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ABSTRACT

This report discusses the design and implemientation of FORTRAN subrou-

tines to add the capabilities of nonseparability testing and pivotal decomnposi-

tion to PolyChain, a program for reliability evaluation of undirected networks

via polygon-to-chain reductions.
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Extensions to PolyChain: Nonseparability Testing

and Factoring Algorithm

Lucia I. P. Resende

Operations Research Center

University of California, Berkeley

I. Introduction

*PolyChain is a portable FORTRAN program for evaluating the reliability of a K-terminal

network via polygon-to-chain reductions and the factoring algorithm. The first version of .

PolyChain allows the evaluation of the K-terminal reliability for series-parallel graphs [].-

The algorithm implemented is a linear time algorithm introduced in 1982 by Satyanarayana <-' ;

and Wood 12,31.

,-. -.-.-u.:-.'.

This report discusses the design and implementation of two features recommended in)that .

enable PolyChain to treat a larger class of problems. The algorithm of Satyanarayana and
A

Wood has a constraint on the topology of the input network, requiring it to be nonseparable. -

The original version of PolyChain does not test for this requirement. One of the features

added to PolyChain discussed in this report is the implementation of a routine to check for

this condition.

The algorithm of Satyanarayana and Wood computes the reliability of a network with an

underlying series-parallel structure. When the input network is not totally reducible an exten-

sion to the algorithm is required to obtain the reduced network. The second feature discussed

|4'
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in this report is the implementation of a factoring algorithm incorporated to PolyChain to

insure the evaluation of the K-terminal network reliability for both series-parallel reducible

and irreducible networks. -

Section 2 briefly presents some theoretical results of polygon-to-chain reductions. In section

3, the algorithm implemented for nonseparability testing is presented. Section 4 briefly

discusses the factoring algorithm. A system manual is presented in section 5 describing the

implementation of both algorithms in FORTRAN, and a user manual is presented in section . .-.

6. The code's performance is illustrated in section 7 through the testing of several networks.

Conclusions and recommendations are made in section 8.

2. Series-Parallel Graphs and Polygon-to-Chain Reductions

In this section a brief discussion of series-parallel graphs and polygon-to-chain reductions is

presented. For a complete discussion see [2,3]. - -

Throughout this report we consider an undirected graph G =(VE), where V is the set of ver-

tices and E the set of edges of G. A connected graph G =(VE) is said to be separable if

there exists a vertex v, called the separation vertex, such that its removal from the graph

disconnects the graph. When a graph has no separation vertex, it is called nonseparable. The .

induced nonseparable subgraphs of a separable graph G are called nonseparable components

of G.

Let G =(V,E) be a nonseparable graph. Vertices are assumed to be perfectly reliable, and

edges may fail, independently of each other, with known probabilities. The edge reliability

for edge e, is pa, and the edge-failure probability is q, - I-pi. Let K C V, I K I > 2 be a

specified set of vertices. Vertices in K will be referred to as K- vertices. GK is graph G with

K specified. The K-terminal reliability of GK, R(GK), is the probability that all K-vertices

in Gx are connected by working edges.

J.J.' .' a " " ." .. .. ..' ." " .... ... .' ' ", . " " . "- " '. ., '. -.' ". ', , " , " " " " ." " . "' " ', "" ' " " .: " ' ' " ' " ti '*

..'.,:.. -..-L .'..:, ,.-., ._ d, -X' .. ,*.,2: .*=, .-'--' - ".- :.r - -' -':-' "-',.': ;-''''- ''= € • *-*; -- ..., J.,,,,c



The size of graph GA, i.e. IV(GA)I+[E(GA)[I can be reduced by applying

reliability -preserving reductions. The application of reliability-preserving reductions to GK .- _.

renders a graph G 'K such that R (GA) = 2R (G 'K ), where (2 is a multiplicative factor that ...

depends on the reductions applied. .S

Three types of reliability-preserving reductions will be referred to as simple reductions: paral-

lel reduction, series reduction, and degree-2 reduction. In parallel reduction, parallel edges

e,=(x ,y) and eb=(xy) are replaced by a single edge ec=(xy) with edge probability

Pc = I -qa qb. In series reduction, edges e, =(x,y) and eb =(y,z) are replaced by a single edge

ec -(x,z) with edge probability Pc =PaPb. For both series and parallel reductions the multipli-

cative factor f has value 1, and K'=K. In degree -2 reduction edges e.=(xy) and eb=(y,z), ,'

x, y, z c K, are replaced by edge e,=(x,z) with Pc-=papb/(l-qaqb), l=l-qaqb, and

K'=K- y.

Replacing a pair of series (parallel) edges by a single edge is called a series (parallel) replace- t

meat. A replacement, as opposed to a reduction, does not involve probabilities or a set of

distinguished nodes associated with the graph. -5'..

A nonseparable series -parallel graph is a graph that can be reduced to a single edge by suc-

cessive series and parallel replacements. If the graph is separable, it is series-parallel if it can

be reduced to a tree after all possible series and parallel replacements are performed. A non-

separable series-parallel graph GK is termed s -p reducible if it can be reduced to a single

edge by successive simple reductions. A graph GK is s-p irreducible if it is not s-p reduci-

ble.

A chain is an alternating sequence of distinct vertices and edges, such that the internal ver-

tices are all of degree 2 and end vertices are of degree greater than 2. A chain must contain at

least one edge and two end vertices. A polygon is a cycle such that exactly two vertices of the

cycle are of degree greater than 2.
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A set of reliability-preserving reductions introduced by Satyanarayana and Wood [2,3],

replaces a polygon with a chain. These reductions are called polygon -to -chain reductions.

