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Extensions to PolyChain: Nonseparability Testing

and Factoring Algorithm

Lucia I. P. Resende

Operations Research Center

University of California, Berkeley

ABSTRACT

This report discusses the design and implementation of FORTRAN subrou-
tines to add the capabilities of nonseparability testing and pivotal decomposi-
tion to PolyChain, a program for reliability evaluation of undirected networks

via polygon-to-chain reductions.
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l Extensions to PolyChain: Nonseparability Testing

and Factoring Algorithm

Lucia I. P. Resende

Operations Research Center

University of California, Berkeley

1. Introduction

:
L.
4
rP
;LZ

’)Pol,vChain is a portable FORTRAN program for evaluating the reliability of a K-terminal
network via polygon-to-chain reductions and the factoring algorithm. The first version of
PolyChain allows the evaluation of the K-terminal reliability for series-parallel graphs/[l-]\l)’
The algorithm implemented is a linear time algorithm introduced in 1982 by Satyanarayana

and Wood [2,3)¥

K fl:ll:u' /-ﬂCUMtrf

This report discusses the design and implementation of two features recommended in J}{that
stwbrow nes
enable PolyChain Ato treat a larger class of problems. The algorithm of Satyanarayana and

Wood has a constraint on the topology of the input network, requiring it to be nonseparable.

The original version of PolyChain does not test for this requirement. One of the features
added to PolyChain discussed in this report is the implementation of a routine to check for

this condition.

The algorithm of Satyanarayana and Wood computes the reliability of a network with an
underlying series-parallel structure. When the input network is not totally reducible an exten-

sion to the algorithm is required to obtain the reduced network. The second feature discussed />
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in this report is the implementation of a factoring algorithm incorporated to PolyChain to
insure the evaluation of the K-terminal network reliability for both series-paraliel reducible

and irreducible networks. ,\./ —

Section 2 briefly presents some theoretical results of polygon-to-chain reductions. In section
3, the algorithm implemented for nonseparability testing is presented. Section 4 briefly
discusses the factoring algorithm. A system manual is presented in section 5 describing the
implementation of both algorithms in FORTRAN, and a user manual is presented in section
6. The code’s performance is illustrated in section 7 through the testing of several networks.

Conclusions and recommendations are made in section 8.
2. Series-Parallel Graphs and Polygon-to-Chain Reductions

In this section a brief discussion of series-parallel graphs and polygon-to-chain reductions is

presented. For a complete discussion see [2,3].

Throughout this report we consider an undirected graph G =(V,E), where V is the set of ver-
tices and E the set of edges of G. A connected graph G =(V,E) is said to be separable if
there exists a vertex v, called ;he separation vertex, such that its removal from the graph
disconnects the graph. When a graph has no separation vertex, it is called nonseparable. The
induced nonseparable subgraphs of a separable graph G are called nonseparable components

of G.

Let G=(V,E) be a nonseparable graph. Vertices are assumed to be perfectly reliable, and
edges may fail, independently of each other, with known probabilities. The edge reliability
for edge e; is p;, and the edge-failure probability is ¢,=1-p;. Let KCV, |K| 22be a
specified set of vertices. Vertices in K will be referred to as K -vertices. Gy is graph G with

K specified. The K ~terminal reliability of Gx, R(Gy), is the probability that all K-vertices

in Gx are connected by working edges.




The size of graph Gy, ie. | V(Gx)|+|E(Gk)|, can be reduced by applying
reliability — preserving reductions. The application of reliability-preserving reductions to G
renders a graph G’y - such that R(Gx) = QR(G ), where @ is a multiplicative factor that

depends on the reductions applied.

Three types of reliability-preserving reductions will be referred to as simple reductions: paral-
lel reduction, series reduction, and degree-2 reduction. In parallel reduction, parallel edges
e;=(x,y) and e,=(x,y) are replaced by a single edge e =(x,y) with edge probability
Pc=1-d,q;. In series reduction, edges e, =(x,y) and e, =(y,z) are replaced by a single edge
e.=(x,z) with edge probability p.=p,p,. For both series and parallel reductions the multipli-
cative factor Q has value 1, and K ‘=K. In degree -2 reduction edges e, =(x,y) and e, =(y,z),
x,y,z€K, are replaced by edge e.=(x.,z) with p.=p,p,/(1-9.9;), Q=1-¢,q,, and

K=K - y.

Replacing a pair of series (parallel) edges by a single edge is called a series (parallel) replace-
ment. A replacement, as opposed to a reduction, does not involve probabilities or a set of

distinguished nodes associated with the graph.

A nonseparable series —parallel graph is a graph that can be reduced to a single edge by suc-
cessive series and parallel replacements. If the graph is separable, it is series-parallel if it can
be reduced to a tree after all possible series and paralle] replacements are performed. A non-
separable series-parallel graph Gy is termed s-p reducible if it can be reduced to a single
edge by successive simple reductions. A graph Gy is s—p irreducible if it is not s —p reduci-

ble.

