------------------------------------------|---------------|
| 60.  | Data From Test Run                       | 3 - 7         |
| 61.  | Data From Test Run                       | 3 - 8         |
| 62.  | Data From Test Run                       | 3 - 9         |
| 63.  | Data From Test Run                       | 3 - 10 150    |
| 64.  | Data From Test Run                       | 3 - 11        |
| 63.  | Data From Test Run                       | 3 - 13 152    |
| 66.  | Data From Test Run                       | 3 - 14 153    |
| 67.  | Data From Test Run                       | 3 - 15 154    |
| 68.  | Data From Test Run                       | 3 - 16 155    |
| 69.  | Data From Test Run                       | 3 - 17 156    |
| 70.  | Data From Test Run                       | 3 - 18 157    |
| 71.  | Data From Test Run                       | 3 - 19 158    |
| 72.  | Data From Static St<br>Ritch Location #3 | all Test Runs |
|      | V = 25.6  to  44.1                       | fps 159       |
| 73.  | Data From Test Run                       | 4 - 1         |
| 74.  | Data From Test Run                       | 4 - 2         |
| 75.  | Data From Test Run                       | 4 - 3         |
| 76.  | Data From Test Run                       | 4 - 4         |
| 77.  | Data From Test Run                       | 4 - 5         |
| 78.  | Data From Test Run                       | 4 - 6         |
| 79.  | Data From Test Run                       | 4 - 7         |
| 80.  | Data From Test Run                       | 4 - 8         |
| 81.  | Data From Test Run                       | 4 - 9         |
| 82.  | Data From Test Run                       | 4 - 10 169    |

viii

| Figure |                                                                                         | Page |
|--------|-----------------------------------------------------------------------------------------|------|
| 83.    | Data From Test Run 4 - 11                                                               | 170  |
| 84.    | Data From Test Run 4 - 12                                                               | 171  |
| 85.    | Data From Static Stall Test Runs<br>Pitch Location #4 ( .61c ),<br>V = 25.7 to 39.8 fps | 172  |

-

i

Sanda Charles and

C

E

....

٠.

.....

•••••

# List of Tables

-

.

| Table      |                                        | Page |
|------------|----------------------------------------|------|
| I.         | Importance of Dynamic Stall Parameters | 16   |
| II.        | Data Summary for Pitch Location #1     | 57   |
| III.       | Data Summary for Pitch Location #2     | 60   |
| IV.        | Data Summary for Pitch Location #3     | 62   |
| ۷.         | Data Summary for Pitch Location #4     | 67   |
| <b>VI.</b> | Transducer Calibration Sensitivities   | 90   |
| VII.       | Summary of Test Conditions             | 112  |

# List of Symbols

ļ

···

•

| đ              | angle of attack                                     |
|----------------|-----------------------------------------------------|
| å              | angle of attack angular rate                        |
| -<br>dND       | nondimensional angular rate                         |
| å              | nondimensional angular rate based on pitch location |
| v              | freestream velocity                                 |
| c              | airfoil chord                                       |
| CLMAX DYN      | maximum dynamic lift coafficient                    |
| Семах ат       | maximum static lift coefficient                     |
| STALL DYN      | dynamic stall angle of attack                       |
| detall st      | static stall angle of attack                        |
| Cp             | pressure coefficient                                |
| PLOC           | airfoil local static pressure                       |
| Pa             | freestream static pressure                          |
| <b>AP</b> TRAN | differential pressure sensed by transducer          |
| Pa             | ambient pressure                                    |
| P.,            | freestream stagnation pressure                      |
| m∨             | millivolts                                          |
| psi            | pounds per square inch                              |
| psig           | pounds per square inch gage                         |

хi

AFIT/GAE/AA/85D-4

## Abstract

Experimental investigations were conducted in the AFIT Smoke Tunnel to study the effects of pitch location on dynamic stall. A NACA 0015 airfoil was rotated about four different locations at a constant angular rate and digital position and pressure information were recorded. This information was then converted into airfoil pressure distributions and integrated numerically to obtain airfoil force coefficients. Results of this investigation showed a direct relationship between the dynamic stall angle of attack and the nondimensionalized angular rotation rate, dwp, defined as one half the airfoil chord length times the angular rate divided by the freestream velocity. Based on the three rotation points forward of the mid-chord, it was also shown that dynamic stall is delayed as the pitch location is moved aft from the leading edge. Experimental data was obtained for pitch locations of .08c, .25c, .50c and .61c and nondimensional angular rates between .011 and .065.

xii

### PITCH-LOCATION EFFECTS ON DYNAMIC STALL

## I. Introduction

#### Background

Dynamic stall is a physical phenomenon that occurs when an airfoil undergoes a continuous, dynamic rotation through its static-stall angle of attack. During the dynamic stall event, the lift curve continues to increase beyond the static-stall point for a large range of rotation rate and freestream velocity combinations. Although it is only a transient event, the momentary increase in maximum unstalled angle of attack yields a corresponding increase in the lift generated by the airfoil. This greater lift is of sufficient magnitude to render the dynamic stall effect of some possible practical use, and therefore worthy of further investigation.

The first formal investigation of dynamic stall was conducted by Max Kramer in 1932 after pilots reported unexplained high lift values occurring while flying in turbulent air [14:1]. Kramer's experiment consisted of a wing mounted on a balance in a wind tunnel test section and a series of movable guide vanes, located upstream of the wing. By rotating the guide vanes, he created a varying freestream in the test section which

resulted in angles of attack ranging from 0 to 30 degrees [14:2-3]. Kramer conducted experiments on three airfoil shapes: the first two were Gottingen 459 airfoil cross-sections (symmetric airfoils, with different chord lengths), and the third was a Gottingen 398 airfoil cross-section (a cambered airfoil).

The results of Kramer's experiment showed a direct relationship between the maximum lift coefficient and the angular rotation rate,  $\dot{a}$ , and an inverse relationship to the test section velocity, V. By using a nondimensional angular rate parameter  $c\dot{a}/V$ , where c is the airfoil chord length, Kramer collapsed all his data onto a single curve given by:

$$C_{LMAX DYN} = C_{LMAX ST} + 0.36 cd/V$$
(1)

In the time since Kramer's experiment, a great deal of research, both analytical and experimental, has been devoted to the area of dynamic stall. However, unlike Kramer's experiment, the majority of research has involved an airfoil undergoing a dynamic angle-of-attack change in a constant-direction freestream, with the majority of this work involving a sinusoidally oscillating airfoil (163[18]. The reason dynamic stall research has taken this direction is fairly obvious.

The benefits of dynamic stall research have been most applicable to areas such as: helicopter blades, turbomachinary, and aircraft wing-flutter. In cases such as these the angle-of-attack variations are likely to be sinusoidal, or at least approximately so.

The advent of digital flight control systems promises new applications for the case of airfoils undergoing angle of attack variations described by a ramp function. A distinct advantage of the ramp angleof-attack variation is the comparative ease and physical clarity with which a mathematical model may be developed. The mathematical model for the sinusoidal case lies in the realm of full Navier-Stokes solutions, and amounts to a very complex numerical experiment. While such an approach succeeds fairly well in modelling the results of a corresponding experiment, the sheer mathematical complexity overwhelms any attempt to generalize the solution and truly understand the physics of the phenomenon.

In 1979, Deekens and Kuebler [6] undertook an investigation of dynamic stall which evaluated the effects of constant airfoil angular rate. Smoke-trace flow visualization, in conjunction with simultaneous high speed filming, was used to characterize the dynamic stall phenomenon on an NACA 0015 airfoil, rotating about its midchord in a constant-velocity freestream. They

concluded that the increase in unstalled angle of attack for the dynamic case was directly related to airfoil anglular rate, and inversely related to the freestream velocity. Based on their findings, Deekens and Kuebler were able to accurately predict the dynamic stall angle of attack for their experiment, which covered Reynolds numbers between 14,500 and 32,500.

.

Introducing the same nondimensional angular rate parameter used by both Kramer and Docken, et. al., Deekens and Kuebler were able to collapse their data onto a single curve given by:

detall DYN = detall at + 143.2 dnp (2)

where stall is defined as separation at the quarterchord. A plot of these results, showing dynamic stall angle of attack as a function of nondimensional rotation rate parameter is shown in Fig. 1, on the following page.

By assuming the static and dynamic lift curves have the same slope and correcting that slope for the aspect ratio of Kramer's wing, Eq. 2 can be transformed into Eq. 3:

 $C_{LMAX DYN} = C_{LMAX BT} + 4.8 d/V \qquad (3)$ 



Comparing Eq. 1 with Eq. 3, it is immediately obvious that the dynamic lift curve slope implied by Deekens and Kuebler is significantly greater than that given by the work of either Kramer or Docken, et. al. [7]. An experimental or computational error of such magnitude to explain this apparent discrepancy can be ruled out since the results of Deekens and Kuebler are substantiated by the work of Francis, et. al. [9], and by Scheubel [22:1-4]. In addition, Kramer's work also seems to have been verified in an experiment mentioned by Scheubel [22:1].

At this point it becomes necessary to emphasize an important distinction between the work of Kramer and Deekens and Kuebler. In Kramer's experiment, as previously mentioned, the airfoil was fixed in intertial space and encountered a gust condition. Therefore, a mathematical model of the flow over the airfoil could justly assume a Newtonian, or nonaccelerating, control volume. However for the case of an airfoil rotating in a constant-velocity freestream, the airfoil is moving with respect to inertial space. In this situation, mathematical analysis of the flow over the airfoil cannot be accomplished using a Newtonian control volume. The previously mentioned order-of-magnitude disagreement between Kramer's results and those of Deekens and Kuebler could concievably be due to the effect of the

accelerating control volume.

The results of Deekens and Kuebler were again experimentally confirmed by Daley [5]. Like Deekens and Kuebler, Daley rotated a NACA 0015 airfoil section about its midchord at a constant angular rate in a constantvelocity freestream. He also used smoke-trace flow visualization in combination with high-speed motion pictures as a medium for recording and analyzing his results. However, Daley added a new dimension to the experiment by embedding four piezo- resistive pressure transducers in the airfoil quarter-chord region. This modification enabled him to simultaneously gather two types of data during the dynamic stall phenomenon. Using both movies and electronically-gathered pressure information, Daley possessed an extremely accurate and sensitive indicator of flow separation at the quarterchord. Adopting quarter-chord flow separation as his criterion for stall, Daley proceeded to verify a major portion of Deckens and Kuebler's work. He also extended the range of results into a region of lower nondimensional angular rate, as shown in Fig. 2, and, at the same time, expanded the Reynolds number range of the experiment.

A great deal of analytical work in the field of dynamic stall was conducted during 1983 by Lawrence [15], Tupper [25], and Allaire [1]. The work of



Lawrence was a direct continuation of Docken's [7] research. Lawrence took Docken's model and expanded it using a modified von Karman-Polhausen technique to obtain data for an airfoil rotating in inertial space. His research led to the conclusion that dynamic stall was a strong function of a non-dimensional pitch rate  $d_{ND} = 4cd/V$ . A major factor in Lawrence's model was the introduction of a mass ingestion function. This function may be thought of as an energization of the airfoil boundary layer by mass "ingested" through the upper surface of the control volume during the rotation. Reference 13 contains a more complete description of this technique, including the appropriate mathematical development. Lawrence's work was taken one step further when Allaire used the same momentum integral method to investigate the effects of airfoil thickness, camber and pitch location on dynamic stall. At the same time that Lawrence was investigating the ability to accurately understand the phenomenon of dynamic stall using the integral method, it was obvious that something was still missing. This led Tupper to investigate the effects of trailing vortices on the production of lift for a rotating airfoil.

Tupper used a circular cylinder model which was subsequently transformed into an airfoil shape to analyze the sequence of events following the sudden

start of airfoil rotation. The results of his study produced two theoretical phenomena associated with dynamic stall. The first finding was that an airfoil undergoing a constant angular rate of change will experience a decrease in the lift curve slope. That is, the dynamic  $C_{L}$  vs a curve will have a slope depression when compared to the static lift curve. The second finding was that the airfoil experiences a sudden increase or "jump" condition in the  $C_{L}$  when rotation begins. An interesting prediction of this "jump" condition for a flat plate is:

 $\Delta C_{L} = 3.14 \, d_{ND} \tag{4}$ 

Where  $\Delta C_{L}$  represents the sudden change in  $C_{L}$  when the airfoil begins its rotation. This bears a striking resemblance to the induced camber effect developed by Allaire [1:37-42] in which the effect of rotating the airfoil is equated to inducing a camber thus increasing the lift by an amount equal to:

 $\Delta C_{\perp} = \gamma \, d_{\rm ND} \tag{5}$ 

Where  $\Delta C_{\perp}$  represents a correction to the theroetical lift computation based on the induced camber due to rotation. One of the major problems associatated with these theoretical predictions was the lack of high quality experimental data covering the entire process of dynamic stall.

5

It was this lack of experimental data that prompted Schreck [23] to begin an ambitious follow-on to the experimental work of Daley. Schreck took the same NACA O015 airfoil used in Daley's experiment and instrumented it with sixteen miniature pressure transducers. Then, with the aid of a high speed data acquisition system, he was able to record time, position and airfoil pressure distribution measurements throughout the dynamic stall process. The results of his reduced data show a definite correlation between the increase in detall prox the non-dimensional pitch rate,  $\dot{a}_{ND}$  as shown in Fig 3. Subsequent evaluation of Schreck's data [12] has shown a reduction in the lift curve slope, but the data scatter has prevented a conclusive evaluation of the expected results.

One more experimental investigation recently conducted by Helin and Walker [10] bears mention at this point. Helin and Walker investigated the effect various pitch locations had on the dynamic stall vortices and associated unsteady aerodynamics. This paralleled some of Allaire's theoretical work in which the airfoil rotation point was varied from the leading edge to the trailing edge. Although the general trend of increased



V

Ĩ

Figure 3. Data Summary of Schreck's Results and Daley's Results

leading edge velocities as the pitch location moves toward the trailing edge predicted by Allaire are present, the data is incomplete and inconclusive to make effective judgements of Allaire's methods.

#### Objectives

The past research in the area of dynamic stall for constant angular rotation rates is quite extensive, although most of the experiments have dealt with sinusoidal motions and fixed rotation points. These experiments create a broad base on which to conduct further investigations of the cause and effect of dynamic stall. In light of the past research, both experimental and theoretical, the objectives of this research experiment were as follows:

1. Use an existing NACA 0015 airfoil instrumented with miniature pressure transducers, and an automated data acquisition system to conduct an experimental investigation of the dynamic stall phenomenon. This investigation included a wide range of test conditions as well as varying the pitch location between the leading edge and the three-quarter chord point and attempting to increase the non-dimensional pitch rate dynamic

 Develop a data reduction routine to determine the airfoil force coefficients and produce high quality data output for all cases.

.

(

 Using the reduced data from the experimental runs, determine the effect of pitch location and non-dimensional angular rate on the lift curve.

#### II. Theory and Approach

The following theory and approach section is composed of six subsections. Each of these subsections presents a brief discussion of the way in which previous dynamic stall theory or research influenced the experimental approach in this investigation. The first subsection provides a more detailed description of dynamic stall and the processes involved in the onset of stall. The second discusses the calculation of pressure coefficients for the airfoil. The third subsection covers discretization of the pressure distribution defined by these pressure coefficients, while the fourth describes the integration of this discretized pressure distribution. The fifth subsection considers the computation of force coefficients using the results of the integration, and the sixth presents a brief narrative concerning the problem of data acquisition.

## Dynamic Stall in Contrast to Static Stall

Stall, whether static or dynamic, occurs when the surrounding flow separates from the airfoil to such a degree that any further increase in angle of attack fails to yield an increase in lift. Obviously, the boundary layer interactions for static and dynamic stall must differ significantly to produce the dramatic dis-

similarities between the two events.

In the familiar case of static stall, a boundary layer under the influence of an adverse pressure gradient eventually separates from the airfoil surface at the point where the shear stress at the wall vanishes. The point where flow separates is coincident with the point of flow reversal for static stall. Thus, the wake formed by this viscous interaction is large and appreciably distorts the potential flow field around the airfoil. For the static case, the stall angle of attack remains relatively constant, being, at most, a weak function of Reynolds number [11:248].

In dynamic stall, the boundary layer under the influence of an adverse pressure gradient also eventually separates from the airfoil. However, the similarity ends here since the point of reversed flow no longer coincides with the point of separation, but is delayed some distance downstream. The point of separation for dynamic stall is determined by the Moore-Rott-Sears (MRS) criterion [27:113-144]. This difference substantially reduces the wake size and corresponding potential flow field distortion when compared to the static case [19:294-295]. In addition to the MRS separation criterion, other effects appear to be at work [15]. It is clear that the dynamic stall process is a complex function of freestream velocity,

airfoil angular rate, and even airfoil section geometry as shown in Table I.

The fact that the wake size and corresponding potential flow field distortion associated with dynamic stall are small relative to their static-stall counterparts is favorable to this investigation. Schreck argues that tunnel wall interference effects are therefore correspondingly small compared to those encountered in the same flow regime for steady-state phenomena [23:60-63]. This implies that streamline curvature and wake blockage effects can probably be considered negligible in dynamic stall testing. McCroskey, et. al. takes a similar approach in ignoring tunnel effects for reasons of experimental data scatter and the uncertainty of determining the dynamic corrections [17]. In either case, dynamic stall tunnel effects are considered indeterminable and are subsequently ignored.