It is shown in 12,3], that every series-parallel graph is reducible, irrespective of the vertices

chosen to be in K, with the use of simple reductions and polygon-to-chain reductions. Mak- -.- ,-=-.

ing use of these two types of reliability-preserving reductions, a linear time algorithm to .

evaluate R(GK) for a series-parallel graph with any chosen set K is presented in [2,3].

PolyChain is a direct implementation of that algorithm utilizing an extension so that a

reduced network can be obtained when the graph is s-p irreducible. When a reduced graph is

generated the factoring algorithm is applied to find the reliability of the reduced network.

This way, Polychain can evaluate the K-terminal reliability of general nonseparable networks.

3. Nonseparability Testing

A depth-first-search based algorithm, having time complexity O( EI), exists to detect separat- ,

ing vertices. This algorithm is implemented in PolyChain and is presented below as

described in [9].

Assume that I V I > 1, and s is the vertex in which we start the search.

(I) Mark all edges "unused. Empty the stack S.

For every v e V let k(v) - .Let i - 0 and v 4-s.

(2) i -- i+1, k(v) .-- i, L(v) -i and put v on S.

(3) If v has no unused incident edges go to Step (5).

(4) Choose an unused incident edge ew(v,u). Mark e *used".

If k(u) # 0, let L(v) Min (L(v), k(v)) and go to Step (3).

Otherwise (k(u) - 0) let f(u) v, v - u and go to Step (2).

(5) Ifk(f(v)) - 1, go to Step (9).

(6) (f(v) # s). If L(v) < k(f(v)), then L(f(v)) Min (L(f'(v)), L(v)) and go to Step (8).

(7) (L(v) a k(f(v))) f(v) is a separating vertex.

p=.. . , . .. ... , .. __,=i , . ._.._ ., . .
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All the vertices on S down to and including v are now removed

from S; this set, with f(v), forms a nonseparable component.

(8) v -- f(v) and go to Step (3).

(9) All vertices on S down to and including v are now removed

from S. tne) form with s a nonseparable component.

(10) If-s has no unused incident edges then halt.

(11) Vertex s is a separating vertex. Let v -- s and go to Step (4).

4. Factoring Algorithm

As already mentioned, when the input network has no underlying series-parallel structure, the

polygon-to-chain algorithm generates a reduced network but does not compute the network's

K-terminal reliability. We will discuss the implementation of the factoring algorithm incor-

porated to PolyChain to calculate the reliability of the reduced network generated when the

input network is s-p irreducible. top

4.1. The Algorithm".. .

The K-terminal reliability, RK(G), of a graph G can be computed by repeated applications of

the following decomposition,

RK(tG)=peR(Ge)+( I-pe)R(G-,)

where G, is the graph obtained from G by considering that edge e is working and G, is the

graph obtained from G when edge e is not working. Hence, G, and G.e are obtained by

respectively contracting and deleting edge e in G.

After each application of this decomposition, simple reductions are performed. If the gen-

erated subgraph is not totally reduced a new edge is then selected and the decomposition

L .
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reapplied.

The following scheme describes, in recursive form, the factoring algorithm. '.%,..

; .-. ,,..., ~.-. ,

factor (G)
reduce (G)
select edge e to pivot
factor (G,)
factor (6.-)

end

The use of the factoring algorithm generates a binary computational tree whose root node is

the original graph and each other node is a subgraph. Without the application of simple

reductions after each edge selection, the binary structure would contain 2 E I leaves, which is

equivalent to the enumeration of all possible states of G. Notice that the scheme given above

traverses the binary computational tree using a preorder enumeration. An example of a

preorder traversal applied to a tree is given in figure 1.

For a complete discussion of the factoring algorithm see [4,5].

A PREQRDER: AB DE GC F

B C

rD E F

GiI
Figure I

4.2. Edge Selection

In this section, results on optimal edge selection of Satyanarayana and Chang [101 are

reviewed. Satyanarayana and Chang show that there exists an edge selection that yields the

optimal binary structure, that is, a binary tree with the minimal number of leaves. They call

such an edge selection the optimal edge selection. They also show that the number of leaves

• , . % '
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of the optimal binary tree is equal to the domination, DA(G), of G. A K-tree is a tree of G

covering all K-vertices and having its pendant vertices in K. An irrelevant edge is one that 9

lies on no K-tree. An edge selection is optimal if and only if every reduced graph generated

has no irrelevant edge. Hence, a fast edge selection strategy that avoids creating subgraphs .

with irrelevant edges is desired.

A graph G, with respect to some set K, is termed a K -graph if every edge of G is relevant,

i.e., if every edge of G is in some K-tree of G. Satyanarayana and Chang prove that for a K-

terminal irreducible graph G with domination DK(G)>I, there exists an edge such that Ge

and G e are both K-graphs. They further show, that an edge satisfying the property men-

tioned above, can be found in 0( El + I V I) operations using techniques based on depth- -.

first-search [11,12]. " ... ,

In the version of the factoring algorithm implemented in PolyChain the optimal edge selec-

tion strategy is used. At each iteration an edge whose removal does not disconnect the graph

is chosen. Then, each of the subgraphs generated by pivoting on the selected edge is checked ..- .

for irrelevant edges. Notice that a graph is a K-graph if and only if each one of its pendant -.

nonseparable components has at least one distinguished node. Therefore, the algorithm .4..,_

checks if the subgraphs are nonseparable. In the case a graph is separable, the algorithm ....

checks if all of its pendant nonseparable components have at least one distinguished node in

it. If a pendant nonseparable component not having any distinguished node exists in either

one of the subgraphs generated by the edge selected, the current edge is discarded and another '""""'"-

edge is selected to replace it. Then, the checking procedure starts all over again considering, . .

now, the new edge selected. Since a graph having only one distinguished node is not a K-

graph the algorithm avoids creating such graphs. This edge selection procedure is 0( E I 2).