A chain is an alternating sequence of distinct vertices and edges, such that the internal ver-
tices are all of degree 2 and end vertices are of degree greater than 2. A chain must contain at
least one edge and two end vertices. A polygon is a cycle such that exactly two vertices of the

cycle are of degree greater than 2.
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A set of reliability-preserving reductions introduced by Satyanarayana and Wood [2,3],
replaces a polygon with a chain. These reductions are called polygon -to ~chain reductions.
It is shown in [2,3], that every series-parallel graph is reducible, irrespective of the vertices
chosen to be in K, with the use of simple reductions and polygon-to-chain reductions. Mak-

ing use of these two types of reliability-preserving reductions, a linear time algorithm to

IR  PRPAFR ARV L

evaluate R(Gy) for a series-parallel graph with any chosen set K is presented in [2,3].

i PolyChain is a direct implementation of that algorithm utilizing an extension so that a
reduced network can be obtained when the graph is s-p irreducible. When a reduced graph is

generated the factoring algorithm is applied to find the reliability of the reduced network.

i This way, Polychain can evaluate the K-terminal reliability of general nonseparable networks.
3. Nonseparability Testing
i A depth-first-search based algorithm, having time complexity O(|E|), exists to detect separat-

ing vertices. This algorithm is implemented in PolyChain and is presented below as

described in [9].

Assume that | V' | >1, and s is the vertex in which we start the search.

4

(1) Mark all edges "unused”. Empty the stack S.
Foreveryve Vietk(v) « 0. Leti «0andv «s.

(2) i «~i+l,k(v)«—i,L(v)«—iandputvons.

(3) If v has no unused incident edges go to Step (5).

(4) Choose an unused incident edge e =(v,u). Mark e “used".

TN T L

If k(u) # 0, let L(v) < Min {L(v), k(v)} and go to Step (3). ; Q3

Otherwise (k(u) = 0) let f(u) « v, v « u and go to Step (2). \f;"\i:q
. (5) Ifk(f(v)) = 1, go to Step (9). - ,\fﬁ; s
! (6) (f(v) # 5). If L(v) < k(f(v)), then L(f(v)) « Min (L(f(v)), L(v)) and go to Step (8). 1’3.( x
:'_ (7 (L(v) 2 k(f(v))) f(v) is a separating vertex. )\_;* ,,.
| e
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All the vertices on § down to and including v are now removed
from S; this set, with f(v), forms a nonseparable component .
(8) v « f(v) and go to Step (3).

(9) All vertices on S down to and including v are now removed

8 A AT .

from S: tney form with s a nonseparable component .
(10) If s has no unused incident edges then halt.

.-i (11) Vertex s is a separating vertex. Let v < s and go to Step (4).

4. Factoring Algorithm

As already mentioned, when the input network has no underlying series-parallel structure, the

r A Te

polygon-to-chain algorithm generates a reduced network but does not compute the network’s
K-terminal reliability. We will discuss the implementation of the factoring algorithm incor-
porated to PolyChain to calculate the reliability of the reduced network generated when the

. input network is s-p irreducible.

4.1. The Algorithm

The K-terminal reliability, Rx(G), of a graph G can be computed by repeated applications of

v 8 2 ) NS e

the following decomposition,

4

N Rx(G)=p.R(G,)+(1-p.)R(G -,)

. where G, is the graph obtained from G by considering that edge e is working and G _, is the
)

: graph obtained from G when edge e is not working. Hence, G, and G_, are obtained by
: respectively contracting and deleting edge e in G.

i After each application of this decomposition, simple reductions are performed. If the gen-
: erated subgraph is not totally reduced a new edge is then selected and the decomposition
.

¢
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5Dy The following scheme describes, in recursive form, the factoring algorithm.
o
b
- factor (G)
reduce (G)
select edge e to pivot
factor (G,)
factor (G_,)
end

"
[
P
r. -
P
)

K
v
o
i.'.
h‘_.
[
b

The use of the factoring algorithm generates a binary computational tree whose root node is
the original graph and each other node is a subgraph. Without the application of simple
reductions after each edge selection, the binary structure would contain 2! £ leaves, which is
equivalent to the enumeration of all possible states of G. Notice that the scheme given above
traverses the binary computational tree using a preorder enumeration. An example of a

preorder traversal applied to a tree is given in figure 1.

For a complete discussion of the factoring algorithm see [4,5].

0 PREORDER:ABDEGCF

(B) (C)
@ &) ©
©)

4.2. Edge Selection

In this section, results on optimal edge selection of Satyanarayana and Chang [10] are
reviewed. Satyanarayana and Chang show that there exists an edge selection that yields the
optimal binary structure, that is, a binary tree with the minimal number of leaves. They call

such an edge selection the optimal edge selection. They also show that the number of leaves
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of the optimal binary tree is equal to the domination, Dy (G), of G. A K -tree is a tree of G
covering all K-vertices and having its pendant vertices in K. An irrelevant edge is one that
lies on no K-tree. An edge selection is optimal if and only if everv reduced graph generated
has no irrelevant edge. Hence, a fast edge selection strategy that avoids creating subgraphs

with irrelevant edges is desired.

A graph G, with respect to some set K, is termed a K -graph if every edge of G is relevant,
i.e., if every edge of G is in some K-tree of G. Satyanarayana and Chang prove that for a K-
terminal irreducible graph G with domination Dg(G )>1, there exists an edge such that G,
and G_, are both K-graphs. They further show, that an edge satisfying the property men-
tioned above, can be found in O(|E | + | V' |) operations using techniques based on depth-

first-search [11,12].

