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Cylindrical Gaussian eigenmodes of a rectangular waveguide resonatosr
Three-dimensional numerical calculation of gain per mode

o Avner Amir, Luis Elias and Juan Gallardo

Quantum Institute, University of California at Santa Barbara,
Santa Barbara, California 93106

¥y Abstract

First we present approximate analytical solutiocns to the wave equation inside an over-
moded metallic rectangular waveguide. The cold eigenmodes are excressed in terms of
cvlindrical Gaussian-Hermite functions times trigonometric functions to insure the boundarv
conditions. Next, we discuss a numerical three-dimensicnal calculation for a Free Electron
Laser (FEL) amplifier which is based on the Lienard-Wiechert solution of the Maxwell's
equations cast in an integral form. This approach is readily and efficiently extended %o
include the effects of the metallic boundaries of the waveguide by means of the method of
"image currents". TFinally, the radiation field in the cavity emitted by the electrons in
the presence of the combined fields of a co-propagating eigenmcde wave plus a linearly
polarized magnetic undulator is expanded in terms of cavity eigenmodes. This expansicn
allows us to compute the gain per resonator mode.

S,

Introduction °

A rather extensive literature on the 3~-d FEL theory is presently available. Progress
in this area has been occurring in the last two years as a result of efforts of several
groups which have carried out numerical as well as semi-analytical calculatzions.:+2:/3:%

The main objectives of these calculations are: 1) to incorporate into the theory the
finite transverse dimensions of the optical field so to be able %o handle the sutstanding
problem of the £filling factor that plaguad the more naive l-d <heories 2) to describe the
optical guality, i.e., angular distribution, frequency content 3) and lastly to provide
secure ground for the optical-resonator design for FEL.

In this paper we focus our attention on the waveguide resonator of the FEL experiment at
the University of California Santa Barbara (UCSB). Its mechanical design and main character-
istics are discussed in the accompanying paper.$

Practical resonators for FEL must contain the following features :in addition of providing
the containment needed to propagate the electron beam along the undulator: 1) a means to
inject and extract the high current relativistic electron beam 2) possibility of allowing
relatively large amplitude for the periodic magnetic field (reducing the gap) to insure
above-losses small signal gain 3) small beam waist to increase the smalli-signal gain of the
iaser 4) low-losses resonator.

Some of these requirements are not easily met by conventional open resonators in the sub-
millimeter region of the spectrum. An appealing alternative is to use waveguide resonators®
which offer the advantage of small undulator gap and small optical mode area.

In section II.l we discuss a metallic waveguide resonator’ which meets the design criteria
numbered above. We present analytical approximate solutions of the wave eguation with
metallic boundary conditions corresponding to low-order, overmoded, rectangular waveguide
with infinite aperture cylindrical mirrors. The solutions, eigenmodes of the "cold"
resonator are expressed naturally in terms of cylindrical Gaussian-Hermite functions. In
the following section II1.2 proceeding according to the standard technique of £irst assuming
perfectly conducting walls, we calculate the waveguide losses from the tangential component
2f she magnetic field at the walls. We show that the 1-modes propagate along the z-axis
with negligible straight-losses in the far-infrared region.

The sect:ion III 1s dedicated to the numerical calculation of the radiation field produced
Cy a relativistic ciectron beam inside a wavequide, moving in the combined fields of a
iinearly poliarized magnetic undulator and a propagating eigenmode of the cavaity.

All 3-d FEL theor:es published! <+/3r* g0 far assumed open resonators, i.e., the presence
I the metall.c walls along the interaction region have been ignored. However, t0 achieve
arger undulatosr magnetic fields it is imperat:ive to reduce the undulator jap and conse-
uencly tne nelsht cf <he cavity.

The rad:iaz:icn from a relativistic electrcn beam wiggling 1n the interaction region s
oncencrated alsng a narrow cone in the axiai-direction with an angular apersture- .. vvN.




When the transverse dimension of the radiation cone is comparable to the height of the
resonator channel then additional interferences occur due tc the reflections at the walls,
increasing the power density at the observation plane.

To account for these raeaflections, i.e., to satisfy the metallic boundary conditions, we
turn to the "image current" approach? (rectangular waveguide) which allows an efficient

and fast way of computing the field inside the cavity from the radiation of the electron
beam in free space.

