AD-A164 289 THE DESIGN OF A STANDARD SOFTWARE DEVELOPME
- METHODOLOGY FOR THE BRAZILI.. (V) RIR FORCE lNST OF TECH
HRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. IRR
UNCLASSIFIED DEC 85 RAFIT/GCS/ENG/83D-13




S P NE e e

Ty

FE -

g

FEEFEEE R

EEER

"m I . I Eut

e .

] -

= m" {5
==

Ji2s s pe

MICROCOPY RESOLUTION TEST CHART
TTOMAL RIIRTANN NF CTANDARDS-1963-A

B e

. . Tttt et RS IRER N I IR
e et . T e . NI

. . - -

a Calats ta '.IJ.L‘.L“L(L*L‘ A\

O SRR IO AT AT NN

. C e
L A . AN .
LA A B BT TP

. S et Wt e e,

.
AP, T NI SR I, Sk




~ —r—— v rr——

E T R T X N T T T TN TV W S T TV TV I Y 7WI P F RSN ey
. a

J

o

AD-A164 289

3 Siwsw
- RSN
. RS
. "-
- .

._‘;::A-

{

* ISDASE

L~ R

L - -

. W

3 te

s Ve

- S

M e tat

P

‘

~.

THE DESIGN OF A STANDARD SOFTWARE
DEVELOPMENT METHODOLOGY

"OR THE BRAZILIAN AERONAUTICAL MINISTRY

THESIS e

APARECIDO FRANCISCO DE OLIVEIRA
Lt Col, BRAZILIAN AIR FORCE

DISTRIBUTION ETATEMENT A

.-"-.-‘.
Approved for Public reloass;

Distribution Unlimited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

OTIC FILE COPY

SO ';‘_."_.“_," y"'."_:"‘
é\;
i !

Wright-Patterson Air Force Base, Ohio

86 2 14 019

v v, 0w
bt 4wt ah b B o1t b MR AR Y e B e e il
P PP e o . . Q. v.

wTa T . AT .

* . . .

-~ A Al P g
. g

LRI e e ..:

-.:- '.h"h -t e a0 »




AFIT/GCS/ENG/85D-13 o

DTIC

ZLECTE
FEB 1 4 1986,

D

.« VRSN sl

THE DESIGN OF A STANDARD SOFTWARE
DEVELOPMENT METHODOLOGY
FOR THE BRAZILIAN AERONAUTICAL MINISTRY

THESIS

APARECIDO FRANCISCO DE OLIVEIRA
Lt Col, BRAZILIAN AIR FORCE

AFIT/GCS/ENG/85D ~I3 *—-—

Approved for public release; distribution unlimited. RS

'''''''''''''''''''''''''''''
.......




v

e

g . .‘s
AFIT/GCS/ENG/85D-13 ey
. ‘I - - ...‘..\
o R
- - - . [}
THE DESIGN OF A STANDARD SOFTWARE DEVELOPMENT METHODOLOGY o
PR
FOR THE BRAZILIAN AERONAUTICAL MINISTRY c:ﬂt:
RO
N
».‘ ‘-\ -,‘
! \'I\‘I:‘
&tﬁ4
HCGRNK
THESIS s
cAN
-'.\"_';"
o'\.'\-:;_\:_
e -'.:..
—
Presented to Faculty of the School of Engineering of the .

Air Force Institute of Technology

Air University
In Partial Fulfillment of the
Requirements for the Degree of
\—’ Master of Science in Computer Systems

Accesion For

NTIS CRA&I
DTIC TAB
Ui.annoiced
Justitication

goay

Aparecido Francisco de Oliveira, B.S.

Lt Col, BRAZILIAN AIR FORCE 8y

December 1985 Dﬁ”bﬁpﬂl .
Availability Codes
el o
Oist Vall aligl or

Al |

Approved for public release; distribution unlimited




T TN TNV T

- = . P

N 'l?i

» fl

"rtr
Y
4
A (]
7

Preface

»
LI 8

The purpose of this thesis effort is to design and

propose a standard software development methodology for the

Brazilian Aeronautical Ministry.

Fg - o

-‘::-ﬁ“'

This report is not intended to be a final answer, rather .j.xg

O Y

L N M

it should be taken as a single seed, a first step toward RS
Y

ot A

developing a software design methodology for the SIMAER.

To generate such a seed I have had a great deal of help
from others. I wish to express my sincere appreciation to
Capt Duard S. Woffinden, the advisor of this investigation,
for his professional guidance and patience throughout the
duration of this effort. I wish also to thank Dr. Gary B.
Lamont for his important and worthy refinement.

Special thanks goes to my family, particularly my wife
Vera. Her participation helped me to create an internal and
isolated environment where I could put all my effort to
generate the mentioned seed, while she took care of the

external environment. For that she had to follow a hard path

learning the language and culture of a foreign, but
fortunately receptive country. My thanks to her also for
typing most of the report. Without her support the seed could
not have been germinated. ‘

Aparecido Francisco de Oliveira

ii

e Ve =t et A . * CHRSC R At S Y

U N R TR e W e .
A A O R R . St e e e e e e e e Tt e e e et e e e e e
P AT AP AR PR '-'\.‘\LL}E\_ PRI -A‘A'L'L‘y' BRI A S R Y '-:}."‘.‘-




: R
T List of Figures :1;:}_::”
oo Figure Page h?ﬁi
V\‘ ~ . Kl f':
l 1. The Brazilian Aeronautical Ministry...cceeccevceccncee. 8 .

EXY h ]
. A
ﬁ 2. The Aeronautical Ministry Information System (SIMAER).. 9 tﬁbﬁc
) e

v 3. The Waterfall Model...v.ceeeeeeeeeecocccscensconsennnas?l R R
b ) \T’)s
. 4. Boehm's Version of the Waterfall Model......cceveeeasse2d b
N S
- 5. The Error Avalanche.....e.cceecencesacescaseascnsancsnsadd RN

6. Increase in Cost-to-Fix or Change Software Throughout
. Life-CyCleieeeseeeeesaseesaaccscassscascssnssssunasssanseslb
o 7. The Prototype Life CYCle MOdel...eeeeeeeeeeeoseneeeesea2d

8. HIPO Visual Table of Contents (VTOC) HIPO Diagram......34
9. HIPO Input,Output, and Process Diagram....cesesecssscsss3d
10.0verview of the Structured Design Method...............40
l1l1.Example of a Structure Chart..cc.eeceescecscescacssencaanaasdl
12.General Flow of the Structured Design Method...........41
13.Example of a Data Flow Diagram..ccecescecccecscscscscscsesd3
14.An Example of a Data Dictionary NotationN...s.sececesesead?
15.Parts of a Decision Table..ceeieeeeseecencncsacsnconesadl

16 ., Activity Diagram..cceeeccecsssssncscascsssssnascaccacncacssd?

17.Data DiaAgramMeececececececcocossonssansossssssssasccccnnaaasd?
18.Example of a Complete Activity Diagram....ceceececesceeeassD8
19.Gane's Logical Data Flow SymbOlS...eseececcccccoacccesabd3
20.Data F1low DeSCriptioNe.cescecceeeeecenceeeanncnacaeeasssbd ;SQE
21.Process Boxes with Psysical ReferenCeS..ccecescccecesss64
22.The Process Used to Obtain a Chen Entity-Relationship

Diagrame.ceeeeeeeesceceenssesasssaasasassaaasescsssnssasbtd

,® L
g iii
IO AAS
|'..v".‘-
RS
e e e e e e T L L e L e e L e e T e e
LN R e N S RPLIN, IS SRR DN RN SENRIERNN R, '



NCDCIR i PR TN

i ROy Figure Page
i ) 23.Depicting Relationships Using Chen's Approach..........66
g 24 .Notation Used in Jackson's Approach....cc.ecesccecesecsea’d
E 25.An Example of the Use of Jackson's Approach to Depict

i DAt@.ceceeeseecensoscocesascossasscssssscsnseancsssscscscssld
z 26 .USAF's Automated Data System Life Cycle......ceceveee.o85
s 27.ESA's Software Life Cycle Management Scheme............93
i 28.The Problem Statement AnalyzZer..cieeccceensevecessaessal0l
= 29 .Example of a PSL Formatted Problem Statement..........103
. 30.Flow Graph of a Sample R-Net...ccceceecsoccecososaseseallb
i 31.S5ample R~Net in RSL..ceceescoscccssscassccscsasnsaassasl06
- 32.REVS' Schematic Diagrameccececesecssssessscersesnccenssasl0
- 33.SDW Configuration Model....c.ceeeeeesceaccocnsncneoansaall2
3 \s 34.SDW Structural MOAel.....eeeeeeeensncenonssenseannssaall2
f 35.Structure of SIMAﬁR'S Software Development Methodology

i RegUlatioN.iceeeeeencseeacaasacscscaasnssossnscssssesassllb
. 36 .SIMAER's Software Life CyCle...eeceenesecencancansaassalld
ii 37.SIMAER's Software Life Cycle Management Scheme........120
.; 38.A Typical Structure of Development Te€aMeseeeceosseeesasal3b
; 39.SIMAER's Software Life Cycle Implementation Plan......149
i

;

f . iv

B R e S T R N R




AERAL IR 2 T N 1A 0 i e Wi R Dy 2 AP AN 1A e B SIS s Sl e U AN SRALA Gt B¢ )¢ Reh B i ke de- i S dB ol o8 o8 c N8 oL e e T g T i;'mi(-".

ROY List of Tables

E Table Page

| I. Methods Used by SIMAER's ProfessionalS..............159
II. The Most Suggested Methods for the SIMAER....c.¢es...160
I1I. Graphical Representation Techniques Used by SIMAER's

' Professionals....eeeee.vacenscccocevessencsacsssesaslb6B
IV, Suggested Teaming for the SIMAER...:veeecesccsesecssal’0
V. Suggested Control Tools to be Used by SIMAER........172

\ VIi. HOLs Suggested to be Used by ‘the SIMAER's

: OrganizationNS.ceceecssesecsssossssscsonssosaassesosnsnseslld

) VII. Personnel Titles and Description within SADT........187

‘ (;? VIII.Phase of life Cycle Where Methods and Tools Can be

s T D -

IX. Comparison of MethodsS.....veeeeeeseecasaacesoassasssalB9




T ~— g \ o - —— .
A A RGN G DRI A R A AN SN M M ) R A A Attt - e pgoiai B g i it S MG DR LR R Rl B i A i by o

- Abstract
~ —_—

-

This thesis proposes a standard software design
methodology for the Brazilian Aeronautical Ministry.

The project matched the requirements of the Brazilian

Y e e s s e

Reronautical Ministry with the software life cycle models,
methods, and techniques, which are currently available and

' most widely utilized.

- Based on the analysis, é'waterfall model was selected
and integrated with some methcds, tools, and techniques, such
) as Gane's method, SADT, Data Dictionary, etc.

All of these recommendations were included in a proposed

regulation for a software development methodology.

j <5 \

kS

[V RN T e O I

i
-‘u’

vi

I R R S N S ]
STt e Nt

':.'..';.:.':',';s'_'..'::: _-. Tele ’:';‘, DR




ORI AR e S i A AR NP b A e el A A A A o e A A A A AN e S SN A 2 BT S s SNl Al had el Al Tl oy _‘_-_" "

..................

Table of Contents

e Page
PrefACe.cececesccesonssesaccsscasssnssscsassassscssssosocscaassssessill
List Of FlQUYe@S.ceeeecceacenscunnonocosoassosnonssossassnassassiil
List Of TableSececeeececscstscsceccasoscscsossncssasnssssossascsccsssV
ADStEraACt . e eeeeeesosesesscoscsccsansossacsssssssssssssvscaassessVi

T YT EEE."."."."

I. INtrodUCEiON. e eeeecacascsccacsssosscssscsasscsscssssssasscesal

TEELA

1.1 BackgroUnd..ceeeeeaceosaescesoccsvoscossosnscssonsansal
1.2 Problem Definition...iceeececcecerccnscsscccecnceal
1.3 SCOPEuieeteesoassnsssssnssncacasassansssssssassncaecd
1.4 General SUPPOTrt..ccesccccaccccsoscassoscssnacsssscncesd
1.5 APProacCh.c.cceeeececcecscecneccscscsancsancassnsacesd

II. The Environment....ccceeececeacocssccscscscaccsosscsscnoaseel

2.1 IntrodUCtiON.ceeceeaneceocsecesssoscsoscasnccasanaaeal
2.2 Structure of the Aeronautical Ministry..ceeceeseaee?
2.3 Current Situation on Software Development........l0
2.4 Requirements DefinitionN.e.cecceccececcacsnccnaoaaasnl8

(3.
»

. III. Current Available Methodologi€S....ccvcevceacsnacaeas20
f .l IntrodUCtiON. e eeceeeecacesscossesescscassscesasesesesll
- LiteratlUre..cieceeecencsensosccasscacncccsssssscansall

3.1

- 3.2
i . 3.3 US OrganizationS..eeeescesccsscscaascocssnnasnesaB84
3.4 European OrganizatioNS..ccescececescceccccassscnasad0

IvV. Automated Software Development ToolS......cceeeeee...98

i 4.1 IntroduUCtioN..e e eeeeeeesceancsanscsascscsacscsnesesdB
4.2 LiteratuUre ReVIieW....c.cecesessasscscacsncccsansesd8
4.3 SUMMALY s ceeessacsesccacesossssossscsssscosacassssosaeslld

V. Proposed SIMAER Standard Software Development
Methodologyeeeeeeeeessocsosesoaosssassscssensccosssnansslld

IntroduCtion. . ceieecesecoessescsosacecseccsasssslld
Proposed SIMAER Software Development

Methodology RegulatioOnN..scscecacescncenseaasesasllf
Implementation Plan......ceeeececssscscscoanssasasldB
COSteeeiaeeansonascsoasasssnosssacssassssassaassassld8
CONClUSION.ecceceeecasosoosaonosonosnnssnsessensaasldd

U
[

(VN S,
L]
v bW

VI. Conclusions and Recommendaﬁions.....................151

Ef APPENAI KOS e v et vsenecaeeeeeeaneessecesessassssssnseanseessslB3
- Bibliography.ceeeseeneecseesasososasonssanocscsssassssassssslPd

VitAeeeeeeoseeoosenueanosescascassecsassssssanssasesnssasseseeld7

et T T e M e e e e e e e e e e e e T e e T e e e e e s
. RN « T N R T T TR T T P .
P Ay AL U PRI VA S WA ST TR S A DAL INE TR AT Ty, VRTINS ‘n_.-l VR VER C NG DGR




f

.w'-v: Ty Te T T vy

RS NAR - TR ITRILAILF RPN

THE DESIGN OF A STANDARD SOFTWARE DEVELOPMENT METHODOLOGY

FOR THE BRAZILIAN AERONAUTICAL MINISTRY

I. Introduction

1.1 Background

The author worked successively as Chief of the Planning
Section of the Brazilian Aeronautical Ministry (MAer)
Information System, Chief of the Planning Section of the
Brasilia Data Processing Center, and finally as head of this
organization from 1980 to 1983. These positions offered him
the opportunity to become familiar with the many existing
automated data systems (ADS) in the MAer, and the opportunity
to follow them throughout their life cycles. During this time
he was impressed with both the lack of a standard methodology
for system development and the lack of a consistent
management approach to the software life cycle.

Generally speaking, few used modern, productivity-
increasing techniques such as structured design, top-down
analysis, or review sessions[26]. This condition has caused
several problems such as high system development cost,
interface difficulties between ADS designed by different
organizations, and constant training needs to name a few.

This situation is a matter of great concern for the

Centro de Informatica e Estatistica da Aeronautica (CINFE),

head of the Information System, as it is this organization

R I S N T " P M a® . - - > S A T S R ST T e
IR SRR S A AP P S IR SR S I SR SO IR A, S RSN DY A S VO ALY




that has the overall responsibility for software development
in the MAer[30]. A standard software life cycle and
methodology for the MAer should reduce the systems

development cost.

1.2 Problem Definition

Many authors recognize that there is an ongoing software
crisis which, in essence, is that:

"it is much more difficult to build software systems
than our intuition tell us it should be"[7].
Brazil and especially the MAer are not immune to this crisis,

and the symptoms, enumerated by Fisher[7] and listed below,

are also manifested in the MAer's system development:
1. Responsivenness. Computer-based systems often do 5,:4

not meet users needs.

2. Reliability. Software often fails.

3. Timeliness. Software is often late and frequently

delivered with less-than-promised capability.

PRI LN
l.v_','. v .! IR
K ol

st oo

,'t ot

T . oo s
PREREAEN REATACACARREY

4. Transportability. Software from one system is seldom TR

¥

used in another, even when similar functions are

required.

5. Efficiency. Software development efforts do not

.-'rv e o o amn )
S
¥ '

make good use of the resources involved {(processing

-
1

time and memory spacej.

WPy

- 6. Modifiability. Software maintenance 1is complex,

costly, and error prone,

P Y R S I B
P PV o R N A ol A



T R T R I Yy TRy ey
LoTe T ~ . AR L RLL F A oW SN LB o0 aPe e oS i o * L0 A A i S hye g it et Sl Jiames Jhaet St Bt s At Aot e s e 2 g iy e — g
: Le e Pl « e e e [ dart G Dt i ol s

7. Cost. Software costs are seldom predictable and are

often perceived as excessive.

A typical example from the Author’'s experience within

« ~—
1S,

the MAer, is the case of a system development where the

-
oy 5L,

manual activities were discontinued before the automated
system was validated and accepted. As a result the automated
system was not responsive causing some disastrous
conseguences.

Besides suffering the same worldwide common problems
listed above, Brazil faces its own crisis, an economic one,
evident in a high public deficit, which in turn imposes
severe budgetary constraints. Also,it would be wise for

N Brazil, being a country in development, not to repeat the
\o same errors experienped by more developed countries which
have already passed through this process and found some of
the answers to reduce the software crisis[7].

Embedded in this scenario is the MAer which currently

faces high hardware and software demands to support both

p g e
e e
ety

“a
'

management as well operational systems with a limited amount

of resources({30].

The problem is the high development cost, the lack of

TR T

standards for software development in which modern

techniques are used, associated with the need for making use

VY T
o 1.: . JY. i

of the available resources in as efficient and effective way Lg

as possible. e

Y,
LI
(I
L)

R
¢

' r-.v,vr
. P E

e e e T At e
. TR S A R e, .
[ W P VR ISP I S SR IR




ITNTRLS S NN GRS

-

]
"l
"n
’.
1 4

s

1.3 Scope

In order to solve the previoﬁs stated problem, some
standards will be proposed. Such standards will cover areas
such as: methodology, software life cycle, methods (including
tools, techniques, modern programming practices),
maintenance, High Order Languages (HOL), documentation,
development management issues (personnel allocation, review
sessions, development control), and cost.

A survey on software development in the MAer will be
conducted, and based on its results and the author's past
experience, SIMAER's requirements for software design will be
defined, and objectives for standards to meet those
requirements will be detailed. Also, parameters and criteria
to evaluate and test the degree to which the tools,
techniques, and methodology recommended by the standard,
support the requirements will be established. This will allow
several alternatives to be examined and the recommended
choices justified.

Finally an implementation plan covering cost,

milestones, and training will be elaborated.

= 1.4 General Support

This project was developed using the author's previous

o . . .
F% e experience, acquired background knowledge, academic support,

e “:“..'_. ‘.."_. L T Y T S SR Tt a v
N LI DRAENIE Sl YRR T W A
Lt}

................ .
.......... R ettt . e
B e e B A P . RN . . SRS
- Lo L . r O I N Tt i IR I T ST T S | et e e e Lt e e e N e ST e e W Y, - .
B PP P P TP P P P P P P S AL T A A A S I R I S I O T A R .




e N e T T T T O I o T VT

current literature reviews, advisor's orientation, and the

MAer requirements.

1.5 Approach

In order to become more acquainted with the current
software development situation in the MAer, and to determine
its requirements, an overview of the MAer Information System
Structure is presented and a survey of its organization
related to software development was performed. Both, the MAer
Information System Structure and the survey findings are

presented in Chapter II.

Chapter III, Current Available Methodologies, consists

of a literature review on all of the best known methrods
proposed by the academicians and software development
professionals. Also,‘some methodologies used by American and
European organizations were studied and compared. Finally an
analysis was performed trying to highlight the methods'
characteristics that best support the MAer requirements.

Next, in Chapter 1V, a literature review on the
available automated software development tools is discussed.
Following this review, a preliminary study, looking for a
future implementation of such tools in the MAer is performed.
The study covers the MAer's requirements, as well the
available resources.

In Chapter V, a software life cycle is designed and

standards are proposed, based on the requirements determined

. - e - .~
R R e S DO P P e R -
% e M.y AR L PULNPSL R N

VP P D PP G R Wy W U PO Y L dn o B X




RS e G LA G AR O LA A AR ARG e AN At AR e At f il it & LS AEAE R A Aa ) Aol Sofolad AvCALS Sl So) g Sod G s Gt S As A

r.-.: -

in Chapter II and on the available methods' characteristics
pointed out in Chapter III. Also an implementation plan,
including milestones, cost estimation, effort in training,
etc, 1s presented.

Finally, Chapter VI, summarizes the research findings

and states recommendations and conclusions.

L3

g "o Y
v,
.

PP
. )
"
.

roY

., I’I. "
[N RN




T TN ANV AT VTR

. II. The Environment

2.1 Introduction

The design of a standard software life cycle and the
. selection of tools, technigues, and methods to be used during
_l this cycle must support the requirements of the organization

where such a standard life cycle will be observed.

This chapter presents an overview of the software system

development environment in the MAer. The most common types of arr
applications developed there, which tools are currently

employed, and how the system's development is managed. All

these factors together will compose the scenario which

defines the requirements needed to design the proposed

standard software life cycle.

2.2 Structure of the Brazilian Aeronautical Ministry

As stated in the Brazilian Constitution[33], the
Aeronautical Ministry is the organization responsible for
establishing the national aerospace policy and controlling

the overall aeronautical activities. In war time its main

objective will be to achieve and maintain air superiority
over the Brazilian territory. This task is to be accomplished

by the MAer's armed branch - the Brazilian Air Force. The

MAer, as shown in figure 1, is composed of: (1} the
Aeronautical Minister Office (GABAER); (2) the Aeronautical e
Staff (EMAER), the organization responsible for the planning

and consulting activities of the Aeronautical Minister; (3)

o . N T I A I AR AU e . . R
S e el . P T R e R L AR R TP L L B ] B o T Tt e S LT TRt Tt IR TR R
LRSS SA YIS SANP LR U W VSRRV & 1A D0 A SR U VL L, S, Y S R R Y VLS DL A VSRS




DN . o

N

the Civil Aviation Department (DAC), which is responsible for
planning and controlling the civil aviation activities; (4)
the Research and Development Department (DEPED) whose tasks
are research, development, and fostering the industrial
activities in the aerospace field; (5) the Personnel General
Command (COMGEP), which is responsible for the management of
the manpower activities; (6) the Training Department
organization (DEPENS) responsible for the training activities
within the Maer; (7) the Air General Command (COMGAR)
organization whose mission is to perform the combat
activities, and finally (8) the General Logistic Command
(COMGAP), which has the responsibility of supporting all the

MAer activities, mainly those related to flight.

l AERONAUTICAL

l MINISTER

| o |

' DAC (

| |

DEPED DEPENS COMGAR

\COMGEP\ ‘COMGAP‘

Figure 1 - The Brazilian Aeronautical Ministry




PP N g N AL AL g g A S ol A e S e Jamel S ha ot g i Mgt i e s i A A

The automatic data processing activities in the MAer are
organized as a system called SISTEMA DE INFORMATICA DO
MINISTERIO DA AERONAUTICA (SIMAER) (Fig. 2) whose focal point
is the CINFE. CINFE responsibilities include: the planning,
coordination, and control of the data processing activities
as well as support of system's members. The CINFE is
subordinated to the COMGAP and headed by a Brazilian Air

Force Colonel.

= 5

I CEC:!a I——— pac DEPEDL

- —
Cirma — ‘
- PITXL] sams U}‘
-y} s:° :: ' b CINFE ‘ o on S
DIRMA c&awi
- i’} . COMGER 2O0MGAP CIRMLEE
. nasts

DEPV

soPP
DIRINT

Figure 2 - The Aeronautical Ministry Information System

B T o Sy S N S Ut e e e e e e T e e e T e e e e e e e e
I ST ST IS A RS B I T SRS S0P S S I et Pt I S S S S AT it St ST St Sty ST e




TS AT e PR TR RN WS WA T TTRTYT R TR Y TR TA TR A

.

v
[
.

-~ Y
Loa
-
»

)

N

L_.

b,

L .

5 {ﬁf 2.3 Current Situation on Software Development

. 2.3.1 SIMAER's Overview

w The SIMAER is currently undergoing a great expansion
o program. The MAer is starting to become involved in the

g activities of software acquisition for embedded systems, and
Ei there is a great demand for software design, mainly to

support management and operational activities.

There is also a high demand for microcomputer
acquisitions. This demand and its supply will require further
studies to establish a policy on end-users development. Such
. studies should take into account several considerations and
- constraints related to user-developed systems. Davis{12]

e suggests the following disadvantages and advantages of user-
developed systems:
1. Disadvantages

a. Low discipline of users

Information Systems personnel generally accept
and follow procedures and rules {a developmént
discipline) that represent a codification of
experience in application development. Users
as new developers do not easily adopt this
development discipline; they must obtain it
“through training, experience, and policies and

procedures.

10

. ot et e tata = . et ettt e
<o, . . - » - 0 . . . . - - - - - . ~ - - - " . » - DR T S
et o e, e, S . R N ST AR SR S S L TP P P T
. . e - S N NN

. N . -
S S R T T T e S N . . " e e .
PRI WA P AU L IR WRERT R T TSP VR E W, W iy QMA AR . WP VA D AL




S L NLw T T L BT T3 T w e ey YW WL W TLWT vy v - gl
. . . . . - » o A - A LI O 4 A S SR A NS R L mlT N TTETIT Ol R e B il ~udl a1

«aTeTs mTwr 4

b. The risk from encouraging private information

SRR

i a systems

t The complete information system of an

E organization is composed of systems that are

i formal or informal and public or private. User

. developed systems, by promoting private formal
systems, encourage information hiding by

. individuals. It is also difficult to transfer

{: private systems to new persons taking over a

-

. position.

; 2. Advantages

a. Relieves shortage of system de&elopment person-

| nel

i \;f A common user complaint is that there are not
enough‘analysts and programmers to keep up with
the demand for new systems. One of the

i alternative solutions to this problem is to

5 ] transfer some of the development function to the

; users.

; b. Eliminates the problem of information require-
ments determination by information systems per- )
sonnel

i' One of the major problems in information systems

i development is the need to elicit a complete and

i correct set of requirements. Various

. methodologies have been proposed but it still

.
oty
.
.
Lo

11

R R YL I G SO Cte
- ey At W,

e at a T e ta ., - »
Py PR --n.j.‘.hL‘__-_n

e e e T TP S
POV T Y W T PR Phy SR YRR DA S R SRR UL




j N

¢ T

. distributed processing, with its own implications, such as

the design of databases and efficient networks.

balanced by establishing appropriate policies.

Brazilian localized phenomena. According to a recent survey,

published in the Government Computer News([24], 38,000

® microcomputers were purchased in fiscal year 1984, by US

R A D LA AN AN A G AL G Ak A A4 et ATl doll Aol A A€ At Ry o4 St St ot s eg Al e LA SR AR At A bl G b At

Other considerations include the implementation of

All of the considerations and constraints can only be

Of course this high microcomputer demand is not a

B T T I S . R RS .
e e T, T O - SR AR IS - e e e I S A e e
P E VTN T T A S A . T T L X P T A P A AL P T A e ia ae e st

LA A S
W

remains a difficult process. The problem is
made more difficult because the analyst is an
outsider who must communicéte with a user
eliciting the requirements. Having users
develop their own systems eliminates the
problems of inadequate communication between
analyst and user.

Transfer the information system implementation

process _tg users

Poor implementation is one of the major reasons
systems are not utilized., Difficulties arise
from the interaction of the analysts and the
nontechnical users who are providing
requirements for the system. Users may develop
less sobhisticated systems when they do their
own design and development, but they are more

likely to use them.

12

ST e e e ST e T T e T e e Te s Ta




XN X NI I I NCE] - 12200’ 8 oL AU ath e LU R, 9 "aby T " A VTS T - D)

governement agencies, a 450 percent increase over the
previous fiscal year's acquisition. Of those 38,000
microcomputers, Department of Defense reported the most buys,
17,419, of which 4,009 were bought by the Air Force.

Currently SIMAER's, manpower and the financial
resources are insufficient to face all the mission needs[30].
Thus there is an urgent requirement for making the use of
existing resources as effective and efficient as they can be.
One of the several ways to achieve this efficiency and
effectiveness is by the establishing of standard pdlicies
with the following objectives:

1. Reducing software errors.

2. Requiring the SIMAER's professionals to adhere to the

! \s accepted principles of software engineering. »
3. Providing a software design tutorial tool for :}ﬂi}
P .

novices. T
4. Reducing the training cost.
5. Increasing the SIMAER's professional expertise in

some specific tools and techniques for system's

development.
6. Allowing for a more efficient use of the available . ol

resources.

7. Emphasizing the production of complete documentation.
8. Enforcing the employing of current managerial

procedures for planning, development and control.

13

v

. ~ - -

L .. B T P R R I i I S IR T S L TP B TS O S IR L L L R ST L O I PR T
R T R S T o e e T N T T R N L St RS
ST IITEAN PN RIS PTG TV IR NP W I S WA P T D T Y VAR I W ARV VR W IR Wy T W Wy % TG W DRI UGS I g D, 0, ) ) S, iy




WA AT

AT

Sl

. A well-known explanation of information system

organizational change is the so-called Nolan's Stage
Theory[25]. This model identifies four stages of information
system organizations growth:

1. Initiation - early use of computers by small numbers
of users to meet basic organizational needs, with
decentralized control and minimal planning.

2. Expansion (or contagion) - experimentation with and
adoption of computers by many users, proliferation of
applications, and crises due to rapid rise in costs.

3. Formalization (or control) - organizational controls
established to contain growth in use and apply
cost-effectiveness criteria. Centralization and

(;; controls often prevent attainment of potential
benefits. \

4, Maturity (or integration) - integration of
applications. Controls are adjusted. Planning is well
established. Alignment of information system to
organization.

The MAer has three distinct primary data processing
areas: the Rio de Janeiro area that revolves around the
Centro de Computagdo de Aeronautica do Rio de Janeiro-CCA RJ,
the MAer's first data processing center, in which the most
experienced people are located. This center may be reaching
Formalization, the fourth development stage of the Nolan's

Y stage model(25]. Besides several conventional files

14




_'r._?:-‘_‘-",‘-‘_‘l_v:w_ LI N MR S S o St v gt e o AR ARt et S N S Al Jan e et s o Seem o oy Lt gt AC i - it at U o /S S e

applications, two databases are under final development in
this Center. This organization is also a source of training

for many MAer ADP professionals in the Rio de Janeiro area.

DS SN ad R I

Next is the Brasilia area that revolves around the Centro de

i Computagdo de Aeronautica de Brasilia~CCA, a new center that
is still in the Expansion phase of the Nolan's stage
model [25]. Finally there is the Instituto Tecnol&gico da

I Aeronautica-ITA, located in S3o Jos& dos Campos, a similar
organization to the United States Air Force Institute of
Technology, where scientific and training applications are

. developed. It is at the same stage of the development as the

Rio area.

2.3.2 The Survey

i\
x 2.3.2.1 Introduction

" As stated in Chapter I, and based on past experience, it
seemed that the SIMAER's organization did not any use
standard software methodology, and that just a few used some
of the modern programming tools and techniques. In order to
confirm those impressions, and get a appreciation of software
developement and management, a survey of SIMAER's
organizations was done. Another purpose of the survey was to
gather suggestions for a future standard software life cycle
design and.a standard methodology selection, while allowing
the ADP professionals participation. Thus a somewhat more
valid product could be delivered.