#### Determination of Pressure Coefficients

Because of inevitable freestream irregularities in the test section, pressure measurements at the same location on the airfoil do not remain constant in time. These irregularities can be filtered out while preserving those pressure fluctuations due only to the dynamic stall phenomenon by using ensemble-averaging. For this experiment, pressure data from five different

# TABLE I

•

# Importance of Dynamic Stall Parameters [16]

| Stall Parameter              | Effect                                                      |
|------------------------------|-------------------------------------------------------------|
| Airfoil Shape                | Large in some cases                                         |
| Mach Number                  | Small below M $\approx$ 0.2<br>Large above M $\approx$ 0.2  |
| Reynolds Number              | Small (?) at low Mach Number<br>Unknown at high Mach Number |
| Reduced Frequency **         | Large                                                       |
| Mean Angle, Amplitude        | Large                                                       |
| Type of Motion               | Virtually Unknown                                           |
| Three-Dimensional<br>Effects | Virtually Unknown                                           |
| Tunnel Effects               | Virtually Unknown                                           |

\*\* The reduced frequency parameter is similar to the nondimensional pitch rate -  $a_{\rm ND}$ 

airfoil rotations at the same angular rate and freestream velocity were obtained in order to generate an ensemble-averaged data set.

With the ultimate goal of determining airloads during the dynamic stall event, a method of calculating the pressure coefficient at any chord location on the airfoil was needed. This method should use physical parameters which can be readily sensed or measured as inputs. The standard equation for the pressure coefficient is given by:

$$C_{P} = (P_{LOC} - P_{oo}) / q \qquad (6)$$

where  $P_{Loc}$  is the local static pressure at some point on the airfoil,  $P_{\infty}$  is the freestream static pressure, and q is the freestream dynamic pressure ( $\frac{1}{2}\rho V^{2}$ ). The local pressure anywhere on the airfoil can be expressed as:

$$P_{LOC} = \Delta P_{TRAN} + P_A \tag{7}$$

where  $P_{Loc}$  rotains the same definition as in Eq. 6,  $P_A$ is some reference pressure, and  $\Delta P_{TRAN}$  is the differential pressure between these two. Substituting  $P_{Loc}$ from Eq. 7 into Eq. 6 yields the relationship:

 $C_{P} = [(\Delta P_{TRAN} + P_{A}) - P_{co}]/q \qquad (8)$ 

Regrouping the terms in the numerator and noting that the denominator is equivalent to  $P_{cr} - P_{cr}$  following steady state resasoning for the incompressible Bernoulli equation, Eq. 8 becomes:

$$C_{P} = [\Delta P_{TRAN} + (P_{A} - P_{m})]/[P_{a} - P_{m}]$$
(9)

It should be noted that  $q = (P_{\odot}-P_{\odot})$  may not be valid under unsteady flow conditions, and this assumption can lead to pressure coefficients greater than one. However the use of the pressure coefficients in this investigation is restricted to the determination of force coefficients and the dynamic pressure term will ultimately cancel itself.

Eq. 9 requires the determination of three quantities to calculate the corresponding pressure coefficient. The first,  $\Delta P_{TRAN}$ , is the difference in pressure between some constant reference pressure,  $P_{A}$ , and the pressure at a certain point on the surface of the airfoil. This differential pressure was sensed by a transducer mounted in the airfoil. The second,  $P_{A} - P_{co}$ , is the pressure difference between the reference pressure and test section static pressure, while the third,  $P_{a} - P_{co}$ , is the pressure difference between test section stagnation pressure and static pressure. Since
the reference pressure must be easily accessible as well as constant, ambient room pressure constituted a good choice, although any constant pressure source would have been acceptable.

## Discretization of the Pressure Distribution

The mathematical procedure developed in the preceding subsection facilitates pressure coefficient determination at any transducer location on the airfoil. To minimize the error inherent in discretizing the dynamic stall pressure distribution, two basic issues had to be addressed. The first issue was to determine an acceptable number of transducers and, the second, to establish the optimum distribution of these transducers.

Obviously a greater number of transducers reduces the discretization error, however, an upper limit on this number is eventually reached. In this experiment, 16 transducers were employed in the same fashion as Schreck [23:14-16].

The requirement of accurately portraying the airfoil pressure distribution governed the placement of the 16 pressure transducers. Therefore, the transducers were concentrated in the region of the airfoil where the pressure distribution was anticipated to have the largest gradient. McCroskey, et. al. [16:3] obtained pressure distributions for an oscillating NACA 0012

airfoil that provided a useful guide for locating the transducers. Accordingly, the transducers were distributed most densely on the upper surface of the airfoil and near the leading edge, as shown in Fig. 4.

The fact that there was no transducer at the trailing edge of the airfoil meant there was no direct means of determining the pressure at the trailing edge. However, McCroskey, et. al., obtained results using an airfoil with the rearmost pressure transducer located at the 98 percent chord position [16:4]. They reasoned that the trailing edge pressure coefficient can be approximated through extrapolation of the rearmost two transducers on the airfoil upper surface.

## Integration of the Pressure Distribution

The discretized pressure distributions were integrated numerically to obtain the corresponding force coefficients. McCroskey, et. al., found that cubic and variable power splines applied to the discrete data points did not yield acceptable accuracy. The spline fits caused large overshoots that made this method unsatisfactory in general application [17:3]. Therefore, all integration in this investigation was accomplished using the trapezoidal rule following the method of McCroskey, et.al.



| Point | (X/C) | (1/2)  | Point | (X/C) | (1/2)  |
|-------|-------|--------|-------|-------|--------|
| 1     | 0.000 | 0.0000 | ¢     | 0.902 | 0.0178 |
| 2     | 0.025 | 0.0327 | 10    | 0.697 | 0.0461 |
| ю     | 0.049 | 0.0440 | 11    | 0.328 | 0.0743 |
| 4     | 0.098 | 0.0581 | 12    | 0.197 | 0.0714 |
| n     | 0.131 | 0.0637 | 13    | 0.098 | 0.0581 |
| 4     | 0.197 | 0.0714 | 14    | 0.049 | 0.0440 |
| 7     | 0.328 | 0.0743 | 5     | 0.033 | 0.0364 |
| 0     | 0.615 | 0.0554 | 16    | 0.016 | 0.0262 |
|       |       |        |       |       |        |



ì

t •

23

٠,

Determination of Force Coefficients

A major factor in this investigation was the determination of the force and moment coefficients for the airfoil. These coefficients were obtained through integration of the pressure distribution as follows [3];

$$C_{N} = -\int C_{P} d(x/c) \qquad (10)$$

$$C_{cc} = \int C_{pc} d(y/c) \qquad (11)$$

where  $C_N$  is the normal force coefficient,  $C_C$  is the chord force coefficient and  $C_P$  is the surface pressure coefficient. The quantities d(x/c) and d(y/c) represent the differential lengths in the x and y directions referenced to the airfoil chord length.

$$C_{m} = \int C_{P} (0.25 - x/c) d(x/c) (12)$$

where  $C_m$  is the quarter-chord moment coefficient,  $C_p$  is the surface pressure coefficient and x/c is the chordwise location on the airfoil.

The results of these integrations were then combined to form the lift and drag coefficients [21]:

$$C_{L} = C_{N} \cos(a) \tag{13}$$

 $C_{D} = C_{N} \sin(a) + C_{C} \cos(a) \qquad (14)$ 

Since viscous forces were not measured, the chord force is incomplete and should be regarded as only the pressure drag portion of the airfoil drag. Further, it is recognized that the spacing of the pressure transducers was such that the  $C_{\rm C}$  should be treated as far less representative of the actual chord force than  $C_{\rm N}$  is representative of the normal force. For this reason, an additional term of  $C_{\rm C} \sin(\alpha)$  was not included in Eq. 13.

## The Problem of Data Acquisition

ł

Measurement of the physical parameters associated with dynamic stall presents a unique problem due to the transient nature of the phenomenon. The measurement system had to be not only accurate, but relatively fast. The solution to this problem has taken many forms, with many advances resulting from the current state of digital electronics. Kramer used a balance system to measure and record the aerodynamic forces on the wing as the freestream flow was rotated past it. Deekens and Kuebler used high-speed cinematography of smoke traces to ascertain airfoil rotation rate and dynamic separation angle of attack. Daley also used movies of smoke traces, but simultaneously gathered digital position and

pressure data using four transducers embedded in the quarter-chord region of the airfoil. McCroskey, et.al., used an airfoil equipped with 16 pressure transducers, and collected analog electronic position and pressure data.

In this investigation, following Schreck's methods [23], digital position and pressure information was collected using an airfoil instrumented with 16 pressure transducers (c.f. above). In any dynamic measurement system, sample rate is a crucial factor in determining the resolution capability of the measurements. In this case, the absolute lower threshold on sample rate was approximately 300 data samples per second [4:7]. The data acquisition system used in this investigation had the capability to meet and exceed this criterion by a wide margin (c.f. below).

## III. Facilities and Instrumentation

## Smoke Tunnel

This investigation was conducted in the AFIT smoke tunnel located in Building 640, Area B, Wright-Patterson AFB, Ohio. The test section measures 59 inches long, 39.5 inches high, and 2.75 inches deep. The smoke tunnel is capable of test section velocities between, approximately, 10 and 45 feet per second. This facility, its capabilities and limitations, are further described by Sisson [24], and Baldner [2]. Since this experiment did not involve flow visualization, the smoke generation rake was removed from the tunnel. Shreck suggested that this modification would improve test section flow characteristics and improve data quality [23:55], although this may not have been the case (c.f. below).

### Velocity Measurement

Test section static and total pressure were measured using a standard hemispherical-head Pitotstatic probe in conjunction with a Dwyer Portable inclined manometer, model 102. These pressures were used to establish the test section velocity during data collection and recorded for later use during data reduction to determine pressure coefficients. Based on

Schreck's investigation of the test section flow characteristics, the pitot-static probe was located at a point 31 inches from the start of the test section [23:64-69]. This afforded the most accurate measurement of test section pressures while minimizing the mutual interference between the airfoil and probe.

#### Airfoil

The NACA 0015 airfoil used in this experiment measured 12.2 inches chord and 2.63 inches span. It consisted of a hollow mahogany shell closed on both sides by aluminum endplates, which were sealed to the shell with silicone rubber adhesive sealant. Figure 5 shows the four different rear endplates that were constructed to allow the airfoil pitch location to vary between the leading edge and three-quarter chord point. The rear endplate was rigidly attached to a 14 inch tubular aluminum shaft with an outside diameter of .75 inches. This aluminum shaft had a slot at its midpoint which allowed ambient atmospheric pressure into the interior of the airfoil. The airfoil shell had 16 transducer ports drilled into it at the locations shown in Figure 4.



The transducers used in this experiment were Endevco 8506-2 and 8507-2 miniature piezo-resistive pressure transducers. The only difference between the two models was the type of mounting fixture used. Both transducers had a maximum range of plus or minus 2 psig, and required an excitation voltage of 10.00 volts DC. This excitation voltage was provided by a Kepco KG 25 DC Power Supply, and monitored by a Hewlett-Packard 34701A DC voltmeter with a 34740A digital display insert, allowing voltage readings to three decimal places. Resonant frequency for both types of transducers was 45,000 Hertz. Thus, the transducer frequency response had a negligible effect on the results obtained in this investigation.

The transducers were mounted in the ports of the airfoil according to the specifications provided by Endevco [8] using Silastic 732 RTV silicone rubber adhesive as the bonding agent. The transducer leads were soldered into a 40 pin connector which remained within the airfoil and facilitated the easy change of airfoil endplates. After completing the electrical connections between the transducers and the microcomputer, the transducers were calibrated as described in Appendix A.

## Drive Mechanism

The airfoil was rotated using a TRW Globe Model 5A2298-4 12 volt DC, constant-speed planetary gearmotor with a 525:1 reduction ratio. The motor was further geared at the output shaft in a 2:1 ratio to obtain higher rotation rates. The motor voltage source was the Hewlett-Packard 6205C Dual DC Power Supply. By adjusting the input voltage, the motor produced constant rotation rates. An experimental test of the airfoil drive mechanism under static conditions found the motor response to be linear with no more than 0.5% deviation. The high reduction ratio of this motor provided a high output torque, which, in turn, spun the output shaft up to constant speed in less than .01 seconds. This start up time was negligible when compared to the time required to reach the dynamic stall angle of attack. A spring-loaded double-pole, double-throw toggle switch was used to control the motor and allowed both positive and negative rotations of the airfoil.

The airfoil angle-of-attack transducer consisted of a Spectrol 80059 1000 ohm, ten-turn potentiometer which was coupled to the airfoil shaft through a gear train having a 33:1 ratio. This allowed approximately 100 degrees of airfoil rotation for the full ten turns of the potentiometer. The potentiometer was excited at 10 volts DC using the Hewlett-Packard 6205C Dual DC Power

Supply and the output was fed into the microcomputer to provide airfoil position information. A calibration of the potentiometer found a linear response with a maximum deviation less than 0.4% full scale. Figure 6 shows the entire assembly in place on the test stand which was mounted on the rear side of the tunnel.

### Data Acquisition System

The microcomputer system consisted of a Heathkit H-29 terminal, a Tarbell Model VDS-IId dual eight-inch floppy disk drive, and an Electronic Control Technology S-100 bus equipped with an SD Systems SBU-100 Single Board Computer, SD Systems Expandoram II board, and an MD2022 Tarbell Disk Controller board. Figure 7 shows the entire system in position next to the smoke tunnel. This system was augmented with two Dual Systems Control Corporation AIM-12 analog input module boards to perform the digital data gathering function.

The AIM-12 is a high speed, multiplexed analog-todigital data acquisition module compatible with the standard S-100 bus. The AIM-12 employs a sample/hold mechanism which, combined with the multiplexer, allows maximum throughput operation for analog-to-digital (A/D) conversions. The board is capable of making a complete data pass through all sixteen transducers in less than 4 milliseconds. The analog-to-digital conversion sub-





Ì

ľ

Experimental Equipment and Data Acquisition System Figure 7. system on the board operates in either bipolar or unipolar mode. The unipolar mode requires the input voltage to the A/D converter be within the range of O to 10 volts, while the bipolar mode accepts input voltages from -5 volts to +5 volts. The AIM-12 board also has a preconditioning subsystem consisting of a multiplexed, precision instrumentation amplifier with variable gains between 1 and 100. Operation in the bipolar, or differential, mode takes advantage of the amplifier's high common mode rejection ratio, which is a maximum of 114 decibels with the gain set at 100.

As mentioned previously, the data acquistion system used two AIM-12 boards. The board responsible for collection and digitization of the pressure transucer signals was configured for bipolar A/D conversion and amplifier gain of 100. Due to the small pressures being sensed by the transducers, the electrical signals originating at the pressure transducers had a magnitude of approximately 15 millivolts. Although the gain of 100 resulted in no more than 30 percent of full-scale on the A/D converter, the high common mode rejection ratio was very effective in cancelling noise in the system and the resulting in good overall system accuracy.

The second AIM-12 board was responsible for the collection and digitization of the position potentiometer signal, which varied between 0 and 10 volts.

This board was configured for unipolar A/D conversion and amplification gain of 1. It should be noted that the second AIM-12 board used only one of the 16 availble thannels, thus the experimental configuration has further growth potential.

. .

#### IV. Experimental Procedure

## Transducer Calibration

All 16 transducers in the airfoil were statically calibrated prior to the first data collection run. This calibration procedure was repeated at the completion of all data gathering and the results compared to the initial calibration run. A complete description of the transducer calibration procedure is presented in Appendix A.

## Data Collection

To prepare the system for a data collection run, all three voltmeters, both power supplies, and the computer were allowed to warm up for a minimum of one hour before any data was taken. This procedure allowed any large electrical transients in the system to die out and insured nearly steady-state operation during data collection.

The first step in making a data collection run was to execute the data acquisition program, TESTRUN (see Appendix B). This program controlled the remainder of the experimental procedure by requesting input or providing instructions concerning equipment operation. The following discussion constitutes a summary of the data collection sequence.

The first set of inputs to the computer included date, time, temperature, and barometric pressure. These values were then echoed back to the operator for verification before writing them to the disk file. The program then obtained zero-input readings for the 16 transducers, displayed them on the terminal screen, and wrote the values to disk. At this point the program instructed the operator to turn on the tunnel motors and obtain the desired test section velocity.

The next set of inputs consisted of the two different inclined manometer readings, the airfoil drive motor voltage and the potentiometer voltages corresponding to the 90 and 0 degree angle-of-attack positions. The first manometer reading was the difference between ambient pressure and test section static pressure ( $P_{er} - P_{or}$ ). This was obtained by connecting the pitot-static probe static port to one leg of the manometer and leaving the other leg open to ambient air. The second manometer reading was the difference between the test section total and static pressures ( $P_{or} - P_{or}$ ), and was obtained by connecting the tube from the probe total pressure port to the other leg of the manometer.