! l-----

. .-- ---
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5. System Manual

In this section the code is briefly described.

5.1. Programming

All subroutines in this version on PolyChain are written in Fortran 77. Only l/0 related code

is system dependent. The input network for the factoring algorithm is the output of the origi-

nal version of PolyChain when its input network is not totally reduced.

5.2. Data Structures

PolyChain uses an efficient network representation using linked list data structures, [6,7,8].

Each vertex has a list of adjacent vertices, which not only indicates which vertices are adja-

cent to it, but also provides information whether the vertex belongs to set K. For every ele-

ment of the list, there is a pointer giving the address of the information about the edge. Fig-

ure 3 illustrates this multilist structure for the network given in figure 2.

The routines incorporated to PolyChain use a few other data structures in addition to the

ones used by PolyChain. For nonseparability testing a stack data structure is used. For the

factoring algorithm another stack is used to provide information about the computational

binary tree.

e2 es

Figure 2

.. . . . .

-'I . ' t 2%*
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Figure 3

.. * A5.3. Data Structure Implementation

Next, we describe the FORTRAN arrays used to implement the data structure of the two rou-

tines.

5.3.1. Nonseparability Test -'

As already mentioned a stack is used for producing the vertices of the component. The ver-

tices are stored in the stack in the order that they are discovered. When a separating vertex u

is discovered, we read off all the vertices from the top of the stack down to a node specified

by the algorithm. All these edges plus the separating vertex u constitute the component.

5.3.2. Factoring Algorithm

Five arrays are used to implement the stack that stores information about the computational

binary tree. EDGEV I() and EDGEV2(*) contain the stack of vertices corresponding to the '

selected edge. DIRECT(*) contains information about the branching. If DIRECT(*) is 1, the

selected edge is working. If it is -1, the selected edge is not working. EPROB(*) contains the

reliability of the selected edge, and RELB(*) contains the value of M after all possible simple . -*

*.t *1
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reductions are performed. If no degree-2 reduction is performed, the value of M is I. If a

degree-2 reduction is performed, the value of M will be updated. TOP points to the top of

stacks EDGEVI(O), EDGEV2(0), DIRECT(*), EPROB("), and RELB(*).

The implementation of the factoring algorithm was carried out in a way to minimize core

usage. As already mentioned, a preorder binary tree traversal algorithm was implemented. .

Hence, after an edge is selected we always consider first the case in which the selected edge is

working. When the subgraph can be reduced by simple reductions, the algorithm finds its

reliability and goes back to its parent node to continue branching. After leaving a node, : "

which is actually a subgraph, that was already branched in both directions, the algorithm

never comes back to it. Hence, this subgraph and all subgraphs beneath it do not have to be

saved and can therefore be deleted. Since the factoring algorithm was not implemented in

recursive form, we have to keep the information necessary for the recovery of the subgraph of . . .-

the computational binary tree.

To better understand the method, suppose the computational binary tree is of the form given

in figure 4.

Figure 4
2..•..- 

.

0 

..

e

6_ _ -7.____ ___



The numbered nodes correspond to series-parallel reducible subgraphs. The implemented fac-

toring algorithm finds the reliability of each branch and then the reliability of the original

graph as shown in figures 4a, 4b, 4c, 4d, 4e, 4f, and 4g. For example, if h, is the reliability of

the branch leading to leaf i, the overall reliability of the original graph GK is

RA.(G) = M h,, where M = fI(?j obtained from the polygon -to -chain reductions. The

reliability of a leaf, h, is the product of the reliabilities of the edges selected leading to that

leaf. For example, h3 = Pen2Pe4Pe5.

.. o-.

|. ~- .. %

i;

oV

%.*%* ,
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5.4. Data Dictionary

In this section, the variables used in the new subroutines are listed, with a brief description of

each one. The variables marked with an asterisk are new variables, not present in the earlier

version of PolyChain. A data dictionary containing other variables used in other PoljChain

subroutines can be found in [1 .

ADJVRT(-) vertex adjacent to vertex whose list it is on

*APTR auxiliary pointer

*ATOPFB auxiliary variable

AUX auxiliary variable

•AUX2 auxiliary variable

*AUX3 auxiliary variable

•AUXL auxiliary variable

AVSADJ pointer to beginning of list of available space - .-K."
*BRIDGE(*) array of edges whose removal disconnect the graph

(.R. -- "os

CARDE cardinality of set E

-CARDV cardinality of set V,...

• COUNTE counter of the number of iterations

DATE date

DEG(*) degree of vertex

• DIR auxiliary variable

*DIRECT(*) direction of the branch taken

*DISTGN current number of distinguished nodes

*DOMINT domination of the graph

* EDGE edge formed by the given pair of vertices

• EDGMRK(*) array containing information about marked edges

•EDGEPV edge that is a candidate to be a forbidden edge
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*EDGEV I() one of the vertices of selected edge

*EDGEV2(*) one of the vertices of selected edge *

r. EDGPRB(*) edge reliability

*EPROB(*) array of probabilities of selected edges

*FATHER(*) preceding node in the search 4

*FNONSP indicator of whether or not the output is to be printed

*FIRST starting node in the search

*FIRSTV vertex

*FORBED(*) edges that are forbidden to be selected to be pivot

*FOUND indicator of whether a new edge exists to continue search -:

*FOUND2 indicator of whether a candidate degree-2 edge pair was found

,*FOUNDP indicator of whether parallel edges were found

*FOUNDS indicator of whether series edges were found

*HEAD auxiliary pointer

HOUR hour

IN value of FORTRAN input file

IOUT value of FORTRAN output file

*IPTR pointer

*K(v) number of vertex v

*KGRAPH indicator of whether or not a graph is a K-graph

*L(v) lowpoint of v

*LIMITI lower limit

*LIMITS upper limit

LINECT line counter

LNKDWN(*) pointer to next element on list

LNKEDG() pointer to corresponding edge

LNKUP(*) pointer to element above in list

:.- . - - - - , ' - - - -,A' 
' ' *- * '- , ' . , -' . ,' ,' 'V " / ' % 

' ' - ' " 
, 
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* M product of all R,. see (3]

MAXLST maximum number of elements in adjacent vertices list

MCARDE cardinality of set E at start of procedure

MCARDV cardinality of set V at start of procedure *~

ND2R counter of degree-2 reductions

*NUMCMP number of nonseparable components

*NUMELM number of elements

*NPIVOT number of pivots performed

**NPR counter of parallel reductions

*NSR counter of series reductions --

*OUTPUT network reliability after factoring algorithm

* POINT pointer

*PTR pointer

PTRADJ(*) pointer to beginning of list of adjacent vertices

*PTRCMP(*) pointer to beginning of list of vertices in a component

QA failure probability of edge a

QB failure probability of edge b

* REL total reliability

*RELB(*) value of M after each simple reduction

*SECQDV vertex

*SEPVTX(*) array of separable vertices

* SREL subgraph reliability
Uz-

*STACK(*) stack of vertices scanned

*TADJVT(*) copy of current adjvrt(O) *.-*

OTAVSAD copy of current avsadj

*TBRIDG(*) copy of current bridge(*)

OTCARDE copy of current carde
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*TCARDK copy of current cardk -

$TCARDV copy of current cardv

TCPU total cpu time

*TDEG(O) copy of current deg(*) -

*TEDGPB(*) copy of current edgprb(*)

TEST key for debugging feature

*TLNKDW(O) copy of current lnkdwn(*)

*TLNKED(O) copy of current lnkedg(*)

*TLNKUP(*) copy of current lnkup(*)

*TM copy of current m

*TMPCPU solution time

*TOP top of chain stack

*TOPB painter to the top of the list of bridges

*TOPCMP pointer to beginning of the component

*TOPFB pointer to the top of the list of forbidden edges

*TOPS top of vertex stack

*TOPVTX painter to the top of the list of separable vertices

*TTOPB copy of current topb

*U vertex

*V ~ vertex I

WI1 vertex

* W2 vertex

P VCMP(O) vertex

VCPU virtual cpu time

*VERTEX vertex

*VERTX I vertex

*VERTX2 vertex
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VRTX vertex ~ C
*XADVT(* advrt() a stat o facorig rotin

*XAVSDJV aadjt) at start of factoring routine

OXASDE asd at start of factoring routine

*XCARDE carde at start of factoring routine .. ,.

OXDEG(O) deg(*) at start of factoring routine

*XEDGPB(*) edgprb(*) at start of factoring routine

OXLNKDW(*) lnkdwn(*) at start of factoring routine

*XLNKED(*) lnkedg(*) at start of factoring routine

OXLNKUP(O) Inkup(*) at start of factoring routine

*XPTADJ(*) ptradj(*) at start of factoring routine

YEAR year

5.5. COMMON Blocks

All the COMMON blocks used in the new routines are listed below. The COMMON blocks

introduced in this new version of PolyChain are marked with asterisk. For a list of all other

COMMON blocks in the code see [1]J.

COMMON/BLKOI/ DEG(MAXVRT)

COMMON/BLKO2/ PTRADJ(MAXVRT),ADJVRT(2*MAXEDG),AVSADJ

COMMON/BLK2 I/ LNKDWN(2*MAXEDG),LNKUP(2*MAXEDG),LNKEDG(2*MAXEDG)

COMMON/BLKO3/ EDGPRB(MAXEDG),EDGNUM(MAXEDG)

COMMON/BLKO5/ MAXEDG,MAXVRT,MAXLST,MXSTKT,MAXCHN

COMMON/BLKO6/ CARDE,CARDV,CARDK

COMMON/BLKO7/ M

COMMON/BLKO8/ INIOUT

COMMON/BLK3 I/ MCARDE,MCARDV,MCARDK



COMMON/BLK32/ DATE,YEAR,HOUR

OCOMMON/BLK4O/ K(MAXEDG),L(MAXEDG),STACK(MAXEDG),EDGMRK(MAXEDG),TOPS

OCOM MON/BLK4 1/ PTRCMP(MAXVRT),TOPCMP,NUMCMP,VCMP(MAXEDG)

OCOMMON/BLK5O/ EDGEV I(MAX EDG),E DGEV2(MAXEDG),DI RECT(MAXEDG)

OCOMMON/BLKS I/ XPTADJ(MAXVRT),XADJVT(2-MAXEDG),XEDGPB(MAX EDG)

OCOMMON/BLK52/ XLNKDW(2*MAXEDG),XLNKUP(2*MAXEDG),XLNKED(2*MAXEDG)

OCOMMON/BLK53/ FOUND2

OCOMMON/BLK54/ X DEG(MAXVRT),XCARDE,XCARDV,XAVSAD

OCOMMON/BLK55/ EPROB(MAXEDG),RELB(MAXEDG),TOP,DISTGN

OCOMMON/BLKS 7/ TPTADJ(MAXVRT),TADJVT(2-MAXEDG),TEDGPB(MAXEDG),TM,TTOPB:7.-.