In the version of the factoring algorithm implemented in PolyChain the optimal edge selec-
tion strategy is used. At each iteration an edge whose removal does not disconnect the graph
is chosen. Then, each of the subgraphs generated by pivoting on the selected edge is checked
for irrelevant edges. Notice that a graph is a K-graph if and only if each one of its pendant
ponseparable components has at least one distinguished node. Therefore, the algorithm
checks if the subgraphs are nonseparable. In the case a graph is separable, the algorithm
checks if all of its pendant nonseparable components have at least one distinguished node in
it. If a pendant nonseparable component not having any distinguished node exists in either
one of the subgraphs generated by the edge selected, the current edge is discarded and another
edge is selected to replace it. Then, the checking procedure starts all over again considering,
now, the new edge selected. Since a graph having only one distinguished node is not a K-

graph the algorithm avoids creating such graphs. This edge selection procedure is O( | E | 2).

..' - ---.' -}. " . s " 1_' " -_' - ‘. - L
S e e T e e

RN 1L‘-L{' L Wl ‘_{l"L"L‘AL‘.‘ 'fl‘ "i"'.

..":."r' ‘n". ".
LR i
DR ‘

Yo

R

1, 00,

r.
r’ .' ".‘

.
fal 1)
Pl
U

LA

e VT
LYy '3
LS

'-“. ) 'u-;
e
'\"u'_\“,‘.‘)
LW Sy |

LR

. 0
e

&

h ]

3
- .

y
s

.

(3
b

2 0y Y

v

MG

v



——yr T s LA g w - ) ah'ad wEw T TuYv e &,
s Shen i e Sade "R/ e o "D e B AnAade “BaC A et s Mt Shechiec bRt st o i Ve ANR AN SR ANEA A R/ il T TR N 3

T e e A N o e e

§. System Manusl
In this section the code is briefly described.
§.1. Programming

All subroutines in this version on PolyChain are written in Fortran 77. Only 1/O related code
is systern dependent. The input network for the factoring algorithm is the output of the origi-

pal version of PolyChain when its input network is not totally reduced.

5.2. Data Structures

PolyChain uses an efficient network representation using linked list data structures, [6,7,8].
Each vertex has a list of adjacent vertices, which not only indicates which vertices are adja-
cent to it, but also provides information whether the vertex belongs to set K. For every ele-
ment of the list, there is a pointer giving the address of the information about the edge. Fig-

ure 3 illustrates this multilist structure for the network given in figure 2.

The routines incorporated to PolyChain use a few other data structures in addition to the
ones used by PolyChain. For nonseparability testing a stack data structure is used. For the
factoring algorithm another stack is used to provide information about the computational

binary tree.

Figure 2
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Figure 3

5.3. Data Structure Implementation

Next, we describe the FORTRAN arrays used to implement the data structure of the two rou-

tines.
5.3.1. Nonseparability Test

As already mentioned a stack is used for producing the vertices of the component. The ver-
tices are stored in the stack in the order that they are discovered. When a separating vertex u
is discovered, we read off all the vertices from the top of the stack down to a node specified

by the algorithm. All these edges plus the separating vertex u constitute the component.
5.3.2. Factoring Algorithm

Five arrays are used to implement the stack that stores information about the computational
binary tree. EDGEV1(*) and EDGEV2(*) contain the stack of vertices corresponding to the
selected edge. DIRECT(®) contains information about the branching. If DIRECT(*) is 1, the
selected edge is working. If it is -1, the selected edge is not working. EPROB(®) contains the

reliability of the selected edge, and RELB(®) contains the value of M after all possible simple
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reductions are performed. If no degree-2 reduction is performed, the value of Mis 1. If a
degree-2 reduction is performed, the value of M will be updated. TOP points to the top of
stacks EDGEV1(*), EDGEV2(®), DIRECT(*), EPROB(*), and RELB(*).

The implementation of the factoring algorithm was carried out in a way to minimize core
usage. As already mentioned, a preorder binary tree traversal algorithm was implemented.
Hence, after an edge is selected we always consider first the case in which the selected edge is
working. When the subgraph can be reduced by simple reductions, the algorithm finds its
reliability and goes back to its parent node to continue branching. After leaving a node,
which is actually a subgraph, that was already branched in both directions, the algorithm
never comes back to it. Hence, this subgraph and all subgraphs beneath it do not have to be
saved and can therefore be deleted. Since the factoring algorithm was not implemented in
recursive form, we have to keep the information necessary for the recovery of the subgraph of

the computational binary tree.

To better understand the method, suppose the computational binary tree is of the form given

in figure 4.

Figure 4
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The numbered nodes correspond to series-parallel reducible subgraphs. The implemented fac-
toring algorithm finds the reliability of each branch and then the reliability of the original
graph as shown in figures 4a, 4b, 4c, 4d, 4de, 4f, and 4g. For example, if A, is the reliability of
the branch leading to leaf i, the overall reliability of the original graph G; s

Ry(G)=M Hh,, where M = HQ, obtained from the polygon —to -chain reductions. The
i J

reliability of a leaf, A4,, is the product of the reliabilities of the edges selected leading to that

leaf. For example, A3 = p, 02D, aPes.
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5§.4. Data Dictionary

In this section, the variables used in the new subroutines are listed, with a brief description of
each one. The variables marked with an asterisk are new variables, not present in the earlier
version of PolyChain. A data dictionary containing other variables used in other PolyChain

subroutines can be found in [1).

o o Py W e TR W e e AT S AP IR I SRS T T T ORI ST S F 5 IR UL N S N PR A NS T S0 ST RS VRSO T tL D PR B N
A GG IANAN O RN LGOS L UL TGN, 36 A PROR OGN, A S AV, X X W R R AN PN, I ST, OO A, - N A ST 2%

