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Study of the Effect of Particle Density and Particle Size in 11

a Gas-Solid Flow on the Drag Coefficient

Zhou Yanhuang, Sun Xingchang, Yin Hebao, Chen Xingquan and 4
Li Guang

[Abstract] This paper shows the experimental results on the

drag coefficient between the gas and solid phase within the range of

Reynolds number Re = 10 2--10, void c = 0.45-0.98 and equivalent

particle diameter dp = 3-11mm. These results are also briefly

analyzed and discussed.

A standard drag curve has already been given for the

relationship between the drag coefficient of a spherical particle

and Reynolds number1 l,2 ]. (See Figure 6) S.L. Soo et al be-

lieved that this result could be applied to a dilute suspension [2

In a packed bed loaded close to its maximum, people usually use

the result obtained by Ergun [2 '3] In interior ballistics of a

gun, during the initial combustion period, the c of the particle

bed is around 0.5. The equivalent diameter of the particle, dp,

[41ranges from several to a dozen millimeters. E.B. Fisher [4  A.W.

Horst [5  K.K. Kuo [6 ] F. Robbins and P.S. Gough [ 7 had studied

this type of problem. Their joint conclusion was to continue

using Ergun's results. There has been very little study in the

or drag coefficient in a scattered suspension with c ranging from

0.45-0.98, which corresponds to the middle and late stage of

combustion in interior ballistics. To date, we only find the

equation proposed by K.K. Kuo which is based on the Ergun formula

and Anderson formula 6]":

_!
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where Cf is the friction coefficient calculated based on theNf
* interfaced area. co and c, are the porosity of critical ..

fluidization and the maximum porosity, respectively. Usually, we

choose c,= 0.98. This equation has a very narrow application

range; 0.003<Re<2000. 4

Therefore, neither the standard drag curve (Figure 6) nor

equation (1) can satisfactorily simulate the transport phenomenon

of the particles in interior ballistics.

In order to verify and modify equation (1), to expand its

.* applicable Reynolds number range, and to understand the deviation

of the drag coefficient of the kind of particles of interest to

us from Ergun's results, we did the following experiment in 1981.

Photographs of the experimental apparatus and some of the

* particles used in the experiment are shown in Figures 1 and 2. ri
*. In order to measure the drag coefficients of loose particles at

various porosities, C, we prepared special specimens. Fine nylon

lines were used to suspend particles according to specific

distance and direction in the test section (See Figure 3). To
.=.%&.*

the extent possible, we tried to make sure that the particles are

uniformly distributed so that they are isotropical. The method

used to test a packed bed is essentially the same as that employed

by Fisher [4 ] and Horst [5 ]  The orientation of each particle is

determined by the random process used for filling (See Figure 4).

2 ."
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During the experiment, the pressure drops across the bed at

varying height were measured. In addition, parameters such as

the apparent velocity were also obtained.

*Manuscript received on March 13, 1984 and revised manuscript

received on June 25, 1984. This paper was presented at the

Second Asian Fluid Dynamics Conference in October 1983.
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Figure 1. Experimental Apparatus

Figure 2. Some Particles Used in the Experiment
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Figure 3. Specimens with Particles Spaced Uniformly

L

Figure 4. Particle Orientation Determined by Random Filling
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' Figure 5. Friction Coefficient Cf vs. Re /1- ""
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!1. (1) and (2) show the range of experiment values '.4J

obtained by the authors--""
2. (3) is the curve recommended by the authors ""

3. (4) and (5) are the range of Horst's experiment '"

4. (6) is the result of the Ergun equation

j (4)1S.L.Soo&14JM0I1,M 4.
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Figure 6. Drag Coefficient vs Reynolds Number Re
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I. (1) is stand drag curve for spheres
2. (2) is Newton's internal friction law
3. (3) is the curve recommended by the authors
4. (4) is the curve calculated by S.L. Soo
5. (5) and (6) show the range of experimental valuesb obtained by the authors

C,

II
1.0-

Figure 7. Cf vs Re c/l-c at Various Porosities

1. Ergun equation

Hence, the friction coefficient can be determined by the

following equation

c- "+ " • (2)

C, dp

where Ap is the pressure drop, H is the bed height, u5 is the

apparent velocity of the gas, and pf is the density of the gas.