The voltages corresponding to 90 and 0 degrees angle-of-attack were determined using a digital voltmeter connected to the position potentiometer. The 90

and O degree positions were indicated by markers attached to the back glass wall of the test section. After inputing the position voltages, the motor voltage was entered, and all input values were echoed at the terminal screen for verification.

The next phase of the program involved the actual dynamic stall data collection for five consecutive airfoil rotations. The operator would first input the number of samples to be taken and choose either manual or automatic trigger for the data collection routine. The number of samples and trigger method remained consistent for the five consecutive rotations to avoid difficulty during data reduction. After rotating the airfoil through dynamic stall and returning it to zero angle-of-attack, the computer would output the number of samples actually taken and the computed angular rotation rate in degrees per second. The data set was then scanned for obvious cases of non-linear motor response. At this point the operator decided whether to write the data set to disk, or repeat the rotation. The data set was repeated if the rotation rate was not within two degrees per second of the previous angular rotation rates or if it was judged that the rotation rate was not constant. The operator repeated this process for a total of five airfoil rotations.

39

After obtaining five satisfactory dynamic stall data files. a static lift curve was determined for the same test section velocity. This part of the program first instructed the operator to position the airfoil at the desired static angle-of-attack. The static angle of attack was estimated using a protractor taped to the back wall of the test section. Then, at the command of the operator, the transducers were sampled 180 times, and the resulting normal force coefficient was computed and displayed at the terminal. The position potentiometer voltage and transducer values were recorded on disk and the procedure was repeated a sufficient number of times at successively higher angles of attack to define a static lift curve. After obtaining enough samples to determine the static lift curve, the data collection program, TESTRUN, was terminated and the tunnel shut down until the next run.

After completing all the data runs for a given pitch location, the airfoil model was removed from the tunnel. The rear endplate was then removed and the transducer leads were disconnected from the computer. The endplate was exchanged for one with a new pitch location and the transducer leads were reconnected to the computer. After a quick check to determine the transducers were still functioning properly, the airfoil was sealed using RTV adhesive and returned to the tunnel

test section. The entire test procedure was then repeated for the new pitch location.

VW

#### Exceptions

During the course of the experimental runs, certain events differed from the procedures outlined above. The first exception involved data runs with pitch locations forward of the mid-chord. Due to large aerodynamic forces, the airfoil failed to rotate beyond approximately 50 degrees angle-of-attack. A plot of time versus position for the airfoil rotation showed a constant angular rate up to 50 degrees. Since the dynamic stall event is usually complete by the 35 degree position and the rotation rate was constant throughout that range, this condition did not affect the experimental results. Another problem with airfoil rotation was discovered during the rotations about the threequarter chord point. The rotation motor could not supply enough torque to rotate the airfoil from the zero angle of attack position through dynamic stall. This condition necessitated the procedure of pitch down for these test runs. Being a symmetric airfoil, the aerodynamic forces, in principal, are the same for a given angle-of-attack, whether positive or negative. This fact combined with a relatively symmetric distribution of pressure transducers implies that pitch up or pitch

down should, theoretically, have little effect as long as the rotation rate is constant; in practice, however, there may have been some differences (c.f. discussion after Eq. 18, below). The third exception involved the change of transducer number seven. This transducer became erratic and failed to respond accurately during a change of endplates. The old transducer was replaced with another Endevco 9307-2 and the transducer leads were wired into the connector pin. The new transducer required minor modifications to the experiment software to reflect the new transducer sensitivity.

#### Velocities and Reynolds Numbers

C

Using the procedure outlined above, test runs were conducted at test section velocities ranging between 25 and 45 feet per second. Although the smoke tunnel was capable of test section velocities as low as 10 feet per second, any data gathered at velocities below approximately 25 feet per second was assumed unacceptable for two reasons. First, the magnitude of the resulting signal was small enough to fall within the noise range of the transducer. Second, the resulting angalog-todigital resolution was unacceptable due to the small percent of full scale output at the analog-to-digital converter. Velocities above 40 feet per second were attempted, but the results were suspect and suggest the

existence of large scale tunnel turbulence discovered during Sisson's investigation [24]. At each test section velocity, five data runs were accomplished for three different motor voltages, giving a total of 60 test conditions, or 300 total dynamic data runs. The resulting Reynolds numbers, based on airfoil chordlength, ranged from 14,700 to 26,700. As such, all data was collected in a flow regime generally accepted as laminar, based on Reynolds number.

.

## V. Data Reduction and Discussion of Results

-

## Data Reduction

13

The data reduction process for this experiment was a two step process. The first step was accomplahed on the experimental mini-computer using a heavily modified version of Schreck's data reduction program. The program used the five raw pressure data files generated during the experimental runs and produced a data file that contained time, position, pressure coefficient and aerodynamic force coefficient data. The program first computed the experimental test conditions using the temperature, barometric pressure and manometer readings taken during the test runs. These data were used to compute the test section velocity and Revnolds number based on airfoil chord for the experiment. The program then cycled through all five data runs, using the recorded digital voltages to compute airfoil angle of attack and pressures. Because the transducer sampling was not simultaneous, a linear interpolation was performed on all transducer data in order to reference the airfoil pressure distribution to a time of interest. The subsequent pressure distribution was then converted into pressure coefficients using Eq. 9, and integrated using the trapezoidal rule to obtain airfoil normal force, chord force and pitching moment about the quarter-

chord. Finally, the force data were converted to lift and drag coefficients using Eqs. 13 and 14. The reduced data file was then written to disk for later use. This file consisted of heading information, including test conditions, and five sets of data runs, each containing 200 data points.

The static data was similarly reduced, except there was no linear interpolation of pressure data since these runs were conducted at static angles-of-attack. This program also introduced the computed wind tunnel correction factors for blockage and streamline curvature. Schreck [23:60-63] developed the correction factors for this experimental setup based on the discussion by Pankhurst and Holder. These values were recomputed to confirm their accuracy and then applied to the static data.

The rough static and dynamic stall data files were then transferred to the Aeronautical Systems Division CDC Cyber computer for further manipulation and plotting. The dynamic data files were reduced further by using the DATRED program. This program took all five data runs and performed an ensemble averaging routine based on one degree blocks of angle-of-attack to produce the final dynamic stall data sets. This program also took the time and position data and computed the average rotation rate for the data set using a linear least

squares fit. The maximum deviation from a linear response was computed and data sets that varied by more than five percent were identified as non-linear. A similar averaging routine was performed on the static stall data runs and all files were stored for future use.

After performing the averaging routines, the final data files were printed and used in conjunction with the rough data files to determine the dynamic stall angle of attack. A similar procedure was followed for the static stall curves and these data were used to compute the Aderall information listed in the results section. The final step in the data reduction was to generate the plots shown in the results section using the PLOTM routines on the Cyber computer. A copy of each program is provided in the Computer Software Appendix B.

# Discussion of Results

The details of the dynamic stall event have been described in numerous works [9],[18], [26], and this experiment found the same tendencies in the dynamic stall lift curves. In all cases, the lift curve extended beyond the point of static stall and the airfoil lift continued to increase to a point at which catastrophic stall occurred. This is most easily seen in Figures 8-12 which show the pressure distribution



Figure 8. Airfoil Dynamic Stall Pressure Distribution V = 29.1 fps,  $\alpha$  = 22.1 deg,  $\dot{\alpha}$  = 118.8 deg/sec



48

. . .

والمتعادية والمعارية والمعازمة ومراجع والمعارية والمعارية والمعارية والمعارية والمعارية والمعارية والمعارية وال



.

Figure 10. Airfail Dynamic Stall Pressure Distribution V = 29.1 fps, α= 30.8 deg, ά= 118.8 deg/sec



•

50

.

۰.

4.



÷.,

around the airfoil at points before and after dynamic stall. The dynamic stall event begins with a large build-up of pressure near the leading edge of the airfoil. Just after quarter-chord separation (c.f. introduction), this pressure spike begins to flatten and move toward the trailing edge. As the pressure spike moves off the airfoil, there is a catastrophic collapse of the pressure distribution resulting in the deep dynamic stall condition. The physical explanation for this sequence shows that the flattening and movement of the pressure spike is caused by the formation and subsequent shedding of a strong vortex from the airfoil leading edge. Reference 10 and reference 26 have excellent smoke flow visualization pictures substantiating this argument.

As with the past research, a strong correlation exists between the non-dimensional rate parameter  $(a_{ND})$ and the increased stall angle-of-attack. Figure 13 shows this result by plotting three cases of increasing  $a_{ND}$  for dynamic stall lift curves. In each case, the dynamic stall point is delayed due to the increase in pitch rate. This study also introduced the determination of airfoil drag and moment coefficients. The same effect found in the lift curve data also is found in the drag and moment data. As  $a_{ND}$  increases there is a corresponding increase in drag coefficient and a delay







-----

• • • • • •

•

54

٠,

· · · ·



in the stall angle of attack, as shown in Fig 14. The moment coefficient was calculated for the airfoil quarter-chord point. Fig 15 shows the moment to be fairly constant through the initial part of the dynamic stall rotation followed by an abrupt increase with a large pitch down moment. This tendency was also noted by McCroskey, et. al. in their experimental investigations. Thus it appears that the non-dimensional angular rate has a direct impact on all airfoil aerodynamic forces.

The results of the experimental runs at pitch location number one (pitching about the .08 chord position) are provided in Table II. These data show a consistent trend of increased stall angle of attack with increased  $\dot{a}_{ND}$ . Fig 16 shows this data plotted in the form developed by Deekens and Kuebler [6] where the change in stall angle of attack ( $\Delta d_{MTALL}$ ) is plotted versus nondimensional angular rate. As expected this shows a linear tendency between increased stall angle of attack and non-dimensional pitch rate. A linear least squares curve was fit through the data with the resulting equation:

$$\Delta d_{BTALL} = 5.06 + 173.89 d_{ND}$$
(15)

Where Aderall is expressed in degrees. Although the
## TABLE II

6464466

Data Summary for Pitch Location #1 - .08c

-----

| Test<br>Run | Tunnel<br>Velocity<br>(ft/sec) | Rotation<br>Rate<br>(deg/sec) | detall<br>Static<br>(degrees) | detall<br>Dynamic<br>(degrees) | dnD  |
|-------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|------|
| 1-1         | 25.43                          | 85.95                         | 16                            | 26.4                           | .030 |
| 1-2         | 25.43                          | N/L                           | 16                            | 10.6                           |      |
| 1-3         | 24.97                          | 183.17                        | 14                            | 31.5                           | .045 |
| 1-4         | 30.05                          | N/L                           | 16                            | 21.5                           |      |
| 1-5         | 30.03                          | 112.84                        | 16                            | 27.1                           | .033 |
| 1-6         | 30.02                          | 183.02                        | 16                            | 31.1                           | .054 |
| 1-7         | 35.64                          | 44.19                         | 14                            | 22.5                           | .011 |
| 1-8         | 35.64                          | 98.39                         | 16                            | 25.0                           | .024 |
| 1-9         | 35.32                          | 129.16                        | 16                            | 27.0                           | .032 |
| 1-10        | 37.87                          | N/L                           | 16                            | 22.6                           |      |
| 1-11        | 37.57                          | 95.16                         | 16                            | 24.6                           | .022 |
| 1-12        | 37.59                          | 133.89                        | 16                            | 26.9                           | .031 |

Note: N/L means the rotation was non-linear

Figure 16. Data Summary for Pitch Location #1 ( .0Bc )



correlation factor is high for this data, visual inspection suggests the possibility of a curve with decreasing slope as  $d_{ND}$  increases beyond about .05. This type of curve would be consistent with the findings of Daley and Deekens and Keubler for quarter-chord separation as shown in Fig. 3 (c.f. Introduction). However, there were insufficient data points at the higher nondimensional rates to substaintiate this idea.

The results of the experimental runs at the second pitch location (rotation about the .25 chord point) are given in Table III. Again the trends of increased stall angle of attack with increased pitch rate are present. Fig 17 shows the change in stall angle of attack versus non-dimensional pitch rate and the relationship again appears fairly linear. A least squares fit of this data yields the equation:

4.48 + 240.06 dnp (16)AGRTALL S

The results of the experimental runs for pitching about the airfoil mid-chord are given in Table IV. These data should be directly comparable with the data of Schreck who also pitched about the mid-chord point. A comparison of Schreck's data and the results of this experiment is provided in Fig 18. A least squares fit of the mid-chord pitching data has the equation:

# TABLE III

Data Summary for Pitch Location #2 - .25c

| T <b>es</b> t<br>Run | Tunnel<br>Velocity<br>(ft/sec) | Rotation<br>Rate<br>(deg/sec) | detall<br>Static<br>(degrees) | detall<br>Dynamic<br>(degrees) | đND   |
|----------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|-------|
| 2~1                  | 25.57                          | 74.04                         | 15.5                          | 25.1                           | .025  |
| 2-2                  | 25.83                          | 145.24                        | 15.5                          | 31.6                           | .049  |
| 2-3                  | 25.20                          | 175.61                        | 15.5                          | 33.4                           | .062  |
| 2-4                  | 27.68                          | 90.56                         | 15.5                          | 26.2                           | .027  |
| 2-5                  | 27.68                          | 117.02                        | 15.5                          | 29.4                           | .035  |
| 2-6                  | 29.30                          | 148.63                        | 15.5                          | 32.5                           | .045  |
| 2-7                  | 35.23                          | N/L                           | 15.5                          | 26.5                           |       |
| 2-8                  | 35.76                          | N/L                           | 15.5                          | 31.5                           |       |
| 2-9                  |                                | DISK ERROR                    | - DATA LO                     | ST                             |       |
| 2-10                 | 40.38                          | 59.29                         | 15.5                          | 23.1                           | .013  |
| 2-11                 | 38.89                          | 133.66                        | 15.5                          | 27.2                           | .030  |
| 2-12                 | 39.21                          | 170.13                        | 15.5                          | 29.4                           | .038  |
| 2-13                 | 44.50                          | N/L                           | 15.5                          | 22.6                           |       |
| 2-14                 | 45.03                          | 101.53                        | 15.5                          | 24.3                           | . 020 |
| 2-15                 | 44.84                          | N/L                           | 15.5                          | 26.9                           |       |

.

1

Ó

Note: N/L means the rotation was non-linear

.•

. . . . . .

· .

. . . . .





Ó

# TABLE IV

. ت

うちちちちょう 建築なたたたたたた 副子 シンシン いい 副

. .

Data Summary for Pitch Location #3 - .50c

| Test<br>Run | Tunnel<br>Velocity<br>(ft/sec) | Rotation<br>Rate<br>(deg/sec) | detall<br>Static<br>(degrees) | detall<br>Dynamic<br>(degrees) | dnd   |
|-------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|-------|
| 3-1         | 25.77                          | 83.07                         | 15.8                          | 28.5                           | .028  |
| 3-2         | 25.61                          | 102.70                        | 15.8                          | 32.5                           | .036  |
| 3-3         | 25.86                          | N/L                           | 15.8                          | 34.4                           |       |
| 3-4         | 26.41                          | 109.72                        | 15.8                          | 32.6                           | . 037 |
| 3-5         | 29.16                          | 67.01                         | 15.8                          | 25.5                           | .021  |
| 3-6         |                                | DISK ERROR                    | - DATA LO                     | ST                             |       |
| 3-7         | 29.07                          | 116.89                        | 15.8                          | 31.1                           | .036  |
| 3-8         | 31.52                          | 97.70                         | 15.8                          | 28.5                           | . 027 |
| 3-9         | 34.16                          | N/L                           | 15.8                          | 28.6                           |       |
| 3-10        | 35.92                          | N/L                           | 15.8                          | 30.4                           |       |
| 3-11        | 34.04                          | 114.26                        | 15.8                          | 29.6                           | . 030 |
| 3-12        |                                | DISK ERROR                    | - DATA LO                     | ST                             |       |
| 3-13        | 39.55                          | 74.57                         | 15.8                          | 23.2                           | .016  |
| 3-14        | 39.96                          | 102.21                        | 15.8                          | 27.0                           | .022  |
| 3-15        | 39.09                          | N/L                           | 15.8                          | 32.5                           |       |
| 3-16        | 40.38                          | N/L                           | 15.8                          | 31.5                           |       |
| 3-17        | 44.04                          | N/L                           | 15.8                          | 28.5                           |       |
| 3-18        | 44.15                          | N/L                           | 15.8                          | 29.5                           |       |
| 3-19        | 43.90                          | N/L                           | 15.8                          | 29.6                           |       |

Note: N/L means the rotation was non-linear



Ż

Þ

-0-1

Figure 18. Data Summary for Pitch Location #3 ( . Including Schreck's Data

Adetall = 1.16 + 418.34 dno (17)

These results tend to verify the findings of Schreck and increase the range of data into a higher non-dimensional pitch rate area. Thus the expected response of increased stall angle of attack with increased pitch rate seems to be confirmed.

ť

.

