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SECTION 1

BACKGROUND AND PROBLEM STATEMENT

1. HISTORY OF CURRENT RESEARCH PROGRAM

--)The Large Space Structure (LSS) research program was originally for-

mulated in late 1982 in response to the increasing concern that

performance robustness of Air Force LSS type systems would be inadequate,..

to meet mission objectives. In particular, uncertainties in both system

dynamics and disturbance spectra characterizations (both time varying and

'- . stochastic uncertainty) significantly limit the performance attainable

with fixed gain, fixed architecture controls. Therefore, the use of an

adaptive system, where disturbances and/or plant models are identified

prior to or during control, gives systems designers more options for mini-

* "mizing the risk in achieving performance objectives.

The aim of adaptive control is to implement in real-time and on-line

as many as possible of the design functions now performed off-line by the

control engineer; to give the controller intelligence"!. o realize this

*[ "" aim, both a theory of stability and performance of such Inherently non-

linear controls is essential as well as a technology capable of achieving

S the implementation. As has been noted by Astrom (1981 recent advances in

each of these fronts have brought us to the position where adaptive con-

* trol has been applied to many processes and standard adaptive controllers

can be purchased, e.g., Egardt (1984). -.

First Year Technical Results (1 June 1983 - 31 May 1984)

Motivated by the uncertain order of LSS models, the first year re-

search was originally directed toward using variable order adaptive

systems. Early in the research, however, lack of a well-developed robust- . "...'..

ness theory for adaptive mechanizations required a reexamination of the

problem at a more fundamental level, i.e., development of model and dis- . .
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turbance uncertainty bounds for which adaptive algorithms would exhibit

(stable) desired performance. Adaptive theory at that time only con-

sidered model and disturbance parameter uncertainty, and hence, did not ,

provide the means to obtain the relation between achievable performance

and unmodeled effects, e.g., unmodeled residual modes and small broadband

disturbance. The theory required:

(1) a complete parametric model (no unmodeled dynamics/disturbance)

(2) known model order

(3) known high frequency gain

Under these conditions, it was possible to show that the adaptive system

was globally stable, i.e., all the signals remained bounded for any init- .

ial set of parameter values and any bounded reference command. If, in ,,

addition, the reference input was "sufficiently rich", then the parameters

converged exponentially fast to a unique tuned set of values (the paper by ' ]

Goodwin, Ramadge, and Caines (1980) summarizes the above theory).

For the LSS problem, it is not possible to satisfy a single one of

the above theoretical requirements. In the first place, the LSS is

theoretically of infinite order and a complete parametric model would be a -, ,,

partial differential equation, not the ordinary differential equation re-

quired by the theory. Secondly, and most importantly, the theory could

not tolerate even small deviations from the above assumptions. It was

shown in simulations by Rohrs et al. (1981, 1982) that unmodeled high fre-

quency dynamics, together with a small high frequency noise - both well [
-

outside the controller bandwidth - could cause a parameter drift which

eventually destabilized the system. This drift phenomena was also re-

ported to occur in on-site process control applications where it was

necessary to re-set the parameters every so often (Wittenmark and Astrom,

1982). Simulation studies involving LSS exhibited similar problems where

the parameters would not converge unless the initial parameter values were
close to the unknown tuned values (Gupta, Lyons et al., 1981; Sundararajan

and Montgomery, 1982).

L% 2



Because of these difficulties, the first year effort focused on re- ...

laxing the requirements on adaptive theory by emphasizing local rather

than global results. The distinction between global and local is that in k.

local theory there are restrictions on the magnitudes and frequency con-"'-

tent of the inputs as well as the initial parameter values. In global

theory there are no such restrictions. Thus, the local theory is more

practical and is able to use a priori information that is available.

To summarize, there were two major accomplishments in the first year

effort:

(1) Development of a local theory of adaptive control with broad
applicability. These results are reported in several joint
papers by Kosut and co-workers from 1982-19 84 (see References).

J (2) Methodology development for LSS based on the above local
theory. This result used key ideas from parameter estimation
and robust control design under "slow" adaptation.

By "slow" we mean that there is sufficient time to run batch identifica-

tion before the control system is modified. The use of slow adaptation is

anticipated for a large class of LSS missions which have quiescient

periods useful for "calibration". The methodology we have developed

provides a guaranteed level of performance given an "identified" model of

the system together with the model error between the system and the iden-
n U tified model. In fact, our methodology generates performance vs. model

error tables (to be stored in the computer) from which the control design

is determined strictly on the basis of model error and performance demand,

rather than trial and error. These results are summarized in our annual

report (ISI Report 43, 1984) and in Kosut and Lyons (1984).

The status of adaptive theory at the end of the first year effort is

summarized in Table I-I. The maturity of adaptive control theory is com-

pared to that of linear control theory with respect to the impact of

. modeling assumptions and modeling errors. Table 1-1 is primarily

applicable to linear finite dimensional systems. Adaptive theory is vir-

tually undeveloped either for m - dimensional linear systems or general

nonlinear systems. .

3 3



TABLE 1-1. STATUS OF THEORY#

MUeIINS aSSlMPleTINS MUEFI INS ERR1RS

[RtlICRl EHT[RNAL UNMODtLED UNMODLED

rPRRRMTIRS DISTURINCES DYNAMICS DISURBAN[S

SMALL. SLOWLY KNOWN YP; KNOWN UPPER KNOWN UPPER

LINEAR UARYING ODEIlR- KNOWN PARR- BOUND OF BOUND OF MR1G. 1.' .

CONTROL TIONS FROM METERS (MAG. MAGNITUDE Us. s.FRE.

NOMINAL AND FRED.) REQUENV-

KNOWN TYPE; EMERGING * EMERGING

ADAPTIVE LOAG, POSSIBLY UNKNOWN PRR- THEORY THEORY't
CONTROL RAPID CHANGES METERS (MAG.

AND Tw[o).

* ie is primer iipg apl t e inter finite dimensionale 6111101111 ThergIli' sOis
iuilsped fur - diensmeional opItems end/of Nonlinear SipStem$ In eth loe.

Spimeril research ereas Covered all current contract.