The drag coefficient calculated based on the windward area of

the particle is related to Cf as the following:

~ -kc,(3)

We measured various particles of 11 different geometric

shapes at 6 fvalues. After considering corrections for the

nylon line and the mesh, we arrived at the following conclusions:

]" 6



When c = 0.45, based on our measured results and on the

values reported in the literature [2,3,5], the relation between Cf

and Re c/I-E is just as the one shown in Figure 5. After certain

transformation, the relation between CD and Re is shown in Figure /14

6. At various c, the relation between Cf and Re c/i-c is shown "--

in Figure 7. Based on these curves we can see that our results

are 70% higher than those from the single sphere standard drag

curve when the porosity e = 0.94-0.977. At maximum packing, C=

0.45-0.47, the value of Cf we obtained is about 1.10, for less

than 1.75.

Based on our measured results, the following relation is

introduced:

C'.

0.45 (0.97< e t )

where Cfz is defined by the following formula:

' 0. 31 (1iRe) - 2.551gRe+6.4 (Re<20000) -C,, =io.35i)0.----)-
I. i~o (Re>2OO00)

The value obtained from this formula is far less than that from

the Ergun equation. We believe that this discrepancy is due to -

particle size difference.

Due to the presence of particle clusters, the turbulent

kinetic energy is excessively dissipated. The turbulence is -.

damped. With particles of the same size, the smaller the

porosity the smaller the gap between particles becomes. A large

scale turbulence is being further divided and the larger the drag

7



coefficient becomes. In a suspension of the same porosity, the

smaller the particle cluster size is, the smaller the average

distance between particles is, and the larger the drag becomes.

- Thus, the difference between our results and those of Ergun can

be fundamentally understood. Furthermore, in the extremely

dilute case with c= 0.98, we chose Cf = 0.45 instead of 0.30 as

K.K. Kuo did in equation (2). This was based on the

consideration that the particles we used were cylindrical. In

addition, the authors believe that even when £>0.98 the

interference among particles in the downstream flow field is

unavoidable.
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A New Method of Rocket Nozzle Design /40

Qiu Guangshen

[Abstract] A new method of solid rocket nozzle design is

introduced in this paper. This method, based on the theory of

non-symmetric flow in a Lavol nozzle, is first focused on the

reduction of aerodynamic misalignment and then on efficiency. It

does not contradict other traditional methods. Instead, it

supplements them. This design method will help reduce the

scatter of impact of free flight rockets.

Table of Symbols

- potential function;

* - ~;''

- critical sound speed;

w - one-dimensional flow velocity coefficient;

h. - coefficient of q in flow equation as represented by

dimensional flow parameters, when the subscripts i =

1, 2, 3 represent xx, rr, and rx, respectively;

f - small perturbation;

(Hl)R - partial derivative of H, with respect to R. The

subscript may be x, e or x, r. Two subscripts

represent a second order partial derivative;

J0 , J1 - zeroth and first order Bessel function;

0I- the first root of J1(On)=O which is chosen to be 1.841; r
p1 - local density;

T1 - axial force per unit area at the outlet end;

10
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r- transverse cross-section radius;.1

Mat one-dimensional Mach number on the cross-section;

a function of x alone;

drl/dx - slope of the bus line along ox direction, which is tg at

in the linear portion;

r- radius of the nozzle throat;

R - radius of curvature of the throat;
t

Lt - lateral force at the throat;

k - specific heat ratio of the combustion gas;

"MO - the Planck-Myer expansion angle on a cross-section,

which is a function of Ma; L

w - mass of the propellant;

qo- total mass of the rocket.

Manuscript received on March 26, 1983, revision received on May
23, -1984.