ADJVRT(®) vertex adjacent to vertex whose list it is on
*APTR auxiliary pointer

*ATOPFB auxiliary variable

*AUX auxiliary variable

*AUX2 auxiliary variable

*AUX3 auxiliary variable

*AUXL auxiliary variable

AVSADJ pointer to beginning of list of available space
*BRIDGE(*) array of edges whose removal disconnect the graph
CARDE cardinality of set E

CARDV cardinality of set V

*COUNTE counter of the number of iterations

DATE date

DEG(*) degree of vertex

*DIR auxiliary variable

*DIRECT(*) direction of the branch taken

*DISTGN current number of distinguished nodes
*DOMINT domination of the graph

*EDGE edge formed by the given pair of vertices
*EDGMRK(*) array containing information about marked edges
*EDGEPV edge that is a candidate to be a forbidden edge
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*EDGEVI(*) one of the vertices of selected edge
*EDGEV2(*) one of the vertices of selected edge
EDGPRB(*) edge reliability

*EPROB(*) array of probabilities of selected edges

*FATHER(*) preceding node in the search

*FNONSP indicator of whether or not the output is to be printed
*FIRST starting node in the search
*FIRSTV vertex

*FORBED(*) edges that are forbidden to be selected to be pivot

*FOUND indicator of whether a new edge exists to continue search
*FOUND2 indicator of whether a candidate degree-2 edge pair was found
*FOUNDP indicator of whether parallel edges were found
*FOUNDS indicator of whether series edges were found :'5 N
o A oty
*HEAD auxiliary pointer ' Law ;‘.
n'\:‘\;“:"‘
‘s.‘ L\ -\-"
HOUR hour LoNIOY
RS
IN value of FORTRAN input file ‘::;:;:% A
IOUT value of FORTRAN output file O
AT
*IPTR pointer {::3__:-:.‘ 5
Bl
*K(v) number of vertex v RSN
*KGRAPH indicator of whether or not a graph is a K-graph
*L(v) lowpoint of v
*LIMITI Iower limit
*LIMITS upper limit
LINECT line counter

LNKDWN(*) pointer to next element on list
LNKEDG(*) pointer to corresponding edge

LNKUP(*) pointer to element above in list
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MAXLST

MCARDE

MCARDYVY

ND2R
*NUMCMP
*NUMELM
*NPIVOT
*NPR

NSR
*OUTPUT
*POINT
*PTR

PTRADIJ(*)
*PTRCMP(*)

QA

QB
*REL
*RELB(*)
*SECODV
*SEPVTX(*)
*SREL
*STACK(*)
*TADJVT(*)
*TAVSAD
*TBRIDG(*)
*TCARDE

product of all 2, see [3]

maximum number of elements in adjacent vertices list

cardinality of set E at start of procedure
cardinality of set V at start of procedure
counter of degree-2 reductions

number of nonseparable components
number of elements

number of pivots performed

counter of parallel reductions

counter of series reductions

network reliability after factoring algorithm
pointer

pointer

pointer to beginning of list of adjacent vertices
pointer to beginning of list of vertices in a component
failure probability of edge a

failure probability of edge b

total reliability

value of M after each simple reduction
vertex

array of separable vertices

subgraph reliability

stack of vertices scanned

copy of current adjvrt(*)

copy of current avsadj

copy of current bridge(*)

copy of current carde

o
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*TCARDK
*TCARDYV
TCPU
*TDEG(®)
*TEDGPB(*)
TEST
*TLNKDW(*)
*TLNKED(*)
*TLNKUP(*)
‘™
*TMPCPU
*TOP
*TOPB
*TOPCMP
*TOPFB
*TOPS
*TOPVTX
*TTOPB
*U
v
*Vl
*V2
*VCMP(*)
VCPU
*VERTEX
*VERTXI

*VERTX2
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copy of current cardk

copy of current cardv

total cpu time

copy of current deg(*)

copy of current edgprb(*)

key for debugging feature

copy of current Inkdwn(*)

copy of current Inkedg(*)

copy of current Inkup(*)

copy of current m

solution time

top of chain stack

pointer to the top of the list of bridges

pointer to beginning of the component

pointer to the top of the list of forbidden edges
top of vertex stack

pointer to the top of the list of separable vertices
copy of current topb
vertex

vertex

vertex

vertex

vertex

virtual cpu time
vertex

vertex

vertex
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VRTX vertex

*XADJVT(*) adjvrt(*) at start of factoring routine

*XAVSAD avsad) at start of factoring routine
*XCARDE carde at start of factoring routine
*XCARDV cardv at start of factoring routine
*XDEG(*) deg(*) at start of factoring routine

*XEDGPB(*) edgprb(*) at start of factoring routine
*XLNKDW(*) Inkdwn(*) at start of factoring routine
*XLNKED(*) Inkedg(*) at start of factoring routine
*XLNKUP(*) Inkup(*) at start of factoring routine
*XPTADJ(*) ptradj(*) at start of factoring routine

YEAR year

5.5. COMMON Blocks

All the COMMON blocks used in the new routines are listed below. The COMMON blocks
introduced in this new version of PolyChain are marked with asterisk. For a list of all other

COMMON blocks in the code see [1).