7

When the results from the three pitch locations are combined into one graph, as shown in Fig 19, a definite trend exists between pitch location and change in stall angle of attack. This trend was predicted by Allaire who showed that the change in guarter chord separation angle of attack would increase as the pitch location moved from the leading edge to the trailing edge. The reasoning behind this argument points to the increased leading edge velocity induced during the rotation. As the rotation point moves backward along the airfoil, the stream velocity induced by the pitching motion is increased, thus for the same doe the leading edge velocity will increase as the pitch location moves aft. This increased velocity will increase the "mass ingestion" into the boundary layer and tend to help keep the flow attached to the wing for a longer period of time. Assuming that quarter chord separation is a precursor of airfoil stall, it is logical to extend the argument to



<u>.</u>

I a se a se

Ê

(•

Combined Data Summary for Pitch Locations Figure 19.

n

include dynamic stall. Thus, moving the pitch location aft should have the same tendency as increasing the nondimensional pitch rate, delaying stall and increasing the maximum lift.

Ľ.

The data from airfoil rotations about the fourth pitch location were not included in the previous discussion due to the change in experimental conditions. Table V lists the results of these test runs and the same tendency to a linear relationship between delta alpha stall and pitch rate exists in the data. A least squares fit of the data generates the equations

 $\Delta d_{\text{BTALL}} = 2.52 + 329.42 \text{ den} \qquad (18)$ 

Fig 20 shows these results, however, when compared to the other pitch location data, as shown in Fig 21, it is seen that pitching about the .61 chord position brought a decrease in the change in stall angle of attack versus angular rate. Although this decreased slope may be an actual physical occurance, there seems to be no theoretical explanation for it. Another possible explanation for the discrepancy between experiment and theory falls in the realm of experimental procedure. Although the airfoil is symmetric and the pressure transducers are fairly evenly distributed near the leading edge, a disparity between upper and lower surface transducers

# TABLE V

F

(•

Data Summary for Pitch Location #4 - .61c

<u>i c</u>

**.**...

1

·. - . ,

| Test<br>Run | Tunnel<br>Velocity<br>(ft/sec) | Rotation<br>Rate<br>(deg/sec) | detall<br>Static<br>(degrees) | detall<br>Dynamic<br>(degrees) | -<br>dnd |
|-------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|----------|
| 4-1         | 25.75                          | 82.45                         | 15.5                          | 26.5                           | .028     |
| 4-2         | 25.75                          | 120.68                        | 15.5                          | 31.6                           | .041     |
| 4-3         | 26.17                          | 139.43                        | 15.5                          | 33.6                           | .047     |
| 4-4         | 30.98                          | 71.34                         | 15.5                          | 24.5                           | .020     |
| 4-5         | 28.66                          | 119.84                        | 15.5                          | 30.6                           | .037     |
| 4-6         | 30.95                          | 135.95                        | 15.5                          | 31.1                           | . 039    |
| 4-7         | 36.46                          | 61.92                         | 15.5                          | 23.0                           | .015     |
| 4-8         | 36.13                          | 102.28                        | 15.5                          | 26.5                           | .025     |
| 4-9         | 33.54                          | 135.95                        | 15.5                          | 30.5                           | .036     |
| 4-10        | 38.02                          | 80.86                         | 15.5                          | 24.5                           | .019     |
| 4-11        | 38,01                          | 157.60                        | 15.5                          | 29.4                           | .037     |
| 4-12        | 39.80                          | 203.27                        | 15.5                          | 32.6                           | .045     |

67





•

















exists in the aft portion of the airfoil. As mentioned previously, the vortex formed during dynamic stall eventually moves aft and departs the airfoil. The number of transducers and their location on the aft part of the airfoil strongly influences the ability of the data system to record and analyze the effects of this vortex. It is therefore assumed that the disparity in transducer locations led to the lower slope in Fig 20.

•

The idea of an effective pitch rate due to the location of the rotation point led to Fig 22. In this figure,  $d_{ND}$  was replaced by an  $a^{*}$  in which  $a^{*} = (PL)ca^{*}/V$ , where PL is the airfoil pitch location expressed in terms of percent chord. For this experiment PL was equal to .08, .25, .50 and .61 respectively. As Fig 22 shows, the results discount the thought that dynamic stall data can be collapsed into one curve based on an effective non-dimensional pitch rate. Further attempts to collapse the pitch location data onto a single curve proved unsuccessful, although the existence of some universal length scale seems possible.

Another area of questionable results occurs in the static lift curves. When compared to the data presented in reference 11, there are obvious differences. The most notable being the zero lift point. For the NACA 0015, zero lift should occur at the zero angle of attack point, however, this was not the case as shown in Fig 23.



.



-----

. .



.

In order to make all references to static data consistent with the experimental procedure during the dynamic testing the static stall curve for pitch location four was obtained with downward rotation. The sign convention associated with this system would be equivalent to negative lift and negative angle of attack when compared to the other static lift curves. When this sign convention is adopted, the static lift data can be collapsed into Fig 24. The fact that the data from pitch location four represents a continuation of the upper lift curve leads to the conclusion that some form of flow angularity exists in the smoke-tunnel test section. If the flow angularity effects are corrected in the static data, the data compare favorably with that of reference 11. The existence of a flow angularity would also help explain the discrepancies that Schreck found in his static lift data [23:33-40]. Although this anglularity tends to skew the data, the overall effect on the results presented in this report is insignificant. This is due to the fact that the data is presented as a change in stall angle of attack and not as a representative angle of attack. Therefore, any angularity effects in the dynamic data should be cancelled by the equivalent angularity effect in the static data.

.





## Error Sourcas

As in any experimental investigation, the accuracy of the results depends on the amount of error introduced during the experimental process. Probably the largest problem in this investigation was maintaining a constant pitch rate throughout the dynamic stall event. As the data summary tables indicated. some test cases were eliminated due to a non-linear airfoil rotation. The necessity to eliminate these runs comes from the fact that most of the theoretical work in dynamic stall has dealt with a constant pitch rate. The addition of an angular acceleration would greatly complicate the problem and creates unpredictable results. As a result of these peculiarities, careful analysis of time versus angle of attack was performed for all experimental cases. One possible cause for the non-linear motion was the additional gearing placed on the existing rotation motor. This gearing was probably the reason that pitch down was required to obtain the data for pitch location four. Another possible source of error was frictional effects between the airfoil endplates and the test section walls. Although a good seal between the airfoil and the tunnel walls is desired to produce good two dimensional flow, this seal may have caused more error in the motor response. In either case, a non-linear motor response was not acceptable for representative

data.

. .

(•

Other sources of error in the data center on the tunnel test section and its flow qualities. As previously discussed, a flow angularity has been discovered although its effect on the experimental results was inconsequential. The possibility of three dimensional flow effects also exists in the test section. This condition could be caused by an interaction between the airfoil and the boundary layer formed along the test section walls [23:39]. Schreck tried to quantify these effects, but a true understanding is only possible through a careful experimental investigation involving the tunnel and the airfoil together. Tunnel flow quality is another area of concern in this experiment. There have been numerous modifications to the smoke tunnel since Baldner and Sisson performed their investigations during the initial tunnel setup. Turbulence level in the test section is one area that might play a large factor in the ultimate test results, leading to an increased angle of attack for both separation and stall. However, this effect should tend to cancel with the data representation assuming the tunnel turbulence level remained fairly constant. Finally, the tunnel inter-

ference effects of blockage and streamline curvature could have had a larger influence than previously anticipated. Without a large-scale test of the tunnel flow qualities, an accurate understanding of exactly what occurs in the test section will not exist.

## VI. Conclusions and Recommendations

#### Conclusions

<u>-----</u>

There are three major conclusions that can be drawn based on this experimental work. The first conclusion is that the dynamic stall effects are directly related to the non-dimensional pitch rate, dwp. This can be seen through the fact that increasing  $d_{ND}$  delays the point of airfoil stall and increases the maximum lift coefficient. The non-dimensional pitch rate also affects the airfoil drag and guarter chord pitching moment in a similar manner. As and increases, the maximum drag also increases and the airfoil pitching moment becomes more severe at the point of dynamic stall. The second conclusion concerns the effect of pitch location on dynamic stall. Based on the data from the pitch locations before the mid-chord, the effect of moving the pitch location aft of the leading edge is to in- crease the the dynamic stall angle of attack. This effect was accurately predicted by Allaire. The final conclusion stems from the static angle-of-attack data. Based on the information obtained during these tests, there is strong evidence that some form of flow angu- larity or disturbance exists in the smoke tunnel test section. This angularity appears to be on the order of two to two and a half degrees of flow misalignment.

#### Recommendations

There is still a great deal of research necessary before the entire dynamic stall phenomenon is completely understood. Although this work has tended to substantiate the predicted effects of pitch location, further work is necessary to completely determine pitch location effects on dynamic stall. The following are some of the recommendations for future research in dynamic stall;

First, re-investigate the effects of pitching the airfoil at locations beyond the mid-chord position. The results of this study were inconclusive in this area due to differences in test equipment and procedures. This investigation could be aided by returning to a direct drivesystem on the drive motor in order to provide the capability to rotate the airfoil in a pitch up motion.

Second, a major investigation of the smoke tunnel test section flow quality is a necessity. In order to effectively use this tunnel for testing two-dimensional aerodynamics, the test section flow characteristics must be known. It has become evident that some form of flow irregularity does exist and the cause of this problem should be discovered before future investigations are attempted.

Third, although the methods used in this study failed to collapse the non-dimensional pitch data into

one curve, the existence of an appropriate scaling factor is presumed. Further attempts to scale the data are necessary and may provide an insight into the pitch location effect on dynamic stall.

ر در رو

> Finally, further experiments in dynamic stall are still in order. Although the data acquisition system has proven itself effective throughout this investigation, its abilities are limited by the model characteristics. Therefore, a larger model with more interior room is recommended. This larger model would allow for more transducers and help to eliminate some of the error introduced during the pressure distribution discretization process. Another recommendation for the new model would be to supply ambient pressure to the reference pressure ports of the transducers, thus eliminating the need to seal the interior airfoil chamber. This would greatly faciltate model changes and help reduce damage to the model. Finally, if a larger model is created, the experiment will need to be moved to a larger tunnel to avoid large tunnel errors due to blockage and streamline curvature. Although the benefits of a two dimensional flow would be lost, the AFIT five foot wind tunnel could provide the necessary test section qualities to continue the investigation of dynamic stall.

#### Bibliography

•

.

14.1

•

- Allaire, Andre J. S., "Investigation of Potential and Viscous Flow Effects Contributing to Dynamic Stall," Master's Thesis, AFIT/GAE/AA/848-1, Air Force Institute of Technology, 1984.
- Baldner, J. L., "Completion of the Development of the AFIT Smoke Tunnel," Master's Thesis, AFIT/GAE-2, Air Force Institute of Technology, 1959.
- Clancy, L. J. <u>Aerodynamics</u>. New York: John Wiley and Sons, 1975.
- Daley, D. C., "Experimental Investigation of Dynamic Stall," Master's Thesis, AFIT/GAE/AA/82D-6, Air Force Institute of Technology, July 1983.
- Daley, D. C. and Jumper, E. J., "Experimental Investigation of Dynamic Stall for a Pitching Airfoil," Journal Of Aircraft, 21, October 1984, pp. 831-832.
- 6. Deckens, A. C., and Kuebler, W. R., "A Smoke Tunnel Investigation of Dynamic Separation," <u>Air Force</u> <u>Academy Aeronautics Digest - Fall 1978</u>, 2-16, USAFA-TR-79-1 (February 1979).
- 7. Docken, R. G. Jr., Jumper, E. J., and Hitchcock, J. E. "Theoretical Gust Response Prediction of a Joukowski Airfoil," <u>Proceedings of the Ninth Annual AIAA</u> (Dayton-Cincinnati) Mini-Symposium, AIAA(DAY/CIN) 83-1 3-2-1-3-2-3 (February 1983).
- 8. Endevco Corporation. <u>Series 8507 Miniature Piezo-</u> resistive Pressure Transducers. San Juan Capistrano, California: Endevco Corp.
- 9. Francis, M. S., Keese, J. E., and Retelle, J. P. Jr. "An Investigation of Airfoil Dynamic Stall With Large Amplitude Motions," F. J. Seiler Research Laboratory, FJSRL-TR-83-0010 (October 1983).
- Helin, Hank E. and Walker, John M., "Interrelated Effects of Pitch Rate and Pivot Point on Airfoil Dynamic Stall," AIAA 23rd Aerospace Sciences Meeting, Reno, NV, January 1985. AIAA 85-0130.
- 11. Jacobs, Eastman N., and Sherman, Albert. "Airfoil Section Characteristics as Affected by Variation of the Reynolds Number. NACA Report 586, 1937.
- 12. Jumper, E. J., Schreck, S. J., and Dimmick, R. L., "Lift Curve Characteristics for an Airfoil Pitching at Constant Rate," AIAA paper number AIAA-86-0117.

13. Jumper, E. J., "Mass Ingestion: A Perturbation Useful in Analyzing Some Boundary Layer Problems," work in progress.

- 14. Kramer, Von M., "Die Zunahme des Maximalauftriebes von Tragflugeln bie plotzlicher Anstellwinkel-vergro Berung (Boeneffekt)," <u>Zeitschrift fur Flugtechnik</u> <u>und Motorluftschiffahrt, 7</u>, 14 April 1932, pp. 185-189
- 15. Lawrence, John S., "Investigation of Effects Contributing to Dynamic Stall Using A Momentum-Integral Method," Master's Thesis, AFIT/GAE/AA/83D-12, Air Force Institute of Technology, 1983.
- McCroskey, W. J., McAlister, K. W., Carr, L. W., and Pucci, S. L. "An Experimental Study of Dynamic Stall on Advanced Airfoil Sections," Vol. 1, July 1982, NASA TM-84245.
- 17. McCroskey, W. J., McAlister, K. W., Carr, L. W., and Pucci, S. L. "An Experimental Study of Dynamic Stall on Advanced Airfoil Sections," Vol. 2, July 1982, NASA TM-84245.
- 18. McCroskey, W. J. "The Phenomenon of Dynamic Stall," March 1981, NASA TM-81264.
- 19. McCroskey, W. J., "Unsteady Airfoils," <u>Annual Review</u> of Fluid Mechanics, 1982, pp. 285-311.
- 20. Pankhurst, R. C. and Holder, D. W. <u>Wind Tunnel Tech-</u> <u>nique</u>. London: Sir Isaac Pittman and Sons, Ltd., 1954.
- 21. Rae, William H. Jr. and Pope, Alan. Low Speed Wind Tunnel Testing, 2nd ed. New York: John Wiley and Sons, 1984.
- 22. Scheubel, N. "Some Tests on the Increase of the Maximum Lift of Aerofoils Whose Angle of Incidence Changes at Constant Angular Velocity", <u>Mitt deut</u> <u>Akad Luftfahrt-Forsch</u>, 1, 39-45, (1942).
- Schreck, Scott J., "Continued Experimental Investigation of Dynamic Stall," Master's Thesis, AFIT/GAE/AA/83D-21, Air Force Institute of Technology, 1983.
- 24. Sisson, F. E. II, "Completion of the AFIT Smoke Tunnel," Master's Thesis, AFIT/GAE-12, Air Force Institute of Technology, 1957.





MICROCOPY RESOLUTION TEST CHART

Tupper, Kenneth W., "The Effect of Trailing Vortices 25. on the Production of Lift on an Airfoil Undergoing a Constant Rate of Change of Angle of Attack," Master's Thesis, AFIT/GAE/AA/83D-26, Air Force Institute of Technology, 1983.

•

٠.

•

- Walker, J. M., Helin, H. E., and Strickland, J. H., 26. "An Experimental Investigation of an Airfoil Undergoing Large Amplitude Pitching Motions," Air Force Academy Aeronautics Digest, April 1985. USAFA TR-85-2.
- Williams, James C. III. "Incompressible Boundary-27. Layer Separtation," Annual Review of Fluid Mechanics, 9, 113-144 (1977).

. . .

+

## APPENDIX A

### Introduction

Even though each transducer came from Endevco complete with its own factory calibration, all 16 transducers were recalibrated prior to their use in this experiment. As Table VI shows, most transducer sensitivities changed only slightly between the last known calibration and the pre-test calibration conducted for this investigation. Calibration of the transducers was subsequently repeated at the completion of the data collection. Comparison of the pre- and post-test calibrations shows no transducer undergoing a sensitivity change greater than approximately two percent.

#### Apparatus

A simpler and more accurate method of calibrating the transducers was one of the goals of this continuation study. Schreck used a complicated process to calibrate each transducer individually using a suction cup apparatus [23:70-75]. In order to simplify the calibration, a means of supplying the same calibration pressure to all 16 transducers simultaneously was necessary. This requirement led to the construction of the calibration chamber shown in Fig 25. Due to the



use of electronic pin connectors and the redesigned tunnel mounting fixture, the airfoil could be removed from the tunnel and placed in the calibration chamber with only minor difficulty. The chamber consisted of a baseplate and a large bell jar. The base plate was constructed from 1/2 inch Aluminum and had three holes drilled into it. The large center hole permitted the airfoil rotation shaft to protrude from the plate and used a collar attached to the shaft to hold the airfoil in place and form a seal. The airfoil was mounted so that the slot in the rotation shaft was outside the chamber. allowing ambient air into the airfoil shell. The two other holes were used for supply and measurement of the calibration pressure and had quarter-inch fittings for tygon tubing. One tube led to a Meriam A-937 water micromanometer and the other went to a hand vacuum pump. The vacuum pump was used to create the calibration pressure and the micromanometer was used to measure the pressure within the chamber. With the airfoil mounted to the baseplate, as shown in Fig 26, the bell jar was placed over it to form an airtight chamber.