Second Year Results (1 June 1984 - 31 May 1985)

The second year effort continued with theoretical work on further

developing the local theory with particular regard to the fact that LSS

modes are uncertain, densely packed and very lightly damped. These

characteristics of LSS dynamics are among the primary difficulties faced

"* by practical identification/adaptation algorithms. A major task in this

effort was to investigate the properties of adaptive systems incorporating

*. algorithms with multi-rate (two time scale) structures, and persistent

excitation. These algorithms were studied under slow adaptation. This

made it easier to assure achievable specified performance levels despite

unmodeled dynamics and disturbances. The effect of speeding up the adap-

tation has been proposed for study in our current work under Contract

F49620-85-C-0094.

4- .
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New Results and Directions

An important series of developments took place during this second

year which will have a positive effect for our present and future re-

search. Our initial efforts at developing a local stability theory have

just recently been further advanced by Riedle and Kokotovic (1984). Their ,..

results indicate that by combining the averaging theory of Hale (1969)

with the local stability theory of Kosut and Anderson (1983), a sharp

stability-instability boundary can be obtained for the case of slow

adaptation/identification. Insofar as LSS technology is concerned this is

a major breakthrough, because as mentioned before, slow .

adaptation/identification is sufficient in many cases. This new insight

made it very important to more thoroughly develop the theory during this

second year. A heuristic explanation of our local stability theory and

the method of averaging is provided in Section 2.1. A more detailed over-

view is contained in the summary paper by Kosut in Appendix B.

Collaborative Research Effort

An important point to be made, regarding this research, is that

there is a great deal of collaborative effort involved among several re-

searchers who share a common interest in this field. In fact, quite soon

after the initial work on input-output stability theory of adaptive sys-

tems was published by Kosut and Friedlander (1982, 1985)*, other pockets

of research groups began extending these results in a variety of direc-

tions, e.g., Ortega, Praly, and Landau (1984), Riedle and Kokotovic

(1984), Kosut, Johnson, and Anderson (1983). It became apparent that

these researchers should get together for informal meetings. One was ar-

ranged by Laudau at the University of Grenoble in July 1984 with Kosut, .-

Ortega, and Praly attending. A second was arranged by Kokotovic at

Montana State University in August 1984, with most of the above research-

ers attending. i..

• Supported under AFOSR contract F4920-81-C-0051.
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These small, rather intensely focused meetings, have proven to be a major

catalyst for advancing the research efforts in this field. A third meet- e-
I

ing, arranged by Kokotovic, occured in Nov. 1984, at the University of

Illinois, the purpose of which is to organize efforts on the further

development and use of the averaging theory of Hale (1969). A fourth

meeting took place in the summer of 1985.

Also during this period, Dr. Kosut received AFOSR approval to accept

an invitation from the Australian National University to work there as a

Visiting Scholar. He spent a one month period and worked in close col-

laboration with Professor Brian Anderson and his collegues. The results

are reported in Kosut, Anderson, and Mareels (1985) and included here as

Appendix D.

The purpose of describing all those meetings here, is to emphasize

the collaborative effort that has been involved in the development of this

theory, and also to indicate the degree of interest and excitement in the

adaptive control research community about this endeavor. Obviously, with-

out the continuing support from the various government agencies, e.g.,

AFOSR, NSF, etc., none of this would be possible, at least not at this

pace. We are also pleased to report that another result of these col-

laborations is a forthcoming book by Kosut, Anderson, Kokotovic, et. al., -

on stability theory for adaptive systems (MIT Press, Spring 1986).

Other Related Research

This program provides for the development of theory which will work

in synergy with other related research activities both at Integrated

Systems, Inc., and at Stanford University, where Dr. Kosut has a position

as Consulting Processor in the Department of Electrical Engineering. At

Integrated Systems, Inc., these related programs support development of

hardware architectures and associated hardware to provide practical adap- -.

tive controls for real DOD/NASA missions. One activity, with the Army ..

Munitions and Chemical Command (AMCCOM), requires development of program-

mable board level processors to implement adaptive gun turret pointing

controls. Control synthesis and simulation is followed directly

6
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by programming of the real-time processors, thus sharply reducing real-

time system development costs. Another activity is a more general

treatment of the AMCCOM problem where robust adaptive mechanizations for

complex systems such as LSS will be implementable in a real-time system

level hardware architecture. This program was funded under the AFOSR/SBIR -".

office.

At Stanford University, Dr. Kosut meets regularly with Professor

G.F. Franklin, and several students, all of whom are working towards their

Ph.D. in the area of adaptive control. The students interests vary from

LSS to robotics to theory. Two of the students have been working on im-

plementing algorithms for use on experimental flexible systems in the

Guidance and Control Laboratory in the Department of Aeronautics and

Astronautics under the direction of Professor R.H. Cannon. Their results, -'. -"

both positive and negative, have provided a strong impetus in the direc-

tion of our research program with AFOSR.

1.2 RESEARCH OBJECTIVES

The study being reported on here, which is part of our ongoing re-

search, will extend adaptive theory and its application to LSS problems in

several directions. These include the following:

(1) Theoretical development - The present emphasis is to merge
our present local adaptive theory with the method of averaging
of Hale (1969). First attempts involved slow adaptation, since
this covers many LSS situations. Later on we will examine fast
adaptation. The theory developed here provides for:
(a) estimates of robustness, i.e., stability margins vs. per-
formance bounds; (b) estimates of regions of attraction and
rates of parameter convergence to these regions. Later on, ex- 0
tensions of the present linear finite dimensional adaptive
theory will include nonlinear and infinite dimensional plants
and controller structures; and (d) extensions to decentralized
systems.

(2) Parameter adaptive algorithms - Assess the behavior of dif- L
ferent algorithms, including: gradient, recursive least
squares, normalized least mean squares, and nonlinear observer
(e.g., Extended Kalman Filter).

7
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(3) Parametric models - Assess the impact of model choices. In
particular, the effect of explicit and Implicit model choices.
An explicit model, for example, is a transfer function whose 6 _

coefficients are all unknown. In an implicit model transfer
function, the coefficients would be functions of some other -"-

parameters. Implicit models usually arise from physical or ex-
perimental ground data, whereas explicit models are selected

for analytical convenience.

(4) Adaptive nonlinear control - Although our early effort is to

study adaptive linear control, there are many LSS situations
where the control is nonlinear.

