
N-0164 209 THE DESIGN OF A STANDARD SOFTURRE DEVELOPMENT v
METHODOLOGY FOR THE ORAZILI.. (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. A F OLIVEIRA

UNCLASSIFIED DEC 85 AFIT/GCS/ENO/85D-13 F/O 9/2 N

111.0 tLA

ILO

11111 125 'LA Jil4 =

VICROCOPY RESOLUTION TEST CHART-

-IWA nf T NDRDS-963-

00AA

lie.

I DTIC

THE DESIGN OF A STANDARD SOFTWARE
DEVELOPMENT METHODOLOGY

'OR THE BRAZILIAN AERONAUTICAL MINISTRY

THESIS

APARECIDO FRANCISCO DE OLIVEIRA
Lt Col, BRAZILIAN AIR FORCE

* DEPARMENT OF TE EN AI AOC

Wright-Patters ton A ir c asOi

86 2 14 015

AFIT/GCS/ENG/85D-13

*',V Or,-

DTIC
LECT

SFEB 149 I9

THE DESIGN OF A STANDARD SOFTWARE
DEVELOPMENT METHODOLOGY

FOR THE BRAZILIAN AERONAUTICAL MINISTRY

THESIS

APARECIDO FRANCISCO DE OLIVEIRA
Lt Col, BRAZILIAN AIR FORCE

AFITIGCS/ENG/85D -13

Approved for public release; distribution unlimited.

S *.' - - -- ' - "L - .
- '

-
I

. . .M 6 . . -- -. - -

AFIT/GCS/ENG/85D-13

THE DESIGN OF A STANDARD SOFTWARE DEVELOPMENT METHODOLOGY

FOR THE BRAZILIAN AERONAUTICAL MINISTRY -

THESIS

Presented to Faculty of the School of Engineering of the

Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Accesion For-
NTIS CRA&I
DTIC TAB "
U,,anno'mced "

Aparecido Francisco de Oliveira, B.S. Jistification

Lt Col, BRAZILIAN AIR FORCE By

December 1985 Di,;t ib-tio,'"
Availability Codes

Avail ai-djo

Approved for public release; distribution unlimited

Q% .
.,2...-.:.,....

Preface

The purpose of this thesis effort is to design and

propose a standard software development methodology for the

Brazilian Aeronautical Ministry.

This report is not intended to be a final answer, rather

it should be taken as a single seed, a first step toward .

developing a software design methodology for the SIMAER.

To generate such a seed I have had a great deal of help

from others. I wish to express my sincere appreciation to

Capt Duard S. Woffinden, the advisor of this investigation,

for his professional guidance and patience throughout the

duration of this effort. I wish also to thank Dr. Gary B. Fi
Lamont for his important and worthy refinement.

Special thanks goes to my family, particularly my wife

Vera. Her participation helped me to create an internal and

isolated environment where I could put all my effort to

generate the mentioned seed, while she took care of the

external environment. For that she had to follow a hard path

* learning the language and culture of a foreign, but

fortunately receptive country. My thanks to her also for

typing most of the report. Without her support the seed could

* not have been germinated.

Aparecido Francisco de Oliveira

" • 5 .%ii

*~_ w ..- .'- -..--- s..-..-..---- - - - - - - - - - - - - - --

List of Figures

Figure Page

31. The Brazilian Aeronautical Ministry 8

-* 2. The Aeronautical Ministry Information System (SIMAER).. 9

3. The Waterfall Model...................................... 21

4. Boehm's Version of the Waterfall Model.................. 24

5. The Error Avalanche...................................... 25

6. Increase in Cost-to-Fix or Change Software Throughout

BLife-Cycle... 26
L7. The Prototype Life Cycle Model.......................... 29

8. HIPO Visual Table of Contents (VTOC) HIPO Diagram 34

9. HIPO Input,Output, and Process Diagram34

lO.Overview of the Structured Design Method................ 40

ll1.Example of a Structure Chart............................ 41

-12.General Flow of the Structured Design Method............ 41

*13.Example of a Data Flow Diagram.......................... 43

-14.An Example of a Data Dictionary Notation................ 47

15.Parts of a Decision Table................................ 51

16.Activity Diagram... 57

*17.Data Diagram... 57

-18.Example of a Complete Activity Diagram58

19.Gane's Logical Data Flow Symbols........................ 63

20.Data Flow Description.................................... 64

21.Process Boxes with Psysical References................... 64

22.The Process Used to Obtain a Chen Entity-Relationship

Diagram.. 66

77.-- - -- -- -- -- -- -- -- -- -- -- -

Figure Page

23.Depicting Relationships Using Chen's Approach........... 66

24.Notation Used in Jackson's Approach..................... 74

25.An Example of the Use of Jackson's Approach to Depict

Data... 74

*26.USAF's Automated Data System Life Cycle85

*27.ESA's Software Life Cycle Management Scheme............. 93

28.The Problem Statement Analyzer 101

29.Example of a PSL Formatted Problem Statement........... 103

*30.Flow Graph of a Sample R-Net........................... 106

W 31.Sample R-Net in RSL..................................... 106

32.REVS' Schematic Diagram................................. 107

33.SDW Configuration Model................................. 112

* 34.SDW Structural Model.................................... 112

35.Structure of SIMAER'S Software Development Methodology

Regulation.. 116

36.SIMAER's Software Life Cycle........................... 119

37.SIMAER's Software Life Cycle Management Scheme120

38.A Typical Structure of Development Team................ 136

39.SIMAER's Software Life Cycle Implementation Plan 149

* iv

List of Tables

*Table Page

I. Methods Used by SIMAER's Professionals............... 159

11. The Most Suggested Methods for the SIMAER............ 160

III. Graphical Representation Techniques Used by SIMAER's

Professionals... 168 .-

IV. Suggested Teaming for the SIMAER..................... 170

V. Suggested Control Tools to be Used by SIMAER172

VI. HOLs Suggested to be Used by the SIMAER's

organizations... 175

VII. Personnel Titles and Description within SADT187

~ VIII.Phase of life Cycle Where Methods and Tools Can be

Applied... 188

IX. Comparison of Methods................................. 189

v-

6.7 -V

Abstract 6.-

This thesis proposes a standard software design

methodology for the Brazilian Aeronautical Ministry.

The project matched the requirements of the Brazilian

Aeronautical Ministry with the software life cycle models,

methods, and techniques, which are currently available and

most widely utilized.

Based on the analysis, a waterfall model was selected

and integrated with some methcds, tools, and techniques, such

as Gane's method, SADT, Data Dictionary, etc.

All of these recommendations were included in a proposed ""'

regulation for a software development methodology.

vi

................... ~ . ~J~i;~4i~.*9: ..c.-:& .-. ':~c< .. ': .' !

% Table of Contents

Page
Preface.. ii
List of Figures...1i
List of Tables.. v
Abstract... vi

I. Introduction.. 1

1.1 Background.. 1
1.2 Problem Definition.................................. 2
1.3 Scope... 4
1.4 General Support..................................... 4
1.5 Approach.. 5

Ii. The Environment... 7

2.1 Introduction.. 7
2.2 Structure of the Aeronautical Ministry............. 7
2.3 Current Situation on Software Development10

32.4 Requirements Definition........................... 18

III. Current Available Methodologies....................... 20

3.1 Introduction....................................... 20
3.2 Literature... 20
3.3 US Organizations................................... 84
3.4 European Organizations............................ 90

IV. Automated Software Development Tools98

4.1 Introduction....................................... 98
4.2 Literature Review.................................. 98
4.3 Summary... 113

V. Proposed SIMAER Standard Software Development

Methodology... 114

5.1 Introduction...................................... 114
5.2 Proposed SIMAER Software Development

Methodology Regulation........................... 116
5.3 Implementation Plan.............................. 148
5.4 Cost.. 148
5.5 Conclusion.. 149

VI. Conclusions and Recommendations...................... 151

Appendixes.. 153
Bibliography.. 194

*Vita.. 197

- .. THE DESIGN OF A STANDARD SOFTWARE DEVELOPMENT METHODOLOGY

FOR THE BRAZILIAN AERONAUTICAL MINISTRY

I. Introduction

1.1 Background

The author worked successively as Chief of the Planning

Section of the Brazilian Aeronautical Ministry (MAer)

* Information System, Chief of the Planning Section of the

Brasilia Data Processing Center, and finally as head of this

organization from 1980 to 1983. These positions offered him

* the opportunity to become familiar with the many existing

automated data systems (ADS) in the MAer, and the opportunity

to follow them throughout their life cycles. During this time

he was impressed with both the lack of a standard methodology

for system development and the lack of a consistent

management approach to the software life cycle.

Generally speaking, few used modern, productivity-

increasing techniques such as structured design, top-down

analysis, or review sessions[26]. This condition has caused

several problems such as high system development cost,

interface difficulties between ADS designed by different

organizations, and constant training needs to name a few.

This situation is a matter of great concern for the

Centro de Informatica e Estatistica da Aeronautica (CINFE),

0- .to head of the Information System, as it is this organization

. . o.. ..-..

that has the overall responsibility for software development .-..-.

in the MAer[30]. A standard software life cycle and

methodology for the MAer should reduce the systems ,. .

development cost. ,-..- 4

1.2 Problem Definition

Many authors recognize that there is an ongoing software

crisis which, in essence, is that:

"it is much more difficult to build software systems

than our intuition tell us it should be"[7].

Brazil and especially the MAer are not immune to this crisis,

and the symptoms, enumerated by Fisher[7] and listed below,

are also manifested in the MAer's system development:

1. Responsivenness. Computer-based systems often do .-

not meet users needs.

2. Reliability. Software often fails.

3. Timeliness. Software is often late and frequently

delivered with less-than-promised capability.

4. Transportability. Software from one system is seldom

used in another, even when similar functions are

required.

5. Efficiency. Software development efforts do not

make good use of the resources involved (processing --

time and memory space).

6. Modifiability. Software maintenance is complex,

costly, and error prone.

2

7. Cost. Software costs are seldom predictable and are

often perceived as excessive.

A typical example from the Author's experience within

* the MAer, is the case of a system development where the

manual activities were discontinued before the automated

system was validated and accepted. As a result the automated

system was not responsive causing some disastrous

consequences.

Besides suffering the same worldwide common problems

listed above, Brazil faces its own crisis, an economic one,

evident in a high public deficit, which in turn imposes

severe budgetary constraints. Also,it would be wise for

Brazil, being a country in development, not to repeat the

same errors experienced by more developed countries which

have already passed through this process and found some of

" the answers to reduce the software crisis[7].

Embedded in this scenario is the MAer which currently

faces high hardware and software demands to support both

management as well operational systems with a limited amount

of resources(301.

The problem is the high development cost, the lack of

standards for software development in which modern

techniques are used, associated with the need for making use

of the available resources in as efficient and effective way

as possible.

3

-1.3 Scope

In order to solve the previous stated problem, some

standards will be proposed. Such standards will cover areas ,

such as: methodology, software life cycle, methods (including

"- tools, techniques, modern programming practices),-I

maintenance, High Order Languages (HOL), documentation,

development management issues (personnel allocation, review

sessions, development control), and cost.

A survey on software development in the MAer will be

conducted, and based on its results and the author's past

experience, SIMAER's requirements for software design will be .1
defined, and objectives for standards to meet those

requirements will be detailed. Also, parameters and criteria

to evaluate and test the degree to which the tools,

techniques, and methodology recommended by the standard, -.

support the requirements will be established. This will allow

-. several alternatives to be examined and the recommended

* choices justified.

Finally an implementation plan covering cost,

milestones, and training will be elaborated.

1.4 General Support

This project was developed using the author's previous

experience, acquired background knowledge, academic support,

4

. 4 --.-.

-~ current literature reviews, advisor's orientation, and the

MAer requirements.

1.5 Approach

In order to become more acquainted with the current K-4

software development situation in the MAer, and to determine

its requirements, an overview of the MAer Information System

Structure is presented and a survey of its organization

related to software development was performed. Both, the MAer

Information System Structure and the survey findings are

presented in Chapter II.

Chapter III, Current Available Methodologies, consists

of a literature review on all of the best known methods

* proposed by the academicians and software development

professionals. Also, some methodologies used by American and

European organizations were studied and compared. Finally an

analysis was performed trying to highlight the methods'

characteristics that best support the MAer requirements.

Next, in Chapter IV, a literature review on the

available automated software development tools is discussed.

Following this review, a preliminary study, looking for a

future implementation of such tools in the MAer is performed.

The study covers the MAer's requirements, as well the

- available resources.

In Chapter V, a software life cycle is designed and

standards are proposed, based on the requirements determined

5

in Chapter II and on the available methods' characteristics

pointed out in Chapter III. Also an implementation plan,

including milestones, cost estimation, effort in training,

etc, is presented. '

Finally, Chapter VI, summarizes the research findings

and states recommendations and conclusions.

, . o

6

Q7.-.-

II. The Environment

2.1 Introduction

The design of a standard software life cycle and the

selection of tools, techniques, and methods to be used during

this cycle must support the requirements of the organization

where such a standard life cycle will be observed.

This chapter presents an overview of the software system

development environment in the MAer. The most common types of

applications developed there, which tools are currently

employed, and how the system's development is managed. All

• these factors together will compose the scenario which

defines the requirements needed to design the proposed

standard software life cycle.

2.2 Structure of the Brazilian Aeronautical Ministry
-A".-

As stated in the Brazilian Constitution[33], the

Aeronautical Ministry is the organization responsible for

establishing the national aerospace policy and controlling

the overall aeronautical activities. In war time its main

objective will be to achieve and maintain air superiority

over the Brazilian territory. This task is to be accomplished

by the MAer's armed branch - the Brazilian Air Force. The

MAer, as shown in figure 1, is composed of: (1) the

Aeronautical Minister Office (GABAER); (2) the Aeronautical

Staff(EMAER), the organization responsible for the planning

19 0 and consulting activities of the Aeronautical Minister; (3)

7
:..- * .

-.-- %.-.- .- * . A - * - . - '. . * *

~ -IL -k.,- * -. **, * ~ p t,.. . •

the Civil Aviation Department (DAC), which is responsible for

planning and controlling the civil aviation activities; (4) i'aA

the Research and Development Department (DEPED) whose tasks

are research, development, and fostering the industrial

activities in the aerospace field; (5) the Personnel General

Command (COMGEP), which is responsible for the management of

the manpower activities; (6) the Training Department

organization (DEPENS) responsible for the training activities .

within the MAer; (7) the Air General Command (COMGAR)

organization whose mission is to perform the combat

activities, and finally (8) the General Logistic Command .

(COMGAP), which has the responsibility of supporting all the

MAer activities, mainly those related to flight.

%.".

AERONAUT ICAL

MINISTER

EMAER

- I I
DAC DEPED DEPENS COMGAR 1COMGEP1 1COMGAP"

Figure 1 - The Brazilian Aeronautical Ministry

8
-... . - .*..

The automatic data processing activities in the-MAer are

organized as a system called SISTEMA DE INFORMATICA DO

MINISTERIO DA AERONAUTICA (SIMAER) (Fig. 2) whose focal point

is the CINFE. CINFE responsibilities include: the planning,

coordination, and control of the data processing activities

as well as support of system's members. The CINFE is

subordinated to the COMGAP and headed by a Brazilian Air

Force Colonel.

cis&

:I IPA!EI
FC -. 1C

CE I mA. DEeu.a PEDtL ~SS

-P

Figure~~~~~ ~~~ 2 N TV AeoatclMnsryEfrainSse

CC~~~~~- f%%01 I c-

(SIMAER) .

9CAE

9 .4
..

S kA.CW fl.f.

.

2.3 Current Situation on Software Development

2.3.1 SIMAER's Overview

The SIMAER is currently undergoing a great expansion

program. The MAer is starting to become involved in the

activities of software acquisition for embedded systems, and

there is a great demand for software design, mainly to

support management and operational activities.

There is also a high demand for microcomputer

acquisitions. This demand and its supply will require further

studies to establish a policy on end-users development. Such

studies should take into account several considerations and

constraints related to user-developed systems. Davis[12]

suggests the following disadvantages and advantages of user-

developed systems:

1. Disadvantages

a. Low discipline of users

Information Systems personnel generally accept

and follow procedures and rules (a development

discipline) that represent a codification of

experience in application development. Users

as new developers do not easily adopt this

development discipline; they must obtain it

through training, experience, and policies and

procedures.

10
. -.

b. The risk from encouraging private information

systems

The complete information system of an

organization is composed of systems that are

formal or informal and public or private. User

developed systems, by promoting private formal

systems, encourage information hiding by

individuals. It is also difficult to transfer

private systems to new persons taking over a

position.

2. Advantages

a. Relieves shortage of system development person-

nel

5 k A common user complaint is that there are not

enough "analysts and programmers to keep up with

the demand for new systems. One of the

alternative solutions to this problem is to

transfer some of the development function to the

users.

b. Eliminates the problem of information require-

ments determination by information systems per-

sonnel

One of the major problems in information systems

development is the need to elicit a complete and

correct set of requirements. Various

P methodologies have been proposed but it still

11"*, .'

-°

Ii''.-

remains a difficult process. The problem is

made more difficult because the analyst is an

outsider who must communicate with a user

eliciting the requirements. Having users

develop their own systems eliminates the

problems of inadequate communication between

analyst and user.

c. Transfer the information system implementation

process to users

Poor implementation is one of the major reasons

systems are not utilized. Difficulties arise

from the interaction of the analysts and the tN'.-

nontechnical users who are providing

requirements for the system. Users may develop

less sophisticated systems when they do their

own design and development, but they are more

likely to use them.

Other considerations include the implementation of

distributed processing, with its own implications, such as

the design of databases and efficient networks.

All of the considerations and constraints can only be

balanced by establishing appropriate policies.

Of course this high microcomputer demand is not a

Brazilian localized phenomena. According to a recent survey,

published in the Government Computer News(24], 38,000

microcomputers were purchased in fiscal year 1984, by US

12

...°.. "

governement agencies, a 450 percent increase over the

previous fiscal year's acquisition. Of those 38,000

microcomputers, Department of Defense reported the most buys,

17,419, of which 4,009 were bought by the Air Force.

Currently SIMAER's, manpower and the financial

resources are insufficient to face all the mission needs[301.

Thus there is an urgent requirement for making the use of

existing resources as effective and efficient as they can be.

One of the several ways to achieve this efficiency and

effectiveness is by the establishing of standard policies

with the following objectives:

1. Reducing software errors.

2. Requiring the SIMAER's professionals to adhere to the

accepted principles of software engineering.

3. Providing a software design tutorial tool for

novices.

4. Reducing the training cost.

5. Increasing the SIMAER's professional expertise in

some specific tools and techniques for system's

development.

6. Allowing for a more efficient use of the available

resources.

7. Emphasizing the production of complete documentation.

8. Enforcing the employing of current managerial

procedures for planning, development and control.

13

..................

.. . A well-known explanation of information system

organizational change is the so-called Nolan's Stage

Theory[25. This model identifies four stages of information

system organizations growth:

1. Initiation - early use of computers by small numbers

of users to meet basic organizational needs, with

decentralized control and minimal planning.

2. Expansion (or contagion) - experimentation with and

adoption of computers by many users, proliferation of

applications, and crises due to rapid rise in costs.

3. Formalization (or control) - organizational controls

established to contain growth in use and apply

cost-effectiveness criteria. Centralization and

controls often prevent attainment of potential

benefits.

4. Maturity (or integration) - integration of

applications. Controls are adjusted. Planning is well

established. Alignment of information system to

organization.

The MAer has three distinct primary data processing

areas: the Rio de Janeiro area that revolves around the

Centro de Computaq:Ao de Aeronautica do Rio de Janeiro-CCA RJ,

the MAer's first data processing center, in which the most

experienced people are located. This center may be reaching

Formalization, the fourth development stage of the Nolan's

* stage model[25]. Besides several conventional files

° - .. 14

.*x ;::i

- -..... - -.-

V%

applications, two databases are under final development in

this Center. This organization is also a source of training

for many MAer ADP professionals in the Rio de Janeiro area.

Next is the Brasilia area that revolves around the Centro de

Computaqao de Aeronautica de Brasilia-CCA, a new center that

is still in the Expansion phase of the Nolan's stage

model[25]. Finally there is the Instituto Tecnolbico da

Aeronautica-ITA, located in Sdo Jos& dos Campos, a similar

organization to the United States Air Force Institute of

Technology, where scientific and training applications are

developed. It is at the same stage of the development as the

Rio area.

2.3.2 The Survey

2.3.2.1 Introduction

As stated in Chapter I, and based on past experience, it

seemed that the SIMAER's organization did not any use

standard software methodology, and that just a few used some

of the modern programming tools and techniques. In order to

confirm those impressions, and get a appreciation of software

developement and management, a survey of SIMAER's

organizations was done. Another purpose of the survey was to

gather suggestions for a future standard software life cycle

design and a standard methodology selection, while allowing

the ADP professionals participation. Thus a somewhat more

valid product could be delivered.

The detailed survey, including procedures,

15

..- ,-/

questionnaire, detailed answers, comments and conclusions is

contained in appendix A of this report. A summary follows.

2.3.2.2 Summary of the Findings

The SIMAER has not established a standard software life

cycle to be followed by its ADP professionals. The ones used

individually do not consider the necessary and currently

accepted reviews[51 which are performed at the end of each

phase.

None of the SIMAER's organizations has developed or

formally adopted a standard methodology, in which modern

tools and techniques for system's analysis or software design

" are employed, to be followed by their ADP professionals

* during system's development. However, some professionals

locateA in do usc, informally, some of the modern tools

and techniques supported by Chris Gane[18] and the Jackson's

methods[221*. -

While most of the SIMAER's professionals agree that a

standard methodology would be helpful and cost-saving, a few

showed some concern about having a standard methodology,

arguing that the heterogenous training and the diversity of

the applications will not make it practical! The survey

showed that in a small but varied number of organizations in

Rio a standard almost existed.

The heterogenous training can be considered one more *
0 reason for having an standard. Common training and practice

16

. -..-.... _.-- -

.,"- '-t... . .. 2"2-

• -W-,77.".

would help level off the degree of experience of all people

involved in system development. Peters[28] stated in the

conclusion of a survey which he did in 1976, that the use of

some sort of method is likely to be better than using none at

all and that the use of a defined software methodology that

includes documentation standards is definitely

increasing[28]. Also Davis[12] states that many installations

have adopted a single development methodology to be used for

all applications, giving training, supervision, and quality

assurance benefits for the organizations.

There is not at any level, a MAer documentation

standard establishing the minimun documentation that should

be produced during a system development. The decision on what

to document and how to do it is responsability of each system

manager.

Also there is no standard graphical representation nor

any regulation establishing which one should be used in each

phase, however some professionals are familiar with and use

Logical Data Flow[18], Jackson's method[22], HIPO[20), Chen-

Entity[10] and Structure Charts[33].

Concerning system development management, the most

common teaming approach is the classical method, and the most

0 common control tool is the status report. This results in

very little planning, and mainly just control. Amazingly the

least used tool for planning and control was the

.* PERT/CPM[5], however, at the same time, it was the technique

17

.

most suggested to be adopted[26]. Most of the professionals

know but do not use any formal type of review technique.

For programming the most commonly used languages are:
:\. ..

COBOL, FORTRAN, and PLI. The extensive use of languages that

facilitate the use of modern programming practices is not

enforced. When questioned, a few specialists showed some

concern about the establishement of standard HOLs for the

MAer, arguing that they could not apply to every application,

and would also limit the professionals knowledge. Any

standard should establish a number of languages sufficient

enough to cover several types of applications. As far the

limitation of knowledge no standard is supposed to be static, .-

not allowing for modification to implement improvements in

the field.

In general, many respondents suggested that the

standards be established at top level leaving the details for " %

each organization.

In conclusion, it could be seen that there is a lack of

effective top and lower level management, manifested by the

nonexistence of regulations for system development. The need

for a standard software life cycle, tools, techniques, and

.*! methodology are highlighted as important issues. *-.-

2.4 SIMAER'S Requirements Definition

Based on past experience as well as in what was found by

the survey, the SIMAER's requirements can be defined by:
., ,*.*_ .. .,.

i.is
"'" ~2->

.- °..

* 4 C .°...*... . '. - ° -- .-..

1. A high system development demand for applications

with the following characteristics:

a. A large amount of applications are to support

management information systems, which will

replace manual systems.

b. Many applications will be designed to run on

microcomputers.

2. Two databases are under development and a few

more are needed.

3. There is a need to develop Decision Support

Systems.

4. The computer resources come from varied sources,

which implies different technical characteristics.

5. There are a lot of novices, which implies that

besides standards there is a need for some sort

of tutorial material, and personnel training

support.

6. Some of the modern tools and methodologies are

already known and used by some SIMAER's

professionals.

7. Embedded and real-time systems for military

applications are gaining more and more attention

. from the MAer.

