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Cylindrical Gaussian eigenmodes of a rectangular waveguide resonator
Three-dimensional numerical calculation of gain per mode

-, .. 7 Avner Amir, Luis Elias and Juan Gallardo

Quantum Institute, University of California at Santa Barbara,
Santa Barbara, California 93106

Abstract

First we present approximate analytical solutions to the wave equation inside an over-
moded metallic mclngular waveguide. The cold eigenmodes are expressed in terms of
cylindrical Gaussian-Hermite functions times trigonometric functions to insure the boundar"
conditions. Next, we discuss a numerical three-dimensional calculation for a Free Electron
Laser (FEL) amplifier which is based on the Lienard-Wiechert solution of the maxwell's
equations cast in an integral form. This approach is readily and efficiently extended to
include the effects of the metallic boundaries of the wavequide by means of the method of
"image currents'. Finally, the radiation field in the cavity emitted by the electrons in
the presence of the combined fields of a co-propagating eigenmode wave plus a linearly
polarized magnetic undulator is expanded in terms of cavity eigenmodes. This expansion
allows us to compute the gain per resonator mode.

Introduction

A rather extensive literature on the 3-d FEL theory is presently available. Progress
in this area has been occurring in the last two years as a result of efforts of several
arouns which have carried out numerical as well as semi-analytical calculations. , ,3, .-

The main objectives of these calculations are: 1) to incorporate into the theory the
finite transverse dimensions of the optical field so to be able to handle the outstanding
problem of the filling factor that plagued the more naive l-d theories 2) to describe the
optical quality, i.e., angular distribution, frequency content 3) and lastly to provide
secure ground for the optical-resonator design for TEL.

in this paper we focus our attention on the waveguide resonator of the FEL experiment at
the University of California Santa Barbara (UCSB). Its mechanical design and main character-

*- istics are discussed in the accompanying paper. 5

Practical resonators for FEL must contain the following features in addition of providing
the containment needed to propagate the electron beam along the undulator: 1) a means to

" in~ect and extract the high current relativistic electron beam 2) possibility of allowing
relatively large amplitude for the periodic magnetic field (reducing the gap) to insure
above-losses small signal gain 3) small beam waist to increase the small-signal gain of the

* ~ .aser 4) low-losses resonator.

Some of these requirements are not easily met by conventional open resonators in the sub-
millimeter region of the spectrum. An appealing alternative is to use waveguide resonators 6

which offer the advantage of small undulator gap and small optical mode area.

in section 11.1 we discuss a metallic waveguide resonator7 which meets the design criteria
numbered above. We present analytical approximate solutions of the wave equation with
metallic boundarv conditions corresponding to low-order, overmoded, rectangular waveguide
with infinite aperture cylindrical mirrors. The solutions, eigenmodes of the "cold"
resonator are expressed naturally in terms of cylindrical Gaussian-Hermite functions. In
the following section 11.2 proceeding according to the standard technique of first assuming
perfectly conductino walls, we calculate the waveguide losses from the tangential component
of the magnetic field at the walls. We show that the 1-modes propagate along the z-axis
witn negligibie straight -losses in the far-infrared region.

.he section :I: is dedicated to the numerical calculation of the radiation field produced
=v a relativistic electron beam inside a waveguide, moving in the combined fields of a

arl poiarized magnetic undulator and a propagating eigenmode of the cavity.

All 3-d FEL theories publishedl , ', 3.' so far assumed open resonators, i.e., the presence
o f tne metali c walls along the interaction region have been ignored. However, to achieve
"araer induiator maonetic fields it is iinverative to reduce the undulator zap and conse-

:,jet - tneneiht of the cavity.

7!e radiatio. from a relativistic electron beam wdiglinc in the interaction recion is
"":ncenrated along a narrow cone in the axial-direction with an angular aperture- ,

• " .- - %* - ' - . *~ . . . - • . . • .. . . * • .- - .- . . - .- . . ., ... . . -- .- . , , .. . . -- - .: , - ,
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When the transverse dimension of the radiation cone is comparable to the height of the
resonator channel then additional interferences occur due to the reflections at the walls,
increasing the power density at the observation plane.

To account for these reflections, i.e., to satisfy the metallic boundary conditions, we
turn to the "image current" approacha (rectangular waveguide) which allows an efficient .4
and fast way of computing the field inside the cavity from the radiation of the electron t.
beam in free space.