Consider, for example, Figure 1-1 which depicts two LSS control modes: -

(1) vibration suppression, and (2) tracking/slewing. In the vibration

suppression situation a "slow" adaptive algorithm (sequential

identification/adaptation) may be sufficient, whereas in the tracking/

slewing case a "rapid" algorithm (parallel identification/adaptation) may

be necessary. These two possibilities stretch adaptive theory at both

ends, parti cularly with regard to convergence rate requirements.

Note also that the two adaptive controllers in Figure 1-1 involve A - - -

n-'t only different convergence rate requirements, but also involve dif-

fsrent controller structures, i.e., linear for vibration suppression and

wv.inpar for tracking/slewing.

Clearly many combinations of models and control structures are pos-

siti-, and at this point it is not possible to enumerate all that may be

rElevant. However, by examining a few sensible choices, such as those

compatible with typical LSS objectives, the ensuing theoretical develop-

ment will indicate the necessary modifications required in each case.

S: - <
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Figure 1-1. Adaptive Structures

1.3 MOTIVATION AND LONG-RANGE GOALS

The issues of performance sensitivity, robustness, and achievement

0of very high performance with low-order controllers can be effectively ad- 4

dressed Using adaptive algorithms. The need to identify modal fre-

* . quencies, for example, in high-performance disturbance rejection systems

has been shown in ACOSS (1981) and VCOSS (1982). The deployment of high-

o performance optical or RF systems may require on-line identification of

9



critical modal parameters before full control authority can be exercised.

Parameter sensitivity, manifested by performance degradation or loss of

stability (poor robustness) may be effectively reduced by adaptive feed- '

on the system performance (disturbance rejection) is particularly impor-

tant for planned Air Force missions. For these cases, adaptive control

mechanizations are needed to produce the three-to-five orders-of-magnitude

* reductions in line-of-sight jitter required by the mission.

Research is essential to identify the performance limitations of

adaptive strategies for LSS control both from theoretical and hardware

* mechanization viewpoints. The long range goal of this proposed research

* program is to establish guidelines for selecting the appropriate strategy,

to evaluate performance improvements over fixed-gain mechanizations, and

* to examine the architecture necessary to produce a practical hardware

realization. The initial thrust, however, is to continue to build a

strong theoretical foundation without losing sight of the practical imple-

mentation issues.

Impact on Other AerospaceApplications

The adaptive theory being developed for LSS control will spillover

to other aerospace applications. Table 1-2 shows a comparison of aero-

space system adaptive control applications. The LSS control problems

clearly involve aspects of the other disciplines.

1.14 REPORT OUTLINE

In the next section we summarize the technical issues involved in

* the adaptive control of large space structures. Various detailed techni-

cal papers and reports are included as supporting Appendices.

10
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TABLE 1-2. A COMPARISON OF AEROSPACE SYSTEM

ADAPTIVE CONTROL APPLICATIONS
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tion required tuning parameters

are very helpful

*Special Control . Inherently MIMO e Inherently MIMO . Stability is the
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SECTION 2

PROBLEM FORMULATION AND TECHNICAL DISCUSSION

The development of a design methodology for adaptive control of LSS

involves many different issues. In this section we present a selective

U discussion of the theoretical and practical issues that seem most

relevant. A more in depth discussion of the overall LSS control design

problem is presented in Appendix C. The discussions there cover various

types of control design approaches, including both robust (non-adaptive)

as well as adaptive. The major points, however, are summarized in this

section.

2.1 LSS CONTROL PROBLEM SETTING

Control Design Objectives

Problems associated with vibration control and accurate pointing of

DEW/LSS systems typically involve a combination of the following control-

performance objectives.

(1) modal damping augmentation to enhance transient settling or im-

prove quasi-static vibration propagation behavior,

. (2) stabilization of the attitude control system,

(3) eigenvector modification to reject narrow band steady-state dis-
turbances, and ILI

(4) maneuver load management to minimize structural loads or modal

excitation (transient or steady-state).

Modeling

The basis for selecting a control strategy must include an adequate

description of the relevant structural dynamics together with a descrip-

tion of how system performance is to be measured. Initially,

13
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continuum models were suggested as the basis for proper system design

since discretization of the model could be postponed or eliminated, Hughs

and Skelton, 1981. Unfortunately, practical spacecraft configurations do -

not present simple boundary conditions or simple shapes, hence, p.d.e., .

representations are nearly impossible to write. However, such continum.

models have provided useful insight into appropriate discrete representa-

tions. Finite element models can provide adequate fidelity, at least over

the frequency range needed for the control design model, and are supported

with sophisticated software tools easily adapted to the needs of control

design, ACOSS (1981).

Two Level Control Architecture

o-". .....

The basic control architectures can readily be combined into a two-

level control system architecture consisting of a wide-band, low-authority

control (LAC) and a narrow-band, high-authority control (HAC), see Figure

2-1. The LAC introduces low damping (2-10%) in a wide range of modes for

maximum robustness. HAC provides high damping and mode shape adjustment

in selected modes to meet performance requirement.

LAC synthesis principally involves passivity methods and rate feed-

back mechanizations, usually with co-located actuators and sensors, Aubrun

(1980), Iwens, et. al (1980).

HAC synthesis, in addressing performance goals associated with
dynamic wavefront and line-of-sight error suppression, requires high modal -

damping and mode shape changes. Hence, the HAC is dependent on accurate

narrow-band models. For such requirement, it is essential that control

design techniques manage both dependence on model fidelity and system gain

in regions where model fidelity is poor. This has generally been ac-

complished using fixed-gain robust control theory, e.g., Kosut, Salzwedel, .':

and Emami (1983). With this architecture it is likely that only the HAC

-" would be tuned by an adaptive system since the LAC is inherently robust. a

14
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In general, uncertainties in both disturbance spectra and system , ,

dynamical characteristics limit the performance obtainable with fixed •..

gain, fixed order controls, e.g., HAC system. The use of an adaptive con- .'...

trol mechanization where disturbance and/or plant dynamics are identified ,..,,

prior to or during control, gives system designers more options for mini-

mizing the risk in achieving performance benchmarks.