COMMON/BLKO1/ DEG(MAXVRT)

COMMON/BLKO02/ PTRADJ(MAXVRT),ADJVRT(2*MAXEDG),AVSADJ
COMMON/BLK21/ LNKDWN(2*MAXEDG),LNKUP(2*MAXEDG),LNKEDG(2*MAXEDG)
COMMON/BLK03/ EDGPRB(MAXEDG),EDGNUM(MAXEDG)

COMMON/BLKO05/ MAXEDG,MAXVRT MAXLST MXSTKT,MAXCHN
COMMON/BLK06/ CARDE,CARDV,CARDK

COMMON/BLK07/ M

COMMON/BLKO0S8/ IN,JIOUT

COMMON/BLK 31/ MCARDE,MCARDV,MCARDK

BT N g e TN U L g AR RN R ST T T AL CA R AR T Wi,
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COMMON/BLK32/ DATE,YEAR ,HOUR
i ' *COMMON/BLK 40/ K(MAXEDG),LIMAXEDG),STACK(MAXEDG),EDGMRK(MAXEDG),TOPS
*COMMON/BLK41/ PTRCMP(MAXVRT),TOPCMP,NUMCMP,VCMP(MAXEDG)
*COMMON/BLK 50/ EDGEV1(MAXEDG),EDGEV2(MAXEDG),DIRECT(MAXEDG)

*COMMON/BLKS1/ XPTADJ(MAXVRT),XADJVT(2*MAXEDG),XEDGPB(MAXEDG)

S '™

*COMMON/BLK 52/ XLNKDW(2*MAXEDG),XLNKUP(2*MAXEDG),XLNKED(2*MAXEDG)
*COMMON/BLK 53/ FOUND?2
i *COMMON/BLK 54/ XDEG(MAXVRT),XCARDE XCARDV,XAVSAD
-‘ *COMMON/BLK 55/ EPROB(MAXEDG),RELB(MAXEDG),TOP,DISTGN
*COMMON/BLKS57/ TPTADJIMAXVRT),TADJVT(2*MAXEDG), TEDGPB(MAXEDG),TM,TTOPB
*COMMON/BLK 58/ TLNKDW(2*MAXEDG), TLNKUP(2*MAXEDG), TLNKED(2*MAXEDG)
*COMMON/BLK 59/ TDEG(MAXVRT), TCARDE,TCARDV,TCARDK,TAVSAD,TBRIDG(MAXEDG)
*COMMON/BLK 60/ SEPVTX(MCARDYV),TOPVTX
I *COMMON/BLK 61/ FORBEG(MAXEDG),BRIDGE(MAXEDG),TOPB,TOPFB
: *COMMON/BLK 84/ VCPU,TCPU
*COMMON/BLK98/ DOMINT,NPIVOT
' *COMMON/BLK99/ COUNTE

5.6. Description of Subroutines

. Next, the subroutines are presented and briefly described. Subroutines DELETE(V,PTR),

SERIER(V), and DEG2R(V) are from the original version of PolyChain.

5.6.1. SUBROUTINE NONSEP(FNONSP)

Description This subroutine finds the nonseparable components when the graph is separ-

able, and the edges which removal disconnects the graph.

Input The multilist structure and the logical variable FNONSP.

LS \
Output A list containing the pointer to the beginning of the list of vertices of each ﬁ“,'- Y
E 4

_. .I'.‘..n -'1‘:;-.—.

I ¥
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component, the list of vertices of each component, and the list of bridges.

5.6.2. SUBROUTINE XPUSH(VERTEX)

Description
Input

Output

This subroutine puts element VERTEX on the top of stack.
VERTEX and the stack.

The updated stack.

5.6.3. SUBROUTINE OUTSEP

Description
Input

Output

Prints the output listing when the network is separable.
The list of vertices of each nonseparable component.

The vertices of each nonseparable component.

5.6.4. SUBROUTINE FACTOR

Description

Input

Output

This subroutine controls the basic steps of the factoring algorithm.

The multilist structure of the reduced network obtained after polygon-to-

chain reductions were performed.

The K-terminal network reliability.

5.6.5. SUBROUTINE REDUCE

Description
Input

Output

N A AN

This subroutine performs series, parallel, and degree-2 reductions.
The multilist structure.

The updated multilist structure after all possible simple reductions were per-

formed.
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5.6.6. SUBROUTINE SERIER(V)

Description This subroutine performs a series reduction on vertex V not in set K.

X Input Vertex V and the multilist structure.
i Output The updated multilist structure, with V and both of its edges deleted, and

with a new edge inserted. This new edge has its reliability computed. New

cardinalities of V and E.

5.6.7. SUBROUTINE DEG2R(V)

Description This subroutine performs a degree 2 reduction on vertex V in set K.

Lol R

Input Vertex V and the multilist structure.

Output The updated multilist structure, with V deleted, along with both of its edges,
and with a new edge inserted. This new edge has its reliability computed.

New cardinalities of V and E. The updated value of M.

g 5.6.8. SUBROUTINE COPY

N Description This subroutine copies the current graph for later use.

o

Input The multilist structure, and the list of edges that are bridges for the current
. h.

!: grap

- Output The multilist structure, and the list of edges that are bridges for the current
graph.

¥

5.6.9. SUBROUTINE SELECT(V1,V2)

Description This subroutine selects an edge to pivot.
Input The multilist structure, and the edges that are forbidden to be chosen.

Output The nodes that form the edge selected.