: The 3-d electromagnetic fields produce by an electron beam in an undulator can be consid-

. ered as the coherent superposition of radiation pulses produced by each individual electron.
Each pulse contains the information about velocity and acceleration of the corresponding

I electron and is analytically represented by the Lienard-Wwiechert solutions.?

After adding these solutions and extracting the slowly varying amplitude and phase, by
means of the standard averaging procedure over many wavelengths of light we cast the total
radiation field as an integral over the "electron” time expended inside the undulator. To
solve it numerically it is necessary to know the dynamics of the electrons. This is pro-
vided by the pendulum equation.!?

I In section III.3 we show how to expand the total radiation field inside the cavity in the
k Fresnel approximation as a superposition of the "cold" eigenmodes of the resconator.

i In the last section III.4 we define the power gain per mode for the UCSB wavequide
) resonator and we plot the gain curves as function of the resonance parameter for the first

three Gaussian transverse modes. We discuss the relative amplitude of the maximum of the
gain curve and its position.

! IX. Cold eigenmodes of a waveguide resonator

1. Analvtical approximate solutions of the wave equation with boundarv conditions

) The UCSB FEL waveguide is a metallic rectangular cross section channel that allows both
. small undulator gap and small radiation field beam waist. The geometry of the problem is
shown in Figure 1 as well as the approximate dimensions of the cavity.

equation inside a2 perfect infinitely-long
rectangular waveguide in terms of cylindrical
waves propagating along the guide axis. Each
Cartesian component of the field must satisfy
the Helmholtz equation:

I ’ —d First, we find solutions to the wave

(v2+k2) u(x,y,2) = 0

(1)
k = y/c

where a time dependence e “® has been assum-
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We are interested in solutions that
satisfy the boundary conditions at the ver-
tical parallel planes y=0 and ysb. The

- Figure .. A schematic drawing of the UCSB proposed solutions are of the functional

- FEL resonator. a=13.34 cm, form:

- b=1.9 cm, d=10.0 cm, L=7.14 cm igz

. and the mirror radius of curvature ui{x,y,2) = y(x,2)e sinvy

. R-=500.0 cm. (2)
- vy = nl/b , 3 = /ki- y2
® -

) where n is an integer 1,2,..... .

- inserting (2) 1into (l) yields the following egquation for the slowly varying complex

- function v (x,2z)

N - - «'\

. 3" 3 3
- —— - 132 - = V(X,o, =0 (3
® ixs 3z izt

a The slowiy varving assumption means that %% <¢ i, and therefore we san neglec:z i;% in 3.
. = 3aze

. —
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_ Thus, we obtain the standard paraxial differential equation, the solution of which in the
, context of light beams are well known:! and can be written as

| Von (%02 = exp (-x2/w(z)22) exp(isnxz/z R(z2) = (m+l/2)tan‘1(2/z°)) Hy(x/wiz)i N (4)
where: Ny = (mel ST fivzrz) | NORMALIZATION CONSTANT
: 50 HERMITE POLYNOMIAL
wiz) =w, [l+(z/2)? BEAM WAIST (5
R(z) = z(1 + (z/2,)%) RADIUS OF CURVATURE
| z, = 8wl RAYLEIGE LENGTH

If the origin of coordinates is at the minimum spot size.

In practical FEL waveguide resonator designs, the transverse dimensions of the waveguide
are usually much larger than the guide wavelength. Consegquently, the amplitude of the longi-
tudinal component of the Ez (x,y,2) (Hy (Xx,y,2)) will be much smaller than the corresponding

N transverse components.!2 The assumption of slow amplitude and phase variations of v(x,2)

) with 2z in conjunction with the above restriction impose on our theory a limitation to low-
K order and low-losses modes.

We break down our sclutions into two sets of linearly independent functions: a) those for
wnich Ey, I << Ex will be denoted as ompix,y,2) ~modes, i.e., the main cartesian component
is paraliel to the wide dimension of the guide; b) Hy, Hz <<Hy will be designated as
shn{X.y,2) in this case the dominant electric field Cartesian component is perpendicular to
the wide dimension of the guide. The boundary condition imposed on the r-ergenmcdes is, Ex,

‘ E; = 0 at y=0, b for perfect conducting walls; for os-eigenmodes the. boundary condition is
H, = 0 at v = 0,b. These are the restrictions at the two parallel horizontal planes: at
the vertical planes x = -a/2, +a/2 the boundary conditions are automatically satisfied

X ocecause all field amplitudes drop exponentially as a function of coordinate x (the scale
Deing wi2), the beam waist).