In the case of LSS/DEW systems, the performance levels are extremely -.-

high. Hence, it is necessary that disturbance and plant models are ac-

curately known. Since model data obtained from ground testing Is unlikely

to sufficiently match the actual on-orbit system, it follows that on-line

procedures are needed for identification and control.

The generic properties of closed-loop system performance vs. struc-

tural parameter variations are depicted in Figure 2-2.

15
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Assessment of Adaptive Techniques

Available Algorithms

Many adaptive control and identification algorithms exist for lumped

parameter, finite-dimensional linear systems, e.g., Goodwin and Sin

(198i4); Ljung and Soderstrom (1983). Most available algorithms can be :-

cast into the form shown in Figure 2-3. For example, a user could select

from the following catalog of model forms, control design procedures, and

parameter adaptive mechanisms:

Model Control Design Adaptation

ARMAX Model Reference Gradient

State-Space Self-Tuning Recursive Least Squares
9..Pole-Placement Recursive Max Likelihood

d Extended Kalman Filter

16
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Figure 2-3. Adaptive Control System "'" "-1-

These schemes also differ in terms of update rates. Typically the outer

control loop is at a fast rate, whereas the parameters from identification

are updated more slowly. Adaptive schemes are generally referred to as

recursive if the identification rate is a fixed multiple of the controller

rate. If identification is used for occasional tuning or calibration, the

scheme is referred to here as adaptive calibration.

Consider, for example, Figure 1-1, which depicts two LSS/DEW control

modes: (1) vibration suppression, and (2) tracking/slewing. In the vibra-

tion suppression situation a "slow" adaptive algorithm (sequential

identification/adaptation) may be sufficient, whereas in the tracking/

slewing case a "rapid" algorithm (parallel identification/adaptation) may

be necessary. These two possibilities stretch adaptive theory at both

ends, particularly with regard to convergence rate requirements.".

17•. . . . . . - . . . .] -p
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Note also that the two adaptive controllers In Figure 1-1 involve not

only different convergence rate requirements, but also involve different '

controller structures, i.e., linear for vibration suppression and non- .O -

linear for tracking/slewing.

Direct application of available algorithms to the LSS system is

restricted because of a lack of theory regarding the system's robustness If

to model error. In addition, it is not known how limitations imposed by a

decentralized for pre-selected control architecture will effect achievable

performance. Those two issues will now be discussed. .

Robustness to Model Error

The use of available identification and adaptive algorithms, which

are based on finite-dimensional, linear models, on LSS systems introduces

a troublesome source of model error, i.e., high frequency unmodeled struc-

tural modes, of which there are theoretically an infinite number. Other .

sources of model error include uncertain actuator/sensor dynamics and 4

neglected nonlinearities in joints and damping mechanisms. ,. * - .
% .'.-. -

Although available theory can handle a finite number of parameter er-

rors, it cannot deal effectively with other types of model error,

specifically, the unmodeled high frequency structural modes and dynamics.

It was shown in simulations by Rohrs et al. (1981, 1982) that unmodeled

high frequency dynamics, together with a small high frequency noise - both
well outside the controller bandwidth could cause a parameter drift which --

may eventually destabilize the system. This drift phenomena was also

reported to occur in on-site process control applications where it was

necessary to re-set the parameters every so often (Wittenmark and Astrom,

1982). Simulation studies involving LSS exhibited similar problems where

the parameters would not converge unless the initial parameter values

where close to the unknown tuned values (Sundararajan and Montgomery,

1982).

.......................



Robustness to model error is more well understood in the context of

nonadaptive linear control theory, e.g., Doyle and Stein (1981); Zames and

Francis (1983); Chen and Desoer (1982). The common theoretical basis for

these robustness theories is the input-output view of feedback systems

(Zames, 1966; Desoer and Vidyasagar, 1975, Safonov, 1980). Another view-

point on robustness, which follows more along the lines of Liapunov

stability theory, characterizes the solutions of perturbed nonlinear ordi- 1....

nary differential equations, e.g., LaSalle and Lefschetz (1961), Hale

(1969).

A main intent of our research program has been to merge the input-

output view and the Llapunov stability view with adaptive mechanizations

to develop a theory of robust adaptive control. Some of the groundwork

has already been accomplished (Kosut, et. al., 1982-1985) and as such, we

are now in a good position to address those issues as they related to LSS

systems.

Decentralized Adaptive Control

Limitations on control authority and the information pattern are the

main features of the decentralized control problem. The general structure

of such a decentralized control system is illustrated in Figure 2-4. The

dashed lines indicate a partial information exchange, e.g., the local con-

troller receives reference commands (or discretes) from a higher level

control (the coordinator) and/or information from other local controllers

in the form of an "aggregated" state.

19
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Figure 2-4. Decentralized LSS Control. Dashed Lines Indicate a Partion

Exchange of Information

For LSS/DEW systems, decentralization normally results because a

natural separation is physically or geographically present between func-

tional components of the system. For example, some decompositions result

from spatial differences: weak dynamic interaction effects can be easily

.ientified. A decomposition also occurs from temporal differences;

phenomena occurring at different time-scales, e.g., a separation between

fast and slow modes or between low frequency and high frequency effects.

For example, groups of the modes can be separately controlled by separate

controllers which do not destabilize each other. Specific combinations of -. -

weak dynamic coupling and separation of slow and fast modes can often be

identified, e.g., Figure 2-5.

A number of very useful results are available for non-adaptive

decentralized systems, e.g., Vidyasagar (1981), Siljak (1978). Those

results show how total system properties are dependent on subsystem and

interconnection properties. "

20
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Figure 2-5. Weak Dynamic Coupling with Slow and Fast Modes -, .

Much less is known about adaptive decentralized control, although"\"-"

there are some promising preliminary results available, e.g., Ioannou ..

(1984). There is, however, a similarity in robustness theory and the

theory of decentralized control which we hope to explore and exploit.

Research Objectives

The dream of adaptive control researchers has always been to develop

a "global" stability theory, i.e., performance is guaranteed independent

of initial conditions and disturbance spectra. Such results have been ob-

tained, but as mentioned, the available theory requires that a finite

dimensional parameterization exists such that an exact matching condition

is obtained (see e.g. LJung and Soderstrom, 1983; Goodwin and Sin, 1984).

Such a stringent requirement is impossible to obtain in an LSS system,

principally because there are many sources of model error which defy an

exact parameterizatlon (see Section 1).