1. Introduction /41

Because free flight rockets have poor density of impact,

therefore, finding an easy and feasible method to improve density

has been a major subject facing the free flight rocket

technology. As far as rocket design is concerned, we should L

start with reducing the eccentricity of thrust. The primary

component of thrust eccentricity is aerodynamic eccentricity. In

recent years some foreign scholars conducted theoretical and'F

experimental studies on the non-symmetric flow in a Lavol nozzle to '

provide the basis for new nozzle design. Normally, the principal

objective of rocket design is to improve efficiency. The major

11
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nozzle parameters, to some extent, are freely chosen by the

designer. The new design method based on the above theory,

however, is focused on the reduction of eccentricity, as well as

on improvement of efficiency. It results in a nozzle whose

theoretical aerodynamic eccentricity is zero. The nozzle will

facilitate the improvement in the density of impact.

2. Brief Introduction to the Theory

The method introduced by A.G. Walters is to treat the non-

symmetric three-dimensional flow in the nozzle based on one-

dimensional flow with a small perturbation. In this work, the

following basic assumptions are made. The expansion section of

the nozzle is axial symmetric. The expansion semi-angle a is not

too large. The principal lines are shown in Figure 2.1. The gas

is an inviscid gas. The flow is steady, vortexless and

isotropic. The perturbation is small and plane symmetric. Due

to the fact that a is not too large, tga and sin a can be treated

as small first order quantities. The calculation is accurate to

the first order. The study is concentrated on the flow in the

expansion section. We use a cylindrical coordinate where the ox-

axis coincides with the axis of symmetry of the expansion

section. The origin is located in the center of the throat.

3- F

12

. . * .". *

S-. ~ .. *. .-. .. * - . .- -. * ~ , **



G T

r...
°...°

II

Figure 2. 1 Nozzle Shape

First, the equation of the flow expressed by the potential

function in the cylindrical coordinate is linearized. To this

end, the following transformation is made

x l h.+h2 (2.1)

(2.2)

Considering the fact that the flow near the throat is transonic,

the expansion section of the nozzle is divided into two parts.

The intersect of the curve and the straight line portion of the

nozzle is the boundary; i.e., x=x0. Corresponding to X, it is X'.

After neglectiivg small second and higher order terms, we get the

following linear equation

(3.'-

0' -- -- -, b ",.-

LIL'..
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Multiply the above equation by cos eand then integrate with /42

respect to e from 0-1800.

Let .
H-= f'case W drdO

is fe (2.4)

After omitting second and higher order terms, we get the

* following equation

(H)x---HI. H~w- (Hj)x-f- 0 (2.5)
'X IR 'RAJ-

Its boundary condition is

(Hd)la- 1- 0 (A)

Its initial condition is

(H,)I..-F(R) (HOAIat.G.i 0 (B)

By separation of variables equation (2.5) can be solved to get

H- A.J 3(P.R) I(O.X)(C

F(R) is substituted into the equation for A to determine the An n
series. A1 is the largest one and the rest decrease rapidly.

Hence

fJ.( 1 X) - A1 1 (~1 )I1 (.X)(2.6)

I(P.X)- I(X)o~XX)aP.~1X. XS<X (2.7)

The relation between L and CT is determined in the

following.

* The thrust is moved to the end surface of the nozzle exit

*along the line of action and then decomposed into two components

T and L which are parallel and perpendicular to the axis. The

*moment of Taround the center mass Gof theentire rocket

14
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(assuming G is on the axis) is TZ, which is denoted as CT as

shown in Figure 2.1. In view of the fact that the inner wall of

the rocket engine is most frequently a body of rotation, when the

nozzle and the combustion chamber are coaxial, L and CT can be

expressed in terms of the rate of change of the momentum and that
* 4

of the moment of momentum of the gas at the end surface of the

- exit. Then, the following formula can be obtained.r

%1 46

I,...

*- ... -

Figure 2.2 Top View of the End of the Nozzle Exit..

L -f'- (P,)4rddr (2.8)

C,- f rzTJi b.
e. ' (2.9) .

where the symbols relating to coordinates and angles are shown in

Figure 2.2. Based on equations (2.8) and (2.9), by omitting

second and higher terms, we can derive the following equation

M,0-2 , d, (2.10)

15.. .

15 ""%

* .°.' :
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By taking a small element of the expansion section, we can get

another formula
tiC? dr L4- L -r, d L - 0 (2.11) /43

dX+Lrdx dx

Equations (2.10) and (2.11) are the fundamental equations to "'',-
calculate the lateral force L and moment CT-:-.:i __.