8. Software development management needs to be

emphasized and enforced through the establishment

--- of regulations and standards.

19

i"S : .~ "" " -.." - " " *.-.".."""".. . .

III. Current Available Methodologies

3.1 Introduction

This chapter is based on an extensive literature review

*- of all current software life cycle models, best known

methods, tools, and techniques, both proposed by

academicians, as well as used by some organizations similar

to the SIMAER. It highlights the characteristics,

suitabilities, strengths, and weaknesses of these models,

methods, tools, and techniques in order to allow the

selection of the ones that are best suited for the SIMAER's

* needs. The presentation in this chapter is not intended to be

. .a tutorial, rather, it is intended as an overview.

.* 3.2 Literature

3.2.1 The Software Life Cycle

A common mechanism for planning, scheduling and

- controlling engineering projects is to subdivide the

development process into several steps or phases[28]. One

such mechanism used by ADP professionals is the so-called

Software Life Cycle, which is defined as the period of time

that starts when a software product is conceived and ends

when the product is no longer available for use[21].-

There are basically two software life cycle models, the

Waterfall Model[5] [281 and the Prototyping Model[281 [121. A

description of these two models and two variations of them,

suggested by Peters[281 and others follows.

20

p _-. ,T i.. * *- - - -* *
* * * * .

7 7 7% 7 7. 77 7. M. P: ~ .- -

LL

3.2.1.1 The Waterfall Model

The Waterfall Model (Fig. 3) consists of the neat,

ICOLLECTION

..-

[SYSTEMS
'" "

ANALYSIS"'""

[REQUIREMENTS ,,,-

Figur 3 - he Waerfal.Mode

DEFINMTON""

/PRELIMIN ARY h -

IDE.SIGN.-. .
(LOGICAL DESIG.N)".'-

DETAILED ;:i

cociean.lgialo dern f the seie ofobiousstep

i" ,- I(PHYSICAL DESIGN) . .

(IM PLEM ENTA TION)

"; Figure 3 -The Waterfall Model,.'

"concise, and logical ordering of the series of obvious steps

that must occur in order to obtain a product[281. This is the

most commonly used method and should be applied to large and

* • highly structured application systems[121.

The phases in the software life cycle are described

2 .. --

differently by different writers, but the differences are

primarily in the amount of detail and manner of

organization[121. Peters [281divides the software life

cycle(Figure 3) in the following phases: "-

1. Systems Analysis: This is sometimes referred to as the

data collection phase. It is here that the problem is ...

described, data gathered with which to gauge its

magnitude, and a fundamental understanding of the

problem obtained.

2. Requirements definitions: Also sometimes referred to as

system specification, it involves the formalization of

the data gathered during analysis into a concise, "

clear, and consistent statement of what the system is

to do. As we are going to see later, this becomes one

of the most important phases in the process. There is a

great chance of errors being introduced in the system

at this point through a lack of communication and the

consequent difficulties of understanding between the .:.*."-.

user and analyst/designer about what the system is

suppose to do.

3. Preliminary design: This phase produces a high-level

design or system model showing how the system will

accomplish its task, but without sufficient detail to

implement it.

4. Detailed design: This is the refinement of the

preliminary design to the point at which implementation

22

e 7

can begin.

5. Coding: This is the implementation of the refined

design with the idiosyncracies of the programming

language, operating system environment, and external

(human and hardware) interfaces taken into account. .

6. Testing: The ensuring that certain classes of errors do

not exist within the system and that some predefined

confidence in the system has been attained, is

accomplished in this phase.

7. Installation: The actual introduction of the finished

system into its intended environment, with continuing

maintenance as required.

Boehm[5] and Davis[121 added to the Waterfall model a

Feasibility Phase (Fig. 4), in which an evaluation of

feasibility and cost-benefit of the proposed application is

done, and also an Operation and Maintenance Phase in which

- day-to-day operation, modification and maintenance are

performed. It is worthwhile to mention that Boehm also

considered Verification and Validation activities at the

end of each phase. The objective of these evaluations is to

eliminate as many problems as possible in the products of

" ~that phase. Davis[12] also points out that at the completion."-.•

of each phase, formal approval sign-offs are required from .

*: the users as well as from the manager of project development,.

and that each phase results in formal documentation.

23

[7 2A

!'[' :- .,- ...i .-..'* ,.'' -'.' ...*_. -..- ---'- c-'c-" *.-c; i.--.k .>.>.-- . ._;' .-'-. - -[. ..' * - i_--". ; -_ ._ _ _'.,"

,I - . °

Figure 4 - Boehm's Version of the Waterfall Model

The system development usually follows an iterative

strategy since as pointed out by Peters(28] we may never be

able to stop discovering some new subtlely about the problem

or the approach to a solution in the requirements analysis

and development phases.

Experiences, not all of them positive, with the

waterfall model have indicated that considerable time and

much money have been spent in the coding, testing, and

maintenance phase to correct errors that were created during

the requirements definitions and design phases. This has

been figuratively represented by the so-called Error

Avalanche(Figure 5) [37].

24-

24 __ _

~.- . .* -.* *-. .* -* .. * - - . - . * . . * * 5": ° "-- - - - - - - - - - - -" ."-*- : i: °-

NEED

REQUIREMENTS DEFINITION

CORRECT a REQUIREMENT
REQUIREMENTS ERRORS

DESIGN

CORRECT DESIGN REQUIREMENT
P.DESIGN ERRORS : INDUCED

a a ERRORSa

* PROGRAMMING

CORRECT PROGRAMMING DESIGN REQUIREMENT:1
*PROGRAM 1 ERRORS a INDUCED INDUCEDa

aaERRORS 1 ERRORSa

TET N INTEGRATION\

CORRECT CORRECTED KNOWN BUT a UNKNOWN
PERFORMANCE 1 ERRORS a UNCORRECTED 1 ERRORS

a a ERRORSa

USE

aPROGRAM WITH KNOWN AND UNKNOWN DEFICIENCIES

Figure 5 -The Error Avalanche

P 25

%-171VTWMT• T. W. W.

Studies conducted by Boehm[5, and represented in figure 6

S96. 0 #TR owww

" 'T, {M e I dT'E GUA ..1a •

2 1 SAFEGUARO

I

&

In-

~ Om. Cde ... oo.unl~ 9U Gp11'n * .. *.
1ant

Figure 6 - Increase in Cost-to-Fix or Change Software
.Throughout the Life Cycle

-.-*confirm that the later the errors are found the more costly
S.

they are to fix.

The above aspects, along with the need of improving the

users/analyst communication and the necessity of increasing

the users' participation, led to the development of newer

models, such as the Logicalized Software Development Cycle,

the Structured Life Cycle and the Prototype Life Cycle[28].

3.2.1.2 The Logicalized Software Development Cycle

This model, using top-down decomposition and abstract

software design models, seeks to separate conceptual or

practical issues, identifying the clear dichotomy existing

between the logical design and the physical design. Although

this model has some apparent advantages over earlier models

by reducing the complexity for the designer, the problem of

9t assuring that the design fits the stated requirements still

26*...........*-.-..-****
.*~....-7--

remains. Since requirements are stated as what the system J
will do, and the design is how it will do it, it is difficult

for these two to be compared. This task has been accomplished .-- ,

by using the life cycle model of structured analysis

suggested by DeMarco[13].

3.2.1.3 The Structured Life Cycle Model

In this model, requirements definitions and logical

design are linked or integrated into a single phase called

structured analysis. Closer customer or user participation is

also employed to ensure that the results of the analysis do

reflect the customer's needs based on the present situation

(current physical model), its abstract equivalent (current

logical model), and the new system or solution model (new

logical model). Some advantages of this model are:

1. Enhanced customer/contractor communication: This is

accomplished by having the customer and contractor I

communities work together as a team, and by using

written and graphic tools that they both understand.

2. Enhanced analyst/designer communication: DeMarcc[13-

proposes using the same notation in analysis as in

design. This reduces information loss between the two

camps of developers. The situation is aided even more

when one grouv does both analysis and design,

particularly, if group members maintain the mental

discipline needed between phases.

27

.. a . .-

St..~.. t. .~t. t. aa .J a~ k- a-.a

3. Better overall quality in both analysis and design

phases: The goals in each phase are limited,

realistic, and objectively measurable. Although

analysis or design could be refined ad infinitum,

there is at least a minimum set of gcals that must be

present[361. Since the objective is defined and

realistic, people work in a much more productive

manner than when they have no way of knowing when they -_

are done.

However some difficulties still remain. For example, it

is difficult for customers to visualize what the software

system will be like. This particular problem was addressed by

the Prototype Life Cycle Model[28].

3.2.1.4 The Prototype Life Cycle Model

Prototyping (Figure 7) (27] is used when requirements are

difficult to specify in advance or when requirements may

change significantly during development. Contrasting with the

waterfall model, prototyping should be applied to small and .-

less structured systems where a high degree of uncertainty is

present[12]. The basic notion is to provide the user with .-

some feedback early in the development cycle on what the

final system will be. Some characteristics of the prototype

model are:

1. Emphasis is placed on speed of building rather than

efficiency of operation.

2. The user, rather than the designer, decides when

28

2 8 S -.'.- - 55[-

*5*5S\5*L " 5
MS..~~~~~~~~°*

changes are necessary and thus controls the overall

development time.

The greatest danger involved in employing this model is

the user tendency to accept the prototype as the final

product instead of basing acceptance on the fully specified

design.

inodmniftV Ina OBSIC
,frvtiofl re~ftfeneflts

I.Stop 2 0.-iOci Ina iniial

prototype

Inta

to, prototype

Figure 7 - The us Proop Lixofe yl oe
sytr n o

IsIn

o~wids.9-e

.............

- -",---.-.-.--- .-.

3.2.1.5 The Alavi Expirement

Maryam Alavi[l] presents the results of a two-phased

research project comparing the prototyping approach with the

more traditional life cycle approach. He finds that

prototyping facilitates communication between users and

designers during the design process, however, his findings

also indicate that designers who used prototyping experienced

difficulties in managing and controlling the design process.

3.2.1.6 Selection of a Software Life Cycle Model

In this section several software life cycle model

approaches are addressed, their phases described, and the

characteristics of each highlighted. According to the

k' academicians, the waterfall model can be applied to a broad

spectrum of applications. Its strengths resides in it being a -'-

powerful mechanism for management through the phases.

Additionally the milestones and deliverables can be

Sestablished for each phase. It was also found, as will be

. seen later, that the waterfall model is the most commonly

used approach by other air forces.

Its weaknesses are the lack of flexibility and the users

difficulties in understanding what the system will be like

after it is designed. Despite those flaws, it appears that

the combination of the waterfall model with the structured

techniques, the so-called Structured Life Cycle Model,

. combines the strengths of a traditional, and indeed a well

30

• _ - .:.* , . .-. * ', '-, -. ,- -. . 2 .-- * * *--'1"."2 :- -'- * -. . .,: * ."_ ,.., .. - ... ' ..-:. . . - , . I. .

known and comprehensive approach[28], with a modern software

design technique making this combination the most powerful

system development tool of those evaluated thus far.

Comparing the models with the SIMAER's requirements, it

is possible to conclude that the Structured Life Cycle Model

is the best approach. Some of SIMAER's requirements for which

the Structured Life Cycle is well suited are:

1. Enforcement of software development management - The

Structured Software Life Cycle model is considered a powerful

mechanism for management through the phases

2. Varied types of applications are needed -The

Structured Software Life Cycle model can be applied to a

broad spectrum of applications[28].

Having decided for the Structured Life Cycle Model as

the suggested standard to the SIMAER software development, in

the next section, the complementary issues, methods, tools

and techniques, to turn a model into a methodology will be

covered.

3.2.2 Methods, Tools, and Techniques

A method is a regular and systematic way of

accomplishing something, tools and techniques are instruments

which help to implement methods, and a methodology is a set

of methods and tools combined with an overriding management

procedure[3 7].

In the later part of the 1960s, software engineering

S.- came of age with the realization that discipline was the
*. '%

--. ,°-.- .-.

•-.°

key to success in the software development[28]. Earlier, it

was suggested that the software developer is often like an

artist. However, Booch[71 points that when such artistry is

relied upon in an engineering environment, the results are

often not good. Booch goes further suggesting that

organizations should adopt modern software methodologies

supported by a high order language.

The objective of this section is to present some of the

available methods, tools, and techniques described by

Peters[28], Fairley[17], Chris Gane[18], and others.

3.2.2.1 System Architecture Techniques

1. Concept

The primary goal of an architectural representation

scheme is to portray the software system in a such a way as

to communicate these categories of information:

a. Philosophical - that is the information providing

the basis for the particular system organization *.

chosen.

b. Organizational - that is information about the

structural properties of the system.

c. Contractual - information about the ability of the

system to meet or exceed the legal obligations of

the contract with the user.

2. Approach

The goal of this class of representation techniques is

reached by depicting major portions of functions of the

32

B '

system, and their relationships to one another.

3. Tools

Peters[281 presents only two schemes for this category

of representation, the Leighton diagrams and HIPO (Hierarchy,

plus Input, Process, Output). Considering that the HIPO

diagram is the most known, used, and comprehensive of the

two representations, containing the information contained in

Leighton, and adding other important information (e.g. flow

of data and implied sequence of operation), only HIPO will be

discussed here.

a. HIPO

After the acceptance of the importance of

decomposition and hierarchical structures, IBM introduced

HIPO[201. Colter[il] considers HIPO as a transition analysis

tool, standing between the traditional and the structured

methods.

(1). Concept

This software design representation scheme is

based on the view that software systems can be modeled as

processes with distinct inputs and outputs. It allows for

top-down decomposition, as well for data flow composition.

(2) . Notation

HIPO is composed of two packages. The primary

package consists of the VTOC (Visual Table of Contents),

* . whose example is shown in figure 8, and a set of IPO (Input,

Process, and Output) diagrams (Fig. 9). The VTOC contains a

33

hierarchical system representation from a functional

perspective. The IPO diagrams provide detail on individual

functions in the system. HIPO is also supported by a set of__

*appended materials, such as report and file layouts, input '

details, etc.

ihnventory

control

oi iventory Orderor statusneflty 1(1 4tIly rere

Figuree Inict Detemin Visul Table of Caontents Diagra

Obtainn.S
ord r ode

"U"

Figure 98 HIPO Vinput, OTput, afCntPoces Diagram

Ma34

1............................

& .*&.*.

(3). Use

HIPO is claimed to be an easy to use scheme

because it has few notational requirements(281.

HIPO diagrams were developed at IBM as design

representation schemes for top-down software development, and

as external documentation aids for released products. VTOC is

primarily a high level representation, while IPO diagrams

primarily oriented to lower level anlysis. '

(4). Advantages

(a). Fairly easy for the user to understand.

(b). It is a top-down approach.

(c). Has a simple interface representation.

(d). Highlights missing information about inputs,

processes, and outputs.

(5). Disadvantages

(a). Data structure and control structure are not

addressed.

(b). Large system designs require multiple pages,

which may become confusing and difficult to

maintain.

(c). It is difficult to represent details of the

design.

(d). Difficult to use in later phases of the

system development.

* HIPO has proved to be a useful tool in a variety of

business applications. However it has some weaknesses such as

35

-. .-. .. *~.-*--.r*.

.% .%

the ripple effect, when used for very large applications

systems [21.

HIPO is a well known tool among the SIMAER's

professionals, since many of them had attended courses at

" some of the IBM training centers.

4. Discussion

Neither of the two schemes of this category of

representation technique, Leighton or HIPO, will meet all of

the needs for a complete software design representation.

However, each scheme has provided and will continue to

provide, much of what is needed in a particular software

development situation[28l.

3.2.2.2 Data Flow-Oriented Methods

This is perhaps the most widely used approach. This

approach seems natural when one is designing an automated

system to replace a manual one. In such cases the first step -A

is to build a model of the existing system using a data-flow

oriented method.

The methods and tools to be presented here have been

widely used for several years.

Peters[281 advocates that this approach can be applied

to any software design due to the degree of refinement _

occuring since its introduction in 1974, and also due to the

richness and utility of the evaluation scheme it includes.

36

-.. °.

3.2.2.2.1 Structured Desig

This is the use of the systems concepts to decompose the

information system and define the boundaries and interfaces

of each subsystem[12]. It is based on concepts developed by

Stevens, Myers, and Constantine[i33]. In structured analysis

the same notational schemes(data flow diagrams) and concepts

are used to model problems and eventually to produce

specification and a software design. A variety of tools such

as structure charts, data dictionary, pseudocodes, decision

tables can be used with this method along the
several phases z:7.

"' of the life cycle.

Structured design is one of the most used design

4- methods[281. The reasons for its popularity are: the ease

with which it can be used, the evaluation criteria that it -1
includes, the fact the software designer can express ideas

in terms of data flow and transformations, and finally, the

notation used is simple enough to be understood by

management, customers, and the implementer[371.

1. Concept

Structured Design consists of three rationales[28]:

One aims at the composition and refinement of the design, -..

*: .another separates issues into abstract issues and :

implementation issues, and the third enables the user of the .. :-.

method to evaluate the results of his efforts.

* a. Composition Rationale

In this rationale, Structured Design views systems

37

. -.°....... -
°P.. • o . -2.. • - - * * * ~

I',t:-.-C '.W-l.

in two complementary ways: One is f low of data, and the other.

r'. ~*.r .'.-'',

* is the transformation that such data undergo from input into

output. Together, these views form a network model of a

system showing data entering as input, undergoing a

transformation, perhaps undergoing other transformations;

* joining, diverging, or being stored with other data, and

finally becoming output. This model of software design may

* sound simple, but it generates several interesting dividends.

- Among them are the following:

(1) Absence of time in the data flow

representation: Since movements and transformations are the

* only characteristics represented by the data flow diagram,

* the concept of the passage of time along one or more data

*flow paths is not present. The designer is free to

concentrate on the clear establishment of what major or minor

*transformations must occur in order for the input data to be

-incrementally and correctly transformed into output.

(2) Lack of a classical functional

- decomposition: Top-down design has been described as showing

only one path in a tree-like structure, because it assumes

there is one problem to be solved. The use of the so-called

data flow viewpoint reduces the effect of the designer's

experience and biases on the results, and consequently

retains the shape or structure of the system.

b.rAbstract versusphysical design rationale

One serious dilemma for a software designer is

38

soun simle, ut i genrate sevral:nterstin dividends.: .. "-."

the cycling between (abstract) high level design issues and

(physical) implementation details that usually occurs when

the designer tries simultaneously to understand the design

problem and to define a practical solution. It is a dilemma

because, while the designer is composing design solutions to

the problem even at a high level, he may shift his focus to

details of implementation. This increases the potential for

mistakes to be made. To avoid this problem, structured design

recommends a disciplined dichotomy between abstract or

logical design issues and physical design.

c. Design evaluation rationale

. One of the most valuable aspects of the

structured design method is that it offers a set of non-

mathematical criteria for evaluating a software design. Two

classes of criteria are used: system level(coupling) and

module level(cohesion). A module is defined as a contigous

set of instructions that may be addressed by name[28].

Coupling is a means of evaluating the relationship between

modules in a system. The strength of their connection or

degree of interdependence will determine how easily the

system may be maintained or enhanced. The desire is to

minimize the coupling. Cohesion, on the other hand, is a

measure of the intramodule strength of connection. The desire

is to maximize the module's internal strength[37].

2. Approach

39

**4i*_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- .c-. -? ")

The basic strategy used in structured design is to

identify the flow of data in the problem and to incorporate

both detail and structure in an iterative fashion. A system

specification that identifies inputs, desired outputs, and a

description of the functional aspects of the system, should

exist before design begins. The specification is used as a

basis for the graph depiction, a data flow diagram, of the

inherent data flows and data transformations. From the data

flow diagrams, natural aggregates of these transformations

and data flows are identified.

Following the structured design procedure(Fig. 10),

this step eventually leads to definition and depiction
Deision treelDecsion tablelStructured [nhlish

Proccourl information about processes

Data no".I~ii~
diagram Data dictionarv Ifom.a.ion

Conji. Documents Uses data dictionary
Processes and data flows and customer policies
data flbow -

Structure chart

Documents control
hierarchy and
data communicaion

Figure 10 - Overview of the Structured Design Method

of modules and their relationships to one another and to

various system elements, in the form of structure charts(fig.

40

-.- .'--. . "---" .-. -'.,: -. .-, " -2'--," ~ ",-:',- .-- ,, . . ,-/--'"-.' -.. -', *.- '-- '-.-..--. -. " -' . • , ,,~ .

*:

.0"-
.

- WDITED

through,:c agio(i.1)

I,'t

At this point, the syse m how diaga ic o is reeamnd errors

Itdemify natural aggregates# -I .

Fm structure charl4 - - - - --

Figure 12 -General Flow of the Structured Design Method

3. Tools

a. Data Flow Diagrams

(1) Concept

Data flow diagrams consist of the

representation of individual functions and the flow of data

between those functions.

41

(2) Notation -. .

The elements of the the data flow diagram

(Fig. 13) are called "transforms" and are represented by

small circles or "bubbles". As their name implies, the

transforms represent transformation of data (which eventually

will be accomplished by a module, a program, or even an

entire system) from one form to another form. The data

elements are represented by labeled arrows connecting one

transform bubble to another.

(3) Use

This tool is suitable for both the analysis as

well as for the preliminary design phase.

(4) Advantages

(a) Has ability to completely represent data

flows.

(b) May be used in high and low level

analysis, providing a good system

documentation.

(5) Disadvantages

(a) Does not clarify I/O details.

(b) Does not provide the variety of structural ,-.- -

mechanisms available in other tools, such

as SADT, to be seen later.

42

-~Odr .*.i P . * .. . - -. --- .$.4

Salpq>- Cr i

hislory ra

IDistributrs Shipping advice

IReturns Shipments

figr of die ExmlrfaDtaFo iga

drink dr4n

................................nts 4..44 ~.*
* .4 - -. *4~~~~~~4~*.

'... ,. .4*i2"~*-.......

b. Structure Charts

Structure charts were originally developed by

Stevens, Meyers and Constantine to specify modular

characteristics of software design[281. The charts are

integral part of the structured design method[13].

(1) Concept

The notational basis for the structure chart

is the design tree. A module includes other modules and may

invoke subordinate modules or be invoked by superordinate

modules. A module is defined as a set of lexically contigous

program statements that can be referred to by name[281. The

information communicated between modules is graphically

te= depicted. The relationships and interactions depicted include

* data flow, activation, and communication of control

parameters. This scheme specifically identifies modules that

will compose the software system, but permits design quality

to be evaluated by the criteria of coupling and cohesion.

(2) Notation

Structure charts can be drawn in different

ways. The notational syntax proposed by Constantine et al.

utilizes three basic graphic forms shown in figure 11:

(a) the rectangle, used to contain a module. name or a

module descriptor.

(b) the vector that highlights control relationships

between modules (such as a call and subsequent

44

......

return).

(c) the arrow with a circular tail, used to depict

the transfer of data between two modules. The

arrow with a filled tail represents a control

f lag.

(3) Use

This notational scheme is most suited for

the design phase, which means that another tool should be

used for the analysis phase. Structure charts, in turn,

should also be complemented, in the design phase, by another

tool such as a pseudocode to give more accurate and extensive

information concerning how a module performs. This technique

* seems to be adequate for a broad category of systems

applications such as: scientific, business, interactive,

- real-time, batch, etc.

(4) Advantages

(a) Allows for iteration in the design

process.

(b) Is a relatively easy to use and understand

notation.

(c) Addresses both data and control.

(5) Disadvantages

(a) Does not allow for detailed decision

information without extra documentation.

(b) Even when decomposition is complete, the

modules may not have the detailed

45

, " ~ information needed for implementation.

(c) If the design is for a new system, for

which there is not an existing preceding

system, it may be hard to identify data

flows, transactions and transformations.

c. Data Dictionary

A data dictionary, as the name implies, is a

repository of information about data[18]. Gane[i8] points out

that the name gets stretched when we start to include the
-7 details of processes, which strictly speaking are logic,

rather than data, and suggests that perhaps the data

dictionary should be called a project directory.

(1) Concept

Peters(28] states that the data dictionary is

a requesite tool in successful software design. It enables

the designer to establish the same sort of compositional

relationship for data that are employed for functions and

modules in the executable portions of the software.

Its role in analysis has been one of aiding

communication between analyst, customer, and user by ensuring

that they are speaking a common language. Its role in design

has been to clarify to the designer the flow and content of

data items through the system.
(2) Notation

Different authors have different schemes for

46'.4
i ..

44..

"" representing data dictionary information. Peters states that

some schemes are inconvenient to use or require an automated

tool. He suggests the representation shown in Fig. 14 below,

which, according to the author, is easy to use manually, can

be typed, or entered into a text processor.