.-.-..-

, - .,-. ...



-7,i

Because of these difficulties, recent research efforts have focused

on relaxing the requirements on adaptive theor" by emphasizing local

rather than global results. The distinction between global and local is --

that in local theory there are restrictions on the magnitudes and fre- -N

quency content of the inputs as well as the initial parameter values. In

global theory there are no such restrictions. Thus, the local theory is -

more practical and provides robustness to model error by utilizing a e
priori information that is available. In addition, restrictions imposed

by a decentralized architecture can, in principal, also be accounted by

the form of the theory. - '

The basic ideas for local stability rest on two fundamental stability

theories. One is the small gain theory of Zames (1966), and the other is

the method of averaging as described by Hale (1969). These theories have -

different origins and to some extent have application in different regimes

for nonlinear systems. Small gain theory determines the stability of

trajectories. With regard to LSS problems, small gain theory is generally

applicable to "fast" recursive adaptive control; averaging theory is ap-

plicable to "slow" identification and then control, i.e., adaptive

calibration. One can envision small gain theory as providing a macrosco-

pic view while averaging provides a microscopic view. Our intention is to

merge these as much as possible and thus, broaden the application of each

approach, particularly for the LSS system. This is not without precedent.

Small gain theory was applied originally to continuous-time adaptive

systems by Kosut and Friedlander (1982, 1985) and more recently extended

by Kosut and Johnson (1984), and Kosut and Anderson (1984). The method of

averaging was applied to continuous-time adaptive systems with almost pe-

riodic inputs for the first time by Riedle and Kokotovic (1984) and Ast'om -

(1984). Extensions to more general input classes have been obtained by
Kosut, Anderson, and Mareels (1985). The averaging theory has also been ...

able to accurately predict the drift phenomena observed by Rohrs, et al.

(1982).

22
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Although small gain results apply equally to continuous or discrete-

time systems, the averaging theory is underdeveloped for the discrete-

time case. A major proposed early effort, therefore, is to develop a P. -

discrete-time averaging theory useful for sample-data adaptive systems. ..

This will provide foundation for later efforts in sampled-data adaptive ,

systems with multi-rate and decentralized processors.

P.:o

2.2 SUMMARY OF UNDERLYING THEORY

In this section we present a heuristic discussion which summarizes

the underlying theory. As mentioned, the basic ideas rest on two fun-

damental theories: 1) is the small gain theory of Zames (1966), and 2)

the method of averaging as described by Hale (1969).

To heuristically describe our approach, consider the feedback system
in Figure 2-6, below where G and G represent operators.

-6,-. beo wher

11

SFigu e 2 . F c S

23I
Figure 2-6. Feedback System ..

• : ~~23 ""-""



Small gain theory asserts that if

Gain (GI ) Gain (G2 ) < 1 ()2

then the feedback system is stable. In robustness theory, the feedback

loop is arranged so that G2 represents all of the nominally zero uncer-

tain elements of the system. The operator, GI, referred to as a return-

difference operator, is everything else. It is always possible to arrange

a feedback loop this way (Safonov, 1978). Thus, G1 , is dependent on the -

presumed uncertainty location. Hence, stability margin is the maximum al- - .

lowable uncertainty which guarantees stability, i.e.,

Stability Margin = 1/Gain(G I ) (2)

1 . .% .

For linear-time-invariant systems it is not difficult to calculate

Gain (GI). in fact, this can be accomplished in the frequency-domain.

These results parallel Bode analysis, and offer the engineer a very useful

design tool. At the present time, however, no such tool exists for adap-

tive systems. The main difficulty is that in the adaptive case G1 is

nonlinear. Nonetheless, certain types of nonlinearities in G can result

in a frequency-domain test, e.g., Popov criterion, hyperstability con-

cepts, positivity, etc. These latter results follow from passivity

theorems, and interestingly enough, this is the main tool in current adap-

0 tive theo y for proving stability. Unfortunately, however, by proceeding

this way, it can be shown (Kosut, 1982a) that the resulting stability mar-

gins are very small and are easily violated in any realistic environment. - "

---. ':

2~4



° -.

The approach we are proposing here is to by-pass the conservative

passivity conditions and rearrange the adaptive system so that the two

operators are intrinsically small. This requires introducing the notion

of a tuned controller (Kosut, 1985) and a tuned set model representation

of the plant, which accounts for uncertainty. As a result of this trans-

formation we can introduce averaging. Hence, a less conservative calcula-"-____

tion is

Stability Margin = 1/Avg Gain (G ) (3)

i° -T°°.
M

The averaged gain is significantly smaller than the usual gain calcula-

tion, and thus, produces a much larger stability margin, i.e., greater

performance.

In Section 2.3 we outline this approach. Further details using small

gain theory can be found in Kosut and Anderson (1984) with averaging

results in Reidle and Kokotovic (1984) and in Kosut, Anderson, and Mareels

(1985). Appendix B contains a detailed report summarizing the applica-

tion of averaging methods to adaptive systems.

2.3 ADAPTIVE CONTROL THEORY

In this section we will discuss issues and new directions in acaptive

control theory. To illustrate the ideas we will consider a continuous-time

generic representation for control or identification of a scalar (single-

input-single-output) plant. In all cases the comments apply equally to

discrete-time, as well as multivariable systems. The generic adaptive

system, shown in Figure 2-7, is described by,

25
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e ,=e- c'x =Ax + bz' E)

Z = Z* -Dx =Yze (4) ' 'S.

where O(t) = O(t) - O RP is the parameter error vector; 0(t) is the

current parameter vector estimate; 0* is a constant tuned parameter vector
P n.setting; z(t) £ R is the regressor vector; x(t) £ R is the system state

consisting of plant and filter states; e(t) is the error signal; and Y > 0 "

is the adaptive gain. The signals e,(t) and z,(t), referred to as the

tuned error and tuned regressor, respectively, are outputs from the ideal

tuned system where O(t) = 0, i.e., O(t) = 0*.

~. T----

.- * "-

++

Figure 2-7. Generic Adaptive System -
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Appendix (A) shows how the nonlinear system (4) arises in the analysis of

-* adaptive control or identification. More detail on the development of

(2.1) can be found in Kosut and Frledlander (1982, 1985), and Kosut and

Johnson (1984).

