
000-AL64 255 STRUCTURED NICROCONTROLLER DESIGN USING PLA FIRUNGE in1
(U) CINCINNATI UNIV OH C A PRACNRISTOU 12 DEC 65
ARO-18626. 12-EL DAA29-62-K-0106

UNCLSSIFIED FIG 9/2 "

L3

Wjj1221W2

1111 1.25 1.4 III4
a

MICROCOPY~ RESOLUJTION TEST CHART
"'N4' ~UP Nr)-r)S TQ63 A

STRUCTURED MICROCONTROLLER DESIGN USING -

PLA FIRMWARE

Christos A. Papachristou

1.0 FINAL REPORT
* LC

December 12, 1985

U.S. ARMY RESEARCH OFFICE

Contract No: DAAG29-82-K-0106 O T IC
ELECT

FEB 13 1986
University of CincinnatiS T

Case Western Reserve UniversityB

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

*~~~-.-- - - - - -. . . -7L -1 7W.-

UNCLASSIFI ED-

I READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECiPtENT'S CATALOG NUMbER

N/A N/A
4. TILE (ad Subitle)S TYPE OF REPORT & PERIOD C0,4ERIED

Structured Mlicrocontroller Design Using FINAL 0411918-1 to 10/13185

PLA Firmware 6. PERFORMNGi ORG. REPORT NUMBER

*7. AUTNOR(s) S. CONTRACT OR GRANT NUMBER(@)

Christos A. PAPAGHRISTOU DAAX29-82-K-0106

9. PRFOMIN ORGMIZIONNAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

S. PRFOMINGORGNIZAIONAREA II WORK UNIT NUMBERS

University of Cincinnati, Cincinnati, Chio 45211 /

Case Western Reserve University,Cleveland Chio, 44106 N/

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office December 12, 1985

Post Office Box 12211 13. NUMBER Of PAGES

Research Triangle Park, NC 27709 42
F.MONITORING AGENCY NAME II AOORESS(It different from Contoili Office) 1S. SECURITY CLASS. (.1 i. report)

Unclassi fied
I5a. DECLASSIF ICATION/ DOWNGRADING

SC~ULf

IS. DISTRIBUTION STATEMENT (of tis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Cho Geact entered In Block 20. It difern Imalf eport)

NA

15. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are

those of the author(s) and should not be construed as an official

Department of the Army position, Policy, or decision, unless so

designated by other documentation.
It. KEY WORDS (Cotilnue an, revere e~ cit necoveary npd Identify~ by block nomhw)

Nlicroprogrmrning, Firmware Engineering, Microcontrol Architecture, Micro-

Simulation, PLA Structures, VLSI, Microcode Development, CAD Tools

*20. ABSTRACT MMIIIIIA om tevew oif nief o fdoWtif by block nuberl'-.

Please see reverse side

DO ~ 147 E~rlOWPIWOSSIOSSOE~tUNCLASSIFIED

S~CumlPY CLASSIFICATION OF FNIS PACE (Who Doe ta rod) It

Unclassi fied
SECUIlTY CLASSIFICATION OF THIS PAV4(WMhn Dot. Eneerd)

20. ABSTRACT CONTINUED

ABSTRACT

The objective of this research is to contribute a design methodology for
microprogramming architectures with supporting firmware and development
tools. Two PLA-based microcontrol architectures have been proposed that
are suitable for modular microprogramming. The first scheme consists of
a PLA sequence store, a microcode ROM and an address processor. This
structure has the capability of complex microsequencing such as multiway
branching, microsubroutines, nested microlooping and the like. To al-
leviate the pin-limitation problem, a bit-slice approach is taken in the
second scheme which allows for easy microcontrol expandability and com-
paction of the sequence store.

Firmware support for the microcontrollers is provided by such control
constructs as if-then-else, while-do and the like, which are available
at the microlevel. Several firmware design tools have been developed and
incorporated into a software package, MDS, a Modular Microprogram
Development System. MMDS includes the following tools: a microcode as-
sembler, a microsequencer assembler, a PLA code formatter and a
functional-level simulator of modular microarchitectures.

An automatic migration approach based on these tools has been success-
fully initiated. Several compaction techniques for VLSI microcode have
been implemented. A hardware design language for microarchitecture de-
finition has also been developed and tested. Integration of these tools
will provide a design environment for implementation of VLSI microcode.

Unclassi fied
SIRCURITY CLASSIFICATION OF TMIS PAGR(Ihea Dam EflteiO)

,"7:'

TABLE OF CONTENTS

i. INTRODUCTION ...

II. MICROSEQUENCER ARCITECTURE2
i

2.1 Structure of the Microcontrol System 2
2.2 Sequence Store 2
2.3 Address Processor 3

III. BLOCK STRUCTURED FIRMWARE 3

3.1 Firmware Blocks.....................................3

3.2 Organization of Microprogram Memories 3
3.3 Transaction Formulation and Formatting 4

IV. BIT-SLICE MICROCONTROLLER 5

4. 1 Rationale 5
4.2 Primary and Secondary Storage 5
4.3 Compaction of Sequence Store6

V. MICROASSEMBLER AND FORMATTER TOOLS 7

5.1 Microsequencer and Microcode Assemblers 8
5.2 PLA Formatter Program 8

VI. MODULAR MICROARCHITECTURES SIMULATOR 9

VII. TEST EXAMPLE: BINARY SEARCH TREE MIGRATION 11
-

7.1 Algorithm ... 11
,-

7.2 Target Machine Structure *................ 11 .

7.3 Firmware Description i. 12

VIII. SIGNIFICANT RESEARCH RESULTS 12
8 1 Firmware Migration. .1...... . .•"................ . 13
8.2 Microcode in VLSI Structures 14

8.3 Hardware Description Languge MDSL 15

IX. SUMMARY AND CONCLUSION 16

REFERENCES .. 17

PUBLICATIONS RELATED TO RESEARCH PROJECT 20

PERSONNEL... 22

FIGURES, TABLES, APPENDIXES23

r .-. .

LIST CF FIGURES, TABLES AND APPENDIXES ...

Figure I1..23

Figure 2 ..24

Figure 3 ..25

Figure 4 ..26

Figure 5 ..27

Figure 6 ..28

Figure 7 ... 29

Figure 830

Figure 9 .. 31

Figure 10... 32

Figure 11 ... 33

Figure 12, Ca) and (b) 34

Figure 1 3, (a) arnd C(b)................................... 35

Figure 14 .. 3

Figure 15 -3

Figure 16, (a) and (b) 38

Figure 17, (a) and (b)....... o.......... .39

Figure 18 o....40

Table 1........ oo....... o o.. ~oo . .. 4

Appe dix I a d II... .. o..o o.. ... o~o. .. o o.. oo.. .o...4

I..".. .°

..

T. INTRODUCTION

Microprogramming is an elegant technique to systematically structure

the control section of computers and digital systems. Although it was
introduced [1l during the first generation computers, it was not adopted

commercially until the third generation computers [2), due to memory limi-
tations. Today, microprogramming is widespread from large mainframes to

small microsystems, although it has evolved substantially since its early
conception. Microprogram memories are available just like main memories, as

writable control stores. This distinguishes user-oriented microprogramable
systems from microprogrammed machines [3). Microprogramming is an important
method for interpretation and emulation [4) of computer systems. Micropro-

gramming is also a promising technique for vertical migration of operating
system primitives and other complicated software to firmware [5-6].

Modern integrated circuit technology has affected microprogramming by
means of hardware control devices such as ROMs, PLAs and microsequencers

[7]. ROMs are used as control memories, PLAs for efficient address mapping
and microsequencers are useful elements to implement control functions.
Although these devices have been available as discrete LSI chips, they are
now basic components of VLSI [8]. Most 16 and 32 bit microprocessors con-
tain such devices occupying large chip areas. With increasing demand for
complicated control sequencing in VLSI, there is a growing need for modu-

larity and structure in both microprogram architectures and firmware code,
and there is also need for development aids. Some work in this area has
already appeared in the literature. Schemes for microprogram multiway
branching have been investigated in [9-10]. Structures for modular
microprogram sequencing have been proposed in [11-12). .