SYMBOL DEFINITION EXAMPLE

IS EQUIVALENT TO ORDER = CUPON AND PREPAYMENT

IS COMPOSED OF ORDER = CUPON + PREPAYMENT

+ AND ADDRESSEE = CUST-NAME + ADDRESS

I] EITHER-OR ADDRESS

PO BOX
STREET ADDRESS + STATE + ZIP

ITERATIONS OF PLAYER-ROSTER = (PLAYER-NAME +

PLAYER-NO]
------------------------------------ --------------------------------

1) OPTIONAL PLAYER-NAME = SURNAME + (MIDDLE-
INITIAL) + FAM-NAME

Figure 14 - An Example of a Data Dictionary Notation

(3) Use

A data dictionary can be used either

automatically or manually, depending of the amount of

information stored. The notational scheme presented in Fig.

14 can be employed in any one of several different ways. Many

designers prefer to use notational variants that can be

implemented on text processors or line printers.

A data dictionary can be applied in every phase

of the software 'life cycle.

(4) Advantages

47j.'

(a) Establishs a glossary of terms.

(b) Provides a standard terminology.

(c) Provides cross reference.

(d) Defines all terms associated with a system.

(e) Resolves problems associated with aliases

and acronyms.

(f) Provides centralized control for systems

changes.

(g) Provides reference guide for training and

design evaluation.

(h) Helps minimize maintenance costs.

(5) Disadvantage

(a) Requires automation for large systems.

d. Pseudocode

Suggested as maybe the oldest software

representation scheme still in widespread use today, it has

undergone considerable changes with the advent of more modern

' software design and development practices. According to

Peters(28], many forms of pseudocode have been suggested, but

no standard or unique form of pseudocode has been widely

* adopted.

(1) Concept

Pseudocode is a program-like, but informal

notation, containing natural language text, used to describe

the functioning of a procedure or program[14].

48

'-I_ -..

o.

* 1 A '.

Peters[28] states that the basic idea is to

permit the designer to capture rapidly and conveniently the

important elements of the design and to do so in a such way

,*" as to give designer maximum flexibility.

(2) Notation

There is no standard. Some specialists in

- software design have chosen to utilize the Pascal, Algol or

other programming language syntax and semantics as a standard, while

others have proposed their own. A normal practice is to .

select one that is well-matched to the target programming -

language[14].

Usually the designer describes system

" . characteristics using short, concise, English language

phrases that are structured by key words such as If-Then-

Else, While-Do, and End. Key words and indentation describe

the flow of control, while the English phrases describe

processing actions.

(3) Use

Pseudocode can be used in both the preliminary

and the detailed design phase. Like flowcharts, pseudocode

can be used at any level of abstraction[171.

(4) Advantages

0 (a) Is superior to flow diagrams since it

allows the structure of a program to

appear explicitly and facilitates top-down

design[141.

49 ."*

. .._.,

o-. , "A * * .-* * A* **. A A A ** A A A A A

<. .- V 'C~. . -- - . - --- * . - _ C r. .. . - - . . - - ... r :. - .. o - - 4- .

(b) Does not involve specific syntax or

semantics.

(c) Can replace flowcharts and reduce the

amount of external documentation. _

I (5) Disadvantages

(a) The freedom of syntax or semantics can

lead to coding under the guise of

designing.

(b) The lack of universal standards can lead

to communication difficulties within the design

team.

e. Decision Tables

Decision Tables are a tabular method of describing

or specifying the various actions associated with

combinations of conditions. The method is tabular in that it

uses a special form of table to present the associations. The

actions specified are transformations to be done to data or

materials. The conditions are data variables that describe

the characteristics of the environment and the events that

happen in the environment[151.

(1) Concept

The basic notion is that, for each possible

combination of situations that a system can encounter, the

system's response is known. These situations are referred to

as actions. For every condition or set of conditions that can

occur, one and only one action or set of actions is possible,

50

-- 7 "-7'

the response of the system is known with certainty[28].

(2) Notation

As indicated by Fig. 15, the basic decision -'a

table consists of two portions - the condition stub and the

* action stub. Conditions are collected and optionally labeled

in the condition stub, while actions are collected, and

optionally labeled, in the action stub. Conditions and

actions are most often described horizontally. Vertical -.. :

columns in the condition stub are used to identify the

conditions in a given instance. A corresponding column in the %

action stub describes the system's response.

Condition stub . -.

Condition I " . Y N Y - -

Condition 2 N - - Y

• .~- - i,.

Condition n - N - Y
Action stub

Action 1 X - X X -

Actionn - - x - x

KEY - - Does not apply or is
logically Precluded due

Y - Yes to other conditions

N - No X - Action initiated

Figure 15 - Parts of a Decision Table

(3) Use

Decision tables find use in many phases of

51................................ .,.;.:.!:::..:.

* .°"/

system development, including system analysis, design,

programming, debugging, and documentation. In system

analysis, decision tables help analysts in identifying the

significant control variables for the operation being I
studied. In systems design, decision tables help link the

desired action to the control variables. In debugging,

decision tables can help reduce time to locate "bugs" because

they force a sharp distinction between control logic in a

program and the actual production of the output data. In

documentation, decision tables can concisely summarize the

system or program in written form[15].

(4) Advantages

(a) Can serve as a compact means of describing

or specifying operations.

(b) Provides a convenient way of tersely

stating logically complex processing.

(5) Disadvantages

(a) Large decisions tables can become

incomprehensible and difficult to be checked

manually.

(b) Do not indicate the execution flow, data

transfer, or database interaction.

4. Discussion

Structured design has gained wide popularity for two

primary reasons. One is that it allows the software designer

to express his perception of the design problem in terms he

52

*" -. '

* .~. - ..

can identify with, data flows and transformations. The

notation with which he expresses these flows is simple, easy

to use, and understandable by management, customer, and

implementer.

The other primary reason for this method's popularity

is that it provides the designer with a means of evaluating

his (and other's) designs, serving as a sort of benchmark

against which to measure his success or progress. This means

of measure consists of nothing more than the concepts of

coupling and cohesion.

However, there are some aspects that this system

development method leaves unaddressed. For example, the

internal working of the modules is not carefully attended,

data flows and trans'formations are not easily identified with

any degree of certainty, and neither does it provide a way of

defining the places were the data should be stored whenever

necessary between processes.

In conclusion, structured design has much to offer

that is unique, tried, and tested, and although it does not

address certain key issues such as data storage, it became

the basis for the development of other system development

methods. By incorporating the several tools and techniques ,pI

described before, Structured Design can be applied to every

phase of the software life cycle.

53

""" I

-" 5*..3."."..

.

3.2.2.2.2 Structured Analysis and Design Technique

Structured Analysis and Design Technique(SADT).

originated and promoted by the SofTech Corporation, is based

on the results of studies into computer-aided

manufacturing[28].

Under development since 1970, SADT has, according to

SofTech, so far been applied principally to the planning and

functional analysis of large, complex systems[321.

1. Concept

SofTech claims that SADT is a comprehensive

method for performing functional analysis and design. By

comprehensive they mean a coherent, integrated set of

methods and rules that constitute a disciplined approach to

analysis and design, built upon a foundation of closely
i£

o
.- .

inter-related concepts. These concepts are:

a. That precise models capable of providing an

understanding of complex problems are the best means of

obtaining effective solutions.

b. That analysis of any problem should be

conducted in a top-down, structured, modular, and hierarchical

fashion.

c. That differentiation must be made, as much as

practicable, between the creation, first of a functional

model of what the system must perform, and the creation of a

design model of how the system will be implemented to perform

those functions.

54

.- , .• - . _- ..*,

;-777777.

d. That the modeling approach must be able to

depict both things (objects, documents or data) and

happenings (activities performed by men, machines, computers,

software, etc). The complete SADT model of a problem must

show both aspects properly related. -

e. That the system model should be represented

graphically in such a way as to highlight the interfaces

between component parts and the hierarchical structure that

they compose.

f. That the analysis and design method must

provide the discipline and coordination between participants,

which is required in order to produce results which reflect

1% . B the best thinking of a team.

g. That documentation and review of all decisions

and feedback related to the analysis and design effort is

essential. . -

2. Approach

SADT provides techniques and methods for:

a. Thinking in a structured way about large

and complex problems.

b. Communicating analysis and design results

in clear and precise notation.

c. Controlling accuracy, completeness, and

quality by procedures for review and approval.

d. Documenting the system analysis and design

" history, decisions, and current results.

55

4 'L--N-...

e. Managing development projects and assessing

progress, and

f. Working as a team with effective division and

coordination of effort as shown in the table VII

(Appendix B).

3. Tools

a. SADT Diagrams

The representation scheme includes a data model

and an activity model. However, most designers seem to use

only the activity model(28] [17]. r""

(1) Concept

The SADT scheme uses two graphic forms: One is

a design tree form which is a road map for the system model

and the second is the system model used to describe a program

or a group of programs, and composed of one or more activity

charts or diagrams with their accompanying data charts if

used. The activity chart depicts the flow of data and control

information between activities and processes. The basic idea -

is to provide the user of the technique with a means of

graphically portraying his analysis of an existing system or

his perception of a system under design.

(2) Notation

SADT diagrams employ labeled rectangular

* boxes, arrows, labels, and a tree-like structure to maintain

* decomposition traceability. Distinctions are made both in

what is represented and how it is represented. For example,

56
4

......................
* . * . -* .,. * ,** .** ** ** *** ** .- * . ~ . - . ~ * ~- . '-,

the basic distinction between data flow and activities is

Imade, but data are also classified as input, output, or

* control (see figures 16, 17 and 18).

jControl Source

Input Activity Output Source -iComputed
data data program rnteultse

PrcssorIneptr

F igure 16 -Activity Diagram

Controt Operating

Gencrating --- o. Using Interpreter OutputPine
activity Dt rne

Figure 17 -Data Diagram

0 57

...............................

rN.IV_. 'V.. .

COMPANY
POLICIES. 4

TRANS EDIT __EPnoTs_
It F ATANSACi IONS A--

VALID SORT
TRANSACTIONS KEYS

SORT
TRANSACTION

%-..'°4

atfo ex e tSORTEQo .* RPT

* ' TRANTRANrSACTIOS ".Y"PE',

KEYSandSAL REPORT iknwaafr.T

A,

211 -.- Figure 18 -Example of a Complete Activity Diagram..:."""..,.i,:

i D Note that some data f lows in Fig. 18 split into separate .L-

data flows, for example, the REQUESTS flow forks into SORT i:![[

-;-"..KEYS and REPORT TYPE. This separation is known as a fork. The---....

case of two data flows becoming one is called a join. The 4

* notation should also be complemented by text composed of a

*[few carefully chosen words.

(3) Use .A

SADT diagrams are claimed to be a powerful

tool to be used in every phase of the system development, but

it seems that its biggest strength is in Ehe design phase. It

is somewhat difficult for a customer to learn and use in the

analysis phase where customer participation is more

"* intensive. SADT is considered very useful for real-time

systems design due to the clearly depiced interaction

58 4

between modules[28].

(4) Advantages

(a) It is a potential powerful notation scheme

for analysis, provided that the customer

understand how to interpret it correctly.

(b) Does not require consistency at every level

because it uses reviewers to resolve

inconsistencies and interface problems.

(c) Besides representing functions and data

flow between functions, additionally shows

the control under which each function

operates and the mechanisms reponsible for

implementation of the function.

(d) Is complemented by a functional

description and a complete data dictionary

package.

(e) There is a public domain version[30]-.

(5) Disadvantages

(a) Contains too much information which can

confuse the user.

(b) Is subject to wide latitudes of

interpretation by the reviewers. Without

direct participation of the author

reviewers are forced to make assumptions.

(c) Does not provide file or report details.

59
S .

....-.

. •° . . . °. " . . •, . • °.. . ..'.. . .'.. ".. . - "'°. "-•..-. o •.. . . '.-.. U .• '.",- . ,< ".•-..

4. Discussion

As we have seen, the notational scheme distinguishs

between control data and input data. In a system involving

many such diagrams arranged in a hierarchical order, the

usual comprehension problems for the design team and

customers are compounded by the addition of the dimension of

control to the diagrammatic scheme. Also, the advocated

policy of permitting each designer or analyst to develop

independent diagrams and resolving interface problems via the

review cycle may cause additional difficulties. That is,

interface problems between a designer's portion of the system

and the rest of the system are only considered after he has

developed his independent model.

This method is proprietary of SofTech. However, there is

a public domain version[30].

3.2.2.2.3 Gane -.

Gane's method is a collection of specific tools and

techniques described in the book: Structured Analysis: Tools

and Techniques[18]. As the name suggests, the procedures and

tools are based on the Structured Design Method,

presented in Section 3.2.2.2.1. The primary design

representation technique is a modified version of the data

flow, enriched by the addition of decision tables, data

dictionary, pseudocode, Chen entity-relationship, structure

charts, etc.. All those tools are conceptually as well as

pratically presented. The entire book shows, as an example,

p=
ZIPI

1% .° , -. .. , .. ° -o ° .- . . . ,, . .o ° '° ° . .. " . ° - . . . '. . - o " .6 0.

AKd

the analysis and design process of an hypothetical system

using and integrating the mentioned tools.

1. Concept

Basically the concept is the same as Structured

Design, enriched and complemented by the other tools, as well

as by some features that allow the method to address some

areas the authors felt were not addressed by Structured

Design. Such features include database concepts, data

dictionary, and data store structuring techniques.

2. Approach

The authors start with a discussion of some of the

problems that are faced in analysis and then review the

graphical tools and how they fit together to make a logical

model. Then they take each tool in turn and treat it in --

detail, starting with the key tool, the Logical Data Flow

Diagram. Later they sketch out a structured system

development method which takes advantage of the presented

tools. The use of such a methodology involves the following

steps: build a logical model (nonphysical) of the

system using graphical techniques which enable users,

analysts, and designers to get a clear and common picture of

the system and how its parts fit together to meet user's

needs; build the system top-down using successive refinement;

emphasize the use of iterations for a good development; and

distinguish the work of analysis ("what") from the design

* ("how").

61

..........................*............. .

* . ,."..*.*p.*.*.*..* ****.*.*..**.*p.*% .* ".. ,

* . - . --. . - -V 4 - - .

K',

3. Tools

a. Logical Data Flow Diagram

(1) Concept .

Gane's method[18] uses one type of data flow

diagram which follows the same general principles of the one

described in Structured Design (Section 3.2.2.2.1). He states

that in analysis we need to recognize external entities and

data stores as well as data flows and transforms and process.

"- Gane's Logical Data Flow Diagram (LDFD) allow this to be

represented.

(2) Notation

In Gane's LDFD, functions are shown as

rectangles or boxes and data flows are represented as labeled

* - lines between the boxes (Fig. 19). He justifies the adoption

of a rectangle instead of a circle to represent the processes

because it is hard to get much legible writing inside of a

circle. Gane's LDFD diagrams are "leveled" so that each 4

diagram represents further decomposition of the higher level

functions. In addition, the diagrams show external sources

and sinks for data and location of files[11].

Even without making any physical commitment during

" analysis, the authors thinks that there are places where the

- definition of the data storage location between processes is 4

*. necessary, and represents this location with a pair of

62

BOOK DATA

Ordrs,.

... '. CUS r. Poss CUSTOMER DATA '
.j. = orders Credit j

In"' hvoices status c- "%
!(with , boks).

Ouble Source or destination of data

Arrow%
Arrow - Flow of data

Rounded Process which transforms flows of
rectangle data

Open-ended rectangle Store of data

Figure 19 - Gane's Logical Data Flow Symbols

horizontal parallel lines, closed at one end, just wide

enough to hold the name. External entities, which represents

a source or destination of transactions, e.g. customers,

employees, aircraft, tactical units, suppliers etc, are

symbolized by a solid square, with the upper and left sides

in double thickness to make the symbol stand out from the

rest of the diagram. The entity can be identified by a lower -

case letter in the upper left hand corner for reference.

Data flow is symbolized by an arrow,

preferably horizontal or vertical, with-an arrowhead showing

the direction of flow. Each data flow should have a

description of its content alongside, as shown in Fig. 20.

63

. . . . , .

C%

Anlye Sales reports Data flow reference: 29-c

sas MENT Data flow description: Sales reports

Figure 20 -. Data Flow Description "'

The function of each process is described with

imperative sentences using an active verb followed by an

object. The process has also an identification and a physical -.

reference to note how the function will be physically

implemented (Fig. 21).

oExtract Compute -
monthy least-cost

saies olution 1

Department Program name

Figure 21 - Process Boxes with Physical References

(3) Use

This tool is suitable for both the analysis as

well as for the preliminary design phase. It is also most

often employed in the traditional data processing

environment.

(4) Advantages

(a) Has the ability to completely represent

data flows.

(b) Has the ability to show data stores.

64

I

(b) Has the ability to show data stores.

(c) May be used in high and low level

analysis, providing a good system

documentation. -

(d) Is not proprietary, having plenty of
.. '-. -1

documentation available at the cost of

buying a book.

(5) Disadvantages -

(a) Does not clarify I/O details.

(b) Does not provide the variety of structural

W. mechanisms available in SADT.

b. Chen Entity-Relationship Approach

The Chen entity-relantionship approach(10] is one

of several schemes to recognize that database as well as code

needs to be designed in two stages - logical and physical. -,

(1) Concept

This design representation scheme contains

three classes of things: entities, relationships, and

attributes. Entities are objects that can be uniquely

identified. Groups of entities may constitute an entity type,

such as employee or automobile. Relationships are conceptual

links that exist between or among entities. Attributes are

properties possessed by entities and relationships, and have

corresponding values.

The basic scenario in using the Chen scheme

involves identifying and documenting entities, relations, and

65

- 7~. * ~ .-~- . .-. ~ ~ 2*<.°. ..-

i,-,i
47wZRWV

- 4 -

S." their interaction, identifying and documenting attributes and

values, and, finally, combining these results into the form

of a data structure that may be implemented on any database

management system (DBMS). The process used to produce Chen

entity-relationship diagrams is shown in Fig. 22.

Identify: attributes ------ Form attibute-value
values diagrams
entities
relations ------- Form entity-relation

Figure 22 - The Process Used to Obtain a Chen Entity-
Relationship Diagram

(2) Notation

Each concept used in Chen's approach is

represented by an individual building block in the diagram.

Several blocks of the appropriate type may be combined

according to a set of conventions. The individual forms of

-* this notation are as follows (Fig. 23): -.-

Entiy symbol

AUTOMOBILE BUYER

Figure 23 - Depicting Relationships Using Chen's Approach -

(a) Entity types are depicted by rectangles.

(b) Relationship types are depicted by diamonds

with lines connecting them to the appropriate

entity types. Note the introduction of the

66

............................- '- .

+.',',.,-,i .' ;.+.... ' ,' - .°. . " " - " , ' - " , ,, . . -' '- . ". J" • . - " . -..- " . °' •. ° .".%

symbol n and 1, which document the nature of

the interaction between the relationship type

and the entity type.

(3) Use

pThe Chen entity-relationship approach
incorporates many of the features of the data dictionary

(such as data composition and organization) while providing

the software designer with a flexible means of depicting

information-based (as opposed to process ing-based) problems.

The Chen approach forces the software designer

to view data not as a hierarchical arrangement, but as set of

entities, each possessing certain attributes, and each having

.relationships of one kind or another with other entities.

This shift in vie issmewhat analogous to the data flow

view of software systems. In the data flow view, design is

based on what is thought to be the most stable characteristic

of a system, the flow of data. Content may change, but

communication lines are stable. Similarly, in database

modeling, the relationships between and among entities will

be stable, although new entities, and new or modified

attributes may be incorporated over time. Such changes may

affect hierarchical structure more profoundly than relational

structurell28l.

-o.'-. .. ,

(4) Advantages

(a) Recognizes that code as well as database

needs be designed in the two stages -

67

an h niy ye t

(3) Use

logical and physical.

(b) Is a well-suited tool to represent

database design. S.

(5) Disadvantages

(a) Assumes that flow of data will be stable

which may not always be the case.

(b) Is not necessarily good for real-time

systems.

(c) Does not show control of data.

The other tools used by Gane's method ere already

covered under other methods.

4. Discussion -"

As we see, Gane's method is a package of tools and .

techniques that draws on structured design and relational

database theory, adding to them their own data flow

representation technique, and a set of steps to be followed

in the process of system analysis and design, covering all

phases of the software development process. Though this set

of representations fails to clarify I/O details, it is

otherwise complete[11].

This method is publicly available through the

acquisition of a number of books and is not proprietary.

3.2.2.2.4 Summary of Data Flow-Oriented Methods

These three software design methods - structured design,

68

[~~~~......... °..-... °.•, -. .- ,... ... [.[°

7- L",

i. ,'- SADT, and Gane have in common the data flow orientation -.

approach. However, some conceptual differences exist.

Next those relevant differences are discussed.

1. Communication Ability

SADT has a richer and more complex notation than

Structured Design or Gane's method. However, experience with

SADT has shown that its diagrams can often be misinterpreted, ,

even by someone who is conversant with the method, but is not

the author of the diagram. :..'.

Data Flow Diagrams, used by both Structured Design

and Gane's method, are easy for the user to understand.

Gane's method turns out to be more complete by

the adding of data storage and database representation1 k diagrams.

2. Use

SADT is more suitable for large, complex, real-time

systems, while Structured Design and Gane's methods

are more processing oriented.

Of the three Gane's method is the only one that

addresses database issues.

3. Mechanism Clarification

Like the data flow diagram used both by Structured

Design as well as by Gane's method, SADT diagrams represent

functions and data flow between functions. However, the SADT

diagram additionally shows the control under which each

• .! function operates and the mechanism(s) responsible for the

69

* .<..

T7- -

implementation of the function.

Data flow-oriented methods are easier to use

when the software product is being designed to replace a

manual or previously used automated system. This happens ..

because paper document movement usually can be correlated to

data flow in such a way that you can trace this movement . -

between the source and destination. It is much more difficult

to use these methods if the system designed has no existing . .

predecessor.

Users of these methods should be cautioned of two

possible difficulties when applying these methods:

a. If a predecessor system (especially a manual one)

*- exists, there may be a tendency to try to automate the

predecessor on a one for one basis without exploring

alternatives which may lead to a better implementation.

b. If no system currently exists, then the designer

initially must try to understand the system before he uses

paper. This relies on the experience of the designer and any

information which he may be able to get from the customer,

user, fellow designers, etc. Any deficiencies in the mental

image formed will be passed on in the design and may result

in system which is unacceptable to the user[37].

3.2.2.3. Data Structure-Oriented Methods

The data-structure oriented method designers advocate

observing data at rest. The emphasis is on identifying and

cbserving logical relationships between discernible data

70

.° -

elements, for these relationships form the basis of the

program itself.

Data structure approaches claim[28] that, given the same

set of information, two experienced software designers would

come up with the same design. The basic process is: The

" software designer first identifies the data needed by the

* program to do its job, then organizes it according to its

natural hierarchy, and finally produces a program by

following a translation procedure.

Due to its popularity and large usage, only one approach --

will be examined in this section, Jackson's method.

3.2.2.3.1 Jackson's Method

The basic approach and style of Jackson's method[22]

makes it highly attractive to those working with commercial

software design applications, such as finance, inventory,

banking or insurance[28l.

1. Concept

Jackson's method views software as a mechanism that

transforms input data into an output report via set of

coherent, synchronized operations. The problem for the

designer is to determine what the operations and their

sequence ought to be. Jackson attempts to overcome the lack

of direction present in some top-down approaches by providing

guidance to the designer by restricting possible system

sructures. The basic structure of the system is determined

71 .- I-

*-.,. by the structure of the data it processes. According to

Jackson, the software designer's problem is that of matching

the structure of the input, output, and program. It is thus

assumed that using input and output structure as a guide to

program structure will result in a well-structured program.

Apparent in this approach is the ease with which problems

involving serial file structures can be solved. But,

according to Peters[28], the most important assumption

underlying this method is that the software designer knows

what the inherent data structure is or knows how to identify

it. However, Jackson's method does not tell the designer how

to structure data.

2. Approach

The basic process for using this method is: identify

the structure of the input data and output report, define a

program structure based on these structures, and identify the

discrete operations composing the program, and assign each to

a component of the design.

Several types of problems encountered by the software

designer are recognized and addressed by this method.

Foremost among them is the structure clash, which refers to

those instances where input and output data structures are

markedly different, violating Jackson's requirement of a

common program structure throughout all data structures.

The use of this method is complemented by the

specific notation described below, which enables the software

72

.. .. "-.-- •............•...-...,........-.........

r
r o

designer to depict iteration, selection, and sequence
operations.

3. Tools

a. Jackson's Data Structure

Jackson's notational scheme represents a useful way of

depicting database characteristics[22].

(1) Concept

The basis for Jackson's approach is the

premise that a well-structured program design must parallel

the structure of the data. Hence, this approach utilizes

concepts from programming in order to depict data structure.

. The data structures are a model of the problem and the logic

flows are limited to sequence, iteration, and selection.