In order to reduce the number of variables, we are using the

following relative quantities "--'

Equations (2.10) and (2.11) can be re-written in the following "'

form '

L-# Ma'- Ar, r, Ce (2.10') .'
L m (Hj)"'-- - i = _L r .- '2
dCz- + V r, dr, dLQ

r,~ r, d xI

where A, t,.(B) .- ''.

p..

Because it is necessary to dividhe e expansion section into

two in order to determine H , therefore it is also required to

divide it into two parts at x (i e , X) when we determine L*t

and C*. In practice, the following re-arranged equations can be

*T

used in the calculation.llowing

At +1'- 0(<C),..-.-.-.

dC7 V/ ~ dv L

tge +

16 Y:

• .. .°°. .- -°- o . . . o .=" -.- . . ". .% - ., - - ."%.. .. -. • -' ". - . -.. . ,, ... .. (2.11').. .- '
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Near the throat, i.e., at x<x,"

X'- 2_____ I'X(D)
W- I +W'P...-~

-- , d + -- 1 ,"-".
wm

The relation between the one-dimensional flow Ma and the velocity I
coefficient w is

M'- 2+-(I-1)w" (E) 4

Far away from the throat, i.e., R ."
dX 1 1

dx r, 7'M:* =1 .
4* (F)

dM Mar dr, 1
"x* r

From equations (2.10') and (2.11') we get

/44 -

E.~ J r E4jC-E, 1 ( dr, 0 <Tx'T9*
Md-- dx

L" -EJ, -EC . j0<i (-.-).
dr, dr, YM

: ~~(A) " "'
E,.(k +_I-)4( -~ zZ ii

E, -E Mae-2

r - i +k Is p me 'i>-
2

I,-I.(0,X.)uu,(X-X,)-I-,(IX,)ciOi(X-X.)

%'

4".,

17 -;
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Based on the above equations, we can find the curves showing

L and C vs. x, as shown in Figure 2.3. L and CT oscillate with
TT

increasing x. The amplitude of L is decreasing while that of CT

is increasing. The phase difference between the two is

approximately 2/39.

C7

L

Figure 2.3 Lateral Force and Moment with Varying Expansion

Section Length

We verified this theory experimentally and proved that it is

accurate. For instance, a comparison is made with respect to the

x/r at L=O. The result is shown in Table 2.1.
t

Table 2.1 Comparison of Experimental and Theoretical Values

I. 2 t .3'

$ is6. J 17.21

1. experimental value
2. theoretical value '

3. relative error

18
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The paper by A.G. Walters introduced the experimental results and

arrived at the same conclusions.

From Figure 2.1 we can see that, if we assume the distance 4

from the end of the nozzle outlet to the center of mass G is 1,

then the moment of thrust around G - the thrust eccentricity

moment can be calculated based on the following formula ...

M.= LT:=L1+C, (2.12) /45

From the correlations in the L-x and C -x curves we can see that
T

there is a suitable x, which can be chosen as the length of the -

expansion section, to realize M =0. The condition isc

L L" (2.13)
C, C17 iI

In reality, L and CT are not only related to x, but also to other

parameters of the expansion section such as s and Rt, as well as

to the value of k of the combustion gas. Therefore, we can

choose a set of appropriate parameters to meet the requirement Mc

=0. For convenience, we suggest that this type of nozzle whose

theoretical thrust eccentricity moment is zero should be called

the zero eccentricity moment nozzle. The results of the flight

experiment were also introduced in A.G. Walters' paper. The

presence of this type of nozzle was proven.

3. Nozzle Design

The principal lines shown in Figure 3.kare frequently used in

free flight rockets. The advantage is ease of fabrication.