Global Stability Theory

The assumptions required to insure global stability and convergence

of (2.1) are quite strict, e.g., Narendra, Lin, and Valavani (1980), Good-

" win, Ramadje, and Caines (1980). These assumptions include:

(Al) e,(t) -- > 0 as t -- >

(A2) z(t) persistently exciting (PE)

(A3) c'(sI-A) b is strictly positive real (SPR)

In all practical cases these assumptions are violated. Assumption (Al)

implies that there are no continually acting unmodeled noises or distur-

bances. Assumption (A2) can not be guaranteed unless (Al) holds. The SPR

-. assumption in (A3) is the most restrictive, since it requires a priori

knowledge of model order, relative degree, and high frequency gain, all of

* U which are not available or infeasible to obtain. Moreover, these require-

ments make no sense at all for an LSS whose order is theoretically

infinite. Unfortunately, even small deviations from these assumptions can ".

critically disrupt an adaptive system, e.g., Rohrs et al. (1981, 1982),

Reidle, and Kokotovic (1984).

* .~ Example of Adaptive Calibration

The basic problem with control based on identified modeling is that

without a measure of model error it is very easy to destabilize the system

• . - particularly when the goal is high performance - as in an SBL. Adaptive

27
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calibration is an approach which incorporates a measure of model error

with robust control design in an Iterative way so that identification is

performed only where it is needed. One proposed adaptive calibration sys- .

tern is shown in Figure 2-8, with test results, using the CSDL #2 model,

shown in Figure 2-9. The adaptive calibration procedure involves the fol- .

lowing steps:

Step 1: The model M(s) is a 10-mode model which has been obtained
from I/O data.

Step 2: Estimate 6(w) = model error vs. frequency using FFT. This
is dashed curve in Figure 2-9(a). 4

Step 3: Using the identified model M(s) and the model error 6, syn- -

thesize a robust control (e.g., Appendix C).

Step 4-5: Calculate 6 () - stability margin (or 6 (u) - perfor-

mance margin . This is-dark curve in Figare 2-9(a).
Compare to model error 6(w). Both plotted in Figure .

2-9(a). If 6(w)<6 () go to Step 7 and implement control-
ler. Otherwise, g mto Step 6.

Step 6: Modify filter windows, number of parameters, or input
spectrum and then repeat Step 1 to obtain new ID model. .1
Figure 2-9(b) shows result of ID after one mode is added in
frequency domain region where test fails.

Step 7: Implement controller.

These preliminary results are quite promising. A major portion of ..

our initial research effort has been to understand the nature of such

schemes at a fundamental level.

-4
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Local Stability Theory
S' %.

Boundedness Results (Fast Adaptation - High Gain)

With regard to practical adaptive design techniques, the need for the

SPR condition - hence, the restrictive modeling assumptions--can be

i P eliminated by considering conditions for local stability rather than

global stability, see e.g., Kosut and Anderson (1984). The term 'local'

* - refers to the use of known restrictions on the system external inputs, un-

certain parameters, and unmodeled dynamics. For example, since persistent

excitation induces exponential stability (Anderson, 1977), and since an

"- exponentially stable system is inherently robust, It is logical to expect

that unmodeled dynamics could be robustly tolerated. Other mechanisms--

including persistent excitation--can ensure stability of the adaptive

P system, without SPR, provided certain other restrictions are enforced, -

e.g., slowly varying signals, approximate SPR, gain retardation, and

restricted signal magnitudes and bandwidths (Ioannou and Kokotovlc, 1982-

"• '"1984; Kosut, 1984). It is our intention to utilize these theoretical

results, whenever appropriate, in the adaptive LSS study, as this local

theory emerges. """

Stability Results (Slow Adaptation-Low Gain)

The above local theory, which proceeds from the Small Gain Theory of

Zames (1966), and Desoer and Vidyasager (1975) can be considered as giving

conditions for boundedness (in the input-output sense) rather than

stability (in the Liapunov sense). The recent work of Reidle and

Kokotovic (1984) utilizes the averaging theory of Hale (1969) to obtain a -

sharp stability - instability boundary for slow adaptation, i.e., when Y

40 in (2.1) is sufficiently small. To apply the averaging theory requires

transforming (2.1) to the following form:

- Y f(t,e,E,Y) (5)

31
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A + *Yg (t,O,C,Y) 0 w -

where f and g are time-varying nonlinear functions. As Y -- > 0 the .

stability of (2.2) is identical to the stability of the "averaged" system "- .

ACp
B= Yfo(O) '

(6). . .'-

where

fo(e) = T f f(t,S,o,o) dt

(7)

Without going into the details here, it can be shown that there exists a

sufficiently small positive Y such that (6) is stable -- and hence, (5) is

stable - if and only if a persistent-excitation type of condition is .°

satisfied. The important results here may be summarized as follows: .

(1) For sufficiently slow adaptation, there exists a sharp stability
- instability boundary.

(2) The conditions do not require SPR, but do require persistent 49

excitation.

Much work has to be done to further develop this theory in general and

to tie it together with the boundedness results by Kosut, et. al. For LSS

in particular it is necessary to extend the theory to discrete-time, -

dimensional and nonlinear systems. Note, however, that the form of the sys-

tem (2.2) required by the averaging theory can be nonlinear.
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Extensions to Discrete-Time

An important step in our research is to develop the averaging theory .. *

of Hale (1969) to discrete-time adaptive systems. There appears to be no

theory available at the present time. The obvious extension is to consider

the discrete-time system analagous to (5), i.e.,

AG = Yf(t,O, ,Y) "-]

(8)

A& AE Yg(t,8,,Y)

where A is the finite-difference operator (Ax)(t) = x(t+1)-x(t) and t

takes on discrete-values t = (1, 1, 2, ... ). One can make the conjecture

that the discrete-time averaging theory states that as Y -- > Od, the

stability of (2.2)' is identical to the stability of the averaged system

Ae = Yfo(e)

(9)

where

fIG = i - f(t,e,o,o) (10)fo(6) =lim (10)

T -t=O

We will conduct research to determine if this conjecture is true, or what

the necessary modifications involve.