OCOMMON/BLK58/ TLNKDW(2*MAXEDG),TLNKUP(2*MAXEDG),TLNKED(2*MAXEDG)

*COMMON/BLK59/ TDEG(MAXVRT),TCARDE,TCARDV,TCARDK,TAVSAD,TBRIDG(MAXEDG)

*COMMQN/BLK60/ SEPVTX(MCARDV),TOPVTX

*COMMONIBLK6 1/ FORBEG(MAXEDG),BRIDGE(MAXEDG),TOPB,TQPFB

*COMMON/BLK84/ VCPU,TCPU

:COMONZZZ8/DOINTNPVOT

Next, the subroutines are presented and briefly described. Subroutines DELETE(V,PTR),

SERIER(V), and DEG2R(V) are from the original version of Pol)'C/zain.

5.6.1. SUBROL'TINE NONSEP(FNONSP)

*Description This subroutine finds the nonseparable components when the graph is separ-

able, and the edges which removal disconnects the graph.

Input The multilist structure and the logical variable FNONSP.

Output A list containing the pointer to the beginning of the list of vertices of each
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component, the list of vertices of each component, and the list of bridges.

5.6.2. SUBROUTINE XPUSH(VERTEX)

Description This subroutine puts element VERTEX on the top of stack.

Input VERTEX and the stack. . .-

Output The updated stack.

5.6.3. SUBROUTINE OUTSEP
. - ?

Description Prints the output listing when the network is separable.

Input The list of vertices of each nonseparable component.

Output The vertices of each nonseparable component. ,

5.6.4. SUBROUTINE FACTOR

Description This subroutine controls the basic steps of the factoring algorithm.

Input The multilist structure of the reduced network obtained after polygon-to- -'
" "'

chain reductions were performed.

Output The K-terminal network reliability.

%5.6.5. SUBROUTINE REDUCE

Description This subroutine performs series, parallel, and degree-2 reductions.

Input The multilist structure. "5'

Output The updated multilist structure after all possible simple reductions were per-

formed.

° %
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5.6.6. SUBROUTINE SERIER(V)

Description This subroutine performs a series reduction on vertex V not in set K.

Input Vertex V and the multilist structure.

Output The updated multilist structure, with V and both of its edges deleted, and

with a new edge inserted. This new edge has its reliability computed. New

cardinalities of V and E.

5.6.7. SUBROUTINE DEG2R(V)

Description This subroutine performs a degree 2 reduction on vertex V in set K.

Input Vertex V and the multilist structure.

Output The updated multilist structure, with V deleted, along with both of its edges, ..

and with a new edge inserted. This new edge has its reliability computed. -.

New cardinalities of V and E. The updated value of M. -

5.6.8. SUBROUTINE COPY

Description This subroutine copies the current graph for later use.

Input The multilist structure, and the list of edges that are bridges for the current

graph.

Output The multilist structure, and the list of edges that are bridges for the current

graph.

5.6.9. SUBROUTINE SELECT(VI,V2)

Description This subroutine selects an edge to pivot.

Input The multilist structure, and the edges that are forbidden to be chosen.

Output The nodes that form the edge selected.

r) ....
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5.6.10. SUBROUTINE CHKKGR(KGRAPH)

Description This subroutine checks if the graph is a K-graph.

Input The multilist structure, and the list of vertices of each nonseparable com-

ponent.

Output A logical variable indicating whether the graph is a K-graph or not.

5.6.11. SUBROUTINE GRAPHR(TOP)

Description This subroutine reconstructs a subgraph of the computational binary tree that

is pointed to by TOP.

Input Pointer TOP and the multilist structure of the original graph.

Output The multilist structure of the reconstructed subgraph.

5.6.12. SUBROUTINE REMOVE(VI,V2) I-]
Description This subroutine removes the edge incident to vertices VI and V2 from the

subgraph. -. *

Input Vertices V I and V2. The multilist structure.

Output The updated multilist structure, with the desired edge removed.

5.6.13. SUBROUTINE COLAPS(VI,V2,)

Description This subroutine changes the subgraph by considering the probability of the

edge incident to vertices VI and V2 as being equal to 1. i15

Input Vertices VI and V2. The multilist structure.

Output The updated multilist '

J/
r--!.::4
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5.6.14. SUBROUTINE DELETE(V,PTR)

Description This subroutine deletes the element pointed to by PTR from vertex V's adja-

cent vertices list. Three cases are considered. The first, when the element is

first in the list. The second, when it is last in the list. The last, when the ele-

ment is in the middle of the list. In each case, the element is deleted by a

different set of commands.

Input The multilist structure. Vertex V. Pointer PTR.

Output The updated multilist structure without the specified element.

5.6.15. SUBROUTINE FNDREL(REL)

Description This subroutine computes the reliability of a reduced subgraph.

Input The stack defined by EDGEVI(*), EDGEV2, and DIRECT(*), and the '

current reliability REL.

Output Updated riliability.

5.6.16. SUBROUTINE FNDEDG(VI,V2,EDGE) Ak_

Description This subroutine finds the edge incident to vertices VI and V2.

Input Vertices V I and V2. The multilist structure. 4

Output The edge specified.

5.6.17. SUBROUTINE OUTFAC(OUTPUT)

Description This routine prints out the solution after the factoring algorithm was per-

formed.

Input The current value of the reliability and the number of edges selected for

pivoting.

.. -. ..." .. ° . . • -."-. -' - -. -. -: ." " ' ." - . ..'. .. ...' .-. .' .'-.'.--.''..-" "'.':.': '' , --; "-": .
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Output The network's reliability and the number of edges selected.