SRS W ey
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\ 5.6.10. SUBROUTINE CHKKGR(KGRAPH)

Description This subroutine checks if the graph is a K-graph.

- Input The multilist structure, and the list of vertices of each nonseparable com-
N ponent.
Output A logical variable indicating whether the graph is a K-graph or not.

5.6.11. SUBROUTINE GRAPHR(TOP)

Description This subroutine reconstructs a subgraph of the computational binary tree that

is pointed to by TOP.
Input Pointer TOP and the multilist structure of the original graph.

Output The multilist structure of the reconstructed subgraph.

5.6.12. SUBROUTINE REMOVE(V1,V2)

. Description This subroutine removes the edge incident to vertices V1 and V2 from the

- subgraph.
Input Vertices V1 and V2. The multilist structure.
Qutput The updated multilist structure, with the desired edge removed. : -,

b= 5.6.13. SUBROUTINE COLAPS(V1,V2,)

Description This subroutine changes the subgraph by considering the probability of the

edge incident to vertices V1 and V2 as being equal to 1.

J

Input Vertices V1 and V2. The multilist structure. AoTaan

gk o)

2
) Output The updated multilist AR
TR

-
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v -
.
)

Tels

5.6.14. SUBROUTINE DELETE(V,PTR)

’ LN
T b Y BRI

Description This subroutine deletes the element pointed to by PTR from vertex V’s adja-

cent vertices list. Three cases are considered. The first, when the element is

- v w
Pl

"llll
v,

first in the list. The second, when it is last in the list. The last, when the ele-
ment is in the middle of the list. In each case, the element is deleted by a

different set of commands.

;
8

Input The multilist structure. Vertex V. Pointer PTR.

Output The updated multilist structure without the specified element. i;i l:tf:'h :

5.6.15. SUBROUTINE FNDREL(REL)

Description This subroutine computes the reliability of a reduced subgraph.

Input The stack defined by EDGEVI(*), EDGEV2, and DIRECT(*), and the

current reliability REL.

Output Updated reliability.
5.6.16. SUBROUTINE FNDEDG(V1,V2,LEDGE) ?
o
Description This subroutine finds the edge incident to vertices V1 and V2. ,"_".:’_t_::::.";
N
< wLaf
Input Vertices V1 and V2. The multilist structure. L
L _.".-7'_2
Output The edge specified. :Z:_'f' .'i‘
\_\.',"
5.6.17. SUBROUTINE OUTFAC(OUTPUT) RO

Description This routine prints out the solution after the factoring algorithm was per-

formed.

Input The current value of the reliability and the number of edges selected for

pivoting.

............




LTI P LA SR MM AL L S i S S A S e g DR A TN e KA Al

. -23-

. Output The network’s reliability and the number of edges selected.
"a
o 6. User Manual
:l
:: The user manual of this new version of PolyChain is similar to the manual of the original
L4
* version [1]. In this section we first present a guide for using PolyChain showing the
{ differences when using the VAX/UNIX system and the IBM/CMS system. The input file and
- output are then described, and a test problem is presented to illustrate outputs for both separ-
) able and nonseparable cases.
6.1. Executing Polychain
- Polychain can be used in either the VAX/UNIX system or IBM/CMS system. As already e
mentioned, only 1/O related code is system dependent. Therefore, to run the code, first the ':'..3_
:' routine that gets the time, date, and day of the week from the system must be specified. Then, ' .
; the dimension parameters and the COMMON blocks must be adjusted. Finally, an input ':g(-"\"é‘
: IRl
3 data file must be prepared. These three topics are presented below. .f?,:‘_\ -‘
:
6.1.1. System Routines
- The first step in running Polychain is adjusting the code to run in the desired system, either
- UNIX or CMS. To do this, the suitable system routine that gets the time, date, and day of
the week must be specified. The code considers both possibilities, so that is just a question of
removing or adding comments to the lines of the code where the system routines appear,
b, depending on which one you need. The system routines are described beiow.
- For IBM/CMS use: Y
N MAIN ROUTINE; gkl ¥
h CALL DATETM(DATTIM,23,VCPU,CTIME,TCPU) T
DATE = DATTIM(1:16) Miheyrege
- HOUR = DATTIM(19:23) A
A BEGINT = VCPU PUNEL
..

A
5
P

- "V

l‘ §%‘€
, 3

. = LI TR Y WL T RTATA T KT o oa e gt " ~g- g -~ ~ - - - . Lae 2 ‘L
A -. -.*5}-}-.*-."-. - .x. ‘s’ '. AN _._;‘,-_.'.'_\J_ N X .r". ) ..\ ‘\Q. :- o ﬂ. .\x}\‘ N .T\f_ e ,‘ }‘t“ A ¥
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SUBROUTINE OUTFAC, OUTGRF AND OUTREL:

CALL DATETM(DATTIM,23,VCPU,CTIME, TCPU)
TMPCPU = VCPU - TMPCPU

D (ENNUOGS Yol (WD
s

' WRITE(IOUT,300) TMPCPU
~; For VAX/UNIX use:
N
- MAIN ROUTINE:
i CALL FDATE(ERA)
= DATE = ERA(1:10)
2 HOUR = ERA(12:20)
YEAR = ERA(21:30)
CALL DTIME(TIME)
. SUBROUTINE OUTFAC, OUTGRF AND OUTREL:
= CALL DTIME(TIME)

WRITE(IOUT,300) TIME(1)
6.1.2. Dimension Parameters

The second step in running Polychain is adjusting the dimension parameters MAXVRT and
MAXEDG in SUBROUTINE INILST. MAXVRT is the maximum pumber of vertices and
MAXEDG is the maximum number of edges of the graph. The adjustment of these variables

is needed only if the network’s dimensions exceed what has been already specified.