The research reported in this report has three objectives. First, to
propose a hardware architecture of a complex microcontrol scheme suitable
for modular microprogramming. Second, to develop firmware support by means
of primitive and compound constructs that allow complex control sequencing.
Third, to construct firmware design and development tools such as microse-
quencer and microcode assemblers and simulators for the benefit of the
user. The motivation for this work is the need to migrate in firmware not
just traditional microprograms but also more complex software functions,
for example parsers or even operating systems, to improve speed, reliabil-
ity, security and the like.

P This report is organized as follows. Section II describes the proposed
microcontrol scheme. The structured firmware support for the microcon-
troller is provided in Section III. An expandable, "bit-slice" modification
of the microcontroller is given in Section IV. Several firmwares design
tools are briefly described in Sections V and VI. A test example of
firmware implementation, a binary search tree algorithm, is demonstrated in
Section VII. Significant results on automatic migration, VLSI implementa- _

tion and a hardware design language tool for microcode design are summar-
ized in Section VIII. Concluding remarks are in Section IX.

'I'>

-.. -. .. -.. --, '. .' . ,-. -- - , - ,,, - " '. " .. "".....". .'.-. .- .- , .".." i.* -.

-7 -. W. .~~~• - .- |* r r r r C .

-2 '-.-.''

I]

:. . ..CROSEQUENCER ARCHITECTURE

2.1 Structure of the Microcontrol System

This section describes the architecture of a complex microsequencer
suitable for modular microprogramm4"- The basic objective is to implement
compound sequencing functions that facilitate block-structured firmware

development. This includes efficient address modification to enable modular
multiway branching, modular looping, microsubroutine nesting, microcorou-
tines and the like.

The microcontroller scheme shown in Fig.1 consists of three basic com-

ponents: the PLA sequencing store, the address processor and the microcode
store; the latter may consist of PLAs or ROMs. Recall that there are two

fundamental tasks with every microprogram control scheme: microsequencing

and microcoding [13]. This information, normally embedded within each
microinstruction, is separated in our approach which is reflected in the "

PLA and the ROM stores, respectively. This technique provides more capabil-
ity for the compound sequencing mentioned earlier.

It is important to note that the sequencing PLA is utilized as a
read-only associative memory [14] to store the microsequencing information
required. This is an advantage with respect to the overall storage

requirements, to be detailed shortly. The microcode store contains the
required control information embedded as formatted micro-opcodes. The
address processor generates the addressing information for the sequencing
and microcode stores. Some details of the sequencer and address processor
follow.

2.2 Sequence Store

This unit stores all the sequencing information for the microcode
store in the form of firmware constructs or transactions. Each transaction
occupies one PLA word and consists of three fields: (a) the input address

field, (b) the microsequencing function field, and (c) a branch code or
addressing field. The input addressing field contains the address of the
current transaction to be matched by the effective address, for both the
sequence store, and control store carried on the address bus (Fig.I). The
function field contains encoded sequencing information by means of direc-
tives or commands for the address processor. The main sequencing functions

to be implemented by this scheme are listed in Table 1 with comments. The
third field contains either branching information for the address processor

(multiple jump addresses) or branch code indicating the (multiple) status

conditions to be tested in case of multiway jumps.

In microprogramed memories, sequentially executable microinstructions

are stored in sequential addresses. Thus, there is a need of an implicit
addressing scheme of the form:

NEXT ADDRESS = PRESENT ADDRESS + 1
.'. %.

together with ways of explicit address generation in case of "JUMPS". In
our approach, transaction for implicit sequencing are labeled CONTINUE-type

A& ,

*whereas th.e other transactions are labeled JUMP-type. It is important to
note that there is no need to store CONTINUE-type of transactions in the
sequence store. This information is implicitly conveyed to the address pro-.
cessor, using the PLA as an associative memory element. Only JUMP-type of
transactions need to be stored in the sequence store.

2.3 Address Processor

The address processor, Fig. 2, may be viewed as a primitive, special
purpose CPU with the PLA serving as its memory. The processor operates on
an input "data" stream, i.e., addresses fetched from the sequencer PLA, or

an external source, under the control of an "instruction", i.e. the func-
tion code from the sequencer PLA. The basic functional control elements andI
data storage elements of the address processor, shown in Fig. 2, are (a)
address modifier, (b) PLA controller, (c) address stack, (d) branch code3 stack and (e) address multiplexer. Other hardware modules required include
status-testers, encoders, data multiplexer and a adder.

The PLA controller generates the control signals for the address pro-
cessor from the "FUNCTION" field of the sequencer PLA. The address multi-
plexer is used to select the addressing information from either the address
modifier or an externally mapped address. The address stack is used for
linkage and contains return addresses enabling nested microsubroutine calls
and nested loops. Each word in this stack consists Of two fields: (a)
RTN-CODE and (b) RTN-ADDRESS. The return code essentially parameterizes the
return function to enable a variety of return functions. The branch code
stack stores encoded branch information regarding status conditions to be
tested in case of multiway branch type of sequencing transactions.

III. BLOCK STRUCTURED FIRMWARE

3.1 Firmware Blocks

In this section we discuss the organization and the structuring of the
* sequencing transactions of Table I that provide firmware support for the

hardware control scheme of Section II. To facilitate modular microprogram-
ming, firmware implementation of these constructs is based on the concept
of firmware block or module, i.e. a sequence of microinstructions with sin-

D gle entry and exit points. Further, a firmware block is context free, i.e.
independent of its location, and additionally, it can contain conditional
or unconditional calls to other blocks. Thus, a block structured micropro-
gram consists of a listing of such formatted constructs as the ones in
Table I which control the sequencing of firmware blocks.

The following notation is introduced to facilitate transaction format-
ting. Let X, Y, Z denote labels of transactions and let F, G, H,
... denote labels of firmware blocks. Let bF, sF and eF denote the labels
of the first, second and last transaction, respectively, of block F. '\

*Decimal numerals may also be appended to extent this notation, e.g. bF1,
eF1, etc. By prefixing A and N to the previous labels we designate the
current and next addresses, respectively, of the transaction in reference.

* 3.2 Organization of Microprogram Memories

-4-

The nicrosequencer architecture proposed directly supports a

micromemory addressing space of up to 64K words. With an arbitrary organi-
zation of firware blocks in the control memory, up to sixteen bit address-

irg information would be required to address a block. In multiway modular
transactions with many address fields, this may be a serious limitation. To
alleviate this problem, the sequence and microcode stores are organized to
enable zero-page addressing in all modular transactions. In this scheme,
the address of the first transaction of each firware block must be in page
zero i.e. in the first 256 locations in the micromemory address space.

The organization of microprogram memories with two firware blocks F
and G is shown in Fig.3. The first microinstruction of module F is stored
at absolute address one in the microcode ROM. Correspondingly, at absolute
input address one in the sequence store, a JUMP sequencing function is
stored containing sF, the sixteen bit absolute address of the second
microinstruction of module F in the microcode store. Thus, concurrent to
the execution of the first microinstruction of module F, the absolute
address of the second microinstruction is loaded into the microprogram
counter of Fig. 2 by the JUMP sequencing function.

This addressing scheme for firmware blocks results in a decreased
length of the addressing subfields in the sequencer. Thus, only eight bits
are required to address an arbitrary module.

3.3 Transaction Formulation and Formatting

Every transaction is associated with a sequencing action by means of a
Function-Code such as CALL, DLOOP, MAP, etc. (see Table I). Specifically, a
transaction consists of three fields, namely, the (current) address, the
function code and the branch code or address fields, consistent with the
format of the PLA sequence store of Section II, denoted as follows:

/Address//Function Code/Branch Code or Next Address(es)/

The 'im' modifying addresses, in case of 'm'-way direct module branch-
ing, would be represented by bF1, bF2, ..., bFm. The Branch-Code field in
case of a SBC transaction would contain a sequence of decimal values CI,
C2, ... ,Cn indicating the external status signals to be tested. In case
of DLOOP transactions, the third field would contain a decimal value indi-
cating the number of times the iteration is to be performed, while in case
of RTN and MAP transactions, the third field would be absent. The interpre-
tation of the third field depends on the function codes. As illustrations
we have:

/AX//MJUMP/MX1,MX2,MX3,MX4/ ;Multiway intra-module branching
/AX//MCALL/bFl,bF2,bF3/ ;Multiway modular branching-.
/AY//SBC/CI,C2,C3,C4,C5/ ;Store branch codes
/AZ//CALL/NX=bF/ ;Unconditional call

The sequencing transactions of Table I are basic and compound types.
The basic transactions are conceptually similar to the fundamental con-
structs of structured programming ,i.e., they are (a) sequential (if-then),

PI

(b) -crditi=al :if-then-else), 1c) iterative (loop) and (d) case-like to

allow nuitiway branching. The formatting of these constructs in firware is
shown in Fig. 4, (a)-(d). More details are given in [15]. On the basis of
these constructions, compound sequencing constructs can also be developed.
An example is the modular loop of Table I, MLOOP, whose formatting is shown
in Fig. 5. This is a quite useful transaction, to be demonstrated later.