The detailed survey, including procedures,

15

..................... et .
PN

e A et RAD I ZPATEP I SRR IPRERE ATIPNF AN EPOERE IENEAENEN ENRENT N DEIIN S .‘\'If'-‘n—h‘;'.;~';\'J‘:“L-‘.L'"::n:* ata®




questionnaire, detailed answers, comments and conclusions is

contained in appendix A of this report. A summary follows.

2.3.2.2 Summary of the Findings

The SIMAER has not established a standard software life
cycle to be followed by its ADP professionals. The ones used

individually do not consider the necessary and currently

accepted reviews[5] which are performed at the end of each

{ phase. }{;ﬁf
None of the SIMAER's organizations has developed or
formally adopted a standard methodology, in which modern

tools and techniques for system's analysis or software design

are employed, to be followed by their ADP professionals

during system's development. However, some professionals

VT ommn b A
Lupa coTu

in Rio do usc, informally, some of the modern tools

and techniques supported by Chris Gane([18] and the Jackson's

methods[22].

While most of the SIMAER's professionals agree that a
standard methodology would be helpful and cost-saving, a few
showed some concern about having a standard methodology,
arguing that the heterogenous training and the diversity of
the applications will not make it practical! The survey
showed that in a small but varied number of organizations in
Rio a standard aimost existed.

The heterogenous training can be considered one more

reason for having an standard. Common training and practice

16

DR SRR TR S AT A S NP L T T T e S P T I L A AR Mol Vel Sl N g N N U AR ) AT T e ey
- PR PSP VL VLWV PPV W TSPV, W0 PR, W WA VR WA L e, L.'m-\.t}.f\".n_.ﬂ PR RSN BV Yo S scata’iay




Toe T Tae TR AT e T Y T LT, e Y b AR e B 3 rrrerew ad
R R Sl P I DA A I S e e AT e A ~

.......

would help level off the degree of experience of all people
A involved in system development., Peters[28] stated in the
conclusion of a survey which he did in 1976, that the use of
some sort of method is likely to be better than using none at
all and that the use of a defined software methodology that

includes documentation standards is definitely

increasing([28). Also Davis([l12] states that many installations ;ﬁf:
have adopted a single development methodology to be used for :ﬁf
all applications, giving training, supervision, and quality
assurance benefits for the organizations.

There is not at any level, a MAer documentation ;Lﬂ
standard establishing the minimun documentation that should

be produced during a system development. The decision on what

\;- to document and how to do it is responsability of each system I
manager.
Also there is no standard graphical representation nor

any regulation establishing which one should be used in each

phase, however some professionals are familiar with and use
- Logical Data Flow([18)], Jackson's method[22], HIPO[20], Chen-
Entity[10] and Structure Charts[33].

Concerning system development management, the most
common teaming approach is the classical method, and the most

common control tool is the status report. This results in

'7”7.."7,'.71 (g rv.?"—‘v—lf,
. . .

very little planning, and mainly just control. Amazingly the

&5 LN A - -
R e ". AN
e - LR

least used tool for planning and control was the

PERT/CPM([5], however, at the same time, it was the technique

17

. . Roal WS B P T A A . .
....... CIPV N D P S T P DR DAL S LA T R D DA e e T e LT PR
‘‘ —alaia. aa  a




most suggested to be adopted[26]. Most of the professionals
know but do not use any formal type of review technique. ;ﬁﬂu

For programming the most commonly used ianguages are:
COBOL, FORTRAN, and PL1l. The extensive use of languages that
facilitate the use of modern programming practices is not
enforced. When questioned, a few specialists showed some
concern about the establishement of standard HOLs for the
MAer, arguing that they could not apply to every application,
and would also limit the professionals knowledge. Any
standard should establish a number of languages sufficient
enough to cover several types of applications. As far the
limitation of knowledge no standard is supposed to be static,
not allowing for modification to implement improvements in
the field. ‘

In general, many respondents suggested that the
standards be established at top level leaving the details for
each organization.

In conclusion, it could be seen that there is a lack of
effective top and lower level management, manifested by the
nonexistence of regulations for system development. The need
for a standard software life cycle, tools, techniques, and

methodology are highlighted as important issues.

2.4 SIMAER'S Requirements Definition

Based on past experience as well as in what was found by

the survey, the SIMAER's requirements can be defined by:

LRI P 'N'..'-'Q.l.i. -------
PR S TSRO VL L PV SO R S oA vl v




R
A

e

ol

NI

.......

1. A high system development demand for applications
with the following characteristics:

5. A large amount of applications are to support
management information systems, which will
replace manual systems.

b. Many applications will be designed to run on
microcomputers.

2. Two databases are under development and a few
more are needed.
3. There is a need to develop Decision Support

Systems. |

4. The computer resources come from varied sources,

which implies different technical characteristics.

5. There are_a lot of novices, which implies that
besides standards there is a need for some sort
of tutorial material, and personnel training
support.

6. Some of the modern tools and methodologies are
already known and used by some SIMAER's
professionals.

7. Embedded and real-time systems for military
applications are gaining more and more attention
from the MAer.

8. Software development management needs to be
emphasized and enforced through the establishment

of regulations and standards.

19

.......

.r

AR S et mT e
PRI YOV, D RTINS U R W6 5 §

T
s A

.o
PO
LR
L,

o 2"
s 4

SRS



---------

I1I. Current Available Methodologies

3.1 Introduction

This chapter is based on an extensive literature review
of all current software life cycle models, best known
methods, tools, and techniques, both proposed by
academicians, as well as used by some organizations similar
to the SIMAER. It highlights the characteristics,
suitabilities, strengths, and weaknesses of these models,
methods, tools, and techniques in order to allow the
selection of the ones that are best suited for the SIMAER's
needs. The presentation in this chapter is not intended to be

a tutorial, rather, it is intended as an overview.

3.2 Literature

3.2.1 The Software Life Cycle

A common mechanism for planning, scheduling and
controlling engineering projects is to subdivide the
development process into several steps or phases(28]. One
such mechanism used by ADP professionals is the so-called
Software Life Cycle, which is defined as the period of time
that starts when a software product is conceived and ends
when the product is no longer available for use(21].-

There are basically two software life cycle models, the
Waterfall Model[5)[28] and the Prototyping Model[28][12]. A
description of these two models and two variations of them,

suggested by Peters(28] and others follows.

.........................

.......................
.- et e . T Yt L e T ettt T T T e Tt
.................

-------------
--------
_______________

.
VR

AR

D
'
1
i
-
'
-
'

g
3
o

»y
AN
-Il‘-'-"'t'l

.

Vs

P
o~
-~
o
'
Cx

[ Pp—




{(".‘-'-":"-v.". e S T S e S S W TR e T T R R N
-

3.2.1.1 The Waterfall Model

The Waterfall Model (Fig. 3) consists of the neat,

DATA
COLLECTION
(RAW DATAY
SYSTEMS
ANALYSIS
REQUIREMENTS
DEFINITION
h 4
PRELIMINARY
DESIGN
(LOGICAL DESIGN)
DETAILED
DESIGN
v~ (PHYSICAL DESIGN)
\ o .
CODE
(IMPLEMENTATION)
TEST
INSTALLATION
e~
- Figure 3 - The Waterfall Model o
..‘ o5 T
. . - . . : : e
concise, and logical ordering of the series of obvious steps -
that must occur in order to obtain a product([28]. This is the g
most commonly used method and should be applied to large and
.o highly structured application systems({l12].

The phases in the software life cycle are described

LIPS “.‘u‘..'_.<'. e
N

'.‘\‘ - .‘\
A Y
e e Ta e tatetar e



o R

L e e oo o
R

o

differently by different writers, but the differences are
primarily in the amount of detail and manner of
organization[12]. Peters [28]divides the software life
cycle(Figure 3) in the following phases:

1. Systems Analysis: This is sometimes referred to as the

data collection phase. It is here that the problem is
described, data gathered with which to gauge its
magnitude, and a fundamental understanding of the
problem obtained.

2. Requirements definitions: Also sometimes referred to as

system specification, it involves the formalization of
the data gathered during analysis into a concise,
clear, and consistent statement of what the system is

to do. As we are going to see later, this becomes one

of the most important phases in the process. There is a

great chance of errors being introduced in the system
at this point through a lack of communication and the
consequent difficulties of understanding between the
user and analyst/designer about what the system is
suppose to do.

3. Preliminary design: This phase produces a high-level

design or system model showing how the system will
accomplish its task, but without sufficient detail to
implement it.

4. Detailed design: This is the refinement of the

preliminary design to the point at which implementation

22

.t . . - Sl e e el e . I TS
et et . . . L e e . e . .- LA P R
3 e . . - R N T S R S - T IE IP T e] St
..... - W e e T e, PRI I R ~ e \J L INRY

LR S D R AP

-
RICRICRENE R o~ ERJCU
B PP S T T TR A SR Ty -\A s e o '.‘\._._-'LJ' J\.E:_‘J\._.LA_.A_T e

. .
~ . . . - - -
Y SN

._-‘-.._._."\.\ \._

o

PO
e FEPAETR SRR S LS

N



I PRI DI PR DL DAL N P DN T DA Wy T DN PN I WAL WP )

AR YA

SRACMA M AR A A St

can begin.
Coding: This is the implementation of the refined
design with the idiosyncracies of the programming
language, operating system environment, and external
(human and hardware) interfaces taken into account.
Testing: The ensuring that certain classes of errors do
not exist within the system and that some predefined
confidence in the system has been attained, is
accomplished in this phase.

Installation: The actual introduction of the finished

system into its intended environment, with continuing
maintenance as required.

Boehm([5] and Davis([12] added to the Waterfall model a
Feasibility Phase (Fig. 4), in which an evaluation of
feasibility and cost-benefit of the proposed application is
done, and also an Operation and Maintenance Phase in which
day-to-day operation, modification and maintenance are
performed. It is worthwhile to mention that Boehm also
considered Verification and Validation activities at the
end of each phase. The objective of these evaluations is to
eliminate as many problems as possible in the products of
that phase. Davis[12] also points out that at the completion
of each phase, formal approval sign-offs are required from
the users as well as from the manager of project development,

and that each phase results in formal documentation.

23

- O T ..

3 S A e e e "R i S il ~afl il




=

(=

Revengeton

Figure 4 - Boehm's Version of the Waterfall Model
The system development usually follows an iterative
strategy since as pointed out by Peters{28] we may never be
able to stop discovering some new subtlely about the problem

or the approach to a solution in the requirements analysis

and development phases.

Experiences, not all of them poéitive, with the
waterfall model have indicated that considerable time and
much money have been spent in the coding, testing, and
maintenance phase to correct errors that were created during
the requirements definitions and design phases. This has

been figuratively represented by the so-called Error

Avalanche (Figure 5){37].

Tutass tas, 2o

Y -‘ . . N S ‘--
[IPRE wRr D ;‘-;-nﬁ]



.
L

R SE—

| )

| NEED | NN
] ' .
[ [ NN

.
.
RhAN
A
AL
RO,
|-l\.‘ "
. L) >

REQUIREMENTS DEFINITION

: : :
! CORRECT ! REQUIREMENT | :
!  REQUIREMENTS | ERRORS : -
] [) [] . "
' 1 1 Ll
DESIGN S
: T . . o
: CORRECT ' DESIGN !  REQUIREMENT | e
: DESIGN ! ERRORS ' INDUCED : .
; : ! ERRORS : o
; : ! :

\"= PROGRAHHING -
: r H - . Yoo
' CORRECT ' PROGRAMMING | DESIGN ' REQUIREMENT !
! PROGRAM ! ERRORS ' INDUCED {  INDUCED ; N
: : ! ERRORS ! ERRORS : %
t ' ] ] ] -
] 1 [} [] -~

TEST AND INTEGRATION

CORRECT
PERFORMANCE

CORRECTED
ERRORS

KNOWN BUT
UNCORRECTED
ERRORS

UNKNOWN
ERRORS

N PP Sy

-—————— -

- e - o
- - o ]

c
7]
m

PROGRAM WITH KNOWN AND UNKNOWN DEFICIENCIES

.o - —-1 I

- - -

2%
.

Figure 5 - The Error Avalanche

(4
‘/‘f’/ll

-“rd::‘&. .'1 o Ty

ML
)

P
¢'.<f- LA A

-~~~

.......................




Studies conducted by Boehm([5], and represented in figure 6

Retotive cont to hin ervor

Aequirement Dengn Code O O oy .
Y

Prame i sviveh orTOr was detacted and eovrected

Figure 6 - Increase in Cost-to-Fix or Change Software R
Throughout the Life Cycle el

confirm that the later the errors are found the more costly MRS
they are to fix.

L The above aspects, along with the need of improving the
\s

users/analyst communication and the necessity of increasing
the users' participation, led to the development of newer
models, such as the Logicalized Software Development Cycle, 'j;f?

the Structured Life Cycle and the Prototype Life Cycle[28].

3.2.1.2 The Logicalized Software Development Cycle

This model, using top-down decomposition and abstract
software design models, seeks to separate conceptual or L{{;3
practical issues, identifying the clear dichotomy existing
between the logical design and the physical design. Although
f this model has some apparent advantages over earlier models
by reducing the complexity for the designer, the problem of

L. assuring that the design fits the stated requirements still

26

N e e T T e e e e B N T R e IS LI SPTRR I IN SN  S
NP I N I I Y. N I N TSI A 0 N S I RN F ST SR S S 30 SR R S R R S S5 SO RS



T O L R T gars A dma

remains. Since requirements are stated as what the system
will do, and the design is how it will do it, it is difficult
for these two to be compared. This task has been accomplished
by using the life cycle model of structured analysis

suggested by DeMarco(13].

3.2.1.3 The Structured Life Cycle Model

In this model, requirements definitions and logical
design are linked or integrated into a single phase called
structured analysis. Closer customer or user participation is
also employed to ensure that the results of the analysis do
reflect the customer's needs based on the present situation

(current physical model), its abstract equivalent (current

(5- logical model), and the new system or solution model (new
logical model). Some.advantages of this model are:

1. Enhanced customer/ccntractor communication: This is
accomplished by having the customer and contractor
communities work together as a team, and by using
written and graphic tools that they both understand.

2. Enhanced analyst/designer communication: DeMarcc([13]

proposes using the same notation in analysis as in

design. This reduces information loss between the two 'ﬂgj;

camps of developers. The situation is aided even more sTee

when one grour does both analysis and design,

particularly, if group members maintain the mental

... discipline needed ketween phases.
27
B e e e e oy T S g i

[ . SR



‘.

[

e N G R R B

A LNEFRFS RSN

L .
FOPR VA0

l.-'. .
L PR

3. Better overall quality in both analysis and design
phases: The goals in each phase are limited,
realistic, and objectively measurable. Although
analysis or design could be refined ad infinitum,
there is at least a minimum set of gcals that must be
present[36]. Since the objective is defined and
realistic, people work in a much more productive
manner than when they have no way of knowing when they
are done.

However some difficulties still remain. For example, it
is difficult for customers to visualize what the software
system will be like. This particulér problem was addressed by

the Prototype Life Cycle Model(28].

3.2.1.4 The Prototype Life Cycle Model

Prototyping (Figure 7){27] is used when requirements are
difficult to specify in advance or when regquirements may
change significantly during development. Contrasting with the
waterfall model, prototyping shouid be applied to small and
less structured systems where a high degree of uncertainty is
present{12]. The basic notion is to provide the user with
some feedback early in the development cycle on what the
final system will be. Some characteristics of the prototype
model are: ‘