The 3-d electromagnetic fields produce by an electron beam in an undulator can be consid-
ered as the coherent superposition of radiation pulses produced by each individual electron.
Each pulse contains the information about velocity and acceleration of the corresponding
electron and is analytically represented by the Lienard-Wiechert solutions. -

After adding these solutions and extracting the slowly varying amplitude and phase, by
means of the standard averaging procedure over many wavelengths of light we cast the total
radiation field as an integral over the "electron" time expended inside the undulator. To
solve it numerically it is necessary to know the dynamics of the electrons. This is pro-
vided by the pendulum equation.

1 0

In section :11.3 we show how to expand the total radiation field inside the cavity in the
Fresnel approximation as a superposition of the "cold" eigenmodes of the resonator.

In the last section 111.4 we define the power gain per mode for the UCSB waveguide
resonator and we plot the gain curves as function of the resonance parameter for the first
three Gaussian transverse modes. We discuss the relative amplitude of the maximum of the
gain curve and its position.

11. Cold eigenmodes of a waveguide resonator

1. Analytical approximate solutions of the wave equation with boundary conditions

The UCSB FEL waveguide is a metallic rectangular cross section channel that allows both
small undulator gap and small radiation field beam waist. The geometry of the problem is
shown in Figure I as well as the approximate dimensions of the cavity. *

First, we find solutions to the wave
equation inside a perfect infinitely-long
rectangular waveguide in terms of cylindrical
waves propagating along the guide axis. Each
Cartesian component of the field must satisfy
the Helmholtz equation:

/I . . (72+k2)  u(x,y,z) a 0 -

k - W/c

1wtwhere a time dependence e has been assum-
£ ed.

We are interested in solutions that
satisfy the boundary conditions at the ver-
tical parallel planes y-O and y-b. The

Figure 1. A schematic drawing of the UCSB proposed solutions are of the functional
FEL resonator. a-13.34 cm, form:
b-l.9 cm, d-lO.O cm, L-7.14 cm .-.
and the mirror radius of curvature u(x,y,z) - *(x,z)e sinyy
Rc,-5O0.0 cm.n (2)

-nfl/b , 5 k-

where n is an integer 1,2. ......

inserting 2) into tl) yields the following equation for the slowly varying complex
function P(x,z)

-.° ., ,

- -.J(X,., = 0 (3).* z 7 ,2 ":'-.:

The s cw.' :ar.2.nc assumot.on means that I, and therefore we can neclect "n i.
;Zz
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Thus, we obtain the standard paraxial differential equation, the solution of which in the
context of light beams are well known. and can be written as

• X,Z) = exp(-x 2/w(z)2 2) exp(inx2/2 R(z) - (mn-/2)tan-l(z/z)) Hm x/w(zK N (4)

where: N -2me: 1!]+(Z/zo) 2 I_-  NORMALIZATION CONSTANT

Hm (x) HERMITE POLYNOMIAL

w(z) - wo  ' 14(Z/Z)Z BEAM WAIST (5)

R(z) = z(l (z/zo)2) RADIUS OF CURVATURE

-o BwZ RAYLEIGH LENGTH
0

'.f the origin of coordinates is at the minimum spot size.

In practical FEL waveguide resonator designs, the transverse dimensions of the waveguide "
are usually much larger than the guide wavelength. Consequently, the amplitude of the longi-
tudinal component of the Ez (x,y,z) (Hz (x,y,z)) will be much smaller than the corresponding
transverse components. 2  The assumption of slow amplitude and phase variations of v(x,z)
with z in conjunction with the above restriction impose on our theory a limitation to low-
order and low-losses modes.

We break down our solutions into two sets of linearly independent functions: a) those for
which Ev, SE7 <x will be denoted as *n(x,y,z) -modes, i.e., the main cartesian component
is parallel to the wide dimension of the guide; b) Hy, Hz -<Hx will be designated as
zhnk Ix,y,z) in this case the dominant electric field cartesian component is perpendicular to
the wide dimension of the guide. The boundary condition imposed on the r-eigenmodes is, Ex,
Ez = 0 at y-0, b for perfect conducting walls; for a-eigenmodes the. boundary condition is
Hv = 0 at y a 0,b. These are the restrictions at the two parallel horizontal planes: at
the vertical planes x - -a/2, +a/2 the boundary conditions are automatically satisfied
because all field amplitudes drop exponentially as a function of coordinate x (the scale
being iz), the beam waist).