S.-(2) Notation

Jackson's uses rectangles to represent data

(e.g., files, arrays, and individual data items), while

connecting lines describe ownership or composition as shown

in Fig. 24. An asterisk and a degree symbol are used to

denote selection and iteration, respectively.

(3) Use

Fig. 25 presents an example of the use of

Jackson's scheme. Notice that it is similar to other

approaches, such as structure charts. It is good enough to

represent the database characteristics associated with a

single program; but it is not enough to represent systems of

programs. This tool is more suitable to be used in the

73

.......

design phase.

File, dataI c~lement symbol *-~

A Iterstion

C symbol -

Figure 24 -Notation Used in Jackson's Approach

*AE.SMAN DETAILS RGO

DATE DOLLAR * QUANTITY
AMOUNT

~ -~- Figure 25 -An Example of the Use of Jackson's Approach to
Depict Data

74

- -~~ -.- -W1.1 6 . - . --

(4) Advantages L-
(a) Works well for file processing systems.

(b) Works well for small systems or programs.

(5) Disadvantages '

(a) Little use of level of detail and

partitioning since it is only a program

design tool.

(b) Not particularly top-down.

(c) Not easily understood by the end-user of

the system.

(d) Less useful for non-file processing

systems.

(e) Data stream change may cause considerable

change in hiearchy.

(f) Not a system design tool[371.

4. Discussion

Jackson Structured Programming is widely used and is

quite effective in situations where input and output data

structures can be defined in a precise manner. It appears be

to most effective in data processing applications[
3 7].

3.2.2.4 Comparison of the Methods

In order to compare the most known methods, which have

been reviewed in the literature, some criteria considered

relevant for a system development method in general, as

75S-
-

• .v ~75,"" ,

.-

well as to meet the SIMAER's specific requirements, were

established. The establishing of these criteria is not meant

to be exhaustive, but rather just a guideline to assist in

evaluating the effectivennes of the methods as a software

design tool as well as to support the SIMAER's requirements.

The phases of the Life Cycle where each method and tool

can be applied is shown in table VIII in Appendix B.

Evaluating each method against the criteria led to the

results indicated in table IX (Appendix B). The criteria

are described after the table.

3.2.2.5 Selection of Software Design Methods

All methods reviewed showed some strengths in one or

other area. This research is interested in finding the ones

that besides having the maximum of the desirable

characteristics of a method, at the same time satisfies as

much as possible the SIMAER's requirements. Comparing the

requirements with the characteristics of table VIII, Appendix _-

B, thefollowing conclusion was reached.

1. Jackson's Method

Is the only one that does not provide capability

to model an existing system, nor to permit the statement of

requirements for an entire system. It is also not as easy as

, Structured Design or Gane for the user to understand. It is

known by a few of the SIMAER's professionals and is suitable "*

only for the design phase.

7.-.

<. [.76

2. SADT

Its strength lies in its suitability for design of -.;

real-time embedded systems through its data control ability.

Unlike Gane, it does not incorporate database concepts[17].

Its level of proliferation in Brasil is low, and it is not

known by the SIMAER's professionals. '- ,"

3. Structured Design and Gane

The Gane method, being a derivative of the structured

design, covers all aspects addressed by the later, and adds

to it some other tools and techniques, such as data

dictionary, storage representation, database issues, etc.,

which makes it a comprehensive and flexible methodology.

Another advantage comes from the fact of being well known by

some of SIMAER's professional, which will certainly reduce

the time and cost necessary for its assimilation. Its main

weakness comes from the fact that it is more data processing

oriented.

Considering the above aspects, the incompleteness of

all existing methods, and the varied scope of the

SIMAER's requirements, the conclusion is not to establish a

standard method, but rather recommend some, having their

adoption induced by providing extensive and intensive

training on them. The recommended methods will be the ones

presented by Gane[181 for management information systems and

SADT[32] for real-time and embedded systems.

The use of various methods during the phases of

77

4

• . ~ ~ ~ ~ ~~. . . .* . . °. ,. . . .- , .-. .. 5 .- , -

o°. ° . -

development for various types of problems are discussed in

Chapter V.

The approach of not having a standard method is,

in essence as will be seen later, the same solution adopted

by similar organizations around the world. The tools and

techniques to be recommended are those included in the

suggested methods.

3.2.3 Documentation ..

Documentation is a vital part of a system development

cycle. Documentation of a system development falls into two

broad categories - development documentation and control

documentation. Development documentation records how a

* _ software development is structured and what the software is

supposed to do, and gives the background information upon

which the design is founded. Control documentation, on the -:

other hand, serves an administrative function. It records the

resources used in developing and implementing the system.

This includes such documents as project plans, schedules,

resource allocation details, and progress reports[151.

3.2.3.1 Functions of Documentation

Documentation serves four main functions:

1. Intertask/interphase communication.

2. Historical reference for modification and

correction.

_ 3. Quality and quantity control.

78

5 .° 4

'i" , 4. Instructional reference, .:

a. Intertask/interphase communication This

operation records what has been done at each stage of the ..

project so that instructions can be issued for the next phase

of work, or so that all people involved in the project can

agree what has been done before work proceeds to next step.

b. Historical Reference - The reference function is 71
relevant to both commercial and scientific work. It is the

documentation of how the system works that makes it easily

changed after it is implemented. All systems are subject to

change, with the sole exception of one-time problem-solving

applications with limited amounts of data. A system can be

maintained efficiently only if the existing operation of all

procedures and programs is clearly known and understood. The

documentation of the system provides this knowledge.

c. Quality/Quantity Control - As a system develops, 71
various elements of documentation are completed as each step

is finished. Management can use this documentation to

evaluate the project progress and individual performance.

d. Instructional Reference - the development

documentation can be reviewed during and after development

for many general purposes. For example, documentation will

enable trainees to study a system developed by experienced

technicians. Another benefit of documentation is that an

outside party can evaluate the system and its method of

- .e operation to determine if the package is suitable for use in _

79

. o . . • • ° . • . , ° • ° . . • .• • ° . , . .

-. °,-

.%.%.

another environment. In this case, sufficient information

must be given to enable the user to apply the software to

other problems and requirements.

3.2.3.2 Types of Documentation

In the development of a system certains categories of

documentation must be considered. These are:

1. Analytical documentation.

2. System documentation.

3. Program documentation.

4. Operations documentation.

5. User/management aids.

a. Analytical documentation - consists of all the

records and reports produced when a project is initiated.

These include: User requests that state the problem, a

feasibility study that evaluates possible solutions, and a

project plan that estimates the time and resources required

to develop and implement the system.

b. Systems documentation - encompasses all

information needed to define the proposed system to a level

where it can be programmed, tested, and implemented . The

major document is some form of system specification, which

acts as a permanent record of the structure, its functions

and work flow, and the control of the system. It is the basic

means of communication between the systems design,

programming, and user functions.

80
, . -.

___________________________...............

C. Program documentation - comprises the records of

detailed logic and coding of the constituent programs of a

system.

d. Operations documentation - Specifies those

procedures required for running the system by operations

personnel. It gives the general sequence of events for

performing the job and defines precise procedures for data

control and security, data preparation, program running,

output dispersal, and ancillary operations.

e. User/management aids - consists of all the

descriptive and instructive material necessary for the user

to participate in the running of the operational system,

including notes on the interpretation of the outputs results.

k A* It usually is contained in the User's Manual.

Brandon[8] points that every installation should

establish documentation standards(i.e, rules for the

completion of certain documents at certain times) that define

the content, format, and distribution of the documents.

3.2.3.3 Summary

Documentation is a vital element in developing and

running any computer project, either in a governement,

business, academic, or military installation. It must not be

handled in a haphazard fashion. Formal documentation

". standards must be laid down and enforced. These standards

*"i must cover all areas users, systems, and programming, and ,.-.-

81-.\.. ...

operations activities.

Ii -

3.2.4 Software Development Management

The difference between software success and failure is

often closely related to the quality of software management.

The major sofware management problems have generally been the

following:

1. Poor planning and coordination - This leads to large

amounts of wasted effort and idle time because of duplication

of tasks, tasks unnecessarily performed or overdone or poorly

* :interfaced[51.

An important aspect of good planning is an efficient

" allocation of computing resources and personnel. Most

S - problems occur at the interfaces of modules written by

different programmers. The number of such interfaces grows as

the square of the number of individuals involved, and the

problem becomes unwieldy when the group grows to four or

more[37]. The chief programmer team idea is one approach to

the solution of this problem[36].

2. Poor Control - Even a good plan is useless when it is

not kept up to date and used to manage the system

development. One reason for poor control of software

projects is the lack of surface visibility of the project.

This means that it is difficult to assess the degree of-'.

completion of a project. The notion of a milestone[38] is

I.m useful, where a milestone is the specification of a

82

* . . demonstrable event in the development of a system.

3. Poor Resource Estimation - without a firm idea of how

much time and resources a task should take, the manager is in

a poor position to exercise control. There is a lack of

experience in software design in making accurate estimates

when compared with the other activities. Some of the tools

suggested by Zelkowitz[38] to increase the accuracy are:

a. Compare the project to similar previous projects.

b. Divide the project into units and compare each

unit with similar units.

c. Schedule work and estimate resources by month.

d. Develop standards that can be applied to work.

4. Poor Accountability Strucuture - projects are usually

organized and run with very diffuse delineation of

responsibilities, thus multiplying all the above problems.

5. Inappropriate Success Criteria - minimizing

development costs and schedules will generally yeild a hard-

to-maintain product. Emphasizing "percentage of code written"

tends to get people coding early and results in neglect of

key activities such as requirements and design validation and

test planning[5].

6. Procrastination on Key Activities - this is specially

prevalent when reinforced by inappropriate success criteria

So far most of what has been presented was based on

the current literature, at a more theoretical level. In the

83-...

* ...- 83.*..,. °'*-

"" next sections it will be seen how those theories have been

applied to some ADP organizations similar to SIMAER.

3.3 U.S. Organizations

Looking to get more practical information on the

current system development issues, it was decided to take an

* overview of what is being used by some organizations. For the

. purpose of this section some American organizations were

evaluated. The United States Air Force was chosen as a

-* reference due to the similarity of the mission, as well as

the high degree of technological advancement reached by USAF

in software development. .

Most of the information presented here was taken from

the pertinent regulations and standards established by the

USAF, mainly from 300 and 800-series regulations.

3.3.1 Software Life Cycle

According to Air Force Regulation (AFR) 300-15 the USAF

has established, although not mandatorily, a software

life cycle (Fig. 26) aligned with the waterfall model and

composed of the following phases:

1. Conceptual phase - where the mission and system

requirements are determined by the user with data automation

support and includes these tasks: .

a. Identifying the requirements. .* -

b. Analyze the requirements. -.'.

v'" c. Prepare the documentation. *".'

84.- .

-- 84

A system/subsystem requirements review (SRR) ends the

conceptual phase. Certain formal documents must be prepared

during this phase such as: Data Automation Requirements

(DAR), the Data Project Directive (DPD), the Data Project

Plan (DPP) and the Functional Description (FD). These

documents are described in the AFR 300-12. 4

COuIKPTUAI Sutl MYSIOParNI ti

PP U IN ICRAfl) . SUISYSTII SPECIICAIONS PS P KAIPCA4 1 4 a....
Ao PEASISILIY I OS l S ISS (DRAFl PT OS "
STUDY C IUAT LESS TEST PIOClIUES1 4 0.RAm01 ,OR+ V

DAR C A Aco

aN Go N-O +- -A"GA GO a SO No GoI A ICAI A ..
I YES S YES YE!*S PRa.thMAAS, YES

CPO A To , so sEIasysrim u _A' ANT YE SPECIIICAtIONS
0m PS' HASE

IS I RAl I No go

v t ~ ~ ~ P sRAc*om "l'""

4OAT YES

.N I RAT 1

-5- 4

"IDR 7-+,,-..

Figure 26 USAF's Automated Data System Life Cycle
(AFR 300-15)

2. Definition Phase

In this phase the developer(s) defines the design

requirements for the major elements in the system. This

includes:

a. Develop system interface control requirements i.e.

define the interface between the operational functions that

the system is to perform.

b. Expand system requirements, i.e make a full and

.... 8 5

u~- &...-

critical review of all performance and design requirements,

* .- i and expand them.

3. Development Phase

Analysis and design, coding, debugging, integration,

and development testing are done in this phase. It includes:

a. Preliminary Program Design.

b. Initiation of the supporting documentation

composed of drafts of: the Program Maintenance Manual (MM),

the Users Manual (UM), the Computer Operational Manual (OM),

and the Test Plan (PT).

c. Detailed Function Design

In this step the flowcharts, HIPO, structure

charts, or other logic designs, algorithms, and narrative

descriptions are expanded. This must be done in enough detail

to provide the basis for actual coding. Defining the database

by giving the number, type, and structures of tables and a

description of the items in the tables is finished at this

time.

Users and developers conduct a Critical Design Review

* (CDR) to assure that the design meets its functional

development requirements, and the design is defined fully

enough to permit the start of the coding. After the program

* specification (PS) is approved during the CDR, the design of

the ADS is finished.

Next the coding, compiling, and validation of the

. modules are performed. Development testing of coded modules

86

. *.*". ..

- ,. . .

is done until complete programs and systems are developed and

validated.

As far as could be concluded from the readings, there is

not any software design representation technique established

as a standard for the USAF. However, in Section E of AFR 300-

15, Development Phase, a vague and generalized reference to

flowcharts, HIPO and structure charts is made. The same

comment holds for methodology.

3.3.2 Documentation

AFR 300-12 establishes three types of documentation to be

used in a system development: requirements, management, and

technical. Considering the scope of this research, it was

felt that only the technical documentation needed to be

discussed here. It includes:

1. Baseline documents

a. Functional Description (FD)

This is a basis for mutual understanding between

the development group and the user group of a proposed ADS.

It reflects the definition of the system requirements and

provides the ultimate users with a clear statement of the

operational capability to be developed.

b. System/Subsystem Specification (SS)

This is a technical document that governs the

development of an ADS or subsystem of an ADS. These are the

specifications for the performance, interface, and other

87

AO-AI64 209 THE DESIGN OF A STANDARD SOFTNARE DEVELOPMENT 213
METHODOLOGY FOR THE BRZILI.. (U) AIR FORCE INST OF TECH
URIGHT-PATTERSON AFB OH SCHOOL OF ENGI. A F OLIYEIRA

UNCLSSIFIED DEC 95 AFIT/GCS/ENG/85D-13 F/O 92 M

I IhhhhhhIm

L3-2

j3... 6.

1"0 12.0

.JLa

11111,6411.

MIICRCP REOUIN TSHR
-RS16-

P.

technical requirements needed in designing the system.

C. Program Specification (PS)

This is written after SS to expand on its

requirements.

d. Data Requirements Document (RD)

This specifies the characteristics and limitations

of required data. It defines inputs required of the user,

procedures for providing this input to the system files and

expected outputs. It also defines the use of standard data

elements and codes, and any data limitations.

(e) Database Specifications (DS)

This document specifies the design of the

database and defines the interfaces.

2. Support Documents

a. Test Plan (PT)

This is a tool for directing the ADS testing and

contains the orderly schedule of events and list of materials

to effect a comprehensive test of a complete ADS.

b. Computer Operators Manual (OM)

This contains precise and detailed information on

the control requirements and operating procedures to

successfully initiate, run, and terminate the system. It is

directed toward supervisory and operator personnel.

c. Users Manual (UM)

This tells in general, nontechnical terms, how to
---. -

use the system and its computer programs. It tells the user

88 4,..

: -.?-i .--- ;<'-:.- ..- i'2.. ' ..'..-....-..."'.-.,..".-',-.-,..'...".• . " , - . ,',° "".. .-....- "- ,"'-

about inputs and outputs, and other specific information is

necessary for effective use of the system.

3. Internal Documents

.a. Development Test Plan (DT)

This plan specifies the method to be used in

development testing. It outlines test management reports,

controls, manpower, acceptance, criteria, and test

procedures.

b. Program Maintenance Manual (MM)

This is the manual to be maintained by the

programmer (or team) that is responsible for each module.

3.3.3 System Development Management

Some of the principles that have been established by the

USAF on system development management and the respective .

regulations that enforce them are:

1. Use or establish standard data elements and related

features, as specified by AFR 300-15.

2. Use of HOL's, as specified in AFR 300-10.

3. Prepare system documentation according to DOD

standard 7935.1-S.

AFR 300-12 establishes the types of reviews,

objectives, contents, and when they should be performed

during the system development cycle. This regulation also

" establishes some key milestones for control and its

relationships with the reviews.

89

3.3.4 Summary

The USAF has established several standards related to

system development, from a software life cycle to data

elements, without losing the policy of descentralizing ADPS

management, and at the same time providing for sufficient

* control and review at different levels appropriate to the

scope of each system or application.-1

The success of such a policy is corroborated by the

worldwide recognized high performance of the USAF where

.. software development is a forefront technology.

3.4 European Organizations

In an attempt to get some information on how software is

developed in this area of the world, representatives of

German[29], France, Portugal, and Italy were contacted. Problems

related with language, time, and distance made this search

not as fruitful as it could be. The findings follow:

3.4.1 German

The German Air Force does have standards covering system

* development. The waterfall model is adopted as a standard

. system life cycle, being composed of: Requirements Definition

- Phase, Conceptual Phase, Definition Phase, System

Development Phase and Implementation Phase.

-. No standard graphical representation has been

established as mandatory, although HIPO is prefered.

90

.i. . .. •.. ,-".-.':.. ,........,"4-. .-:.4.>4<".".."-........."....-..-.........-.........-..-...-.."...-.....'..'."....."....'

PERT/CPM and timetables are the main instruments of

planning and control.

There is not a standard concerning programming

languages. The most used are PLI, COBOL, and FORTRAN.

3.4.2 Portugal

The Portuguese Air Force has established a

i regulation[271 which covers generically the system life cycle

phases as well as planning, organization, control, and

documentation.

There are ongoing studies to adopt a structured analysis 11
* methodology based on Chris Gane[18] and Tom DeMarco's

books[13].

3.4.3 European Space Agency

While trying to obtain some methodology or standard

established by organizations in France and Italy, a

publication called Software Engineering Standards[16],

published by the European Space Agency (ESA), was obtained.

Such standards were developed by ESA's Board for Software

Standardization and Control (BSSC). The standards started as

recommendations, presented and discussed with the Agency's

software specialists and with representatives of the

Aerospace and software industry currently involved in the

. development of the Agency's projects. The standards also took

into account the content of certain documents published by

* the IEEE Software Engineering Standards Subcommittee[211.

91

:*'K.*,,"*...*....

One interesting point observed in these standards is

that they were classified in three classes of practices:

1. Mandatory - those applied to all software, either

developed or used by ESA, where the term "shall" is used.

2. Recommended - not mandatory, but strongly

recommended. A justification to the appropriate level in the

Agency's hierarchy is needed if they are not followed. The

term "should" is used in these rules. -

3. Guidelines - which are all other items contained in

the documents, after excluding mandatory standards and --

recommended practices; guidelines are to be considered only

as useful practices and no justification is required if they

are not followed. - -_

The ESA Software Engineering Standards are structured in

nine chapters. Considering the general similiraties of these

standards with most of what has been presented in this

research, only the most important and peculiar issues that

seem worthwhile to comment on will be addressed below.

1. The Software Life Cycle

The ESA standard adopts a waterfall model as showed

in Fig. 27. A peculiarity of the life cycle is that the

definition of the user requirements is not considered part of

the software life cycle, although constituting a necessary

step before a software project can begin. The software life

cycle begins with the notification and acceptance of user

requirements.

92"°' [" ,/ . . 1

At the end of each of the first three phases of the

software life cycle, the plan foresees a separate activity

consisting of review and formal acceptance of the deliverable

items of the phase concerned. These activities are indicated

by the same abbreviation which distinguish the phase followed

* by a "/R" shown along the top row.

p For each of the phases, Fig. 27 indicates the major

activities involved, the deliverable items of the phase with

*an indication of the items which should be under change

control during the life cycle, and the major review and

acceptance activities.

PHASES -UR SA SR/R AD AOlF Do D0/ TR am

IUSERS -SOFTWARE* SOFTWARE
UITEMs REREEJS R EQUIREMENTS unvE4s ARCHITECTUFtAL DETAILED TRANSFER OPERATIONS AND

DEFINITION DEFINITION DESIGN DESIGN & MAINTENANCE
PRODUCTIOU

1OIIdTIPiCATIOE *011NI10Pg3P * NAACCtPFTANCE
of SFT"^2 TE GEERALDETILEDOC9= CORAT1~4 OF T149

MAJO SAOP1'AAE ARTECTEPA -COTING TESIt.V(- SOPTWARE SYSIIA
RMAJORWNT OEVEL~mJN PLA ofui~.r ACeTH E .COO.Murir NG ?3FCIVOAL8 ACt UAIIETENAHCC OP Coot

ACIIIS*EAMLT N COS 'DTAIED DEVELOPM SYE Tih ST I t~o PR ISML ACCZP a,. ao AIOruN

ASSISSME4st ISTIESIEsIt2 ."tNT PLAN GCO.p -PA PA "OYSU:ICY Te
PAESTIMATES It 13%$ 601sTIamec NPIYL

PA tA

% ELIVERABLEcotpgy
ITEMS OCTtIALCO SCMN

UESSOPINAnoo AMC 1TEUMN Otfft ODDO DOCUMENT
TE PtOUIAIENTSURDO a UPIETS SRO O : SFWN QIFIN-DS~IGN AO CZCLmIth TVANSPER91 STOP4

TH OCU aeNT DOCUMENT E: OCUMENT SC.TA.1 OCOU*NETEM0

UNDER VAflt
CHANCE
'CONTROLI

REVIEWSW

REVIEWS PROISNL tooLit a.-

ACCEPT9S AF,,NOV10 Aw"Oveu "PROVED CEPAC CVCL1

1 INA ISIME

- I - ACEPTANCE O

Figure 27 -ESA's Software Life Cycle[161

p 93

Finally, Fig. 27 indicates the major milestones of a

:-L software development project from the inception of the

development to the end of the life cycle, when the software

is dismissed.

2. The Users Requirements Definition Phase

a. Requirements Specification Languages

The standards suggest that requirements should

be written in a natural language because of the advantage of

introducing no additional barriers between the people of

different disciplines who are involved in the project. ESA

does not define "natural language". However, the suggestion

is made with the caviat that it may introduce ambiguity,

imprecision, and inconsistency to the specifications.

Supposing that most of ESA's projects are of the type that

requires a high degree of reliability (space activity), and

high cost, this recommendation is somewhat of a contradiction

with the actual academic thinking that a formal type of

definition should be used in such cases[3 7].

3. The Architectural Design Phase

a. Decomposition of the System and Definition

of High Level Design Standards

While performing these activities the standards

recommend the top-down and modularization approaches. To

achieve this, they strongly recommend the adoption of a

consistent methodology, some of which are listed in one of

the annexes. They are: PDL, SADT, Structured Design, High

94

" ". -I :C. -'..

.

Order Software, Jackson's, PSL/PSA, Flowcharts, and

Warnier' s.

The using of the modules relatedness measurements,

coupling and cohesion[33] is also recommended.

b. The standards generally recommend the use of a

HOL without specifying any particular type.

c. Development Plan and Cost Estimates

According to the standards during the

Architectural Design Phase one of the main activities will be

to produce a development plan which allows control of the

project and which indicates the cost involved. This plan ,.*.

should cover: work breakdown structure, team structure, work

schedule, and a milestone chart, which should include,

reviews and a planning network, showing the relationships of

programming and teseing activities.

4. The Software Detailed Design and Production Phase

a. Principles

The standards are based on three known principles:

(1) Top-down construction.

(2) Structured Programming.

(3) Concurrent design, programming, and documen-

tation.

b. Tools and Techniques J.

Under the above cited principles, some known tools

and techniques are recommended to be adopted such as:
Project leader, teaming, project librarian, documentation

95

support, and review sessions. No specific recommendation is

4I • made with respect to methodology or graphical representation

technique to be used, the only suggestion is to use a

"formal" technique intended to promote communication between

people.

c. Documentation

Detailed documentation should grow with the

system, becoming available in its final form at the end of

the phase.

5. Operations and Maintenance Phase

One important aspect of the maintenance phase is the

classification of the problem according to degree of

regression in the life cycle to fix the error. Following this

process, problem repair can be classified as:

a. User misunderstanding.

b. Design does not conform to requirements.

c. Requirements not appropriate.

The standards state that the naming of problem -.

classification is to avoid problems associated with blame for

"errors", which only hinders an efficient maintenance

process.

Among the outputs from this phase is the Project

History Document (PHD) which summarizes the main events and

outcome of the project. This becomes a useful tool and guide

in the process of estimating effort for future projects, in

*- setting up the organization of a new project, in trying to

96..

96""-•

................................... •.

avoid repeating mistakes made in the past, and in re-applying
successful methodologies.