#### Calibration Procedure

The computer, the transducer power supply and voltmeter were powered up and allowed to warm up for one hour before the actual calibration began. A light



coating of silicon vacuum grease was applied to the bell jar and it was placed on top of the baseplate. The micromanometer was zeroed and then set to the desired calibration pressure. Using the hand pump, the chamber pressure was lowered until it read the value set on the micromanometer. Next, the calibration program, CALTRAN, was initiated. After applying a calibration pressure to the chamber the program would continuously sample all 16 transducers and determine an average digital reading based on 100 samples. The transducer data and calibration pressure were then written to disk for later use.

A total of five successively lower water column heights were used in calibrating the transducers. These heights ranged between zero and minus four inches, spaced at one inch intervals. This calibration process was repeated five times giving a total of twenty five data points for each transducer. These data points were then plotted on a graph having the pressure input to the transducer in inches of water on its horizontal axis and the pressure reading from the transducer in digital counts on the horizontal axis. In all cases the data proved to be linear and a least squares fit was accomplished to determine the slope of the calibration curve. The transducer sensitivity was then calculated by taking the calibration curve slope in digital counts per inch of water and converting it



to units of millivolts per psi (pounds per square inch) using the following formula:

mV - <u>digital ct × 100 mV</u> × <u>27.68 inch H<sub>2</sub>0</u> psi inch H<sub>2</sub>0 4096 digital ct psi

The calculated transducer sensistivities were then used in the experimental software for both data collection and data reduction.

A repeat of the entire calibration process at the conclusion of all data gathering showed no appreciable difference in the transducer calibrations as shown in Table VI. The only exception being transducer 7 A which was damaged during the change of airfoil endplates. This transducer could not be recalibrated, although based on the response of the other transducers it would be expected that there was no significant change in transducer response.





## Transducer Calibration Sensitivities

| Transducer | Last<br>Known<br>Calibration<br>(mV/psi) | Pre-test<br>Calibration<br>(mV/psi) | Post-test<br>Calibration<br>(mV/psi) |
|------------|------------------------------------------|-------------------------------------|--------------------------------------|
| ĩ          | 196.2                                    | 202.5                               | 204.6                                |
| 2          | 168.4                                    | 172.3                               | 173.3                                |
| 3          | 173.5                                    | 176.3                               | 174.9                                |
| 4          | 226.4                                    | 231.7                               | 234.5                                |
| 5          | 203.8                                    | 204.6                               | 205.4                                |
| 6          | 200.1                                    | 204.6                               | 202.1                                |
| 7 A        |                                          | 116.2                               | ****                                 |
| 7 B        |                                          | 189.5                               | 190.8                                |
| 8          | 208.8                                    | 216.4                               | 212.5                                |
| 9          | 170.9                                    | 174.0                               | 175.2                                |
| 10         | 113.9                                    | 113.8                               | 114.0                                |
| 11         | 119.3                                    | 114.4                               | 115.2                                |
| 12         | 112.3                                    | 113.6                               | 112.1                                |
| 13         | 137.2                                    | 136.6                               | 137.9                                |
| 14         |                                          | 165.3                               | 167.0                                |
| 15         | 217.4                                    | 219.6                               | 220.8                                |
| 16         | 217.2                                    | 222.8                               | 221.2                                |

Note: Transducer 7A was damaged during the experiment and therefore a post-test calibration was not possible.

90

. . .
#### Appendix B

#### Software Package

The following appendix contains copies of the pertinent software written for this experiment. Permanent copies of all programs used during this experiment have been archived on floppy disks and are located in Room 142, Bldg 640, Wright-Patterson AFB.

The following programs are listed in this appendix:

<u>TESTRUN</u> - This is the data collection and storage program. The program requests the experimental conditions, collects the experimental time, position, and pressure data in digital form, and stores the data to disk. Finally, the program collects pressure and position data for the static stall data base.

<u>DOS2A</u> - This is the main data reduction program. The program reads the data files created by the TESTRUN program and then converts the pressure data into pressure coefficients. These pressure coefficients are integrated numerically to obtain aerodynamic force and moment coefficients. This program creates a reduced data output file REDUDATA.DAT which contains experimental conditions, time, position, pressure coefficients, and lift, drag, and moment coefficients for the five airfoil rotations.

 $\underline{DATRED}$  - This is the final data averaging program. The REDUDATA.DAT file created by DOS2A is read and the position and force coefficients are used to form an ensemble averaged data set for the test condition. The time and position data are also used to determine an average angular rotation rate and linearity of the airfoil drive motor. The output file from this program contains airfoil rotation rate, position, and lift, drag and moment coefficients.

PROGRAM TESTRUN To gather and store data for further processing Ū Link: TESTRUN, STCLK, GETTIM, ADIO, FORLIB/S, TESTRUN/N/E C IMPLICIT INTEGER (A-Z) REAL AVSTAT(16), STATIC(16), BAROM, TEMP, MANOM1, MANOM2, TUNVEL REAL MOTVOL.P90,P0,RHO,DTIM,DPOSV,DPOSD,ROTRAT,VPD REAL PORTU(10), PORTL(10), SENS(16), CPU(10), CPL(10) REAL IDATAT(16), NORMCO, PRESS, STICKY REAL CP(16).AREAUT, AREALT, LNGTHU, LNGTHL, AREAU, AREAL, INTU, INTL INTEGER IDATA (3960), HOUR, CHECK, CHAN, DAY, MONTH, YEAR, XX INTEGER VALUE, CHEK, NS, N, A, DI, K, J, B, AA, L, C, KOUNT, S, T, U, DD, EE, ZZ INTEGER DIFANG, INK, RUNS, XXX, YYY, RRR, ZERANG, SNAP, SELECT INTEGER CHECK, CHEK, CHAN, VALUE, KOUNT, Z, W, S, CCC INTEGER II, JJ, KK, WW, DD, X, V, Y, TT, ZZZ INTEGER SDATA(5,18) REAL CNORM C 0 ---- Load transducer sensitivities (millivolts/psi) DATA SENS/202.5,172.3,176.3,231.7,204.6,204.6,189.5, +215.4,174.0,113.8,114.4,113.6,136.6,165.3,219.6,222.8/ C C ---- Load transducer locations on upper surface (percent chord) DATA PORTU/0.0,0.0242,0.0484,0.0969,0.129,0.194,0.323,0.605, +0.888,1.000/ С ---- Load transducer locations on lower surface (percent chord) DATA PORTL/0.0,0.0161.0.0319,0.0484.0.0969.0.194.0.323. +0.686.1.000/ C C Initialize count of passes to zero. C 10 ×OUNT=0 C C Input date, time, barometer, and room temperature ٤ for experimental records. С WRITE (1,15) 15 READ (1,20) DAY, MONTH, YEAR 20 FORMAT (13,13,13) WRITE (1.25) 25 READ (1,30) HOUR ΞQ FORMAT (15) WRITE (1,35) 75 ENTER BAROMETER (INCHES OF MERCURY) ,/) EDRMAT (' READ (1,40) BAROM 40 FORMAT (F7.2) WFITE (1,45) 45 FORMAT (' ENTER ROOM TEMPERATURE (DEGREES FAHRENHEIT) ',/) READ (1,50) TEMP FORMAT (F6.1) 50 C

.

С. \_\_\_\_ Echo date, time, barometer, and room temperature for C \_\_\_\_ verification. Offer option to correct faulty input. C WRITE (1,55) DAY, MONTH, YEAR FORMAT (' DAY: ', 13, ' 55 MONTH: ', 13, ' YEAR: (.13) WRITE (1,60) HOUR FORMAT (' TIME: ',15) 60 WRITE (1,65) BAROM 65 FORMAT (' BAROMETER: ', F7.2, ' INCHES OF MERCURY') WRITE (1,70) TEMP 70 FORMAT (' ROOM TEMPERATURE: ',F6.1, ' DEGREES FAHRENHEIT') WRITE (1,75) 75 FORMAT (///,' ARE THE INPUTS, ECHOED ABOVE, >> WRITE (1,80) 80 FORMAT ( CORRECT? IF SO, ENTER A 1(,/) READ (1,85) CHECK FORMAT (I1) 85 IF (CHECK.NE.1) GO TO 10 C C ----Following part of program calculates an average zero-input C ---reading for each transducer. Average is obtained from 100 C ---readings of each transducer. С WRITE (1,90) 90 FORMAT (///, ' THIS PART OF THE PROGRAM OBTAINS AVERAGE ') WRITE (1,95) 95 FORMAT ( TRANSDUCER ZERO-INPUT READINGS. WHEN TEST- ) WRITE (1,100) FORMAT ( SECTION VELOCITY IS ZERO, HIT RETURN KEY ) 100WRITE (1,102) 102FORMAT ( IN RESPONSE TO "PAUSE" .///) PAUSE C ÷C Initialize all array elements to zero. Ĉ CONTINUE 110 DO 120 Z=1,16 AVSTAT(Z)=0.0 120CONTINUE C :2 Take 100 readings from each transducer, average them as shown C \_\_\_\_ below. then write these averages to terminal. Also offer the C option to retake the average zero-input readings. C DO 150 S=1,100 DO 160 T=1,16 CHAN≈T-1 CALL AD (VALUE, CHAN, SO) AVSTAT(T) = AVSTAT(T) + (VALUE/100.0) 160 CONTINUE 150 CONTINUE С C

WRITE (1.155) 155 FORMAT ( AVERAGE ZERO-INPUT READINGS FOLLOW ./) С DO 180 W=1,16 WRITE (1,165) W, AVSTAT(W) FORMAT (' TRANSDUCER', 13, ' AVERAGE STATIC READING: ', F6.0) 165 180 CONTINUE WRITE (1,177) FORMAT (///, ' TO PROCEED WITH THE PROGRAM, ENTER A 1',/) 177 READ (1,178)XX 178 FORMAT (12) IF (XX.NE.1) GO TO 110 С С C Enter manometer reading, motor voltage, and 90 and 0 C ----degree angle of attack voltages for experimental records. £ Test-section velocity is also computed as shown below. C ĩ WRITE (1,185) 185 187 WRITE (1,190) 190 FORMAT (' ENTER ROOM PRESS. MINUS TUNNEL STAT. PRESS. + (INCHES OF WATER) ',/) READ (1,195) MANOM1 195 FORMAT (F8.4) WRITE (1,200) 200 FORMAT (' ENTER TUNNEL TOTAL PRESS. MINUS TUNNEL STATIC PRESS. + (INCHES OF WATER) /) READ (1,195) MANOM2 205 FORMAT (F8.4) WRITE (1,210) 210 FORMAT (' ENTER MOTOR VOLTAGE (VOLTS)',/) READ (1.215) MOTVOL 215 FORMAT (F6.2) WRITE (1,220) 220 FORMAT (' ENTER 90 AND 0 DEGREE VOLTAGES, RESPECTIVELY',/) READ (1.225) P90.P0 FORMAT (2F7.4) 225 RH0=(BAR0M\*70.45)/(1715.0\*(460.0+TEMP)) TUNVEL=SQRT((2.0\*(5.204\*MANOM2))/RH0) ŗ ÷Ū \_\_\_\_ Echo manometer readings, tunnel velocity, motor voltage and 90 and 0 degree angle of attack voltages for verification. C \_\_\_\_ C \_ \_ ~ \_ offer option to correct faulty input. C WRITE (1,230) MANOM1 FORMAT ( MANDMETER ONE: ', F8.4, ' INCHES OF WATER ) 230WRITE (1.233) MANOM2 FORMAT ( MANDMETER TWO: 1,F8.4, 1 INCHES OF WATER ) 273 WRITE (1,235) TUNVEL 235 FORMAT ( TUNNEL VELOCITY: 1.F7.2, FT/SEC) WRITE (1,240) MOTVOL

240 FORMAT ( MOTOR VOLTAGE: ', F6.2, ' VOLTS') WRITE (1.245) P90.P0 245 FORMAT (' P90: ',F7.4,' VOLTS FO: (,F7.4, VOLTS') WRITE (1.75) WRITE (1,80) READ (1,85) CHEK IF (CHEK.NE.1) GO TO 187 С C ---The following part of the program writes pertinent С information to file RAWDATAODAT on disk. C CALL OPEN (3, 'RAWDATAODAT', 2) WRITE (3,500) FORMAT (' DAY', 10X, 'MONTH', 9X, 'YEAR', 9X, 'TIME') 500 WRITE (3,510) DAY, MONTH, YEAR, HOUR 510 FORMAT (I3,11X,I3,11X,I3,9X,I5,/) WRITE (3,520) FORMAT ( TEMPERATURE ', 14X, 'BAROMETER') 520 WRITE (3,530) TEMP, BAROM 530 FORMAT (2X, F6.1, 18X, F7.2, /) WRITE (3,540) 540 FORMAT (' MANOMETER 1',22X, 'MANOMETER 2') WRITE (3,545) MANOM1, MANOM2 545 FORMAT (2X, F8. 4, 25X, F8. 4, /) WRITE (3,550) FORMAT ( TUNNEL VELOCITY , 22X, 'MOTOR VOLTAGE ) 550 WRITE (3,555) TUNVEL, MOTVOL 555 FORMAT (4X,F7.2,31X,F6.2,/) WRITE (3,560) FORMAT (' 90 DEG. VOLTAGE', 16X, '0 DEG. VOLTAGE') 560 WRITE (3,570)P90,P0 570 FORMAT (5X,F7.4,23X,F7.4,/) WRITE (3,580) FORMAT ( NUMBER OF PASSES ', 10X, 'NUMBER OF IDATA ELEMENTS ') 580 WRITE (3,590) 590 FORMAT (5X, (KOUNT) , 26X, (N) ) KOUNT=200 N=3600 WRITE (3,600)KOUNT,N FORMAT (3X, 16, 26X, 16, //) 500 WRITE (3,610) 510 WRITE (3,620) AVSTAT(1), AVSTAT(2), AVSTAT(3), AVSTAT(4) WRITE (3,620) AVSTAT(5), AVSTAT(6), AVSTAT(7), AVSTAT(8) WRITE (3,620) AVSTAT (9), AVSTAT (10), AVSTAT (11), AVSTAT (12) WRITE (3,620) AVSTAT(13), AVSTAT(14), AVSTAT(15), AVSTAT(16) FORMAT (F9.3,5X,F9.3,5X,F9.3,5X,F9.3) 520 WRITE (3,660) FORMAT (///) **66**0 ENDFILE 3 С С Offer option to conduct only static runs Ũ WRITE (1,247)

FORMAT (//, DO YOU WANT TO MAKE 1=DYNAMIC OR 2=STATIC RUNS?',/) 247 READ (1,85) CHEK IF (CHEK.EQ.2) GOTO 2345 C Initialize number or runs to zero, and then increment this С С number by one each run thereafter. С RUNS=0 250 CONTINUE RUNS=RUNS+1 255 CONTINUE C WRITE (1,257)RUNS FORMAT (////, ' \*\*\*\*\*\*RETURN AIRFOIL TO ZERO ANGLE OF 257 + ATTACK IN PREPARATION FOR RUN', I2, '\*\*\*\*\*\*\*\*',////) NS=0 KOUNT=0 WRITE (1,260) FORMAT ( ENTER NUMBER OF SAMPLES (MULTIFLE OF 18, 260 + 5040 MAXIMUM) ',/) READ (1,265) NS FORMAT (15) 265 WRITE (1,270)NS FORMAT (//, ' ',25X, 'NS: ',15,//) 270  $\square$ Ē In the next segement, the operator is given the choice ~---C ---between manual and automatic trigger. C WRITE (1,273) FORMAT ( ' DO YOU WANT MANUAL OR AUTOMATIC TRIGGER? 273 (1=AUTO, 2=MANUAL) (,/) READ (1,277) SELECT 277 FORMAT (12) IF (SELECT.NE.2) GD TO 281 PAUSE GOTO 285 С :\_ The program segement below is the automatic trigger. \_\_\_\_ С \_\_\_\_ The program stays in the 280 loop below until ZERANG C ---and VALUE differ by 2 or more digital counts. C When this occurs, due to rotation of the airfoil, the \_\_\_\_ C ---program continues on to line number 285. С CALL AD (VALUE.0,84) 291 ZERANG=VALUE 280 CALL AD (VALUE, 0,84) SNAP=IABS (VALUE-ZERANG) IF (SNAP.LE.1) GO TO 280 С STCLK, below, will count up to 32,768 time clicks, each click C. being .0010046 seconds long. Therefore, STCLK can only time С C an event that lasts for no more than about 32 seconds. C 285 CALL STCLK