We present below a summuary of both type of solutions, '- %

Table 1.
z' -Mds"& e -Modes 1 1 exp(ia z)Pn(-Modes -o) ..-. 'm. m n

x mnn X, sn(ny) expiz) E (x,z) cos(ny) exp(i3Z)

i, mn. Ev
Z. " sin(y exp( Z) E2  i /n-;x nyn y

1. _x H /-
x nx 0 Ey

z H "- os(y) exp z)

n :- iure -we illustrate the configuration of electric field lines at the band waist of
various 'cw-crder modes.

I.j"%

I"%"%
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For a linearly polarized undulator the appropriate modes that will couple to t.he electrn _. _
b _am correspond to r-even and n-odd. Bowar, as we shall show in the next subsection, the

*02k~i odes have losses t.hat incrasee with frequency and consequently Pey are not suitaible . -
for FEL operation in the submillimeter reg ion. On tho other hand t.he 90k~ modes have a-.''
power attenuation constant that decreases with frequency. -... k.."

2. waveuide losses.-

The losses due to he finite onducttbiliy of the walls are compute in dhe standards
fashion by evaluating the tanenoial cownen of e hal ewic field H aet h walls; the
resdlwis are,tc clo u

oF opecrtuo 3 (nw) 2 u ol 2  rn. On/b2 t6a)

mn //
Qm 

=  
c6/uob U c 102 -n2,,/b

2  
(6b)''"-_-

pn wigure 3 we pl th theoretical attenuation constant as given in Eq. 6 as a function
of b, he height of he reonaor channel, and we compre hem o hose of convenional"-" "
mcrowavedeveuides. The -- des losses are two orders of maitude-

Telow hose of de more fonventional TE01-iofe for b-20 c . "ta r-

A decription of the actual mechanicaldrsig and parameters of rehe UCSB FEL

lo--w-i'L J1 Roo resonator are discussed in the paper at this
° -- ,. confrence by one of us (L.E.) and J..'. ..

'..ugwl -s n.i
2

-b " -.

aIII. Three-dimensional numerical

n Fiur w po tehortcalculation of qhe FEL radiation

nd igT i Slow e varying Lienard-Wiecher soluion
The esxlici solution of the Maxwell'sechanica

equaions for a poin hre papr space
-- can be written as,

l,., l (r , t) =elc/^ -- ) }- 7

- **i.Oetfl

F icure 3. Att.enuation constant vs. guide
height b. these are the Lienard-Wiec.hert fields, where.: """'--

ea0~ isi th=lcrncag, ,1 r-r

are respectively e e nsantaneou noliz
ed velocity and acceleration of e particle,

.102.

1.Sol/ayn inr-icetslto

The exlicitsoluton of he.Mawell,
eqatos orapon careinfrespc

. •. . .. -. ' can". . . -.-.- . . . . • .,•.. -. be written. . as.-.-, - -,-. .- -. .. -- , .- # - .- .. - \,-' .
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the distance from the position of the particle at time t' to the observation point: and
- R/R. The square bracket has the meaning that the quantity inside " t has to be evaluated

at the retarded time t' a - R(t')/c.

The total field ffit) L fi(E,t) is obtained by summing all electrons in the electron

beam. t will contain a fast varying factor of the form ei( wherew .2 2wo (cente:frequency of he emited radiaion) and o a 211C/ko is the frequency orresponding o t.h ,.''

period of the wiggler. ::'

To extract the slowly varying (slow) part from E(r,t) we proceed in the usual fashion of
multiplying by the fast factor and then averacing over many wavelength of right. This
procedure assumes the laser is well above threshold and that nearly coherence and monochroma-
-ic-ty have been achieved.

The fast part of the radiation field can be visualized as produced by electrons in the
combined field of an undulator and the optical field E (S,) following the zero order tra-
:ectory,

z~e *cSt 3 - -sinck t'-o ~ t K 0

where K = eB/mc 2 k,, cS€ is the initial longitudinal velocity, k. is the undulator wavevector
and ; - B sinot.2 is the linearly polarized undulator magnetic field. Any departure from
zero-order traDectory, due to the ponderomotive potential which force the electrons to bunch
and consequently to change their az velocity, will provide the slow part cf the field. --

The resultng field after averaging over the total time of interaction NT - L N (N is the -'

number of oerlods in the undulator) is,

Ne NTO  - -

ie- 2 dt' nA(nA!) ei. t ik(R-z)(9Vilc R,
-Ir = ( , e (9)"'

where the integral is over the retarded time t' (time of evolution for the electrons), the
sum i.s overall the electrons that at t-0 where inside of a wavelength of light , of the beam .'-.
Ne); and To is the retarded time TO  T dt/(l--.K).