1. Emphasis is placed on speed of building rather than
efficiency of operation.

2. The user, rather than the designer, decides when

28

~~~~~~~
----------

DO

B A S
. .\~‘A_._.\ ..... \..,“-
M A ANk AT A AL

S IR B S it le* AL SN /AL N A AN g R Ned il STl S A A At M LA AR A 4aal S BT ) T L R T R TSI VIV DRI N TR T
o

...............




development time.

AR AT

.

LA el aat 4

changes are necessary and thus controls the overall

The greatest danger involved in employing this model is

the user tendency to accept the prototype as the final

product instead of basing acceptance on the fully specified

design.

Step !

Steo 2

\o

identity the basic
intormation requirements
o 8asic neeos
© Scooe Gt appHCETion
e Esumatea costs

Devetop 1ne 1nitiai
prototvoe

Innal
prootype

Use the prototvoe
svsiem ana refine
raguiremenms

isthe

Operationm
pratatyoe

ussrdesigner
saushea?

e A R e A Sl VRl il Sl ol i et Sk 4 bl il b

d Working E:::‘l‘:
T prototype ualmvm.
Use orototyoe . Use prototvoe
& ecitications 83 a001CALION *
for aopncaton
Geveiooment fevise sna ennance
K prototyoe
)
: Figure 7 - The Prototype Life Cycle Model
! [ J
g .=
29
B I e 5 R T R S A R R A S




A A

-
« &

R AR A

T . . " - T v e
P AR, W

3.2.1.5 The Alavi Expirement

Maryam Alavi(l] presents the results of a two-phased
research project comparing the prototyping approach with the
more traditional life cycle approach. He finds that
prototyping facilitates communication between users and
designers during the design process, however, his findings
also indicate that designers who used prototyping experienced

difficulties in managing and controlling the design process.

3.2.1.6 Selection of a Software Life Cycle Model

In this section several software life cycle model
approaches are addressed, their phases described, and the

characteristics of each highlighted. According to the

academicians, the waterfall model can be applied to a broad
spectrum of applicafions. Its strengths resides in it being a
powerful mechanism for management through the phases.
Additionally the milestones and deliverables can be
established for each phase. It was also found, as will be
seen later, that the waterfall model is the most commonly
used approach by other air forces.

Its weaknesses are the lack of flexibility and the users
difficulties in understanding what the system will be like
after it is designed. Despite those flaws, it appears that
the combination of the waterfall model with the structured
techniques, the so-called Structured Life Cycle Model,

combines the strengths of a traditional, and indeed a well

30

L DR T W SN IPOE DNy Dy W iy Wiy SRy T Wiy P, S AL




known and comprehensive approach[28], with a modern software

design technique making this combination the most powerful

system development tool of those evaluated thus far. :?3:

Comparing the models with the SIMAER's requirements, it g&és
is possible to conclude that the Structured Life Cycle Model Ei&
is the best approach. Some of SIMAER's requirements for which :2;
the Structured Life Cycle is well suited are:

1. Enforcement of software development management = The ;;jf
Structured Software Life Cycle model is considered a powerful !:¥
mechanism for management through the phases ;?

2. Varied types of applications are needed - The }C;J

Structured Software Life Cycle model can be applied to a
broad spectrum of applications[28].

‘;f Having decided for the Structured Life Cycle Model as
the suggested standard to the SIMAER software development, in
the next section, the complementary issues, methods, tools
and techniques, to turn a model into a methodology will be

covered.

3.2.2 Methods, Tools, and Techniques

A method is a reqular and systematic way of —

E accomplishing something, tools and techniques are instruments iﬁi#
&i which help to implement methods, and a methodology is a set
?. of methods and tools combined with an overriding managemenﬁ -
Ej procedure([37]. <
» R
EE In the later part of the 1960s, software engineering Zi‘
gj ;?~ came of age with the realization that discipline was the o
b '_.*_-'_c_-

' E2o

B T T T T T S S T BT R S A S

. - . T P R A O A S e g ST e
L e RS e e T e et e T T T T T L L A N T e N O
A Y L W St PRSI Tt Yol Y-30 S T UL WP W | IR TN N A A VAL ARSI VRO DRI % Ny W DR TR IR Uy I A




AN DT - o000 A3 (g A By G N IE GMC g 0P Eesher sg - gl R M- AR s s sia et -5y
AR

key to success in the software development[28]. Earlier, it
was suggested that the software developer is often like an
artist. However, Booch([7] points that when such artistry is
relied upon in an engineering environment, the results are
often not good. Booch goes further suggesting that
organizations should adopt modern software methodologies
supported by a high order language.

The objective of this section is to present some of the
available methods, tools, and téchniques described by

Peters([28], Fairley[l17], Chris Gane[18], and others.

3.2.2.1 System Architecture Techniques

1. Concept
The primary goal of an architectural representation

scheme is to portray the software system in a such a way as

to communicate these categories of information:

a. Philosophical - that is the information providing
the basis for the particular system organization
chosen.

b. Organizational ~ that is information about the
structural properties of the system.

c. Contractual -~ information about the ability of the
system to meet or exceed the legal obligations of
the contract Qith the user,

2. Approach
The goal of this class of representation techniques is

reached by depicting major portions of functions of the




LaPE i B S~ e A= S = o A e e R

system, and their relationships to one another. ol
3. Tools i3f¥

-';:—-::.-

Peters[28] presents only two schemes for this category :ﬁqi

' n‘.:q"\-'

of representation, the Leighton diagrams and HIPO (Hierarchy, PCHCY

plus Input, Process, Output). Considering that the HIPO

diagram is the most known, used, and comprehensive of the

two representations, containing the information contained in 445;
Leighton, and adding other important information (e.g. flow
of data and implied sequence of operation), only HIPO will be ' }f}i
discussed here.
a. HIPO
After the acceptance of the importance of
(;5 decomposition and hierarchical structures, IBM introduced

HIPO[20]. Colter{l11l] considers HIPO as a transition analysis

tool, standing between the traditional and the structured

methods.
(1). Concept
This software design representation scheme is

based on the view that software systems can be modeled as

processes with distinct inputs and outputs. It allows for .

v v

top-down decomposition, as well for data flow composition.

-
:

(2) . Notation

X{ )

HIPO is composed of two packages. The primary

oy

»
»

package consists of the VTOC (Visual Table of Contents),

whose example is shown in figure 8, and a set of IPO (Input,

‘.
I
1

Process, and Output) diagrams (Fig. 9). The VTOC contains a




DAB N I R e Ly LA SN AL AN R N g N AT LA Sl B A N [ e Jea e LR et 09 S S S A At i T

-

o

s
2 EL,

L
WS}
L P
Nt -ﬂ

.
&.‘

..
O
P |

hierarchical system representation from a functional

»
2 a
-7

s
f":’!

45
4

perspective. The IPO diagrams provide detail on individual

2
)

oy
23

functions in the system. HIPO is also supported by a set of

'y Tty d

Lt 4
f.

o

appended materials, such as report and file layouts, input

=
-_1 -
.
. 4- ~_‘ -
details, etc. e
e
-,
O
Maintan r=
inventory *’.' -
control e
00 S
e
oo
SF
ner
'.’. -‘
Produce AN
et
Gather Update order et
mnventory irven(ory status et
- data anaster listinges DA RN
.. t . ° vt e
\g 1.0 10 : 10 -
N lachey
S0
1290
PR
N
- »--
'..:\-u-
) Formag e 2
Obtan Locate Indicate Determine Reduce Update Roevise Caleufate onier Wrile '. ~
order inventory order quantty mventory total activity reorder status order
- master errar hack onfer on hand sales data reqenremnents listieng status
b s
- 1.1 1.2 1.2 2.1 2.2 23 24 2.8 3.1 32
= ) :
o Figure 8 - HIPO Visual Table of Contents Diagram
-
? 1 HOM- Mamis-insemiary < onursl
T wan
; \ ' » o
N .
: 0.1 MONHAND mees OQUANTITY-RLYULSNT D
., Wem AN @ fra than & .
L. - GQUANIITY. Thee & UUANTITY AVAILASLE ® MON-HAND
. AWYULSILD b Aviwm Uctemmmradusnoty-Sme: YuaNnrY-
. Ovdee el 1V AVAILAVAL
- thw & QUANITY AVANLANLL =
GQUANTITY.ALQULTLD
L Perturm Ao taventarys imHond 12.21° N
L Pertaem Urdase: (oest-dols 11 53
4. Pertiwmn Rewrw-Actinyddse 11 01"
1. U MONIIAND s MOMURULR @ ire the
M UM HAND L_N MULURDLRIRVIL
MAINAIIN R :l——v Thm a Prrtorm  Cdhutite-Romare
M-RLORUE B-LLVEL Revowemencs 12§
TO Urrermue Vuwsntny Bad Order 1210 . f..
Redwn o invewtorya boflang (121 .
UyNate: Totat-Sabes £2 .||‘
[ -acuie-date 12 40
ot E i oenaat Rnsu et 4231
hamem Fite  Uno Insomiemy B aser
—— [y Uniput o
. . - _'.‘
Figure 9 - HIPO Input, Output, and Process Diagram e
D -.‘
LSS
-~
34 S
(AR
et B et aTmtet et e At e RSN ‘.‘,'.‘x}\‘.‘.‘\".".‘u'*'\"\‘
L . ~ PP e P R RN D Y -. LA A FUTAPR I IO S )
BRI A P PR P AT Rt .:-‘l. Py \:l'..A“n._‘.A)'.- L‘l“_n\.:n‘\‘.‘_A\ YRS




v - > e RE TS DA TR SRk S A A RENCRRCEENARA 3 S-S e A Sa i il al ead Sat S T IR T Y st Ty

P

by

e

Lr«

..-d"\l

.\.r,‘.

-" l\-

. A

5 A

e T
(3). Use s

HIPO is claimed to be an easy to use scheme ;':'.:'jf

T

i because it has few notational requirements(28]. Yy
- .b.:.n -
HIPO diagrams were developed at IBM as design &ﬁh

- ] traga
I representation schemes for top-down software development, and N
) Lo
as external documentation aids for released products. VTOC is ﬁﬂﬁ

R

primarily a high level representation, while IPO diagrams
primarily oriented to lower 1evel‘an1ysis.
(4). Advantages
(a}. Fairly easy for the user to understand.
(b). It is a top-down approach.
(c). Has a simple interface representation.
{d). Highlights missiné information about inputs,

processes, and outputs.

(5). Disadvantages
(a). Data structure and control structure are not

addressed.

(b). Large system designs require multiple pages,
which may become confusing and difficult to

maintain. .

(c). It is difficult to represent details of the
design.

(d) . Difficult to use in later phases of the

system development.

HIPO has proved to be a useful tool in a variety of

business applications. However it has some weaknesses such as

35

e e e e e .
. et e e e e, e e e Lt e . - . M . .
&, o BN N R I L et e e IR P P O I P R UL

e U S e e e e e e e L e
e UL LA U Rl T L S R T R T e e e L e e el e




TS S D N AL I T Rt 0ok Sy
. . TN

. . . T T B A T R R
L T e o I O P

A YL e AN
RA A S 's“l_._w“_( RS LAt At

the ripple effect, when used for very large applications
systems{2].

HIPOiskawellknowntoolamongtheSIMAER%
professionals, since many of them had attended courses at
some of the IBM training centers.

4. Discussion

Neither of the two schemes of this category of
representation technique, Leighton or HIPO, will meet all of
the needs for a complete software design representation.
However, each scheme has provided and will continue to
provide, much of what is needed in a particular software

development situation[28].

3.2.2.2 Data Flow-Oriented Methods

This is perhaps the most widely used approach. This
approach seems natural when one is designing an automated
system to replace a manual one. In such cases the first step
is tobuild a model of the existing system using a data-flow
oriented method.

The methods and tools to be presented here have been
widely used for several years.

Peters[28] advocates that this approach can be applied
to any software design due to tﬁe degree of refinement

occuring since its introduction in 1974, and also due to the

richness and utility of the evaluation scheme it includes.

36

ot

e
s,
-

x
g
1 1]
2t

-y o
»
D
__r

‘ﬁ;";‘;
:I.:;._‘ M .

v
+, s
»

e
LN

)

Y .

v -
ey
e

o Y

LERIRCRG
Py

- ——y o
[



it}
-—s_ -
.

’ . 3.2.2.2.1 Structured Design

Ny This is the use of the systems concepts to decompose the
information system and define the boundaries and interfaces
of each subsystem[l12]. It is based on concepts developed by
Stevens, Myers, and Constantine[33]. In structured analysis
the same notational schemes(data flow diagrams) and concepts
are used to model problems and eventually to produce
specification and a software design. A variety of tools such
as structure charts, data dictionary, pseudocodes, decision
tables can be used with this method along the several phases
of the life cycle.

. . Structured design is one of the most used design

" N methods [28]. The reasons for its popularity are: the ease
with which it can be used, the evaluation criteria that it
includes, the fact the software designer can express 1ideas

i in terms of data flow and transformations, and finally, the

: notation used is simple enough to be understood by
management, customers, and the implementer({37].

1. Concept
Structured Design consists of three rationales[28]: '
One aims at the composition and refinement of the design,

E .another separates issues into abstract issues and

;- implementation issues, and the third enables the user of the

;i method to evaluate the results of his efforts.

i 7!i a. Composition Rationale

- In this rationale, Structured Design views systems




ABARCMECVR /e et i Sk

in two complementary ways: One is flow of data, and the other
is the transformation that such data undergo from input into
output. Together, these views form a network model of a
system showing data entering as input, undergoing a
transformation, perhaps undergoing other transformations;
joining, diverging, or being stored with other data, and
finally becoming output. This model of software design may
sound simple, but it generates several interesting dividends.
Amohg them are the following:

(1) Absence of time in the data flow

representation: Since movements and transformations are the
L only characteristics represented by the data flow diagram,
\o the concept of the passage of time along one or more data
flow paths is not present. The designer is free to
concentrate on the clear establishment of what major or minor
transformations must occur in order for the input data to be
incrementally and correctly transformed into output.

(2) Lack of a classical functional
decomposition: Top-down design has been described as showing
only one path in a tree-like structure, because it assumes
there is one problem to be solved. The use of the so-called
data flow viewpoint reduces the effect of the designer's
experience and biases on the results, and consequently
retains the shape or structure of the system.

e b. Abstract versus physical design rationale

One serious dilemma for a software designer is

38

............ '.‘ ‘.." . . '.'_ -, .'. - o ."

Tt e
- .
*.

" ’ <\, B ‘_'.‘ e A e e et e e
\lr "Jl'u e L{L A L.'._ a &(JL‘L{J WS VA VAP SR XTI OO SO '-f\-' e -\ Py --.A-.‘ P




R T e Jhak a

= P A o — —_
et NP AN At g S e e ) DL L S A AR e g s g

™y . - v e d
. AV VR I S i..l’V‘_i‘ i‘..“

‘.'-

l the cycling between (abstract) high level design issues and
(physical) implementation details that usually occurs when
N the designer tries simultaneously to understand the design
l problem and to define a practical solution. It is adilemma
because, while the designer is composing design solutions to
the problem even at a high level, he may shift his focus to
! details of implementation. This increases the potential for

mistakes to be made. To avoid this problem, structured design
: recommends a disciplined dichotomy between abstract or
% logical design issues and physical design.

c. Design evaluation rationale

’ One of the most valuable aspects of the
? \e structured design m?thod is that it offers a set of non-
mathematical criteria for evaluating a software design. Two
S classes of criteria are used: system level(coupling) and
E module level(cohesion). A module is defined as a contigous
) set of instructions that may be addressed by name{28].
Coupling is a means of evaluating the relationship between
- modules in a system. The strength of their connection or
degree of interdependence will determine how easily the
system may be maintained or enhanced. The desire is to
minimize the coupling. Cohesion, on the other hand, is a
measure of the intramodule strength of connection. The desire

is to maximize the module's internal strength{37].

2. Approach
X 39

I ST SR S P O SPT ST SO . . -
PO
e DR SRR PG A T P T AT A At e S R et S P S

e e AT ER LN e e X e e A e T T T T e e D
B R S S e 5 S D A F A DO GRS L LR NG
al - ag el &

L)
a AlaSatntaNara




LTl Sl A Mh Rl Met i e eane on | —— —y v
hFCRCERE . - RGO . T ERCLMRAE AR CAA U VR RO A AR it ey sl el Al Al B AR A D WA 4 4 R S g4 0o set g o

L. - ——— t —— ——— e ———— -

55
0t
P
2’

The basic strategy used in structured design is to

- a

identify the flow of data in the problem and to incorporate

both detail and structure in an iterative fashion. A system

B R R R R

specifiéation that identifies inputs, desired outéuts, and a
description of the functional aspects of the system, should
exist before design begins. The specification is used as a
basis for the graph depiction, a data flow diagram, of the
inherent data flowsiand data transformations. From the data
; flow diagrams,.natural aggregates of these transformations
and data flows are identified.

Following the structured design procedure(Fiq. 10},

i “a this s;ep eventually leads to deflnlthH and depiction

Decision treel Decision uble'Slrunurei Enefish

N Proceaural informaition about processes
' Data flow Process
diagram Darta dictionary Information
I ) SN =)
Coniains . Documents Uses data dictionary
processes and data flows and customer policies

data fllow

Structure chart

L -] .
Documents control .
hierarchy snd

data commumcauon

3 Figure 10 - Overview of the Structured Design Method

v
N

e /"a,,

- of modules and their relationships to one another and to

O I Tt e I

k) ‘ll_'l

2
Y ‘s

various system elements, in the form of structure charts(fig.

11).

.- SRR - . e - RS . B R
P e e ALY A T T e e et et e e e PO I . L L S SRS
4 o . . PRI N PRI A '~_\ LIPS L \."'-"‘\. Noeg et et e s e PN

RS TSI L e an s 4




GET
EDITED
TRANSACTION

O O 2
-@ Fosy = z

b 4

READ
TRANSACTION

WRITE
MESSAGE

TRANSACTION

Figure 11 - Example of a Structure Chart

At this point, the system specification is re-examined, errors

\, or omissions remedled, and the process selectlvely cycled

R IR ST )

through again (Fig.12).

System specification (given) gy - e,
| B I |

Derive data flow diagram gm _'< -: < -l

i1
Idenufy natural aggregates @ = = |4—'

l :

Form structure chafleg o= en o= = o of

Figure 12 - General Flow of the Structured Design Method :
3. Tools
a. Data Flow Diagrams

{1) Concept

Data flow diagrams consist of the

representation of individual functions

between those functions.

41

T P I I
P N D PN R W WU e ]

and the flow of data

L4 ..L 2 -A .LAA

R :-,.,.,-"
. CAERAY Y

""l "l.""

i

ERA AL A

P RS A R Y
RS PPN YWy




"‘:“v‘. A Tl g g WA S DA g i g Ao A I S o Sl i o Mg i A ARSI LSl ARt Ak b tebin A Auk Aas Sals L) oL Pt AoR Sal aata

............

(2) Notation

The elements of the the data flow diagram

(Fig. 13) are called "transforms" and are represented by

small circles or "bubbles". As their name implies, the

transforms represent transformation of data (which eventually

will be accomplished by a module, a program, or even an

entire system) from one form to another form. The data

elements are represented by labeled arrows connecting one

transform bubble to another.

(3)
| e
: (4)
i

(5)

. e e e e T T e
PRI . A T, -V [ ALY W R AP ST WY

Use

This tool is suitable for both the analysis as

well as for the preliminary design phase.

Advantages

(a) Has ability to completely represent data
flows.

(b) May be used in high and low level
analysis, providing a good system
documentation.

Disadvantages

(a) Does not clarify 1/0 details.

(b} Does not provide the variety of structural,

mechanisms available in other tools, such

as SADT, to be seen later.

42

_______ v T T

CRh A aAe sk shocalicane alectin: 4oy o e s

RN

- - . - - - . - N B . .
P T et e . " . R L e U SR S e N R PO
YE LT AT PR P P PR o v S T O W R S W i R R v U S TPt T AN S ST I




e
e
-,

& s 4 2 2 v
N )

LT |
FRAL S S

Qrders

Sales Crern
history ranng
A Acknowledgment
Drstributars Shipping advice
Customar

tile

Orejare

Sales
invoice

Returns Shipments
of of diet
drink drink

Payments

Accounting
< | Adapartmont

Diet drinks

~

Qrders &  Account
payments status

Diet drink
inventory

Manifacturing
department

Acenunts
recevahin file

PO.
/ Returns
Pyrchase Recoints

nrder \)/ [

Purcinase orrder,
returns, &
receiving file

Payrnent

Suppier
Raw i
matenals

Returns

\ .
- Sunpliers S

Figure 13 - Example of a Data Flow Diagram

43




PN A \';,4'.:.(’.;'

b. Structure Charts
Structure charts were originally developed by
Stevens, Meyers and Constantine to specify modular
characteristics of software design[28)}. The charts are
integral part of the structured design method[13].
{1) Concept
The notational basis for the structure chart
is the design tree. A module includes other modules and may
invoke subordinate modules or be invoked by superordinate
modules. A module is defined as a set of lexically contigous
program statements that can be referred to by name[28]. The
information communicated between modules is graphically
depicted. The relationships and interactions depicted include
data flow, activation, and communication of control
parameters. This scheme specifically identifies modules that
will compose the software system, but permits design quality
to be evaluated by the criteria of coupling and cohesion.
(2) Notation
Structure charts can be drawn in different
ways. The notational syntax proposed by Constantine et al.
utilizes three basic graphic forms shown in figure 11:
(a) the rectangle, used to contain a module name or a
module descriptor.
{b) the vector that highlights control relationships

between modules (such as a call and subsequent

44

L AT LT T PRI IR .. RSN ..
OO SRS e A e T e e e e e e e e e

'y ’ . St e T T e . PURIIPEE Ly - . - . - - -
o P I I IO I R A =

. . g et et v . - - - - - A
N NP PP B I e IR P




At 2 iue it DA R A S I AV v e MNP e A - A 4

LA Mt SISt Set At s SAe Dl iiacnin b ne Iy gty Jhn bl b b 4 lm‘]“,\"?,

return) .
(c) the arrow with a circular tail, used to depict
the transfer of data between two modules. The

arrow with a filled tail represents a control

flag. %‘?T
(3) Use
i This notational scheme is most suited for R

the design phase, which means that another tool should be

Yy,

used for the analysis phase. Structure charts, in turn,

Nt

should also be complemented, in the design phase, by another

L.

tool such as a pseudocode to give more accurate and extensive

information concerning how a module performs. This technique

‘;; seems to be adequate for a broad category of systems
applications such as: scientific, business, interactive, e
real-time, batch, etc. :
(4) Advantages fiﬁ'
(a) Allows for iteration in the design .
process.
(b) Is a relatively easy to use and understand
notation. T
(c}) Addresses both data and control.
(5) Disadvantages :il

(a) Does not allow for detailed decision

information without extra documentation.

(b) Even when decomposition is complete, the "

modules may not have the detailed

45

u-’ -" -" -.\ -‘ >~' I. :

2V .-'..A“A': Se N -."..\. LR N PR
LS SNy si.s..‘ta.'.,a..tx.'_s'..s'.:.'.1-.1.s.‘.._a.';.‘¢b..l$¢‘;.‘.:.' U




A AP i o S A i gt et i A s oo A B Al Bt i) Tt Bn g g0 Bl vy

information needed for implementation.-
(c) If the design is for a new system, for

which there is not an existing preceding

system, it may be hard to identify data

flows, transactions and transformations.

c. Data Dictionary
A data dictionary, as the name implies, is a

repository of information about data[18]. Gane[18] points out
that the name gets stretched when we start to include the
details of processes, which strictly speaking are logic,
rather than data, and suggests that perhaps the data

dictionary should be called a project directory.

(1) Concept
Peters (28] states that the data dictionary is

a requesite tool in successful software design. It enables

the designer to establish the same sort of compositional
relationship for data that are employed for functions and
modules in the executable portions of the software.

Its role in analysis has been one of aiding
communication between analyst, customer, and user by ensuring :
that they are speaking a common language. Its role in design
has been to clarify to the deéigner the flow and content of
data items through the system.

(2) Notation

Different authors have different schemes for

46

.........

.....
............




AT T N T L U S T U St o A =ies Mg St e o ne 2 m
A T R T e ] TS TN Aaidn b Ml 2 o
N T e e T e, AR e T VS TR, - Eay T Nl St g o

- - B T AN e e et T AT e e e S e e T T ORI A M A e A il A A A I e 48 R s s a e e o g e
b
Mo,
»‘*\i s
-
4
g
representing data dictionary information. Peters states that e
V';.. *
: . : el

some schemes are inconvenient to use or require an automated |
M
tool. He suggests the representation shown in Fig. 14 below, e
which, according to the author, is easy to use manually, can , }iiﬁ

be typed, or entered into a text processor.

SYMBOL DEFINITION EXAMPLE
= IS EQUIVALENT TO ORDER = CUPON AND PREPAYMENT
IS COMPOSED OF ORDER = CUPON + PREPAYMENT
------------------------------------------------ ’ ‘f./':
+ AND ADDRESSEE = CUST-NAME + ADDRESS L;
() EITHER-OR ADDRESS = _ Sl
PO BOX T
STREET ADDRESS + STATE + ZIP N
{1 ITERATIONS OF PLAYER-ROSTER = {PLAYER~NAME + :ﬁ
PLAYER-NO} o
() OPTIONAL PLAYER-NAME = SURNAME + (MIDDLE- T
: INITIAL) + FAM-NAME e
Figure 14 - An Example of a Data Dictionary Notation tf
AR
(3) Use 50
A data dictionary can be used either
automatically or manually, depending of the amount of ;5{
information stored. The notational scheme presented in Fig. ;3?
- A .":.'
14 can be employed in any one of several different ways. Many bi:
designers prefer to use notational variants that can be o
implemented on text processors or line printers. P
A data dictionary can be applied in every phase R
of the software life cycle. g
{4) Advantages EE
47 o
.-_‘.:
,_:.L‘.. WA AR a T e T T e T e e e T L L e e RN
b —W e dndealoshindod VP IR e '-;.'-' 2 'n“.;-'):.'h-:'.':'.':'.': ~_'.'--"-~‘~-.'"..~'.- -<'.--'_.~'~‘.' \-'.




(a) Establishs a glossary of terms.
(b) Provides a standard terminology.

{c} Provides cross reference.

(d) Defines all terms associated with a system.

(e) Resolves problems associated with aliases Qﬁw
and acronyms. ;,?

(£) Provides centralized control for systems
changes.

(g) Provides reference guide for training and

design evaluation.
(h) Helps minimize maintenance costs.
(5) Disadvantage

(a) Requires automation for large systems.

d. Pseudocode
Suggested as maybe the oldest software
representation scheme still in widespread use today, it has

undergone considerable changes with the advent of more modern

software design and development practices. According to ::f}
Peters (28], many forms of pseudocode have been suggested, but ﬁﬂ%
no standard or unique form of pseudocode has been widely g}:
adopted.

(1) Concept

Pseudocode is a program-like, but informal

notation, containing natural language text, used to describe

the functioning of a procedure or program{l4j.

48 o

ANy e e et P N T et et N T S e e T R s A TR
T N R R A c e e Y e T AT *
- e e L A T

PRSI TAE U S DT N PR PO S

S RSN . .
e e
RV TR WS L YA O




L '.. M MY - " ‘- - ..."._'v-.'. " -'
AR IS TN Y N S P WA

Peters[28] states that the basic idea is to
permit the designer to capture rapidly and conveniently the
important elements of the design and to do so in a such way
as to give designer maximum flexibility.

(2) Notation
There is no standard. Some specialists in

software design have chosen to utilize the Pascal, Algol or

other programming language syntax and semantics as a standard, while

others have proposed their own. A normal practice is to
select one that is well-matched to the target programming
language([14].

Usually the designer describes system
characteristics using short, concise, English language
phrases that are structured by key words such as If-Then-
Else, While-Do, and End. Key words and indentation describe
the flow of control, while the English phrases describe
processing actions.

(3) Use

Pseudocode can be used in both the preliminary
and the detailed design phase. Like flowcharts, pseudocode
can be used at any level of abstraction[17].

(4) Advantages
(a) Is superior to‘flow diagrams since it
allows the structure of a program to
appear explicitly and facilitates top-down

design(14].

49

B It .
P SR P




’--I'-- l.-'-"l - ‘- - »
A O L e T .. RO e e S e
PR RPN NPT Y. PCTY . A VR AP AP AP I P -} N RPOLT IO ST e hal ‘.':::."' PO S

(b) Does not involve specific syntax or
semantics.
(c) Can replace flowcharts and reduce the
amount of external documentation.
(5) Disadvantages
(a) The freedom of syntax or semantics can
lead to coding under the guise of
designing.
(b) The lack of universal standards can lead
to communication difficulties within the design

team.

e. Decision Tables

Decision Tables are a tabular method of describing
or specifying the various actions associated with
combinations of conditions. The method is tabular in that it
uses a special form of table to present the associations. The
actions specified are transformations to be done to data or
materials. The conditions are data variables that describe
the characteristics of the environment and the events that
happen in the environment[15].

(1) Concept

The basic notion 1is that, for each possible

combination of situations that a system can encounter, the
system's response is known. These situations are referred to
as actions. For every condition or set of conditions that can

occur, one and only one action or set of actions is possible,

50




S T TS

N ANIODE AL A e~ o S e e e o AN AP s yoRt st b g s cons il

LA A S St et A ol o 3ol ol bt g b e

!

the response of the system is known with certainty(28].

(2) Notation

As indicated by Fig. 15, the basic decision

table consists of two portions - the condition stub and the
action stub. Conditions are collected and optionally labeled
in the condition stub, while actions are collected, and
optionally labeled, in the action stub. Conditions and
actions are most often described hofizontally. Vertical
columns in the condition stub are used to identify the

conditions in a given instance. A corresponding column in the

action stub describes the system’s response.

Condition stub

A

Condition 1~ | Y N Y - -

Candition 2 N - - Y Y

Condition n Y - N - Y

Action stub

T

Action 1 X - b X -
. . . . . . .

Action n - - X - X

KEY =~ «  Does not appiy or is

logicaily prectuded due
Y- Yes 10 other conditions
N = No X = Acuon initiated

Figure 15 - Parts of a Decision Table

(3) Use

Decision tables find use in many phases of

R U RV SN DR .‘.'.'.-‘-'.‘.‘.-.-.‘.--'.'~-x'-‘~'-'-‘-.~~"..'.'.'.' R S Ot U S SV S
R WL SR R LIPS I Tt A AT T A N P P S et TR CR TR
e N R O A T e N Y S S A A e R RS S LNales




N e e R I e

.

9’
E L
AN
'i s . :'"_ :.‘
i o system development, including system analysis, design, N
) . . !‘ . i
K programming, debugging, and documentation. In system
. ~
- analysis, decision tables help analysts in identifying the g
, &

significant control variables for the operation beiﬁg
studied. In systems design, decision tables help link the
desired action to the control variables. In debugging,
decision tables can help reduce time to locate "bugs" because
they force a sharp distinction between control logic in a
program and the actual production of the output data. In
documentation, decision tables can concisely summarize the
system or program in written form({15].

{4) Advantages

;‘ (a) Can serve as a compact means of describing

or specifying operations.
(b} Provides a convenient way of tersely
stating logically complex processing.
(5) Disadvantages
(a) Large decisions tables can become

incomprehensible and difficult to be checked

manually.
(b) Do not indicate the execution flow, data
transfer, or database interaction.
4. Discussion -

Structured design has gained wide popularity for two

o primary reasons. One is that it allows the software designer

to express his perception of the design problem in terms he

52

S eS e L% - -y

Y A, R A LT . v I“-:,\' LR R RN

'''''''''''''




N (PR
.::.“",

B SRR dae - J

i o

EI ',.,".,' "‘._.'

'y

Bl gl ol
L 4

.......
..................
........

can identify with, data flows and transformations. The
notation with which he expresses‘these flows is simple, easy
to use, and understandable by management, customer, and
implementer. '

The other primary reason for this method's popularity
is that it provides the designer with a means of evaluating
his (and other's) designs, serving as a sort of benchmark
against which to measure his success or progress. This means
of measure consists of nothing more than the concepts of
coupling and cohesion.

However, there are some aspects that this system
development method leaves unaddressed. For example, the
internal working ofAthe modules is not carefully attended,
data flows and transformations are not easily identified with
any degree of certainty, and neither does it provide a way of
defining the places were the data should be stored whenever
necessary between processes.

In conclusion, structured design has much to offer
that is unique, tried, and tested, and although it does not R
address certain key issues such as data storage, it became

the basis for the development of other system development

methods. By incorporating the several tools and techniques
described before, Structured Design can be applied to every

phase of the software life cycle.

53

’ ’s‘ .-. .
.......

- - ~ . . . .~ - e I '.. ". ‘.. ”'. “- - ‘.- ‘.. “..'.~ “. Y ‘-, ..- o A ) .- -* -
ittt ittt inticintmes it binain il it ing beaes A b b ol




T T .

o P

AT T TR OO TR

......

3]

Tt T Tt et e e e . S e T . L
VIESAPSARSE AP EAPLOTR, W, PR X WL P A WA D AT v U P P P R Sy

[ AP LA L DS I ERNERARDAS At Al Wi L e R g §0 - e e ey WX P R RUN YN 4 Va b Y J

. &% "
.

L) I.
l~l"

“ 8
DN N

3.2.2.2.2 Structured Analysis and Design Technique &%}

Structured Analysis and Design Technique(SADT),
originated and promoted by the SofTech Corporation, is based
on the results of studies into computer-aided
manufacturing[28].

Under development since 1970, SADT has, according to

SofTech, so far been applied principally to the planning and

functional analysis of large, complex systems[32]. RO
1. Concept X

. «

SofTech claims that SADT is a comprehensive ;23

method for performing functional analysis and design. By
comprehensive they mean a coherent, integrated set of

methods and rules that constitute a disciplined approach to

analysis and design,  built upon a foundation of closely Lo-n-
RNy N

(vl

inter-related concepts. These concepts are: , %iﬁl,
N

a. That precise models capable of providing an e

understanding of complex problems are the best means of s

obtaining effective solutions.

b. That analysis of any problem should be
conducted in a top-down, structured, modular, and hierarchical

fashion.

c. That differentiation must be made, as much as

practicable, between the creation, first of a functional

.; A
model of what the system must perform, and the creation of a Q;ﬁ*
R
design model of how the system will be implemented to perform }}iﬁ

those functions.

54

et At et e et e M T e e




BN LA C ATl el

~d - Y " ———
LER AL 0l AN A A e et Pl It gt s i 2 B s Cm o e 4 20 &
- e Antlil et ISP A Reh

d. That the modeling approach must be able to
depict both things (objects, documents or data) and
happenings (activities performed by men, machines, computers,
software, etc). The complete SADT model of a problem must
show both aspects properly related.

e. That the system model should be represented
graphically in such a way as to highlight the interfaces
between component parts and the hierarchical structure that
they compose.

f. That the analysis and design method must
provide the discipline and coordination between participants,
which is required in order to produce results which reflect
the best thinking of a team.

g. That documentation and review of all decisions
and feedback related to the analysis and design effort is
essential.

2. Approach
SADT provides techniques and methods for:
a. Thinking in a structured way about large
and complex problems.
b. Communicating analysis and design results
in clear and precise notation.

c. Controlling accuracy, completeness, and

LR
o7

quality by procedures for review and approval.

d. Documenting the system analysis and design

s T i e T |
a7
s

history, decisions, and current results.

55




i e. Managing development projects and assessing
progress, and
f. Working as a team with effective division and

coordination of effort as shown in the table VII

(Appendix B).
3. Tools
i a. SADT Diagrams
The representation scheme includes a data model
and an activity model. However, most designers seem to use
; only the activity model (28] [17].
! (1) Concept
The SADT scheme uses two graphic forms: One is

\;‘ a design treé form which is a road map for the system model

L

and the second is the system model used to describe a program

or a group of programs, and composed of one or more activity

I charts or diagrams with their accompanying data charts if

used. The activity chart depicts the flow of data and control

information between activities and processes. The basic idea

. is to provide the user of the technique with a means of
graphically portraying his analysis of an existing system or
his perception of a system under design.

;‘ - (2) Notation

SADT diagrams employ labeled rectangular

boxes, arrows, labels, and a tree~like structure to maintain

K3 decomposition traceability. Distinctions are made both in
R ) what is represented and how it is represented. For example, -}
~ 56
T AN L e e e T e L T S LT S A L




INOAIEAOACA SN SIS AR IO R A Sl G it A A A A A Ak Sl Gl A Dl te LAl W Nl el o o b T Bl R b 0 - B4

the basic distinction between data flow and activities is

-

made, but data are also classified as input, output, or

Lt

control (see figures 16, 17 and 18).

‘..

Control Source
. ‘data data
- — . Source c ted
I Input | Activity Qutput Source >  progmm _ ompu
_ datd e data program interpreter results
D, Processor _ o Interpreter -

Figure 16 - Activity Diagram

I . Cogt_ron Operating
&ctivity system

—— Lt
. ] ) o Y .
> Gen;rntmg — Data . stpg Interpreter ‘ Output Printer .
acuvity T ‘—- activity data {  spool R
- t t .: ::-.:\']

S !
Storage : Disk -
device !

A

W h LW
el

Figure 17 - Data Diagram

AW
L

T AW T e Te Ty Ty e

N fl{l};_




MR ARAR IO Rt B AR AR S 06 S DA A A0 N B S AN S it A i S o s i i TN TN LR i s S =
W,
S REQUESTS
LS
COMPANY
POLICIES.
SALES
STANDAROS
SALES A 4 . ERROR
TRANS JEDIT REPORTS
:llF ’ | TRANSACTIONS: b
VALID SORT
TRANSACTIONS KEYS
SORT
TRANSACTION
SORTED REPORT
TRANSACTIONS TYPE
v
SALES REPORT ANALYSTS
HISTORY SALES REPARTS.
FILE TRENDS p—
|

Figure 18 - Example of a Complete Activity Diagram

: Note that some data flows in Fig. 18 split into separate
data flows, for example, the REQUESTS flow forks into SORT
KEYS and REPORT TYPE. This separation is known as a fork. The
case of two data flows becoming one is called a join. The
notation should also be complemented by text composed of a
few carefully chosen words.

(3) Use

SADT diagrams are claimed to be a powerful

tool to be used in every phase of the system development, but
it seems that its biggest strength is in the design phase. It

is somewhat difficult for a customer to learn and use in the

analysis phase where customer participation is more

intensive. SADT is considered very useful for real-time

systems design due to the clearly depiced interaction

b 58 R

-t A L e ANt el st et e T e e . N . . . R
o S -“..."\.' R A TR TS U B  P EP T SN . e . L. . LT *
T T R I T P S AP TN TN L .

AT IS, TN DS Yo W TV S T Rl Wl Y SV U W 1 B Wl Sl Tl U G VAP RIPUIY PO DA N -




between modules[28].
{4) Advantages
(a) It is a potential powerful notation scheme
for analysis, provided that the customer

understand how to interpret it correctly.

(b) Does not require consistency at every level
because it uses reviewers to resolve
inconsistencies and interface problems. e

(c) Besides representing functions and data

flow between functions, additionally shows

the control under which each function EDES
operates and the mechanisms reponsible for ij?
implementation of the function. il

(d) Is complemented by a functional

description and a complete data dictionary Zii
package. s
o (e) There is a public domain version[30]. BN

(5) Disadvantages

:f {a) Contains too much information which can
F confuse the user. -
(b) Is subject to wide latitudes of

interpretation by the reviewers. Without
- direct participation of the author AN
- reviewers are forced to make assumptions. ;ﬁ
;" (c) Does not provide file or report details. ;ﬁ
| AT —
L;. - - 1“:' -
Eci;} I
o 59 &
..' " .~:‘J

v

LRI /
s

o

St e T s
"

etet Nt eTe e

. .

- - - s . - - - - - - -t * o - - - . LI -~ CERY
e e IR R T A A RSN et e s
I I I SR I S N Y SR A VA TV, i, T TR

- SRR A S e 4

MEESRERN «t L vt e - P A
L VAU ARG T S DRI R DA DT, Sy e LF,

M
b
»

!

L

h
»
‘.:
b
-
b




SRR Nt 0 A AR N T
R G N

[ R .

\

o
-

AORA A,

4, Discussion

-
'

A4 TN
«

»
2t .

As we have seen, the notational scheme distinguishs

between control data and input data. In a system involving

—v ¥, -
IR

-i many such diagrams arranged in a hierarchical order, the

E usual comprehension problems for the design team and

}{ customers are compounded by the addition of the dimension of
control to the diagrammatic scheme. Also, the advocated
policy of permitting each designer or analyst to develop
independent diagrams and resolving interface problems via the
review cycle may cause additional difficulties. That is,
interface problems between a designer's portion of the system
and the rest of the system are only considered after he has
developed his independent model.

\‘; This method is proprietary of SofTech. However, there is

a public domain version{30].

3.2.2.2.3 Gane

Gane's method is a collection of specific tools and

techniques described in the book: Structured Analysis: Tools

and Techniques[18]). As the name suggests, the procedures and
a tools are based on the Structured Design Method,
E;ﬂ presented in Section 3.2.2.2.1. The primary design
g representation technique is a modified vergion of the data

flow, enriched by the addition of decision tables, data

dictionary, pseudocode, Chen entity-relationship, structure

bk charts, etc.. All those tools are conceptually as well as
R pratically presented. The entire book shows, as an example,

7

o 60

.b

D T L S S L P TS I A
.....

VA AN WA
T IO PN VI WP U )




the analysis and design process of an hypothetical system
using and integrating the mentioned tools.
1. Concept ‘

Basically the concept is the same as Structured
Design, enriched and complemented by the other tools, as well
as by some features that allow the method to address some
areas the authors felt were not addressed by Structured
Design. Such features include database concepts, data
dictionary, and data store structuring techniques.

2. Approach
The authors start with a discussion of some of the

problems that are faced in analysis and then review the
graphical tools and how they fit together to make a logical
model. Then they take each fool in turn and treat it in
detail, starting with the key tool, the Logical Data Flow
Diagram. Later they sketch out a structured system
development method which takes advantage of the presented
tools. The use of such a methodology involves the following
steps: build a logical model (nonphysical) of the
system using graphical techniques which enable users,
analysts, and designers to get a clear and common picture of

the system and how its parts fit together to meet user's

needs; build the system top-down using successive refinement;

emphasize the use of iterations for a good development; and

distinguish the work of analysis ("what") from the design

("how") . - i

61




3. Tools o

a. Logical Data Flow Diagram
(1) Concept
Gane's method[18] uses one type of data flow
diagram which follows the same general principles of the one

described in Structured Design (Section 3.2.2.2.1). He states

that in analysis we need to recognize external entities and

data stores as well as data flows and transforms and process. q
Gane's Logical Data Flow Diagram (LDFD) allow this to be e
represented. fi;

(2) Notation

In Gane's LDFD, functions are shown as ;;?3

rectangles or boxes and data flows are represented as labeled ?t}ﬂ
lines between the ques (Fig. 19). He justifies the adoption
of a rectangle instead of a circle to represent the processes

because it is hard to get much legible writing inside of a

circle. Gane's LDFD diagrams are "leveled" so that each

diagram represents further decomposition of the higher level

functions. In addition, the diagrams show external sources 1ﬁ3;¥

and sinks for data and location of files[1l]. K
Even without making any physical commitment during

analysis, the authors thinks that there are places where the

definition of the data storage location between processes is

necessary, and represents this location with a pair of

62

........... . a e e e e e e e
Nttt S P P R R S S S S - P R S e T et Attt et
AR TR TR - SESLS A A T A T N e S e e e e et e T e e e e e

o o PR T TSI S ST Y R I I S IR S g et R PO S . A '™

e e e e e e

..........................




B A N T MO A AP AP St R i e e it Rt id Jeb At M a e 4 L0 02 00 20 Ao S
["sooK paTA RS
. Sn ..t
:,\"_\;
.
Ordurs "l
Process Ledet
. CUST. Ly ..-‘
o T b Crogr——| CUSTOMER DATA S
T Invoices status Hede
{with books) Saas
>
o
\.""- A
VO
l.‘}‘;.\
af‘-f“
' '\-\q
~
Double Source or destination of data ;ﬂﬂ
square
Arrow >~ Flow of data
Rounded Process which transforms flows of
rectangle ’ data
Open-ended rectangle Store of data

Figure 19 ~ Gane's Logical Data Flow Symbols
horizontal parallel lines, closed at one end,'just wide
enough to hold the n;me. External entities, which represents

a source or destination of transactions, e.g. customers,

employees, aircraft, tactical units, suppliers etc, are

symbolized by a solid square, with the upper and left sides

in double thickness to make the symbol stand out from the
rest of the diagram. The entity can be identified by a lower r?f
case letter in the upper left hand corner for reference.

Data flow is symbolized by an arrow,
preferably horizontal or vertical, with-an arrowhead showing
the direction of flow. Each data flow should have a

description of its content alongside, as shown in Fig. 20.

63

O A T T S T I i -
- . PRSI R S . - L . M A
e -ttt

..
S\ e et

. . LY - . - - -t e “ e PR L] . .
N RO AT B T N e T T T
ate e ala et SIS NP S S RPN PU TS LTS P TR PR K TGN, W




- T Ty
N D A A S S S DA S AN o PR A A M N i M SR S Al G e

PR 29 c
Anaiyze Sales reports MANAGE. | Data flow reference: 29¢
sales MENT

Data flow description: Sales reports

Figure 20 - Data Flow Description

The function of each process is described with
imperative sentences using an active verb followed by an
object. The process has also an identification and a physical
reference to note how the function will be physically

implemented(Fig. 21).

A A A AL A A AT S RS AL Al Sh St d wal el dnl bad b S iel Aol tof ngl & g

(29 ) - 37 )
Extract Compute
monthly least-cost
\_ sales - solution
le Sales Admi:r. PM602
\ Department \ Program name
Figure 21 - Process Boxes with Physical References
(3) Use
This tool is suitable for both the analysis as
well as for the preliminary design phase. It is also most
often employed in the traditional data processing
environment.
(4) Advantages
(a) Has the ability to completely represent
data flows.
S (b) Has the ability to show data stores.
:: 64
f-
s WL DU WU APV I BRI I DAL DA 5 . PR I I AL VRl T VIR S D T T DR TR SR, DT o DL PR LS

SN R

WA e
A e .
DAL B T TRl WA T TS




LA A A e 1
Mate vt v M

(b) Has the ability to show data stores.

(c) May be used in high and low level
analysis, providing a good system
documentation.

(d) Is not proprietary, having plenty of
documentation available at the cost of
buying a book.

(5) Disadvantages

(a) Does not.clarify 1/0 details.

(b) Does not provide the variety of structural