We remark that the SBC transaction should precede all multiway
sequencing transactions prefixed by M, e.g. MCALL, as shown in Figs. 3 a-d ".]
4. The equate (:) symbol above is used for explicit address or condition
assignments. Also, the blocks F,G, etc. in the same figures have the same
structure. The different returns are parameterized by the return code

stored along with the return addresses in the address stack of Fig. 2, thus
maintaining the context free property of firmware.

The implementation of the above firware structures at the microlevel I
is aided by several user-oriented tools, discussed later.

IV. BIT-SLICE MICROCONTROLLER

4.1 Rationale

A single chip implementation of the address processor constrains the

branching capability of the microcontrol scheme. Multiway branching
requires a corresponding number of address fields located in the same PLA
word. Thus, due to pin-count constraints, there is a limitation on the
number of branch addresses that can be accomodated for direct multiway
branching. Time multiplexing the addresses on the single bus, to reduce the
pin-count, involves time overhead. Another solution would be to implement
both the processor and the sequence store within a VLSI chip to reduce
external communication. This scheme was considered in [163 'ut it seemed
suitable for more customized designs. We have taken instead a bit-slice
approach to modify the design of the address processor (AP). This approach
has the following advantages: (a) solves the pin limitation problem, (b)
allows for easy expandability, and (c) results in compaction of the
sequence store.

In contrast to the conventional bit-sliced microcontrol designs (17],
the slices in the address processor are not uniform. Thus, a fully expanded
address processor consists of one primary slice (module) and one or more
(identical) secondary slices. It should be noted, though, that this "slic-
ing" of the processor requires the partitioning of the sequence store into
corresponding PLA "slices" to accomodate the AP slices. We shall discuss
the overall system organization after first describing the AP sliced struc-
ture.

4.2 Primary and Secondary Slices

The architecture of the primary slice is shown in Fig. 6a. The major *.'

control and data processing elements are: (a) PLA controller, (b) adder,
(c) address stack, (d) branch code stack, (g) status tester and (h) multi-
plexers.

.

The ?LA controller (inside the AP) generates the control signals f:r
the address processor, depending on the input received from the function-
opcode field of the PLA sequencer and the internal AP status. The micropro-
gram counter is used as an addressing element for both the control and
sequence stores. There is a 2's complement 16-bit adder whose right and
left inputs are selected by MUX I and 2, respectively. The control signals
for MUX 1 and 2 are generated by the priority condition selector and the
(internal) PLA controller. The input selections of MUX 1 and 2 are shown in
Fig. 6a with more details being given in [16].

4
The status tester is used for testing the external status signals in

case of conditional sequencing transactions. If the status signals are not
mutually exclusive, the priority condition selector will resolve the con-
flict. The address stack is used for microsubroutine linking and micro-
looping. It is 18-bit x 8 words, allowing for a nesting of up to 8-levels,
and it includes a 16-bit return address and a 2-bit return code which
parameterizes the return. The Branch-Code stack is 16-bits x 8 words and is
used to store the branch code conditions to be tested in case of multiway
modular calls and looping. The loop stack is 8-bits x 8 words and is used
in count-down type iterations for up to 8 levels of nesting and with a max-
imum count of 255. The transaction stack is 16-bits x 8 words deep. It is
used in modular looping transactions.

The architecture of the secondary slice is shown in Fig. 6b. The
internal control signals are also generated by the PLA controller. The pri-
mary slice itself gives the sequencer a capability of direct three-way
branching which is further increased by two for each additional secondary
slice used in the expansion. The secondary slice either outputs the eight
LSBs (least significant bits) from the inputs received in the address
field, or the eight MSBs, or the output bus is tristated, depending on the
priority condition selector and the chip enable (CE) signals. The other
elements of the secondary slice serve the same purpose as in the primary.

4.3 System Organization and Compaction

A typical control unit using the above address processor slices, PLAs
as sequence store and ROM for control memory, is shown in Fig. 7. The 16-
bit primary slice output serves as the addressing input to the control ROM
and the PLAs of the corresponding processor slices. The PLAs required
include, first, the function opcode PLA, i.e. a 16-bit input, 4-bit output
PLA used for storing the sequencing function field of each transaction (see
Table I). Recall that sequencing information regarding CONTINUE type
microinstructions is not stored in the sequence store since this is impli-
citly generated by default in the function-opcode PLA. In addition, with
each address processor slice a 16-bit input, 16-bit output PLA is required.
These PLAs are utilized to store the branch-code or address subfields of
each transaction, arranged from the highest (leftmost) to the lowest
(rightmost) priority. Thus, the subfields are "bit-sliced" and loaded in
the corresponding PLA stores. More details of the system organization are
in C16].

The storage size of a particular PLA depends on the total number of
transactions assigned to that PLA. Consider, for example, a sequencer con-
figuration with one primary slice and two secondary slices, using the

-- . • 4

folcwir.g trarsactiz)ns:

M-CALL ADDR1,ADDR2,,,ADDR3,ADDR4
M-CALL ADDR5,ADDR6,ADDR7,ADDR8
M-CALL ,,ADDR9,ADDR1O,ADDR11,ADDR12

The above transaction format is recognized by the microsequencer
assembler to be discussed in the next section. The problem here is to par-
tition the above code for assignment into the PLA structure of Fig. 7. A
straightforward code segmentation would require three words assigned to
each of the PLAs of Fig. 7. Some storage compaction can be achieved, how-
ever, by exploiting the empty fields, represented by commas in the above
code. To illustrate the technique, suppose that Al, A2 and A3 represent
the effective (input) address of the above M-CALL transactions. Then, these
transactions can be "sliced" and compacted in PLAs 0, 1, 2 and 3 of Fig. 7,
using the transaction field formatting of Section II, as follows:

PLA 0 A/I M-CALL.
A2// M-CALL
A3// M-CALL

PLA-I A/I ADDR1, ADDR2
A2//ADDR5, ADDR6

PLA-2 A2// ADDR7, ADDR8
A3// ADDR9, ADDR1O

PLA-3 Al// ADDR3, ADDR4

A3// ADDR11, ADDR12

As illustrated above, PLAs 1, 2 and 3 do not need storage in the
designated addresses A3, Al and A2, respectively. In fact, only two words
are required for each of the 16-bit output PLAs, Fig. 7, and three words
for the function opcode PLA, to store these transaction codes. This compac-
tion technique is due to the associative mapping property of PLAs, and it
is utilized in the PLA formatter tool (next section), resulting in substan-
tial sequence storage reduction. Even better results may be obtained using -*

a sophisticated PLA compaction algorithm, by column partitioning, in [18].

V. MICROASSEMBLER AND FORMATTER TOOLS

The microcontrol architecture proposed is supported by several

firmware design tools that have been developed and integrated into a
software package, MMDS (Modular Microprogram Development System). MMDS is a
general purpose tool aimed at the development of highly modular micropro- ..e
grams. A block diagram of MMDS is given in Fig. 8. It includes the follow-
ing tools:

a microsequencer and microcode assembler
- a microsequencer's PLA code formatter, and
- a functional-level modular microarchitecture simulator.

--..

:n this section we shall describe briefly the first two of the above
tools; the simulator is discussed in the next section. More details are in
[19] and in a user's manual [20].