6. User Manual

The user manual of this new version of PolyChain is similar to the manual of the original ..

version [1]. In this section we first present a guide for using PolyChain showing the

differences when using the VAX/UNIX system and the IBM/CMS system. The input file and

output are then described, and a test problem is presented to illustrate outputs for both separ-

able and nonseparable cases.

6.1. Executing Polychain

Polychain can be used in either the VAX/UNIX system or IBM/CMS system. As already

mentioned, only 1/O related code is system dependent. Therefore, to run the code, first the

routine that gets the time, date, and day of the week from the system must be specified. Then,

the dimension parameters and the COMMON blocks must be adjusted. Finally, an input

data file must be prepared. These three topics are presented below.

6.1.1. System Routines

The first step in running Polychain is adjusting the code to run in the desired system, either ,,.-:-.

UNIX or CMS. To do this, the suitable system routine that gets the time, date, and day of ,

the week must be specified. The code considers both possibilities, so that is just a question of ,.r--

removing or adding comments to the lines of the code where the system routines appear,

depending on which one you need. The system routines are described below.

For IBM/CMS use: A!",

MAIN ROUTINE:
CALL DATETM(DATTIM,23,VCPU,CTIME,TCPU)
DATE = DATTIM(I:16)
HOUR = DATTIM(19:23)
BEGINT - VCPU

.-..0,- - - . -
16 06 A6 IL* L*~ ~ *~.**~V ~ V ~ , - -
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SUBROUTINE OUTFAC, OUTGRF AND OUTREL:
CALL DATETM(DATTIM,23,VCPU,CTIME,TCPU)
TMPCPU = VCPU - TMPCPU v
WRITE(IOUT,300) TMPCPU,"

For VAX/UNIX use:
4.,

MAIN ROUTINE:
CALL FDATE(ERA)
DATE = ERA(I:I0)
HOUR = ERA(12:20)
YEAR = ERA(21:30)
CALL DTIME(TIME)

8

SUBROUTINE OUTFAC, OUTGRF AND OUTREL:
CALL DTIME(TIME)
WRITE(IOUT,300) TIME(1) "

6.1.2. Dimension Parameters p,,

The second step in running Polychain is adjusting the dimension parameters MAXVRT and

MAXEDG in SUBROUTINE INILST. MAXVRT is the maximum number of vertices and

MAXEDG is the maximum number of edges of the graph. The adjustment of these variables

is needed only if the network's dimensions exceed what has been already specified.

After adjusting the dimension parameters, all COMMON blocks containing arrays must be

.changed accordingly. Section 4.5 shows how the arrays must be changed.

6.1.3. Input Files

Inputing data in PolyChain is very simple since data is not restricted to specific columns of

the input line. No flag is needed to indicate end-of-file. The first line of the input file con-

tains the system output options. One value must be entered in this line - ECHOIN, where,

C"O IN I if a report of the input network is desired
COI -0 otherwise

Next, the edges are specified, one in each line. To specify an edge, enter both vertices of the

edge followed by the edge's reliability. The numbering of the vertices should be sequential
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from I to the number of vertices of the network. If a vertex is a K-vertex, it should be pre-

ceded by a minus sign. An example illustrating an input file is given below.

20

,€.6

, .7

.8 .9
•.'. -".

Figure 5

The input file for the network of figure 5, in the case that we want the input network report is

given below. JL

'-•• -1-

-1 2 .5
-1 3 .8
2 3 .7
2 -4 .6 " '" "

" 3 -4 .9

6.1.4. Program Outputs

In this section a test problem is used to illustrate the program's output. Consider a series-

parallel irreducible network, the ARPA computer network, in figure 6. The reliabilities (actu-

ally availabilities) shown in figure 6 are fictitious.
"o . . ,. .

-a

a. *1*. .. N
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19

.9 18

Figure III - ARPA Computer Network

The input file for this network is given next. Output option is set to "I.

-1 2 .8
-1 3 .8

*2 3 .8
2 4 .95
2 6 .9
4 5 .8

3 5 .8
5 8 .8 S.-

8 20 .9*
6 11 .9

6 20 .9

6 20 .9
6 70 .9
7 10 .9
8 90 .9

10 15 .9
11 12 .8
12 13 .9
14 13 .9
13 -21 .9
15 14 .95
9 16 .9
16 17 .95 i
17 18 .9
18 19 .9

*19 -21 .95

I qal
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PolyChain generates either a two part or a three part report depending on whether the net-

work is series-parallel reducible or not, respectively. The first section of the report describes

the input network, edge by edge. The type of each vertex is indicated, K for K-vertex and nK

for non K-vertex. The first section also summarizes the input network data and core usage.

Network density, presented in the first section, is defined to be the ratio of the number of 0
'T.

edges of the input network to the number of edges of its corresponding complete graph. The

second section of the report indicated whether the network is series-parallel reducible or

irreducible. This section contains a summary of the reductions performed and the CPU time *

before the beginning of the factoring algorithm. In case the network is series-parallel irreduci-

ble, the updated value of M=fljf2 is included in this section and the third part of the report ..- .. ,--
j "

is generated. The third section contains the K-terminal network reliability, the domination of

the reduced network, the number of pivots performed, and the CPU time, excluding I/0. The

report generated by PolyChain for the above file follows.

A*
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PCLYCHAIN - VERSICN 85.1 FACE 1
PELYGON TO CIAIN REDUCTIGNS
IN NETlORK RELIABILIT

DATE : FRI* NEV 2S 15. -
TIME : 15:01

INPUT NETbCRK .".'.

