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Limit Cycle of the Planar Non-linear Motion /62

of a Finned Projectile

Han Zipeng

[Abstract] In this paper,.the planar non-linear motion of a

finned projectile with small damp and weak non-linear static

moment has been studied. The stable limit cycle is used to

explain the self-oscillation generated by some projectiles. The

unstable limit cycle is used to investigate the causes for the _

fortuitous fall of some finned projectiles. In order to

alleviate the effect of self-oscillation and to eliminate the

fortuitous fall of projectiles, the non-linear portion of the

damp moment and that of lift should be increased and the non-

linear part of the drag should be decreased-..

1. First Approximation Solution of the Non-linear Equation

of Motion of a Finned Projectile

When the non-linear aerodynamic characteristics are

considered, the angular equation of motion of a finned projectile

isri]

b'+ 2 (b,+bbs)b'-(/&,+.., '). 0 ( 1.1 ) o

where

b,- .,-+6. b. - (1.2)

4 P$ - (1.3)
b.-I:.(0), 0 2) (1.4)
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where 5-angle of attack; v-velocity of the center of mass of the

projectile; e-angle of inclination of the trajectory; p-density

of air; S-characteristic area; d-diameter of the projectile; A-

equatorial rotational inertia; i-characteristic length; co and

C -constant and quadratic coefficients of the drag coefficient;

C and C -linear and cubic coefficients of the lift coefficient;
YO Y2
m and m -linear and cubic coefficients of the static moment

coefficient; and m' and m' -constant and quadratic coeffici-
ZZo ZZa

ent in the equatorial moment coefficient.

Based on various aerodynamic shapes of the projectiles, the

position of the center of gravity and the Mach number, the

algebraic signs of b0 and b. may have the following four

combinations [6]:

(1) b.<O, b,>O; (2) b0 >O, b2 <0; (3) b0 >O, b,>O; (4) b0 <O,

b, <0 .-'-

In the following, we used the van der pol method,21 ,31 .4r to

study the motion of a finned projectile with small damp (1b0 /

VC z-1<<1) and weak non-linear static moment (1k 6 1<< 1kz 1).

The majority of the projectiles belong to this case.

Let us leave the conservative moment k 6 in equation (1.1)Zo

on the left side and move the remaining moment terms to the

right. Equtaion (1.1) can be written in the following form:

5+ -tf(b, a) (1.5)

*Manuscript received on January 3, 1983 and revised on April 25,
1984.
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where /63

I(&, i)-- _ (b,+b,')'+ (1.6)

where "6" represents taking the derivative with respect to the

variable =ws and w= . If we neglect the interference term

f(6,6) of small damp and weak non-linear static moment, then a

linear vibration 6+6 =0 can be obtained. Its solution is a

simple harmonic motion

6= R cos(T +) (1.7)

8=-R sin(T + y) (1.8)

where

9-- t;I•-- tl"(- ) (1.9)

The amplitude R and the phase angle 9 are determined by the

initial conditions 6. and 6' ( which is the derivative of arc

length s with respect to 6). When the effect of f(6,6) is

further considered, it is believed that the solution of equation

(1.1) still possesses the form of that in equations (1.7) and

(1.8). In this case, however, R and 9 are no longer constants.

Instead, they are functions of T. &and 6 can be derived from

equation (1.7). Then, equations (1.8) and (1.1) are used to

obtain the two equations relating to dR/dr and dq/dr. Based on

these equations, we can solve

dR (1 1 )"-;
AR CI(R -c + 9). -Rsim(,t + 9))ir + 4. (1.10)"d'-" -I C,( + 9 ), - ( + )) ( + q ",>',
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Because R and 9 vary for slower than the variable 4=T + 9,

therefore, in the first approximation the right side of the two

above equations can be considered as periodic functions of the

variable C. The period is 21. Thus, the right side of both -'.

equations above can be expanded into Fourier series. In

addition, the effect of various oscillation terms in the Fourier

series can be omitted in the first approximation. Only constant

terms remain. It is then substituted into the expression for

f(6,6) (i.e., equation (1.6)). The following result is obtained

by calculation

d - I R. -Rsi,).-j_ (4,+R)-F(R) "(..1,

(1.13)

2. Phase Plane Analysis

In the xoy phase plane, the position of the phase point B is

determined by x=6 and y=6. The motion of the phase point in the

phase plane reflects the oscillation of the projectile. Based on

equations (1.7) and (1.8), however, the position of the phase

point B can also be determined by the phase radius R and phase

angle -r + 9 (r) (See Figure 2.1).

Based on van der pol's method, a moving phase plane o~q is

chosen, which rotates clockwise at an angular velocity w. In

this moving phase plane, the polar coordinates of the phase point

B happen to be R (r) and y('). Therefore, equations (1.12) and

4
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(1.13) describe the pattern of the motion of the phase point in

the moving phase plane.

Let us first discuss the case of linear static moment where

k =0, 0(R)=0 and y=yo • Hence, singular points are located along

a line at an azimuth 9. The phase radius of the singular point

is determined by F(R)=0.

t.