5.1 Microsequencer and Microcode Assemblers

Microassemblers are programs that allow the encoding of a microprogram
into source code and translation of this code into object code (bit-
patterns) for loading into the control storage. The benefits of using
microassemblers are similar to the ones accrued from using ordinary assem-
blers, and are well documented in [21]. The microcontrol scheme, due to the
dual microprogram storage, requires separate code generation for microse-
quencing and microcoding. Although currently available microassemblers
would be suitable for microcode generation, they could not be used to gen-
erate PLA sequencing code because they: 1) assign sequential addresses to
consecutive microinstructions; 2) have fixed microword length for all
microinstruction types; 3) do not support definitions of sequence type sub-
fields or assignment of null values [20) to microorders.

Due to the above reasons, a microsequencer code assembler has been
developed to convert control transactions, written for the microsequencer J6

PLA in a specific format, into binary code. This software package contains
two programs: 1) definition program, SDEF and 2) assembler program, SASM.
SDEF allows the user to define formats of the firmware transactions in
terms of subfield width, type and addressing mode. Several options have
been provided for Hexadecimal, Decimal, Octal and Binary subfield values.
The definition of symbolic constants is also allowed. SDEF creates a defin-
ition file and a listing file. The latter is produced for user's reference
and it contains definition source and diagnostics. The definition file con-
tains encoding information for the defined sequence transactions and sym-
bolic constants. The assembler, SASM, is a two-pass program that
transforms the definition source code into binary object code for the
sequencer PLA.

The above software package was written in Pascal in a PDP11/60 mini-
computer system. An example definition source is in Appendix I and more .'-

details are in [19].

A microcode assembler was generated by modifying the microsequencer
code assembler. Two independent modules, MDEF and MASM, were generated from L

the preceding SDEF and SASM, respectively. The microinstruction definition
module, MDEF, sets up the microcode word structure and mnemonic assignment
for a given target machine. The microinstruction assembly program (MASM)
translates the microcode source into bit patterns compatible with the tar-
get machine. "

5.2 PLA Formatter Program

The purpose of the PLA formatter is to convert the, bit pattern,
object module from the Microsequencer Code Assembler into a format suitable
for downloading into the target PLA's. The formatter, specifically, parti-
tions the object module into blocks of code depending on the PLA sizes. The
program allows the user to specify the parameters of the target PLA (in
terms of input variables, output function and product terms), the format of

........

-- 9-

* the PLAs output code and the values of any don't cares in the bit pattern.

In addition, the user may request a PLA Map and PLA code Output Listing.

A simplified diagram of the formatter is in Fig. 9. The input, i.e.,
the object module defines for each slice of the bit-slice microarchitec-
ture, Fig. 7, the total number of words and the addressing range. In Fig.
7, the number of output functions is assumed to be four for slice-0 and

* - sixteen for all other slices; however, the formatter has flexibility for
other input/output arrangements. The object module is then partitioned by
the formatter according to the user specified commands, into modules compa-
tible with the specified target PLAs. The object module, for each slice,
may be viewed as an array of PLAs, once the user has specified the number
of product terms and output functions of the target PLAs. As mentioned in
Section IV, the partition technique seeks to eliminate, as much as possi-
ble, the vacuous PLA fields in the microassembler generated object module
to achieve compaction of the object module slices.

The formatter includes an interactive monitor, with a simple command
menu, to provide user-oriented input. The monitor commands and other
details are in [191. An example of a PLA object module partition is in_: Appendix II. -

VI. MODULAR MICROARCHITECTURES SIMULATOR

The purpose of microprogram simulators is to simulate the data flow in
a microprogram system. The importance and benefits of such tools are well
documented in £22]. At present, there are two main methods for constructing

a microprogram simulator. The first requires the user to fully define the
actions of the machine in a procedural, register-transfer, language, e.g.
ISPS [23] or N.mpc [24). The second option is for the user to write a ape-
cial machine-independent simulator, generally in a high-level language
[25-26].

The method we adopted here is different from the above two techniques.
The simulator is intended for target machines composed of commonly used
bit-slice devices and functional/data modules (registers, shifters, multi-
plexers, memory, etc.). A library of simulation routines for these devices
has been generated. This modular description promotes a top-down design
approach and makes the design process into just a selection of standard
cells. The target machine is directly implemented by calls to these rou-
tines. This give the simulator a reasonable amount of execution speed com-
pared to the register-transfer language method, while providing reasonable
flexibility in defining different target machines. The organization of the
Modular Microarchitectures Simulator is shown in Fig. 10. It is subdivided
into five independent modules: SAI Assembler, Interactive Monitor, Simula-
tion Monitor, Supervisor and Microsequencer.

The SAI (Storage Allocation and Initialization) Assembler is a one
pass assembler which reads and analyzes the user supplied Storage Alloca-
tion and Initialization file and generated a table of the user defined sym-
bols and an Output Listing file for user's reference. The Interactive Moni-
tor provides a User-Simulator communication. An easy to use command -.

language for microprogram testing and debugging has been provided £19].

.... . + .. + . . . ,.. .+. ,

The Simulation Monitor controls the microprogram execution during
simulation. The control flow is shown in Fig. 11 . In the beginning, the
simulator's microprogram counter is initialized, as to the number of micro-
cycles to be simulated; an output trace file is also initialized.
Thereafter, the simulator enters an execution loop. For each microcycle,
the microsequencing and microcode information is fetched from the
corresponding (simulated) sequence and control stores and an entry is made
in the trace file, if requested, as to the counter value and transaction
being executed. After the specified number of microcycles, the simulator
exits the loop or, it exits under any special conditions such as out-of-
range address, break point address, etc.

As shown in Fig. 11, the simulator may be operated in the mapped,

pipelined or non-pipelined modes. The mapped mode is used when simulating
an external sequencer, e.g., AM2910, in the target machine. When using the
internal PLA sequencer, the Simulator may be operated in either the pipe-
lined or non-pipelined mode. In the pipelined mode, a parallel execution of
the Supervisor and Microsequencer modules, Fig. 10, is performed. By con-
trast, a serial execution of these modules is simulated in the non-
pipelined mode. At any rate, the Simulator monitor coordinates the status
and address processing by the Supervisor and Microsequencer, respectively,
to be discussed next.

The Supervisor is a program module implementing in its program struc-
ture the target machine architecture by calls to a cell library of simula-
tion routines, along with timing information. Different target machines
require changes only in the Supervisor structure. The Supervisor essen-
tially performs two tasks. First, it maps the microinstruction fields con-

trolling each device into the corresponding routines; second, it executes
the microoperations as calls to these routines. The source code required
for the Supervisor is small and a target machine is easily defined in its
program structure thus making this technique very flexible.

The two tasks of microcontrol, i.e. microcoding and microsequencing
are performed by the Supervisor and Microsequencer modules, respectively,
in the non-mapped simulation mode (Fig. 11). The Supervisor requires a
microinstruction word as input from the Simulator and returns the status
along with other relevant information (mapped address, loop count) to the
Simulator for microsequencing. In the mapped mode, the supervisor also does
the microsequencing, returning a mapping address after each microinstruc-
tion execution.

The Microsequencer is a software model of the hardware control scheme
discussed earlier. It has been incorporated into the Simulator to encourage
the development of modular microprograms and relieve the designer from the . -

task of sequencing in the initial design phase. All stacks in the address
processor of Fig. 6 are available to the user for modification/examination

to aid debugging. Depending on the sequencing transaction being executed,
the Supervisor supplies the required external inputs to the address proces-
sor (external status signals, mapping address, loop count).

U

%.-. ..

.

VI:. TEST EXAMPLE: BINARY SEARCH TREE MIGRATICN

A binary search tree (BST) algorithm has been selected as a test exam-

ple to demonstrate the proposed control architecture, the usefulness of the
firmware sequencing constructs and the usage of the microprogram develop-
ment system. The example chosen is a suitable, non-trivial, candidate for
firmware migration. For this purpose we use a versatile target machine
architecture based on the AM2910's and controlled by the microsequencer
scheme. The details are discussed next.