..EDGE II VERTEX I TYPE II VERTEX I TYPE II RELIABILITY ,
4 ----------- 4 ------ 4 -------- -.-.-------------------

eeeeeeeee4 -4- ---------------

1 ]1 II 1 1 K II 2 I NK I I.8OCCCOCOE+OC I

2 II 1 I K II 3 I NK II.(,OCCCOOOE+CO I.e
5~ ~ ~ ~ ~ ~ ~ ~~~~~4 cec4-------------4cecee-------eeeeeeeeeeeeeee

3 I1 2 I NK II 3 1 NK I|.80CCCOCOE•O0 I" -.
...... 4e -------- 4-c .. 44e...e-- •------ 4 -----------

1 4 II 2 1 NK II 4 I NV. II.95CCCO:OE00 -I
...... 4 ........ .... .44 c ......... .. 4,-------------- I

5 II 2 1 NV. II 6 I Nk llo90CCCOOOE400 I
...... --------- + .. 44 -- •----------4 I 4eeee

6 11 3 I NK II 5 I NK I1.9OCOCOCOE400 I
5 ~ ~ ------- ecc4eeeeeeeeeee4cccc4cc 44------ -------------- I
7 i I I NK II 5 I N , II.8OCCCOGOGE00 I.

I ---- -44 --- ---e4 ------e 4 - - --- c 4cccec -------------- "

1 II 5 I NK II I NK I118OCCCOOOE4OC I
I ---- -44ee -------- 4 -- -- - *--- .......... ,-.----.-"--

9 II 8 I NK II 20 1 NK I1,9CCOCOCOE400 I
...... c4•.... ...... 4ccc4ceeeeeeeeee4cc...... cc ..............

1 10 II 6 I NK II 11 I NK 11,9CCCCOCOE+OC
- c --- 4c 4 -------- 4 a----- 41 -------- 4 --- -- 4 -.. c cc----- cc-

11 II 6 I NK II 20 I NK I.9CCCCOCOEs00 I
..... cc ---4--c- 4c ---- 4++ -------- 4 c-c--. 44c - -cc.. c.c.

12 II 6 I NK II 7 1 NK IIe9CCCCOCOE+OC I
..... ccc44- ....cec ac cc 4----- •4 ... ---- 4-.... 4 cc c.........------

1 13 II 7 1 NK II 10 I NK II.9OCCCOCOE4oo I
S.... - - - -c.. . . ecce cc 44c....-----..... 44 ......... 5--

1 14 I I I NK II 9 I NK I1.9OCCCOCOE,00 I

I 1s II 9 I NK 11 10 I NK 1.90CCCOGOE400 I
I- -- 44 ,, - - -,----------- - --- --.. --...... ..-"---

1 16 II 10 I N.K II 15 1 NK 11.90CCCOCOE400 I
------ . . 4c - .. 4. 4 cc ------- - 4- ---. - c.

17 II 11 I N K II 12 I NK II.8OCCCOOOE4OC I
.i.ee cc.c* 4 cc... ccc4cccc44 c .... cc4 ccc a c .44 ....cc..... eec.cc.

is I1I 12 I NK II 13 I NK 11.9OCCCOCOE40CI

19 II 14 I NK II 13 I NK 11.9CCCOCOE400 I

20 II 13 I N K II 21 I K 11.90CCCOoE400 1

21 II 15 I NK II 1, | NK 11.95CCCOCOE400 I

* c ce c cccc cca c ec c eccC ccc c
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PCLYCHAIN - VERSION 85.1 PAGE 2 ". "
PCLYGOI 10 CIAIN REDUCIMlNS .&.,.
l NETWORK RELIAEILITY-'

DATE : FRI. N(V 29 1985
TIME : 15:1

INPL T NETERK ,

ECGE 11 %ERIEX I TYPE 11 VERTEX I TYPE If RELIABILITY I
------ e4ee-e------eeee-e---4 -- -- - -- eeeeeeeeeeeeeeeeee

22 II 9 I hK I1 16 1 NK J CCCCOCOE4OC I
...... 44 ----------- ------ 44 -------- 4 --- +..- ------------

1 23 1 16 1NK I 17 I NK II.95CCCOCOE40C I

24 I 17 I NK II lb I NK 11.90CCCOCOE400 I

25 11 18 I NK I 19 I NK 11,9OCOCOCOE400 I

1 26 II 19 I NK II 21 I K 11,g5CCCOCOE400 I
-------------------------- ---------------------------------

SLPMARY OF INPUT NETWCRK DATA ..

NLPEER CF VERTICES.,****,,,.**,***,,,,,° i1
NLPEER (F ECGES.**** *************** i6
NLPBER (F K-VERTICES.......,...* *.... 2
NElIORK OENSIIYfooo**.**.****.....**.. 0o12

SUPPARY OF CORE USAGE

VARIABLE CUIRENT UVAGE ."
NAPE VALUE

PAXEDG 5000 i6 C;o s "'"
PAXVRT 2000 ,1 1 •c

iwt

1%

'**-* .*J ..i • .- ,. -,- - , -%. . .- - . .% %
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PCLYCHAIIN - IERSION 85.1 FACE 3
PELYGON 10 CbAIN REDUC1ICNS
Ih NETW0IK RELIABILITY

DATE : FRIm N(V 2S 1965
TI E 2 15:0 ,.