Figure 2.1 Dynamic Phase Plane and Fixed Phase Plane

(1) When b0 <0, b,>0, we know from Equations (1.12) and

(1.13) that there are two singular pointsin the dynamic phase

plane; i.e., (0,0) and (R p=2\/-bo/b 2 ,q0 ). When O<R<Rp, R>O and /64

the radius of the phase point continues to increase. When R>Rp,

R<O and the phase radius continues to decrease. Only at R=Rp,

R=0 and the phase radius remain unchanged. Therefore, the

second singularity is a stable nodal point in the dynamic phase

plane. Correspondingly, this singular point draws a circle with

a radius RP in the fixed phase plane. When the phase point

approaches this singular point radially along 9. in the dynamic

.--. .V : .. %- .%.



phase plane, a spiral can be drawn in the fixed phase plane.

Hence, the circle is the stable limit cycle in the fixed phase

plane. In this case, the origin is an unstable focus. (See

Figure 2.2(a)).

In if

* Figure 2.2 A Stable Limit Cycle
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Figure 2.3 An Unstable Limit Cycle.--"
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Figure 2.4 A Stable Focus
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Figure 2.5 An Unstable Focus

A limit cycle is an isolated closed trajectory. A stable /65

limit cycle represents the self-oscillation of the projectile. -

* Because there is only one limit cycle, the projectile is always

* excited to approach the same steady vibration regardless of the

initial perturbation. [See Figure 2.2 (b), (c)]

6 R pCos (Ws + y0) (2.1)

In this case, the motion of the projectile has a stable

trajectory. Because k =0 and j=Q, the frequency of the steadyZ'

vibration is identical to that of the linear oscillator. The

formation of the steady vibration and the magnitude of the

amplitude can also be derived based on equation (1.12) by direct

integration and by letting s--. (The derivation is omitted.)

Mathematically, when k =0, b.<0 and b,>0, equation (1.1)
Z2

happens to be the van der pol equation. It had long been proven

-nthematical1v that the van der Pol equation has a stable limit

cycle. This limit cycle, however, it not a circle. The precise

.,°.. 
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limit cycle with a medium damp (2bo/kz =1.0) is shown as curve L

in Figure 2.6[2] ' 4] '[6]

-,-".

Figure 2.6 Precise Limit C cle L and Approximate Limit Cycle
La (in unit of y -/ p

From the energy point of view we can further comprehend the

self-oscillation of the projectile as represented by the limit

cycle. Let us multiply both sides of equation (1.1) by 6', we

get

-d0+VL.- 2 (b, + ,2) (b' (2,.2)

2
where T = 1/2(6') represents the angular kinetic energy of the

24
projectile and V = -1/2 [kz 6 +(kz l)] represents the

*potential energy of the static moment.

T + V represents the total energy of the angular motion. Based

on equation (2.2) we can see that the angular energy increases

9
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a 2

when 6 <-b0 /b2 . The total energy decreases when 6 >-b0 /b. If

the amount of energy absorbed by the projectile in a cycle

happens to replenish the energy consumed, then the projectile can

maintain a steady vibration. The self-oscillation represented by

the motion of the phase point along the limit cycle has such

characteristics.
2 2 2

Because the square of the phase radius, R =6 +(6'/-/-kF)

is proportional to the total energy when kz =0, therefore, the

limit cycle radius in the region I6I<\ - (shaded area in the

figure) gradually increases on the precise limit cycle L shown
p

in Figure 2.6. Outside this region, the radius is gradually

decreasing because the energy lost in the segments DE and FC is

compensated by that gained in segments EF and CD. Therefore, the '1
projectile can stay in steady oscillation.

Self-oscillation occurs when b0 <O and b,>O because b0 <O

means that the damp is negative at small attack angles. In this

case there is energy input in the angular motion. The damp is
2

positive at large angles of attack (b2 6 >1b 0 ) and it consumes

energy in the angular motion. The energy input in the angular

motion is obviously converted from the translational kinetic

energy of the rrojectile. This can be qualitatively explained by

the expression of b0 . Because b0 contains a term (b +gsinO/v )<0z
(rising arc), it acts as a negative damp which causes the angular

energy to increase. Based on the equation of motion of the

center of mass,(dv/d =-b.v -gsine, we know that that term also..

makes the velocity of the center of mass and the translational

kinetic energy 1/2mv decrease. Thus, the amount of energy

10
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gained angularly is converted from the translational kinetic

energy. In terms of the physical concept, the total energy of

the projectile only includes the angular and translational
:1% N7.6

" kinetic energy. Thus, an increase in the angular kinetic energy

can only be converted from the translational kinetic energy. For

projectiles of certain aerodynamic profiles, the drag is

particularly large because the equatorial moment and lift are

small. In this case, the situation b0 <O may occur.

Consequently, it self-oscillates. This is a special motion

different from any linear motion.