7.1 Algorithm

Binary search trees are often used to build symbol tables in loaders,

assemblers, compilers or any keyword driven translator (27]. By definition,
a BST is a binary tree; if not empty, the BST node identifiers satisfy the
following: 1) all identifiers in the left (or right) subtree of BST are
less (or greater) than, numerically or alphabetically, the identifier in
the root node of BST; 2) the left and right subtrees of BST are also binary
search trees (271.

The structure of a node of BST, illustrated in Fig. 12(a), consists of
LLINK (left link), RLINK (right link), IDENT (identifier) and data fields.
The latter may be of variable or fixed length. For convenience, a header "
node is also included in the BST structure such that the actual BST forms
the left subtree of the header; the other header fields are empty.

The BST algorithm is given in Fig. 12(b). The notation used follows
from the following formulation: search BST with header H for node C such
that IDENT(C) = IDENT(E). Set usf(user flag) if C is found, else insert
node E at the appropriate point in the tree.

7.2 Target Machine Structure

The target machine, shown in Fig. 13(a), for implementing the BST test

example consists of four main parts: the data path (processor), the con-
troller, the pipeline register and the status register. The controller
essentially comprises one-slice configuration of the microcontrol scheme
discussed earlier (Fig. 7). An instruction-data based pipelined scheme is

used offering significant improvement in speed. The 25-bit pipeline regis-
ter carries the (current) microcode word that controls the data path. The
bit assignment is shown in Fig. 13(b). The status register output is con- -_

nected to the three least significant bits of the external status bus in
the address processor of Fig. 6(a).

The data path structure of the target machine is shown in Fig. 14. The
control part of the structure is a set of four AM2910 ALU slices. The
address and data bus are sixteen bits wide. The main memory is assumed to
be a 16 bits x 64 words RAM. The MBRIN, MBROUT and MAR are all 16 bit
registers used for memory read/write operations. During a memory read, the
contents of the location addressed by MAR is read into the MBRIN. During a ..-.

memory write, the contents of MBROUT is written into the location addressed
by MAR. The status register, shown again in Fig. 14, is three bits wide and
holds the USF, the Z (zero) and N (sign) outputs from AM2910. The control
inputs to these elements are as shown.

'12

The timing of the target machine is controlled by a system clock. Tim-

ing assumptions and other timing details are in 1191.

7.3 Firmware Description

A top-down design approach is used in the firmware design of this
example. The control flow, shown in Fig. 15, follows directly from the .-' -.

previous BST algorithmic description. The first four microinstructions per-
form the initialization. The while-do loop in the algorithm is replaced by
the SLOOP sequencing transaction of Table I. For modularity, the operations
performed within the while-do loop are replaced by a microprogram module,
SEARCH. Also, another module, INSERT, has been defined, which contains the
microoperations required for inserting the element into the tree. The con-
ditional call to INSERT is achieved by the SCALL transaction. The
microoperation flow chart for the SEARCH and INSERT modules is shown in
Fig. 16(a) and (b), respectively. The case structure in the algorithm is
formed by the MJUMP transaction.

This example clearly demonstrates the power of the sequencing con-
structs provided by the microcontrol scheme and also the structured
approach for firmware design. All the I/O files for simulating this
microprogram on the microprogram development system are in Appendix A of
(19]. A listing of the User-Simulator interaction for inserting nodes E and
F into a BST is in Appendix B of [19].

VIII. SIGNIFICANT RESEARCH RESULTS

We reported previously on the design of a PLA-based microcontrol

scheme supported by structured firmware primitives that allow complex con-
trol sequencing. We also reported on MDSS, a set of microprogram develop-
ment tools constructed for this purpose. In the course of this work our
original research objectives broadened. It did not appear sufficient just
to build a microcontroller, however powerful its sequencing capability
might be. What was also important was the capability of "good" mapping of
complex functions into the serquencing constructs of the microcontroller.
More specifically, the following requirements are also important: 1) how
the microsequencing scheme could be used to realize complex software func-
tions in firmware, i.e., firmware migration. 2) implementation of such
functions in microcoded silicon structures such as VLSI PLAs.

Further research was pursued to establish the feasibility of the above
objectives. This research, still underway, has three main thrusts.

1. Function firmware migration

2. VLSI microcode implementation

3. Microarchitecture definition via hardware design language

We have worked on all the above thrust areas but further work is still
needed to produce an integrated system approach. We will give here a sum-
marized report on the most important results we have obtained in our
investigation of these areas. More details are in several references

• . .. -.

.-. __>N - ..-• ".~~-~____________

.I

published by our group [18,28,291.

9.1 Firmaware Migration

Migration of frequently-used software into firmware is a well-known

technique for improving the system performance. However, firmware migra-
tion has been influenced by VLSI technology due to the capability to embed
in silicon not just "traditional" microprograms but also complicated

software functions such as parsers or operating system primitives. In gen-

eral, such function have complex logical structure. Thus, cost-effective
migration requires modular microprogram structures with powerful sequencing .
capability. The basic objective of our work in this area is to explore an
automated software-to-firmware migration technique based on PLA-oriented
microcontrol architectures reported earlier. The approach is briefly

described next.

The basic idea is to extract the sequencing structure via compilation -

techniques. The selected function for migration is processed in several
phases by the automatic migrator, Fig. 17(a). The end result is microse-
quencing code describing the sequencing structure of the function. The
code consists of the sequencing constructs, reported earlier, particularly

-. 4calls to microcode modules. The latter comprise the structured firmware-
implementation of an instruction set on a base machine on which the migrat- .
ing function is tested. If this firmware code is not available, it may be
produced by the microcode emulator, reported earlier, to be executed on the

base machine. The various phases of the proposed migration scheme are
shown in Fig. 17(b) and are discussed in our publications. -

For the base machine, a bit-slice architecture is used to provide
flexibility, expandability and modularity. The entire base machine struc-
ture has been simulated on a PDP11/60 and is supported by firmware tools,
developed earlier. The instruction set of the 11/60 is emulated on the
base machine in a modular fashion, i.e., each 11/60 instruction has a
microcode "module" resident in the (simulated) micromemory of the base

machine. Thus, migration is performed by sequence calls to microcode
modules interpreting the base machine on which the function is tested.
Again, these sequence calls express the sequencing structure of a function,
and are generated by the migrator. A case study of the migration sheme has
been detailed in section VII.

Among the advantages of the scheme is that it does not require fami-

liarity with machine details for the user. Further, the control storage is
significantly reduced as migration is implementated through sequence calls.

The scheme utilizes the microcode existing in the processor avoiding micro-
code repetition. Some experimental results with five software functions as

migration candidates are very encouraging demonstrating an improvement fac- "
tor of about 5. These results are discussed in the previous reference.

However, additional work is needed to establish this approach to function
migration.

%...

• A.o

8.2 Microcode in VLSI structures

In the second research direction we obtained significant results by a
new (chip) area reduction technique suitable for PLA microcode. This com-
paction is very much related to the migration technique if one wants to
implement a function into VLSI code rather than the conventional firmware.
The fundamental building blocks of VLSI are PLAs, so far. Previous PLA
compaction techniques view the PLA as a random Boolean matrix. Hov.,ver, in
microcoded PLAs, the information is regularly organized intc* fields, -

including a large proportion of empty or don't care fields. Our approach
is to eliminate, as much as possible, the empty fields by partitioning the
PLA, by columns, into a number of smaller, but denser, arrays which require
less overall area. An important contribution of this work is an area
reduction algorithm based on a breadth-first graph searching approach. The
experimental results are very encouraging and are detailed in our publica- --

tions.

We recognized that the regularity of a microcode matrix resembles
other data tables organized in regular information fields. These data
structures appear quite frequently in software design of parsers and hash
tables and they are candidates for silicon compilation. Thus we consider
the more general problem of designing data tables in VLSI microcode. The
goal is to compose a Design Automation system for the PLA implementation of
such tables in VLSI. A related objective is to integrate this DA system to
other existing tools in our research environment at various design levels,
i.e., the architecture level (hardware design language MDSL), the firmware
level (microprogram development system MDS), and the layout level that -

includes layout packages, PLA generators, cell libraries and the like. A
fundamental issue involved here is compaction. In our approach, we inves-
tigated a new compaction technique based on partition and fusion. Some
details of our approach follow.