mechanisms available in SADT.

b. Chen Entity-Relationship Approach

The Chen entity-relantionship approach{10] is one -

™
N
A
Lo

“f of several schemes to recognize that database as well as code .
needs to be designed in two stages - logical and physical. ig%ﬁ

e

(1) Concept EEEE

S )

This design representation scheme contains Fatha

three classes of things: entities, relationships, and

Oy
AR
o N
. Ty
e
PRERE]
o Y
R
- s

attributes. Entities are objects that can be uniquely
identified. Groups of entities may constitute an entity type, ;_;J
such as employee or automobile. Relationships are conceptual . :
links that exist between or among entities. Attributes are
properties possessed by entities and relationships, and have
corresponding values.

The basic scenario in using the Chen scheme

involves identifying and documenting entities, relations, and

ool
1.

65

T ITTL LTI YRR R R T T . PRSI S SR
. R S L R RS @ te it .. e N maen SR
RAP PR PP PP N I TR VA R A N I A Uiy DATURIUON &




their interaction, identifying and documenting attributes and
values, and, finally, combining these results into the form
of a data structure that may be implemented on any database
management system (DBMS). The proéess used to produce Chen
entity-relationship diagrams is shown in Fig. 22.
Identify: attributes Form attibute-value
values diagrams

entities
relations Form entity-relation

Figure 22 - The Process Used to Obtain a Chen Entity-
Relationship Diagram

(2) Notation
Each concept used in Chen's approach is
represented by an in&&vidual building block in the diagram.
Several blocks of the appropriate type may be combined

according to a set of conventions. The individual forms of

this notation are as follows (Fig. 23):

Entity symbol

AUTOMOBILE

Figure 23 - Depicting Relationships Using Chen's Approach

(a) Entity types are depicted by rectangles.
(b) Relationship types are depicted by diamonds
with lines connecting them to the appropriate

entity types. Note the introduction of the




[RSEAL N N A 0 i oS g i - (SA0 ST g N 0 o g gk R it ol ki ey SO iuble™ (S it iy Sat e k" b iat AR Jin= i
AR

S o symbol n and 1, which document the nature of
the interaction between the relationship type
and the entity type.

(3) Use

The Chen entity-relationship approach

incorporates many of the features of the data dictionary

(such as data composition and organization) while providing

the software designer with a flexible means of depicting

information~based (as opposed to processing-based) problems.
The Chen approach forces the software designer

to view data not as a hierarchical arrangement, but as set of

and each having

entities, each possessing certain attributes,

(1 relationships of one kind or another with other entities.

This shift in view is somewhat analogous to the data flow

view of software systems. In the data flow view, design is

based on what is thought to be the most stable characteristic
of a system, the flow of data. Content may change, but
communication lines are stable. Similarly, in database

modeling, the relationships between and among entities will

; be stable, although new entities, and new or modified

attributes may be incorporated over time. Such changes may
affect hierarchical structure more profoundly than relational
structure(28]. -
(4) Advantages
(a) Recognizes that code as well as database

needs be designed in the two stages -

67

................

...............
......

(Aot et ol Gt Ml ohE AR~ S ok ghe gvn eng oy

‘atate
.




S A B g g o - " .
PR S St SOt et AL B R N /AU L g T8y e, RS At I i et S0 SR 2
.

]

T e wm s
-

*~§‘
" h" )
ARG logical and physical. P
(b) Is a well-suited tool to represent Lo o
database design.

(5) Disadvantages | ;

(a) Assumes that flow of data will be stable Ry

AV EVEREr PP P GRS &
S
[4
Ny
+

which may not always be the case. &

Fs
s

(b) Is not necessarily good for real-time

-

systems.

(c) Does not show control of data.

The other tools used by Gane's method ere already
covered under other methods.
S 4. Discussion
As we see, Gane's method is a package of tools and
3 techniques that draws on structured design and relational
i database theory, adding to them their own data flow
representation technique, qnd a set of steps to be followed

in the process of system analysis and design, covering all

phases of the software development process. Though this set N

[l SOCTENR AT

of representations fails to clarify 1/0 details, it is
otherwise complete[11l].
This method is publicly available through the Zéﬁf

acquisition of a number of books and is not proprietary.

) l.l'lkl\l" ot

3.2.2.2.4 Summary of Data Flow-Oriented Methods

These three software design methods - structured design,

.
o

|

L}

-
.

68

.................. AR :'\ N
- " > . PR - . . . " - ‘e ' N . N * A " N - -~ - hd . ., . . a et et atM At et Ll - -t - - - S S A
P A R PRI Y P P T e R R U N S DA . O At M, < (SIS
PR SAL RGP PR ARG S G P S A AT WP WAL WA WA WL R P DL s TP P TS AT TP o, G IV ST S 5 W T P R ISR SRS




A A S A UL ACE SO S i S (i ik S A N e A A S e S B BB B e e cad S

S aw T

Y SADT, and Gane have in common the data flow orientation
approach. However, some conceptual differences exist.
Next those relevant differences are discussed.

- 1. Communication Ability

SADT has a richer and more complex notation than

AL G T S A S

Structured Design or Gane's method. However, experience with

SADT has shown that its diagrams can often be misinterpreted,
l 7 even by someone who is conversant with the method, but is not
; the author of the diagram.
. Data Flow Diagrams, used by both Structured Design
g ) and Gane's method, are easy for the user to understand.
. Gane's method turns out to be more complete by
L the adding of data storage and database representation
i \s diagrams.
- 2. Use

SADT is more suitable for large, complex, real-time
‘ systems, while Structured Design and Gane's methods
are more processing oriented.
< Of the three Gane's method is the only one that
a addresses database issues.
3. Mechanism Clarification
Like the data flow diagram used both by Structured

g Design as well as by Gane's method, SADT diagrams represent
functions and data flow between functions. However, the SADT
diagram additionally shows the control under which each

) {42 function operates and the mechanism(s) responsible for the

69

........

T T T L T Nt S APt ST
CPN PV PV TS T U D TR TR T U T AP IPRE AT 1PN Ut W AP N, S AP




B D S P S AR S AAC L e b Ak A S 0 St S St tah ained Aas \d ket 0ns A b AR & o & b At oA b g ane o T

%“. AL

;'. .

K

e

s implementation of the function.

i Data flow-oriented methods are easier to use

E when the software product is being designed to replace a

i manual or previously used automated system. This happens

o

. because paper document movement usually can be correlated to

data flow in such a way that you can trace this movement

V between the source and destination. It is much more difficult

. to use these methods if the system designed has no existing

f predecessor.

.; Users of these methods should be cautioned of two

é» possible difficulties when applying these methods:

: a. If a predecessor system (especially a manual one)
. exists, there may be a tendency to try to automate the

_ s predecessor on a one for one basis without exploring

Es alternatives which may lead to a better implementation.

*& b. If no system currently exists, then the designer

- initially must try to understand the system before he uses

é? paper. This relies on the experience of the designer and any

i; information which he may be able to get from the customer,

g— user, fellow designers, etc. Any deficiencies in the mental

E} image formed will be passed on in the design and may result .

;j in system which is unacceptable to the user([37].

? |

Ef 3.2.2.3. Data Structure-Oriented Methods

Ef The data-structure oriented method designers advocate

E: . observing data at rest. The emphasis is on identifying and

e LA

cbserving logical relationships between discernible data

AR T )
Nh

e "v  §
a7V E VW

TrRTETS
' i -_a

70

. . . . L -
. ety T e T e e e T e,
R LEPRCIFAL T S S P

....... .

-
e T et T e e e e e P .
E—',A [IPNC IR R T TR I T P L A N A R, e T A A A S A T R R 0 A T A A A R T A A e I At N




(5, CA L A PR ' & COdM Al Rt
-
-
-

o elements, for these relationships form the basis of the

program itself.

Data structure approaches claim[28] that, given the same
set of information, two experienced software designers would
come up with the same design. The basic process is: The
software designer first identifies the data needed by the

program to do its job, then organizes it according to its

natural hierarchy, and finally produces a program by
following a translation procedure.
i; Due to its popularity and large usage, only one approach

will be examined in this séction, Jackson's method.

N 3.2.2.3.1 Jackson's Method

‘ (i' The basgic approach and style of Jackson's method[zé]

: makes it highly attr;ctive to those working with commercial

§ software design applications, such as finance, inventory,
banking or insurance(28].

1. Concept

Jackson's method views software as a mechanism that

transforms input data into an output report via set of
coherent, synchronized operations. The problem for the

f designer is to determine what the operations and their

sequence ought to be. Jackson attempts to overcome the lack q
of direction present in some top-down approaches by providing
O guidance to the designer by restricting possible system

T v sructures. The basic structure of the system is determined




S R R T T o o e I O T T T ==y

AT AT e N

by the structure of the data it processes. According to
Jackson, the software designer's problem is that of matching
the structure of the input, output, and program. It is thus
assumed that using input and output structure as a guide to
program structure will result in a well-structured program.
Apparent in this approach is the ease with which problems
involving serial file structures can be solved. But,
according to Peters[28], the most important assumption
underlying this method is that the software designer knows
what the inherent data structure is or knows how to identify
it. However, Jackson's method does not tell the designer how
to structure data.

2. Approach

The basic process for using this method is: identify
the structure of the input data and output report, define a
program structure based on these structures, and identify the
discrete operations composing the program, arnd assign each to
a component of the design.

Several types of problems encountered by the software
designer are recognized and addressed by this method.
Foremost among them is the structure clash, which refers to
those instances where input and output data structures are
markedly different, violating Jackson's requirement of a

common program structure throughout all data structures.

The use of this method is complemented by the

specific notation described below, which enables the software

72

R I T T I N B A

et T ettt Y

PV AL I R IR ISR A S e et ) o
PR o T e e T R A L L SR LT LS S et o, ‘. ML -
LV KT S SIE RIS, §F I LT, PO, PO VO PR PRVATAT GRR I S0  JA VAP TP P S P TIP S S U S UIT L R O

S
v

. Te o a Tt T
o Bca B Bore B B B B




RN AL ST A R A RS JU ot AP ST ARt A el G oS c N s S s S SARC i S At L MO M (. o~ ST A 9 A8 S G o S S e Seab

}’s

| e
L

K ..'.:‘ ' [T
o

e
v 4

designer to depict iteration, selection, and sequence

1,

"A -
- _ "
R . it
. - operations. e
, kW
”

3. Tools ‘-
. .:-,
o a. Jackson's Data Structure =3
S Jackson's notational scheme represents a useful way of <

.
.

depicting database characteristics[22].
(1) Concept
The basis for Jackson's approach is the
oF premise that a well-structured program design must parallel
5 the structure of the data. Hence, this approach utilizes

concepts from programming in order to depict data structure.

g,

'-‘. ﬂi'. ."" .

The data structures are a model of the problem and the logic ’ b
flows are limited to sequence, iteration, and selection.
(2) Notation
Jackson's uses rectangles to represent data K
(e.g., files, arrays, and individual data items), while -
connecting lines describe ownership or composition as shown
in Fig. 24. An asterisk and a degree symbol are used to =
denote selection and iteration, respectively.
(3) Use
Fig. 25 presents an example of the use of -
Jackson's scheme. Notice that it is similar to other
approaches, such as structure charts. It is good enough to
represent the database characteristics associated with a
single program; but it is not enough to represent systems of

1{ programs. This tool is more suitable to be used in the

73




Y AFRFRFRSEFNF RS LRt BRI L S T

|-

+

P

0

Te T T a s

b AL

JORCAIOY,

design phase.

Fiie, data
element symbot

Iterauon

SALES

SALES-ID

P . o
e T A A AN
VRS, NS SRPARP WS NRSEIUTCIE, P SWY.)

SALES-DATA

symbol

Sefectian
symboi .

Figure 24 - Notation Used in Jackson's Approach

SALESMAN

DETAILS *

REGION

DATE

DOLLAR *
AMOUNT

QUANTITY *

Depict Data

LY. .

e e e

e
M NP IR R

NN S

Figure 25 - An Example of the Use of Jackson's Approach to

R

AR R T T I O L I SC S S
MPOE BRI LS PRI W PR Y U WU




o
™

e

s

LA EN 2t din M im wis o8 4
. 1 . LR ST T |
S S et et

.

L e e aut et Suat!

G o N Sl N Ve M i P i b M e 08 4

(4) Advantages

(a) Works well for file processing systems.

(b) Works well for small systems or programs.

PR
2

. e
.

{(5) Disadvantages
(a) Little use of level of detail and AR

partitioning since it is only a program

design tool.

(b) Not particularly top-down.

(c) Not easily understood by the end-user of
the system.

(d) Less useful for non-file processing
systems.

(e) Data stream change may cause considerable
change in hiearchy.

(f) Not a system design tool(37].

4., Discussion
Jackson Structured Programming is widely used and is
quite effective in situations where input and output data
structures can be defined in a precise manner. It appears be

to most effective in data processing applications[37]. .

3.2.2.4 Comparison of the Methods

In order to compare the most known methods, which have
been reviewed in the literature, some criteria considered

relevant for a system development method in general, as

75

'''''''''''

. 3 - B . - - - - . - - PO - . -
AR e e et e e e e A e et e T e
PP, R VT PR TP WA T WY Yy VOV Y




were

well as to meet the SIMAER's specific requirements,

established. The establishing of these criteria is not meant

to be exhaustive, but rather Jjust a guideline to assist in

evaluating the effectivennes of the methods as a software

design tool as well as to support the SIMAER's requirements.

The phases of the Life Cycle where each method and tool

can be applied is shown in table VIII in Appendix B.

Evaluating each method against the criteria led to the
results indicated in table IX (Appendix B). The criteria

are described after the table.

3.2.2.5 Selection of Software Design Methods

All methods reviewed showed some strengths in one or
other area. This research is interested in finding the ones
that besides having the maximum of the desirable
characteristics of a method, at the same time satisfies as
much as possible the SIMAER's requirements. Comparing the
requirements with the characteristics of table VIII, Appendix
B, thefollowing conclusion was reached.

1. Jackson's Method

Is the only one that does not provide capability
to model an existing system, nor to permit the statement of
requirements for an entire system. It is also not as easy as
Structured Design or Gane for the user to understand. It is

known by a few of the SIMAER's professionals and is suitable

only for the design phase.

76

[ - -, 4 . . Tm . ®, - . - N ' " -

RN . RO i ) e Lt . . " . 2T . . . . . - . . “ - . . . - . R . AP - . . .
_____ - -, EN I N PR - et T T T T T L L IO S P S R S U P N W

e e s PR L TS L SV FL PR VLU YR VRV PREPT T J W R A G i W ap T W Uy S S R S T S AT Y




2. SADT

Its strength lies in its suitability for design of
real-time embedded systems through its data control ability.
Unlike Gane, it does not incorporate database concepts{17].
Its level of proliferation in Brasil is low, and it is not

known by the SIMAER's professionals.

3. Structured Design and Gane
The Gane method, being a derivative of the structured
design, covers all aspects addressed by the later, and adds

to it some other tools and techniques, such as data

dictionary, storage representation, database issues, etc.,

which makes it a comprehensive and flexible methodology.

Another advantage comes from the fact of being well known by Eﬂ{?

\s some of SIMAER's professional, which will certainly reduce

s ¢
! . .

NN ;
et -

-~ "- _\‘
3 the time and cost necessary for its assimilation. Its main RN
¥ PRSANE
- weakness comes from the fact that it is more data processing A

a4
'

RIEUIRE NN
L ERE RN

oriented.

Considering the above aspects, the incompleteness of

all existing methods, and the varied scope of the

gl SIMAER's requirements, the conclusion is not to establish a ;;;J
standard method, but rather recommend some, having their

5, adoption induced by providing extensive and intensive

:; . training on them. The recommended methods will be the ones

presented by Gane[l18] for management information systems and

- SADT([32] for real-time and embedded systems.

The use of various methods during the phases of

77




development for various types of problems are discussed in
Chapter V.

The approach of not having a standard method is,
in essence as will be seen later, the same solution adopted

by similar organizations around the world. The tools and

techniques to be recommended are those included in the

. suggested methods.

3.2.3 Documentation

Documentation is a vital part of a system development

cycle. Documentation of a system development falls into two

broad categories - development documentation and control

Dauss a4
' e

documentation. Development documentation records how a

software development is structured and what the software is ,nﬁﬁi
supposed to do, and gives the background information upon T

which the design is founded. Control documentation, on the

other hand, serves an administrative function. It records the :}}ﬁ?
resources used in developing and implementing the system.
This includes such documents as project plans, schedules,

resource allocation details, and progress reports[15].

3.2.3.1 Functions of Documentation

Documentation serves four main functions:

1. Intertask/interphase communication.
2. Historical reference for modification and
correction. L

3. Quality and quantity control. - P

78 )




ClN s e e
oo T

4. Instructional reference.

a. Intertask/interphase communication - This

operation records what has been done at each stage of the

project so that instructions can be issued for the next phase

of work, or so that all people involved in the project can
agree what has been done before work proceeds to next step.

b. Historical Reference - The reference function is
relevant to both commercial and scientific work. It is the
documentation of how the system works that makes it easily
changed after it is implemented. All systems are subject to
change, with the sole exception of one-time problem-solving
applications with limited amounts of data. A system can be
maintained efficiently only if the existing operation of all
procedures and programs is clearly known and understood. The
documentation of the\system provides this knowledge.

‘C. Quality/Quantity Control - As a system develops,
various elements of documentation are completed as each step
is finished. Management can use this documentation to
evaluate the project progress and individual performance.

d. Instructional Reference - the development
documentation can be reviewed during and after development
for many general purposes. For example, documentation will
enable trainees to study a system developed by experienced
technicians. Another benefit of documentation is that an
outside party can evaluate the system and its method of

operation to determine if the package is suitable for use in

79




.

Y =
e e’ a

.
e’ i}
PR P

LS

-

e
o .
LYY IR

AN A O S S S A E LA S GEL S AN s AU AN JNE I A A A S e S S e A M R e

¥y

another environment. In this case, sufficient information
must be given to enable the user to apply the software to

other problems and requirements.

3.2.3.2 Types of Documentation

In the development of a system certains categories of
documentation must be considered. These are:
1. Analytical documentation.
2. System documentation.
3. Program documentation.
4, Operatioﬁs documentation.

5. User/management aids.

a. Analytical documentation - consists of all the
records and reports produced when a project is initiated.
These include: User requests that state the problem, a
feasibility study that evaluates possible solutions, and a
project plan that estimates the time and resources required
to develop and implement the system.

b. Systems documentation - encompasses all
information needed to define the proposed system to a level
where it can be programmed, tested, and implementec. The
major document is some form of system specification, which
acts as a permanent record of the structure, its functions

and work flow, and the control of the system. It is the basic
means of communication between the systems design,

programming, and user functions.

80

R AR I A
. LI Y Py

DT A N U AP L e et . .
PN WS NE Nl Yl G VAPSEPR I, Ty U e o PRI TP S AP N v

Ml il YA R AR A e DOl B A4aLs )
!
- .

-—all




(AT RS = AR NI C b YE 2 R Rt LA A v S Gl I R i ey €0 A AR 00 A BTN E B8 Apg LR . TR LAY

C. Program documentation - comprises the records of

detailed logic and coding of the constituent programs of a

x
+

1

system.

-

DA - AAARALM B PANL,

0
NN
[ ]

LA
1

2

d. Operations documentation - Specifies those

l‘ 1]
L
i
fy

ie

.

procedures required for running the system by operations
personnel. It gives the general sequence of events for

performing the job and defines precise procedures for data

control and security, data preparation, program running,
oﬁtput dispersal, and ancillary operations.

e. User/management aids - consists of all the
descriptive and instructive material necessary for the user
to participate in the running of the operational system,
including notes on the interpretation of the outputs results.

\;; It usually is contained in thé User's Manual.
Brandon(8] poigts that every installation should
establish documentation standards(i.e, rules for the

completion of certain documents at certain times) that define

the content, format, and distribution of the documents.

3.2.3.3 Summary

Documentation is a vital element in developing and
running any computer project, either in a governement,
business, academic, or military installation. It must not be
handled in a haphazard fashion. Formal documentation

standards must be laid down and enforced. These standards

must cover ali areas - users, systems, and programming, and

81

.s-.‘_ ST LT

L A SO SR S TS S e -

R B - - . I I B
L L TR I A L e e U AL PSR DL I R R P N N O R T T A A Y - LN T
RN U SO, WL PR N W I - SN WSS SR IR PN DN 3PN TN D . FAPSIIN IV DA W DAL WA S TR NN DS AT T SRCIR TP, T Ty, G T . W S




B S~ BRI U

operations activities.

-y . o
RESEE AL

3.2.4 software Development Management

MPARY

The difference between software success and failure is

often closely related to the quality of software management.

T

The major sofware management problems have generally been the
following:
. 1. Poor planning and coordination - This leads to large
‘ amounts of wasted effort and idle time because of duplication
of tasks, tasks unnecessarily performed or overdone or poorly
» interfaced[5].
L. An important aspect of good planning is an efficient
;t . allocation of computing resources and personnel. Most
i (;; problems occur at the interfaces of modules written by

i different programmers. The number of such interfaces grows as

the square of the number of individuals involved, and the

. problem becomes unwieldy when the group grows to four or
more{37]. The chief programmer team idea is one approach to

the solution of this problem([36].

> 2. Poor Control - Even a good plan is useless when it is
not kept up to date and used to manage the system .

development. One reason for poor control of software

» projects is the lack of surface visibility of the project.

- This means that it is difficult to assess the degree of fﬁl?
- ~ Y, 3
. -‘_‘r.:-‘

g completion of a project. The notion of a milestone{38] is ?;3:
. .‘ )"(..'-l
> e useful, where a milestone is the specification of a
- 82

R AN B L (PSP T T e e e T e e e C . OO S -
P e I P S P L T e R LR S N (N W P R I A s L N A
[ SRR P R T RIAR PR B o AR R R SR PN AT G ') N NN - S 2 e st al et Mar PRI S Sl TS VI PN LR TP T N e



»

i e
- .

L e g

Ay
.
.« &
LI

demonstrable event in the development of a system.

3. Poor Resource Estimation - without a firm idea of how
much time and resources a task should take, the manager is in
a poor position to exercise control. There is a lack of
experience in software design in making accurate estimates
when compared with the other activities. Some of the tools
suggested by Zelkowitz[38] to increase the accuracy are:

a. Compare the project to similar previous projects.

b. Divide the project into units and compare each
unit with similar units.

c. Schedule work and estimate resources by month.

d. Develop standards that can be applied to work.

4. Poor Accountability Strucuture - projects are usually
organized and run with very diffuse delineation of
responsibilities, thus multiplying all the above problems.

5. Inappropriate Success Criteria - minimizing
development costs and schedules will generally yeild a hard-
to-maintain product. Emphasizing "percentage of code written"
tends to get people coding early and results in neglect of
key activities such as requirements and design validation and
test planningl[5].

6. Procrastination on Key Activities - this is specially

prevalent when reinforced by inappropriate success criteria

So far most of what has been presented was based on

the current literature, at a more theoretical level. In the

83

'''''''''

[} e e e v

P A

. ] ‘e

o .
A R ¥
a_#_s_ .

% 4
PR

ot




next sections it will be seen how those theories have been

applied to some ADP organizations similar to SIMAER.

3.3 U.S. Organizations

Looking to get more practical information on the
current system development issues, it was decided to take an
overview of what is being used by some organizations. For the
purpose of this section some American organizations were
evaluated. The United States Air Force was chosen as a
reference due to the similarity of the mission, as well as
the high degree of technological advancement reached by USAF
in software development.

Most of the information presented here was taken from
the pe;tinent regulations and standards established by the

USAF, mainly from 300 and 800-series regulations.

3.3.1 Software Life Cycle

According to Air Force Regulation (AFR) 300-15 the USAF
has established, although not mandatorily, a software
life cycle (Fig. 26) aligned with the waterfall model and
composed of the following phases:

1. Conceptual phase - where the mission and system
requirements are determined by the user with data automation
support and includes these tasks:

a. Identifying the requiremeﬁts.

b. Analyze the requirements.

¢. Prepare the documentation.

4
Al
]
L
E7N

l.' l: {
Ao
bt

[} .‘
,’l
"
£4A

et
’
"l
[




A system/subsystem requirements review (SRR) ends the
conceptual phase. Certain formal documents must be prepared

during this phase such as: Data Automation Requirements

(DAR), the Data Project Directive (DPD), the Data Project
Plan (DPP) and the Functional Description (FD). These

documents are described in the AFR 300-12.

[ otrunon otviLoPMINT s
: ' : "
FUNCTIONAL REQUIREMENT » ore : R0 (DRAFT) L SUBSYSTOM SPECIFICATIONS s 1]
} ¢ b H 108AFTY ¢ .
ADP SLASIBILITY ] 10 10AAFT) f $$ (ORAFT) el 05 9
STUOY l ’ H 5] 1ORARY LIS TEST PmocrouRES + b
t 0 T " L'}
R " Gos ¢ €09 L 2. H
¢ A ° coot
$ ‘ L . INTEGRATE
o ' o a " otvooewent vist|
' s H H
' : ¢ caIPCA $
vy ' : ves l.' ves 1PRELIMINARY :
¢
o0 A '; Y : SUSSYSTEM g .'.
l I ! . } mcngunm €
0 € s s |£um
08 (DRAFT) ol o

1 (DRAFT)
Omumun neview o oM tgn."..

. UM (10RAFT)
M (ORAFY Y

Yes
i
\o o
* ‘ LI
€0 1"N0 CO™ OECISINN . o8)

g §LOW OF DOCUMENTS § PROCESSES I

Figure 26 - USAF's Automated Data System Life Cycle
(AFR 300-15)

2. Definition Phase
In this phase the developer(s) defines the design _J
requirements for the major elements in the system. This :

includes:

a. Develop system interface control requirements i.e. o
define the interface between the operational functions that

the system is to perform.

-2 b. Expand system requirements, i.e make a full and
85 o
{
o IOy PP SEIIE ORI N NN NP O AT TP CTRIRY - . 1 PP R RS




- ~ - o . Eliad . e WOV - -
R A A N S AR S A A A SRS S ICA A ST G RGN T VL g o4 L Sl 2sh S0 Baa it 0¥ pie eh JAG SR Sig sve ae gte o 4 ag aie one e Ml 4 O |

critical review of all performance and design requirements, E;i
and expand them. .ié
LA
3. Development Phase s
Analysis and design, coding, debugging, integration, ;Eé
and development testing are done in this phase. It includes: ;E
a. Preliminary Program Design. i
b. Initiation of the supporting documentation i
composed of drafts of: the Program Maintenance Manual (MM), :5:
the Users Manual (UM), the Computer Operational Manual (OM), 5
and the Test Plan (PT).
c. Detailed Function Design o
In this step the flowcharts, HIPO, structure ;ii
charts, or other logic designs, algorithms, and narrative %é
descriptions are expanded. This must be done in enough detail 5&'
to provide the basis\for actual coding. Defining the database E?;
Tl
by giving the number, type, and structures of tables and a :gf
description of the items in the tables is finished at this sl
time. ?7
Users and developers conduct a Critical Design Review
(CDR) to assure that the design meets its functional
development requirements, and the design is defined fully . ?T
enough to permit the start of the coding. After the program f.
specification (PS) isAapproved during the CDR, the design of 8
the ADS is finished. :i
Next the coding, compiling, and validation of the Ef;
modules are performed. Development testing of coded modules :i
o
R R R I TR IRt




T T T e N T N Y Y N Y I LY I I T N Y R X "X "N ¥ TAT,

e, -

is done until complete programs and systems are developed and
validated. N
As far as could be concluded from the readings, there is

not any software design representation technique established

B v st - v,

as a standard for the USAF. However, in Section E of AFR 300-
15, Development Phase, a vague and generalized reference to
flowcharts, HIPO and structure charts is made. The same

comment holds for methodology. B

3.3.2 Documentation

AFR 300-12 estabiishes three types of documentation to be
used in a system development: requirements, management, and
technical. Considering the scope of this research, it was

felt that only the technical documentation needed to be

‘e discussed here. It includes:
1. Baseline documents
a. Functional Description (FD)

This is a basis for mutual understanding between T
the development group and the ﬁser group of a proposed ADS.
It reflects the definition of the system requirements and
provides the ultimate users with a clear statement of the
operational capability to be developed.

b. System/Subsystem Specification (8S)

This is a technical document that governs the
development of an ADS or subsystem of an ADS. These are the
specifications for the performance, interface, and other

87

St T et . . . - e . -
P W . . R e BN . S . - . . S ST
AL SRR SRS SLPIE WG TR T YA, ¥ Wt A LA, ~ P P S s e T e . ot S RN DU R IR TP I S -~

LW TN U S P VA T AP UL TP e NP WP, AP W, W AP AP S Medimiadainintia’i ot alnladNatatar atlas e et ot a ol 2t al Al et at




RD-A164 289 DESIGI OF R STANDARD SOFTIIRRE DEVELOPHEIT
HETHODOLOGV FOR THE BRAZILI..<U> RIR FORCE !NST DF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI ﬂ !RR
UNCLARSSIFIED DEC 85 AFIT/GCS/ENG/85D-13

i i




‘Q- -- ‘.l .- S \-..-1-- 1\1.!.!. -
"\ AT t
K
Sinin o s sl . e
.
-
N
:
ol
s
‘!
*
& :
-
¥
,' r .
—
2 SR 2B ofl o Z <
3 N ol = d 3
[ — [ 24
- m == n
i O o =— Nm
" q 0l w
! SEEE < S ¢
Zz =
# =
; EEF i = 5
: S EEFEFPPTE . 3¢
" == .
m. . e m 3
& - () =
» " :
W . lllo 5 nvr. h
: — — N 83
¢ <
il U |\ S ||| G gt
——— — e — Qo
£ _ e = =
: _ e = .
- .-
: 2
%, - -
& X
», o
-1--hh
-!.
Y
-
o
’
: R
... u.g
-
r,

R

.

>

W, e
.P_.._ -
- .

..

L T N ¢ , W

WS CHTCVL N A
‘_'I. LY
RO, LY

J—
L)




78
et

2

N
&

technical requirements needed in designing the system.

o
Vv
s

P4

%

s S oo i oo
e
(3 4
DA 4
ity Oy

G

¢. Program Specification (PS)

7
1

This is written after SS to expand on its

g

requirements.

A AR
it
"'r‘r"l."

%:. -
a2 A 4

d. Data Requirements Document (RD)

o

This specifies the characteristics and limitations KRS

ko ‘J-"',

; : . . b

of required data. It defines inputs required of the user, e
" i

[

procedures for providing this input to the system files and
éxpected outputs. It also defines the use of standard data
elements and codes, and any data limitations.
(e} Database Specifications (DS)
This document specifies the design of the

database and defines the interfaces.

2. Support Documents
a. Test Plan (PT)

This is a tool for directing the ADS testing and
contains the orderly schedule of events and list of materials
to efferct a comprehensive test of a complete ADS.

b. Computer Operators Manual (OM)

This contains precise and detailed information on
the control requirements and operating procedures to
successfully initiate, run, and terminate the system. It is
directed toward supervisory and operator personnel.

c. Users Manual (UM)

This tells in general, nontechnical terms, how to

use the system and its computer programs. It tells the user

88

e e e s et e st e e T e T T T N N U e e e T e s e e e s e . T A T e Y T R
- DR R A L SRS LSNP P S N - R N ST ST ST P ST S ORI I T R ) e el
” -

.
. B R
Y S R A A R R LR RTINS A AR A A UL T S S -
5 PR S, YO G Y T A RV R WA Y VL Y RO PUNYAR SIVYTHE WL % LR A WLSLR AN




........

about inputs and outputs, and other specific information is

necessary for effec;ive use of the system.
3. Internal Documents
- a. Development Test Plan (DT)

This plan specifies the method to be used in
development testing. It outlines test management reports,
controls, manpower, acceptance, criteria, and test
procedures.

b. Program Maintenance Manual (MM)
This is the manual to be maintained by the

programmer (or team) that is responsible for each module.

3.3.3 System Development Management

Some of the principles that have been established by the
USAF on system development management and the respective
regulations that enforce them are:
1. Use or establish standard data elements and related
features, as specified by AFR 300-15.
2. Use of HOL's, as specified in AFR 300-10.
3. Prepare system documentation according to DOD
standard 7935.1-S.
AFR 300~-12 establishes the types of reviews,
objectives, contents, and when they should be performed
during the system development cycle. This regulation also

establishes some key milestones for control and its

relationships with the reviews.

89

..........
R A A U R AST A




\s

3.3.4 Summary
The USAF has established several standards related to

system development, from a software life cycle to data
elements, without losing the policy of descentralizing ADPS
management, and at the same time providing for sufficient
control and review at different levels appropriate to the
scope of each system or application.

The success of such a policy is corroborated by the
worldwide recognized high performance of the USAF where

software development is a forefront technology.

3.4 European Organizations

In an attempt to get some information on how software is
developed in this area of the world, representatives of
German[29], France, Portugal, and ltaly were contacted. Problems
related with language, time, and distance made this search

not as fruitful as it could be. The findings follow:

3.4.1 German

The German Air Force does have standards covering system
development. The waterfall model is adopted as a standard
system life cycle, being composed of: Requirements Definition
Phase, Conceptual Phase, Definition Phase, System
Development Phase and Implementation Phase.

No standard graphical representation has been

established as mandatory, although HIPO is prefered.

90

0
r.

Lo 3
v '_..‘\J'
.~..
N

1] . L4
Ll‘ v’ ',' ':‘" 'y
L LA R

‘,.

RN




v

PERT/CPM and timetables are the main instruments of
planning and control.
There is not a standard concerning programming

languages. The most used are PL1, COBOL, and FORTRAN.

3.4.2 Portugal

The Portuguese Air Force has established a
regulation[27] which covers generically the system life cycle
phases as well as planning, organization, control, and
documentation.

There are ongoing studies to adopt a structured analysis
methodology based on Chris Gane[18] and Tom DeMarco's

books[13].

3.4.3 European Space Agency

While trying to‘obtain some methodology or standard
established by organizations in France and Italy, a
publication called Software Engineering Standards[16],
published by the European Space Agency (ESA), was obtained.
Such standards were developed by ESA's Board for Software
Standardization and Control (BSSC). The standards started as
recommendations, presented and discussed with the Agency's
software specialists and with representatives of the
Aerospace and software industry currently involved in the
development of the Agency's projects. The standards also took
into account the content of certain documents published by

the IEEE Software Engineering Standards Subcommittee[21].

91

PRl RN WAS e *aAns aflit udhie Ll 2 X .




‘:

>

e

One interesting point observed in these standards is
that they were classified in three classes of practices:

1. Mandatory - those applied to all software, either
developed or used by ESA, where the term "shall" is used.

2. Recommended - not mandatory, but strongly
recommended. A justification to the appropriate level in the
Agency's hierarchy is needed if they are not followed. The
term "should" is used in these rules.

3. Guidelines - which are all other items contained in
the documents, after excluding mandatory standards and
recommended practices; guidelines are to be considered only
as useful practices and no justification is required if they

are not followed.

The ESA Software Engineering Standards are structured in
nine chapters. Considering the general similiraties of these
standards with most of what has been presented in this
research, only the most important and peculiar issues that
seem worthwhile to comment on will be addressed below.

1. The Software Life Cycle

The ESA standard adopts a waterfall model as showed
in Fig. 27. A peculiarity of the life cycle is that the
definition of the user requirements is not considered part of
the software life cycle, although constituting a necessary
step before a software project can begin. The software life
cycle begins with the notification and acceptance of user

requirements.

92

..........
.....




LT T LY L e W . v .
_.“":"J‘,- T A RO SN St e gy At A% S0aibre &7y b o pog p ‘a $abtn bt “» A'a ¢ Y W TN

TN T

-
.

s,

o At the end of each of the first three phases of the

-

software life cycle, the plan foresees a separate activity
consisting of review and formal acceptance of the deliverable

items of the phase concerned. These activities are indicated

. et e,
D UASSIRRY. o

by the same abbreviation which distinguish the phase followed

by a "/R" shown along the top row.

. ' For each of the phases, Fig. 27 indicates the major
ac{:ivities involved, the deliverable items of the phase with
E;.j an indication of the items which should be under change
control during the life cycle, and the major review and

acceptance activities.

PHASES T uR SR SR/R AD AD/R 0o po/q L oM
USERS - | sornuare ' .| soFTviane
ITEMS REQUIREMENTS | REQUIREMENTS ARCHITECTURAL DETAILED TRANSFER OPERATIONS AND
DEFINITION OEFINITION OESIGN DESIGN & : MAINTENANCE

PRODUCTION

- *FINAL ACCEPTANCE

gmnene | | o AT
AR ‘AL * OETAILED OESIS
MAJOR * IDENTIFICATION OF AEQUIREMENTS ANCHITECTURE < ConNe o oesiEN [ PIAFCRzANCIOZ |, 3'.32353:':’ :‘v“coot
acnivities |- USERS REQUIREMENTS § . g vELOPMENT PLAN OF THE SYSTEM *UMIT TESTING PROVISIONAL ACCEP. | 2000 0QCUATENTA FiON
1 FEABIBILITY AND COST *DETAILED DEVCLOP. *SYSTEN TESTING TANCE TESTING *MOOUZTION OF Thit
ASSESSMENT ESTIMATES 123077 _MENT PLAN G COST orA S 07 Twane LIFECYCLE
opa ESTIMATES (2120 MISTORICAL REPCAT
*ra ra ACH
rDELIVER AGLE B mu:g
TEMS BETLILLD ==
. s Dl mane e ancuECTURA e 8zzi{poD | o | sorrwans ‘ eoCumEnT
. RECUIREVENTS --sl 0ESIGN e ] c3cument ‘ sTD -
-— THE ——e= | “gocument OOCUMENT 0OCUMENT 1: SCiTwang ‘ Dy - E RN
D . IMPLIES using | SUMp-e
<5 UNDER aArUAL . -
. CHANGE T
*CONTROL :
=y WTERMEDIATE
- AEVIEWS
;» '_'. REVIEWS [ 4 [ 4 e=t==1"" [}
ACCEPTANCE
- usEns ReouEST "o | A0D %o of
-2 ACCEPTED APPROVED Arrroved Arpravio '.':'Z':"r'v'?:&‘ ct'c’:( "
MAJOR AN 7 N S e
MILESTONES Y RS SRARAN
- FiNaL IsSut RN
D ACCEPTANCE PrO LR
R
- Figure 27 - ESA's Software Life Cycle([l6]
93

- . - : s s . : “a '.‘ L R «“ -
: P o . PO . e e, ™LA e
BRI PGPS, I L PC WL U S




ey W UEUN M Y ot Al ol A ERAA AL 4 28 200 S PRYC e e, e S AR T R S TI TR RTINS

\ .

»~

Finally, Fig. 27 indicates the major milestones of a
software development project from the inception of the
development to the end of the life cycle, when the software
is dismissed.

2. The Users Regquirements Definition Phase

a. Requirements Specification Languages

The standards suggest that requirements should
be written in a natural language because of the advantage of
introducing no additional barriers between the people of
different disciplines who are involved in the project. ESA
does not define "natural language". However, the suggestion
is made with the caviat that it may introduce ambiguity,
imprecision, and inconsistency to the specifications.
Supposing that most of ESA's projects are of the type that
requires a high degree of reliability (space activity), and
high cost, this recommendation is somewhat of a contradiction
with the actual academic thinking that a formal type of
definition should be used in such cases[37].

3. The Architectural Design Phase

a. Decomposition of the System and Definition
of High Level Design Standards

While performing these activities the standards
recommend the top-down ;nd modularization approaches. To
achieve this, they strongly recommend the adoption of a
consistent methodology, some of which are listed in one of

the annexes. They are: PDL, SADT, Structured Design, High

,:.’

}e}

(NN
TN NN

Ay By ':ﬁ"

‘
’l .'

P

13
P

‘.ﬂ

MR

5
.l




A N T T IR N O T T
---------- LT L PR

bl
z "
3

»
P

Order Software, Jackson's, PSL/PSA, Flowcharts, and

’
e,

YT T
.
¥

‘l~‘l' ,

Warnier's.
The using of thé modules relatedness measurements,
coupling and cohesion([33] is also recommended.
b. The standards generally recommend the use of a
HOL without specifying any particular type.
c. Development Plan and Cost Estimates
According to the standards during the
Architectural Design Phase one of the main activities will be
to produce a development plan which allows control of the
project and which indicates the cost involved. This plan
should cover: work breakdown structure, team structure, work
schedule, and a milestone chart, which should include,
\e reviews and a planning network, showing the relationships of
programming and testing activities.
4. The Software Detailed Design and Production Phase
a. Principles
The standards are based on three known principles:
(1) Top-down construction.
(2} Structured Programming.
{3) Concurrent design, programming, and documen-
tation.
b. Tools and Techniques
Under the above cifed principles, some known tools
and techniques are recommended to be adopted such as:

Project leader, teaming, project librarian, documentation

-

- . (O I P S T I




VI " e e e

v

support, and review sessions. No specific recommendation is

made with respect to methodology or graphical representation
technique to be used, the only suggestion is to use a
"formal" technique intended to promote communication between
people.
c. Documentation

Detailed documentation should grow with the
system, becoming available in its final form at the end of
the phase.

5. Operations and Maintenance Phase

One important aspect of the maintenance phase is the
classification of the problem according to degree of
regression in the life cycle to fix the error. Following this
process, problem repair can be classified as:

a. User misunderstanding.

b. Design does not conform to requirements.

c. Requirements not appropriate.

The standards state that the naming of problem
classification is to avoid problems aésociated with blame for
"errors", which only hinders an efficient maintenance
process.

Among the outputs from this phase is the Project
History Document (PHD) which summarizes the main events and
outcome of the project. This becomes a useful tool and guide
in the process of estimating effort for future projects, in

setting up the organization of a new project, in trying to

96




.-~
»
L)
.
D)
.
-
Ve
B

avoid repeating mistakes made in the past, and in re-applying

- N

i = successful methodologies. ~—

S 3.4.4 Summary

E Taking in account its recency (1984), completeness, and

i currency, the European Space Agency's Software Engineering

- Standards can be considered a valid representative of the
current software development stage in Europe. Besides its

. complete adherence to the modern principles of Software
Engineering it seems to have solved the problem of

- establishing standards without inhibiting the creative

é. process by establishing levels of observance of the

; standards.

i Having decided on the Waterfall model as the desirable

ii ‘e approach for a software life cycle, and on Gane and SADT as

E? the recommended methods, in the next Chapter a literature

Ei review on automated tools for software development will be

!i performed, and a preliminary study aiming at a future

?i implementation in the SIMAER will be done.

'

i

BT R A S
I S T Gl S W UL TP AR

5% . .
W, T SN WY




IV. Automated Software Develupment Tools

4.1 Introduction

The acceptance of the fact that the design of any
reasonably large software system cannot be cost-effectively
kept up to date through manual means is spreading. 1t is
widely accepted that some degree of automation is necessary.
The greater the use of automation, the higher the probability
that system design documents will be kept up to date([28].

In this chapter a literature review of the
available automated tools, which in the author's view are the
most important, will be performed as a first step for further
studies of the feasibility of employing one or more such

tools in the SIMAER's software development.

4.2 Literature Review

4.2.1 Definition

A software development environment is defined as an
integrated set of automated and interactive software tools
which aid the software engineer in developing quality software
products and documentation{19]. The software products and
documentation that are develop2d with the use of a software
development environment include requirement definitions,
design specifications, source énd executable program code,
test plans, procedures and results, as well as other

associated documentation such as guides and manuals for

98




------

3
™
- o
» S operations and maintenance of the software. \-'
' Most of the currently available tools, although ...:..
" supporting each phase of the life cycle, are disjoint and ;':j::
X often do not interface to tools of the other phases of the 1;3
N life cycle[19]. A description of the most known tools ..-L

follows. i:_::jtf

4.2.2 PSL/PSA

The Problem Statement Language (PSL) was developed by —

Professor Daniel Teichrow at the University of Michigan(35].

The Problem Statement Analyzer (PSA) is the PSL processor.

.j_ PSL is based on a general model of systems. This model ;.:;;;

describes a system as a set of objects, where each object may *

- . - have properties, and each property may have property values. )