PROGRAM

TESTRUN

Cale a Cale Cale - a Cale - a

С The following part of the program reads and stores the time 0 obtained from subroutine GETTIM, as well as position and E ----С pressure information obtained from the potentiometer and С pressure transducers, respectively. This position and pressure С information is obtained through subroutine ADIO. -----С WRITE(1,290) 290 FORMAT (///, ' ',20X, 'STARTING TO TAKE DATA',///) DO 320 J=1,NS,18 KOUNT≈KOUNT+1 CALL GETTIM (TIME) IDATA(J)=TIME CHAN=0 CALL AD (VALUE, CHAN, 84) IDATA (J+1) =VALUE 00 300 K=1.16 CHAN=K-1 CALL AD (VALUE, CHAN, 80) DI≈K+J+1 IDATA(DI)=VALUE 300 CONTINUE 320 CONTINUE WRITE (1,330) RUNS FORMAT (' ',15%, 'DATA GATHERING COMPLETE FOR RUN',12,//) 330 WRITE (1,340) KOUNT 740 FORMAT ( NUMBER OF PASSES = ', 16, //) N=KOUNT+18 WRITE (1,343)N 343 FORMAT ( NUMBER OF IDATA ELEMENTS= (,16,//) VPD=(P90-P0)/90.0 DTIM=(IDATA(2701)-IDATA(901))\*(0.0010046) DPOSV=((IDATA(2702)-IDATA(902))/4096.0)\*10.0 DPOSD=DPOSV/VPD ROTRAT=DPOSD/DTIM WRITE (1,410)ROTRAT 410 C С Options are now offered to list the IDATA array at the \_\_\_\_ terminal, to write this array to disk, and to repeat the C ----Ū \_\_\_\_ data run. C 344 WRITE(1.345) 545 READ(1,347)AA 347 FORMAT (12) IF (AA.NE.1)GO TO 350 DO 420 XXX=180,N,180 YYY=XXX-179 WRITE (1,360) (IDATA(L), L=YYY, XXX) 360 FORMAT (917) 420 CONTINUE GOTO 344 WRITE (1,351)

FORMAT (77) 351 350 WRITE(1,355) FORMAT(' DO YOU WANT TO WRITE TO DISK?(Y=1)',//) 355 READ (1,347)B IF (8.EQ.1) GO TO 390 374 WRITE (1,375) RUNS FORMAT (' DO YOU WANT TO REPEAT RUN', 12, '? (Y=1)',//) 375 READ (1,380)C 380 FORMAT (12) IF (C.EQ.1) GO TO 255 IF (C.EQ.2) GO TO 4800 GOTO 374 390 CONTINUE С C The part of the program below writes the collected data ~ \_ \_ \_ C to disk, in unformatted form, under the filename ~----C RAWDATA1DAT, RAWDATA2DAT, . . . , RAWDATA5DAT, depending \_\_\_\_ C ~\_\_\_ on the value of the variable RUNS. To view the data files C that are in unformatted form, use program LOOK. С IF (RUNS.EQ.1) GO TO 710 IF (RUNS.EQ.2) GD TO 720 IF (RUNS.EQ.3) GO TO 730 IF (RUNS.EQ.4) GO TO 740 IF (RUNS.EQ.5) GD TO 750 :2 710 CONTINUE CALL OPEN (4, 'RAWDATA1DAT', 2) WRITE (4) (IDATA(L),L=1,N) GO TO 760 720 CONTINUE CALL OPEN (5, 'RAWDATA2DAT', 2) WRITE (5) (IDATA(L),L=1,N) GO TO 760 730 CONTINUE CALL OPEN (6, 'RAWDATA3DAT', 2) WRITE (6) (IDATA(L),L=1.N) GO TO 760 740 CONTINUE CALL OPEN (7, RAWDATA4DAT ,2) WRITE (7) (IDATA(L),L=1,N) GO TO 760 750 CONTINUE CALL OPEN (8, RAWDATA5DAT ,2) WRITE (8) (IDATA(L),L=1,N) GO TO 760 760 CONTINUE IF (RUNS.NE.5) GO TO 250 ENDFILE 4 ENDFILE 5 ENDFILE 6 ENDFILE 7 ENDFILE 8

2345 CONTINUE WRITE (1,2346) FORMAT (////, FOLLOWING PART OF PROGRAM GIVES STATIC 2346 + NORMAL COEFF. FOR STATIC ALPHA',/////) CALL OPEN (9, 'RAWDATA6DAT', 2) CALL OPEN(10, 'STATICCNDAT',2) C The remaining portion of the program takes and processes С С ----data for static angle of attack lift-curves. C 2400 CONTINUE WRITE (1,2450) FORMAT (' ENTER NS (MULTIPLE OF 18, LESS THAN OR 2450 + EQUAL TO 5040) ',/) READ (1,2150) NS FORMAT (14) 2150 KOUNT=0 CNORM=0 00 5000 ZZZ=1,5 KOUNT=0 WRITE (1,2000) 2000 FORMAT (////, ' HIT RETURN TO START DATA COLLECTION',/) С С STCLK, below, will count up to 32,768 time clicks, each click С \_\_\_\_ being .0010046 seconds long. Therefore, STCLK can only time С an event that lasts for no more than about 32 seconds. C CALL STOLK C WRITE(1,2100) FORMAT(///, ' ',20X, 'STARTING TO TAKE DATA',///) 2100 DO 2200 J=1,NS,18 KOUNT=KOUNT+1 CALL GETTIM(TIME) IDATA(J)=TIME CHAN=0 CALL AD (VALUE, CHAN, 84) IDATA (J+1) =VALUE DO 2300 K=1,16 CHAN=K-1 CALL AD (VALUE, CHAN, SO) DI = k + J + 1IDATA(DI)=VALUE 2700 CONTINUE 2200 CONTINUE N=KOUNT+18 WRITE (1,2500)N 2500 FORMAT (' NUMBER OF IDATA ELEMENTS= ',16,//) С С Time-average data С DO 2550 S=1,16 IDATAT(S) = 0.02550 CONTINUE

DO 2600 II=1,N,18 DO 2700 JJ=3,18 TT=II+JJ IDATAT (JJ-2) = ((IDATA(TT-1))/KOUNT) + IDATAT (JJ-2)2700 CONTINUE 2600 CONTINUE С C Compute the pressure coefficients С DO 2800 KK=1,16 STICKY=AVSTAT (KK)-2048.0 PRESS=((((IDATAT(KK)-STICKY)-2048.0)/2048.0)\*(50.0/SENS(KK)) CP(KK) = (PRESS + (MANOM1/27.68)) / (MANOM2/27.68)2800 CONTINUE С С ---- The next loop defines the pressure distribution on the upper C ---- surface of the airfoil, leading edge to trailing edge.  $\mathbb C$  ---- Pressure coefficient is assumed to be zero at the trailing edge. С WRITE (1,2900) 2900 FORMAT (' UPPER SURFACE PRESSURE COEFFICIENTS. + L.E. TO T.E., ARE GIVEN BELOW',) DD 3000 V=1,9 CPU(V) = CP(V)3000 CONTINUE CPU(10)=0.0 DO 3100 V=1,10 WRITE (1,3200)V,CPU(V) 0200 FORMAT (' CPU', 13, '=', F8.4) 3100 CONTINUE C WRITE (1,3300) 3300 FORMAT (7, 1 LOWER SURFACE PRESSURE COEFFICIENTS. + L.E. TO T.E., ARE GIVEN BELOW') CPL(1) = CP(1)DO 3400 W=2.8 DD=18-W CPL (W) = CP (DD) 3400 CONTINUE CPL(9)=CPU(10) 00 3500 W=1,9 WRITE (1,3600)W,CPL(W) 3600 FORMAT (' CPL',I3,'=',F8.4) 7500 CONTINUE C  $\mathbb{C}$  ---- The following loop integrates the upper pressure С ---- distribution using the trapezoidal rule. С AREAUT=0.0 DD 3700 X=1,9 LNGTHU=PORTU(X+1)-PORTU(X) IF ((ABS(CPU(X+1)-CPU(X))).GT.(ABS((0.01)\*CPU(X)))) GO TO 3800 AREAU=(0.5)\*(CPU(X+1)+CPU(X))\*LNGTHU

3800 IF ((ABS(CPU(X+1)-CPU(X))).LE.(ABS((0.01)\*CPU(X)))) GO TO 4000 INTU=(PORTU(X)-PORTU(X+1))\*CPU(X)/(CPU(X+1)-CPU(X)) IF (INTU.LT.LNGTHU) GO TO 3900 AREAU=(.5)\*(CPU(X+1)+CPU(X))\*LNGTHU IF ((INTU).GE.(LNGTHU)) GO TO 4000 3900 AREAU = ((.5) \* INTU \* CPU(X)) +((.5)\*(LNGTHU-INTU)\*CPU(X+1)) 4000 AREAUT=AREAUT+AREAU CONTINUE 3700 С ---- The following loop integrates the lower pressure С С ---- distribution using the trapezoidal rule. C AREALT=0.0 DO 4100 Y=1.8 LNGTHL=PORTL(Y+1)-PORTL(Y) IF ((ABS(CPL(Y+1)-CPL(Y))).GT.(ABS((0.01)\*CPL(Y)))) GO TO 4200 AREAL=(.5)\*(CPL(Y+1)+CPL(Y))\*LNGTHL IF ((ABS(CPL(Y+1)-CPL(Y))).LE.(ABS((0.01)\*CPL(Y)))) GO TO 4400 INTL=(PORTL(Y)-PORTL(Y+1))\*CPL(Y)/(CPL(Y+1)-CPL(Y)) 4200 IF ((INTL).LT.(LNGTHL)) GD TD 4300 AREAL=(.5)\*(CPL(Y+1)+CPL(Y))\*LNGTHL IF ((INTL).GE. (LNGTHL)) GD TD 4400 4300 AREAL=((.5)\*INTL\*CPL(Y))+ ((.5) \* (LNGTHL-INTL) \*CPL (Y+1)) 4400 AREALT=AREALT+AREAL 4100 CONTINUE  $\mathbb{C}$ NORMCO=AREALT-AREAUT CNORM=CNORM+NORMCO/5. C WRITE (1,4500)NORMCO 4500 FORMAT (/, ' NORMAL FORCE COEFFICIENT=', F8.5,/)  $\widetilde{\Box}$ đ Option now offered to write to disk and continue run C DO 4550 J=1,16 4550 IDATA(J+2)=IDATAT(J) DO 4560 J=1,18 4560 SDATA(ZZZ,J)=IDATA(J) 5000 CONTINUE WRITE(1,4570)CNORM FORMAT(//, AVERAGED NORMAL COEFFICIENT= , F8.5,/) 4570 WRITE(1,4575) 4575 FORMAT(7, DO YOU WANT TO WRITE TO DISK (Y=1) () READ (1,4700) CHEK IF (CHEK.NE.1) GOTO 4599 DO 4577 ZZZ=1,5 4577 WRITE(9,360) (SDATA(ZZZ,L),L=1,18) WRITE (10,4580) IDATA (2), NORMCO 4580 FORMAT(15, F8.5, /) 4599 WRITE (1,4600) (Y=1)',/) 4600 FORMAT ( DO YOU WANT TO CONTINUE THE RUN? READ (1,4700)CCC

4700 FORMAT (I2) IF (CCC.EQ.1) GO TO 2400 IF (CCC.NE.2) GOTO 4599 4800 CONTINUE STOP END

ويترجعه ومعرفة

FROGRAM DOSZA INTEGER IDATA2 (3600), NJ INTEGER N,R,X,Y,V,W,S,I,J,L,AA,PP,QQ INTEGER RR, SS, TT, UU, VV, WW, XX, YY, ZZ, RUN, TRAP, PAZZ, DIV, NUMEL INTEGER ELEM1, ELEM2, DAY, MONTH, YEAR, HOUR, CHANG1, CHANG2 INTEGER DD, EE, FF, HH, LL, NN, MODCOW, JJJ, ZOO REAL PORTX (20), PORTY (20), CP (16), CPU (20), SENS (16) REAL PRESS(16), REDAT(40), P90, P0, TEMP, BAROM, MANOM1, MANOM2 REAL TUNVEL, MOTVOL, AVSTAT (16), ARNORM, ARMOM, RE, RHO, MU REAL VPD, AOA, AOAR, CL, CD, CNORM, CCHORD, TUNQ, LNGTHU, LNGTHL REAL AREAU, AREAL, DTIM, DPOSD, DPOSV, ROTRAT, NDRATE REAL REDATE (40), CMOM, ARN, ARM, ARC, ARCHOR REAL DETAN, DETBN, INCPL, INCPN, PI  $\Gamma$ C ----- Load transducer sensitivities (millivolts/psi) DATA SENS/202.5,172.3,176.3,231.7,204.6,204.6,116.2, +216.4,174.0,113.8,114.4,113.6,136.6,165.3,219.6,222.8/ С C ---- Load transducer locations for normal force (percent chord) DATA PORTX/0.0,0.0250,0.0490,0.0980,0.131,0.197,0.328,0.415, +0.902,1.000,0.697,0.328,0.197,0.0980,0.0490,0.0330,0.016,0.0/ С C ---- Load transducer locations for chord force (percent chord) DATA PORTY/0.0,0.0327,0.0440,0.0581,0.0637,0.0714,.0743, +0.0554,0.0178,0.0,0.0461,0.0743,0.0714,0.0581,0.0440, +0.0364,0.0262,0.0/ WRITE (1,5) FORMAT (///, ' \*\*\*\*\*THE DATA FILES TO BE REDUCED MUST BE ON 5 + DISK DRIVE B AND MUST BE NAMED \*\*\*\*\* ) WRITE (1,6) FORMAT (' \*\*\*\*\*\*\*\*\*\*RAWDATAO.DAT, RAWDATA1.DAT, -5 C C ---- Read raw data from RAWDATAODAT on drive B. CALL OPEN (3, 'RAWDATAODAT', 2) READ (3,10) DAY, MONTH, YEAR, HOUR 10 FORMAT (/,I3,11X,I3,11X,I3,9X,I5) READ (3,20) TEMP, BAROM 20FORMAT (//,2X,F6.1,18X,F7.2) READ (3,30) MANOM1, MANOM2 FORMAT (//,2X,F8.4,25X,F8.4) **7**.Ó READ (3,40) TUNVEL, MOTVOL 40 FORMAT (//.4X,F7.2,31X,F6.2) READ (3,50) P90, P0 50 FORMAT (//,5X,F7.4,23X,F7.4) READ (3,60)KOUNT,N 50 FORMAT (///,3X,16,26X,16) READ (3,70) AVSTAT(1), AVSTAT(2), AVSTAT(3), AVSTAT(4) READ (3,75) AVSTAT(5), AVSTAT(6), AVSTAT(7), AVSTAT(8) READ (3,75) AVSTAT (9), AVSTAT (10), AVSTAT (11), AVSTAT (12) READ (3,75) AVSTAT(13), AVSTAT(14), AVSTAT(15), AVSTAT(16) 7Ŭ FORMAT (////,F9.3,5X,F9.3,5X,F9.3,5X,F9.3) FORMAT (F9.3,5X,F9.3,5X,F9.3,5X,F9.3) 75 ENDFILE 3

PROGRAM - DOSZA

VPD=(P90-P0)/90.0 Ē RUN=0 470 CONTINUE RUN=RUN+1 WRITE(1,5000) RUN FORMAT(' RUN = ', 13) 5000 IF (RUN.EQ.1) GD TD 490 IF (RUN.EQ.2) GO TO 510 IF (RUN.EQ.3) GO TO 525 IF (RUN.EQ.4) GO TO 535 IF (RUN.EQ.5) GO TO 545 490 CONTINUE CALL OPEN(4, 'RAWDATA1DAT',2) READ(4)(IDATA2(L),L=1,N) ENDFILE 4 GO TO 550 510 CONTINUE CALL OPEN (5, 'RAWDATA2DAT',2) READ(5)(IDATA2(L),L=1,N) ENDFILE 5 GO TO 550 525 CONTINUE CALL OPEN (6, 'RAWDATA3DAT',2) READ(6)(IDATA2(L),L=1,N) ENDFILE 6 60 TO 550 535 CONTINUE CALL OPEN (7, 'RAWDATA4DAT', 2) READ(7)(IDATA2(L),L=1,N) ENDFILE 7 GO TO 550 545 CONTINUE CALL CPEN(8, RAWDATA5DAT ,2) READ(8) (IDATA2(L), L=1, N) ENDFILE 8 550 CONTINUE C 550 CONTINUE C ---- The steps below compute Revnolds number, tunnel "Q" ---- and volts per degree for the run. Ũ C IF (RUN.GT.1) GOTO 895 RHO=(BAROM\*70.45)/(1716.0\*(460+TEMP)) MU=(2.270\*(10.0\*\*(-8.0))\*((440.0+TEMP)\*\*1.5))/(440.0+TEMP+198.6) RE=(RHO+TUNVEL+1.016)/MU TUNQ=(0.5) \*RHO\*(TUNVEL\*\*2) С С ---- The following writes pertinent information to disk file ---- REDUDATADAT as a heading. С С CALL OPEN(10, 'REDUDATADAT', 2) WRITE (10,800)