NEThORK SERIES-PARALLEL IRREDUCIBLE ,i IEMLED YEIWCRKa

EDGE II VERTEX I TYPE II VERTEX I TYPE II RELIMAILITY
- 44--- 4 e4 .....-- ---- 44 ---------- 4 -- 44e--meeeeeeeeee

S44e-eeeeeeee4e......e44ee.... 4---------44eeeeee eeeeeeeeeee
I 1 I K II 9 I NK 11.86421719E+00 I

.4 -------- 4ee ----- '4e eeeee e .----- 44- - m --eee--' -

51I 1 I K I 1 | NK |i.gel28oE.ool I
------ 44 ------- 4 ------ 44--- 4 ------ 4-- .----- . .-- -

13 II 6 I NK II 10 I NK Ifl.81CCOC00 "C --. r
. . . .a c e 4 4 e e e e e e e e e e ee. . e e ee. . . . . 44 c- - . . . . 4 , . . . . .s . 4 4 e e e e e e e e e e e e e e e e e e

I 18 6 1 NK I1 13 I NK ll.64ECCOCOE400 ,

------ 4--- ---- 4--m - -e 4 ----------- - m44eeeeeeee-- " "

I 26 II 9 1 NK I 1 21 1 K IIe65jS;25E4CC I
-eee4eeeeeeeeee~eee44eeee4.......44eeeeeeeeeeeeeeeec

15 II 9 I NK II 10 I hK IlI.9CCCOGOE4OC I.... ---- -- - - -- - -14-0-. . .•44

21 IC 1 I NK 11 13 1 t4K l1.1655C000E400 14
...... 44 ------- 4 - --.. .. .. .. . --..... a------ ,-'--

20 II 13 I NK II 21 I K II.9CCCCOCOE40- I

%a .1j ~

.- -,,

,, 5 .'



PcL'FCIAINi - ERSIJh 85.1 PACE 4

PELYGCl' 70 tAIN REDUCIICNS
IN 1NETNORK RELIABILITY EAIE :. ...14V2918

lImE : 15:(E

UFDAIED VALUE EF M 0*9347069SE400

RECLCTILI4S PERFORMEDa

SERIES........ 1
DEGREE 2*..*... 0
1TYPE leo...... 3
I IFE 2see a *so 0
TYFPE 3*....... 0 A
1TYPE 4...0.so& 0
TYPE 500*00.... 0
TY'PE 6........ 0
TYIPE 7.... a a 0. 

b~

TYVPE 8........ 0

CRIGINAL REDUCED 7RI'ELCTIOlk
NETURK tETWiLRK .'

ECEGGs fs* 26 a 69.2

VER71CESeseesse 21 6 71e%

K-VERTICES..... 2 2 04c :-

SELL71ON 71PE = 0.00 SECSo

If -0t
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PCLYCON 70 CMNl REGUCTIONS
IN, NEINORK RELIABILITY

LATE :FRI, K~V 29 1985
1I"E : 15:ce *.

FACTORING ALGCRIT*I APPLIED

NETWiORK RELIAEJLITY.. *.s 0.86671016E*00

NMPER EF BINARY TREE LEAVES: 7

DOINAT IGN*:

SCLTOG 71HE Oo0.2 SECS*
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7. Test Problems

Next, the results obtained by PolyChain applied to several networks are given. Some of the

networks are obtained through a random network generator, while other tested networks are
% w

from [5]. Problems were run on the IBM 3081, at Berkeley. The code was compiled on the

CMS FORTVS compiler using optimization level 3. CPU times were measured through the , . - -

DATETM system routine. Table I contains a summary of the networks tested and table II a

summary of test results. Figure 7 shows an example of a network where no polygon-to-chain -.

reduction is possible for any set K chosen.

Table I - Test Problems

Problem Vertices Edges K-Vertices Type of Graph
1 21 26 2 ARPANET
2 5 10 2 Five Vertex Complete-
3 5 10 4 Five Vertex Complete -:

4 5 10 5 Five Vertex Complete
5 6 15 2 Six Vertex Complete
6 6 15 6 Six Vertex Complete
7 8 12 2 Eight Vertex Cubic
8 8 12 8 Eight Vertex Cubic
9 10 15 2 Ten Vertex Cubic ,.

10 16 24 2 Sixteen Vertex Cubic
11 16 24 16 Sixteen Vertex Cubic
12 6 12 2 Six Vertex Quartic
13 6 12 4 Six Vertex Quartic
14 6 12 6 Six Vertex Quartic
15 20 59 4 Random
16 10 30 2 Random .,-
17 15 39 2 Random__-

* - ~ r.~. -.?4.. -. * - * *'.*---i
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Table 11 - Test Results

Problem % Reduction Domination CPU Time
Edges Vertices K-vertices -. .

1 69.2 71.4 0 4 0.12s
2 0 0 0 6 0.18s
3 0 0 0 6 0.18s
4 0 0 0 6 0.09s 4-.
5 0 0 0 24 0.72s
6 0 0 0 24 0.36s
7 0 0 0 16 0.48s
8 0 0 0 11 0.15s
9 0 0 0 40 1.40s

10 0 0 0 448 17.86s
II 0 0 0 247 2.38s

12 0 0 0 11 0.36s
13 0 0 0 20 0.17s

L14 0 0 0 11. 0.19s
15 50.9 30 25 5063 1171.81s
16 43.3 10 0 35 1.10"
17 53.8 46.7 0 52 1.86s

4 3?

9 8

Figure 7 - Ten Vertex Cubic Graph
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8. Conclusions and Recommendations

This report discussed the design and implementation of two features that enable PolyChain to

treat a larger class of problems. The implementation of both features maintain the charac-

teristics of the original version of PolyChain facilitating further extensions and enhancements.

Further testing is still needed to ensure the code's correctness.

To insure the evaluation of the K-terminal network reliability in a more efficient form, the

program should apply polygon-to-chain-reductions in addition to simple reductions

throughout the factoring algorithm.

In the case of separable networks a code using PolyChain as a subroutine can be used to com-

pute the reliability of each nonseparable component and then compute the overall reliability ..

of the network.
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