3.4.4 Summary

Taking in account its recency (1984), completeness, and

currency, the European Space Agency's Software Engineering

Standards can be considered a valid representative of the

current software development stage in Europe. Besides its

complete adherence to the modern principles of Software

Engineering it seems to have solved the problem of

establishing standards without inhibiting the creative

process by establishing levels of observance of the

standards.

- Having decided on the Waterfall model as the desirable

U approach for a software life cycle, and on Gane and SADT as

the recommended methods, in the next Chapter a literature

review on automated tools for software development will be

performed, and a preliminary study aiming at a future

implementation in the SIMAER will be done.

97.

97 "- -

% p,.

I.' .. %..

"." IV. Automated Software Development Tools

*. 4.1 Introduction

The acceptance of the fact that the design of any

reasonably large software system cannot be cost-effectively

kept up to date through manual means is spreading. it is

widely accepted that some degree of automation is necessary.

The greater the use of automation, the higher the probability

that system design documents will be kept up to date[281.

In this chapter a literature review of the

available automated tools, which in the author's view are the

most important, will be performed as a first step for further

* .*. studies of the feasibility of employing one or more such

tools in the SIMAER's software development.

4.2 Literature Review

4.2.1 Definition

A software development environment is defined as an "-

integrated set of automated and interactive software tools

which aid the software engineer in developing quality software

products and documentation [19]. The software products and

documentation that are developed with the use of a software

development environment include requirement definitions, '

design specifications, source and executable program code,

test plans, procedures and results, as well as other

associated documentation such as guides and manuals for

98
1.:*!::i

: ' - -" L _ - '-- -:'- '- L -2 :.. <- ''-- < -- L :. Z "Z . Z --' '' . .' .- '_ _._ . z. -. '.. -, -'.?_.'_._.'-.-. ---,--

operations and maintenance of the software.

Most of the currently available tools, although

supporting each phase of the life cycle, are disjoint and

often do not interface to tools of the other phases of the

life cycle[19]. A description of the most known tools

follows.

4.2.2 PSL/PSA

The Problem Statement Language (PSL) was developed by

Professor Daniel Teichrow at the University of Michigan[35].

The Problem Statement Analyzer (PSA) is the PSL processor.

PSL is based on a general model of systems. This model

describes a system as a set of objects, where each object may

have properties, and each property may have property values.

* "\ Objects may be interconnected and the connections are called
-' relationships. The general model is specialized to

information systems by allowing only a number of predefined

*objects, properties, and relationships.

The objective of PSL is to permit expression of as much

of the information that commonly appears in a Software

Requirement Specification as possible. In PSL, system

* descriptions can be divided into eight major aspects:

1. System input/output flow.

2. System structure.

3. Data structure.

4. Data derivation.

99

, o - , ° -

5. System size and volume.
S.--.-*"

6. System dynamics.

7. System properties.

8. Project management.

PSL contains a number of types of objects and

relationships to permit description of these eight aspects.

The system input/output flow aspect deals with the

interaction between a system and its environment. System

structure is concerned with the hierarchies among objects in

a system. The data structure aspect includes all the

relationships that exist among data used and/or manipulated

by a system, as seen by the users of the system. The data p.

*. derivation aspect of the system specifies which data objects

are involved in particular processes in the system. Data

derivation describes data relationships that are internal to

a system. The system size and volume aspect is concerned with

the size of the system and those factors that influence the

volume of processing required. The system dynamics aspect of

a system description presents the manner in which the system

behaves over time. System properties are the objects that

compose the system along with its characteristics; PSL allows

* them to be described. The project management aspect requires

that project-related information, as well as product-related

information, be provided. This involves identification of the _4

people involved, their responsabilities, schedules, cost

estimates, etc.

100

i. * .. . ' 'J . . - - . * - . -. - * . **

°- • "° ' ". "o " °, °. " "
°

" ". • • ° - - • . - . . • • - " -.

- - • .t

The Problem Statement Analyzer (PSA) is an automated

analyzer for processing requirements stated in PSL. The

structure of PSA is illustrated in Fig. 28. PSA operates on

a database of information collected from a PSL description.

I'I"--: '

I..- .

c~p~~s. .
COMMANDS

LANGUAGE.

OPERATING SYSTEM

STATEA. PTS
IN THE REPRT
MPSLEN I PROBLEM ~ AND

LANGUAGE AX$YZEu(PSL) (PS-A

ST ..,S TENN1 o!ESSG.

ANALYZER .

DATA
WAE

Fig. 28 - The Problem Statement Analyzer

The PSA system can provide reports in four categories:

database modification reports, reference reports, summary

reports, and analysis reports.

Database modification reports list changes that have

been made since the last report, together with diagnostic and

warning messages. These reports provide a record of changes

101

for error correction and recovery. Reference reports include

the Name List Report, which lists all the objects in the

database with types and dates of last change. The Formatted

Problem Statement Report (Fig. 29) shows properties and

relationships for a particular object. The Dictionary Report

provides a data dictionary.

Summary reports present information collected from -

several relationships. The Data Base Summary Report provides

management information by listing the total number of objects

of various types and how much has been said about them. The

Structure Report shows complete and partial hierarchies, and

the External Picture Report depicts data flows in graphical

form.

Analysis reports include the Contents Comparison Report

which compares the similarity of inputs and outputs. The Data

Processing Interaction Report can be used to detect gaps in

information flow and unused data objects. The Processing

Chain Report shows the dynamic behavior of the system.

PSL/PSA is a useful tool for documenting and

communicating software requirements. According to Fairley[17]

PSL/PSA not only supports analysis, but also design. This, in

his view, may not be entirely beneficial. It makes it easy

for the PSL user to fall into the trap of becoming too

involved with design details before high-level requirements

* are completed.

102
.- .

7"o77

PROCESS hourly-employee-processing
DESCRIPTION:

this process performs those actions needed
to interpret time cards to produce a pay
statement for each hourly employee;

GENERATES: pay-statement, error-listing,
hourly-employee-report;

RECEIVES: time-card;

SUBPARTS ARE: hourly-paycheck-validation,
hourly-emp-update,
h-report-entry-generation,
hourly-paycheck-production;

PART OF: payroll-processing; .

DERIVES: pay-statement

USING: time-card, hourly-employee-record;

DERIVES: hourly-employee-report

USING: time-card, hourly-employee-record;

DERIVES: error-listing -.'

USING: time-card, hourly-employee-record;

PROCEDURE:
1. compute gross pay from time card data.
2. compute tax from gross pay.
3. subtract tax from gross pay to obtain net pay,
4. update hourly employee record accordingly.
5. update department record accordingly.
6. generate paycheck.

note: if status code specifies that the employee did not work

this week, no processing will be done for this employee;

HAPPENS: number-of-payments TIMES-PER pay period;

TRIGGERED BY: hourly-emp-processing-event;

TERMINATION-CAUSES:new-employee-processing-event;

SECURITY-IS: company-only;

Figure 29 - Example of a PSL Formatted Problem Statement[36]

103

..-

_____________________.'.°

PSL/PSA has been used in many different situations

ranging from commercial data processing applications to air

defense systems.

It is operational on most larger computing environments

which support interactive use, including IBM 370 series

(OS/VS/TSO/CMS) and CDC 6000/7000 series.

4.2.3 RSL/REVS

The Requirements Statement Language (RSL) was developed

by the TRW Defense and Space Systems Group to permit

automation of specifications for real-time software

systems[4]. The Requirements Engineering Validation System

(REVS) processes and aralyzes RSL statements. Both RSL and

REVS are components of the Software Requirements Engineering

Methodology (SREM). Many of the concepts in RSL are based on

PSL. For example, RSL has four primitive concepts: elements,

which name objects; attributes, which describe the

characteristics of elements; relationships, which describe

binary relations between elements; and structures, which are

composed of nodes and processing steps. "Data" is an example

of an RSL language element. "Initial Value" is an attribute

- of the element Data, and Input specifies a relationship

between a data item and a processing step.

The fundamental characteristic of RSL is the flow- -.

oriented approach used to describe real-time systems. RSL

models the stimulus-reponse nature of process-control

104

systems. Each flow originates with a stimulus and continues ..' .' .

to the final response. Specifying requirements in this

fashion makes explicit the sequences of processing steps

required. A processing step may be accomplished by several

different software components, and a software component may

incorporate several processing steps. In fact, a sequence of

processing steps may involve hardware, software, and people

components.

The flow approach also provides for direct testability

of requirements. A system can be tested to determine that

responses are as specified under various stimuli, and

performance characteristics and validation conditions can be

associated with particular points in the processing sequence.

Flows are specified in RSL by requirements networks (R-

NETS), which have both graphical and textual

representations, as illustrated in Figs. 30 and 31.

RSL incorporates a number of predefined element types, .-. %.

relationships, attributes, and structures. Pre-defined

elements include Alpha, Data, and R-Net. An Alpha specifies

the functional characteristics of a processing step in an R-

Net.

105

• :: ...

-..

o-fl U " ei

Fig. 30 Flow Graph of a Sample RNet

R NET: PROCESS RADAR RETURN.
STRUCTURE:

INPUT INTERFACE RADARRETURNBUFFER
EXTRACT MEASUREMENT
DO (STATUS = VALID RETURN)

DO UPDATE STATE AND KALMAN FILTER END
DETERM INE ELEVAT ION
DETERMINE_IF_REDUDANT
TERMINATE

OTHERWISE -- -
DETERMINE IF OUTPUT NEEDED
DO DETERMINE IF REDUNDANT

DETERMINEELEVATION
TERMINATE

AND DETERMINE IF GHOST
TERMINATE

END

END
END.

Fig. 31 - Sample RNet in RSL r,

106

p , , °

In addition to the predefined elements, types,

relationships, and attributes in RSL, new elements,

relationships, and attributes can be added to the language

using "Define". After the new items have been defined, they can

be used to specify other attributes of the -system.

The Requirements Engineering and Validation System

(REVS) operates on RSL statements. REVS consists of three

major components:

1. A translator for RSL.

2. A centralized database,the Abstract System

Semantic Model (ASSM).

3. A set of automated tools for processing

information in the ASSM.

A schematic diagram of REVS is presented in Fig. 32

below.

TRANSLATOR SYSTEM S I MUIATOR SIMULATOR RESULTS

- :....

Fig. 32 - REVS' Schematic Diagram

1.07 107 'o~*" °- '- °

-. The ASSM is a relational database similar in concept to the

PSL/PSA database. Automated tools for processing information

in the ASSM include an interactive graphics package to aid in

specifying flow paths, static checkers that check for

completeness and consistency of the information used

througout the system, and an automated simulation package

that generates and executes simulation models of the system.

In addition to the standard displays and reports, REVS

provides a capability for defining specific analyses and

reports that may be needed on particular projects.

REVS is a large, complex software tool. Use of the REVS

system is cost-effective only for specification of large,

complex real-time systems.

4.2.4 The Software Development Workbench

Currently this development environment is undergoing a

great deal of change. Lots of efforts are going on and it is

not clear what the final product will be. As a consequence,

in this preliminary study only the ones currently available

will be addressed.

The Software Development Workbench (SDW) is being

developed at AFIT, in concert with and with support from the

Air Force Materials Laboratory/Integrated Computer-Aided

Manufacturing Division. The SDW has achieved an initial

implementation of an integrated software development

*_ environment under VAX-11/780(19]. The SDW concept supports

108

..... '.... .. *..* . . ". . ":

T> - .--> v .-. i - * ° - -..~- . -.*.- - *= -'-. • - - -'. . '-- .. - -------- " - ,.-. -% -
-

. . .--. U U 1 °. U .- - _*.-. ,- 7 - - - : L - - -

the development and maintenance of software from conception

to termination by using automated and interactive tools that

enforce the principles of software engineering.

The fundamental characteristic of SDW is the concept of

integration of tools that compose the environment. In SDW,

integration is realized in two distinct levels. The first

level deals with the access and usage mechanisms for the

interactive tools, and the second lev(concerns the

preservation of software development data and the

relationship between the products of the different software

life cycle stages. The first level requires that all of the -

SDW component tools be resident under one operating system

and be accessible through a common user interface. SDW has

achieved the first level of integration through the SDW

Executive (Fig. 33 and 34). It is the primary interface and

controller of the components tools. The second level dictates

the need to store development data (requirements

specifications, design, code, test plans and procedures,

manuals, etc.) in an integrated database that preserves the

relationships between the products of the different life

cycle stages. SDW achieves this second level integration

through the project databases (Fig. 33), which are the

integrated data storage areas.

SDW was designed based on five primary objectives:

1. Reduction of software errors.

This is to be achieved by supporting and enforcing

109

........... **.**.*..*..**.***'**

the use of accepted software engineering

principles, as well as by using the computer

to augment different testing procedures.

2. Responsive to changes

Considering that software is a dynamic entity,

the SDW must be able to support changing

requirements for its operations.

3. Rapid assessment of design alternatives through

the use of simulation models and prototyping.

4. Providing interactive and automated support.

Emphasizing the production, recording, and -. --

maintenance of all software development associated

data.
40- 5. Assisting the software manager in planning and

tracking software development efforts.

The current implementation of the SDW is an initial

version composed of software development tools that support

the pre-implementation activities of software development,

as well as the common capabilities found in most

implementation-oriented development environments such as

editing, compiling, linking, and debugging.

This is the initial implementation of the SDW and a

number of enhancements are planned, such as: extension and

refinement of the SDW tool set to provide a fu .1 array of

capabilities to support the entire life cycle; the Pre-Fab

110

.

. , . ..

- .-..

Software Description and Product Data Bases (Fig. 34) will be

completely developed and populated to support the pre-

fabricated programming concept; finally, the concept of a

syntax-directed editor will be extended to a consistency-

directed editor.

The SDW is currently installed on both the AFIT

Information Systems Laboratory VAX-11/780 and the Central

ICAM Development System. According to the designers, users at

both installations have found the environment very easy to

learn and use. Also, they point out that SDW has proven to be

a very effective aid in the development, production, and

D. maintenance of computer software and its related -- -

- documentation[19].

lil

.. -.....

* .'.* .*.

PR-FA s1w GAHC RJC PROJECT

DATABASE DATA

PRE-FAR PROUC PRO WAY PRAETO

*~ CNTROLC

Figure 33 -SDW Configuration Model

s;txorceTitGraics Help ~ eah zL'C Pat h
Editor Editor $ dlr ilsRuie Analyzers

(Soume Cow~ Wr Statistical L Perlormncef Data Flowi j lest Case
Form erIIPrmessorsIPakaes Mntr nlzes Gnrtr

Likr Inteface Dimension Execition
* Toi ComiC!5 Loaders -Checkers Checkers Proders

onienyConfiguration Pr Ma E~ (vorarmental

Figure 34 -SDW Structural Model

112

-~~0 . Mk..

4.3 Summary

The analysis presented here is intended to be a first

approach to a study for using an automated software

development tool in the SIMAER's system development
N

activities.

From this preliminary study it was possible to conclude

- that PSL/PSA and SDW, covering a broad range of applications

are the ones that best match the SIMAER's requirements.

PSL/PSA has the advantage of being able to run on IBM

and CDC computers, which are the currently available

equipments in the MAer's inventory. On the other hand, SDW

has the advantage of covering and joining all phases of the

life cycle. Considering the availability of expertise, any

study for evaluation of the feasibility of using an automated

tool in the SIMAER, 'should be done at ITA, a similar

organization to AFIT. This will facilitate the SDW

evaluation, due to the similarity of the missions of the two

organizations.

In the previous chapter it was concluded that the

waterfall model is the most adequate based on the SIMAER's

needs. In the next chapter, a standard software life cycle

will be presented.

113

.............-..-. ,

V. Proposed SIMAER Standard Software Development Methodology
.-vJ

5.1 Introduction

It was inferred by the findings in the previous chapters

that the SIMAER does not have a standard methodology

(methods, tools and techniques plus a software life cycle) to

be used in its system's software development. It was also

concluded that this is needed in order to reduce the

difficulties currently faced in this area of activity in the

MAer. 2
In this chapter an overview of a proposed standard

* software life cycle aligned with the structured life cycle

- model will be presented, and some of the discussed methods,

tools, and techniques will be recommended to be used in each

phase of such life cycle. The general idea is to provide the

specialist with a set of tools in such a way that he or she

can choose the ones that best apply to a specific situation.

The recommendation of using some yet unknown method by the

SIMAER may present some drawback in the early stages until

" that the skill in using each tool is reached by the

professionals. However, in the long run, with continued

- usage, the knowledge acquisition, the standardization, and

* the skill reached will bring benefits that will compensate

: the effort.

In chapter III, it was seen that there are lots of

* models available, and that some organizations similar to the 5•-. .--.

114

A- 7-A). -

• ",''.'.'. .*',-.... ,.. . .- .£.%,.".....-....".........-...-....-.-.................'...........'.....,.-..-.--..-.-.,.......
• ~~~~~~.%. •..o•.o °.o.•-.°

[" b-.

SIMAER have even designed their own. Considering the

* " completeness, currency, and adherence to the principles of

software engineering, as well as the broad coverage of ESA's

Software Engineering Standards, the proposed methodology will

be based in part on those standards. In addition the findings

from the literature research and the knowledge acquired with c'-

the Software Engineering Lectures(371 will be used.

Aspects related to the previous activities of software

development, such as flow and format of documents for request

of a design, and channels of command, are considered out of

the scope of this research, and will not be addressed here.

This proposal does not intend to be the actual regulation

text, but an outline, which includes a short description of
" -- V'

%-- the main parts that compose the regulation.

115

a * - .
..- .4%

-.. 5.2 The Proposed SIMAER Software Development Methodology

Regulation

5.2.1 Structure

Having reviewed many regulations and metodologies, and

having chosen a waterfall software life cycle model, the next

step was to relate the parts of the methodology with the life

* cycle model.
£. o

The proposed SIMAER Software Development Methodology Regulation

is composed of 8 chapters as shown in Fig. 35 below.

IsavtuI tItt~~f

1N1 C 5 1 0 0 0 "-'0 "G "

to,

GIAPTPKTER I CIAPTr I]hIAr 4 CUAPTER ChAPTER • C iAPTER 7 CIAPIEL "
SOI'WA RE PIMI q|NAMY t OpERATIONS "*

ROOUCrtoSU NP'NTS OPSI |N N OTAlF.L TRANSFPl Ant) GLOSSA
UETUIIWNNT S TST lANDESIGN NAINTrNANCE

.- Figure 35 - Structure of SIMAER's Software Development

Methodology Regulation

Chapter I defines classes of standards, scope, and " ' ".

purpose of the regulation. In addition, it defines the

overall software life cycle.

Chapter 2 through 7 describe the phases as seen in Fig. -.

35.

Chapter 8 presents a glossary of terms used in the

regulation.

116

• * .

i-.o " ..

,"_ ,. . ' J,- q T3- T'. C ' .J 7~ *, '% / . " I~ M 'N - Lm.9 P L 9 *. r. ' -. w% . W r .r .. w -j- -.. r- - .

5.2.2 Classes of Standard Practices

There are 3 different types of standard practices:

1. Mandatory Standards. These apply to all software

". either developed or used at SIMAER. Two asterisks (**) at the

beginning of the paragraph will highlight them in the

context.

2. Recomended Practices. These are not mandatory but

strongly recommended. A justification to the CINFE is needed

"*" if they are not followed. One asterisk (*) at the beginning

of the paragraph will highlight them in the context.

3. Guidelines. All the other items contained in the

documents, after excluding mandatory standards and

recommended practices, are to be considered only as useful

practices. No justification is required if they are not

followed.

The management responsible can obviously always enforce

stricter standards in a software development project,

- provided that they encompass the standard practices presented

here.

5.2.3 Scope

5.2.3.1 Purpose

This regulation outlines the phases to be followed for

software development as well as recomends methods, tools and

techniques to be used for software development within the

SIMAER. It provides guidance on organizing, planning,

117

' .. ° ...

developing, and maintaining an ADS project.

5.2.3.2 Application

Procedures described in the regulation are to be applied

to all MAer activities responsible for planning, designing,

developing, maintaining, and managing ADS projects.

The methodology applies regardeless of the size, the

type of application (scientific or administrative, real-time

or batch, etc), the hardware, basic software and language

used, or the nature of the developers (in-house staff or

industry). Each of these peculiarities of course has an

influence on the way in which the development is performed,

and on the formal aspect of the deliverable items described,

but conceptually the phases of the life cycle and the related

Vo- deliverable items described are to be considered valid for

any software develop'ment project.

5.2.4 The Software Life Cycle

5.2.4.1 Phases

The SIMAER's Software Life Cycle (Fig. 36) is composed

.. of six phases:

1. Users Requirements Definition (UR)

2. Software Requirements Definition (SR)

3. Preliminary Design and Test Planning (PD)

0 4. Detailed Design (DD)

5. Transfer (TR)

6. Operations and Maintenance (OM)

118

...................................-.......-.. .- ,. .--...-....-...... ..'.

S . - - ,-.r.
•
.- : .-- - .- , r r r . -a- - r 7 r r --v r ,-.. - r -. . - - " - .

USERS
RQIREMENTS
DEFINITION 1

~ SOFTWARE
REQUIREMENTSM_
DEFINITION

~ PRELIMINARY
DESIGN

4:--::

DETAILED"'
DESIGN V

AND TESTING

OPERATIONS

t(@iD
AINTENANCE.

Figure 36 -SIMAER's Software Life Cyzle

119

The software life cycle begins with the definition of a

users requirements.

At the end of the UR, SR, PD, and DD, there is a

separate activity consisting of the review and the formal

acceptance of the deliverable items of the phase concerned. N

* These activities are indicated by the same abreviation which

distinguishes the phase followed by a "/R" (for review,e.g.

DD/R is the review activity for the DD phase).

FFor each of the phases, Fig. 37 indicates the major

89,0olo 1 N 1921' PLAN 081 i93g 4*as

6101 *rTOvNwmt Q w93 OF 1.927101~ to. orVaeto S.MAmL .ivaafz grimmNA OWWsm 1 O ryiiLo£

I~lilvFIOYIC amor,

601111 AOSLIAsls ,111iAWPa

Olt l l C P ~ o m n, aa P ~ g,~, o p l tsaia s u u mS o L h i l

SPOWPLN om mo-otooeci

j 61111 wnoa., a C w.nuai
*~ ~ ~ ~ ~~~~~~~~~~-' E>EIiSUSOIIC~ ~o.cmu11C 0 gvr

&"Be"Y VU£C

411.011 shu Cot *taOWyOO $1,11I
10W5A. *r :!T: GII ase ":: o OSClOO Coe Farro *11 WICIT.16-1o£tSl.

setO12Uokl mnC JVCrtel aeetat "Is SMSO*6

09:1,Cro ~ ~ "isOSsJ.Ilyto.N

de'llamat" 90
6010 is062 .1PW 06*BP-cos,. 60

nakSCoat Peav*@610 LITTm£9001

* Figure 37 -SIMAER's Software Life Cycle Management Scheme

120

* activities involved, the deliverable items of the phase with

the major review and acceptance activities and, the method,

tools, and techniques recommended to be used in the phase.

* Fig. 37 also shows the major milestones of a software

development project between the inception of the development

and the end of the life cycle, when the software is

dismissed. The major milestones, which should always be

present, even in a small project, to allow the progress of

development to be monitored are:

1. the acceptance of the user's request.

2. the approval of the Software Requirements Document

(SRD)

3. the approval of the Preliminary Design Document (PDD)

-- and the Test Plan Document (TPD).

4. the statement of readiness for provisional acceptance

testing, i.e. the acceptance of the Detailed Design
Document (DDD), of the Users Manual (UM), and of the

code for provisional acceptance testing.

5. the statement of provisional acceptance.

6. the statement of final acceptance.

7. the issue of the Project History Document (PHD).

It should be noted that while all the other major

milestones fall at predefined moments of the life cycle, the

moment of the final acceptance can be determined by the final

-acceptance criteria. Also the moment of the issue of the

I project history document is not fixed, but a good practice

121

-r, V1, .* R VW

o.. 4.=

would be to issue the experience recorded during the
-4 -

development immediately after the final acceptance and

complete it at the end of the life cycle.

I . Users Requirements Definition (UR)

a. Introduction

In this phase the initiator begins with a general idea

of a task to be perfomed using computing equipment, and

refines this general requirement into a definition of what is

expected from the computer system and by what means its

correctness and acceptability can be assessed.

b. Inputs to the phase

The functional manager submits a request document, which

describes and justifies the "needs" for a system to do a

E certain function or to carry out a certain operation.

c. Major Activities

•* Users Requirements should never be expressed in terms of Z.-

implementation details and design of the software. On the

other hand, it is frequently necessary to consider

implementation possibilities and implications before

achieving a final requirements document. This will normally

entail discussions between the initiator of the requirement

and qualified software experts, as well as other interested

parties such as operations personnel. However, the Users-

Requirements shall stand as a logical and complete

specification after such considerations are removed. This

iterative procedure for the definition of the Users

122

,-.: .:.-

Requirements goes hand in hand with the study and

confirmation of feasibility and eventually the harmonization

of the new requirements with existing software.