To derive Eq. 9 we assumed electrons pulses NPu lse  NT and small signal gain as we main-
tained the field experienced by the electrons constant over one pass.

To compute this integral we add the single-particle dynamics described by the pendulum
equation,-.

- = atr) cos(; i*(r)) 0'

where
2 7eKEo () LN

a(r' = c'iL

" and z(t') -z O  cat' 8 z.

Expandinc R - R - ,5z and introducing it in Eq. 9 yields, .

.ewZ L K e - i  "'.:-

c2 '0 go

where terns :rscortcnal tc :, R, are neclected; R. is the distance from the observaticn
=cnt :c :!oe zero or=er posticn of the oart;cie and we define

... - .. ..kR0

"' . .-r. . - . . . . ..-. . . . ....

L ~ z - . ...- .*..".-
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Equations 10 and 11 completely describe our model13 and the simultaneous numerical solution
of them give the radiation field at the observation point . at time t. The geometrical
arrangement is in Figure 4.

-, yX '""

I _ _ _ _., .

.a"- - o ..-..

Figure 4. Schematic drawing of a waveguide amplifier. The field at the observation point
P is the resultant of superposition of direct wave ardl reflections from the walls.

I 2. Image current approach.

Our previous discussion assumed no spatial constraints, Ex(r,t) ii the fieLd at any point
r. In the presence of perfect conducting walls the fields must satisfy ooundary conditior',
i.., ta - 0. When the guide is rectangular an econc-ical method to treat this "real"
oroblem with boundaries is to replace it by another in an enlarger region with .tmage
electron beams' and no boundaries.

Prbceeding as in electrostatic, for a wavequide of rectangular cross section we otain aii
infinite array of alternating sign currents. The total field at the observation point P is,

were Ex i Ex

where Nimage is the number of image currents that can interfere at that point. The radiation
field of each image current is confined to a cone of angle

e / 9 0.75
¢ P Z N -.- -

where 3p a cos (B/Bres); at a distance z the transverse dimensions of the radiated area is
Ymd " zae. Hence, the maximum number of images will be

Ni  Ymax/h z/b e2 0.75 (12)2  

.!(.5N

The UCSS FEL resonator has dimensions a-13.34 cm and b-l.9 cm. Using the condition in
Eq. 12 we can see that the contribution of image currents with response to the vertical
planes are negligible and it is sufficient to include no more than 5 currents in the (y,z)
plane, as shown in Figure 5.

".1*)

7"..-

S: (
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In Figure 6 we show the angular distribu- J .
tion of the radiation field along both x- and
y-axis. For comparison we also plot the free-
space distribution. This graph shows the
increase of the field on axis respect to the

-- % .+, ,-, ..., " -,-. /v a n i s h e s b e y o n d x -1 .0 c m a n d t h e g u i d e d
bI field is more concentrated around the z-axis.

.. - -=

3. Expansion of radiation field in terms of
-" -enmodes

-. - 0;If the resonator is designed to operate in

" one of the transverse eigenmode 's"(x,y,z),
S. -. ,, . . the presence of the electron beam, i.e., the

stimulated radiation produced by it, will
tend to create a steady-state with a trans-
verse structure different from the initial
one. This state can be expressed as a super-
position of transverse eigenmodes of the ... ,

Figure 5. The problem of an electron beam "cold' resonator,
inside a waveguide is replaced by
a free-space problem with "image
electron beams" which simulate the A (13)
conducting surfaces. "..r mn-

I (,JM AN Notice that according to the geometry shown

E, -O( V MSTRUION in Figure 4 the electrons will only couple to
the a-modes; in what follows we will suppress

,.... ~the subs=ipt 11.

f free,mlt The expansion coefficients Amn can be cal-
-h culated in a semi-analytical fashion.1 In

Eq. il we replace the free-space Green
function

Gf(r ,') - :ikR

by the one appropriate to our boundary value
problem:

G(r,r') 2 H.(1 (8n;) cosn (y-y)

Figure 6. Comparison of the guided radiation where
field in the x- and y- directions
with the free-space case. L-5.7 m
and Z=0.78 m. 0 - (x-x) 2  (Z'Z)2

_11 Hankel function of first kind of
order zero.