33
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?.4 ADAPTIVE CONTROL STRUCTURES

In this section we explore variations of (4) arising from different

models, control structure definitions, and parameter update laws. These

variations will be useful in different LSS control applications.

Structure of the Parameter Adaptive Algorithm

The adaptive parameter update algorithm in (4), 0 Y Yze, although use-

ful for analysis, is too simple in practical cases. The more general form: -

0 = Y h(t,z,e) (11)

can arise from normalization,

h(t,ze) = ze/C1 + jzl 2 ) (12)

least squares considerations,

h(t,z,e) = R(t) ze/(1 + z' R(t) z)

(13)

R(t) = z(t) z(t)'

dead-zones,

3 4 -- .
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Sze, lel> m
h(t,z,e) = , l l < m(14) -""J

or combinations of all of the above. These all have their use and charac-

teristics properties [see Goodwin and Sin (1984) or Ljung and Sodestrom

(1983) for a survey]. Which combination of these or other structures is

useful for LSS rneds to be determined.

Multi-Rate Adaptive Control

Multi-rate adaptive schemes (or two-times scale schemes) refers to an

adaptive structure where the adaptive control parameters are updated more

slowly than the basic control sampling rate. This scheme allows a period of

* plant identification to be followed by a change in control parameters.

Allowing more time in the identification phase also allows for more reliable

pass-fail tests. For example, we can perform a fit-error test after para- '

meter identification on the old data as well as estimating its informationL

content. If either test fails then the control gains are not updated. If

they both pass then the gains can be updated in the direction of maximum

information. We can also include a robustness test based on a priori (or

new) model error bounds. Ideas such as these have been considered for LSS

applications by Sundararajan and Montgomery (1982).

Hybrid Adaptive Control

If, in the multi-rate adaptive structure, the basic control sampling

rate becomes continuous, then the structure is referred to as a "hybrid"

structure: the feedback is continuous but Is updated at discrete times. .-"..
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Such a scheme reduces intersample ripple and also tends to increase band-

width and noise attenuation. These structures may prove quite practical for

the LSS.

Linear Finite-Dimensional Models

The modeling assumptions influence the adaptive control structure.

Assume that the plant to be controlled can be accurately represented by a

finite-dimensional model of the form -

y =-'x

(15) -

A - A x + B (u, y)'
m m m m ......

where u is the input, y is the output, A is a stable nxn matrix, and (A ,Bm )m m m
is controllable. (see e.g. ch. 2, Kailath, 1980). Under these conditions, "

the transfer function Pm (S,8) from u into y is: -"

n-1 n-2

Pm( s ' 8) - n+1 s n+2 . 2n (16) "
s + 0s + .. + 8n

This type of model is referred to as an explicit parametric model. The ad-

vantage of this representation is that the parameter vector 8 appears

linearly in (15). In Appendix A we discuss how this form is compatible with

equation error and output error identification algorithms. Moreover, these

algorithms can be transformed to the form of (4) and the theory discussed

earlier can be applied. Also, in adaptive control, the linear relation be-

tween y and 6 in (15) simplifies the transformation from model parameter

estimates 6 to control parameters, i.e., k = f(8).
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There are many cases where the explicit model (15), although analyti-

cally tractable, is oblivious to useful information obtained from a physical

analysis. Consider the implicit linear modal,

y c()'Xm (17)

x=A(a)x +~~
m m

where A(m), b(a), c(a) are nonlinearly dependent on the parameter vector

k
a c Q 2, where 0 is the parameter space, a subset of R . This model (2.9)

retains the physical meaning of the parameters, e.g., in an LSS the elements

with a can consist of equivalent masses, spring constants, and dampers.

There will be far fewer of these parameters than there are coefficients in

the equivalent transfer function, i.e., the transfer function P (s,a) from u ...
m

into y for (17) is:

(I) -b 1 ( )n
-I + .. + bn (18)-

Pm(s ,a )  -- (18) ,,- ..
m n n-1s a W S a l a' ( a)" " -

IaIc ..... 4ci1 n

It is clear that the parametric model of (18) can be made identical to (15)

simply by equating each coefficient i.e., = a1 (), e2 = a2 (a), and so on.

-. .- Since the model (16) is linear in 0 whereas (18) is nonlinear in a, there is

a great difference in the identification schemes. For (18) there are fewer

parameters to be identified, but several nonlinear relations. For (16),

there are many more parameters to be identified but all enter linearly into

the model. In LSS modeling it may be prudent to examine the effect of using

implicit parametric models, because of the reduced number of parameters to

be identified. This type of model, however, leads to more complicated forms

than (4) and involves a nonlinear observer. One such scheme using an EKF is

discussed next.
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Identification Using~ EKF

The implicit parametric linear model (18) is compatible with an iden-

tifier based on the extended Kalman filter (EKF). The EKF parameter

estimator has the form: ~

& = k (&(y - WR

(19)

=A(&)R b(&)u +k (&)(y - WR

where the gain k (&) and k (&) are the Kalman filter gains obtained by
ai x

linearizing (17) about the current estimate St. Although EKF has been exten-

sively studied (e.g., Ljung and Soderstrom, 1983) there still remains no

concrete proof of guaranteed convergence for identification and no proof of

stability in the adaptive case, i.e., when & is used to generate a control

law. In as much as explicit parametric models may better represent the LSS,

we will develop the theory in this area. There have been some attempts in

this direction by Safonov and Athans (1978) and Vidyasagar (1980). In this

latter work it is assumed that certain signals are bounded in order to prove

convergence. In the adaptive case this assumption needs to be proved first,

because the signals that need to be bounded are inside the adaptive loop,

and hence, dependent on the parameter estimator. The approach we take

is to apply the averaging theory of Hale (1969) by transforming the EKF -

based adaptive system to the form of (5).

Infinite-Dimensional Systems

Systems of the form (14) not only presume a linear finite dimensional

plant but also a linear finite-dimensional controller. Extending the theory

to the use of infinite dimensional plant and finite-dimensional controller
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may not prove to be too difficult, e.g., Kosut and Friedlander (1982).

However, the case for a distributed parameter controller (DPC), which is "

perhaps more realistic for LSS, is more difficult. What is involved here is

adjusting a few parameters in the DPC from discrete spatial-temporal

. measurements. This is certainly an area for basic research.