(1) Determination of Operational Environment

Expression of users requirements goes together with a

statement of boundary conditions, or definitions of the -C

environment in which the software ultimately has to operate.

In the case of software to be run on an existing

installation, this may be readily available, but in the event

of a combined hardware and software procurement, the original

requirement may allow some functions to be achieved either in

hardware or in software and thus calls for a choice among a

wide variety of system architectures. In such a case it is

necessary to carry out studies to define the general system

design and to identify the parts of the system which will

require software packages. Each system component must be

sufficiently identified to enable the production of a

specific SRD for that component, and this SRD must include the

details of the interface with the rest of the system and the

necessary communication protocols. While users will not

complete this process they should provide all available

relevant information to assist the subsequent preparation of

detailed system and software requirements.

(2) Classification of Requirements

S* Having considered the environment in which the software

will be operated, the user shall proceed to classify his

123

o'.'°o' °..o'~- -. ... ' . . ° .* • °• .* "

requirements into those features which are essential and

those which are merely desirable. If a feature is described

as essential, then there shall be a test proposed to

determine whether the resulting software is acceptable.

Statements of the kind, "it is essential that the system be

optimized for speed of execution", are not admissible.

Instead, a means must be stated of determining whether the

operational speed achieved is sufficient. '".S

(3) Man/Machine Interface

This category of requirement will vary in importance

according to the type of system under consideration. In some

cases it will be sufficient to indicate which parameters may

need to be varied and which alternatives may be required for

the output medium, but in real-time systems considerable work

may be needed to define procedures for data input and system

control as well as for data presentation and archiving of

data. This may include the definition of a comand language

and interactive dialogue.

(4) Feasibilty Assessment

Feasibility will have to be checked in respect to:

(a) Available memory

(b) Real-time perfomance

(c) Suitability of programming environment both

hardware and software.

(d) Availability of resources for software

requirements definition, design, and programming.

124

. . .~~~ -_.. -.---...

Feasibility studies will need to be undertaken in

every case in which the above points cannot be confirmed

within adequate boundries by direct enquiry. Users should

give any available information which helps to determine which

points may be critical as well as details which may aid the A-

ensuing studi s. .

(5) Management Information

Information will be required at an early date regarding

resources, cost, and schedule in order to enable management to

authorize work to proceed. This will include:

(a) budgetary estimates for the total development

(b) identification of resources required

(c) provisional schedule for completion of work

k * While users may not be in a position to furnish this

data as part of their requirements, they should give any

available information to assist the task of making these

estimates.

d. Outputs from the phase

(1) Users Requirements Document (URD).

This document includes:

(a) Essential Requirements

** These shall be stated in such a way as to

indicate how the resulting software may be demonstrated.

(b) Desirable Requirements

These should have included a weighting

indicating degree of desirability.

125

(c) Man/Machine Interface

** This section will vary in importance according

to the type of software, but shall always be included.

(d) Operational Environment

- Comments concerning hardware on which the

software will have to operate, and hardware on which software

will be designed, coded, and tested. I
- Statement of related tasks which may affect the

applicability of local standards and the re-use of existing .-.

software.

(e) Feasibility

This section contains users' inputs identifying

areas in which feasibility may require study, and reference I
material which may be useful in the determination of

feasibility in any of the categories mentioned in the

feasibility assessment.

(f) Management Information

• Preliminary information should be given to

assist in prcducing estimates of time and cost for the "1

Software Requirements, Preliminary Design, and Detailed

Design Phases, and for total software costs to delivery.

Dates on which the working software system will be required

should also be given where approppriate.

e. Methods, Tools, and Techniques

The recommended methods, tools, and techniques for

various types of design projects include:

126

Gane for data processing systems;

SADT - for real-time and embedded systems;

LDFD - for data flow representation;

Chen Entity-relationship - for database systems

representation;

Data Dictionary - for documentation;

PERT/CPM , GANTT charts and status Report for planning

and development control.

2. Software Requirements Definition (SR)

a. Introduction0
The objective of this phase is to come to a complete,

validated specification of the required functions,

interfaces, and performance for the software product.

This phase should establish what should be done and not

how it is done.

b. Inputs to the Phase

The input to this phase is the Users Requirement

Document, supplemented by any further information.

c. Major Activities

(1) Identification of software Requirements

In this step the requirements are collected. To help

this process some types are established, such as: Functional

requirements, perfomance requirements, interface

requirements, operational requirements, resource

requirements, safety requirements, reliabilty requirements,

127

and maintainability requirements.

Apart from these types of requirements, there are other

requirements based on economic considerations and scheduling

constraints. These too will reflect back into the above

mentioned types of requirements and detailed trade-offs have

to be made in almost all cases.

Other considerations related to requirements include the

establishing of attributes to allow guidance of requirements

in such a way to avoid ambiguitity, make them complete,

consistent, and testable.

(2) List of Acceptance Tests

•** During this phase a list of acceptance tests shall

always be collected. This will be used to generate the

software Test Plan Document (TPD).

(3) Cost and Schedule Estimates

At this stage of the software development cycle no

design yet exists and cost and schedule estimates cannot be

based on number of modules or on number of lines to be coded.

" Therefore, the estimates can be based on comparison with

similar systems or use parametric models based on analogy

base database.

d. Review

** The SRD shall be formally reviewed through the

software Requirements Review (SR/R). Participation should

include the user, the operations personnel, the developers

} °(hardware engineers and software designers), and the managers

128

.. '..-".'-. ".. ,." ---. "-.. ...-.:.-...-'.. ..-. L.. -"..-. ----............. .. ."

concerned.

The Software Requirements Definition Phase terminates

with the formal approval of the updated SRD after the SR/R.

e. Output from the Phase

• * The deliverable items which constitute the output from

this phase shall be the Software Requirements Documents (SRD)

•** The SRD shall always be produced for any software

project.

* In terms of software requirements this document should

be independent of any implementation detail. In other words,

at this stage, the project should still be open to various

and distinctly different possible architetures and .'.

implementations. The analysts and designers will have to

evaluate them in the following phase and finally select one. ,

The SRD should incluile a development plan and cost estimates.

3. Preliminary Design and Testing Plan (PD)

a. Introduction

The aim of this phase is to design the general

architecture of the system fulfilling the requirements laid

down in the SRD and, to detail the implementation plan in

response to the SRD. The system design should be represented

as the composition of the solution to subproblems displayed

in a hierarchical structure of components. The preliminary

design is complete when the project leader can split the

subsequent project work between teams or individual team

129

77 F. "WW - ,

members. The individuals should then be able to continue with

-.- the Detailed Design phase, working almost independent of each

other and using the interface definition given in the

Preliminary Design Phase.

This phase may involve several iterations based on

alternative assumptions. Particularly in the case of

* important, critical, or highly interactive systems, the

*2 implementation of prototype software to verify the

correctness and the impact of the basic assumptions should be

considered.

Another objective of this phase is to elaborate the Test

Plan which is based in the requirements definition and

* specifies the test conditions for acceptance testing of a

* computer program.

b. Inputs to the Phase

The input to the Preliminary Design Phase is the

-" Software Requirements Document (SRD).

C. Major Activities

During this phase the following activities shall be

performed:

(1) Decomposition of the System;

(2) Functional definition of the components;

(3) Definition of the data structures;

(4) Computer resource utilizitation study;

(5) Test Plan;

(6) Development Plan and Cost Estimates;

130

..' . .

_al ~~~ ~ 7. 7: 7 7:

(7) Choice of programming language.

. ,The choice of the programming language should be done

at the very end of this phase.

d. Review

The PDD should be reviewed formally by the users,

computer hardware and software designers, and by the managers

concerned during the Preliminary Design Review (PD/R). Its

approval constitutes one of the major milestones of the

project. The TPD should also be reviewed at this point.

e. Outputs from the phase

** The formal outputs of the PD phase shall be the

preliminary Design Document (PDD) and the Test Plan Document

(TPD).

* The PDD should include a detailed development plan

and cost estimates for the DD, TR, and the OM phases.

f. Methods, Tools, and Techniques

Top-down and modularity should be the approach used

in this phase.

The recommended methods, tools, and techniques for

this phase include:

Gane - for data processing systems.

SADT - for real-time and embedded systems.

LDFD -for data flow representation.

Structure Charts - for preliminary design.

Chen Entity - for database systems representation.

Data dictionary - for documentation.

131

"... ..?2

.. ~~~~~- K'- I.-. 7-7; -176 -. 7---..r,.. 1 --VWIU N.~-~ I- -.. WV j .- Y

The programming language, HOL, should be chosen at this

point. Assembler languages should be selected only for very

specific and justified reasons.

4. Detailed Design (DD)

a. Introduction S.

In this phase the main components of the software ,.-

system are defined. They can be baselined and the project can

proceed to the detailed design of software.

After several iterations in the SR and PD phases, the

requirements should be, a this stage of the software life

cycle, completely defined and baselined and the architecture

* of the system definitely designed in terms of hardware and

software structure.

During the DD phase the lower level components

defined in the PD phase are further decomposed until reaching

the module level. Modules are then designed, coded and module

tested by individual team members. As each team member

declares himself satisfied with any particular module, he

passes it to the project librarian for inclusion in a "Tested

Module Library". From this library, verification personnel

select modules to build into System Versions to be verified.

As particular Systems Versions are verified they are passed

-* to the project librarian for inclusion in a "Verified Version

- Library".

It should be noted that any change in requirements or

in the architecture of the system while, still possible up to

132

.

i " -
-

- - ' -- - - 1 w . - . - - . - - - - - r r ; -T-b . ,- ; - . - °. . - .-

- . "-

this stage, become increasingly difficult and expensive to

deal with from now on. It is therefore extremely important 7-.-

not to start this phase if there are still doubts, major open

. points, or uncertainties in the requirements or the

architectural design.

There is no point in starting code and testing

activities if the computer, the operating system, and the

system software are not available and sufficiently reliable and

stable.

b. Inputs to the Phase

Inputs to this phase are the Software Requirements

Document (SRD), the Preliminary Design Document (PDD), and the

*. Test Plan Document (TPD).

-1 .. c. Major ActivitieF

The SIMAER methodology is based on the three

following principles: top-down construction, structured

programming, and concurrent design, programming, and

documentation.

The activities in the DD phase are driven by these

principles, which affect both the organization of the work

and its actual implementation.

(1) Organization

The functions described hereafter are necessary

irrespective of the size of the system to be implemented and

of the team organization involved in the implementation.

The functions may all be performed by one person in

133

• • - • * * ° -. •.-," •" " " " ,,... * * *. '. ,' . -; . .." ,, ' &* . " . , *' _ ,.,-,

small systems or be assigned to different members of the team

in larger systems.

(a) Project Leader 4,-

The project leader should have a good

understanding of all the parts of the system, of the external

interfaces, and of all the internal interfaces between the

various sub-systems. The project leader should take care of

the relationships with the external world, and organize,

plan, and control the activity of the team.

(b) Team Leaders

Teams of 3-4 persons should be composed. Each team

should be concerned with one or more sub-systems and should

have a team leader.

(c) Project Librarian

Essential steps to ensure the quality of the

software are the reviews carried out at various stages of the

development and version control of the code and documentation

produced. The coordination of the reviews, i.e. the

distribution of the documents, collection of the comments,

preparation and distribution of the change notices, and the

version control should be assigned to the librarian.

The librarian should be given responsibility to

maintain the master copies of all design documents, source

and object program files, source listings, and load module

files. Any update to any of these files should be done

exclusively by the librarian according to project.-

134

| . .-..

. '*

. A-- °

* configuration control procedures. Other members of the team

may copy elements from the various files but are not allowed

I to update any element of the project files.

(d) Documentation Support

Another centralized function is the documentation

support.

** A project shall have appropriate secretarial support

to produce the documentation required.

A typical structure for a development team with 3 or

4 subsystems could be of the type shown in Fig. 38.

For larger or smaller projects, the structure may have

. to be modified as a consequence of the number of people

* involved.

- -It is a good practice for each team leader to be capable

- of backing-up the team members, at least for critical

functions. The same applies to the project leader with

respect to the management functions of each of the team

leaders.

Once the organization of the development team is

defined, the project leader should proceed to define the

design, coding standards, the naming conventions, the error

handling procedures, and the development and operational

procedures. .

135

.................

-..-. "-*A, " - ,-

Project .
Leader

Project Librarian
amd Documentation

.__'_._"_Support Functions I

Team Team Team
Leader Leader Leader

Sub-System 1 Sub-System i I Sub-System nI

Members Members Members
of ofJ of
Team Team Team

1 i n

Figure 38 - A Typical Structure of a Development Team

(2) Implementation

The PDD defines the function of the various sub-

systems. Starting from this definition, the design proceeds

to lower levels.

The break-down process proceeds from the top. It

should be noted that, although the design should rigorously

proceed from the top levels down to the lowest, there are

some activities in a software development which are better

accomplished by not following this approach. Typically

service packages such as high level device drivers, or access

methods or routines, which are used by various members of the

136

A °%

77 M•

development team, ought to be implemented first. This is also

useful in view of gaining experience with the programming

environment before starting a massive coding activity. ---

Each level of design should be formally reviewed and

approved before proceeding deeply into the next level of . A
3sign.

** The structure of the design shall always be reflected

in the identification system of the components and in the

structure of the Detailed Design Document (DDD). In other

words, the content of the DDD shall have a one to one

correspondence with the levels and components into which the

system is broken down.

(3) Coding

* As the design of each module is completed, reviewed,

and approved, the module can be coded following the coding

conventions. These conventions should include in particular:

(a) coding standards for "i the languages to be

used

(b) rules for definition of constants

(c) rules for common code

(d) rules for insertion of comments, including

references to the DDD

(e) naming conventions for programs, sub-programs,

files, variables, data.

** In particular, each module shall always have a

standard header with essential information (at a minimum,

137

identification number, title, function, date-coded, last

update and any other information as decided by the project

management, will be included). It is a good practice to have

this standard header in a file in a suitable form to be

edited, completed, and then inserted at the head of each

module.

• Once the coding is finished, the module should be tested

by the author to show that it performs correctly all the

tasks specified. Data and results of each test should be kept

for further tests and comparison whenever a module has to be

modified.

Module design documentation should be produced

concurrently with detailed module specifications, module

- coding, and testing. In other words the Detailed Design

Document (DDD) grows with the system and it becomes available

in its final form at the end of the phase.

A fully tested module should be passed to the project

librarian in the form of code and related documentation to be

inserted formally in the tested module library.

Upon delivery of a module the librarian should formally

check its compliance with coding and documentation standards.

• * For progress control purposes, a module shall only be

considered completed when it has been formally accepted by

the project leader or person designated by him.

(4) System Integration and Verification

. Following the unit testing and the implementation of

138

...--..-...-.. ,.-.-.. .-... ..,. -..-.... ,....-..--.--...--.....-.-.,. ..-..... v.. .,- -.. ----...- ,.. -..---.- ,,.,.. -. *,.-..,....-,-..- .- -"".

special software and data sets which have been identified in

earlier phases in preparation for the Transfer Phase, modules

are integrated into sub-systems, and eventually into a

complete working system. The results of the module tests and

verification are collected in a test file which is made

available for review during the Transfer Phase. When

substantial subs-systems are completed and veritied,

evaluation of the correctness of many of the decisions made

in the requirements and design phases can be made.

(a) Integration

Where possible, integration should proceed in a top-

down, function by function sequence. This means that the

complete system should be integrated at the highest modular

level using "stubs" to represent lower level module. As

modules are completed they replace the stubs. This approach

lessens the impact of problems associated with system

generation and configuration. It is useful to use the project

*librarian as part of the integration team to generate the

system, since this minimizes configuration identification

problems.

Implementation of a system function by function

allows end users to gain experience with significant parts of

0 the system at the earliest possible date. This in turn

increases management confidence that the project is

progressing satisfactorily.

139
0

" %- - :- - _- . - - " .- *..-1-.-. - - - - .-.... . % b . . . _ .. -, w -. -. . -,--- . -T .

10,77 . -Ov. 7-_

S""(b) Verification

Purpose of Verification

In all but the smallest systems, it is unrealistic to

expect that a set of tests can be carried out in a few hours

or days and give a complete verification of system

performance.

Verification should start as soon a system version with at

least one verifiable function becomes available. Sufficient

time should be allocated to this activity.

The purpose of module testing is to demonstrate that the

individual modules meet the design specification. The purpose

of verification is to show that:

(1) Modules work together in the manner foreseen in the

design specification. This aspect may often be left to module

design, code and test personnel.

(2) The as-built software satisfies all the formal

requirements as expressed in the software requirements

documents.

,(3) The User's Manual and the software agree.

This aspect of verification is often ignored because of

poor understanding, thus resulting in bad relations with the

end users.

i

Organization of Verification Personnel

- For large systems it is highly recommended that the

personnel who perform system verification be independent of

140

- ,9

. . . ° - ° ' j " . ° - " " • " ° .. ' . . ° " - ". •- - , . ° ° -. - ,

those responsible for design, code, and unit test, at least

- within the software project. This technique is useful to

avoid the mental distortion of requirements and operational

interfaces which is inevitable from personnel who have been

working closely with the code for months, or even years. In

particular, the alternative point of view brought to the

product will illuminate areas which the system designers have

thought unimportant, or even in the worse, ignored.

(c) Preparation for the Acceptance Testing

The Test Plan Document (TPD), which has been

prepared in outline form during the PD phase, is completed by

the addition of full operating instructions and data

references needed to carry out the acceptance test

-.. procedures.

d. Methods, Tools, and Techniques

The recommended methods, tools and techniques for

this phase are:

Gane - for data processing systems;

SADT - for real-time and embedded systems;

LDFD - for data flow representation;

Chen Entity-relationship for database systems

representation;

Data Dictionary - for documentation;

Pseudocode - for representing the logic of modules;

HOLs that allow for structured programming;

Classical teaming - for personnel allocation; and

0

141 .-

.,

- . - .. .

, PERT/CPM, GANTT Charts for development control.

e. Review

In the DD phase, the design proceeds in a top-down bib.

manner. Whenever the design of one level is completed, there

should be a formal review of it.

The purpose of these reviews, to be held at each ,

level of the system, is to verify that the design of the

level being discussed is correct, and its documentation

contains sufficient information to proceed to the

implementation of the components belonging to that level, and

to the design of the lower level.

* The project leader should participate in these

S.reviews, together with the team leader and members of the

subsystem teams concerned. %:4

* In addition,' each team leader should organize

internal walk-throughs to check module specifications and N.
code. ,.:

** The code, tested at module level and verified at sub-

system levels, the DDD, and the UM, in their final versions,

shall be subject to a final review (DD/R). Upon satisfactory

completion on this final review the system can be declared

*. ready for provisional acceptance to be performed in the

Transfer (TR) phase. -

This is the major milestone which concludes the DD phase.

e. Outputs from the Phase

;' The outputs from the phase shall be the Code, DDD and

142

• " 4 o

* UM.

*i ,.. (1) Code

Each verified system version, including

procedures, is delivered to the project librarian, who puts

them into the verified version library. There may be various

versions of the system available at certain times before the

system enters into operation, and the project librarian

should control all of them, i.e. it should always be possible

to establish a relation between a version and a particular

set of requirements.

(2) Detailed Design Document (DDD) and Users Manual

(UM)

The DDD and the UM are evolving documents. They

initially contain the sections corresponding to the top

levels of the system. As the design and code proceeds down

through increasing levels of detail, the related sections are

added.

The DDD should contain the following information:

project standards, conventions, procedures, detailed design

specifications, etc.

The UM contains information needed for the users

* "of the system, and the information needed to operate the

system. The latter sometimes is called the Operator's Manual.

The two categories, users and operators, may coincide in some

systems, but the two distinctions should exist in any case.

1.43 ...

...

~~-~~--.-Ln VV.* 7%. - - W 7 -
Q-j j ... , r - r .. . -. .*7... " . ' . '- . -' .. ,-[- 4 a -,,,-, " -,, , - -,r ,%%" - "e-".. "..u.. " - n -.-',r . .r' , .,

A, j

5. Tranfer Phase (TR)

a. Introduction

The main purpose of this phase is to establish that

the system fulfills the requirements laid down in the SRD.

Tests are performed according to a test plan, and should also

include a check of the quality of the programming and

software documentation. The test plan should have been

prepared during the DD phase. The test plan and the results

of the tests should be compiled in the Software Transfer

Document (STD).

Since acceptance tests are based on the users'

requirements, there are a wide variety of tests possible. It

is the responsibility of the author of the user requirement

document to ensure that it will be possible to ascertain the

correctness of the final product and to lay down the

principles by which this will be achieved during the Users

Requirements Definition (UR) phase.

b. Inputs to the Phase

(1) Description of the principles on which the

acceptance tests are based.

(2) The TPD including:

(a) The definition of the hardware on which the

acceptance tests are to be run.

(b) The full list of tests to be run, i.e. the

tests procedures.

(c) The software test files covering the results

144

~°. -. *

g,*

of module test and verification.

c. Major Activities

(1) Performance of provisional acceptance testing.

(2) Correction of errors found in the acceptance

testing.

(3) Record of reception of all deliverable items in

the Software Transfer Document (STD).

d. Outputs from the Phase

(1) Statement of provisional acceptance.

(2) The provisionally accepted software system on

computer support ready for submission to operations staff for

final acceptance.

(3) The Software Transfer Document (STD).

6. The Operations and Maintenance Phase (OM)

a. Introduction

"- * Once the system has been provisionally accepted and is

entered provisionally into operation, it should still undergo

a final acceptance test with real data, to demonstrate that

.. it meets the reliability and availability requirements

defined in the SRD.

The period during which the final acceptance testing

is made is called the validation period. It begins

immediately after the provisional acceptance has been

pronounced and finishes when the system can be demonstrated

" to run stably with a defined minimum level of performance.

-A, At a certain moment in this phase, related to how the

145

S'-. . reliability and availability requirements are defined, the

system can be declared finally accepted.

b. Inputs to the Phase

Input to the phase is a full set of the following

documents (where applicable) together with at least one

version of the product which they describe:

(1) Users Requirements Document (URD);

(2) Software Requirements Document (SRD);

(3) Preliminary Design Document (PDD);

(4) Detailed Design Document (DDD);

(5) Users Manual/Operators Manual (UM); and

(6) Software Transfer Document (STD).

The Software Transfer Document (STD) will record all

tests carried out on the product which have led to

provisional acceptance.

Provisional acceptance is the formal milestone marking

the start of the Operations and Maintenance Phase.

c. Major Activities

(1) Maintenance

•** Every software product which has not been

dismissed shall have at least one person designated as

maintenance programmer.

** All projects shall follow a formal, written

problem identification and working procedure. A normal medium

for establishing such a procedure would be a software problem

report (SPR). The objective of the SPR is to identify the 4

146

. ,

% -

problem and if necessary to initiate the mechanisms for

updating the documentation.
fr .-..

The maintenance activity can cause regression to any

phase of the life cycle. For example, a problem may be caused

by a failure to implement the software detailed design in the

. code, it may be a new user requirement, or it may simply be a

misunderstanding on the part of the user.

The maintenance organization shall classify problem

reports according to the degree of regression in the life

cycle. This in turn implies which documents need to be

changed, and what testing needs to be performed....

(2) Operations

Reponsibility for operation of the product usually-

lies outside the organization responsible for the product

development.

Following problem repair, software shall be re-

released to operational use. .71

d. Outputs from the Phase

Outputs produced during the phase are:

(1) A final acceptance certificate;

(2) A Project History Document;

(3) One or more sets of software documentation

relating to the current versions/releases;

(4) One or more set of source and binary code

corresponding to the released versions of the product; and

- . (5) A record of problem identification and change

147

..- . . ---

r%° -. °-.

activity with respect to the product.

5.3 Implementation Plan

The implementation of this methodology should be ,. -

executed in four steps. First, the CINFE should review this

proposal, next the two most experienced organizations in

software development within the SIMAER, CCA-RJ for management

information systems, and ITA for embedded and real-time

systems, will train their specialists in the standard

software life cycle and in the recommendend methods and tools

for six months. Such training should be done not only at a

theoretical level, but also at practical level by means of

actually developing a system. After that will come an

evaluation period and, eventually, the necessary corrections.

Once the methodology is corrected and/or improved, there

should follow a gradual and regional extension of training

and regular utilization by the entire SIMAER. *

A tentative implementation plan schedule could be the

one shown in Fig. 39.

5.4 Cost

Most of the cost for the implementation of this

methodology will be absorbed in the regular personnel wages.