We present below a summary of both type of solutions,

l Table I.
b h ; 4 s ; )
. Emn-Modes-omnexp(Lsnz) Ern Modes-omnexp(lanz
;; 5. * cqp %@ sinlv,y) exp{isnz) EY H wmn(x.z) cos(vny) exp(isnz)
< EX] . QEV
> 2, = 13, < sinlvpy) exp(id z) E, = 1/91-3§
H = - . =
'i\' » Sn .n.o =x Hx - Sn/uho ~y
SEx 3w
> Hy %L iee —?; Hz = -L/wua % cos(vny) expxzsnz)

In Tigure I we ..lustrate the configuration of electric field lines at the band waist of
var.ous .cw-crder modes.
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Figure 2. Electric field lines at the waist of low-order waveguide eigenmodes: a)v-modes:;
b) o-modes.

For a linearly polarized undulator the appropriate modes that will couple to the electron
bsam correspond to mweven and nsodd. However, as we shall show in the next subsection, the
392x+) Wodes have losses that increase with fresquency and consequently they are not suitable
for operaticn in the submillimeter region. On the other hand the '02k¢l modes have a
power attenuation constant that decreases with frequency.

2. Waveguide losses.

The losses due to the finite conductibility of the walls are computed in the standard
fashion by evaluating the tangential component of the magnetic field H at the walls; the
results are,

.

= ucé/ugh? (nt)z////[L°c°u2 - n2s2/p2 (6a)

a

ga

G:m = ucé/uoh/uocouz - n?e2/p2 (6b)

In Figure 3 we plot the theoretical attenuation constant as given in Egs. 6 as a function
of b, the height of the resonator channel, and we compare them to those of conventional
microwave modes in rectangular waveguides. The n-modes losses are two orders of magnitude
below those of the more conventional TEg;-mode for b=20 mm.

A description of the actual mechanical
design and parameters of the UCSB FEL

= -
° B R resonator are discussed in the paper at this
0 e T conferegce by one of us (L.E.) and J.
o ae33em Ramian.
_ bei9cm
S0t tEa —
£ IXI. Three-dimensional numerical
z calculation of the rEl radiation
.'c .. e ———
3 1. Slowly varying Lienard-Wiechert solution
3 The explicit solution of the Maxwell's
3 equations for a point charge in free space
H can be written as,
s H -
< 0 0 4C 0607080 - - NA{ (R=3) AB
2imm) E(r,t) = e/c EALLE:E%AEL‘1 (N
R(1l-8.n) J ret
- Figure 3. Attenuation constant vs. guide
height b. these are the Lienard-Wiechert fields, where:

e is the electron charge, 5. §, Rm |r - ¢
are respectively the instantaneous normaliz-
— ed velocity and acceleration of the particle,
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the distance from the posit:on of the particle at =ime t' to the observation point; and
1 = R/R. The square bracket has the meaning that the guantity inside it has to be evaluated
at the retarded «ime =' = ¢ - R(t')/c.

N
-

The total field ¥(F,s) = ) E;(F,z) 1s obtained by summing all electrons in the electron
i=m]

beam. It will contain a fast varying factor of the form el (K2-ut) yhere o~ 2vlu_ lcenter
frequency of the emitted radiation) and .y = 21¢/ay is the frequency corresponding to the
period of the wiggler.

To extract the slowly varving (slow) part from E(r.t) we proceed 1n the usual fashion of
multiplying by zhe fast factor and then averaging over many waveiength of light. This
procedure assumes the laser is well above threshold and that nearly coherence ané monochroma-
Tl1city have been achieved.