After adjusting the dimension parameters, all COMMON blocks containing arrays must be

changed accordingly. Section 4.5 shows how the arrays must be changed.

6.1.3. Input Files

Ioputing data in PolyChain is very simple since data is not restricted to specific columns of

the input line. No flag is needed to indicate end-of-file. The first line of the input file con-

tains the system output options. One value must be entered in this line - ECHOIN, where,

1 if a report of the input network is desired

ECHOIN = | o oiherwise

Next, the edges are specified, one in each line. To specify an edge, enter both vertices of the

edge followed by the edge's reliability. The numbering of the vertices should be sequential

A ettt et Ty TR e T T ° » s gty
St T R D S e ezl



e N T T L N N T ey reyws A A el s et

-25.

from 1 to the number of vertices of the network. If a vertex is a K-vertex, it should be pre-

ceded by a minus sign. An example illustrating an input file is given below.

PRERK

Figure §

The input file for the network of figure 5, in the case that we want the input network report is

given below.

1

-1 2 5

'l 3 .8 -
2 3 7 v
2 4 6 R

3 4 9

6.1.4. Program Outputs

In this section a test problem is used to illustrate the program’s output. Consider a series-
parallel irreducible network, the ARPA computer network, in figure 6. The reliabilities (actu-

ally availabilities) shown in figure 6 are fictitious.

| “"'
t,""’

n,
P a g m e, e,
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Figure I1I - ARPA Computer Network

The input file for this network is given next. Output option is set to "1°.

.
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PolyChain generates either a two part or a three part report depending on whether the net-
work is series-parallel reducible or not, respectively. The first section of the report describes
the input network, edge by edge. The type of each vertex is indicated, K for K-vertex and nK
for non K-vertex. The first section also summarizes the input network data and core usage.
Network density, presented in the first section, is defined to be the ratio of the number of
edges of the input network to the number of edges of its corresponding complete graph. The
second section of the report indicated whether the network is series-parallel reducible or
irreducible. This section contains a summary of the reductions performed and the CPU time
before the beginning of the factoring algorithm. In case the network is series-parallel irreduci-

ble, the updated value of M =HQ, is included in this section and the third part of the report
J

is generated. The third section contains the K-terminal network reliability, the domination of
the reduced network, the number of pivots performed, and the CPU time, excluding 1/0. The

report generated by PolyChain for the above file follows.
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PCLYCHAIN - VERSICN 85.1 FACE 1
PCLYGON 10 CHAIN REDUCTIGNS
IN NEThORK RELIABILITY
DATE : FRI» MLV 25 1585
TIME : 153(¢€

INPLUT NETRLCRK

] EDGE || VERTEX | TYPE |} VERTEX | TYPE (I RElllBlLl“ i
l--—---”--------’------’*--------’------”---.-.- ...... l
l------"-.------’----o-”---------’-‘---.”---.-.---a—---l
1 11 1 1 x|l 2 | M |.80CCCOCOESOC |
l------"--------’---.-- dfreccnsconocjuracoecjjroccsnccacvcacs

| 2 11 1 | X 1] 3 | NK }}.80CCCOQ0E*CO |

'---.--”--------’------”--------’------“---------o----

} 311 2 | NK 1} 3 § NK J1.80CCCOCOE*0O |

'------”--------’-o----"--------.-—----”--------------.

| LN ] 2 | NK }I ¢ | NK 11.95¢CCOCOE+OC |

.------"--------’------’f----- ---’------"---------.----'

| S It 2 | Nk ) 6 | N [1.90CCCO00E*CO |

'-C----”-.------’------ dbcocssconjocnncspijroncacscsnssnns

| 6 |l 3 | NC ) 5 | NK 11.90C0COCOE*GO |

l-.----”---o----’-----o”--------’------”--- --.---.----l

| 111 & | n~nk | 5 | M 1].80CCCOCOE*Q0 |

'------"--------’------"-- caoceocofeococssjjoeoccoscsrcacsrana

| 8 1l S | N ) & | NK [|].80CCCO00E*0OC |

l-o--e-’{---‘----’------’*----o---{------”---.-.---.----.

| 9 1l 8 | Nk | 20 § MK 11.9CCOCOCOE+0QQ |

'------”--------’------”--------’-’---.”---.----------'

| 10 |1i 6 | N |} 11 | NK  §}1e9CCCCOCOE+OC |

'-"---"----‘---‘------”--------’-----."---.-.---.‘---'

l 11 1 6 | n |} 20 | NK J1.9CCCCOCOE+OC |

l------"-.------’------{’--------‘-o---.”--- --.---.----'

| 12 )1} 6 ) N {1 7 | NK  }11.9CCCCOCOE*OC |

l------"--------’---.--”--------’------*'--- --.----‘---.

| 131 7 1~ HI 10 | NK 1]1.90CCCOCOE+CO |

'-‘----{‘--------.---.--”----o-—-’------"---.-----.‘---'

| 14 |} & | N} 9 | NK }1.90CCCOCOE*00 |}

'-o----"--------’---.--”--------‘------”-----.---.----'