Due to their regular construction, the PLAs are now standard com-
ponents of VLSI chips and, consequently, PLA compaction is quite signifi-
cant in in VLSI design. There are basically three types of PLA optimization
techniques in the literature: PLA minimization, PLA folding and PLA parti-
tioning. The main characteristic Of the above techniques is that they view
the PLA as a random logic function. However, there are many applications
where PLAs contain more formatted or structured information. For example,
when a PLA is used as a microcode store, the structure of the stored data
tends to be somewhat regular. This regularity and, at the same time, spar-
sity of information also appears in several other data tables which are
important in software such as hash tables, parsers, symbol tables, etc. We -

believe that an important ingredient for the migration of software in VLSI
will be the efficient implementation of data tables by PLA structures.

In this work, we propose a new PLA compaction technique which exploits
the regularity of the information embedded in the PLAs. Our approach
involves first PLA partitioning and, second, PLA fusion. Partition is per-
formed by column splitting of the data table on the basis of a heuristic
search technique using a directed graph. Fusion is performed using an
encoding scheme to map the indexes of common data fields in the partitioned
PLAs into distinct fields referenced by fused index block code in the
search (AND) arrays.

a- .-5 - 4

Although our partition technique applies to any data table, it is

clearly superior to the other PLA partition schemes when it is employed on
structured tables. The PLA fusion technique is unique, to the best of our
knowledge. To support these claims we organized an experiment, based on a
software implementation of our technique to determine statistics cf PLA
compaction by partition and fusion for randomly generated but structured
data tables. Specifically, we studied the chip area compaction with respect
to the original (unreduced) PLA size for several samples of various data
tables, implemented by the proposed technique. There were about 1000 data
tables processed resulting in 85% successes, i.e., reduced tables that did
not require more address bits than without compaction. In fact in some

cases we ended up with reduced tables that actually required fewer address
bits than the original tables. The results are concisely depicted in Fig.
18. The main observations are:

1) Larger tables are more suitable for the proposed compaction method.

2) The savings in chip area are larger for greater sparcity (lower den-
sity) tables.

3) The number of table fields as well as the width of the fields did not
appear to have a marked effect on the area saved.

8.3 Hardware Design Language MDSL

In our approach, the overall problem associated with a design automa-
tion system may be divided into three major steps: First, to devise a
method for expressing and collecting the structural and behavioral informa-
tion of a target machine architecture. A hardware description language
that fulfills this task has already been constructed. Second, to establish
a software translation process that will convert input descriptions based
on the language constructs into target microcode. Finally, one must intro-
duce a methodology for extracting the information needed for target machine
simulation. Some details of our approach follow. More details are in our
publications on the MDSS system.

The language for the description of microarchitecture MDSL (Microcode 4
0 Development and Simulation Language) is a language suitable for the

description of microprogrammed microprocessors at the register-transfer
level. It contains the facilities to describe the structural and
behavioral information, simultaneously, for the complete specification of a
microprogrammed The structural information is defined in the structure sec-
tion which is divided into a number of subsections. An important subsec-
tion is the element, distinguished into the storage, the link, the
input/output and the functional element types. The storage definitions are
descriptions of registers, subregisters, and memory components of the sys-
tem, with the link element definitions containing appropriate information :':
regarding their control point locations. Similarly, the functional element
definitions contain the information concerning the register-transfers and
their control requirements. There are three additional subsection types to
be defined in the structure section: the sequencing scheme, the special
function routines and the control format.

..

The behavioral information is defined in the behavior section which
contains the instruction-set definition of the register-transfer

microoperations.

The control requirements are defined explicitly in the functional ele-
ment definitions, and implicitly in the link element and instruction-set
microoperations definition. The control word format declared in the format -,

subsection can be used to map the control requirements of the instruction-
set microoperations into microcode. The concurrency of the microoperations . -
can be checked to determine the control word combinations.

The MDSL (Microcode Development and Simulation Language) is an effi-
cient tool to develop microcode and simulate the hardware operations of
microprogramed processors. A software translator for MDSL has been
developed for this purpose. An important aspect of this translator is
that, in lieu of machine object code, it generates data structures by pars-
ing MDSL input descriptions. Those structures are used to generate C
language programs which are compiled for the simulation and the microcode
generation.

In the process of generating efficient microcode, the element descrip-
tion can be translated into a microcode template table. Each template con-
tains information concerning the source and destination storage devices,
and the control requirements. This template table can be used to map the
behavioral description statements into microcode, provided that the
bwnavioral information can be translated into data structures resembling
the template. The microcode generator contains a facility for local optim-
ization into horizontal microcode format.

IX. SUMMARY AND CONCLUSION

We have presented in this report two PLA based microcontroller archi-
tectures which have the capability of complex sequencing such as multiway
branching, microsubroutines, nested microlooping, and the like. The basic
components of the first microcontroller are a PLA sequencer store, an
address generating processor and a microcode store composed of PLAs or
ROMs. Microsequencing and microcoding are thus separated and embedded in
the corresponding stores. In addition to increasing the sequencing capabil-
ity, this approach reduces the sequence storage as implicitly generated
sequencing information need not be store in the PLA. A bit-slice approach
was taken in the second microcontroller consisting of parallel PLA
sequencer slices along with corresponding address processing elements and a
microcode store. This structure avoids pin constraints, allows expandabil-
ity and results in further compaction of the sequence storage.

The separation of microsequencing and microcoding enhances the modu-
larity of the schemes. Thus, the addition of new modules of microcode in
ROM simply requires the insertion, in the PLAs, of sequencing information

about the entry and exit points of the modules. The regularity of the
structure and of its components constitute a favorable environment for
LSI/VLSI implementation. Using VLSI/CAD tools, already available, it is
quite feasible to compact an address processor slice together with its PLA
slice into a single VLSI chip. This may further solve the pin difficulties

r, , . °.

and improve tte Chip area efficiency. A VLSI design of the single-slice

mi-crcontroller, beyond the scope of this report, is reported in :28."

The proposed microarchitecture realizes our basic objective, the

structured firmware design and implementation of modular microprogramming.

Modularity is an important prerequisite for the migration of complex

software, e.g., operating systems, into firmware for reasons of speed,
reliability and stability. To facilitate modular microprogramming, we have

used at the microlevel, the basic control primitives of structured program-

ming (if-then-else, while-do, case, etc.). Complex constructs have also

been developed to perform compound loop sequencing. The PLA based architec-

tures realize much more powerful sequencing functions than the existing

microsequencers such as the AM2910. Moreover, the proposed constructs are

more suitable for modular microprogramming than the rather unstructured

primitives of the commercial microsequencers.

The development and debugging of microprogram is a task of high signi-

ficance and complexity and requires suitable firmware tools. Several such
tools have been developed and integrated into a software package called

MMDS (Modular Microprogram Development System). It includes the following:

a microsequencer and microcode assembler, a PLA code formatter, and a modu-

lar microarchitectures simulator. As a test example, a binary search tree

algorithm was coded in the sequencing constructs by means of MMDS for a

simple target machine.

A research initiative was undertaken to investigate the general prob-

lem of function migration in firmware and the feasibility of implementation
of such migrations in VLSI microcode. An automatic migrator based on the
PDP11/60 instruction set interpretation was constructed and tested. A
method for implementing the migrated function in compacted PLA microcode
was introduced. We also developed a hardware design language approach for
structural and behavioral definition of architectures and optimized micro-
code generation. The language tools will be important in the continuation
of our research effort, the design of a retargetable migrator of complex

functions into microcoded VLSI microarchitectures.

REFERENCES

1. M. V. Wilkes, "The best way to design an automatic calculating
machine," Manchester University Computer Inaugural Conference, pp.
16-18, 1951.

2. S. G. Tucker, "Microprogram Control for System/360," IBM Systems Jour-
nal, Vol. 6, pp. 222-241, 1967.

3. M. J. Flynn, "Interpretation, microprogramming and control of a com- -

puter," in Introduction to Computer Architecture (H. S. Stone ed.),
Palo Alto, CA: Science Research Associates, 1980.

4. A. B. Salisbury, Microprogrammable Computer Architectures, New York:
Elsevier-North Holland, 1976.

5. J. A. Stankovic, "The types and interactions of vertical migrations of

I:':

..