. ° Objects may be interconnected and the connections are called & -

’ relationships. The general model is specialized to \_

YK
information systems by allowing only a number of predefined
objects, properties, and relationships. R
The objective of PSL is to permit expression of as much
of the information that commonly appears in a Software
." Requirement Specification as possible. In PSL, system -~
-.“J descriptions can be divided into eight major aspects: -
% 1. System input/output flow.
'.‘ 2. System structure. ' T
3. Data structure.

e 4. Data derivation.
. .. —

...............




System size and volume.
6. System dynamics.
7. System properties.
8. Project management.

PSL contains a number of types of objects and
relationships to permit description of these eight aspects.
The system input/output flow aspect deals with the
interaction between a system and its environment. System
structure is concerned with the hierarchies among objects in
a system. The data structure aspect includes all the
relationships that exist among data used and/or manipulated

by a system, as seen by the users of the system. The data

derivation aspect of the system specifies which data objects
are involved in particular processes in the system. Data
derivation describes data relationships that are internal to
a system. The system size and volume aspect is concerned with
the size of the system and those factors that influence the
volume of processing required. The system dynamics aspect of
a system description presents the manner in which the system

behaves over time. System properties are the objects that

compose the system along with its characteristics; PSL allows
them to be described. The project management aspect requires

that project-related information, as well as product-related

information, be provided..This involves identification of the
people involved, their responsabilities, schedules, cost

estimates, etc.




il i ete i bt g S ae s S e s o A A At R = s i i

.-
e b

)

ST
..i

4
, ?;.,,

The Problem Statement Analyzer (PSA) is an automated

« v -

'c
”
]
»

analyzer for processing requirements stated in PSL. The ot
structure of PSA is illustrated in Fig. 28. PSA operates on "‘“’

a database of information collected from a PSL description. . =

COrANdS

In
ComunD
LANGUAGE
OPERATING SYSTEN
STATEENTS
IN THE ' REPORTS
PROSLEN PROELEA >{ M0
STA!E.‘!NT STATERENT MESSAGES
LAIGUAGE ANALYZER "
(PSL) (PSA)
A
\.4
ANALYZER
DATA
BASE

Fig. 28 - The Problem Statement Analyzer

The PSA system can provide reports in four categories: :
database modification reports, reference reports, summary
"reports, and analysis reports.

Database modification reports list changes that have

been made since the last report, together with diagnostic and

warning messages. These reports provide a record of changes —
::'.(_;'
101 -

-, C 13 ..'4 . " .V‘..\ .." - " -.' N. ‘}-".--' . .-'.- u.' --' !‘ .-" - '-..‘ -" N.. DAY - ..‘ v--. -V' :“ ,.' -"'-- u-' *
- A R . y A -



SN

WL . - ¥,

for error correction and recovery. Reference reports include g;ta

~. the Name List Report, which lists all the objects in the "*:3;::,
database with types and dates of last change. The Formatted ;1“

Problem Statement Report (Fig. 29) shows properties and EES
relationships for a particular object. The Dictionary Report | ?g?g

e

provides a data dictionary.

Summary reports present information collected from
several relationships. The Data Base Summary Report provides
management information by listing the total number of objects
of various types and how much has been said about them. The
Structure Report shows complete and partial hierarchies, and
the External Picture Report depicts data flows in graphical
form.

Analysis reports include the Contents Comparison Report
which compares the similarity of inputs and outputs. The Data
Processing Interaction Report can be used to detect gaps in
information flow and unused data objects. The Processing
Chain Report shows the dynamic behavior of the system.

PSL/PSA is a useful tool for documenting and

communicating software requirements. According to Fairley[17]
PSL/PSA not only supports analysis, but also design. This, in ~_,;

his view, may not be entirely beneficial. It makes it easy ) A

for the PSL user to fall into the trap of becoming too
involved with design details before high-level requirements —

are completed. i?ﬁ




PROCESS

DESCRIPTION:

GENERATES:

RECEIVES:

SUBPARTS ARE:

PART OF:
DERIVES:
USING:
DERIVES:
USING:
DERIVES:
USING:

PROCEDURE:

hourly-employee-processing

this process performs those actions nheeded
to interpret time cards to produce a pay
statement for each hourly employee;

pay-statement, error-listing,
hourly-employee~-report;

time-card;
hourly-paycheck-validation,
hourly-emp-update,
h~report-entry-generation,
hourly-paycheck-production;
payroll-processing;

pay-statement

time-card, hourly-employee~record;
hourly-employee-report

time-card, hourly-employee~record:;

error-listing

time-card, hourly-employee-record;

1. compute gross pay from time card data.
2. compute tax from gross pay.
3. subtract tax from gross pay to obtain net pay.

4
5
6

update hourly employee record accordingly.
update department record accordingly.
. generate paycheck.

note: if status code specifies that the employee did not work
this week, no processing will be done for this employee;

HAPPENS:

TRIGGERED BY:

number-of-payments TIMES-PER pay period;

hourly-emp-processing-event;

TERMINATION-CAUSES:new-employee~processing-event;

SECURITY-IS:

Figure 29 - Example of a PSL Formatted Problem

company-only;

Statement[36]

103

--------------------------
..........................

L

v v e .
Tt e
»

". ‘l. 'r‘ " ‘\' "- "’
AR
..- \: i .

[

‘e

'.-
.

-

...........




Ay A4, -ty

e

P

o ﬁ?&;

o PSL/PSA has been used in many different situations a£:§
) ranging from commercial data processing applications to air Eﬁﬁi
defenge systems. Eﬁg

It is operational on most larger computing environments . §§§é

which support interactive use, including IBM 370 series R
(0S/VS/TSO/CMS) and CDC 6000/7000 series. N

4.2.3 RSL/REVS

The Requirements Statement Language (RSL) was developed ZTA;

by the TRW Defense and Space Systems Group to permit
automation of specifications for real-time software

systems[4]. The Requirements Engineering Validation System

(REVS) processes and aralyzes RSL statements. Both RSL and

- REVS are components of the Software Requirements Engineering ol
\, bi RO

Methodology (SREM). Many of the concepts in RSL are based on e

PSL. For example, RSL has four primitive concepts: elements,

which name objects; attributes, which describe the Y
[N A
characteristics of elements; relationships, which describe >

binary relations between elements; and structures, which are

composed of nodes and processing steps. "Data" is an example

of an RSL language element. "Initial Value" is an attribute s

of the element Data, and Input specifies a relationship ) Eﬁiﬁ
g :;‘-'

between a data item and a processing step.

VPP PR
ERA e O AENEARMEAE)
- et e ' e te et !

The fundamental characteristic of RSL is the flow- -

oriented approach used to describe real-time systems. RSL

M RS0 e oo weue an 4
e,
N

models the stimulus-reponse nature of process-control

P T

104




systems. Each flow originates with a stimulus and continues
to the final response. Specifying requirements in this
fashion makes explicit the sequences of processing steps
required. A processing step may be accomplished by several
different software components, and a software component may
incorporate several processing steps. In fact, a sequence of
processing steps may involve hardware, software, and people
components.

The flow approach also provides for direct testability
of requirements. A system can be tested to determine that

responses are as specified under various stimuli, and

performance characteristics and validation conditions can be
associated with particular points in the processing sequence.

Flows are specified in RSL by requirements networks (R-

NETS), which have both graphical and textual -

representations, as illustrated in Figs. 30 and 31. aﬁié
RSL incorporates a number of predefined element types, ;3%;

N

relationships, attributes, and structures. Pre-defined -

elements include Alpha, Data, and R-Net. An Alpha specifies

the functional characteristics of a processing step in an R-

Net.

°

105

ey VL VY
e e a e
ol
st

fi’

e e - o e, [T A T IR T A -
R A SR R N S I L N g
P DALY PR PREIN TG DY TSI P WP T SRR T, Y, W

. o
-t e
-------




il ral « 3, a Nak i g oufioe o R &9 b ™! awmgwowy ot

""" it D) - -
o b - _\.‘,\
\‘ “ -
N NS
S -'\.P
R "_ ' +
3 -
l‘ ... by
o A7)
N S
. b.‘.-}'h
- -‘“‘\ ' » .'.'- .
K L
-- - -l _‘Q.K
-t
]

ol
A
(4

D Y SN
: = PRes
Ve I.’ . N
™~ :-ﬁ ;
~ otz é (STATUI=vALID MINBS) oL
. [ ‘* .h 1
D’ Ay 4
.
b BETCR R IF_ -
-, OUTIUT_neEDIs ey
> -
. wuary_
/?L LS FILTER v
= : T ]
BETTwa IF
l I.l'::;'. - OITERmINE _ CLLVATION . g
N ' ' T
orTTRIag YTy F :__:T »-:4
arvanm” SEousnant KR
-1 \r
4

». &

i < — Fig. 30 - Flow Graph of a Sample R_Net o
. -

5 \ o

- R_NET: PROCESS_RADAR_RETURN. I

. STRUCTURE : S

- INPUT_INTERFACE RADAR_RETURN_BUFFER R
. EXTRACT MEASUREMENT RORN
DO (STATUS = VALID RETURN)
DO UEDATE STATE AND KALMAN_FILTER END
DETERMINE_ELEVATION
DETERMINE_IF_REDUDANT
TERMINATE o
. OTHERWISE e
= DETERMINE_IF OUTPUT NEEDED
DO -DETERMINE IF REDUNDANT
DETERMINE_ELEVATION
TERMINATE
AND DETERMINE IF GHOST
. ) TERMINATE
v END

o END | 0
- END. S
!- ‘,._. R . :;~

SIS Fig. 31 - Sample R_Net in RSL T
5 106 DR

- a
—ae s IR P .




In addition to the predefined elements, types,

T relationships, and attributes in RSL, new elements,
relationsh‘ips, and attributes can be added to the language
using "Define". After the new items have been defined, they can

be used to specify other attributes of the -system.

C S S S T

The Requirements Engineering and Validation System
(REVS) operates on RSL statements. REVS consists of three
major components:

1. A translator for RSL.

2. A centralized database,the Abstract System
Semantic Model (ASSM).

3. A set of automated tools for processing
information in the ASSM. .

| A schematic diagram of REVS is presented in Fig. 32

below.

COMSISTEMCY ERRORS
CHECKER L
INQUIRY LISTINGS
CAPABILITY ]
SIMULATOR SIMULATOR RESULTS
SEMANTIC BUILDER EXECUTION
MODEL
| L ! GRAPHICS

PACKAGE

. o Fig. 32 - REVS' Schematic Diagram

107




Y . . - - . .
L LA SN 2 2 2L L o OB T PN S @ R p N, LS . < . e ity ) A Bl # ot rEPR s

e The ASSM is a relational dataase similar in concept to the ol
PSL/PSA database. Automated tools for processing information
in the ASSM include an interactive graphics package to aid in
specifying flow paths, static checkers that check for . . gﬁi%
completeness and consistency of the information used s
througout the system, and an automated simulation package

that generates and executes simulation models of the system.

In addition to the standard displays and reports, REVS
provides a capability for defining specific analyses and

reports that may be needed on particular projects.

REVS is a large, complex software tool. Use of the REVS -
system is cost-effective only for specification of large,

complex real-time systems.

4.2.4 The Software Development Workbench

Currently this development environment is undergoing a
great deal of change. Lots of efforts are going on and it is

not clear what the final product will be. As a consequence,

in this preliminary study only the ones currently available
will be addressed.

The Software Development Workbench (SDW) is being
developed at AFIT, in concert with and with support from the
Air Force Materials Laboratory/Integrated Computer-Aided
Manufacturing Division. The SDW has achieved an initial :ij{
implementation of an integrated software development :

environment under VAX-11/780[19]. The SDW concept supports

108

.........................
..........................




.
Pl

N
A
A\"'

|

i \»

e

AN = L . - el e te T etk Lt e Tee e el s . - P e

the development and maintenance of software from conception
to termination by using automated and interactive tools that
enforce the principles of software engineering.

The fundamental characteristic of SDW is the concept of
integration of tools that compose the environment. In SDW,
integration is realized in two distinct levels. The first
level deals with the access and usage mechanisms for the
interactive tools, and the second leve. concerns the
preservation of software development data and the
relationship between the products of the different software
life cycle stages. The first level requires that all of the
SDW component tools be resident under one operating system
and be accessible through a common user interface. SDW has
achieved the first level of integrationlthrough the SDW
Executive (Fig. 33 and 34). It is the primary interface and
controller of the components tools. The second level dictates
the need to store development data (requirements
specifications, design, code, test plans and procedures,
manuals, etc.) in an integrated database that preserves the
relationships between the products of the different life
cycle stages. SDW achieves this second level integration
through the project databases (Fig. 33), which are the
integrated data storage areas.

SDW was designed based on five primary objectives:

1. Reduction of software errors.

This is to be achieved by supporting and enforcing

109




-

AR A A A g g e ‘e Ry
N L AT P NS L B Y T "t ey

. . - Y . - - - - o«
et et Gt % Bt et et T T et LY LR P -
S DLV XA T A AL SIS PR T L S AL SO ST LR

the use of accepted software engineering
principles, as well as by using the computer
to augment different testing procedures.
2. Responsive to changes
Considering that software is a dynamic entity,
the SDW must be able to support changing
requirements for its operations.
3. Rapid assessment of design alternatives through
the use of simulation models and prototyping.
4, Providing interactive and automated support.

Emphasizing the production, recording, and

maintenance of all software development associated

data.
5. Assisting the software manager in planning and

tracking software development efforts.

The current implementation of the SDW is an initial
version composed of software development tools that support
the pre-implementation activities of software development,
as well as the common capabilities found in most
implementation-oriented development environments such as
editing, compiling, itinking, and debugging.

This is the initial implementation of the SDW and a
number of enhancements are planned, such as: extension and
refinement of the SDW tool set to provide a full array of

capabilities to support the entire life cycle; the Pre-Fab

110

e R A A S DA R
DL IR R Y

----- N Cne Al N . e R R R T Ierrrrrerrey,

.t R e e
P e IR
S L SN T WA S WA %

vy

-




R R B Sy

Software Description and Product Data Bases (Fig. 34) will be
completely developed and populated to support the pre-
fabricated programming concept; finally, the concept of a
syntax-directed editor will be extended to a consistency-
directed editor.

The SDW is currently installed on both the AFIT
Information Systems Laboratory VAX-11/780 and the Central
ICAM Develcpment System. According to the designers, users at
both installations have found the environment very easy to
learn and use. Also, they point out that SDW has proven to be
a very effective aid in the development, production, and
maintenance of computer software and its related

documentation[19].

111

..........

TS T
LY r‘r'a_'
P A
BEMOEMNO
ot

4

alnl e



v ’r‘: w o

- “' r.‘r"r"‘r.‘v. v

- v v v,

PRE-FAB
DATA 8

INTERFACE TQ

SwW
ASE

N T A T T T P W Py -—
( .
1
SDW EXECUTIVE
INTERFACE TO
™\ 1 PROJECT
A [
COGNITIVE + NOTATIONAL + AUGMENTIVE DATA_BASES
TO0LS . T0OLS §  T00LS

DATA BASE

PRL-FAB SwW
DESCRIPTION

1

DEVICE

HARD COPY
GRAPHICS

SOFT COPY
GRAPHICS
DEVICE

LETTER
QUALITY

PRL-FAB S/W
PRODUCT
OATA BASE

PROJECT
DATA 8ASE

A

PROJECT
8
DATA BASE

——= CONTROL
—— |-WAY DATA FLOW
-—a= 2-WAY DATA FLOW

----- INTERFACE
Figure 33 -~ SDW Configuration Model
* SDW EXECUTIVE
3 + R R P! $
*e » * L 3 L ] oo
Syntax-Directed Text Graphics Help Teach togic Path
fdtor fditors fdtors Files Routines Analyzers
Ry + 3+ 1y ! +
S.;:JRC Cage : Ward S'lmniczl F.*erlormance 6:: Flow ‘Iest Case
formarer Processors Packages Monttors Anaiyzers Generors
* 3 iy i 3 P!
“Planaing : Linker/ “intertace Dimension Execution
Tool's Comgiers Loaders Checkers Checkers Pratilers
+ 4 4 1y > 4
L] - L ] [ ] oeoe (1 1]
Into-Oriented functionai Req't Oef. Debuagers Test Result Symbolic
Design Tools Design Tools Jools %9 Comparaers ! |Execution Tools |
A 4 T & 1
* Cane Consistency Simulators Contfiguration Pre-fab Sw fnvironmentat
Generators ( heckers i Managers Descrip. DB fmuylator
L/

* Project Dxa Bases

Figure 34 - SDW Structural Model

112

AL “‘.".'_ S e e e e e e AN
VO WAL VR Y o UL O TR SRS TP PRI S NN




4.3 Summary

The analysis presented here is intended to be a first
approach to a study for using an automated software
development tool in the SIMAER's system development
activities.

From this preliminary study it was possible to conclude
that PSL/P<A and SDW, covering a broad range of applications
are the ones that best match the SIMAER's requirements.

PSL/PSA has the advantage of being able to run on IBM
and CDC computers, which are the currently available
equipments in the MAer's inventory. On the other hand, SDW
has the advantage of covering and joining all phases of the
life cycle. Considering the availability of expertise, any
study for evaluation of the feasibility of using an automated
tool in the SIMAER, should be done at ITA, a similar
organization to AFIT. This will facilitate the SDW
evaluation, due to the similarity of the missions of the two
organizations.

In the previous chapter it was concluded that the
waterfall model is the most adequate based on the SIMAER's
needs. In the next chapter, a standard software life cycle

will be presented.

113

-————




R R A M R R TR . L O e L R

V. Proposed SIMAER Standard Software Development Methodology

5.1 Introduction

It was inferred by the findings in the previous chapters
that the SIMAER does not have a standard methodology
(methods, tools and techniques plus a software life cycle) to
be used in its system's software development. It was also
concluded that this is needed in order to reduce the
difficulties currently faced in this area of. activity in the
MAer.

In this chapter an overview of a proposed standard
software life cycle aligned with the structured life cycle
model will be presented, and some of the discussed methods,
tools, and techniques will be recommended to be used in each
phase of such life gycle. The general idea is to provide the
specialist with a set of tools in such a way that he or she
can choose the ones that best apply to a specific situation.
The recommendation of using some yet unknown method by the
SIMAER may present some drawback in the early stages until
that the skill in using each tool is reached by the
professionals. However, in the long run, with continued
usage, the knowledge acquisition, the standardization, and
the skill reached will bring benefits that will compensate
the effort.

In chapter III, it was seen that there are lots of

models available, and that some organizations similar to the

114

........
-----

Y aiam

PRt

<
Ny S
A AR

%




.

SIMAER have even designed their own. Considering the

- completeness, currency, and adherence to the principles of
software engineering, as well as the broad coverage of ESA's
Software Engineering Standards, the proposed methodology will
be based in part on those standards. In addition the findings
from the literature research and the knowledge acquired with
the Software Engineering Lectures[37] will be used.

Aspects related to the previous activities of software
development, Euch as flow and format of documents for request
of a design, and channels of command, are considered out of
the scope of this research, and will not be addressed here.

This proposal does not intend to be the actual regulation

text, but an outline, which includes a short description of

(t; the main parts that compose the regulation.

115

I o e Tae e et
PR LA > e a e L e e T ettty At e e e - . St T et e T et et e e o et et -
..... » LR SR ] - " . R T B 2. - N B
NP RS R N e e e e e e e e e e e T T e T e e e e T e e e e e e e e
PR P iy U Pd Wy I, W QW W W G LI W TP . W P o -




5.2

The Proposed SIMAER Software Development Methodology

Regulation
5.2.1 Structure

Having reviewed many regulations and metodologies, and

having chosen a waterfall software life cycle model,

step was to relate the parts of the methodology with the life

cycle

The proposed SIMAER Software Development Methodology Regulation

model.

is composed of 8 chapters as shown in Fig. 35 below.

sStnmacn
SorTwAnRE

METNQOOLOGY

prveLOPRENT

the next

-’

"

r

2k

[y

AN}
’, DENS N ]
v e Al

DA RR A
et I

!
LI

"o

&iﬁ

7 vl

,..--1.
[ AR AR A
LA

8 050

s

‘I.I
)
[ Bt

-

CHAPTER L

I{NTRODUCTION

CHAPTER 2

USERS
AEQUINEMENTS

SOFTWARE
REQUIREMENTS
OFFINITION

ciapten 1

CHAPTER 4 cuasTER 3 CUAPTER ¢
PRELTMINAKY

oESICH  ANOD OFTAILED TRANSFER
TEST PLAN OESICN

CHAPYER ?
QPERATIONS
Anny
NAINTENANCE

Figure 35 - Structure of SIMAER's Software Development
Methodology Regulation

Chapter 1 defines classes of standards,

purpose of the regulation.

In addition,

overall software life cycle.

scope,

and

it defines the

Chapter 2 through 7 describe the phases as seen in Fig.

35.

Chapter 8 presents a glossary of terms used in the

regulation.

.......
.......

116

CHAPTER §
GLDGZARY
) .
RN
[amsay
. .
. LY
- s.
b
-~
-I




SRR YUY IR

5.2.2 Classes of Standard Practices

There are 3 different types of standard practices:

1. Mandatory Standards. These apply to all software ng
either developed or used at SIMAER. Two asterisks (**) at the E{i
beginning of the paragraph will highlight them in the | §§k
context. o

2. Recomended Practices. These are not mandatory but E;ﬁ

strongly recommended. A justification to the CINFE is needed

if they are not followed. One asterisk (*) at the beginning ??ﬂ
of the paragraph will highlight them in the context. i'x
3. Guidelines. All the other items contained in the ;Lf
documents, after excluding mandatory standards and iif
recommended practices, are to be considered only as useful l&?
practices. No justification is required if they are not AR
followed. ) T
The management responsible can obviously always enforce ﬁfﬁ
stricter standards in a software development project, e
provided that they encompass the standard practices presented B
here. }fi
S

S

5.2.3 SCOEG Py
5.2.3.1 Purpose : oy
This regulation outlines the phases to be followed for fﬁf
software development as well as recomends methods, tools and ) —
techniques to be used for software development within the Eﬁi
SIMAER. It provides guidance on organizing, planning, Ry
f@z

117 )

.:\.:‘

A

e

St e B . e et e O . e . T e v e
LS AL S R ST AP e, . - . SO S S RS . PR AN B B Pt St S . S AL P SRS - RIS I S S S ) SR
AT - et Tl ey LI R e R I e . L . - B . AL RS

NS NIV Y IS IR PRI IS I T T A P S LI N TS P N R TS P NIy T Y Pl}gh\-f.‘.,‘ A '.A..'_A"_...'_. \aty




developing, and maintaining an ADS project. ‘ﬁ}m

5.2.3.2 Application

Procedures described in the regulation are to be applied

to all MAer activities responsible for planning, designing,

developing, maintaining, and managing ADS projects.

The methodology applies regardeless of the size, the ﬁgj?
type of application (scientific or administrative, real-time _?i
or batch, etc), the hardware, basic software and language LEH
used, or the nature of the developers (in-house staff or ;”
industry). Each of these peculiarities of course has an s
influence on the way in which the development is performed, ;ﬁf?

., .

and on the formal aspect of the deliverable items described, :;u¥

but conceptually the phases of the life cycle and the related

‘:; deliverable items described are to be considered valid for RN

any software development project.

5.2.4 The Software Life Cycle

5.2.4.1 Phases _—

ﬂ: The SIMAER's Software Life Cycle (Fig. 36) is composed

L_ of six phases: ji
r‘ 1. Users Requirements Definition (UR) s
2. Software Requirements Definition (SR) ) o

fl 3. Preliminary Design and Test Planning (PD) }53
4, Detailed Design (DD)
S. Transfer (TR)

6. Operations and Maintenance (OM)

Y-

._'..1.

118

W me e T R . ‘-'_-'_-' N T L S T N N S DA _-‘.~'_-‘_- R T A T SR T T Tt S L
---------------

\. \‘L¥L'-.‘--J.L 'A"..\"JA.' ._('JL '._ OV A AR n' -'- A’.“L PIRPAPY 1 ot .{-'. e AN L L et S L-m




USERS
REQUIREMENTS
DEFINITION

SOFTWARE
REQUIREMENTS
DEFINITION

PRELIMINARY

DETAILED

DESIGN

OPERATIONS
AND
MAINTENANCE

Figure 36 - SIMAER's Software Life Cycle



T - ‘ R 2 ol "B T v 500 S0 b 20 BTl Vo e ik oy
el LRV RTINS AR ERAS By Aasgin iyt e POt b Sl kg & 00 e B YA S AR AL A oA g st S e e

u
]
~
I\.
- . . . . . N
_< The software life cycle begins with the definition of a
> RN
SRS )
i NS users requirements. .
; At the end of the UR, SR, PD, and DD, there is a
.
S separate activity consisting of the review and the formal
AS .
-.\ - ’ 3 ’
'-x acceptance of the deliverable items of the phase concerned.
v These activities are indicated by the same abreviation which
e distinguishes the phase followed by a "/R" (for review,e.q.
' 'DD/R is the review activity for the DD phase).
For each of the phases, Fig. 37 indicates the major
Puases . .
[ {11} lguum |wnn¢':mﬂum sare "!Llll::l' oecsicn rosn .cnu.:: orsicen baddd lll::'ll .n‘.:m and
rvews BELrINITION SEPINSTION ANG 23T PLAA -ANS TCITING adintLnancg
1.10INYIPICATION OF
L :’:::.'73'.'5:':5'3: or 1.8CYRILED t. PImAL scTEPYARCE
- - . Oree | 1. 100wPTPICAYION .ot o scsic . . . -
e | IUTIGID S | et s [EIEIRSR (] s et e
ACTIVITIES | o oieimition of mans | 3 ceveromere vam |- 13.erraitce ceveioemewr S.vmir tEsTINE S oacummTaTion
::;::::.::::"“‘ Ane cOST ESTIRATLS PLAR Ama COIT SSTIRATER .BvaTEN TESTING Sarrwese LiFE  crcx
S.FCASIAILITY aSSRIS . Sisrosical agrosv
[ 114
. PRLLINtNRAY
sevwasene | Hottaererrs teacroes CHMR O B R e > | T, [
tyoes . evon 24 sucuncar ecvacer
";l'::' SSER°S RANOAL @
acvicws A 4 v v
sccrvance u [ ] [
4 = Gz
::::: = et
'g:::" ::::: . Z::!:"':.'.:fvﬁ""' :::::ang cnsors wea :::"
oo . b :::: oy :::n SiCTIORsNE - 0578 GICTIONSSY :::::e:::‘z::n
rECEmIQuss o 8ata SiCTiOMARY P4t ety I Hb . '
- 4ot - 0L
- TQP-0owa
- S0OOLASITY
osEas agouesr . San soervre Ses/co0erve seavigIONAL u:":'
accerred ."6'- sposoves sevravee sECLrvance -
mASO%
SULEITONES
' Pimay, T
CTErTance ”e
.2 Figure 37 - SIMAER's Software Life Cycle Management Scheme

120

FIRICIR AP R
U il Rl Tt AR NPT
R R I e VR AL I
DA AR RIS

DPNCSAE AL TS YT W A T




SEERE C.C.T. ...

ST AT a8,

."l‘!‘

5

A ....4,
LA [t

Pel e AV 0 0 000

--------

activities involved, the deliverable items of the phase with

the major review and acceptance activities and, the method,
tools, and techniques recommended to be used in the phase.

Fig. 37 also shows the major milestones of a software
development project between the inception of the development
and the end of the life cycle, when the software is
dismissed. The major milestones, which should always be
present, even in a small project, to allow the progress of
development to be monitored are:

1. the acceptance of the user's request.

2. the approval of the Software Requirements Document

(SRD) |

3. the approval of the Preliminary Design Document (PDD)
and the Test Plan Document (TPD).

4. the statemen£ of readiness for provisional acceptance
testing, i.e. the acceptance of the Detailed Design
Document (DDD), of the Users Manual (UM), and of the
code for provisional acceptance testing.

5. the statement of provisional acceptance.

6. the statement of final acceptance.

7. the issue of the Project History Document (PHD).

It should be noted that while all the other major
milestones fall at predefined moments of the life cycle, the
moment of the final acceptance can be determined by the final
acceptance criteria. Also the moment of the issue of the

project history document is not fixed, but a good practice

121

(250 S B A ity

"

- -
)
r ‘e

v
L3

.

atea
2
W

.




......

would be to issue the experience recorded during the
development immediately after the final acceptance and
complete it at the end of the lifexcycle.
1 . Users Requirements Definition (UR)
a. Introduction
In this phase the initiator begins with a general idea
of a task to be perfomed using computing equipment, and
refines this general requirement into a definition of what is
expected from the computer system and by what means its
correctness and acceptability can be assessed.
b. Inputs to the phase
The functional manager submits a request document, which
describes and justifies the "needs" for a system to do a
certain function or tovcarry out a certain operation.
c. Major Activities
Users Requirements should never be expressed in terms of
implementation details and design of the software. On the
other hand, it is frequently necessary to consider
implementation possibilities and implications before
achieving a final requirements document. This will normally
entail discussions between the initiator of the requirement
and qualified software experts, as well as other interested
parties such as operations personnel. However, the Users-
Requirements shall stand as a logical ana complete
specification after such considerations are removed. This

iterative procedure for tne definition of the Users

122

v,
PR
"
¢
]
e

’
-" ..
»

".:‘ POEN

o’
.
v

“y "»
.
)

)
LR
]
{

.
I
v

!

DA




et i R A s 0

Requirements goes hand in hand with the study and

confirmation of feasibility and eventually the harmonization
‘of the new requirements with existing software.
(1) Determination of Operational Environment
Expression of users requirements goes together with a

statement of boundary conditions, or definitions of the

environment in which the software ultimately has to operate.

In the case of software to be run on an existing

installation, this may be readily available, but in the event

of a combined hardware and software procurement, the original '?fF

requirement may allow some functions to be achieved either in

hardware or in software and thus calls for a choice among a

wide variety of system architectures. In such a case it is
(;ﬁ necessary to carry out studies to define the general system
design and to identify the parts of the system which will
require software packages. Each system component must be
sufficiently identified to enable the production of a
specific SRD for that component, and this SRD must include the
details of the interface with the rest of the system and the
necessary communication protocols. While users will not
complete this process they should provide all available
relevant information to assist the subsequent preparation of
detailed system and software requirements.

(2) Classification of Requirements

**x Having considered the environment in which the software

will be operated, the user shall proceed to classify his

123




R T T I T L —

if

D . - -

R e e c e AT e AT . - .

e o ", * e et . B P T WL et e e N P, Tt <t e S

n T A . L T TR TP PRI R S Tt e T et e et e e et
T R N IR R P . . - e S e . 2T L

L] ‘e ..- -. C " ..- '.‘ .
PACAL PEPE AP I AP IPIT IR AERE PSPPI,

requirements into those features which are essential and
those which are merely desirable. If a feature is described
as essential, then there shall be a test proposed to
determine whether the resulting software is acceptable.
Statements of the kind, "it is essential that the system be
optimized for speed of execution", are not admissible.
Instead, a means must be stated of determining whether the
operational speed achieved is sufficient.

(3) Man/Machine Interface

This category of requirement will vary in importance
according to the type of system under consideration. In some
cases it will be sufficient to indicate which parameters may

need to be varied and which alternatives may be required for

the output medium, but in real-time systems considerable work

may be needed to define procedures for data input and system
control as well as for data presentation and archiving of
data. This may include the definition of a comand language
and interactive dialogue.
(4) Feasibilty Assessment
Feasibility will have to be checked in respect to:
(a) Available memory
(b) Real-time perfomance
(c) Suitability of programming environment both
hardware and software.
(d) Availability of resources for software

requirements definition, design, and programming.

124

v e e,




N R A T - T w . A o

Feasibility studies will need to be undertaken in
every case in which the above points cannot be confirmed

within adequate boundries by direct enquiry. Users should

......

give any available information which helps to determine which

points may be critical as well as details which may aid the

ensuing studi-s.

(5) Management Information

Information will be required at an early date regarding

resources, cost, and schedule in order to enable management to

authorize work to proceed. This will include:
(a) budgetary estimates for the total development
(b) identification of resources required
(c) provisional schedule for completion of work
While users may not be in a position to furnish this
data as part of theii requirements, they should give any
available information to assist the task of making these
estimates.
d. Outputs from the phase
(1) Users Requirements Document (URD).
This document includes:
(a) Essential Requirements
These shall be stated in such a way as to
indicate how the resulting software may be demonstrated.
(b) Desirable Requirements

These should have included a weighting

indicating degree of desirability.

125

Y M '; ‘J

ot e )
20,
S

- 9.8




- - (c) Man/Machine Interface

*x This section will vary in importance according
to the £ype of software, but shall always be included.
(d) Operational Environment

- Comments concerning hardware on which *he
software will have to operate, and hardware on which software
will be designed, coded, and tested.

- Statement of related tasks which may affect the
applicability of local standards and the re-use of existihg
software.

{(e) Feasibility
This section contains users’ inputs identifying

areas in which feasibility may require study, and reference
(;& material which may be useful in the determination of

feasibility in any of the categories mentioned in the

feasibility assessment.

(f) Management Information

* Preliminary information should be given to

assist in prcducing estimates of time and cost for the

;; Software Requirements, Preliminary Design, and Detailed
Design Phases, and for total software costs tc delivery. . - fj

Dates on which the working software system will be required ;};i

" should also be given where approppriate. -
- e. Methods, Tools, and Techniques ;ﬂfi

The recommended methods, tools, and techniques for &

. various types of design projects include:

126

e TR . P LT Cet L te
I R U S S N T e PP R N W U SRV R




...... Sal g X R AN L e S T v o mT

T

. Gane - for data processing systems; Eg;}

e SADT - for real-time and embedded systems; Eii
LDFD - for data flow representation;

Chen Entity-relationship - for database systems

representation;
Data Dictionary - for documentation; -
PERT/CPM , GANTT charts and status Report for planning

and development control.

2. Software Requirements Definition (SR)
a. Introduction
The objective of this phase is to come to a complete,
validated specification of the required functions,
(i; interfaces, and performance for the software product. ;&:1

* This phase should establish what should be done and not

how it is done.

b. Inputs to the Phase
The input to this phase is the Users Requirement
Document, supplemented by any further information.
c. Major Activities

(1) Identification of software Requirements

In this step the requirements are collected. To help S%E
this process some types are established, such as: Functional
requirements, perfomance requirements, interface
requirements, operational requirements, resource

requirements, safety requirements, reliabilty requirements, RS

127




g 0t . . .
L= a0t 98 0.0 p 0'0 e A0 8% ¢ o 4 u’ atg 4 r YO v

r

P
e
el

3

iz \ﬁis and maintainability requirements.

. Apart from these types of requirements, there are other

S requirements based on economic considerations and scheduling

i constraints. These too will reflect back into the above

" mentioned types of requirements and detailed trade-offs have

- to be made in almost all cases.

? Other considerations related to requirements include the

i establishing of attribu;es to allow guidance of requirements ,,‘J

_; in such a way to avoid ambiguitity, make them complete, ﬁ'ﬂﬁ

5; consistent, and testable. s ;i
<

.‘ .l

(2) List of Acceptance Tests

* During this phase a list of acceptance tests shall

.

"
o0
+ 1-.
[N

e
L
'

!H:At
23

Tt
K v"f.

always be collected. This will be used to generate the

0
Y
A

’
K]

0
o«

“r-r r
v
Ty
A
* A

-
Ve
.r'

software Test Plan Document (TPD).

P

(3) Cost and Schedule Estimates
At this stage of the software development cycle no
design yet exists and cost and schedule estimates cannot be
- : based on number of modules or on number of lines to be coded.

. Therefore, the estimates can be based on comparison with

similar systems or use parametric models based on analogy

% base database. .
d. Review e

* % The SRD shall be formally reviewed through the
software Requirements Review (SR/R). Participation should
o include the user, the operations personnel, the developers

-2 (hardware engineers and software designers), and the managers

128

N

e e e e e e - S - -
L e e e e e e e e e e T e e e e e T e e

2 LN, . o LT T e e T e T L Te T T T T
AP VI N R TP PR A . P P T A I PN

-~ e e e, D N R RSN ;
S S S T e N m T T et T e e e T e T )
. L L P R N AL L R N AN T N . -~ ME AT RRY
<o Lt ettt LIRS ) L ~ ~ ~ e ‘.
P TR Y PR P AR SRR PSRRI S ES SRS ACKY e




concerned.
The Software Requirements Definition Phase terminates
with the formal approval of the updated SRD after the SR/R.
e. Output from the Phase
*x The deliverable items which constitute the output from

this phase shall be the Software Requirements Documents (SRD)

*x The SRD shall always be produced for any software
project.
* In terms of software requirements this document should

be independent of any implementation detail. In other words,
at this stage, the project should still be open to various
and distinctly different possible architetures and
implementations. The analysts and designers will have to
evaluate them in the following phase and finally select one.

The SRD should include a development plan and cost estimates.

3. Preliminary Design and Testing Plan (PD)

a. Introduction

The aim of this phase is to design the general

architecture of the system fulfilling the requirements laid
down in the SRD and, to detail the implementation plan in
response to the SRD. The system design should be represented
as the composition of the solution to subproblems displayed
in a hierarchical structure of components. The preliminary
design is complete when the project leader can split the

subsequent project work between teams or individual team

129




~ e - .. [ ey - . - - & o T A ol =y F T =T

members. The individuals should then be able to continue with

; the Detailed Design phase, working almost independent of each ,gf
other and using the interface definition given in the :::
Preliminary Design Phase. Eig

This phase may involve several iterations based on gfg
alternative assumptions. Particularly in the case of A
0

important, critical, or highly interactive systems, the ;ﬁ%
implementation of prototype software to verify the Eg;
correctness and the impact of the basic assumptions should be e
considered. ifv
Another objective of this phase is to elaborate the Test ’ 5;5

Plan which is based in the requirements definition and %??
specifies the test conditions for acceptance testing of a E
- computer program. : Eiz

»
b. Inputs to the Phase

The input to the Preliminary Design Phase is the

Software Requirements Document (SRD).

c. Major Activities ;;3

During this phase the following activities shall be 35;

performed: ;?%

(1) Decomposition of the System; ;fﬁ

(2) Functional definition of the components; ;

(3) Definition of the data structures; i_

(4) Computer resource utilizitation study: SR

(5) Test Plan; :fj

(6) Development Plan and Cost Estimates; Ef?
-2
W~

130 i




LS Sl

At al-.' . '.-AIA s LA aC L N AR SR A A CENT A il R SNy ot S by oo g gl ieg o
s

o,

. (7) Choice of programming language.

jy- * The choice of the programming language should be done

at the very end of this phase.

a 0
5 d. Review e
. i
ﬁ * The PDD should be reviewed formally by the users, : Ay
Y }';-."c
computer hardware and software designers, and by the managers —

v . »

concerned during the Preliminary Design Review (PD/R). Its fgi

: approval constitutes one of the major milestones of the fgf

project. The TPD should also be reviewed at this point. -
e. Outputs from the phase

i * The formal outputs of the PD phase sﬁall be the

preliminary Design Document (PDD) and the Test Plan Document
(TPD) .
* The PDD should include a detailed development plan

and cost estimates ﬁor the DD, TR, and the OM phases.
f. Methods, Tools, and Techniques

Top~down and modularity should be the approach used

in this phase.
The recommended methods, tools, and techniques for ;gi
this phase include: 2';
Gane - for data processing systems. éf,

SADT - for real-time and embedded systems.

LDFD - for data flow representation. ;ﬁ;
i . Structure Charts - for preliminary design. ‘ ;;%
E- Chen Entity - for database systems representation. E§§
‘ Data dictionary -~ for documentation. ‘EL




»_..

[¢ -‘._v

SR

The programming language, HOL, should be chosen at this ﬁfg

‘.\-':'J

point. Assembler languages should be selected only for very QEQ

DD

specific and justified reasons. S

e e

ACAAN

4. Detailed Design (DD) PRGN

P

L

a. Introduction Iy

LA

In this phase the main components of the software ey

system are defined. They can be baselined and the project can Z}fﬁ
proceed to the detailed design of software. '3

After several iterations in the SR and PD phases, the N

requirements should be, a this stage of the software life
cycle, completely defined and baselined and the architecture
of the system definitely designed in terms of hardware and

software structure.

During the DD phase the lower level components
defined in the PD phase are further decomposed until reaching R
the module level. Modules are then designed, coded and module
tested by individual team members. As each team member
declares himself satisfied with any particular module, he ~TT

passes it to the project librarian for inclusion in a "Tested

Module Library". From this library, verification personnel
select modules to build into System Versions to be verified. —

As particular Systems Versions are verified they are passed

.
S S

to the project librarian for inclusion in a "Verified Version
Library". —
It should be noted that any change in requirements or

in the architecture of the system while, still possible up to F;S

132

SRS
LIRS
VAT WD P YN




-
Ta

this stage, become increasingly difficult and expensive to
deal with from now on. It is therefore extremely important
not to start this phase if there are still doubts, major open
points, or uncertainties in the requirements or the
architectural design.

There is no point in starting code and testing
activities if the computer, the operating system, and the
system software are not available and sufficiently reliable and
stable.

b. Inputs to the Phase
Inputs to this phase are the Software Requirements

Document (SRD), the Preliminary Design Document (PDD), and the

Test Plan Document (TPD).

c. Major Activities

The SIMAER methodology is based on the three
following principles: top-down construction, structured
programming, and concurrent design, programming, and
documentation.

The activities in the DD éhase are driven by these
principles, which affect both the organization of the work
and its actual implementation.

(1) Organization

The functions described hereafter are necessary
irrespective of the size of the system to be implemented and
of the team organization involved in the implementation.

The functions may all be performed by one person in

133




b acaa DA AA S S e e i i S e

small systems or be assigned to different members of the tean

N in larger systems.

(a) Project Leader

MR - Vil e PRl N COUEIE

The project leader should have a good

R
L]

.
."'

understanding of all the parts of the system, of the external

interfaces, and of all the internal interfaces between the

bx 2

various sub-systems. The project leader should take care of

the relationships with the external world, and organize,

! plan, and control the activity of the team.

E (b) Team Leaders

&- * Teams of 3-4 persons should be composed. Each team
!f should be concerned with one or more sub-systems and should

have a team leader.
(c) Project Librarian

Essential steps to ensure the quality of the
software are the reviews carried out at various stages of the
development and version control of the code and documentation
produced. The coordination of the reviews, i.e. the
distribution of the documents, collection of the comments,
preparation and distribution of the change notices, and the
version control should be assigned to the librarian.

The librarian should be given responsibility to
maintain the master copies of all design documents, source
and object program-files, source listings, and load module
files. Any update to any of these files should be done

exclusively by the librarian according to project

134

O

"""""" B T M LN T L R L
R Py I TR T TR O I Y B T e




configuration control procedures. Other members of the team
L may copy elements from the various files but are not allowed
to update any element of the project files.
2 (d) Documentation Support
: . Another centralized function is the documentation
support.
** A project shall have appropriate secretarial support
to produce the documentation required.
A typical structure for a development team with 3 or
4 subsystems could be of the type shown in Fig. 38.

For larger or smaller projects, the structure may have
to be modified as a consequence of the number of people
involved.

It is a good practice for each team leader to be capable

=

! of backing-up the team members, at least for critical

LR
L W

functions. The same applies to the project leader with

respect to the management functions of each of the team

X

leaders.

Once the organization of the development team is
o defined, the project leader should proceed to define the
design, coding standards, the naming conventions, the error
handling procedures, and the development and operational

procedures.

- 135

- Al e S e T i P I A T S S SO A T TR TR WA SR
.........

R RN P R T T T R S D T
LR L P . e e e R A 7 e T T e LT et e e e e e e
o T .., LR O AT S el | . W . e et e e PN S I LR PSR I PP T L P
PN, L ST S .S 3 At dnhindady FUFL VRS PEW i‘li“"". P VIR WA W T A T Ay i S P,




LA

[y

AL AL
PRI SIS LN N Il

I Project
| Leader
|Project Librarian
lamd Documentation
Support Functions |
l l
Team Team Team |
Leader Leader Leader
I Sub~System 1 | | Sub-System i | | Sub-System nj
Members Members Members
of of of
Team Team Team
1 i n

Figure 38 - A Typical Structure of a Development Team
(2) Implementation

The PDD defines the function of the various sub-
systems. Starting from this definition, the design proceeds
to lower levels.

The break-down process proceeds from the top. It
should be noted that, although the design should rigorously
proceed from the top levels down to the lowest, there are
some activities in a software development which are better
accomplished by not following this approach. Typically
service packages such as high level device drivers, or access

methods or routines, which are used by various members of the

136

. '-'- - . . - . . CT et R - N -~ .’..'-.'
. '.<_._, ‘.-.~.-_.~_.‘_.-_A~_.'-'.~‘.-_.-.-_.-.»_--'.~.~.'.-_.~.- N DN
e A N e et Py y s i y

) e e e e e s e e e e T e e e e
RPN AN IR LIV N WG % N Sdhnd ot il _AL- .A