However, irregular aerodynamic misalignment may result, which

will hurt the density of impact. Because of the sharp edge at

19
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the front and rear end of the throat and at the intersect of the

contracting cone and expansion cone, it is easy to be eroded by

the combustion gas to form irregular arcs, leading to irregular

changes of L and CT. Hence, there is a need to use a circular arc

at the interface to eliminate erosion. The principal lines of

the nozzle used in the theoretical derivation are shown in Figure

3.1b or Figure 2.1. There is no cylindrical section at the j
throat which obviously does not favor mass production. It is

more appropriate to change to the nozzle line (mainly at the

throat and its neighborhood) shown in Figure 3.1c. The use of

the R; arc as a transition step will favor the reduction of the

flow perturbation at the throat and the improvement of the

homogeneity of the flow at the throat cross-section. The

expansion section of this type of nozzle has five parameters: rt,

re, Rt, a and x. As far as the principal line is concerned, r t

is a constant. Only three of the remaining four are independent.

They satisfy the following relation:

tre ANa s)t +;L( I -Wa)+ (A)

In order to link to the conventional nozzle design methods, we

choose , . and a as independent variables. d

20
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. ..... .. .... .............. . .. .. .. , .. ... - ... ....... ..... .. ,,. ........ ..:.-, .j , o-,,, -..,. ,,



4

Figure 3.1 Shape Near the Throat

In the initial stage of rocket design, only a rough shape of

the nozzle must be determined. In addition, if the conditionM

=0 is used, the I, in equation (2.13) is still an unknown or is

not precisely known. Thus, the design work cannot proceed. In

view of the fact that for most free flight rockets 1, is a large

number and the calculation shows that the value of CT is very

small, the requirement M c =0 will demand that L.1 and C T are

equal but opposite in sign. Thus, we can determine that the

point which satisfies this condition must near L=0. Hence,

nozzle design cnan be carried out in two steps; preliminary design

and accuracy connection.

3.1 Preliminary Design

In equation (2.10), there is a factor drj/dx, which is tga,

in the second term on the right. It is a small quantity. After

neglecting this term, based on the fact that L =0, we get

(Hi =0 (B)

21



Obviously, we will not design a nozzle with x<x0 . Therefore, we /46

must use the second type of solution for I(a, X). Because AJ,

(8,) # 0, then

(( - -- X *) 0 (A)

The solution obtained is

1.rjJL(BX,) 'I (3.1)
XmX,+ ,,,+tg J(,,)J

In the formula to calculate X, there are h1 , h2 and h3 . After

neglecting second and higher order small terms, we can derive the

following

x X,1+ v (Ma) ( O4a)I (3.2)

dr1

After combining (3.1) and (3.2) we get

2dr1  0 ([. (3.3)v (Ma)- V(Mae)+ d- .xr .t ,

v (.Ma) k/ + - - a'- 1 )-tg" (3.4) ;-.

The initial values in equations (3.1) through (3.4) can be

calculated based on the following formulas:

/ w I~ Ci. (35

di 2 iC

Xe- 2W!

.. +.., I

22+_1____--_-
• ....- + r'i, 3.5) "D"22

• ( ) .
..........................



Based on equations (3.2) to (3.5), we can get a family of -

curves using X as the parameter at fixed k and n, as shown in

Figure 3.2. Any point on the curve represents a nozzle -

parameter. This parameter satisfies the condition

(W, =0 ie.L0
r=rl*=0, 

i.e.

Based on Figure 3.2, we can see that there are many nozzle

parameters satisfying the above condition. Selecting a set of

values from these combinations of parameters must also be based on

other conditions, such as improved efficiency and structural

requirements. The design of a zero thrust eccentricity nozzle is

to introduce a constraint of nozzle parameters to reduce the

aerodynamic eccentricity moment. It does not confuse the U

conventional design methods.

Due to the fact that (H,) =0 can only make the first termr=r.
on the right of the L formula zero, therefore, the lateral force

of the nozzle from Figure 3.2 should be

(A)Ma-2 C? di(

L- Mo-a-i r, dx

Using the value of x corresponding to L=O as a reference point,

because L,<O, therefore, the point corresponding to L, must be on

its left. Please refer to Table 3.1 for the values of R listed.

If Mc=O is the condition, then L and CT must have opposite

signs. Based on the correlation between L-x and CT-X curves we

can see that this point must also be located to the left of the

reference point (corresponding to L=O). Hence, the nozzle

prototype determined by Figure 3.2 will not be far off from the /47

zero thrust eccentricity nozzle.