The fast part of the radiation field can be visualized as produced by electrons in the
combined field of an undulator and the optical field EQ(:,:) foilowing the zero order tra-
Jectory,

- - - 1
£ - zoe,; + c8,t' @y - - == sinck,t' & : (8)
°

<A

wnere K = eB,/mclky, G3, is the initial longitudinal velocity, KXo iS the undulator wavevector
and 3 = 55 slhugyte; is the linearly polarized undulator magnetic f£ield. Any departure from
zero-order trajectory, due to the ponderomotive potential which force the electrons to bunch
and consequently to change their 3, velocity, will provide the slow part cf the field.
”n
The resulting field after averaging over the total time of interaction NT = 2 N (N is the
aumber of periods in the undulator; is, “

Ne

E(T,e) = <:§(E,ci> = -%%%i z:

NTo - - = ) .
ae’ nA;nAe) e;wt + ik (R=2)

o~ —

where the integral .1s over the retarded time t' (time of evolution for the electrons), the
sum s overall the electrons that at t=0 where inside of a wavelength of light : of the beam
{Ng): and To iS the retarded time T, = L? ae/ (1-3-7) .

To derive Eq. 9 we assumed electrons pulses Npulse > NT and small signal gain as we main-
tained the field experienced by zhe electrons constant over one pass.

To compute this integral we add the single-particle dynamics described by the pendulum
equation, -V

= a(Z) cos(g + 2(T)) (10)

where "
27eKEq (r) LN

v imes

<
[]

l).l 39

R

and z(t') = 5 * csat' + sz,

Zxpancing R ~ R - nzsz and intreducing it in Eq. 9 yields,

. g !t =iv
- T . iews LI K e Ly
EN N X dx Ll
’ Yoet Yo °
“here cerms zZrogorsicnal =g L. R:  are neglected; R, .5 the distance from the observaticn
Scint T <the zerc orZer positicn oI the par+t:cle and we def:ine
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Equations 10 and 11 completely describe our model!? and the simultaneous numerical solution
of them give the radiation field at the observation point ¥ at time ¢.
arrangement is in Figure 4.

The gsometrical

Figure

2.

Image current approach.

\

4. Schematic drawing of a waveguide amplifier. The field at the observation point

P is the resultant of superposition of direct wave ari reflections from the walls.

- Our
.

Prbceeding as in electrostatic, for a waveguide of rectangular cross section ve okzain an
infinite array of alternating sign currents.

Ex (D) =

where Nimage iz the number of image currents that can interfere at that point.

field o

A0

where 3
Ymax -

N

The
Eq. 12
planes
plane,

In_the presence of perfect conducting walls the fields must satisfy bdoundary conditiors,

i.e., Evang =
problem wigh
electron beams”

previous discussion assumed no spatial constraints, Ex(E,:) is the fieid at any pouint

0. When the guide is rectangular an econciical method to treat this “"real”
boundaries is to replace it by another in an enlarger region with ®image
and no boundaries.

The total field at the observation point P is,
N.

ge -
k()

Ey

The radiation
f each image current is confined to a cone of angle :

'/aé-»o—'?_s

H vN

cos™'(8/8yes): at a distance z the transverse dimensions of the radiated area is
Hence, the maximum number of images will be

P &
z48.

O
i ¢ Ymax/b = 2/b /el « 9;;—5 (12)
Y -

UCSB FEL resonator has dimensions a=13.34 cm and b=1.9 om. Using the condition in
we can see that the contribution of image currents with response to the vertical
are negligible and it is sufficient to include no more than 5 currents in the (y,z)
as shown in Figure 5.
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Figure S. The problem of an electron beam
inside a waveguide is replaced by
a free-space problem with "image
electron beams" which simulate the
conducting surfaces.
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Figure 6. Comparison of the guided radiation
field in the x- and y- directions
with the free-space case. L=5.7 m

and 2=0.78 m.

Subsequently, we use the asymptotic expansion of Hél) and after some nanipulations we obtain,

i2m+1

&>

i

G(r,z') = " =
© {
= snz m!

U

where the Fresnel approximation has been used.

Supstitution of Eq. 14 into 1l and using completeness vields,

Ne
8
c2mel
1yl - '
a_ = “Lu QKL .ﬂi ; H,10) eyl L a: (185)
TR eipy.v da 2MmisT = o tl*(-;—oﬂl“

Giaate bl Ao SAch NN I A CRTCTTICTCUT T WY TR WL S A S e = s

wm(x.z) wm(x',z‘) cos 5% ‘y=y') (14)

In Figure 6 we show the angular distribu-~
tion of the radiation field along both x- and
y-axis. For comparison we also plot the free-
space distribution. This graph shows the
increase of the field on axis respect to the
free-space case; the field along the y-axis
vanishes beyond x=1.0 cm and the guided
field is more concentrated around the z-axis.