~~~~~~~~~~~~~




development team, ought to be implemented first. This is also
useful in view of gaining experience with the programming
environment before starting a massive coding activity.

* Each level of design should be formally reviewed and
approved before proceeding deeply into the next level of
2sign.

*x The structure of the design shall always be reflected
in the identification system of the components and in the
structure of the Detailed Design Document (DDD). In other
words, the content of the DDD shall have a one to one
correspondence with the levels and components into which the

system is broken down.

(3) Coding
(i; * As the design of each module is completed, reviewed,
and approved, the module can be coded following the coding
conventions. These conventions should include in particular:
(a) coding standards for "1 the languages to be
used
(b) rules for definition of constants
(c) rules for common code
(d) rules for insertion of comments, including
references to the DDD
(e) naming conventions for programs, sub-programs,
files, variables, data.
* % In particular, each module shall always have a
;%7 standard header with essential information (at a minimum,
137

L T B T T S T e T T L S
. . AR N O P . R B .

e -.'_-_’._-._ e e . O N U S NI NG N
DIV ALPCIN, o PP P PP S PSRRI PP I AU S '.'j.r PP APIDTIY P PO AT U G D AP,




identification number, title, function, date-coded, last
update and any other information as decided by the project
management, will be included). It is a good practice to have
this standard header in a file in a suitable form to be
edited, completed, and then inserted at the head of each
module.

* Once the coding is finished, the module should be tested

by the author to show that it performs correctly all the
tasks specified. Data and results of each test should be kept
for further tests and comparison whenever a module has to be
modified.

* Module desian documentation should be produced ;35?

concurrently with detailed module specifications, module :ﬁ,g;
i \s coding, and testing. In other words the Detailed Design T

Document (DDD) grows with the system and it becomes available

in its final form at the end of the phase.
I A fully tested module should be passed to the project -
| librarian in the form of code and related documentation to be
inserted formally in the tested module library.
Upon delivery of a module the librarian should formally
check its compliance with coding and documentation standards.

** For progress control purposes, a module shall only be Eil}:
considered completed when it has been formally accepted by
the project leader or person designated by him.

(4) System Integration and Verification

g Following the unit testing and the implementation of

138




DR R N S

P
oFa

A .

IS Nl VN . ~-.‘-_-'
- - - - . v ARSI SR - » -
EIPNCMAY. PRV, PR AR W VAT AP L AP P S I T IR,

special software and data sets which have been identified in
earlier phases in preparation for the Transfer Phase, modules
are integrated into sub-systems, and eventually into a
complete working system. The results of the module tests and
verification are collected in a test file which is made
available for review during the Transfer Phase. When
substantial subs-systems are completed and veritied,
evaluation of the correctness of many of the decisions made
in the requirements and design phases can be made.

(a) Integration

Where possible, integration should proceed in a top-
down, function by function sequence. This means that the
complete system should be integrated at the highest modular
level using *stubs" to represent lower level module. As
modules are completéd they replace the stubs. This approach
lessens the impact of problems associated with system
generation and configuration. It is useful to use the project
librarian as part of the integration team to generate the
system, since this minimizes configuration identification
problems.

Implementation of a system function by function
allows end users to gain experience with significant parts of
the system at the earliest possible date. This in turn
increases management confidence that the project is

progressing satisfactorily.

AR A A LA e it et

RiRaPe Jant St 4




Al o o e g 2

W)

NS (b) Verification

Purpose of Verification

In all but the smallest systems, it is unrealistic to

- '...‘ .”' ‘-'u-'.i AT

AL

expect that a set of tests can be carried out in a few hours

’
e’

or days and give a complete verification of system

oy
" 4-1
.5 .

performance.
Verification should start as soon a system version with at
F least one verifiable function becomes available. Sufficient
v time should be allocated to this activity.

The purpose of module testing is to demonstrate that the
individual modules meet the design specification. The purpose
of verification is to show that:

(1) Modules work together in the manner foreseen in the

design specification. This aspect may often be left to module
design, code and test personnel.

(2) The as-built software satisfies all the formal
requirements as expressed in the software requirements
documents.

(3) The User's Manual and the software agree.

This aspect of verification is often ignored because of
poor understanding, thus resulting in bad relations with the
end users.
Organization of Verification Personnel
: For large systems it is highly recommended that the
%J o personnel who perform system verification be independent of
.

140

.............




Al T -_'~ LA '-‘.'ﬁ,.(-w:\‘. W v_-_-v» (.‘;‘_“_"F‘l_".v.v.‘.'v'.‘T“'_'\'."—v Yy ) “-A-.v _w_-» Adab AN ‘r_w:':-.- PR Atk U i it Aeihn i sl Rralfaluiatn et o he= 20u Aleca)y gbe 2ty Sl 4 TYUWIw WYY T
v." .‘_'

< Ut N
S,

fo e

LYy

those responsible for design, code, and unit test, at least

- within the software project. This technique is useful to
avoid the mental distortion of requirements and operational s
interfaces which is inevitable from personnel who have been .
working closely with the code for months, or even years. In
particular, the alternative point of view brought to the ree
product will illuminate areas which the system designers have |
thought unimportant, or even in the worse, ignored.

(c) Preparation for the Acceptance Testing

The Test Plan Document (TPD), which has been

;{ prepared in outline form during the PD phase, is completed by

T the addition of full operating instructions and data s

references needed to carry out the acceptance test Cﬁq

procedures.
d. Methods, Tocls, and Techniques Dol
The recommended methods, tools and techniques for o
this phase are:
Gane - for data processing systems;
SADT - for real-time and embedded systems;A EQ%
LDFD - for data flow representation; ‘
Chen Entity-relationship for database systems -
representation; |
Data Dictionary =~ for documentation;
Pseudocode - for representing the logic of modules;
HOLs that allow for structured programming;

Classical teaming - for personnel allocation; and ff:

141 o

PR Ve e e e e T e e T R Y .. D A T O NP E P

oo S A L Y - L. - e GO .
VA S S AR N O R R PR N e T e e LT S NP A P N S S AT S U TIPS
e iaitnde PN TR TS S S TS PP U, . VR AP W AP R Ry o WL T R oy g,




e T e e et “ e . e ; . N T T T TP Y o I R A )

- .
- n.. ¢-. . " MRS Ve .
N e A e

PERT/CPM, GANTT Charts for development control.

e. Review

In the DD phase, the design proceeds in a top-down
manner. Whenever the design of one level is completed, ghere
should be a formal review of it.

The purpose of these reviews, to be held at each
level of the system, is to verify that the design of the
level being discussed is correct, and its documentation
contains sufficient information to proceed to the
implementation of the components belonging to that level, and
to the design of the lower level.

The project leader should participate in these
reviews, together with the team leader and members of the
subsystem teams concerned.

In addition,” each team leader should organize
internal walk-throughs to check module specifications and
code.

The code, tested at module level and verified at sub-
system levels, the DDD, and the UM, in their final versions,
shall be subject to a final review (DD/R). Upon satisfactory
completion on this final review the system can be declared
ready for provisional acceptance to be performed in the
Transfer (TR) phase.

This is the major milestone which concludes the DD phase.

e. Outputs from the Phase

The outputs from the phase shall be the Code, DDD and

142

- - RPN e e R )

R T TR AT M L I - R ENSE et
. B T T A S L it U TSR Y U P C et Pd

ORI W ATt et

- -
N R . e
IR m Nt aaT At S . R WA )8




[N A M

i N2
w¥ate

a4, &
b Sal Py g

I

Vs

o

UM .
(1) Code

Each verified system version, including
procedures, is delivered to the project librarian, who puts
them into the verified version library. There may be various
versions of the system available at certain times before the
system enters into operation, and the project librarian
should control all of them, i.e. it should always be possible
to establish a relation between a version and a particular
set of requirements.

(2) Detailed Design Document (DDD) and Users Manual
(UM)

The DDD and the UM are evolving documents. They
initially contain the sections corresponding to the top
levels of the system. As the design and code proceeds down
through increasing levels of detail, the related sections are
added.

The DDD should contain the following information:
project standards, conventions, procédures, detailed design
specifications, etc.

The UM contains information needed for the users
of the system, and the information needed to operate the
system. The latter sometimes is called the Operator's Manual.
The two categories, users and operators, may coincide in some

systems, but the two distinctions should exist in any case.

143




5. Tranfer Phase (TR) ;Ebﬁ

a. Introduction i&i

" The main purpose of this phase is to establish that r'::\.

the system fulfills the requirements laid down in the SRD. ?EE;

Tests are performed according to a test plan, and should also ﬁéi

- include a check of the gquality of the programming and S;;

E; software documentation. The test plan should have been i?é

il prepared during the DD phase. The test plan and the results Eﬁi

t. of the tests should be compiled in the Software Transfer T
Document (STD).

' Since acceptance tests are based on the users' - ——

requirements, there are a wide variety of tests possible. It
is the responsibility of the author of the user requirement

- document to ensure that it will be possible to ascertain the

correctness of the final product and to lay down the

principles by which this will be achieved during the Users ?u
Requirements Definition (UR) phase. -
b. Inputs to the Phase . S
(1) Description of the principles on which the
acceptance tests are based.
(2) The TPD including:
(a) The definition of the hardware on which the
acceptance tests are to be run.
-(b) The full list of tests to be run, i.e. the
tests procedures. ;{5

° {c) The software test files covering the results

144




i

of module test and verification.

C. Major Activities ) .7

A
5

(1) Performance of provisional acceptance testing.

r
7
"

ga
.

-

(2) Correction of errors found in the acceptance

testing.

(3) Record of reception of all deliverable items in

the Software Transfer Document (STD).
d. Outputs from the Phase

(1) Statement of provisional acceptance.