PROGRAM - DOS2A

300 FORMAT (' DAY', 10X, 'MONTH', 9X, 'YEAR', 9X, 'TIME') WRITE (10,810) DAY, MONTH, YEAR, HOUR FORMAT (13,11X,13,11X,13,9X,15,/) 810 WRITE (10,820) FORMAT (' TEMPERATURE', 14X, 'BAROMETER') 820 WRITE (10,830) TEMP, BAROM FORMAT (2X, F6.1, 18X, F7.2,/) 830 WRITE (10,840) FORMAT (' MANDMETER 1',22X, 'MANDMETER 2') 840 WRITE (10,845) MANOM1, MANOM2 FORMAT (2X,F8.4,25X,F8.4,/) 845 WRITE (10,850) 850 FORMAT (' TUNNEL VELOCITY', 22X, 'MOTOR VOLTAGE') WRITE (10,855) TUNVEL, MOTVOL 355 FORMAT (4X, F7.2, 31X, F6.2, /) WRITE (10,880) 380 FORMAT (' REYNOLDS NUMBER', 25%, TUNNEL "Q"') WRITE (10,890) RE, TUNQ 890 FORMAT (4X,E11.4,30X,F6.3,/) DO 895 HH=1,16 WRITE (10,897)HH,AVSTAT(HH) FORMAT ( AVERAGE ZERD-INPUT READING, TRANSDUCER', I3, ' =', F6.0) 897 895 CONTINUE WRITE(10,1100) C ---- One pass through the DO 100 J=1,N,18 loop computes one С ---- point in the CN (normal force coefficient) versus ALPHA curve. C ÷Ē. DB 1000 J=1,100 NJ = (J-1) + 19DO 100 I=1,18 NN=I+NJ SEDAT(I) = IDATA2(NN)REDAT(I+18)=IDATA2(NN+18) CONTINUE 100 С C ---- The loop below subtracts the average zero input readings C ---- (AVSTAT) from each appropriate IDATAT element.  $\square$ DO 200 I=3.18 REDAT(I) = REDAT(I) - (AVSTAT(I-2) - 2048.0) REDAT(I+18)=REDAT(I+18)-(AVSTAT(I-2)-2048.0) 200 CONTINUE С ---- Operations in the following loop correct for the finite С ---- time between samples using a linear interpolation. Time C ---- between passes must be sufficiently small or the linear C C ---- interpolation will be invalid. С DO 300 R=1,18 REDATC (R) =REDAT (R+18) - (REDAT (R+18) -REDAT (R)) + (R-1)/18.0 700 CONTINUE C C ---- The following loop converts digital quantities to degrees

1 · · · ·

PROGRAM - DOS2A

C ---- (angle of attack) and psi (sensed differential pressure). C C ---- The ADA conversion below assumes the A/D board is strapped ---- for the 0-10 volt unipolar input range. The amp on the  $\mathbf{C}$ C ---- board is set for a gain of 1, so any input to the board С ---- greater than 10 volts will saturate the A/D conversion system. C ADA=(((REDATC(2)/4096.0)\*10.0)-P0)/VPD TIME=REDATC(1) С C ---- The PRESS conversion below assumes the A/D board is strapped  $\Box$  ---- for the (-5)-(+5) volt bipolar input range, where the input C ---- (from the transducers) is first amplified through an  $\mathcal{C}$  ---- amplifier of gain 100. So any input greater than +/-50 milli- $\mathbb C$  ---- volts will saturate the A/D conversion system. DO 400 S=1,16 PRESS(S) = ((REDATC(S+2)-2048.0)/2048.0) + 50.0/SENS(S)CP(S)=(PRESS(S)+(MANOM1/27.68))/(MANOM2/27.68) 400 CONTINUE С С ---- The next loop defines the pressure distribution on the ---- airfoil, leading edge to trailing edge, and back to leading С. C ---- edge. C DO 405 V=1.9 CPU(V) = CP(V)405 CONTINUE C CPU(10)=CPU(9)+(CPU(9)~CPU(8))/.287\*.098 C DO 410 V=10,16 CPU(V+1) = CP(V)410 CONTINUE đ CPU(18) = CPU(1) C CP4=CPU(4)CP6=CPU(6)CP7=CPU(7)£  $\mathbb{C}$  ---- The following loop integrates the normal force and moment C ---- distribution using the trapezoidal rule. C ARNORM=0.0 ARMOM=0.0 С С DO 2000 I=1,9 ARN=.5\*(PORTX(I+1)-PORTX(I))\*(CPU(I)+CPU(I+1)) ARM=.5\*(PORTX(I+1)-PORTX(I))\*(PORTX(I)\*CPU(I)+PORTX(I+1)\* CPU(I+1)) С ARNORM=ARNORM-ARN

PROGRAM DOS2A ARMOM=ARMOM-ARM 2000 CONTINUE С С DO 2500 I=10,17 ARN=.5\*ABS(PORTX(I+1)-PORTX(I))\*(CPU(I)+CPU(I+1)) ARM=.5\*ABS(PORTX(I+1)-PORTX(I))\*(PORTX(I)\*CPU(I)+PORTX(I+1)\* CPU(I+1)) С ARNORM=ARNORM+ARN ARMOM=ARMOM+ARM 2500 CONTINUE C CNORM=ARNORM CMOM=-ARMOM+0.25+CNORM :0 ---- The following loop integrates the chord force ũ ---- distribution using the trapezoidal rule. C C ARCHOR=0.00 C DD 3000 I=1.6 ARC=.5\*(PORTY(I+1)-PORTY(I))\*(CPU(I)+CPU(I+1)) ARCHOR=ARCHOR+ARC CONTINUE 7000 С DB 3500 I=7,10 ARC=.5\*ABS(PORTY(I+1)-PORTY(I))\*(CFU(I)+CFU(I+1)) ARCHOR=ARCHOR-ARC 3500 CONTINUE C DO 3750 I=11,17 ARC=.5\*ABS(PORTY(I+1)-PORTY(I))\*(CPU(I)+CPU(I+1)) ARCHOR=ARCHOR+ARC 3750 CONTINUE C C CCHORD=ARCHOR С PI=3.14159 A0AR=A0A\*FI/180.0 CD=CNORM\*SIN(A0AR)+CCHORD\*COS(A0AR) CL1=CNORM+COS(AOAR) WRITE(10,900) TIME, ADA, CP4, CP6, CP7, CL1, CD. CMOM FORMAT (F5.0,8F9.4) 900 1000 CONTINUE WRITE(10,1100) 1100 FORMAT(77) IF (RUN.LT.5) GO TO 470 STOP END

÷

```
PROGRAM DATRED(INPUT, OUTPUT, TAPE7, TAPE8, TAPE9)
С
ũ
   THIS PROGRAM READS A DYNAMIC STALL DATA FILE AND THEN
C
   PERFORMS AN ENSEMBLE AVERAGE OF THE DATA POINTS
C
   OUTPUT IS WRITTEN TO THE FILES TAPEB, AND TAPE9
С
      DIMENSION DYN (9,600), ENS (7,50), ADOT (2,50)
      REAL NUMBER
      REWIND7
      REWIND8
      REWIND9
      REWIND10
      WRITE(9,*) ' DATA FROM
0.0
   READ THE DYNAMIC STALL DATA FILE
С
      DO 100 J=1,600
 50
      READ (7,110,END=500) (DYN(I,J),I=1,8)
      IF (DYN(1,J) .EQ. 0.0) GOTO 50
 100
      CONTINUE
      FORMAT (F5.0,8F9.4)
 110
C
C
      JMAX=J-1
 500
C
   ENSEMBLE AVERAGE THE TIME AND POSITION DATA
С
С
      DO 900 N=1,46
      TOTTIM=0.
      TOTADA≈0.
      NUMBER=0.
C
        DO 1000 J=1,JMAX
        TIME=60.0+FLOAT(N)+5.
      IF (DYN(1,J).LT.TIME .OR. DYN(1,J).GE.(TIME+5.)) GOTO 1000
        TOTTIM=TOTTIM+DYN(1,J)
        T JTAOA=TOTAOA+DYN(2,J)
        NUMBER=NUMBER+1.0
 1000
        CONTINUE
Ċ
      AVGTIM=TOTTIM/NUMBER
      AVGAGA=TOTAGA/NUMBER
      ADDT(1,N)=AVGTIM
      ADOT (2.N) =AVGADA
 900
      CONTINUE
C
С
   ENSEMBLE AVERAGE FORCE AND PRESSURE DATA
С
      DO 2000 N=1,20
      NUMBER=0.
      TOTADA=0.
      TOTEP4=0.
      TOTCP6=0.
      TOTCP7=0.
```

<u>.</u>

- .•

- .

PROGRAM - DATRED

```
TOTCL=0.
      TOTCD=0.
      TOTCM=0.
        DD 1900 J=1.JMAX.2
        ANGLE=0.0+FLOAT(N-1)*2.0
      IF (DYN(2,J).LT.ANGLE .OR. DYN(2,J).GE.(ANGLE+2.))
        GOTO 1900
        NUMBER=NUMBER+1.
        TOTADA=TOTADA+DYN(2,J)
        TOTCP4=TOTCP4+DYN(3,J)
        TOTCP6=TOTCP6+DYN(4,J)
        TOTCP7=TOTCP7+DYN(5,J)
         TOTCL=TOTCL+DYN(6,J)
         TOTCD=TOTCD+DYN(7,J)
         TOTCM=TOTCM+DYN(8,J)
1900
        CONTINUE
C
      IF (NUMBER.EQ.0) NUMBER=1.
      AVGAOA=TOTAOA/NUMBER
      AVGCP4=T0TCP4/NUMBER
      AVGCP6=TOTCP6/NUMBER
      AVGCP7=T0TCP7/NUMBER
       AVGCL=TOTCL/NUMBER
       AVGCD=TOTCD/NUMBER
       AVGCM=TOTCM/NUMBER
      ENS(1,N) =AVGADA
      ENS(2,N)=AVGCP4
      ENS(3,N)=AVGCP6
      ENS(4,N) = AVGCP7
      ENS(5,N)=AVGCL
      ENS(6,N) =AVGCD
      ENS (7,N) =AVGCM
 2000 CONTINUE
0234567
C
   COMPUTE ADA SLOPE AND CORRELATION COEFFICIENT
C
С
      DO 2600
               J=1.3
      X=O.
      Y=0.
      AN=0.
      XX=0.
      XY=0.
      YY=0.
      DO 2500 N=1,46
      IF (ADOT (2,N).LT.FLOAT (J) *5. .OR. ADOT (2,N).GT.30. ) GOTO 2500
        X=X+ADOT(1,N)
        Y=Y+ADOT(2,N)
       XX=XX+ADOT(1,N) ++2
       YY=YY+ADOT (2,N) **2
       XY=XY+ADOT(1,N) *ADOT(2,N)
       AN=AN+1.
       CONTINUE
 2500
       IF (X.EQ.0.) GOTO 2600
```

```
109
```

PROGRAM - DATRED

```
B1 = (AN + XY - X + Y) / (AN + XX - X + 2) + (1. / .0010046)
        R1=(AN*XY-X*Y)/SQRT((AN*XX-X**2)*(AN*YY-Y**2))
        WRITE(*,10)B1,R1
        WRITE(9,10) B1,R1
       FORMAT('ROTATION RATE = ',F8.3,'
   10
                                                CORR = (,F10.8)
 2600 CONTINUE
C
С
   FIND MAX PRESSURE COEFFICIENTS
C
        CP4MAX=0.
        CP7MAX=0.
        CP6MAX=0.
        D8 2900 I=5,20
        IF (ENS(2,I), LT. CP4MAX) CP4MAX=ENS(2,I)
        IF (ENS(3,I).LT.CP6MAX) CP6MAX=ENS(3,I)
        IF (ENS(4,I), LT.CP7MAX) CP7MAX=ENS(4,I)
 2900
        CONTINUE
        PRINT*, CP4MAX = ',CP4MAX
PRINT*, CP6MAX = ',CP6MAX
PRINT*, CP7MAX = ',CP7MAX
С
С
   WRITE ENSEMBLE AVERAGED DATA TO FILES
С
       DO 4000 N=1,20
       WRITE(9,4100)
                       (ENS(I,N),I=1,7)
 4100 FORMAT (7F9.4)
 4000 CONTINUE
C
       DO 5000 N=5,20
       ENS(2,N) = ENS(2,N) / CP4MAX
       ENS(3,N) = ENS(3,N) / CP6MAX
       ENS(4,N) = ENS(4,N)/CP7MAX
 5000 CONTINUE
       00 5100 N=5,20
       WRITE(10,4100) (ENS(I,N), I=1,7)
 5100 CONTINUE
С
       STOP
       END
```

. . .

## APPENDIX C

L

### Remainder of Plotted Results

The plotted results are presented in test number order. A summary of the test numbers and associated test conditions is provided in Table VII. The following legend applies to all test data in this appendix:

| LEGEND                 |    |
|------------------------|----|
| 0 - Lift Coefficient   | CL |
| 0 - Drag Coefficient   | Cp |
| 4 - Moment Coefficient | Cm |

Figure . DATA FROM TEST RUN 1-1

The first digit in the test run number represents the pitch location and the second digit represents the test number.

# TABLE VII

. •

. مىند

1 🔴

٠....

• •

•

• •

| Test<br>Run | Tunnel<br>Velocity | Rotation<br>Rate | dnp   | Figur<br>Numbu |
|-------------|--------------------|------------------|-------|----------------|
|             | (ft/sec)           | (deg/sec)        |       |                |
| 1-1         | 25.43              | 85.95            | .030  | 27             |
| 1-2         | 25.43              | N/L              |       | 28             |
| 1-3         | 24.97              | 183.17           | .065  | 29             |
| 1-4         | 30.05              | N/L              |       | 30             |
| 1-5         | 30.03              | 112.84           | .033  | 31             |
| 1-6         | 30.02              | 183.02           | . 054 | 32             |
| 1-7         | 35.64              | 44.19            | .011  | 33             |
| 1-8         | 35.64              | 98.39            | .024  | 34             |
| 1-9         | 35.32              | 129.16           | .032  | 35             |
| 1-10        | 37.87              | N/L              |       | 36             |
| 1-11        | 37.57              | 95.16            | .022  | 37             |
| 1-12        | 37.59              | 133.89           | .031  | 38             |
| 2-1         | 25.57              | 74.04            | .025  | 40             |
| 2-2         | 25.83              | 145.24           | .049  | 41             |
| 2-3         | 25.20              | 175.61           | .062  | 42             |
| 2-4         | 29.68              | 90.56            | .027  | 43             |
| 2-5         | 27.68              | 117.02           | .035  | 44             |
| 2-6         | 29.30              | 148.63           | .045  | 45             |
| 2-7         | 35.23              | N/L              |       | 46             |
| 2-8         | 35.76              | N/L              |       | 47             |
| 2-10        | 40.38              | 59.29            | .013  | 48             |
| 2-11        | 38.89              | 133.66           | .030  | 49             |
| 2-12        | 39.21              | 170.13           | .038  | 50             |
| 2-13        | 44.50              | N/L              |       | 51             |
| 2-14        | 45.03              | 101.53           | .020  | 52             |
| 2-15        | 44.84              | N/L              |       | 53             |
| 3-1         | 25.77              | 83.07            | .028  | 55             |
| 3-2         | 25.61              | 102.70           | .036  | 56             |
| 3-3         | 25.86              | N/L              |       | 3/             |
| 3-4         | 26.41              | 109.72           | .037  | 28             |
| 3-5         | 29.16              | 69.01            | .021  | 76             |
| 3-7         | 29.07              | 116.89           | .036  | 60             |
| 3-8         | 31.52              | 97.70            | .027  | 61             |
| 3-9         | 34.16              | N/L              |       | 62             |
| 3-10        | 35.92              | N/L              |       | 63             |
| 3-11        | 34.04              | 114.26           | .030  | 64             |
| 3-13        | 39.55              | 74.57            | .016  | 63             |
| 3-14        | 39.96              | 102.21           | .022  | 66             |
| 3-15        | 39.09              | N/L              |       | 6/             |
| 3-16        | 40.38              | N/L              |       | 68             |
| 3-17        | 44.04              | N/L              |       | 67             |
| 3-18        | 44.15              | N/L              |       | 70             |
| 3-10        | A.S. 90            | N/I              |       | /1             |

Summary of Test Conditions

.

.

. .

112

••••

. .

10

.

lo

| Test | Tunnel   | Rotation  | d'ND  | Figure |
|------|----------|-----------|-------|--------|
| Run  | Velocity | Rate      |       | Number |
|      | (ft/sec) | (deg/sec) |       |        |
| 4-1  | 25.75    | 82.45     | .028  | 73     |
| 4-2  | 25.75    | 120.48    | .041  | 74     |
| 4-3  | 26.17    | 139.43    | .047  | 75     |
| 4-4  | 30.98    | 71.34     | .020  | 76     |
| 4-5  | 28.66    | 118.84    | .037  | 77     |
| 4-6  | 30.95    | 135.95    | .039  | 78     |
| 4-7  | 36.46    | 61.92     | .015  | 79     |
| 4-8  | 36.13    | 102.28    | . 025 | 80     |
| 4-9  | 33.54    | 135.95    | . 036 | 81     |
| 4-10 | 38.02    | 80.86     | .019  | 82     |
| 4-11 | 38.01    | 157.60    | .037  | 83     |
| 4-12 | 39.80    | 203.27    | .045  | 84     |

.

. .



Figure 27. Data From Test Run 1 - 1





.

.



.

•









 $\mathbf{L}$ 

)

•

. . . . . .

•

.