Subsequently, we use the asymptotic expansion of H 
I) and after some manipulations we obtain,

0

Gr ,i 2m~ l  n,

G(,r) -, S- *m(x,z) (x' ) cos- 'y-y') (14)b.o Z a 2mm! /7 
:..

mn n

where the Fresnel approximation has been used.

Sunstitution of Eq. 14 into 11 and using completeness yields,

Ne

A ____ 1 2m+1 -Zz')-c-'bw :v~ -In 2(0)/ e .i - E+( )

Mn~~~~~~' cz 7 2"2 I 1
."O



where

Y -(l+2m)tan- nz¢ - (1-n) (l-so T

Hm - Hermite polynomial, nz - -- and Q - IX/(cNe ) ; we have also assumed a filamentary elec-
tron beam on axis. e

It can be shown that Amn decreases as the Gaussian index m increases.
4.Gain oer mode

We define gain per mode of our single-pass amplifier problem as,c fr 2 r a od ::
If. +f - dada.%GL in + rad I 2 _ in 21 _. 0 2 e ar i dp r 2da Jin2da

= rdu2Re ra inTV j 'Ein! 1a 1rin! -

where the integral is over the waveguide cross section.

Assuming the incident optical field Ein to be the mth eigenmode with amplitude on axis E.
at the beam waist, then

AmnGmn = 2Re ',6)E, fdaio mil

m-even; n-odd.

In Figure 7 we plot the gain curve of the three-lowest order Gaussian modes (M,0,2,4) as -"
a function of the resonance parameter v 14; the odd-index modes do not couple to the electron
beam because they vanish on axis. Similar arguments show that the n index must be odd.

GAIN -9. "

....... mw4

-'_a -e..x  '* , ..', : "'

.2 ,' -4 4 8 ; 2

.- -

\ .'-'- \ '", 0'

RESO94sNCF MMNACE
PARAMEER

Figure 7. Gain curves for different values Figure 8. Gm vs. resonance parameter. Gain
"-of order m-0,2,4 (Gaussian order) curves for different values of

with fixed order n-l. Note that the order n-l and 9 (vertical
maLximum value of the gain curve made) with f=ied order m-0. Not:e .
decreases and shifts to a larger the curves are shifted by an
resonance parameter. amount proport.ional to Sn-Sn-!)

L(S-Sres) •

Notice t.he following characteristics: a) The curves are relatively shifted because of t.he
phase shifts associated with each mode. For the parameters (see discussion about Figure
of the example shown in Figure 7, the zero of the m-2 mode is underneath th-e maximum of the

.- m-0 mode. In a mode competition between the two, the m-0 will grow at expense of the m-2.
-" b) The gain of each mode decreases as the m-index increases, as it was indicated at the end

of t-he previous section. Next, in Figure 8 we varied the trigonometric funct.ion mode index

<\.

* Fiue7 ancrvsfrdfeet aus Fgr,- ~v.rsnne aaee.Gi
ofode.-,Z4(ausanodr)cres°r ifretvluso
wihfxe rernI :oetatteore - ad9(vria
maiu au ftegi uv md)wt ie re -. Nt

• : , ,-decreases and-. .. shifts to a largr.th curve are:". shifted-..... by an :
1,. ... .. .. _.,".. .:-:,resonance ..< ,.2. paramet.c- : -:- -* '--x ."- - ' -a-.n proportional...... ...to.
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GAIN DEAK In Figure 9 we plot the value of the maxj-
mum gain as a function of the beam waist of

(R .ATIVE uNITS; the initial optical wave. This result shows
that there is an optimal beam waist at about
Wol.0 cm; this curve was obtained fixing its
Positi.on at the center of the undulator.
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2 3
BEAM WAIST w. (cm)

Figure 9. Maximum of gain Gmn vs. wo beam
waist of input wave. Radiation
field ij decomposed into eigen-
modes *m(x,y) which contain two
parameters "beam waist" o and
position of origin of coordinates
(i.e., radius of curvature Rtz)).
The best matching of radiation
field with input one is obtained
with a beam waist woml.0 cm.
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