23
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Both equations (2.10) and (2.11) are obtained by the same

perturbation factor. In reality, there are numerous factors

capable of producing perturbance. Furthermore, they are complex.

Considering the small perturbation assumption, the effect ot -.

various factors is independent. The combined effect is the sum

of all effects. Therefore, as long as the perturbation satisfies

the initial condition, because M .=0, then EM .=0. Hence, the

theoretical value of the aerodynamic eccentricity moment of the

nozzle under various perturbations is still zero.

3.2 Accuracy Correction

The prototype nozzle obtained from preliminary design does

not satisfy the condition Mc=O. As the design work proceeds,

various data are obtained and become more accurate. After the

specific conditions are established, the formulas mentioned above

are used to calculate L*, C*, and C*/L*. The set of parameters

chosen based on the condition C*/L*=1/t with equation (2.13) are

the zero eccentric thrust moment parameters. Prototype .'-

parameters do not agree with this fact. We must rationally

modify it to satisfy Mc=0.

*-"#

.* ...-
*N\
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Figure 3.2 Nozzle Expansion Ratio Vs. Seiageo1xaso

1. asmptotc cure 16
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Table 3.1 Comparison of Zero Points

-10- k -1.2

0.1. 209

6.0 5.6H

. 5.29 5.10 4.N

For convenience, we can refer to a family of curves or a

data table. Figure 3.3 shows a family of C-1 curves. They are

calculated from the C*/L*-x curve. The variables are a, X and

k. If C of the nozzle remains unchanged, 2 is known (expressed

in terms of 1 R), and both intersect at A, other parameters at A

can be determined from the curve. The prototype nozzle can then

be adjusted based on these parameters.

Due to the fact that the theoretical and calculated results

'* are very close, especially the difference between the nozzle line

and its actual shape in deriving the formula, the corrected

nozzle must st4 ll be experimentally verified. Because the

lateral force and moment are not too large, their influencing

factors are incidental. Therefore, the magnitude and direction

*' of the lateral force are random. This special feature must be

considered in arranging the experiment.
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3.3 Determination of "R

The method mentioned above is essentially using the baseline

,* of the nozzle to control the line of thrust action. Once the

nozzle parameters are determined, the intersect between the line

of thrust action and the axis of symmetry is fired. If the

intersect coincides with the center of mass of the rocket G, then

*" M =0. During the active flight period, however, the charge of

- the rocket is continuously consumed and exhausted. The center of

mass G is not fixed. It usually moves toward the head. /48

Therefore, it is not possible to keep MC0. Hence, it is

necessary to determine an appropriate V value to satisty the

design requirements for zero eccentric thrust moment nozzles.

Figure 3.4 shows the relevant symbols. GC is the center of

mass of the propellant. , is considered not to vary with time.

G, and Gk are the center of mass of the rocket before ignition -..

and after the propellant is combusted, respectively. Gk is

chosen to be located between G. and GR. In addition, it meets .'..'.

the condition that the misalignment angle of the total thrust is

zero.

*" '.-.
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Figure 3.4 Centers of Mass and Relevant Symbols

i.e.

=0 (A)
C

Let us assume that the instantaneous center of mass G(t) is at a

distance'Al from G. and GR is at a distance L' from G. . Based

R R,~

on formulas to calculate 41 and M' c, the following equation can

be obtained by using the above condition

I• °- °)dt.

,.. °:. -'-

where At, is calculated according to the following approximation

* - .- i.(3.7)

Al• - .

The upper limit of integration in equation (3.6) can be selected

i~~.. .. ,

in two ways. One is to choose 0.7-0.8 of the time corresponding

to the critical arc length. Or, we may choose . In order to

use the value of exterior ballistics, the former upper time

limit is selected. 1R. can also be calculated by the following

28
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approximation {A - !. .,).4)(36)

where tkis the tiecorresponding to u . i
(3.8)

*The curve in Figure 3.5 is obtained based on equation (3.6'). We

can see that 1 varies very slowly beyond u=4.5.
0O

- - - - - - - -

Figure 3.5 1 RVs. Time
dR
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