(2) The provisionially accepted software system on
computer support ready for submission to operations staff for
final acceptance.

(3) The Software Transfer Document (STD).

6. The Operations and Maintenance Phase (OM)
a. Introduction
Once the system has been provisionally accepted and is

entered provisionally into operation, it should still undergo

a final acceptance test with real data, to demonstrate that

it meets the reliability and availability requirements

defined in the SRD.
The period during which the final acceptance testing .
is made is called the validation period. 1t begins
immediately after the provisional acceptance has been
pronounced and finishes when the system can be demonstrated
to run stably with a defined minimum level of performance.

At a certain moment in this phase, related to how the

,.4 fr fl r' ’I ‘l

145 "
-
N
ALY
)
* -
-
-
-—
.
Tt e e T e e e e S N A N R R R E IR I . .
. RICRCLINLINR . . >~ . R A A S PO, .
et e s T A T e L e S R L S NN PR e
P MOV I P T PRI AR WA IR N ha et




reliability and availability requirements are defined, the

£ &
.‘.,'.’.‘.

system can be declared finally accepted.

=

)

b. Inputs to the Phase

"y =
i

(4
o X,

Input to the phase is a full set of the following

L
E AN

AR |

-
s
e,

documents (where applicable) together with at least one aasal
version of the product which they describe: s
(1) Users Requirements Document (URD); :
{2) Software Requirements Document (SRD); -
(3) Preliminary Design Document (PDD){

S (4) Detailed Design Document (DDb);

) (5} Users Manual/Operators Manual (UM); and

(6) Software Transfer Document (STD).

LR

AR
PRE RS

The Software Transfer Document (STD) will record all

13
U
Fio

Vet

! \s tests carried out on the product which have led to
provisional acceptance.
Provisional acceptance is the formal milestone marking
the start of the Operations and Maintenance Phase.
c. Major Activities
(1) Maintenance
** Every software product which has not been
‘3 dismissed shall have at least one person designated as
» maintenance programmer.
l ko All projects shall follow a formal, written

problem identification and working procedure. A normal medium

for establishing such a procedure would be a software problem

~% report (SPR). The objective of the SPR is to identify the

o'
,

\
2 I

AR A

ot e e
s, ., o
',' »

”

-
o

.
NN
AN
-
t.-

\'.
- 146

o

)
e
s

-
»

A

..........

. - . . . . . . - - - . - >- .

T e e Tt e te ot et . . PR RN LN R L P L B PO
L AL . PO N S S T St SR I L S A R S L B S
PUREIR I PRI SR AT m P o L PR PRI I PV GV T DRIUy TRy Wiy Uiy I, Ty Yy e, VO iy




problem and if necessary to initiate the mechanisms for

updating the documentation.

The maintenance activity can cause regression to any
phase of the life cycle. For example, a problem may be caused
by a failure to implement the software detailed design in the
code, it may be a new user requirement, or it may simply be a
misunderstanding on the part of the user.

The maintenance organization shall classify problem
reports according to the degree of regression in the life
cycle. This in turn implies which documents need to be
changed, and what testing needs to be performed.

{2) Operations

1

Reponsibility for operation of the product usually.

L

.,

lies outside the organization responsible for the product
development.

Following problem repair, software shall be re-
released to operational use.

d. Outputs from the Phase

Outputs produced during the phase are:

(1) A final acceptance certificate;

(2) A Project History Document;

(3) One or more sets of software documentation
relating to the current versions/releaseé;

(4) One or more set of source and binary code
corresponding to the released versions of the product; and

;g%~ (5) A record of problem identification and change

147




Lol 0 g v ety Sl b gl Ko it Mgl Sonph t B 808 S a4 f?l‘ﬁ“ﬂ"‘&
[

activity with respect to the product.

- .
.
. o

5.3 Implementation Plan

.

The implementation of this methodology should be

D

Yy e,

e s ,
R .
ot

executed in four steps. First, the CINFE should review this
proposal, next the two most experienced organizations in
software development within the SIMAER, CCA-RJ for management
information systems, and ITA for embedded and real-time

i! systems, will train their specialists in the standard

software life cycle and in the recommendend methods and tools

for six months. Such training should be done not only at a

theoretical level, but also at practical level by means of

actually developing a system. After that will come an

evaluation period and, eventually, the necessary corrections.

Once the methodology is corrected and/or improved, there

should follow a gradual and regional extension of training

and regular utilization by the entire SIMAER.

A tentative implementation plan schedule could be the

one shown in Fig. 39.

5.4 Cost

Most of the cost for the implementation of this

methodology will be absorbed in the regular personnel wages.

However, some indirect cost, such as the time spent to learn

a yet unknown method and tools, like SADT, should be

considered, although difficult to quantify. On the other

hand, one cannot lose sight of the consequent benefits once

148




RS ST e

RO - S R E, ey LN R A e A A IS e A et B ol Ba vl bt bt dor b+ e aua

the methodology is learned and used all over the SIMAER.

8 6 : 87
PERIOD _ “

ORGANIZATION JAN|FEB|MAR|APR|MAY | JUN

CINFE

CCA-RJ

ITA

DEPV

DAC

DIRAP

DIRINT

DIRENG

CCA-BR

CPO

CISA

CINDACTA

CENIPA

COMGAR

COPAC

| o § e f i |t | o | v | | e [ owm | o | aww e | e | |
e [ |t o e e e Jonn [ o | e o | e e o | e | e |
v | ot f o f s | ommn | v | s | | amm | e oo | | | | |-

l
|
!
|
|
|
|
|
DIRMA {
|
|
|
)
{
|
|
|

SEFA

MNMinjouojaniaoajaunituaininiuoaijianjlaniailalea

,..
o o
c

.

- i,‘

RS
AP R PR

AFA l ‘

LEGEND

tew

(11
eee
xxx
$S$S

Review

Training

Evaluacion

Corrections / lmprovements
Reqular Use

[ I I I |

Figure 39 - SIMAER's Software Life Cycle Implementation Plan

5.5 Conclusion
In this chapter a standard methodology for the SIMAER
‘software development was proposed. Peters[28] points that
methods are important, but their successful appiication

occurs only in supportive environments. The proposed

methodology is patterned after the ESA approach, which

149

e et . -
IR PR LT T e
A T TR R

ot e S ts e et Te te Ve e
PPV S VLW Y T O . LR TR




establishes mandatory actions, recommendations, and guidelines. 343$;
This should allow maximum flexibility for the methodology, and e
will hopefully help establish a supportive environment in which
the methodology can evolve.

In the next chapter some actions that help to establish

this supportive environment are recommended.

j <o

AAS S

. 150

A PPN
ORI
BRI AL AP Wy



MACRA Tt I Syt S rade i Al N A o e 2 S Al s R M SO A o/ e A e et Ny

et Wt T Ty e A MM AR S A

- VI. Conclusions and Recommendations

6.1 Conclusion
After more than six months of research, defining the e
environment, searching for the requirements, diagnosing the s
| most common problems, studying and comparing the most common
methods and tools designed by the academecians and used by
several organizations, a SIMAER's Software Development
i Methodology Regulation was created and proposed. Its

acceptance and effective utilization, will require some

special ways of doing things, as well as some complementary

activities., These are listed as recommendations.

6.2 Recommendations j; -

i V;& This research did not intend to be exhaustive. At ;5;£
the same time, some complementary issues that should be a :

matter of CINFE's concern were found. They are:
1. Research should continue beyond this thesis effort in

N order to:

(a) Select and implement interactive, automated

i software development tools for the SIMAER.
(b) Select and adopt standard HOLs that allow for
structured programming to be used within the SIMAER.
2. The SIMAER should:
(a) Select and train its specialists in software

cost estimation methods as appropriate.

(b} Create a board for software standardization and

151

- .. ’-n -.-.'.\ - ....N' ..... '-.‘.. .":. ; ': '-.. ) '..‘...>~""'.~'. .‘...'
- N .."n NN . . o P I Se gt Ay

............. =
Satatal alast o2




O NN A A e A R g 0\ 2 Sy St Ul Cl G A VS S Y S Gl e Mt M Mt AL A P X R AR HCAAL Gt S el Al Aty . A A R n™

i control.
e (c) Evaluate this methodology and hopefully adopt it ;;i
' as a standard for the SIMAER.

(d) Update the current regqulations related to

software development requests and approval to conform with

Lo T s Y Y

the new standard to be adopted.

(e) Establish a policy for microcomputer selection,

acquisition, and use within the MAer.

It is a well known fact that software development is an g;ii
: activity hard to grasp. The main purpose of this work is to ;ﬁéf
}‘ make it less painful by giving training, combining the é-'
E} efforts, and sharing the resources and knowledge through the
i \o establishing of standard policies in the ADP activities E};{
N within the SIMAER. - 3?%“

",
s "
)

- v
‘- ‘., .-..
o _ .P~-
d

- -9
-’.v ‘__.‘ o
e o
e A
L T
) | J

cne '-':'-‘.*'.
pi] . -'\-' R
*e 152 e
": e .,‘ . k
.

'.




Appendix A

ror,

CURRENT SOFTWARE DEVELOPMENT SITUATION IN THE BRAZILIAN AIR

S e, L

MINISTRY: A SURVEY OF METHODOLOGY, DOCUMENTATION, GRAPHICAL

i \-_ REPRESENTATION, MANAGEMENT, PROGRAMMING, TESTING, MAINTENANCE
»

*  AND SUGGESTIONS

s o
[
g =
N
: .-
’
N

SOV T i e T e s
O B S

MAY 85

153

ot m L e e e e et . L% " T [P PR PR
- R P R L B L e U S S Tt e et e e T T T e e T e -

et LS P R T T e A . R L SN
A RSSO, PR TP R SRR R PR . q.i.il-I.il."li‘.i..'..'.l'.i'.i'.i = ot et ot n"‘r" o o o




W A B Alradin hg® ol Poo iR U i i i e Bt Sl Wl bl b 2 e
. AL
X

FOREWORD

This appendix presents the results of a survey of
seventy-nine MAer ADP professionals assigned to seventeen
SIMAER organizations. It includes information about software
development from management, planning, and control to

execution.

(;: My sincere thanks are due to the busy respondents for
[ 4
taking the time to complete the questionnaire and for the
many comments that they added. The information and advice

that they provided should be most helpful to my work.

Aparecido F.de Oliveira

.
'
-

Te £ ¥
S

(Y

154

LI . . PRy . - . - N - . e T S
. . [N . . .~ . . 2

D S Tt Tt T I L B LI IR N )
e e e e T e T T T N e
B T S et Sl el St 2Bl Lt ol 2 n a2 A )




AT
ottt
PPN P Y |

Foreword

I.

II.

III.

Iv.

V.

VI.

Introduction

® ® v 0000000000000

Letter of Transmittal

Population Polled .

Procedure ...eceee.

Results ...«

Conclusions

~

INDEX

Annex Letter and Questionnaire .

B

Rt A b i

155

.154
.156
.156
.156
.157
.158
.178

.180




s N e e Ay e e A R e e ol Wt - g pra ay TRTYYY. R Ty

T s
“"

=

«
A

NG THE SURVEY o

I. Introduction

As stated before, and based on past experience, it

seemed that few organizations in the MAer had a standard
methodology or used modern programming techniques for

software development. In order to figure out how ADS were

actually designed in the MAer, and to gather suggestions to AN

design a standard methodology, a survey was done. jﬁjv

D II. Letter of Transmittal

Each questionnaire was accompanied by a letter of

transmittal. This letter defined the purpose of the survey

\s and requested the individual's collaboration in answering the

~ BT

questions.

III.Population Polled

Cost, distance, and time considerations, allied with

previous knowledge, lead to the choice of the subjective

:E sampling technique([2]. Sixty-three system analysts/designers oS
- and sixteen programmers that were felt to better represent R

the population were hand-picked. The intention was to draw -
;. upon the experience and knowledgg of the most experienced i¥: 
ET professionals in the SIMAER. All of the seventeen ' 2:23
;, organizations within the SIMAER had at least one ;
E: . representative. The professionals, experience on data ~;ﬂ$.

156




processing varies from one to twenty-one years . Of the
seventy-nine questionnaires delivered forty~two replies were

received (fifty-~three percent return).

v, Procedure

The data and comments were gathered through a mail
survey of the ADP specialists. The subject areas covered are
presented below:

Questionnaire

The five-page questionnaire was composed of nine subject
areas with a total of twenty-one questions. Blank spaces were
provided at the top of the first page to be filled with the
name, organization, function, and answerer experience on data
brocessing. Following that there was a short set of
instructions on answering the questionnaire, after which came
the questions.

Questions

The questions were classified by subject as follows:
1.1 to 1.3 Methodology-Existed, Which, Standardization
2.1 to 2.4 Documentation-Types used, Phase where used
3.1 to 3.3 Graphical Representation-Types used, Phases
4.1 to 4.3 Management-Personnel Allocation, Control, Review
Methods
5.1 to 5.3 Programming-Languages used, Standardization,
Thechniques Used

6.1 to 6.3 Testing~Plan, when and How done

7.1 to 7.2 Maintenance-Types, Formalization

157




T TR T W T T

i

!\' LS

0

»'r\- L%

e

8. Cost bi’?
AU

. ~:.'.',-.'

9. General Suggestions LN

V. Results

As we are going to see below ﬁot every professional
answered or gave suggestions to every question. Concerning
the suggestions, most of them were more comments rather
suggestions. It was felt that by in large, people seemed not
to want to commit themselves, rather taking the approach of
"jet the boss decide". However, some of the comments were
very useful.

The responses received to each questions are presented

in the sequence below:

1. Method

1.1 Does your organization use any standard method for

ADS development?

No organization has established any standard method. The

most commonly used are shown in Table I below.

" * N
L L T

s I
e
Ve
.-.!

.

158

LY
O

./
«

T
v

S

EaRS e SR R S Y T S S SR P P
NS et gt e W T et B AT M

L ot - " S N S S S S T S I .
POy .].-..ﬁll'llll.lllllih"‘ CUA T DT WA DAL AT PR AP U U PR T iy R R I




Ty T - .
LS S DA R A Ay (e, A0 ialiy b A, St Rt SRt P ety Astatrnd AOpt sig™s el a e it g8a 20 LA

\ -:'.-:'.‘
~ N:.l_:"l-‘
RN
- Ay
el Iz ._-_.:-".'
SN TABLE I e
i wbraindd]
o Methods Used by SIMAER'S Professionals )
b METHOD REPLY
. No reply 5
= Gane 9
HIPO 2
- Jackson 2
=N James Martin (BD) 4
No method _ 20
TOTAL 42
l
fi 1.2 In any answer describe which method is used

mentioning: phases, what is done in each of them, documents

- generated, advantages and disadvantages of the used

%E method, and source.

E This question should be divided into two other

. guestions: One referring to development phases, i.e. life

;j cycle, and the other on the method itself. Concerning the

;‘ software life cycle, it was possible to conclude that there

_; is not any standard, and also that the ones used do not

é consider the execution of reviews at the end of each phase.

E The question concerning the method itself; standard or
,’; not, was already answered in 1l.1.

. 1.3 What method do you think will best fit the MAer AN

S e e
159

- - » . g - - PR LA P ST I . " - - - A - -
o« e R LR R LN L S S S B LA YL B S S ~'a®.ta . * . L LT e e . Lt
[N PRSP ¥ BV TR L VAL VLS T R SR TS VL R FE P R SO OO ORL W8 PR T PP, WS W v i o

" ' - _ AN - T T -
- - - . - -
IRTIP PRTIN s WA




requirements? Why?
This question was intended to give a chance for
participation by the specialists, and to gather suggestions

for a method selection. The answers are shown in Table II

below:

TABLE II

The Most Suggested Methods for the SIMAER

METHOD REPLY
No reply - 23
Gane 14
Jackson ) 2
James Martin (BD) 3
; TOTAL 42
\,
There were also some comments rather than real
suggestions. They are:
- The one that best fits the developing organizations <
needs, the difficulty will be to make them follow it. e
- Some structured method such as Gane, Yourdon, or ;@3;
Jackson. The reason is because low experienced personnel can N
do a good job with them. :
~ 1 did not study them comparatively. I hope your
research brings us the answer.
- Top-down since it allows to have an overview of the
system.
X 1
160
AT
e e e e \‘.'.'
- Ce et o._-._ T e .‘-. .- .'. ..‘ St T S T, ..\.. -";’*‘ B ..-‘ .‘- - E ,.-._ ..; .."'_. N :- - .\..". ,‘_ .. o _'. . ~ -
I A W S P A R W R R VYRR -f.‘b LYW A-}_‘L-Sll‘ VWA YW 1;-‘.1*;.\‘ .L..}..lh-\~ L..y-\"hlih\.' .




- I do not believe that the MAer can have just one
method applicable to all sorts of system development. It has
to be limited to a management level.

- I do not have an overview of all the problems which
have influence on the several organizations in order to
suggest one specific strategy, though I think the adoption of
one standard method would be very helpful.

- The system structured method of Chris Gane, since it
is the most readable in order to have a general understanding
of the system.

- It would depend on the application area, for each a
specific method should be used considering the peculiarities
of the Brazilian Air Force.

- We should use the traditional waterfall model and over
it apply the techniques described in the Chris Gane and Trish
Sarson's book: Structured Systems Analysis.

- We are using the James Martins's method for database
design and I think this method would be good for the MAer.

- Structured Systems Analysis - Chris Gane, because a
lot of analysts of the MAer know it.

= Structured Systems Analysis - Chris Gane, because this
is the most known among the academia at Rio de Janeiro.

- Considering the system development decentralization
within the MAer and the programmers and analysts'
heterogenous training I do not think that would be advisable

to adopt one standard method for the MAer.

Uit ok b
' )

Ve
Hhat

AN
e

.
.-
.
DN
Farays

(2}
A

AL

(N}
PN

La »
(]




l'.
kY
‘.!-
AS

g
vl ts
s

<

..............

- Clearly it is necessary to discipline this matter. I
see with some concern to think that just one standard method
can be ajusted to a so vast field of applications. Indeed I
thiqk that would be advisable to divide the subject in two
levels, one broad originated at the information system focal
point (CINFE), establishing policies and rules for each step,
and another sectorial, allowing some flexibility in
accordance to each specific involved area.

-~ I think we should have one method produced by a
consensus of a working group composed with user's and the

CINFE representatives.

Summary of the Answers on Methodology

It was seen that most of the suggestions were to adopt
some of the tools and techniques suggested by Chris Gane[18].
This can be explained by the fact that the people who made
such a suggestion have graduated from the Pontificia
Universidade Catblica ~ PUC in Rio de Janeiro where this is a
text book for Computer Science Courses.

While most people think that a standard method would be
helpful, others showed some concern about having a standard
method due to the heterogeneous training and the diversity of
applications. However, it may be noted that this
standardization, in Rio de Janeiro area, essentially already
exists informally, using the tools and techniques suggested
by Chris Gane [18]. The heterogenous training can be

considered one more reason to have a standard method with

162

- . - » LRI A
TP P SR RPIE AP PN IS




g L..

9 s
» N

¥ AN
LN skill in using it given by a common tralinind. SR

s e F._..."..
l ‘-"\'
. 2. Documentation R
:u \.’N
- , . %
- 2.1 Which are the documents used in system 5\\‘
N : LA
:.‘ development?(manuals, reports, program documents etc). ;{:\, .:
! ~ Each system is documented in a different way. AN

3 TN
- -~ We are using some of the CINFE's forms for program T

i documentation. In some cases the user's manual is produced.

- This is the maximum we could get.

E -~ As I said before since we do not have a standard, it

N varies from person to person. Someone document the programs,

% other develop the manuals, a third does the report, so

nothing is predetermined.

- SIMAER's forms, System Manual, Operations Manual,
User's Manual, Gantt's Charts and Logic Data Flow Diagram.
E; - For programming and operation the standards SIMAER's
. forms, and manuals.

- None as an obligation, it is up to each designer.

- The Structured Design System's Manual and the User's

Manual.
. - The system's Manual, Program's Manual and User's TV
- . tw
_ X
. Manual. -
;' - In all phases are used non-standard documents. AR
" 2.2 In which phase each document is elaborated ?
ﬁf - Generally after the system is implemented.
!. .o - Generally the documents are elaborated after the
‘ 163
»
L L ',‘.L_;’_-.._‘.;:' ;;:.;::;:».;_',' e e e .‘-:,:.'_ DRSPS e ‘-\‘.. . t o '.-{_‘\'. -- > X P _.-:. el \_._,::‘;:}\‘ - DI .~ A‘.




NIRRT,

y e e e

-1e

i

-.'.‘ ., Ca e et
.-t tat Lty .

LV X
DRI 3

programmimg phase when the system is already implemented.

- Usually at the end.

- Usually the documents are done after the system or the
programs are ready.

- Usually at the end.

2.3 Who is responsible for elaborating, updating and
filing the documents during and after the system
implementation?

- During the development the project manager is
responsible for the documentation. After the implementation,
it is the user responsibility or it is responsibility of the
system development sector of the organization.

- The Development Section.

- The Analyst is responsible for elaborating; filing is
responsability of the project manager.

- During the implementation it is the system
analyst/designer . After the implementation it is the system
ménager.

- The system manual is elaborated and updated by the
system analyst responsible for the system.

- The system manual is elaborated and updated by the
system analyst responsible for the system. The program's
manual is started by the analyst and passed to the

programmers which should complete and update it. The user's

manual is elaborated by the analyst together with a user

164

...............

PSR L P D P L T T s T R I N e
..... 'A;;Lg;‘..;_-".-AA;.__zAAML.--~x~_AA-;q-v-._L.th.}L;z.;;;l-



\s

- A . Sl
[ A N L I S s [ Rl A DO AL e A R SR B R NN A S PRRA e Tt 2 LR A i SN w

representative.

- The system analyst is responsible for maintaining the
system documentation.

- The system analyst.

- The programmer in the programming phase and the
Development Section for the user's manual.

- The programmer himself, however if sometimes the
system or program lacks documentation another programmer will
document.

- The database administrator.

- Each analyst is responsible for his system.

- The analyst before implementation. After that the user
if his organization has an analyst.

- All the information will be stored in a data
dictionary and the DBA will be responsible.

- The system analyst.

- The system analyst with collaboration of the
programmers.

- The project manager.

2.4 In your opinion which would be the ideal documentation
for the MAer?
- One that could be used both for conventional and for
database system.
- Documentation automatically generated through utility
software.

- Such answer could only be given by a centralized

165

PR PR PENNE VA Y P

~ -4
ST

. .._.~._._,‘._'-_‘._J
S aedal o3 o be adoad




- 0 v " . R P - . . >
Al g Ao TR T L U L U AL TS A Gk St Lt gl KR S g AN N W, PO 2o wid - akg-asara i s R din e L

acal ]

T 4W Ta

e CINFE's organization and method group which would analyze the
i - problem during a significative amount of time (around one
year) and for a specific type of system (management for
example) .

i - A system structured manual, describing all the

system's development phase in such a way to allow easy of

. maintaining and a user's manual explaining how to operate and
‘ utilize the system.

- I have not enough knowledge to make such suggestion. I

have chosen this for being practical and simple. -;ff;

The one that should be chosen by the CINFE.

A system manual and a operation manual.

Data Dictionary.

\s - A documentation that represents the general consesus -

e
Y
S

-

of a users group of several organizatiions.

'
[ )

- The one that each programmer feels more comfortable to

elaborate.

R X
{ »
L)

- We should take the same reasoning as for question 1.3

(method), i.e., at a higher level we should standardize and

LI

at a lower level we should leave up to each sector without —
o losing the centralized orientation.
".: —_-
o Summary of the Answer on Documentation .
gj The CINFE has printed and supplies some standard forms
I for the coding and operation phases which are being used.
.,
L 166
»

c et e T N A AN v e el - et . R N e T A TR U T I Tt . RN AR
[PRIPLIFS DSIAEIPUA L Y WIS W AW P e ey ) AT . o 2tw g e n ) PPN Y, 'n IR NI v




Ol i i ir i a oA o M LS A o aSarc A A S A o= e e o - ited

EFA R

However, besides these forms no standard has been established

PN
)

.-
'

o

for the entire system development. Most of the professionals

know and produce the traditional system, users, and program

v -
3 4

manuals. Some people suggested the using of a data dictionary

and only one organization is currently designing it.

P F o L

Many people think that a standard documentation should
be the product of a consensus, and defined only at the top level,

leaving the details up to each organization.

3. Graphical Representation
Does your organization employ any type of graphical
representation for system development (HIPO, Jackson, SADT,

SREM, SAMM etc) ?

Answers:
Block Diagram - CCA BR, CISA, CPO, CENIPA,COMGAR, SEFA
Data Flow Diagram - CCA RJ, DIRAP, DIRMA, DIRINT, DEPV
System Modularization Diagram - CCA BR, ITA, DIRENG
Structured Charts (Constantine) - DEPV, DIRINT, DIRAP
Jackson - DIRINT, DIRMA, CCA RJ
HIPO - DEPV, DIRMA, CCA RJ
Skiner - DIRAP
Chen Entity-Relationship Diagram - CCA RJ
Note: The answers, although computed by organization, were
based on individual responses. It was found that in a same
organization different specialists use the same and/or

different graphical representation.

167

- o . ot St et e PR - -
RS T A P N IR St ey e
..... BARIAR AL R R R

S .
-t e®. s - AL T -t . PG . e Te st
..l-"d PRSI PR A e L.f&f PLICN, AL VR Y VR N AP n‘ PR NI AN




T R T T T T ™ N o W i Wy ™ W= W W~ =, (=a = R VT
o

The results, by individual response is shown in the

Table III below.

ALY
TABLE III e
Graphical Representation Techniques Used by SIMAER j@%:
SN
TECHNIQUE REPLY
LDFD-Gane 11
Jackson 5
HIPO 3 o
Chen Entity-Relationship 4 o
Yourdon 2 o
Skiner 1 L
Block Diagram 3 o
Structure Chart 4 N
System Modularization Diagram 3 ;_Y
No Reply 11 T
' TOTAL 47
\s
Note: More than one technique is usually used in one f'
project, thus more than 42 responses are shown. ;
Suggestions for Question 3.3 ——
~ Considering the system development decentralization in
the MAer I do not see any advantage in standardizing a g
graphical representation. +~%
~ Chris Gane and Jackson because is easy to learn and -
use. .
~ I believe Jackson, Yourdon and Gane being some of the -
most easy to build and interpret.
- Any since we give training.

- I suggest HIPO because it allows the documentation —

168




parallel with the development.

- I think that Jackson would be a good suggestion since
the five phases that compound it are enough for a gquick and
easy understanding of the system. I am happy with it.

- Chris Gane due to the easy of understanding.

- Jackson allows easy program maintenance.

- Jackson for program definition because it limits the
programmer creativity, making the program easy to maintain.
DFD for a logic system overview, makes it easy to the user
understand the system allowing him to participate even
without having ADP knowledge. HIPO for the system operation

flow, because it is easy to document and maintain.

Summary of the Answers on Graphical Representation

Again there is no established standard. It is up to each
analyst/designer or programmer to choose. The most commonly
used and suggested to be used by the SIMAER were: Gane's Data
Flow Diagram for system analysis, Jackson for programming,
HIPO for fhe operation phases, and Chen Entity-Relationship
for database.

The main reasons for using and suggesting those were:
Gane's DFD - easy to use and interpret both by the analyst
and the user.

Jackson - allows easy program malintenance.

HIPO - because it is easy to document and maintain.

4. Development Management

169

e
»

[-.lj..':". " y n‘

ERR A

r a5 Y
PR .

s

It




afals
. ’

N

\'o

g
B

..".".

4.1 Personnel Allocation

4.1.1 As you know there are several ways to organize the

ARt i arl Ae ol NEh P Lol ik ae e .

programming team. Which one is adopted in your organization?

All organizations use the classical teaming.

4.1.2 Considering the MAer peculiarities and its

implications (military, hierarchy, duties, TDY etc) which

would be the best teaming to be adopted

?

Answers are shown in the Table IV below.

TABLE IV

Suggested Teaming for the SIMAER

TEAMING REPLY
Classical 26
Specialist 4
Democratic 3
Chief-Programmer 2
No Reply 7
TOTAL 42
|

Comments on questions 4.1.1 and 4.1.2

- In our organization we use the classical teaming

mainly due reasons related to hierarchy,

however this kind of

allocation brings a lot of problems, mostly when the natural

evolution of a programmer occurs, sometimes when reaching the

same level of an analyst, he stays with his capacity limited

due to his seniority. Here comes the questions; subutilize

him, or utilize in functions incompatible with his grade ?

170




.......

- For the military organization I think the classical is

the most suitable.
- The classical teaming is giving good results in the

database development.

Summary of the Answers on Teaming

All of the organizations use the classical teaming which
is obviously linked to the hierarchical reasons. At the same
time some people pointed out that this teaming approach is
also a source of trouble whenever a lower rank specialist
reaches a skill level of an analyst. Even so, by far, the
classical organization was the most suggested teaming type,

even recommended by some sergeant programmers.

4.2 Development Control

4,2.1 Does your organization use any type of control
development (Status Report, PERT/CPM, Gantt Charts etc) ?
Which 2

Answers:

Status Report - CCA BR, CISA, CPO, CENIPA, COMGAR, SEFA,
DEPV, DIRENG, DIRINT, CCA RJ, DIRAP

PERT/CPM - ITA

GANTT CHARTS - ITA, DIRMA , DIRAP

4.2.2 What is your suggestion for the MAer ? Why ?

Answers in the Table V below.

171




TABLE V

Suggested Development Control Tools to be Used within SIMAER

TOOL REPLY

Status Report 3
Gantt Chart 6
PERT/CPM 8
h No Reply 25
- TOTAL 42

Suggestions on Question 4.2.2

- Statusrreport for being more objective, easy to do and
-0 understand and because it gives best results.
‘ - PERT/CPM since it allows for corrections during the
project development:

- A standard should be adopted by the MAer and its

accomplishment enforced.

~ We use the status report. We tried to use the PERT/CPM

but it was hard to come up with a reliable time estimate for
the tasks. —m;ﬂ

- For large systems, mainly if done by contractors, I

suggest the PERT/CPM; for medium or small systems Gantt .
" Chart. é&xj
‘ - PERT/CPM because it is well known by most of analyst :
' and programmers of the MAer. .S
. AN
- . - Each type of development requires a specific control. ~ _!

172 e




-‘4‘

~
L]
-
-
-
~
-

by e
. .

Pl ]
ety

In some cases, several could be utilized at the same time,
one complementing the other.

- Status Report because it does not require any specific
knowledge for understanding or elaboration.

- PERT/CPM to make it possible to follow up the

development as a function of expected results.

Summary of the Answers on Development Control

v,

<.

Most of the organizations just use the status report
because they feel it is more objective, and easy to do and
understand. However the most suggested for adoption by the
SIMAER was the PERT/CPM, because it was considered to be well
known, and also it makes it possible to follow up the

development as a function of expected results.

4.3 Review Sesslons

4.3.1 As you know there are several types of review
sessions such as: Inspection, Walkthrough, Circulating Review
etc. Does your organization use any type?

Answers:

INSPECTION - ITA, DIRMA, CCA RJ

WALKTHROUGH - DEPV

CIRCULATING REVIEW - None

4.3.2 Who participates of the reviews? How often are
they done?

- The development team

173




- The manager, analyst and programmers

. -

oo e - Users, analysts and programmers .

- Weekly

LR
A

>
Ll

.

Ayt e

e T3

g ‘r'. v
Ml
vy

- AsS necessary

25

Summary of the Answers on Review Sessions

Most of the organizations do not use any formal type of
review session nor have them scheduled in a regular fashion,
they just do it as the need arises.

" When asked to give suggestion there was a weak reponse.

Only one suggested the walkthrough.