However, some indirect cost, such as the time spent to learn

a yet unknown method and tools, like SADT, should be

considered, although difficult to quantify. On the other

9e hand, one cannot lose sight of the consequent benefits once

S ",148

the methodology is learned and used all over the SIMAER.
8 6 8 7

PERIOD 16I

ORGANIZATION JAN IFEBIMARI APRI MAY IJUNI1JULf AUG ISEP IOC1INOTVEC JAf4IFEDI3ARIAPRIMArJNIJULIAUCISEPI'UTIOVIoEC:

IITA @ i I l ll'le 1111 w 1

CAC f 1 1 $ 1 $ 1 S $ l lf l $I1l
:

lsi$I

OIRAP $11 1 1 1 1IIlISSS~~~~S
_____ liiiI l l s $$sl$s sss s!"

DIRINT 5 $ $ 1

oIRENG $ $ $ 1 $ W:s $ s-.!: :"

#~4 $. $ $:

CCA-BR II ISI S Sl SI"..:

CISA lil 1 1 1 1 D9SS~~~~$S
CINOACTA 5 $ 1 $ 1$ 1$ l I$ S $

CENIPA # " $l1 $ $ $ $ $ s .cOMGAR 0 s $ $ 1 $ '-:.
COPGAR $ I, I $ $ $ $ 1 $IISSS'$:"

SEpA #I-) I i t $ 1 $ $ $ $ $ $le.....

LEGEND

0* - Review
#iI - Training
@@@ - EvaLuation
xxX - corrections I Improvements
SSS - Reqular Use

Figure 39 - SIMAER's Software Life Cycle Implementation Plan

5.5 Conclusion

In this chapter a standard methodology for the SIMAER

software development was proposed. Peters128] points that -7

methods are important, but their successful application

occurs only in supportive environments. The proposed

methodology is patterned after the ESA approach, which

149

*. * . . .** * ,

:-::-:- :-,': ': ''- -- '.. .-.--.- ,-.'..- ".-.'". .--. .-.- -".-....-.-.-".-.. . . .: ,-.-.-" -"--.' .-- :-

establishes mandatory actions, recommendations, and guidelines.

This should allow maximum flexibility for the methodology, and

will hopefully help establish a supportive environment in which

the methodology can evolve.

In the next chapter some actions that help to establish

this supportive environment are recommended.

1 5 .

..................-

VI. Conclusions and Recommendations

6.1 Conclusion

After more than six months of research, defining the

environment, searching for the requirements, diagnosing the

most common problems, studying and comparing the most common

methods and tools designed by the academecians and used by - -

several organizations, a SIMAER's Software Development

Methodology Regulation was created and proposed. Its

acceptance and effective utilization, will require some

special ways of doing things, as well as some complementary

activities. These are listed as recommendations.

6.2 Recommendations

- . This research did not intend to be exhaustive. At

the same time, some complementary issues that should be a

matter of CINFE's concern were found. They are:

1. Research should continue beyond this thesis effort in

order to:

(a) Select and implement interactive, automated

software development tools for the SIMAER.

(b) Select and adopt standard HOLs that allow for

structured programming to be used within the SIMAER.

2. The SIMAER should:

(a) Select and train its specialists in software

cost estimation methods as appropriate.

(b) Create a board for software standardization and --

151

control.

(c) Evaluate this methodology and hopefully adopt it

as a standard for the SIMAER.

(d) Update the current regulations related to

software development requests and approval to conform with

the new stdndard to be adopted.

(e) Establish a policy for microcomputer selection,

* acquisition, and use within the MAer.

It is a well known fact that software development is an

activity hard to grasp. The main purpose of this work is to

make it less painful by giving training, combining the

efforts, and sharing the resources and knowledge through the

K . establishing of standard policies in the ADP activities

within the SIMAER.

-5

152 ""'
I:-71?

.
. . * .. . * . .* . .

I Appendix A

CURRENT SOFTWARE DEVELOPMENT SITUATION IN THE BRAZILIAN AIR

MINISTRY: A SURVEY OF METHODOLOGY, DOCUMENTATION, GRAPHICAL

* - REPRESENTATION, MANAGEMENT, PROGRAMMING, TESTING, MAINTENANCE

AND SUGGESTIONS

P - MAY 85

153

FOREWORD

4

This appendix presents the results of a survey of

seventy-nine MAer ADP professionals assigned to seventeen

SIMAER organizations. It includes information about software

development from management, planning, and control to

execution.

My sincere thanks are due to the busy respondents for

taking the time to complete the questionnaire and for the . -. -

many comments that they added. The information and advice I
that they provided should be most helpful to my work.

Aparecido F.de Oliveira

2::A

J. A

154

4

-.- *--* .-. .-. .-.........

INDEX

*Foreword... 154

I. Introduction... 156

II. Letter of Transmittal................................ 156

III. Population Polled.................................... 156

IV. Procedure... 157

V. Results... 158

VI. Conclusions... 178

Annex Letter and Questionnaire........................... 180

155

p.41

IN '

THE SURVEY

-1

I. Introduction

As stated before, and based on past experience, it

seemed that few organizations in the MAer had a standard - -

methodology or used modern programming techniques for

software development. In order to figure out how ADS were

actually designed in the MAer, and to gather suggestions to

design a standard methodology, a survey was done.

II. Letter of Transmittal

Each questionnaire was accompanied by a letter of

transmittal. This letter defined the purpose of the survey

* and requested the individual's collaboration in answering the

questions.

III.Population Polled

Cost, distance, and time considerations, allied with

previous knowledge, lead to the choice of the subjective

sampling technique[2]. Sixty-three system analysts/designers

and sixteen programmers that were felt to better represent

the population were hand-picked. The intention was to draw

upon the experience and knowledge of the most experienced

professionals in the SIMAER. All of the seventeen

organizations within the SIMAER had at least one

representative. The professionals, experience on data

156

.. * %%P-...... *.-p-. . *--..

°--''-"%'o'.''.''.'-'-''--"-".'-
-' '."".'.',-% -'-% %'"J*."-\"V

"', .
": ,',, ,%""-'.• •"-'." '.'', '" . ,' ".-',-'.''.'"-' " " .7"-",""-"-" -' -" "" "-".".- ","

L'.

A processing varies from one to twenty-one years. Of the

seventy-nine questionnaires delivered forty-two replies were

received (fifty-three percent return).

IV. Procedure

The data and comments were gathered through a mail

-.. survey of the ADP specialists. The subject areas covered are

presented below:

Questionnaire

The five-page questionnaire was composed of nine subject

areas with a total of twenty-one questions. Blank spaces were

provided at the top of the first page to be filled with the '-

name, organization, function, and answerer experience on data

processing. Following that there was a short set of

instructions on answering the questionnaire, after which came

the questions.

Questions

The questions were classified by subject as follows:

1.1 to 1.3 Methodology-Existed, Which, Standardization

2.1 to 2.4 Documentation-Types used, Phase where used

3.1 to 3.3 Graphical Representation-Types used, Phases ..

4.1 to 4.3 Management-Personnel Allocation, Control, Review

Methods

5.1 to 5.3 Programming-Languages used, Standardization,

Thechniques Used

6.1 to 6.3 Testing-Plan, when and How done

7.1 to 7.2 Maintenance-Types, Formalization

157.+ ~~Ii< "

-- 7 ..

8. Cost

9. General Suggestions

V. Results

As we are going to see below not every professional

answered or gave suggestions to every question. Concerning p
the suggestions, most of them were more comments rather

suggestions. It was felt that by in large, people seemed not

to want to commit themselves, rather taking the approach of I -

"let the boss decide". However, some of the comments were

very useful.

The responses received to each questions are presented

in the sequence below:

1. Method

1.1 Does your organization use any standard method for

ADS development?

No organization has established any standard method. The

most commonly used are shown in Table I below.

158

, S O . °

pi. ' 9

", -TABLE I

Methods Used by SIMAER'S Professionals

METHOD REPLY "'":

No reply 5
Gate 9 --[[

HIPO 2
Jackson 2 """James Martin (BD) 4

No method 20 "

TOTAL 42

1.2 In any answer describe which method is used

mentioning: phases, what is done in each of them, documents

generated, advantages and disadvantages of the used

method, and source.

This question should be divided into two other

questions: One referring to development phases, i.e. life

cycle, and the other on the method itself. Concerning the

software life cycle, it was possible to conclude that there

is not any standard, and also that the ones used do not

consider the execution of reviews at the end of each phase.

The question concerning the method itself, standard or

not, was already answered in 1.1.'

1.3 What method do you think will best fit the MAer

159

In w-,. lk -w x- - - - 7

requirements? Why?

This question was intended to give a chance for

participation by the specialists, and to gather suggestions

for a method selection. The answers are shown in Table II

below:

TABLE I I:'.".>

The Most Suggested Methods for the SIMAER

METHOD REPLY

No reply 23 ,
Gane 14 I -Ja ck s on 2 .- '
James Martin (BD) 3 I
TOTAL 42

I ____I

There were also some comments rather than real

suggestions. They are:

- The one that best fits the developing organizations

needs, the difficulty will be to make them follow it.

- Some structured method such as Gane, Yourdon, or .x. .-

Jackson. The reason is because low experienced personnel can

do a good job with them.

- I did not study them comparatively. I hope your

research brings us the answer.

- Top-down since it allows to have an overview of the

system.

160

:~ *: - I do not believe that the MAer can have just one

method applicable to all sorts of system development. It has

to be limited to a management level.

- I do not have an overview of all the problems which

have influence on the several organizations in order to

suggest one specific strategy, though I think the adoption of

one standard method would be very helpful.

- The system structured method of Chris Gane, since it

is the most readable in order to have a general understanding

of the system.

- It would depend on the application area, for each a

specific method should be used considering the peculiarities

of the Brazilian Air Force.

- We should use the traditional waterfall model and over

it apply the techniq'ues described in the Chris Gane and Trish

Sarson's book: Structured Systems Analysis.

- We are using the James Martins's method for database

design and I think this method would be good for the MAer.

- Structured Systems Analysis - Chris Gane, because a

lot of analysts of the MAer know it.

- Structured Systems Analysis - Chris Gane, because this

is the most known among the academia at Rio de Janeiro.

- Considering the system development decentralization

within the MAer and the programmers and analysts'

heterogenous training I do not think that would be advisable

to adopt one standard method for the MAer. ,-V'

161

2....
-°" -"* ' . . **.***.v

- Clearly it is necessary to discipline this matter. I

see with some concern to think that just one standard method

can be ajusted to a so vast field of applications. Indeed I

think that would be advisable to divide the subject in two

levels, one broad originated at the information system focal "

point (CINFE), establishing policies and rules for each step,

and another sectorial, allowing some flexibility in

accordance to each specific involved area.

- I think we should have one method produced by a

consensus of a working group composed with user's and the

CINFE representatives. - .

Summary of the Answers on Methodology

It was seen that most of the suggestions were to adopt

NIP some of the tools and techniques suggested by Chris Gane[18].

This can be explained by the fact that the people who made

such a suggestion have graduated from the Pontificia

Universidade Catblica - PUC in Rio de Janeiro where this is a

text book for Computer Science Courses.

While most people think that a standard method would be

helpful, others showed some concern about having a standard

method due to the heterogeneous training and the diversity of

, applications. However, it may be noted that this

:. standardization, in Rio de Janeiro area, essentially already

exists informally, using the tools and techniques suggested

by Chris Gane [181. The heterogenous training can be

S, considered one more reason to have a standard method with

162

"p.-.-.. . . .

TzV.

.. skill in using it given by a common training

P 2. Documentation

2.1 Which are the documents used in system

development?(manuals, reports, program documents etc).I
- Each system is documented in a different way.

- We are using some of the CINFE's forms for program

documentation. In some cases the user's manual is produced.

This is the maximum we could get.

- As I said before since we do not have a standard, it

varies from person to person. Someone document the programs,

other develop the manuals, a third does the report, so

nothing is predetermined.

- SIMAER's forms, System Manual, Operations Manual,

User's Manual, Gantt's Charts and Logic Data Flow Diagram.

- For programming and operation the standards SIMAER's

forms, and manuals.

- None as an obligation, it is up to each designer.

- The Structured Design System's Manual and the User's

Manual.

- The system's Manual, Program's Manual and User's

Manual.

- In all phases are used non-standard documents.

2.2 In which phase each document is elaborated ?

- Generally after the system is implemented.

-0 - Generally the documents are elaborated after the

163

Ii

. . . . ° ,. , .. . , ° • , , -, ,, . . . o ,° .. °- , . , . ,

programmimg phase when the system is already implemented.

- Usually at the end.

- Usually the documents are done after the system or the

programs are ready.

-Usually at the end.

2.3 Who is responsible for elaborating, updating and

filing the documents during and after the system

implementation?

- During the development the project manager is

responsible for the documentation. After the implementation,

it is the user responsibility or it is responsibility of the

. system development sector of the organization.

- The Development Section.

- The Analyst is responsible for elaborating; filing is

responsability of the project manager.

- During the implementation it is the system

analyst/designer . After the implementation it is the system

manager.

- The system manual is elaborated and updated by the

system analyst responsible for the system.

- The system manual is elaborated and updated by the

system analyst responsible for the system. The program's

manual is started by the analyst and passed to the

programmers which should complete and update it. The user's

manual is elaborated by the analyst together with a user

164

N-

-;.*;* -** .*. *;c.X -.. w?•~*..§m e : . * ..j

representative.

- The system analyst is responsible for maintaining the

system documentation.

-The system analyst.

- The programmer in the programming phase and the

Development Section for the user's manual.

- The programmer himself, however if sometimes the

system or program lacks documentation another programmer will

document.

- The database administrator.

- Each analyst is responsible for his system.

- The analyst before implementation. After that the user

if his organization has an analyst.

- All the information will be stored in a data

dictionary and the DBA will be responsible. -

- The system analyst.

- The system analyst with collaboration of the

programmers.

- The project manager.

2.4 In your opinion which would be the ideal documentation

for the MAer?

- One that could be used both for conventional and for

database system.

- Documentation automatically generated through utility

software.

S- '3uch answer could only be given by a centralized

165

S. . . --...-

*'.: CINFE's organization and method group which would analyze the

problem during a significative amount of time (around one

year) and for a specific type of system (management for N

example).

- A system structured manual, describing all the

system's development phase in such a way to allow easy of

maintaining and a user's manual explaining how to operate and

utilize the system.

- I have not enough knowledge to make such suggestion. I

have chosen this for being practical and simple.

- The one that should be chosen by the CINFE.

- A system manual and a opera-ion manual.

- Data Dictionary.

- A documentation that represents the general consesus

of a users group of several organizatiions.

- The one that each programmer feels more comfortable to

elaborate.

- We should take the same reasoning as for question 1.3

(method), i.e., at a higher level we should standardize and

at a lower level we should leave up to each sector without

losing the centralized orientation.

Summary of the Answer on Documentation

The CINFE has printed and supplies some standard forms

for the coding and operation phases which are being used.

166
~~....:..

1 S :ii

- ft .'

ft f ft *. . ft S f t f t. f-

However, besides these forms no standard has been established

for the entire system development. Most of the professionals

know and produce the traditional system, users, and program

manuals. Some people suggested the using of a data dictionary

and only one organization is currently designing it. V

Many people think that a standard documentation should

be the product of a consensus, and defined only at the top level,

leaving the details up to each organization.

3. Graphical Representation

Does your organization employ any type of graphical

representation for system development (HIPO, Jackson, SADT,

SREM, SAMM etc) ?

Answers:

Block Diagram - CCA BR, CISA, CPO, CENIPA,COMGAR, SEFA

Data Flow Diagram - CCA RJ, DIRAP, DIRMA, DIRINT, DEPV

System Modularization Diagram - CCA BR, ITA, DIRENG

Structured Charts (Constantine) - DEPV, DIRINT, DIRAP

Jackson - DIRINT, DIRMA, CCA RJ

HIPO - DEPV, DIRMA, CCA RJ

Skiner - DIRAP

Chen Entity-Relationship Diagram - CCA RJ

Note: The answers, although computed by organization, wereV based on individual responses. It was found that in a same

organization different specialists use the same and/or

different graphical representation.

167

z" ° " "- . "- .- '"-"," '"" " "-'.' *. .'-. ''''.- . ..- .'. . ',. " .".... - ." ".-".-' .. ,- . . ".. .- "..° ,." " . . ." "-

7.-7 7

The results, by individual response is shown in the

Table III below.

TABLE III

Graphical Representation Techniques Used by SIMAER

TECHNIQUE REPLY --

LDFD-Gane II
Jackson 5
HIPO 3
Chen Entity-Relationship 4
Yourdon 2
Skiner 1 "

Block Diagram 3
Structure Chart 4
System Modularization Diagram 3
No Reply i1__

TOTAL 47

Note: More than one technique is usually used in one

project, thus more than 42 responses are shown.

., Suggestions for Question 3.3

- Considering the system development decentralization in

*[the MAer I do not see any advantage in standardizing a

graphical representation.

- Chris Gane and Jackson because is easy to learn and

use.

0 - I believe Jackson, Yourdon and Gane being some of the

most easy to build and interpret.

- Any since we give training.

- I suggest HIPO because it allows the documentation

168

* Wparallel with the development.

- I think that Jackson would be a good suggestion since

the five phases that compound it are enough for a quick and

easy understanding of the system. I am happy with it.

- Chris Gane due to the easy of understanding.

- Jackson allows easy program maintenance.

- Jackson for program definition because it limits the

programmer creativity, making the program easy to maintain.

DFD for a logic system overview, makes it easy to the user

understand the system allowing him to participate even

* without having ADP knowledge. HIPO for the system operation

flow, because it is easy to document and maintain.

Summary of the Answers on Graphical Representation

Again there is no established standard. It is up to each

analyst/designer -or programmer to choose. The most commonly

used and suggested to be used by the SIMAER were: Gane's Data

Flow Diagram for system analysis, Jackson for programming,

HIPO for the operation phases, and Chen Entity-Relationship

for database.

The main reasons for using and suggesting those were:

Gane's DFD - easy to use and interpret both by the analyst

and the user.

Jackson - allows easy program maintenance.

HIPO - because it is easy to document and maintain.

4. Development Management

169

.

4.1 Personnel Allocation

4.1.1 As you know there are several ways to organize the

programming team. Which one is adopted in your organization?

All organizations use the classical teaming.

4.1.2 Considering the MAer peculiarities and its

implications (military, hierarchy, duties, TDY etc) which

would be the best teaming to be adopted ?

Answers are shown in the Table IV below.

TABLE IV

Suggested Teaming for the SIMAER

TEAMING REPLY

Classical 26
Specialist 4
Democratic 3
Chief-Programmer 2
No Reply 7

TOTAL 42 1

Comments on questions 4.1.1 and 4.1.2

- In our organization we use the classical teaming

mainly due reasons related to hierarchy, however this kind of

allocation brings a lot of problems, mostly when the natural

evolution of a programmer occurs, sometimes when reaching the

same level of an analyst, he stays with his capacity limited

due to his seniority. Here comes the questions; subutilize

him, or utilize in functions incompatible with his grade ?

170

For the military organization I think the classical is

the most suitable.

-The classical teaming is giving good results in the

database development.

Summary of the Answers on Teaming

All of the organizations use the classical teaming which

is obviously linked to the hierarchical reasons. At the same

time some people pointed out that this teaming approach is

also a source of trouble whenever a lower rank specialist

reaches a skill level of an analyst. Even so, by far, the

classical organization was the most suggested teaming type,

even recommended by some sergeant programmers.

4.2 Development Control

4.2.1 Does your organization use any type of control

development (Status Report, PERT/CPM, Gantt Charts etc) ?

Which ?

Answers:

Status Report- CCA BR, CISA, CPO, CENIPA, COMGAR, SEFA,

DEPV, DIRENG, DIRINT, CCA RJ, DIRAP

PERT/CPM - ITA

GANTT CHARTS - ITA, DIRMA , DIRAP

4.2.2 What is your suggestion for the MAer ? Why ?

Answers in the Table V below.

171

71 .1-.."

TABLE V

Suggested Development Control Tools to be Used within SIMAER

TOOL REPLY I
Status Report 3
Gantt Chart 6
PERT/CPM 8
No Reply 25

TOTAL 42

Suggestions on Question 4.2.2

- Status report for being more objective, easy to do and

understand and because it gives best results.

- PERT/CPM since it allows for corrections during the

project development.

- A standard should be adopted by the MAer and its ,-"

accomplishment enforced.

- We use the status report. We tried to use the PERT/CPM

but it was hard to come up with a reliable time estimate for

the tasks.

- For large systems, mainly if done by contractors, I

suggest the PERT/CPM; for medium or small systems Gantt

* Chart. 4

- PERT/CPM because it is well known by most of analyst

and programmers of the MAer.

r.- - Each type of development requires a specific control.

172

n . ,. -- In some cases, several could be utilized at the same time,

one complementing the other.

- Status Report because it does not require any specific

knowledge for understanding or elaboration.

- PERT/CPM to make it possible to follow up the --

development as a function of expected results. .- 8.

Summary of the Answers on Development Control

Most of the organizations just use the status report

because they feel it is more objective, and easy to do and

understand. However the most suggested for adoption by the

-' SIMAER was the PERT/CPM, because it was considered to be well

* known, and also it makes it possible to follow up the

development as a function of expected results.

4.3 Review Sessions

4.3.1 As you know there are several types of review

sessions such as: Inspection, Walkthrough, Circulating Review

etc. Does your organization use any type?

Answers:

INSPECTION - ITA, DIRMA, CCA RJ

WALKTHROUGH - DEPV

CIRCULATING REVIEW - None

4.3.2 Who participates of the reviews? How often are

they done?

- The development team

173

..................... .

771 C.. V. C

' i,,. ...

- The manager, analyst and programmers .."" "

- Users, analysts and programmers

- Weekly

- As necessary

Summary of the Answers on Review Sessions

Most of the organizations do not use any formal type of 7:y.

review session nor have them scheduled in a regular fashion, ,

they just do it as the need arises.

When asked to give suggestion there was a weak reponse.

Only one suggested the walkthrough.

5 . Programming

5.1 Which programming languages are used in your

organization?

Answers:

COBOL - All of organizations

Fortran - CCA BR, CINDACTAI, COPAC, AFA, ITA, DEPV,

DIRENG, CCA RJ

PLI - ITA, DEPV, CCA RJ

PASCAL - CCA RJ, ITA

ALGOL - ITA

BASIC - ITA

CORAL - ITA

LTD - DIRINT

5.2 Do you think advisable to standardize some HOL for

the MAer? If so which?

Answers in the table VI below.

174

TABLE VI .

Hols Suggested to be Used by SIMAER'S Organizations

LANGUAGE REPLY '

BASIC l "

FORTRAN 2
COBOL 2 j'

PASCAL 3 k
I No standard 4-

No reply 29

TOTAL 42

Comments on Question 5.2

- It will depend on the hardware and basic software.

Standardize is always good. The hard part is to make people -

follow the standard.

- It will depend on the CINFE.

- I do think advisable to standardize, but without too

much rigidity.

- No, the languages should be adequate to the equipments

and the system involved.

-Yes, because standardize means to reduce cost.

- Standardization is a form of obstruction to knowledge

increasing, we ought just to advise on some languages for

certain applications.

."- - The language standardization always bring benefits to

175

%.n_

the users.

Summary Of the Answers on Programming Languages

The most common language used by all of organizations ,%

was COBOL, followed by FORTRAN znd PLI. '.'%

When asked if it would be advisable to standardize some

HOL for the MAer the answers vary. The main reasons favoring

standardization were cost reduction and benefits for the

users. The cons were limitations imposed on knowledge and

applications characteristics.

The most suggested languages in case of standardization

were: COBOL, FORTRAN, PASCAL and BASIC.

5.3 Which types of modern programming techiniques does

your organization utilize?

Answers:

MODULAR DECOMPOSITION CCA BR, CCA RJ, CISA, DIRMA

PSEUDOCODE - CCA RJ, DEPV, DIRENG, DIRINT

TOP-DOWN - DEPV, DIRINT, DIRMAS

STRUCTURED PROGRAMMING - CCA RJ

Summary of Answers on Modern Programming Techniques

This question did not have a strong response, maybe j
because of the way it was stated, however it could be infered

from the answers that the using of modern techniques is

viewed as being more a programmer option rather than an

organization guideline. It could be seen that the CCA RJ is a

focal point for training in the Jackson methodology for

4.

176

$ %

1- .7 :"', 77. 7

. J. .. o

structured programming.

V

6. Testing

6.1 Is a formal testing plan prepared for this phase?

It was found that in only three organizations a formal

test plan is prepared for testing. In the others tests are

done without a pre-established plan.

7. Maintenance

7.1 What type is more common in your organization?

corrective or for improvement?

The most common, as expected was the corrective

maintenance; only two organizations stated they were also

working on improvement maintenance.

8. Cost

Does your organization use any method for cost

calculation?

Only one organization stated that they are testing a

homemade method base on an IBM standard. No further details

about the method were provided.