.......................................

functiors in a multi-level interpretive system," :EEE Trans. on Com-
puters, Vol. C-30, No. 7, pp. 505-513, July 1981.

6. J. Stockenburg and J Van Dam, "Vertical migration for performance
enhancement in layered hardware/firmware/software systems," IEEE Com-
puter Magazine, Vol. 2, No. 5, pP. 35-50, May 1978.

7. Advanced Micro Devices, Bipolar Microprocessor Logic and Interface
Data Book, Sunnyvale, CA: Advanced Micro Devices, 1982.

8. C. Mead and Conway, Introduction to VLSI Systems, Reading, MA:
Addison-Wesley, 1980.

9. J. A. Fisher, "2-way jump instruction hardware and an effective
instruction binding method," in Micro-13, 13th Annual IEEE Micropro-
gramming workshop, New York: IEEE, pp. 64-75, Oct. 1980.

10. A. W. Nagle, R. Cloutier, and A. C. Parker, "Synthesis of hardware for
the control of digital systems," IEEE Transactions on CAD of
Integrated Circuits and Systems, Vol. CAD-i, No. 4, pp. 201-212, Oct.
1982.

11. R. W. Marczynski and M. S. Turdruj, "Microprogrammed control units
towards modularity in microprogramming," Proc. Second Symp. on Micro-
Architecture, Euromicro, 1976, North-Holland Publishing Company, pp.
173-18 1.

12. M. S. Tudruj and R. F. Gajda, "The modular firmware architecture
through the stack/register based address modification," in Firmware,
Microprogramming and Reconstructurable Hardware, North-Holland, 1980.

13. M. Andrews, Principles of Firmware Engineering in Microprogram Con-
trol, Rockville, Md.: Computer Science Press, 1980.

14. T. Kohonen, Content-Addressable Memories, New York: Springer-Verlag,
1980.

15. C. Papachristou and S. B. Gambhir, " A microsequencer architecture
with firmware support for modular microprogramming," Micro-15, 15th
Annual IEEE Microprogramming Workshop, New York: IEEE, pp. 105-113,
Oct. 1982.

16. C. Papachristou and S. B. Gambhir, "A bit-slice microcontrol architec-
ture for structure firmware designs," IEEE International Workshop on
Computer Systems Organization, New York: IEEE, pp. 154-163, March
1983.

17. J. Mick and J. Brick, Bit-Slice Microprocessor Design, New York: f.
McGraw-Hill, 1980.

18. C. Papachristou and J. Reuter, "Microprogramming and area reduction
techniques for PLA microcode", 17th Annual IEEE Microprograming
Workshop, New York: IEEE, pp. 86-94, Nov. 1984.

..............................::,: .: sx.-. <-*

19. 3. 3. Gambhir, Microcontrol Schemes for Structured Firmware Designs

and a Modular Microprogram Development System, M.S. thesis, University
of Cincinnati, 1983.

20. S. Gambhir and C. Papachristou, Microsequencer and Microcode Assembler
Manual, University of Cincinnati, College of Engineering, 1984.

21. G. Myers, Digital System Design with LSI Bit-Slice Logic, New York:
John Wiley, 1980.

22. D. Lewin, Computer-Aided Design of Digital Systems, New York: Crane

Russak, 1977.

23. M. Barbacci and D. Siewiorek, The Design and Analysis of Instruction
Set Processors, New York: McGraw-Hill, 1982.

24. C. Rose, G. Ordy and F. Parke, "N.mPc: a retrospective," 20th Design
Automation Conference, New York: IEEE, pp. 497-505, June 1983.

25. P. Corcoran, "Simulator generator system," IEE Proc., Vol. 128, Pt. E,
No. 2, pp. 61-63, March 1981.

26. M. Mezzalama and P. Prinetto, "Design and Implementation of a Flexible
and Interactive Microprogram Simulator," Micro-12, 12th Annual IEEE .- 4

Microprogramming Workshop, New York: IEEE, pp. 43-48, 1979.

27. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Rockville,
Md: Computer Science Press, 1976.

28. C. Papachristou, R. Rizwan and S. B. Gambhir, "VLSI design of a PLA-
based microcontrol scheme," IEEE Internat. Conference on Computer
Design: VLSI in Computers (ICCD-84), New York: IEEE, pp. 771-777, Oct.
1984.

29. C.Papachristou and J.-P.C. Hwang, "Computer-aided design of digital
systems: Language, data structures and simulation," invited contribu-
tion to Advances in Management and Information Systems, Vol. II:
Languages for Automation (S.-K. Cang ed.), New York: Plenum Publishing
Corp., pp. 465-484, July 1985.

.- '...,

%a%

.-

- 20 -

PUBLICATIONS RELATED TO RESEARCH PROJECT

1. "Generation and implementation of state machine controllers: a VLSI
approach," Microprocessing and Microprogramming, (North-Holland),
Vol. 16, No.3, October 1985, (C.. Papachristou and D. Cornett).

2. "Computer-aided design of digital systems: Language, data structures

and simulation," invited contribution to Advances in Management and
Information Systems, Vol. II: Languages for Automation (S.-K. Cang

ed.), New York: Plenum Publishing Corp., pp. 465-484, July 1985. (C.
Papachristou and J.P.-C. Hwang).

3. "A PLA microcontroller using horizontal firmware, Microprocesssing and

Microprogramming (North-Holland), Vol. 14, No. 3-4, pp. 223-230,
November 1984 (C.Papachristou).

4. "Microcode development for microprogramed processors, 18th IEEE-ACM
Microprogramming Workshop, New York: IEEE, December 1985, pp. (J.P.-C.
Hwang, C.Papachristou and D. Cornett).

5. "PLA compaction by partition and fusion," IEEE Internat. Conf. on
Computer-Aided Design, (IC-CAD), New York: IEEE, pp. 166-168, November
1985 (C.Papachristou).

6. "Microassembly and area reduction techniques for PLA microcode," 17th

IEEE-ACM Microprogramming Workshop, New York: IEEE, pp. 86-94,
November 1984 (C.Pachristou and J.Reuter).

7. "An automatic migration scheme based on modular microcode and struc-
tured firmware sequencing," 17th IEEE-ACM Microprogramming Workshop,
New York: IEEE, pp. 155-16T,' November 1984 (C.Papachristou, H.
Imnaneni and D.Sarma).

8. "MPS: Modular microprograming compiler, simulator and CAD tool,"
1984 IEEE Workshop on Languages for Automaton, New York: IEEE, pp.
701-16- November 1984-7C.Papachristou and E.Melton).

9. "VLSI design of a PLA based microcontrol scheme," IEEE International
Conference on Computer Desin: VLSI in Computers (ICCD-84), New York:
IEEE, pp. 771-777, October 19T4 (C.Papachristou, R.Rashid and S. Gam-
Sbhir).

10. "A language for digital system specification and design," 1983 IEEE
Workshop on Languages for Automation, New York: IEEE, pp. 229-237,
November 193 (C.Papachristou and P.-C.Hwang).

9 11. "A bit-slice microcontrol architecture for structured firmware
designs," IEEE International Workshop on Computer System Organization,
New York:-IEE p. 15-163, March 1983 (C.Papachristou and

S.Gambhir).
?:-::,.:.*.<.-

-21 -

12. "A microsequencer architecture with firmware support for modula3r

microprogramming," 15th IEEE-ACM Microprogramming Workshop, New York:
IEEE, pp. 105-113, Oc7tober 1982 (C.?apachristou and S.Gambhir).

13. "A CAD system for implementing state machine controllers," 11th

Euromicro Symposium on Microprocessing and Microprogramming, September
1985 (C.Papachristou).

14. "Modular microcontrol development system using PLA firmware," 10th

Euromicro Symposium on Microprocessing,2and Microprogramming, August
1984~ (C.Papachristou).-

-22-

PERSONNEL SUPPORTED BY THE PROJECT AND .