LEGEND 0 - Lift Coefficient 3.00 Drag Coefficient Cp Moment Coefficient Cm 2.50 2.00-• ۵ ≞ 1.50-۵ COEFFICIENT ۵ Ξ 0 1.00-Ο Ο Э Ο Ö Ο ۵ ٥  ${\mathbb O}$ .50-٢ Ο Ο O 0 ٥ Ο ٣ 83 ◬ ≏ Δ Δ .00-⊿ Δ ▲ △ Δ ۵ Δ ≏ -.50 24.00 32.00 8.00 .00 16.00 PNGLE OF ATTACK

Figure 31. Data From Test Run 1 - 5

LEGEND D - Lift Coefficient CL 3.00-Drag Coefficient 0 CD Moment Coefficient Cm 2.50-2.00 1.50-Ľ COEFFICIENT 000 1.00-Ο Ο Ο Ξ 0 Ē Θ Ο .so-Ο ⊡ °°° O Ο Ф Ο 0 0 4 4 .00-≏ ◬ Δ ^ \_ \_ Δ ▲ Ճ Δ ◬ -.50 .00 24.00 32.00 8.00 15.00 ANGLE OF ATTACK





and the second second



120

....

LEGEND D - Lift Coefficient CL з.00-Drag Coefficient Съ 0 Moment Coefficient См 2.50-2.00-1.50-COEFFICIENT ۵ Ξ 1.00-ص ق Ð O O O Θ Φ  $\odot$ .50-Ο O Ο Ξ Ο C Ο 04 2 ۵ ٥ ۵ Δ .00-Δ Δ -.50 <u>-</u>.30 8.00 24.00 32.00 16.00 ANGLE OF ATTACK



• • • •



Figure 35. Data From Test Run 1 - 9



Figure 36. Data From Test Run 1 - 10

123

4

.



L

) 🔴

1

والمراجع والمرجع والمرج

والمعارفة والمراجع والمراجع والمعارفة والمعالم والمعالم والمعالم والمعالم والمعالم والمع



124

· · .

÷ .

• • •

٠.

.

•

•

3.00-

2.50-



LEGEND

Drag Coefficient

Moment Coefficient

CL

Съ

Cm

0 - Lift Coefficient



0 - Drag Coefficient Co A - Moment Coefficient Cm

LEGEND

CL

0 - Lift Coefficient

•

3.00-

2.50-

2.00-

1.50-




LEGEND D - Lift Coefficient CL. 3.00-Drag Coefficient Съ Moment Coefficient Cm 2.50-2.00-1.50-2 ۳ COEFFICIENT  $\square$ 5 Ξ • 1.00-00 ⊡ 0  $\odot$ ≞ Ο Ο Ø Ċ Ο .50-• Ο Ο 0 O Ů 0 ▲  $\mathfrak{A}$ ◬ 4 3 ۵ Δ Δ A .00--.50 .00 8.00 16.00 24.00 32.00 ANGLE OF ATTACK

•





Figure 41. Data From Test Run 2 - 2



Figure 42. Data From Test Run 2 - 3



.

Figure 43. Data From Test Run 2 - 4

130

,•

.

130

··. • • •

÷

٠.

.

٠..









Figure 45. Data From Test Run 2 - 6

•

.



Ľ

( 🔴





•





-







•

 $\sim$ 

•



136

..



ц Ш

•



137



.







.





••••



LEGEND D - Lift Coefficient CL 3.00-Drag Coefficient Сø Moment Coefficient Cm 2.50-2.00 1.50-COEFFICIENT 1.00-.so-Ľ 0 -.50 .00 8.00 16.00 24.00 32.00 ANGLE OF ATTACK

(•

• • • • • • • •



LEGEND 0 - Lift Coefficient CL 3.00-Drag Coefficient Съ 0 Moment Coefficient Cm 2.50-2.00-1.50-COEFFICIENT C ۳ ۵ 1.00  $\Box$ O Θ Ø Ο ٣ .50-ტ Ċ O ۵ Ο ≞ © ∆ 2 Δ ۵ ⊿ Ð .00--.sc .... 8.00 16.00 24.00 32.00 ANGLE OF ATTACK



LEGEND 0 - Lift Coefficient CL 3.00-Drag Coefficient CD Moment Coefficient Cm 2.50-2.00-8 8 1.50-COEFFICIENT Ю O Ο O C 1.00-Ð Ο O O .50-Θ Φ Ф o <sup>o</sup> Ο Ο O Ο 2 Ø 00 ⊿ Δ .00--.50 L., .00 8.00 16.00 24.00 32.00 ANGLE OF ATTACK

( •

ė





••••





•.•.

( •





. . .



LEGEND D - Lift Coefficient CL 3.00-Drag Coefficient Cp - Moment Coefficient Cm 2.50-2.00-1.50-COEFFICIENT Ο  $\mathbb{C}$ Φ O 1.00-Φ G ٢ . 50-Φ 00 Ο Ο Ο Θ Ο ⊿ .00-▲ ۸ Δ ⊿ ۵ -.50 .00 8.00 32.00 24.00 16.00 ANGLE OF ATTACK

••••

(



147

. . .



Ē

Figure 61. Data From Test Run 3 ~ 8





S. S. Carrier



149

•







The second s

Figure 64. Data From Test Run 3 - 11



•



LEGEND 3.00-- Lift Coefficient CL 0 ag Coefficient Cp Moment Coefficient Cm 2.50 2.00 1.50-۳ COEFFICIENT Ξ Ð Ċ 1.00-Ο O Φ Ο Ð ð ۳ O .50-0 Ο O ð 0 Ο Q ▲ ۲ .00--.50 <u>-.</u> .00 8.00 16.00 24.00 32.00 ANGLE OF ATTACK

•





( 🔵

Figure 67. Data From Test Run 3 - 15



LEGEND 3.00 Lift Coefficient CL CD Drag Coefficient Moment Coefficient См 2.50-2.00-1.50-۵ <del>ت</del> m COEFFICIENT ۵ 1.00-⊡ O Ο Ο ጣ ۵ Ο O Ľ Ο .50-۳ O O • O ۵ Q Ο Ξ O Ф ٢ O O ▲ 22 .00-⊿ ۸ -.50 8.00 16.00 24.00 .00 32.00 ANGLE OF ATTACK





LEGEND 3.007 0 - Lift Coefficient Drag Coefficient Сь Moment Coefficient См 2.50-2.00-1.50-COEFFICIENT Ð C • <u>ں</u> م 1.00-Ο G Θ Φ ٥ ۵ O . 50-⊡ Θ Q ⊡ Ο С ⊡ ⊡ Ο Ф Ð C 0 2 6 .00--.50 .00 16.00 8.00 24.00 32.00 ANGLE OF ATTACK

(



LEGEND 3.00 0 - Lift Coefficient CL Drag Coefficient Cp Moment Coefficient Cm 2.50-2.00-1.50-000000 **COEFFICIENT** Ľ ß 1.00-Ο ⊡ O 0 0 <sub>0</sub> Θ Ο Ο . 50-O ۵ ٥ Ο Ο <u>ں</u> ص O O Ο 0 **A A** .00--.50 8.00 16.00 24.00 32.00 .00 ANGLE OF ATTACK

.

( 🕘

.

Figure 70. Data From Test Run 3 - 18

LEGEND 3.00-D - Lift Coefficient CL Drag Coefficient Cp 0 Moment Coefficient Cm 2.50-2.00-1.50-00 COEFFICIENT Ċ ۳ 1.00-0000 C ≞ Ο O Θ .50-Ο Ο ⊡ O Ο ° 0 O 0 \$ 0 4 Ø ٥ ٥ .00--.50 i..... .00 8.00 16.00 24.00 32.00 ANGLE OF ATTACK

Figure 71. Data From Test Run 3 - 19



.....





•

Figure 73. Data From Test Run 4 - 1

LEGEND 0 - Lift Coefficient CL 3.00-Drag Coefficient Съ Ô Moment Coefficient Cm 2.50-2.00-1.50 0 000 Ο COEFFICIENT Ο Ο Ō Ċ 1.00-O Ο Ο Ο . 50-Ο Θ Ο O O O Ο O .00 ≙ Ճ Δ Δ ≏ ▲ ^ ▲ ⊿ Δ -.50 <sup>i</sup> 16.00 8.00 24.00 32.00 . 00 ANGLE OF ATTACK

Figure 74. Data From Test Run 4 - 2



(.

Figure 75. Data From Test Run 4 - 3


.

Figure 76. Data From Test Run 4 - 4



LEGEND D - Lift Coefficient CL 3.00 Drag Coefficient Cp 0 Moment Coefficient \_ Cm 2.50-2.00-۵ 1.50 Ľ COEFFICIENT O Ċ  $\bigcirc$ Ċ Ē Ō ٢ Ο 1.00-Ċ Φ O Ð Ē .50-Ο Φ Ð Ο Ο Ð Ċ .00-≏ ⊿ Δ Δ 4 ⊿ Ł ◬ ≏ ⊿ Ճ -.50 32.00 8.00 24.00 16.00 .00 ANGLE OF ATTACK

ند



٠.-

.

÷. .

164

.

·· . · . ·

 . . <sup>1</sup>.

LEGEND 0 - Lift Coefficient Շ∟ 3.00 Drag Coefficient Сø Moment Coefficient Cm 2.50 2.00o • ⊡ ⊡ Ċ 1.50-₫ Ξ Ċ COEFFICIENT Ο Ο  $\square$ ற Ο 0 0 C O 1.00-Ο Q O Ο Ľ Ο . 50-Θ C Φ Φ Φ .00-۵ ⊿ ≏ Δ Δ Δ Δ Δ Δ Ճ Δ 9.00 16.00 24.00 32.00 ANGLE OF ATTACK

-





••••

Figure 79. Data From Test Run 4 - 7

166

LEGEND Lift Coefficient Շ֊ 3.00 ۵ Сø Drag Coefficient Cm Moment Coefficient 2.50-2.00 1.50-٥ ⊡ COEFFICIENT ۵ Ð Ċ 1.00-G Ο O Ф D Ο C 0 0 Ο ⊡ Φ Ø . 50-Φ Ο Ø Ο O ٢ .00-٨ ▲ -.50 24.00 32.00 .00 8.00 16.00 ANGLE OF ATTACK

.

÷.



167



••••

Figure 81. Data From Test Run 4 - 9



, i T







•

Figure 83. Data From Test Run 4 - 11

÷.,

.



٠.



(•

•••







( 🗭



## VITA

.....

Robert L. Dimmick was born on 31 October 1956 in Cleveland, Ohio. He grew up in Lakewood, Ohio and upon graduation from Lakewood High School in 1974 he received an appointment to the United States Air Force Academy. He graduated from the Academy in 1978 with a Bachelor of Science Degree in Aeronautical Engineering. After graduation, he attended Undergraduate Navigator Training at Mather AFB, followed by KC-135 training at Castle AFB. He was subsequently assigned to Grissom AFB in 1979, where he flew KC/EC-135 aircraft as a navigator. He was reassigned to Wright-Patterson AFB in June of 1984 when he entered the School of Engineering, Air Force Institute of Technology.

> Permanent Address: 1254 Virginia Avenue Lakewood, Ohio 44107

| CURITY CLASSIFICATION OF THIS PAGE                                                                                   | tiD-                                 | 11012                                                                                                                         | 2.7-                                                                        |                                                                           |                                   |  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------|--|
|                                                                                                                      | REPORT DOCUME                        | ENTATION PAGE                                                                                                                 | E                                                                           |                                                                           |                                   |  |
| * REPORT SECURITY CLASSIFICATION<br>UNCLASSIFIED                                                                     |                                      | 16. RESTRICTIVE MARKINGS                                                                                                      |                                                                             |                                                                           |                                   |  |
| SECURITY CLASSIFICATION AUTHORITY                                                                                    |                                      | 3. DISTRIBUTION/AVAILABILITY OF REPORT                                                                                        |                                                                             |                                                                           |                                   |  |
| DECLASSIFICATION/DOWNGRADING SCHEDULE                                                                                |                                      | distribution unlimited.                                                                                                       |                                                                             |                                                                           |                                   |  |
| PERFORMING ORGANIZATION REPORT NUMBER(S)<br>AFIT/GAE/AA/85D-4                                                        |                                      | 5. MONITORING ORGANIZATION REPORT NUMBER(S)                                                                                   |                                                                             |                                                                           |                                   |  |
| NAME OF PERFORMING ORGANIZATION                                                                                      | 66. OFFICE SYMBOL                    | 7. NAME OF MONITORING ORGANIZATION                                                                                            |                                                                             |                                                                           |                                   |  |
| School of Engineering                                                                                                | AFIT/ENG                             |                                                                                                                               |                                                                             |                                                                           |                                   |  |
| ADORESS (City. State and ZIP Code)<br>AF Institute of Technol<br>Wright-Patterson AFB, O                             | ogy<br>H 45433                       | 7b. ADDRESS (City,                                                                                                            | State and ZIP Cod                                                           | le) — — — — — — — — — — — — — — — — — — —                                 |                                   |  |
| NAME OF FUNDING/SPONSORING<br>ORGANIZATION                                                                           | 8b. OFFICE SYMBOL<br>(If applicable) | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER                                                                               |                                                                             |                                                                           |                                   |  |
| c. ADDRESS (City, State and ZIP Code)                                                                                | <u> </u>                             | 10. SOURCE OF FUI                                                                                                             | NDING NOS.                                                                  |                                                                           |                                   |  |
|                                                                                                                      |                                      | PROGRAM<br>ELEMENT NO.                                                                                                        | PROJECT<br>NO.                                                              | TASK<br>NO.                                                               | WORK UNI                          |  |
| TITLE (Include Security Classification)<br>See Box 19                                                                |                                      |                                                                                                                               |                                                                             |                                                                           |                                   |  |
| Robert L. Dimmick, B.S.                                                                                              | , Capt, USAF                         |                                                                                                                               | -                                                                           |                                                                           |                                   |  |
| A TYPE OF REPORT                                                                                                     | COVERED                              | 14. DATE OF REPO                                                                                                              | 14. DATE OF REPORT (Yr., Mo., Day) 15. PA                                   |                                                                           | AGE COUNT                         |  |
| 6. SUPPLEMENTARY NOTATION   7. COSATI CODES 18. SUBJECT TERMS /   FIELD GROUP SUB. GR. Stall, Dyn   20 04 Ramp Angle |                                      | Continue on reverse if necessory and identify by block number;<br>lamic Stall, Increased Lift,<br>e of Attack, Pitch Location |                                                                             |                                                                           |                                   |  |
| 9. ABSTRACT (Continue on reverse if necessary a                                                                      | nd identify by block numbe           |                                                                                                                               |                                                                             |                                                                           |                                   |  |
| TITLE: PITCH-LOCATION                                                                                                | EFFECTS ON DY                        | NAMIC STALL                                                                                                                   |                                                                             |                                                                           |                                   |  |
| Thesis Advisor: Eric J                                                                                               | . Jumper, Lt                         | COI, USAF                                                                                                                     | Approved for pu                                                             | ublic releases LAW                                                        | <b>n</b>                          |  |
|                                                                                                                      |                                      |                                                                                                                               | LIGN E. WOLAT<br>Dom ior Research<br>Air Force Institut<br>Wright-Patterson | VER 16 UAP<br>ch and Professional<br>le of Technology (4)<br>AFB OH 45433 | Development                       |  |
| 0. DISTRIBUTION/AVAILABILITY OF ABSTRA                                                                               | ACT                                  | 21. ABSTRACT SEC                                                                                                              | LIEN E. WOLAT<br>Deam for Research<br>An Porce Institut<br>Wright-Patterson | Ch and Professional<br>te of Technology (4)<br>AFB OH 45433               | AFR 180.7.<br>Devolopment<br>boy  |  |
| 0. DISTRIBUTION/AVAILABILITY OF ABSTRA                                                                               | ACT                                  | 21. ABSTRACT SEC<br>UNCLASSI                                                                                                  | UNITY CLASSIF                                                               | ICATION                                                                   | AFR 180.7.<br>Devolopment<br>NOT- |  |
| DISTRIBUTION/AVAILABILITY OF ABSTRA<br>INCLASSIFIED/UNLIMITED A SAME AS APT                                          | ACT<br>T DTIC USERS -                | 21. ABSTRACT SEC<br>UNCLASSI<br>22b TELEPHONE N<br>Include Area C<br>(513) - 255                                              | URITY CLASSIF<br>FIED                                                       | ICATION                                                                   | AFR 180.7.<br>Development         |  |

. . . .

7.1

.

٠. ۱

•.1

SECURITY CLASSIFICATION OF THIS PAGE

. •

. - '

.

.

## UNCLASSIFIED

(

## SECURITY CLASSIFICATION OF THIS PAGE

Experimental investigations were conducted in the AFIT Smoke Tunnel to study the effects of pitch-location on dynamic stall. A NACA 0015 airfoil was rotated about four different locations at a constant angular rate and digital position and pressure information were recorded. This information was then converted into airfoil pressure distributions and integrated numerically to obtain airfoil force coefficients. Results of this investigation showed a direct relationship between the dynamic-stall angle of attack and the non-dimensionalized angular rotation rate, ND, defined as one-half the airfoil chord length times the angular rate divided by the freestream velocity. Based on the three rotation points forward of the mid-chord, it was also shown that dynamic stall is delayed as the pitch location is moved aft from the leading edge. Experimental data was obtained for pitch locations of .08c, .25c, .50c and .61c and non-dimensional angular rates between .011 and .065. . . . . /