9. General Comments

- The harder part will be to make people follow the

methodology. Usually analysts wanc to go straight to the

* design and coding phase.

- Your work will be of great value for the data

processing future in the MAer.

177

I think the MAer should implement developing

methods. "

- Should exist one standard methodology for the MAer.
- I think that the adoption by the SIMAER of a standard

methodology covering documentation, graphical representation,

personnel allocation, review methods, languages, verification

and validation, maintenance, cost estimation and other

issues, should be studied. However, considering the subject

relevance and complexity, I think that any definition in such

area should be the object of a working group study composed

of several representatives of the SIMAER's members.

VI. Conclusion

The SIMAER has not adopted a standard software life

5 ~ cycle model to be followed by its ADP professionals. The

models used and followed individually do not consider the

necessary and current accepted practice of doing reviews[6]

at the end of each phase.

None of the SIMAER's organizations has developed or

formally adopted a standard methodology, in which modern

methods, tools, and techniques for system's analysis or

software designed are employed, to be followed by their ADP

professionals during system's development. However, as shown

in the Tables I and III, some professionals located in Rio

are familiar with and do use, informally, some of the modern

methods, tools and techniques supported by Chris Gane[18],

* S Jackson[221, and James Martin(24] for database.

178

I

, %.*

When asked to suggest some method to the MAer there was

a heavy concentration on Gane, followed by James Martin and

Jackson, as shown in the Table II.

While most of the SIMAER's professionals think that a

standard methodology (method + life cycle) would be helpful

and cost-saving, a few showed some concern about having

a standard arguing that the heterogenous training and the

diversity of the applications would not make it practical. The

survey showed that in a small but varied number of

organizations in Rio a standard almost existed. The

heterogenous training can be considered one more reason for

having a standard. A common training and practice would help

level off the degree of experience of people involved in

system development. ,

There is not at any level, a MAer documentation standard " .

establishing the minimal documentation that should be

produced during a system development.

Concerning system development management, the most

common teaming approach is the classical method, and the most

common control tool is the status report. This results in

very little planning, and mainly just control. Amazingly the

least used tool for planning and control was the PERT/CPM.

However, at the same time, it was the technique most
suggested to be adopted. Most of the professionals know but

do not use any formal type of review technique. The

179

.PA'~ * .J~ .T~~r'~T tV'~ . --- .i -

statistics related to those findings are shown in Tables IV

and V.

For programming the most commonly used languages are: .

COBOL, Fortran, and PLI. The extensive use of languages that

facilitate the use of modern programming practices is not

enforced. When questioned, a few specialists showed some

concern about the establishment of standard HOLs for the 4

SIMAER, arguing that they could not apply to every

application, and also would limit the professionals *.1
knowledge. Any standard should establish a number of

languages sufficient enough to cover several types of

applications. As far as the limitation of knowledge no
: < -- standard is supposed to be static, not allowing for .

modification to implement improvements that certainly will

arise in this field. The statistics for this topic is shown

in Table VI.

In conclusion it could be seen that the problem is the

incomplete adherence to the modern principles of software

engineering. All the survey findings reveal the need for

training, policies, and standards that enforce the observance

of the referred principles in the SIMAER's systems software

development.
1

-,._- ..

tI

* .. %

L2 i °°•*+ " . ,. +.. . **', . * *.***..*** * *.. .*...,

Dayton, march, 18, 1985.

Dear Friend

As you probably know I am attending a course in

order to obtain a master degree in Computer Science.

Such achievement depends on several requisites, -

among others to do a research on a topic of the Air Force

* interest and subsequently to present it as a thesis.

Looking for to accomplish that requirement, as

also to propose a solution to an Aeronautical Ministry

problem, I decided to design and suggest a standard Data

* Processing System Development Methodology to our ministry. '

Considering the special condition in which I find

* myself (far and with a short time) I decided to elaborate the

annex questionnaire looking for to obtain:

. (1) Information on the current stage on data processing

* system development in the NAer.

(2) Suggestions in order to design a standard methodology.

Finally, due to all the considerations above I

ask the colleague corroboration in answering, until the

second of may, the annex questions and return them to Col

Victorio Baptista da Silva-CCA RJ, which will redirect them

to me.

Looking forward for your corroboration I send my

sincerely thank you.

Aparecido Francisco de Oliveira - Lt Col

181

...

,r .

SURVEY ON DATA PROCESSING SYSTEM DEVELOPMENT IN THE MAER

I. GENERAL DATA

1. Name/Rank:_ _ _ _ __ _

2. Organization: 3. Function: _---

3. Time in ADP activity: __

II. INSTRUCTIONS:

1. Answer in this sheet and complement with annex.

2. Whenever possible annex examples.

3. All questions refer to your organization. If in it no

system is being developed use your previous experience FOR

SUGGESTIONS.

4. Do not refrain of presenting suggestions because they

will be of great value for my work.

III. QUESTIONNAIRE:

* i.Methodology

1.1 Does your organization use any standard methodology

for data processing system development?

S

YES NO

p18

*: ,- -- - i. SSSV

1.2 Describe which methodology(ies) is used including:

phases, what is done in which of them, documents generated,

advantages and disadvantages of the used methodology and

source.

1.3 What kind of methodology do you think would be good

for the MAer? Why?

2.Documentation

2.1 Which are the types of documents employed in the system

development? (manuals, reports, program documents etc). Annex

samples if possible.

2.2 In which phase each document is elaborated?

2.3 Who is reponsible for elaborating, up-dating and filing

of the documentation during and after the system

implementation?

2.4 In your opinion which is the ideal documentation for the

MAer?

3. Graphical Representation

3.1 Does your organization use any type of graphical

representation for system development? (HIPO, Leighton,

Jackson, SADT, SREM, SAMM etc)

YES NO

183

Fi)-R164 289 THE DESIGN OF A STANDARD SOFTHARE DEVELOPMENTin
METHODOLOGY FOR THE DRAZILI.. (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFD OH SCHOOL OF ENGI. A F OLIVEIRA

UNCLASSIFIED DEC 85 AFIT/GCS/ENG/85D-13 F/G 9/2 M

111111=25

L. 33L

3.2 If so, which, in which phase and why was such technique

chosen?

3.3 Which is your suggestion for the MAer? Justify.

4. Development Management

4.1 Personnel Allocation

4.1.1 As you know there are several ways of personnel

allocation for system development. Which of the types below

is used in your organization?

4.1.1.1 - Classical (Manager, Analyst and Programmer)

4.1.1.2 - Chief-Programmer (Chief-Programmer, Administrator, .-

Documentation Editor, Program Librarian, Toolsmith, Test

Specialist etc).

4.1.2 Considering the MAer pecularities and its implications

(militarity, hierarchy, duty, TDY etc) which would be the ..

best teaming to adopt?

4.2 Development Ccntrol Instruments

4,2,1 Does your organization utilize any type of development

control (status Report, PERT/CPM, Gantt Chart etc)?

YES NO

*- Which:

4 .

"* 18 4 -

".'. -. . . " ° - -. . ° .° °-°.-..* - . . *. °. , - .* I .. *. -+.°. .,.. . .. *- -..-. - - - . - "

4.3 Review Sessions

* 4.3.1 As you know there are several review methods for system

design such as: Inspection, Walkthrough, Circulating Review

etc. Does your organization employ any method?

YES NO I

4.3.2 Who participates of the sessions? How often are they

done?

5. Programming .'*. ,

5.1 Which programming languages are utilized in your

- organization?

5.2 Do you think that it would be advisable to standardize

some HOL for the MAer? If so which for management, scientific

and embeded systems applications?

5.3 Which modern prograrrming techniques (chief-programmer,

Librarian, top-down development, modular decomposition,

structured programming, pseudocode, structured walkthrough)

does your organization utilize? Which are your suggestions

for the MAer?

185

:ii .,'-''.,E

* .*.~ 6. Testing ~*-

6.1 Are plans made?

YES I No

6.2 When are they done?

7. Maintenance

7.1 WThich type of maintenance is more frequent?

Corrective_____ For Improvement______

7.2 Is there a formal document for request?

%iiYES NO

8. CostV

Does your organization use any method for software 1

development cost estimation?

YES NO

Which?

What is your suggestion for the MAer?

9. The word is free. Sorry for making you so tired and thank

* .you for the collaboration. P

186

Appendix B

TABLE VII

Personnel Titles and Descriptions within SADT
--

z

Title Description L
--
Author One who performs data gathering and analysis tasks

and organizes this material using SADT models

Commenter One who reviews models by authors and who
comments in writing; usually is another author

Reader One who reads SADT diagrams constructed by
others but is not required to document (write)
these comments; in a sense, one who receives the ". :-:
models for his own information or verbal comment
only

Expert One who provides technical guidance to authors
concerning the resolution of unique or
troublesome problems

Technical A group of expert personnel who review the
Committee results of the analysis effort on a level-by-

level basis; they can identify or resolve
technical problems and coordinate with project
management

Project One who archives and controls versions,
Librarian releases, updates, and feedback from reviewers

Project One who has overall responsability for the
Manager project

Monitor One who provides technical assistance and
(or Chief guidance in SADT use
Analyst)

Instructor One who trains author and commenters to use SADT
--

187

..-. . . . * *.- .<,.,.* ~ l ~

*.V V~ .

TABLE VIII

Phase of the Life Cycle/Methods, Tools and Techniques Use

I M ETHOD 1 SOFTWARE LIFE CYCLE

iTECH- jSYSTEMS REQMT IPRELIMIN IDETAILED ICODE ITEST~ I OPERATION I .r

INIQUE JANALYSIS DEFINIT DESIGN DESIGN I MAINTENANCEI

-------------------------- -------------------------- -------------- I
IADI x Ix Ix li

1SATUC X - - -I -- -x - - I -- -x- - -I - - I_ - -X- -I - - -

DESGN X I XX XX -- -

--- -- -- --- I -------
DSN X Ix IX x lxix I X
--- ---------- --------------
TRUCTI X I Ixx I x

HARTIx x lxx x x

:HARTF IX I I x x x x x----------------------- ---------- -------------- I
DFD I x I x I xII

LDF I x I x I xxx xx

ICHENDI II
IDE X I X I Xx

------- -- ---- --------

IDATAa

I DIC188

ONR x ***%,

~~* - -~*.--------- -2, -;- ,a

ID-. I-

TABLE IX :.

Comparison of Methods 0..

METHOD
CHARAC--_ _

TERISTICS STRUCTURE

DESIGN SADT GANE JACKSON

CURRENT
SYSTEM
MODELING YES YES YES NO

SYSTEM
SPECIFICATION YES YES YES NO

SYSTEM
ARCHITECTURE YES SOMEWHAT YES YES

LOG ICAL
DESIGN YES YES YES SOMEWHAT

PHYSICAL
DESIGN YES POTENTIALLY YES YES

AVAILABILITY
OF TRAINING
COURSES YES NO YES YES
IN BRAZIL

EASE OF USE
(HIGH = EASE) HIGH LOW HIGH MODERATE

PROLIFERATION
LEVEL IN HIGH LOW HIGH HIGH
BRAZIL

LEARNING
EFFECTIVENNES HIGH LOW HIGH MODERATE

COMMUNICATION
WITH CUSTOMERS HIGH LOW HIGH LOW

HIERARCHICAL
IN NATURE YES YES YES YES

189
-7,%"%

,'o" .'- ,°, ' " ° o- ,-, ' V .° % , o - - .- -. " o . • - .-.-o-o°*o-.
•

.-. . , . .' - ,•. - , ,°.°,-, ' ,°

S.-. r u-* ---- ~'~W~w Ki~-AI,. L.~; T.- .-~ - T- W t' l I I -.. r . .- I

TABLE IX - Comparison of Methods (Cont'd)
----- --
PROVISION
OF OBJECTIVE
EVALUATION YES NO YES SOMEWHAT
CRITERIA

BASIS OF CONCEPT CONCEPT/ CONCEPT/ CONCEPTUAL/
METHOD PROCEDURAL PROCEDURAL PROCEDURAL

DEGREE OF -h

TECHN ICAL
ISSUE 4 OUT 3 OUT 4 OUT 3 OUT
COVERAGE OF 4 OF 4 OF 4 OF 4

SUPPORT
BY AN
AUTOMATED NO YES NO NO
TOOL

SUPPORT BY
QUALIFIED
CONSULTANTS YES YES YES YES

MOST COUPLING/ DATA/ COUPLING/ DATA
PORTABLE COHESION CONTROL COHESION STRUCTURE
FEATURE MODELING MODELING
(IF ANY)

Evaluation Criteria of the Methods

1. Current System Modeling - the ability of the method

to provide users with a way to model an existing system. The

system may include manual tasks, physical objects, and

geographic locations as well as the more classical functional

needs and processes. This is a desirable software development

method feature.

2. System Specification - the extent to which the

method provides the necessary semantic and conceptual

framework to permit the statement of requirements for an

entire system, not just the software. This is an important

and desirable method feature.

190

S- ... - .- ,

3. System Architecture - the ability of the method to

allow flexibility in laying out the overall interface between

the major system elements. This is a desirable software

development method feature.

4. Logical Design - whether the method includes a

clear, explicit recognition that an abstract, conceptual

solution must be formulated and refined prior to the

introduction of implementation issues. This is a desirable

method feature.

5. Physical Design - whether the method explicitly

addresses implementation issues apart from conceptualization

of the logical design solution. This is a desirable method

feature since it allows the designer to separate the "what"

5" from the "how"

6. Availability of Training Courses in Brazil - the

degree to which public courses are available in Brazil. This

is a SIMAER requirement.

7. Ease of use - the ease with which a designer can

effectivelly use the method; reduced by unique requirements

such as templates and pre-printed forms. A desirable method

feature and a SIMAER requirement.

8. Learning Effectiveness - the absence of subtleties

in the method that might confuse a novice; intended to alert

designers to the amount of care they must exert in order to

avoid unforeseen difficulties. A desirable method feature and

a SIMAER requirement.

191

S" -" ' * . ""* . - . .- - ,' '-" ' . .", .. "' ', . * .' . '" . * '. ". * ' .", .,, - - , . ", . '. -'

9. Communication with Customers - the degree to which

the method provides open communication between customer and

designer (for example, through understable diagramming

techniques). One of the most desirable method feature since

communication is a key issue in software development.

10. Hierarchical in Nature - the extent to which the

method provides a convenient scheme for controlling

complexity via the organization of the design (and system)

into ordered chunks that can be examined separetely from the

rest of the system. A desirable method feature that will

allow for modularization.

11. Proliferation Level in Brazil - the degree to each a

method has spread as an indicator of its relative

% -" effectiveness. A SIMAER requirement.

12. Provision of Objective Evaluation Criteria -

whether the method has a measure of design that would yeild

approximately the same result if used by two different

(unbiased) designers. A desirable method feature.

13. Basis of Method - whether the method is based on

some rationale; prescribed set of rules, or a combination of

both.

14. Degree of Technical Issue Coverage - the relative

importance of any one or several of the four technical issue

classes present in any software design effort: data

structure, data flow, control structure, and control flow.

. 15. Supported by an Automated Tool - whether the method

is supported by a computer-aided scheme to make changes,

192

identify inconsistencies, and do clerical tasks, thereby

enhancing the designer's effectiveness. A desirable method

feature for the development of large systems.

16. Supported by Qualified Consultants - the availability

of experienced advisers to reduce the instances of misuse and

of unsatisfactory results. A desirable method feature and a_ .

SIMAER requirement.

17. Most Portable Feature - that part of the method, if

any, that could be used totally apart from the original

method (for example, using the coupling and cohesion

characteristics for evaluation with some method other than .

structured design). A desirable method feature.

193

* . *- *-

.- C . -. ~

S* . **.. .* .* -*- .*~2~ . -*.*. * ** .°.. *

Bibliography ..

.. .° °°m

1. Alavi M. "An Assessment of the Prototyping Approach to
Information Systems Development," Communications of the ACM,
27 : 556-563 (JL'ne 1984).

2. Bailey, R. W. Human Performance Engineering: A Guide for
System Designers. Englewood Cliffs, NJ: Prentice-Hall Inc.,1982.

3. Baker, F. T. "Chief Programmer Team Management of
Production Programming, "IBM Systems Journal, 11 : 415-421
(1972).

4. Bell, Thomas E., David C. Bixler, and Margaret E. Dyer,

"An Fxtendable Approach to Computer - Aided Software
Requirements Engineering". IEEE Transactions on Software
Engineering, SE-3: 6-15 (January 1977).

5. Bcehm, Barry W. Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall Inc., 1981.

6. Bohm C. and G. Jacopini. "Flow Diagrams, Turing Machines
and Languages with Only Two Formatior Rules," Communications
of the ACM, 9: 366-371, (May 1966).

= - 7. Booch, G. Software Engineerinl with Ada. Menlo Park: The
Benjamin/Cummings Publishing Co., 1983.

8. Brandon, D. Management Standards for Data Processing.
Princenton, NJ: Van Nostrand, 1963.

9. Chapin,N. " Flowcharting with the ANSI Standard : A
Tutorial, " ACM Computing Surveys, 2: 119 - 146

" (June 1970).

10.Chen, P. "The Entity-Relationship Approach to Logical Data
Base Design" The Q.E.D. Monograph Series on Data Base
Management, 6: 15-21 (March 1977).

ll.Colter, A. M. "A Comparative Examination of Systems
Analysis Techniques," MIS Quarterly, 51-64 (March 1984).

12.Davis, B.G. and Margrethe H. Olscn. Management Information
Systems: Conceptual Foundations, Structure, and Development
New York: MacGraw-Hill, 1985.

i' 13.DeMarco, T. Structured Analysis and System Specification
* New York: Yourdon Press, 1978.

- 14 .Dictionary of Computing. Oxford Science Publications.

194

* *.°*V *. ."..

. * . . ' .. .° . _ + ° .

...* .* ,*-.,.° ° .. • ' +** * .-.*..,.., . . . , .- . , . .. -. • . . .%%*,-

. . o . •-v.,

14.Dictionary of Computing. Oxford Science Publications.
New York, 1983.

15.Encyclopedia of Computer Science and Engineering (Second
Edition). New York: Van Nostrand Reinhold Company, 1983.

16.European Space Agency - "Software Engineering Standards".
1984.

17.Fairley, R. Software Engineering Concepts. New York:
Mac-Graw-Hill, 1984.

18.Gane, C. and Trish Sarson, Structured Systems Analysis:
Tools and Techniques. Englewood Cliffs,NJ:Prentice-Hall Inc.,
1979.

19.Hadfield, S.M. and Gary B. Lamont. "The Software
Development Environment" Proceedings of the Digital Equipment
Computer User Society , 171-177 (October 1983).

20.HIPO-A Design Aid and Documentation Technique. IBM Corp.
" *-Manual # GC20-1851. White Plains, NY: IBM Data Processing

Division, 1974.

21.IEEE Standard Glossary of Software Engineering
- _ Terminology, IEEE Std. 729-1983.

*22.Jackscn, M.A. Principles of Program Design. London:
Academic Press, 1975.

23.Law, E. "GSA Reports Huge Increase in Micro Buys",
Government Computer News, 4 (June 1985).

24.Martin, James. Managing the Data Base Environment. New
York: MacGraw-Hill, 1984.

25.Nolan, Richard L. "Managing the Crises in Data Processing'
Harvard Business Review. 115-126 (March-April 1979).

26.Oliveira, A. F.Current Software Development Situation
in the Brazilian Air Ministry: A Survey of Methodology,
Documentation, Graphical Representation, Management,
Programing, Testing, Maintenance, and Suggestions. School
of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, May 1985.

27.Portuguese Air Force Regulation RFA 45-6. Lisbon, 1984.

28.Peters, Lawrence J. Software Design: Methods and
Techniques New York: Yourdon Press, 1981.

195

, .°, • , • % • ,°.*. •. . " - . * .* , . . - .* -* . . • . .° .. . -. •

L J-
..- 29.Rodewal Hans, Capt FRG. Personal correspondence. German
43: Military Representative USA and Canada. Washington DC, 15

July 85.

30.Rubey, Raymond J. Technical Director. Telephone
Interview.Softech, Inc. Ohio,17 October 1985.

of Its Applications in the Brazilian Air Force," Brazilian

Air Force Staff Command School Project, 203: 7-8 (December
.•1982).- __

32.SOFTECH Structured Analysis and Design Technique,
SADT Manual 9022-78.

33.Stevens, W.P., Meyers G.J., and L.L. Constantine.
Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design(Second Edition). New York:
Yourdon Press, 1978.

34.The Brazilian Federative Republic Constitution. Rio de
Janeiro: National Press, 1949.

35.Teichroew, D. and Hersey E.A. "PSL/PSA: A Computer Aided
Technique for Structured Documentation and Analysis," IEEE
Transaction on Software Engineering, SE-3: 211-218 (January
1977).

36.Weinberg,V. Structured Analysis. New York: Yourdon Press
1978.

37.Woffinden, Duard S., Instrutor. Software Engineering Class
Notes. EE 5.93. School of Engineering, Air Force Institute
of Techonology (AU), Wright-Patterson AFB OH (Spring 85).

38. Zelkowitz, M.V. "Perspectives on Software Engineering,"
Computing Surveys, 10: 197-216 (June 1978).

-v;

4- . -~.*- *

..-.. ,

.19 6 .-

• . - . - • - . - - ° - .° . ° . -• - • • . • • o" " 2.. .

VITA %
'1P

4%

Aparecido Francisco de Oliveira was born on 26 july in

Bauru, Sao Paulo, Brazil. He graduated in 1966 with a

Bachelor of Science (B.S.) degree from Academia da Forra

A&rea Brasileira (Brazilian Air Force Academy) when he also

received his pilot's wings. In 1977 he graduated with a B.S.

degree in Business Administration from the Centro de Ensino

Unificado de Brasilia (United Educational Center of

Brasilia).

As an officer and pilot in the Brazilian Air Force

(BAF), he has worked at the operational level since 1968,

accumulating more than five thousand flying hours, in both

training and operational missions . As he progressed in rank,

his responsability slowly shifted more to management

activities.

Getting involved in the management activities of

aircraft maintenance and supply, he started using computers

for inventory controls. This was the incentive to study the

* ADP area.

Having taken several courses in data processing, his

last assigment was head of the Brazilian Data Processing

Center.

Permanent Address:

-. SHIS QI 27 Conj 14 Casa 13

BRASILIA - DF 70016

BRASIL

197
*' .

• , -.-.."..*. -.- *.. .*" '', • N "- .. % . ." . . ," '. " .. - ,..'. -.. .iei

UNCLASSIFIED
SEURITY CLASSIFICATION OF THIS PAGE

Uncassfed_______________________

.q-EPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAI LABILITY OF REPORT

___________________________________ Approved for public release; .p
2b. OECLASSI FICATION/DOWNGRAOING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCSIENGI85D-13

6s. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
1rtapplicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Be. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it appicablel

Brazilian Air Force BAF

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

Brazil, Brasilia, D. F.ELMNNO N.N.N.

1.T IT LE lInciude Secure ty Clasuification)
See Box 19
PERSONAL AUTHOR(S)

kmJliveira, Aparecido Francisco, B.S., Lt Col, BAF
13a. TYPE OF REPORT 13b. TIME COVER'ED 14. DATE OF REPORT (Yr.. Mo.. Day) 15.PAGE COUNT

MS Thesis FROM ___ TO ____ 1985 December 13
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS lContinuie on reverse if necessary and identify by block number)

ELD GROUP SUB. GR. Software Life Cycle Methodology
Life Cycle Software design
Method Standard

19. ABSTRACT (Continue on reverse if necessary and identify by block~ numberp

Title: The Design of a Standard Software Development Methodology for the

Brazilian Aeronautical Ministry.

Thesis Chairman: Duard S. Woffinden, Captain, US Army.

Aja.d IjPIIC biIMemo JAW AM Mn

Doacm tat R.eab ad Praienisl Dovetpgmo
Air Formi Laube of Te Ia g (fA4e

D)ISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITEO X SAME AS RPT. C OTIC USERS C Unclassified

122s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

Duard S. Woffinden, Captain, US Army
DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED 7

SECURITY CLASSIFICATION OF rTis PAGE

.- . .. 77 777 77 .

UNCLASSIFIED -__

:ECURITY CLASSIFICATION OF THIS PAGE

~' d. %.. ., ..

Abstract

This thesis proposes a standard software design methodology for the
Brazilian Aeronautical Ministry.

The project matched the requirements of the Brazilian Aeronautical
Ministry with the software life cycle models, methods, and techniques,
which are currently available and most widely utilized.

Based on the analysis, a waterfall model was selected and inte-
grated with some methods, tools, and techniques, such as Gane's methods, "'
SADT, Data Dictionary, etc. - ;.,-

All of these recommendations were included in a proposed regula- V

tion for a software development methodology.

I. ,

1 *' i- .'-.

U",CLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Flt.nt.

FIME