DEGREES AWARDED DURING THE PROJECT PERIOD

1. Evelyn A. Melton M.S. degree, June 1983

2. Satnamsingh B. Gambhir M.S. degree, August 1983

3. Rizwan Rashid M.S. degree, December 1983

4. James Reuter M.S. degree, June 1984

5. Jerry P.-C. Hwang Ph.D. degree, August 1984

6. Rao Immaneni M.S. degree, December 1984

7. Anil Pandya M.S. degree, May 1986 (expected) .

8. Cris Koutsygeras Ph.D. degree, May 1987 (expected)

J7.

d:,.

k4:-

ADDES PRCESO M1taqame Aqohm-KmtAmM

~ ~ ~ ~ ~ ~ OTO STORE:: : t ::~-y~K.>v-. :.N~ . ~j~

coNTUOLLBN

US IAS

NI Adeee Pee

225
- - - - - .I.,

00

0j

• Q I~i I I t I ":'''

ow- S i- J

CI, 0".

- - -.- -- 3

A

or,- ---- -i :-:'

~6 a i

- .a - -,..,.,.,-,-

I:: ""
' ::-:00

__-,._-. __ _ -,w

-p -o -

/A.X/CAL/U~mU :cooedtoaJ call --

Mb COoditionALL COAStCUCtt 1 C, then r else Q

/AZA~e/CM.Wbl :UaCOeftjj40"aZ call
/AOl//SL/Zb/:±a7 a±±nJ al

(a) Loop Constsucas while.-do

/AX/SLCO/C,/ :b±iAg7 ~C0ditioal loop

(d) SU1tipl* caditiorAll Came ;c then pi

I /UA1//SC/CD~,...Ck/ ?stt braftob codeE 2 1

(a)altva sequentia (c)alli~oa

The~~~blc FSutur !*al lck s s1iF

orr

Fig 4:~ -.~at o of fi rw r t-rs c . O .- ns -- * -* .-- a *. * .~.

(b con..t- onal

AX J

cI exaca

AX-ol

/A/MLCblpFPeer~WIouarlo

Is as 4-2

I

~-1

S

-9
-4

hi
-'I

0
I

________ I -%I~ a *

U
U I S

-9
I -4 9

- - -' ul

---~~~~~1

iI~IK~
.5

Ci
-4
-4
@1

0

hi

21
hi

.4

di 5
-4 _______________ 499 I I..-T tI I II.

i C. U

__ ri
L - - - - - _____ ..~1

C,

iL- PL- L-

isg rame Cod. m* a"NI Cod 1 ramet cow.
~* gg In orAd Adddress "_ i Adress

4 Outum"

Adi. Preego Adr. Pro Ad. rs..m

Fig. 7 @IlesII@ Wfrecontrolier Organisaion.

LIE

-30 -

squat Ogee. p.so Slowe as.~t... Source

A8811MBLEN CO0S A8SWA3LE

bleat I.~ %few Mods

PI.A CO0l

FORMATM wo RA

tJOOULAN
PLA

1111R=6NRNITICIISS
outgot eg a

SIMULATOR

otetIve, UIla

PF*.8 moEVIM Wmeowevm coelosemeflt Sysem

-31-

MMg 9:m PL U CamP'ue~ ra~e

as" ,

PI& ~ ~ ~ ~ ~ ~ f- PL aeFoma r#att

- -- ,~ -r.~r-- C -- r---~ ~3S

ALLOCATION

IT. Pitl

UTAE V MOULE UL

NERACTIVE MDLSSULATINI

MONITORUOVORMCm

F11. l0: ModulM MWIretScumV Slmilalo

ITARI

pols I
a, I

LLII4 A ~LONK 01EN OA?

F1g.12a: 3trucflwe at a Node

I 2b: The algorithm foc binary tree search and ±isertion is

given below in a procedural language.

30RCCEDURZ 3ISRC3 (VAR Hp 3:P". ;VAR US? :BOOLEAN);
VAR C,L:PTR;

(C WZLL POI."V TO TUZ XODR 33n.G CURPETLY
COMPARED. L WILL PC12M, TO TEE ROOT OF C.
T5R NODE STRUCT~rZ OF FIG. 22a IS ASSUMXED.
.4ZZ4(X) IM~PLZS, TEE C021'r!21S AT ABSOLUTE
ADDRESS X.}

BEGIN
IH2ITIZZ}

.C: LLIn. (3) ;L 3
USF:PALSE;

fSEARCH LOOP I
WHILE COG6 DO

3BEGIN.
CASE

: IDENT(E)<> DE1T (C) : L: C+;
:DN()IZTC:~C

END;

17 ',NO? US? TEEN
BEGIN

MEMVL) :u2;

LfLI (3) : =0;

END?
ENDI

. ,7

SYSTIM CLOCX

STRUC1tme STKtUCTUP

POITATUGinoaSTuTUj

Fig. .13: (a)Target cluin a)clocu

(b Pleln -orse bi - - . - -

-36-

N 3

MUI:MAI(R2RS)

SLOOP;

SERC

uumm V

Il. is: Binary Tree search and Insertion

38 -

SSTART

STR

Mu.,', ,

(a) (b)

(a) S-ach Mfodul", (b) Z'sozt Modulo

Zxocuted !n Parallel

,eo .N

* .- -39-

HICIATOR1

EAst MAO1~E Is OLRIp 11/60
1 1V91//0 1 1 1

F4qur 1Ta Szsr.- Ap'proach of the Scem

Nicee 1h LAMii nicea UST LAM Scoc a conA':~

---- - " - ,"-- .. '-

-40-

I 69 1
0.8 9. 642¢ O.:

112 (LEGTH

0.7 2

0.6 16

. is ILI:
L&J

0.1

0 10 20 30 40 so 6e 70 so

DENSITY

J.. * .

Fig. IS AREA SAVED vs. DENSITY

o ,Mt. "A%

** % ** * .**.q0 *J *._ ** I _._ L :.-.:

- 41 -N

RANSACTIONS COMPMETS

Jur, Unconditional Jump to a address

CALL Unconditional call for a module

RMT Conditional/Unconditional return

SJUP Binary conditional Jump

SCALL Binary conditional call

SLOOP Binary conditional looping of a module

lJUMP ultivay int:ra-module Jump

MCALL Multivay modular call

pLOOP Multivay modular loop

DLOOP Loop specified number of times

SBC Push branch code into SC-stack

HAP Stanch to an externally mapped address

TOS 1: Ust of Plimw e Traoueftle..

S-,

%::
. . ., . . , . - - , - .'.".': °

L:;-,..-...... _.. ._,_, -.. .,= -:: -= .- . - ,--....-. ,._ ., ,_-" , ,... .'-.- . <,..-..,- ,_, :-.. .,-: , .- -1M._,.IL '

3b~ ;-.50 Soloi agea th SiZZU?03o tana

2 ;0 e £sLZ "ovt 2Ls . 0 0& * t~ ~ Sa q eC2
4~~;4U *"=*Ia dai±.L!es heng2" ,o =z-.Lc %.&&asa4

71 DI U*11,6

12

is IS ~ ~ ~ ~ i IS2,S? .343

22*

23 S.-I W 1 .404*4 $WIXM
24
2S :Staay eo"dulocal all

-47 SQL=. ZE? L.14039,MOm

34 1

3
22

41
2

43 A&&a 29zifi acaftoEof -j=9,V
46
41 .=.Iw ~Sdv48#A.
42
49 1?"&~ Ss Cod st4a*3sv
45 L. sas :c5±. s.e o480v-a

!3 I1 v4 ~rr. drs

PLA CODE FQPA1T!tR OUTPU

'lolgoglgoogiel logo looloolloolgullI
lo ll ooll*Ul ggg e ll 91 1 lI*11 eee126l*4l0 1i~
66601920196lii. 16163uee6f
loo6oo6oolooiolg 1111 1669161119001018 1011111~16 1 f6

UII IOletelgg 11 1 * loogg egg 61 61 9 16 1 411

19,0980999981811 left 669111111161119job

1411191990191u19 loll
191160990g16eg11 oll1i39IO

.9..

IL

TH IW PNOS N/RFNINSCNANDI HSRPR R

THOE VIEW OPINIUTOS) AND FINUDNOTAE NE THS REPORTICAE
DEPARTM ENT OF THE ARMlY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMlENTATION.

* 4

*.Q 4

S -

l
.

•

r .. .i
.5-:::::-"

DT!(

.! . ,* m ,. m ~ ,, ,,, -: .. .