1 15 1l 9 | Nk |l 10 | NK [1.90(CCGCOE*GO |

.-o----"---o----’---‘--”----q---{-.---.’Q-----.---.o---'

] 16 1) 10 )} NK }I 15 | NK  }1.90CCCOCOE+00 |

'------”--------Q---.--Q’----o---‘-.----”--- .-----.----.

| 17 1l 11 | N} 12 | NK 1.80CCC000¢€+0C |

'---.--0.--------’---.--’Q--------’---- sodfeoccscansscncvces '

| 18 11 12 | N ) 13 | MK §1.90CCCOCOE+OC |

'---.- afpfccscscsaniscccaafjjoccccacanjeccancsffocs .-.---.o---l

) 19 11 14 | NK 1} 13 | NK }].903CCCOCOE+OC |

.------"-.-.----’-.-.--.*-.--.---‘---- cesfdfjoas ‘-.-.-.----l

| 20 1) 13 | M) 21 ) K 11.90CCCOCOE+00 |

'------”------...--..--”-.------’--.-..”--- oe .---..---.

i 21 |1 15 | Nk ) 14 | Nk 11.95¢CCO0COE*00C |

e N g L Do
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PCLYCHAIN - VERSION 85.1 PAGE 2
PCLYGOM T0 CHAIN REDUCTICNS
IN NETWORK RELIABILITY

DATE
TINME

FRI» MV 25 1985
15:0¢

INPLT NETWCRK

) ECGE 1) VERTEX | TYPE |} VERTEX | TYPE }) RELI#BILITY |
R et SE LT LR P i 2 e L LT Py |

‘------"--------'------”--------{----.-”--------------.

| 22 1) 9 ) N 1) 16 | NK  11.9CCCCOCOE4OC |}

l------"--------’------”------o-’------"--------------

) 23 |1 16 | NK ] 17 | NK 1]1.95CCCOCOE+0OC |

'------”--------‘------”--—-----{---—-.”---.-----.o---

| FIEN N | 17 | N 1) 18 | NK  J1.90CCCOCOE+0O |

'------"--------’------”--------’------*‘-----.--------'

) 25 |1 18 ) NX |} 19 | NK }1+90C0COCOE*00 |}

'------"--------’------”--------‘------"-----.---.----'

| 26 || 19 | Nk |} 21 | K $11.95CCCOCOE+0C |

L L R L L X X A2 L & ¥ X X X T T X T T E R T F N T R TR W g e gy

SUFMARY OF INPUT NETWCRK DATA

NtFEER CF VERIICEs.o.oooooooooooocoooooc
NL!BER cF Ecces...................O....I
NUMBER CF K"VER']CES.ooooooooooooooooooo
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7. Test Problems

l Next, the results obtained by PolyChain applied to several networks are given. Some of the
networks are obtained through a random network generator, while other tested networks are
from [5]. Problems were run on the IBM 3081, at Berkeley. The code was compiled on the
CMS FORTYVS compiler using optimization level 3. CPU times were measured through the
DATETM system routine. Table I contains a summary of the networks tested and table 1l a
summary of test results. Figure 7 shows an example of a network where no polygon-to-chain

reduction is possible for any set K chosen. o _

Table I - Test Problems

Problem | Vertices | Edges | K-Vertices Type of Graph .
1 21 26 2 ARPANET g .
2 5 10 2 Five Vertex Complete
3 5 10 4 Five Vertex Complete #\ ~
4 5 10 5 Five Vertex Complete A
5 6 15 2 Six Vertex Complete Ef‘l“ ,
6 6 15 6 Six Vertex Complete '_tf:}- .
7 8 12 2 Eight Vertex Cubic e~
8 8 12 8 Eight Vertex Cubic
9 10 15 2 Ten Vertex Cubic e
10 16 24 2 Sixteen Vertex Cubic 0 O
11 16 24 16 Sixteen Vertex Cubic ,-‘~-4.§
12 6 12 2 Six Vertex Quartic e il
13 6 12 4 Six Vertex Quartic
14 6 12 6 Six Vertex Quartic AT
, 15 20 59 4 Random P}_; ;\
' 16 10 30 2 Random NS5 GO
Xegedn
: 17 15 39 2 Random .
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Table 11 - Test Results S

P
. AR
.

'

.

. .

I Problem % Reduction Domination | CPU Time

R
: Edges | Vertices | K-vertices :':::‘.
: 9.2 | 714 0 a 0.125 N
:: 0 0 6 0.18s ol
. 6 0.18s s
6 0.09s

24 0.72s
24 0.36s
16 0.48s
11 0.15s S
40 1.40s o !
448 17.86s ST
247 2.38s R
11 0.36s
20 0.17s
11 0.19s
5063 171.81s
35 1.10s
52 1.86s
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8. Conclusions and Recommendations

This report discussed the design and implementation of two features that enable PolyChain to
treat a larger class of problems. The implementation of both features maintain the charac-

teristics of the original version of PolyChain facilitating further extensions and enhancements.
Further testing is still needed to ensure the code’s correctness.

To insure the evaluation of the K-terminal network reliability in a more efficient form, the
program should apply polygon-to-chain-reductions in addition to simple reductions

throughout the factoring algorithm.

In the case of separable networks a code using PolyChain as a subroutine can be used to com-
pute the reliability of each nonseparable component and then compute the overall reliability

of the network.
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