D, 5 . Programming

5.1 Which programming languages are used in your
- organization?
r ‘_'; Answers:
COBOL - All of organizations
N Fortran - CCA BR, CINDACTAl, COPAC, AFA, ITA, DEPV,
DIRENG, CCA RJ

PL1 - ITA, DEPV, CCA RJ

o PASCAL - CCA RJ, ITA

ALGOL =~ ITA -t

BASIC

ITA . R,

CORAL ITA
LTD - DIRINT e
5.2 Do you think advisable to standardize some HOL for

the MAer? If so which?

e Answers in the table VI below. it

xXas

»
O
oo 80,

174

PR N

s,
“~
-
S




TABLE VI

Hols Suggested to be Used by SIMAER'S Organizations

LANGUAGE REPLY

C 1
BASIC 1
FORTRAN 2
COBOL 2
PASCAL 3
No standard 4
No reply 29

TOTAL 42

T,

4
.

Comments on Question 5.2

{4

- . . ..
r‘f_r‘r"r'l‘r‘ & L '.'..‘., e

- It will depend on the hardware and basic software.
Standardize is always good. The hard part is to make people
follow the standard.

- It will depend on the CINFE.

- I do think advisable to standardize, but without too
much rigidity.

- No, the languages should be adequate to the equipments

and the system involved.

- Yes, because standardize means to reduce cost.

- Standardization is a form of obstruction to knowledge
increasing, we ought just to advise on some languages for

certain applications.

- The language standardization always bring benefits to

175

I R L e e et e e et P RN . N . P . - PR P
e e -t . .- L A T oLt e P St -, . - N S
PR -~ A T T R P P S -, ,

v. 4-. 'v"': - N . .;. ~A‘ w . .. " - K . - R Y . o - - - 0 - . - - - M - »
NTSIRAIIV ST Y YU TSGR VOV SRRV OIS P AL FERL PR FOPOAETE TEVEVERE VS PRV VS 78 S0




the users.

Summary of the Answers on Programming Languages

The most common language used by all of organizations
was COBOL, followed by FORTRAN and PL1.
When asked if it would be advisable to standardize some

HOL for the MAer the answers vary. The main reasons favoring

standardization were cost reduction and benefits for the
users. The cons were limitations imposed on knowledge and
applications characteristics.

The most suggested languages in case of standardization

were: COBOL, FORTRAN, PASCAL and BASIC.

5.3 Which types of modern programming techiniques does
your organization utilize?

Answers:

MODULAR DECOMPOSITION - CCA BR, CCA RJ, CISA, DIRMA

PSEUDOCODE - CCA RJ, DEPV, DIRENG, DIRINT

TOP-DOWN - DEPV, DIRINT, DIRMAS

STRUCTURED PROGRAMMING - CCA RJ

Summary of Answers on Modern Programming Techniques

This question did not have a strong response, maybe

because of the way it was stated, however it could be infered
from the answers that the using of modern techniques 1is

viewed as being more a programmer option rather than an

organization guideline. It could be seen that the CCA RJ is a

e v v e, e -,
RN AR N
. )
* R
i ea
N . e
R
. ' o

focal point for training in the Jackson methodology for
NN .\__
N A
NN
176 NN
AT
(e Vo
L} 'Q‘*K"

.
<7
»
I's

.
.
P
/
ll a
. r 3

......................
............................
0Lt et




-
.
‘\
bl
-
[}
»
.‘

R, 52,8, 1,

N LN

-
LN

] s Crr
@SN
.l'l
BT 4

»

L

structured programming.

6. Tésting

6.1 Is a formal testing plan prepared for this phase?

It was found that in only three organizations a formal
test plan is prepared for testing. In the others tests are

done without a pre-established plan.

7. Meintenance

7.1 What type is more common in your organization?
corrective or for improvement? .

The most common, as expected was the corrective
maintenance; only two organizations stated they were also

working on improvement maintenance.

8. Cost

Does your organization use any method for cost
calculation?

Only one organization stated that they are testing a
homemade method base on an IBM standard. No further details
about the method were provided.

9. General Comments

- The harder part will be to make people follow the
methodology. Usually analysts wanc to go straight to the
design and coding phase.

- Your work will be of great value for the data

processing future in the MAer.

177

»..-.'.-;‘.‘;‘.\»'.‘.;',:,..:‘--. .. _:4,.3..‘_. e e e .. {"_.--".'-_.:~',' R . '.‘.'.‘h".'l'."'-' AR
I I D Y I R R A Sy BRI T L RICR




"_‘.'.".’.j.?.('.'..‘.7~‘-."'.'.‘.V'\r{r.v."'\rn'."-','."-"i"._',AV.'-'.-'-'-' D 0 - A o R iy W i Al A Andi gl Aol Ak, il b, Ayl S Lo =gl Sl S Y

- ... I think the MAer should implement developing
*55 methods.
~ Should exist one standard methodology for the MAer.
- I think that the adoption by the SIMAER of a standard

methodology covering documentation, graphical representation,

B DACMRTRURPASS * RARERN

personnel allocation, review methods, languages, verification
and validation, maintenance, cost estimation and other
issues, should be studied. However, considering the subject
relevance and complexity, I think that any definition in such
area should be the object of a working group study composed

of several representatives of the SIMAER's members.

4 "' o :,

.

- VI. Conclusion

» The SIMAER has not adopted a standard software life

i \; cyéle mcdel to be followed by its ADP professionals. The

‘ models used and foliowed individually do not consider the
necessary and current accepted practice of doing reviews (6]

. at the end of each phase.

R None of the SIMAER's organizations has developed or

i? formally adopted a standard methodology, in which modern

i‘ methods, tools, and techniques for system's analysis or
software designed are employed, to be followed by their ADP
professionals during system's development. However, as shown

r: ' in the Tables I and III, some professionals located in Rio

A, are familiar with and do use, informally, some of the modern

- methods, tools and techniques supported by Chris Gane([18],

?T .. Jackson[22], and James Martin(24] for database.

178
;.

R T 3 P T LN SR R T ST TP T S ST B C et et et e, R A S AT SRS ST St SNt U e S S
-y P R R S L P T e SR T | P L TR R 1 - -%a -

ORI O e e e et T . . IO G D SRR AR IR LU RN
LJ‘» PO SR T S LI S PSP SIS S I i A i I RO AR A A AP I PP I S Ar ¢ . AN v VY o e e A A




RATAZA RPN

P

W,

¥
.

<
.

7, .i' v,

Iy
"l’

hhas B ol TR

LS

e —

When asked to suggest some method to the MAer there was
a heavy concentration on Gane, followed by James Martin and
Jackson, as shown in the Table II._

While most of the SIMAER's professionals think that a
standard methodology (method + life cycle) would be helpful
and cost-saving, a few showed some concern about having
a standard arquing that the heterogenous training and the
diversity of the applications would not make it practical. The
survey showed that in a small but varied number of
organizations in Rio a standard almost existed. The
heterogenous training can be considered one more reason for
having a standard. A common training and practice would help
level off the degree of experience of veople involved in
system development. -

There is not at any level, a MAer documentation standard
establishing the minimal documentation that should be
produced during a system development.

Concerning system development management, the most
common teaming approach is the classical method, and the most
common control tool is the status report. This results in
very little planning, and mainly just control. Amazingly the
least used tool for planning and control was the PERT/CPM.
However, at the same time, it was the technique most
suggested to be adopted. Most of the professionals know but

do not use any formal type of review technique. The

179

LA N e S e i e o Sl e



k)

il e

.
e
A

PLENNO

AL

Q

l 4

RO

statistics related to those findings are shown in Tables IV
and V.

For programming the most commonly used languages are:
COBOL, Fortran, and PLl. The extensive use of languages that
facilitate the use of modern programming practices is not
enforced. When questioned, a few specialists showed some
concern about the establishment of standard HOLs for the
SIMAER, arguing that they could not apply to every
application, and also would limit the professionals
knowledge. Any standard should establish a number éf
languages sufficient enough to cover several types of
applications. As far as the limitation of knowledge no
standard is supposed to be static, not allowing for
modification to implement improvements that certainly will
arise in this field. The statistics for this topic is shown
in Table VI,

In conclusion it could be seen that the problem is the
incomplete adherence to the modern principles of software
engineering. All the survey findings reveal the need for
training, policies, and standards that enforce the observance

of the referred principles in the SIMAER's systems software

development.

180

Ao s s A L R e AR

T S AT S
S acahiid P g Yy Y )




<

........

Dayton, march, 18, 1985,

Dear Friend

As you probably know I am attending a course in
order to obtain a master degree in Computer Science.

Such achievement depends on several requisites,
among others to do a research on a topic of the Air Force
interest and subsequently to present it as a thesis.

Looking for to accomplish that requirement, as
also to propose a solution to an Aeronautical Ministry
problem, I decided to design and suggest a standard Data
Processing System Development Methodology to our ministry.

Considering the special condition in which I find
myself (far and with a short time) I decided to elaborate the
annex quesﬁionnaire locking for to obtain:

(1) Information on éhe current stage on data processing
system development in the MAer.

(2) Suggestions in order to design a standard methodology.

Finally, due to all the considerations above I
ask the colleague corroboration in answering, until the
second of may, the annex questions and return them to Col
Victorio Baptista da Silva-CCA RJ, which will redirect them
to me.

Looking forward for your corroboration I send my

sincerely thank you.

—Aparecido Francisco de Cliveira - Lt Col

181

.............




- e
” SURVEY ON DATA PROCESSING SYSTEM DEVELOPMENT IN THE MAER ale
o AN '; N
™ I. GENERAL DATA Do

1
P

AR
LS N A )

Y
L,

EESRIAEA

1. Name/Rank: ﬁ??
2. Organization: 3. Function: ﬁ%?
3. Time in ADP activity: =

II. INSTRUCTIONS: o

l. Answer in this sheet and complement with annex. i;
2. Whenever possible annex examples. '::
3. All questions refer to your organization. If in it no “:
system is being developed usé your previous experience FOR i ;

SUGGESTIONS. e
4. Do not refrain of presenting suggestions because they

will be of great value for my work.

III. QUESTIONNAIRE:
1.Methodology -
1.1 Does your organization use any standard methodology
for data processing system development?
YES ‘ NO | | =
| l =

182 NG

L U N ST PR IR - Ce e e T e e,

. - - S
. L R R PR RN - DRI Attt At
R T R 2 P R A D N T . e M AT v Y, - . N P W P R N I A I AT I L L R .
[PIPT FRE RT I TN Wiy I W Y AR . SR R N WL L T I T Y IR S TR PR VI Y N P'.‘L 1N PR RIS NS N R W I R A A Y R Y




‘f 1.2 Describe which methodology(ies) is used including:
o phases, what is done in which of them, documents generated,
- advantages and disadvantages of the used methodology and

2 source.

1.3 What kind of methodology do you think would be good

for the MAer? Why?

2.Documentation -
2.1 Which are the types of documents employed in the system :
development? (manuals, reports, program documents etc). Annex

samples i1f possible.

;; (‘5 2.2 In which phase each document is elaborated?
o 2.3 Who is reponsible for elaborating, up-dating and filing ;
of the documentation during and after the system
implementation?
2.4 In your opinion which is the ideal documentation for the ;
;; MAer? :
.
3. Graphical Representation
}1 3.1 Does your organization use any type of graphical
;- representation for system development? (HIPO, Leighton,
- Jackson, SADT, SREM, SAMM etc)
L YES l l NO

) 183




AD-A164 289 THE DESIGN OF A STANDARD SOFTWARE DEVELOPMENT
METHODOLOGY FOR THE BRAZILI. . <U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. A F OL IR!I

UNCLASSIFIED DEC 85 AFIT/GCS/ENG/95D-1




e e
'.".'.'.","-’-.

S RSP 3 P N

em——
——
P
—
.
—
r
r
43
-

FREFEEEE

WS AR NV S SN oy vt yr tatcay o

FEEE
SEE

(- 4]

O
=

n

o

il

MICROCOPY RESOLUTION TEST CHART
TITIOMA RIRCAL W CTANDARDS-1963-A




3.2 If so, which, in which phase and why was such technique
chosen?

3.3 Which is your suggestion for the MAer? Justify.

4, Development Management

4.1 Personnel Allocation

4.1.1 As you know there are several ways of personnel

:} allocation for system development. Which of the types below

is used in your organization?

4.1.1.1 ~ Classical (Manager, Analyst and Programmer)
4.1.1.2 - Chief-Programmer (Chief-Programmer, Administrator,
Documentation Editor, Program Librarian, Toolsmith, Test

Specialist etc }.

4.1.2 Considering the MAer pecularities and its implications
(militarity, hierarchy, duty, TDY etc) which would be the

best teaming to adopt?

4.2 Development Ccntrol Instruments
4,2,1 Does your organization utilize any type of development

control ( status Report, PERT/CPM, Gantt Chart etc)?
YES NO {

Which:

184

. LA

R A AN

A
el aaty

I}

4

€
[4




N

PR

4.3 Review Sessions
4.3.1 As you know there are several review methods for system
design such as: Inspection, Walkthrough, Circulating Review

etc. Does your organization employ any method?

YES NO

4.3.2 Who participates of the sessions? How often are they

done?

5. Programming

5.1 Which programming languages are utilized in your

organization?

5.2 Do you think that it would be advisable to standardize
some HOL for the MAer? If so which for management, scientific

and embeded systems applications?

5.3 Which modern programrming techniques (chief-programmer,
Librarian, top-down development, modular decomposition,

structured programming, pseudocode, structured walkthrough)
dces your organization utilize? Which are your suggestions

for the MAer?

185

’.
.

o

et
oy 01,

~
.
N

e

e

o
Ei:‘s:




.
-

i * PREw - e A - PE - N .
Ayl et fatotet e £ oM AL/ 0 "8 aTh M W AN NN ha'S XA AR N Towre

6.Testing

6.1 Are plans made?

YES NO

6.2 When are they done?

lvﬁé

4
h ]

v
Ay

v v
P
.I
D

':'l [
AL

-y~
AR
« 8t
f' f' 1"
RN R

i

7. Maintenance

7.1 Which type of maintenance is more frequent? rﬁ;~'

Corrective For Improvement gﬁﬁ,

A

7.2 Is there a formal document for request? SN

YES NO
R | %“ﬁ;

RO

8. Cost

LA

Does your organization use any method for software

development cost estimation?

YES NO

syt LT

;
v

e
%

.

Which?

7
'

]

What is your suggestion for the MAer?

f&:
.' '.'.l -l..

.
o
F R

9. The word is free. Sorry for making you so tired and thank o

"‘
27

you for the collaboration.




PN Attt b’ Py* Aedake Lig afgtote gta U " TR . it e s aY . Ble Bl 8 s b's B b b ugh ol m v Y-

-~

‘.
P Appendix B o
~ A Farah
7 :,..'. e
a TABLE VII
g Personnel Titles and Descriptions within SADT
j: Title Description
Author One who performs data gathering and analysis tasks
and organizes this material using SADT models
. Commenter One who reviews models by authors and who
N comments in writing; usually is another author
Reader One who reads SADT diagrams constructed by
others but is not required to document (write) ;qaﬁ
these comments; in a sense, one who receives the ;}jy
models for his own information or verbal comment ﬁuﬁi
only e
KICH
. . . o
Expert One who provides technical guidance to authors
- concerning the resolution of unique or AN
- troublesome problems hOARE
.; RS
. Technical A group of expert personnel who review the jxig
W Committee results of the analysis effort on a level-by- z;gﬁ
r \so level basis; they can identify or resolve e
R technical problems and coordinate with project *~7£
A management 3v~§
~ ,xfx}\
- Project One who archives and controls versions, ﬁﬁgﬁ
- Librarian releases, updates, and feedback from reviewers tff?l
e Project One who has overall responsability for the
" : Manager project
s
:} Monitor One who provides technical assistance and
o (or Chief guidance in SADT use

Analyst)

Instructor One who trains author and commenters to use SADT .

N ececeececcccccerce—c———— —-———— - o e e e = o e e




»
-

L
L)

.

P 255

R

\ L
N
LN

TABLE VIII

Phase of the Life Cycle/Methods, Tools and Techniques Use

------- N e T e e T T
ety L, e, e I T AT
atataa

METHOD SOFTWARE LIFE CYCLE |
TOOL |—=c e ercmr e e e — e c e e —— e ————————————
TECH- SYSTEM REQMT PRELIMIN | DETAILED |CODE |TEST OPERATION
NIQUE |ANALYSIS| DEFINIT DESIGN DESIGN MAINTENANCE
HIPO | | X | X | X | [ [ X

SADT | X | X | X | X | x | x | X

STRUC | | | l

DESIGN| X | X | X X X X X

GANE | X | X | X | X | x | x | X

JACK-

SON X X X X X

STRUCT | | |
" ZHART | ] | X X X X

P. _________________________________________________________________________
DFD | X I X | X | | | |

LD | X | x| X | | l |

CHEN

ENTITY X X X

DATA |

DICTI-

ONARY X X X X X X X
DECI~

SION

TABLE X X X X X X X
PSEUDO

CODE X X X

188

-
E

CA AR Y,
et e g




L L

TABLE IX

Comparison of Methods

------

METHOD
CHARAC-
TERISTICS
STRUCTURE
DESIGN SADT GANE JACKSON
CURRENT
SYSTEM
MODELING YES YES YES NO
SYSTEM
SPECIFICATION YES YES YES NO
SYSTEM
ARCHITECTURE YES SOMEWHAT YES YES
LOGICAL
DESIGN YES YES YES SOMEWHAT
PHYSICAL
DESIGN YES POTENTIALLY YES YES -
AVAILABILITY o
OF TRAINING .
COURSES YES NO YES YES :
IN BRAZIL o
EASE OF USE
(HIGH = EASE) HIGH LOW HIGH MODERATE
PROLIFERATION
LEVEL IN HIGH LOW HIGH HIGH
BRAZIL
LEARNING -
EFFECTIVENNES HIGH LOW HIGH MODERATE o
COMMUNICATION h
WITH CUSTOMERS HIGH LOW HIGH LOW
HIERARCHICAL A
IN NATURE YES YES YES YES :




PROVISION
OF OBJECTIVE
EVALUATION
CRITERIA

BASIS OF
METHOD

DEGREE OF
TECHNICAL
ISSUE

COVERAGE

SUPPORT
BY AN
AUTOMATED
TOOL

SUPPORT BY
QUALIFIED
CONSULTANTS

COUPLING/
COHESION

MOST

PORTABLE
FEATURE
(IF ANY)

CONCEPT CONCEPT/
PROCEDURAL PROCEDURAL PROCEDURAL

MODELING

CONCEPT/

CONCEPTUAL/

COUPLING/
COHESION

DATA
STRUCTURE
MODELING

N J

Evaluation Criteria of the Methods

1. Current System Modeling - the ability of the method

to provide users with a way to model an existing system. The

system may include manual tasks, physical objects, and

geographic locations as well as the more classical functional

needs and processes. This is a desirable software development'

method feature.

2. System Specification - the extent to which the

method provides the necessary semantic and conceptual

framework to permit the statement of requirements for an

entire system, not just the software. This is an important

and desirable method feature,

................
...............
......................

.................................
.........

''''''''''''''''''''''
.................



7
’r."l

Q
__________

3. System Architecture - the ability of the method to
allow flexibility in laying out the overall interface between
the major system elements. This is a desirable software
development method feature.

4. Logical Design - whether the method includes a
clear, explicit recognition that an abstract, conceptual
solution must be formulated and refined prior to the
introduction of implementation issues. This is a desirable
method feature.

5. Physical Design - whether the method explicitly
addresses implementation issues apart from conceptualization
of the logical design solution. This is a desirable method
feature since it allows the designer to separate the "what"
from the "how"

6. Availabil&ty of Training Courses in Brazil - the
degree to which public courses are available in Brazil. This
is a SIMAER requirement.

7. Ease of use - the ease with which a designer can
effectivelly use the method; reduced by unique requirements
such as templates and pre-printed forms. A desirable method
feature and a SIMAER requirement.

8. Learning Effectiveness - the absence of subtleties
in the method that might confuse a novice; intended to alert
designers to the amount of care they must exert in order to
avoid unforeseen difficulties. A desirable method feature and

a SIMAER requirement.

191




. T

LA e

AP
e )

s

9. Communication with Customers - the degree to which
the method provides open communication between customer and
designer (for example, through understable diagramming
techniques). One of the most desirable method feature since
communication is a key issue in software development.

10. Hierarchical in Nature - the extent to which the
method provides a convenient scheme for controlling
complexity via the organization of the design (and system)
into ordered chunks that can be examined separetely from the
rest of the system. A desirable method feature that will
allow for modularization.

11, Proliferation Level in Brazil - the degree to each a
method has spread as an indicator of its relative
effectiveness. A SIMAER requirement.

12. Provision bf Objective Evaluation Criteria -
whether the method has a measure of design that would yeild
approximately the same result if used by two different
(unbiased) designers. A desirable method feature.

13. Basis of Method - whether the method is based on
some rationale; prescribed set of rules, or a combination of
both.

14, Degree of Technical Issue Coverage - the relative
importance of any one or several of the four technical issue
classes present in any software design effort: data
structure, data flow, control structure, and control flow.

15. Supported by an Automated Tool - whether the method

is supported by a computer-aided scheme to make changes,

..............

........

-------------



. -." WX Aiatea - v, - v, % s *
- - ~ - - . . - - - » . - ¥ R - 4 * y
!:; AR T T e e T T T e e A R LN AT A A I A IR AN NN D ]

identify inconsistencies, and do clerical tasks, thereby

N enhancing the designer's effectiveness. A desirable method

feature for the development of large systems. b, -
e 1 cas NN

16. Supported by Qualified Consultants - the availability &}v;
A

. . . . : AR

of experienced advisers to reduce the instances of misuse and R

of unsatisfactory results. A desirable method feature and a

SIMAER requirement.

l 17. Most Portable Feature - that part of the method, if
any, that could be used totally apart from the original
method (for example, using the coupling and cohesion

? characteristics for evaluation with some method other than

structured design). A desirable method feature.

) .
»
o :
l‘ ..'.. -
.- . -
«® a
’ . - .' \.-

-
e e s ey my e e e e e e
T L T S e N N K T T R
R AV PN AN VAP S YLAY S AP R S




Bibliography

DDEOOOL S

1. Alavi M. "An Assessment of the Prototyping Approach to
Information Systems Development,” Communications of the ACM,
27 : 556-563 (June 1984).

- 2. Bailey, R. W. Human Performance Engineering: A Guide for
Sgstem Designers. Englewood Cliffs, NJ: Prentice-Hall Inc.,

‘ﬁ 3. Baker, F. T. "Chief Programmer Team Management of

' Producticn Programming, "IBM Systems Journal, 11 : 415-421 A
(1972). T
4, Bell, Thomas E., David C. Bixler, and Margaret E. Dyer, }éﬁl

" An Fxtendable Approach to Computer - Aided <foftware o
Requirements Engineering". IEEE Transactions on Software O
Engineering, SE-3: 6-15 (January 1977). It

. 5. Bcehm, Barry W. Software Engineering Economics. Englewcod
= Cliffs, NJ: Prentice-Hall Inc., 1981.

6. Bohm C. and G. Jacopini. "Flow Diagrams, Turing Machines et
and Languages with Only Two Formatior Rules," Communications SN
of the ACM, 9: 366-371, (May 1966). et
%— Py 7. Booch, G. Software Engineering with Ada. Menlo Park: The ST
- Benjamin/Cummings Publishing Co., 1983. -
- 8. Brandon, D. Management Standards for Data Processing.
R Princenton, NJ: Van Nostrand, 1963.
9. Chapin,N. " Flowchartirg with the ANSI Standard : A . .
Tutorial, " ACM Computing Surveys, 2: 119 - 146 o
( June 1970 ). T
10.Cter, P. "The Entity-Relationship Approach to Logical Data {%i}
: Base Design" The Q.E.D. Monograph Series on Data Base gy
. Management, 6: 15~21 (March 1977). -
11.Colter, A. M. "A Comparative Examination of Systems T
- Analysis Techniques," MIS Quarterly, 51-64 (March 1984). :
o 12.pavis, B.G. and Margrethe H. Olscn. Management Information L
® Systems: Conceptual Foundations, Structure, and Development S
- New York: MacGraw~Hill, 1985. . e
i 13.DeMarco, T. Structured Analysis and System Specification .
- New York: Yourdon Press, 1978.

14.Dictionary of Computing. Oxford Science Publications.

;,
@

194




»* o
. ~h'-‘

Ay W =
t}e"e

- .
~
wow

.

“~
o
st

-

“n N

R UL

S e T N AT e ST T

..... B S A dar s
- - - - - e e e .

14.Dictionary of Computing. Oxford Science Publicatiors.
New York, 1983.

15.Encyclopedia of Computer Science and Engineering (Second
Edition). New York: Van Nostrard Reinhold Company, 1983.

l16.European Space Agency - "Software Engineering Standards".
1984.

17.Fairley, R. Software Engineering Concepts. New York:
Mac~-Graw-Hill, 1984.

18.Gane, C. and Trish Sarson, Structured Systems Analysis:
Tools and Techniques. Englewood Cliffs,NJ:Prentice-~Hall Inc.,
1979.

19.Hadfield, S.M. and Gary B. Lamont. "The Software
Development Environment" Proceedings of the Digital Equipment

Computer User Society , 171-177 (October 1983).

20.HIPO-A Design Aid and Documentation Technique. IBM Corp.
Manual # GC20~1851. White Plains, NY: IBM Data Processing
Division, 1974,

21.1EEE Standard Glossary of Software Engineering
Terminology, IEEE Std. 729-1983.

22.Jackscn, M.A. Principles of Program Design. London:
Academic Press, 1975,

23.Law, E. "GSA Reports Huge Increase in Micro Buys",
Government Computer News, 4 (June 1985).

24.Martin, James. Managing the Data Base Environment. New
York: MacGraw-Hill, 1984,

25.Nolan, Richard L. "Manhaging the Crises in Data Processing”
Harvard Business Review. 115-126 (March-~April 1979).

26,0liveira, A. F.Current Software Development Situation
in the Brazilian Air Ministry: A Survey of Methodology,
Documentation, Graphical Representation, Management,
Programing, Testing, Maintenance, and Suggestions, School
of Engineering, Air Force Institute of Technology {(AU),
Wright-~Patterson AFB OH, May 1985.

27.Portuguese Air Force Regulation RFA 45-6. Lisbon, 1984.

28.Peters, Lawrence J. Software Design: Methods and
Techniques New York: Yourdon Press, 1981.

195

- 'I‘.'

.? r_'. o

R T 2 Rt
e b

W e



u-#r'n- oW W W, w
S SR SR -.?. L . X \ . y
." LALE lwm P AU R AL SR AL A RIS LSS TR AN

29.Rodewal Hans, Capt FRG. Personal correspondence. German
LFly Military Representative USA and Canada. Washington DC, 15
July 85.

30.Rubey, Raymond J. Technical Director. Telephone
Interview.Softech, Inc. Ohio,17 October 1985.

31.Silva, Victorio B. da "The Informatic and the Development
of Its Applications in the Brazilian Air Force," Brazilian
Air Force Staff Command School Project, 203: 7-8 (December
1982).

32.SOFTECH Structured Analysis and Design Technique,
SADT Manual 9022-78.

33.Stevens, W.P., Meyers G.J., and L.L. Constantine.
Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design(Second Edition). New York:
Yourdon Press, 1978.

34.The Brazilian Federative Republic Constitution. Rio de
Janeiro: National Press, 1949.

35.Teichroew, D. and Hersey E.A. "PSL/PSA: A Computer Aided
Technique for Structured Documentation and Analysis," IEEE

(o Transaction on Software Engineering, SE-3: 211-218 (January
1977).

36.Weinberqg,V. Structured Analysis. New York: Yourdon Press
1978,

37.Woffinden, Duard S., Instrutor. Software Engineering Class
Notes. EE 5.93. School of Engineering, Air Force Institute
of Techonology (AU), Wright-Patterson AFB OH (Spring 85).

38. Zelkowitz, M.V. "Perspectives on Software Engineering,"
Computing Surveys, 10: 197-216 (June 1978).

196




A SR A2 R it o i B 4 S e .00 PP ade - Bh mi -l m e Ao SRt LY

'.{';
. a

ua

PP
c.t'f
e
o

VITA

XA
SaLS
LAY
XXX

Aparecido Francisco de Oliveira was born on 26 july in

&5
o
e

)
.‘

e

-(‘A .

Bauru, Sao Paulo, Brazil. He graduated in 1966 with a

v v
2

2y
04
2%

Bachelor of Science (B.S.) degree from Academia da Forega

Atrea Brasileira (Brazilian Air Force Academy) when he also

{

received his pilot's wings. In 1977 he graduated with a B.S.
degree in Business Administration from the Centro de Ensino
Unificado de Brasilia (United Educational Center of
Brasilia).

As an officer and pilot in tﬁe Brazilian Air Force
(BAF), he has worked at the operational level since 1968,
accumulating more than five thousand flying hours, in both
training and operational missions . As he progressed in rank,
his responsability slowly shifted more to management
activities. ‘

Getting involved in the management activities of
aircraft maintenance and supply, he started using computers

for inventory controls. This was the incentive to study the

ADP area.

Having taken several courses in data processing, his

last assigment was head of the Brazilian Data Processing . -
Center. L

ARG
Permanent Address: AR
SHIS QI 27 Conj 14 Casa 13 S

e
BRASILIA - DF 70016 OSRG

pf‘:p?:
BRASIL

197 e




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

_ Unclassified REPORT DOCUMENTATION PAGE

* .- REPORT SECURITY CLASSIFICATION

1h. RESTRICTIVE MARKINGS

2s. SECURITY CLASSIFICATION AUTHORITY

2bn. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/85D-13
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(1f applicadbie)
School of Engineering AFIT/ENG

6¢c. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

7Tb. ADDRESS (City. State and ZIP Code)

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicabie)
Brazilian Air Force BAF
8c. ADDRESS (City, State and ZIP Code} 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
. ELEMENT NO. NO. NO. NO.
Brazil, Brasilia, D. F.
11. TITLE (Inciude Security Classification)
See Box 19
_ PERSONAL AUTHORI(S)
o> liveira, Aparecido Francisco, B.S., Lt Col, BAF

13a. TYPE OF REPORT 13b. TYME COVERED
MS Thesis FROM To

14. DATE OF REPORT (Yr., Mo., Day)

1985 December 13

15. PAGE COUNT

(91

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SuB. GR. Software Life Cycle Methodology

Life Cycle Software design

Method Standard

19. ABSTRACT /Continue on reverse if necessary and identify by block number)

Title: The Design of a Standard Software Development Methodology for the

Brazilian Aeronautical Ministry.

Thesis Chairman: Duard S. Woffinden, Captain, US Army.

oved foq pyblic release: IAW AFR 190.ty]
e LS 16 A0 11

Dean for Ressarch and Professioncd Development
Air Porce [nstituls of Technalegy (WO®)
Witpht-Pevvormon AFR Ol 2433

L 4
Yo7 NSTRIBUTION/AVAILABILITY OF ABSTRACT

uncrLassiFieo/unuimMiTeo B same as rer. [ oTic users O

Unclassified

21. ABSTRACT SECURITY CLASSIFICATION

22s. NAME OF RESPONSIBLE INDIVIDUAL
Duard S. Woffinden, Captain, US Army

22b. TELEPHONE NUMBER
tInclude Area Code)

22c. OFFICE SYMBOL

——————

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE.

et e e
L L g
LI LI AT RSP DU JPO AR
LI IR AL IAL TSI PR, §

e .
e
AP

UNCLASSIFIED

SECURITY CLASSIFICATION QF THIS PAGE

—~—
..
.-

.
[
s

PR
.
v

”

[




UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PAGE

"‘ '.l -.l ,‘ '.4 s

FRLRE

(3
»

G

(]
At
BT

Abstract

This thesis proposes a standard software design methodology for the
Brazilian Aeronautical Ministry.

The project matched the requirements of the Brazilian Aeronautical
Ministry with the software life cycle models, methods, and techniques,
which are currently available and most widely utilized.

Based on the analysis, a waterfall model was selected and inte-
grated with some methods, tools, and techniques, such as Gane's methods,
SADT, Data Dictionary, etc. :

All of these recommendations were included in a proposed regula-
tion for a software development methodology.

UHCLASSITILD

TN
ORRY,
‘ "-. LT N

..' . ..
A
SO
RARA

..I'
F )
'

;

£33

o

SO N TN s R T S

AN R S S
a&: P ACAON

SECURITY CLASSIFICATION OF THIS




! e

5

o
4,

— T
“r