3. Expansion of radiation field in terms of
algenmodes

If the resonator is designed to operate }n
one of the transverse eigenmode smn(x.,Yy,Z).,
the prasence of the electron beam, i.e., the
stimulated radiation produced by it, will
tend to create a steady-state with a trans-
verse structure different from the initial
one. This state can be expressed as a super-
position of transverse eigenmcdes of the
“cold" resonator,

-

Ef(F) = Z Agn *up (B) (13)
mn

Notice that according to the geometry shown
in Pigure 4 the electrons will only couple to
the I-modes; in what follows we will suppress
the subscript I.

The expansion coefficients Amp can be cal- \
culated in a semi-analytical fashion.!?! 1In e
Eq. 1l we replace the free-space Green
function - - -

Gelr,T') = &¢

by the one appropriate to our boundary value
problem:

- LR
c(f, ) = 3k Z B\ (8,00 cosBL (y-y')
n= -
vhere %
o = /[?;-x')z + (2=2")2
H(l) = Hankel function of first kind of

order zero.
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where

v o= -%-(l+2m) tan“:—o + Nyt +r% (1-n,) (1-84%L)

.,

. 8 Cwge
' Hp = Hermite polynomial, n, = —2 and Q = IA/(cN,); we have also assumed a filamentary elec- :gﬁJ
' tron beam on axis. X Ry,
B AR
-, It can be shown that Ayp decreases as the Gaussian index m increases. N
. R
" 4. Gain per Mode rtg
o We define gain per mode of our single-pass amplifier problem as, .-

c r 2 - 2] !’ 1]

h G = Br IL‘Ein+Eradl IE;,1%]da * 2Re )Erad Einda

. € (5. 12 (2
P_ §7 | |Bjpi2da jlgin‘ da N
»4_ where the integral is over the waveguide cross section. -

Assuming the incident optical field E;jpn to be the mth eigenmode with amplitude on axis E,
at the beam waist, then

Gun = 2Re (16)

2
E, [aaiony!
mmeven; nmodd.

In Figure 7 we plot the gain curve of the three-lowest order Gaussian modes (m=0,2,4) as BN
a function of the resonance parameter v!“; the odd-index modes do not couple to the electron :
beam because they vanish on axis. Similar arguments show that the n index must be odd.
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Figure 7. Gain curves for different values Figure 8. Gmn vS. resonance parameter. Gain
of order m=0,2,4 (Gaussian order) curves for different values of
with £ixed order n=l. Note that the order n=l and 9 (vertical
maximum value of the gain curve mode) with fixed order m=0. Note
decreases and shifts to a larger the curves are shifted by an
resonance parameter. amount proportional to (8p-8n.))
Li{8=8prag) - '
8 Notice the foliowing characteristics: a) The curves are relatively shifted because of the Tf
phase shifts associated with each mode. For the parameters (see discussion about Figure 3) -
of the example shown in Figure 7, the zero of the m=2 mode is underneath the maximum of the S
m=0 mode. In a mode competition between the two, the mm(0 will grow at expense of the mm2. e
5} The gain of each mode decreases as the m-~index increases, as it was indicated at the end S
of the previous section. Next, in Figure 8 we varied the trigonometric function mode index o

n.
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N In Figure 9 we plot the value of the maxi-
;. GAIN SEAK mum gain as a function of the beam waist of

¢ {RELATIVE UNITS) the initial optical wave. This result shows
! that there is an optimal beam waist at about
| wo*l.0 cm; this curve was obtained fixing its
i //"\\\ position at the center of the undulator.

!
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Figure 9. Maximum of gain Gpp VS. wg beam
waist of input wave. Radiation
field ig decomposed into eigen-
modes d4mp(x,y) which contain two
parameters "beam waist" uy and
position of origin of coordinates
(i.e., radius of curvature R:iz)).
The best matching of radiation
field with input one is obtained
with a beam waist w,*1.0 cm.
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