We notice that mechanical energy conservation exists on the /66

approximate limit cycle (the circle R=Rp). Consequently, it is
p

not possible to display the variation of energy in the angular

motion. This is obviously an error caused by the first

approximation. From Figure 2.6 we can also see that the

approximate limit cycle is more or less the average position of

the precise limit cycle. The smaller b. and b. become, the

closer the precise limit cycle approaches a circle. Thus, the

smaller the effect of this error becomes.

(2) When b0 >O and b2<O, based on a smaller analysis we know

that the R=R circle in the fixed phase plane is an unstable
p

limit cycle. The origin is a stable focus. Therefore, when the

initial condition is O<R <Rp, R<O, the phase point is damped to

the origin [see Figure 2.3 (a)]. The corresponding oscillation

curve is shown in Figure 2.3(b). The motion of the projectile is .-

stabilizing. When RAP, R>O. The phase point is far away from

11"'--.
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the limit cycle. The corresponding oscillation curve is shown in

Figure 2.3 (c). The motion of the projectile is unstable.

(3) When b.>O and b2 <O, only the origin is a stable nodal

point. In addition, we always have R<0. Hence, the motion of

the projectile is stable (See Figure 2.4).

(4) When b0 <O, b2 <O, we always have R>O. Hence, the motion

of the projectile is unstable.

Finally, let us discuss the case that kz'O. From equation

(1.13) we know that j40. The phase point must also rotate around

the origin in the dynamic phase plane. The variation of the

phase radius, however, is still equation (1.12). Therefore, the

circle Rp = 2 VCo/b2 is still the limit cycle. Other phase

trajectories are elongated clockwise (k <0) or squeezedZ'

counterclockwise (kz >O). Correspondingly, the vibration fre-

quency of the projectile will be higher and lower than the

frequency of the linear oscillator. Furthermore, it causes the

frequency to be related to the amplitude. However, the stability

" of the motion is not affected.

3. Conclusions and Analysis

Based on the above analysis we know that the motion of a

stable static finned projectile with weak non-linear static

moment and small damp is becoming stable when (1) b0 >O, b>0.

(2) When b.<O, b.<O, the motion of the projectile is unstable.

(3) When b.<O and b2 >O, there is a stable limit cycle (the

circle R=Rp) in the phase plane. In this case, it is possible to
p

create a self-oscillation at an amplitude R (4) When b.>O andp"

12 :,'.v
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b2 <O, there is an unstable limit cycle (the circle R=Rp) in the
ct irfp ie

phase plane. If R>Rp, then it may be in unstable motion.

In the design experiment of finned projectiles, the second_.,

case described must undoubtedly be eliminated. The linear

theory, however, neglects the non-linear damp term b.. It

believes that as long as b0 >O, a stable static finned projectile

must be in stable motion. Most of the finned projectiles were

also thus designed. In reality, however, b, does exist. The

following two situations may appear. One is that b,>O over the

entire trajectory so that non-linear stability coincides with

linear stability. Thus, the effect of b, is masked. The other

is b2 <O over the entire trajectory or on a portion of the

trajectory to produce an unstable limit cycle in the phase plane.

When the initial disturbance is excessive or when encountering a

gust in flight, the phase point may jump out of the unstable

. limit cycle, i.e., R= 8 +(6,/.)>Ap. Hence, the motion becomes

unstable, leading to the fortuitous fall of projectiles. Because

the probability of having an extraordinarily large initial

disturbance or gust is very small, especially on trajectories

where b2 <0 occurs only in certain sections, the fall of

projectile due to the unstable limit cycle is accidental.

As for fallen finned projectiles, we should inspect their b,i

values at various Mach numbers. If b,<O, we should alter the -

aerodynamic profile and layout to make b,>O or to minimize [ -.

Because the radius of the unstable limit cycle gets larger with

smaller lb. I, the range of initial conditions which satisfies

13
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that of a stable motion is also getting wider. When lb2 1-0,

Rp .C-. Then, any initial condition cannot cause unstable motion.

In addition, certain odd-shaped projectiles with small

equatorial moment and lift and large drag may encounter the

situation that b0 <O and b,>O at some Mach numbers. In this case

the projectile will remain in self-oscillation at certain attack

angles. If the amplitude of this oscillation is too large, the

projectile is flying at a large angle of attack over a long

period of time, leading to decreasing range and deteriorating

degree of concentration. Therefore, the aerodynamic profiles of

this type of projectiles should also be changed. The value b2  /67

. should be increased to reduce the radius of the stable limit

cycle in order to allow the projectile to fly at a small angle of

attack.
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Abstract

In this paper, non-linear motion of finned projectile with small damp
and weak con-linear static moment has been studied. Using the stable limit ,..
cycle, it has been explained that some finned projectiles probably produce
self-oscillation.

Using the unstable limit cycle, the causes of the fortuitous fall of some
finned projectiles have been discussed. In order to decrease the influence
of the self-oscilation and eliminate the fortuitous fall of the finned pro-

jectile, the non-linear part of the damping moment and lift must be inc-
reased, and the son-linear part of the drag must be decreased.
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