* Nonlinear Control Structures

During tracking and slewing the control can be nonlinear, involving

switching curves (time-optimal) and actuator saturations. Adaptive schemes

here must be rapid (high gain) and must account for nonlinearities. Domi-

nant kinematic or structural nonlinearities will also engender nonlinear .-

control structures.

Lattice Filters for Adaptive Control

The uncertainty in the number of modes to be selected for adequate

control of LSS raises some special difficulties. Conventional adaptive con-

trol schemes involve controller structures of fixed order. In the LSS

". context it seems necessary to adapt the controller order as well as its

parameters. The lattice structure is especially well suited for variable

order modeling and control as was discussed in Friedlander (1982),

•l Sundararajan and Montgomery (1982).

S.-. The theoretical development of lattice filters for control purposes is

only at a preliminary stage of development. Its applications to practical

control situations have been very limited. A number of issues need to be

resolved before the potential of lattice filters can be fully realized,

including:

(i) The development of order-recursive lattice models for plants
" -- with both poles and zeros. The work of Sundararajan and

Montgomery (1982) was limited to the all pole case. It is ex-
pected that pole-zero models will provide better fit to the LSS
problem. Some work has been done in this area (Friedlander,
1982) but questions remain regarding the simultaneous determina-
tion of the orders of the poles and the zeros.
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(ii) The development of direct lattice controllers. The main appli-

cation of lattice filters so far has been in the area of system
identification. The identified model can then be used to design
a conventional controller. It is possible, however, to use a

controller implemented in lattice structure and adjust its para-
meters directly, based on the observed data. This leads to an
adaptive controller structure in which both the gains and the
order are being adjusted.

(iii) Development of a prediction error lattice filter. The current
versions of the adaptive lattice are of the residual type (i.e.,
the predictor coefficients depend on current as well as past
data. In the prediction error version they depend on past data .-

only). The control problem is naturally related to the predic- K
tion error form. This development is a straightforward exten-
sion of available results.

Finally, it is necessary to test some candidate lattice algorithms on

real and simulated data to gain better insight into their properties when

applied to very high order plants.
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APPENDIX A

DERIVATION OF GENERIC ADAPTIVE SYSTEM

In this section we show how the nonlinear system (see Figure 2.1)

e - e* - c'x x Ax + Bz'O (A.1)

Z - Z*- Dx 8-Yze

is representative of a large class of adaptive control and identification

systems. In (A.1), e(t) and e,(t) are scalars, x(t) is an n-vector, 6(t)

and z(t) are p-vectors, A, b, c, and D are constant matrices or vectors of

* appropriate dimensions, and Y is a positive constant. A more thorough dis-

cussion on the derivation of (A.1) can be found in Kosut and Friedlander

* ., - (1982, 1985), or Kosut and Johnson (1984).

Adaptive Control

Consider the model reference adaptive control (MRAC) system of

Narendra, Lin, and Valavani (1978):

Plant: A x b u x (o) E R
p p p p P P

yp d + c'x (A.2a)
p p

-" Reference model: X - A x + bmr, x (o) 0 E R
- - m m m

Ym "cm x (A.2b)

" . Control: up -;'z (A.2c)

4 . 4.-
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Filter (Regressor): A =Az + b y b - btrr, z(o) =0 c Rp (A.2d)

Parameter Update: 8 Yze, O(o) c R, Y > 0 (A.2e) *

e y -y
p m

The external signals are the reference command r(t) and the disturbance

d(t). Let 6* be a constant vector in a subset Q*, of Rp such that when the

fixed-gain (non-adaptive) control

u =-B'z (A.3)

is applied to the plant the resulting system is stable and in addition ex- *

hibits acceptable performance characteristics. Any system corresponding to

any 0* C Q*is referred to as a tuned system and is described by: - S

=Az x b y db u b r

Af * +bfyyp* bfu p*b frr

= P -e1Z* (A.4I)

p** m

Define the parameter error vector

8 0* -8 (A.5)
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Combining (A.2), (A.4), and (A.5) and comparing the resulting system to

(A.1) gives the error state as

S - X I'

x = ) (A .6 )

and system matrices:

A -b b

A bb (A.7a)
-?A b b u

= (c; 0), D =(0 I ) CA.7b)

Since the tuned system is stable by definition, it follows that A is

stable, i.e., all the eigenvalues of A have negative real parts.

Identification

The algorithms studied in Ljung and Sodestrom (1983) and Goodwin and

" Sin (1984) will be used as representatives. Consider the posibly unstable

plant

yp c'x + d
p p

(A.8)

A + b u , X(o) c R
p p p p p p

with (Ap, bp, c) controllable and observable, to be identified by using the

p plinear parametric model

S46
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= x

A x b y b ux (o) (A9
m  f m  fy fuUp m (A.9)-

.is stable,.and

where y is set equal to either yp or ym' Af is stable, and (Af,[bf b l)

is controllable. In the case when 9 p and d(t) 0 0, a unique B, e l ex-

ists such that yp -Ym* where Ym* satisfies:

pm O* Ym
Ym* = O X m t[ ]

Xm= AfXm, bfyy + bfuUp (A.10)

Y = Ym*-
'--- 3 .- '

In practice Z > p due to unmodeled dynamics and d(t) A 0 due to sensor

noise and disturbances. In this case e, c R- can be chosen to minimize

either the equation error norm

Ce) = Ily C.) - (A.11)

or the output error norm,

J2(e) llyp .) Ym -()I y (A.12)

where the norm fl.fl is defined as
N-

pT
I1f(.)l lim j If(t)2 dt)1/2 (A.13)

T->- 0 ; :

-" --- ".._"7



When t. p and Hld(.)Hl 0, the equation error solution is identical to the

output error solution and is given by the unique 0* satisfying (A.10). 42

Hence, in this case, J 6* j 8) -0. When Z. > p or tld(.)II > 0, the
*solutionF! are different. In general, output error provides some filtering

of the disturbance.

The on-line or adaptive procedures for obtaining output error or equa-

tion error estimates have the following forms. For equation error

identification:

Error: e y y Y~ =8 x
p mm

Model: A Axm b yp bfu (A.14J)

Update: 0 =Yxme

SFor output error identification:

Error: e y ~ n='p Ym Y ~ m

Model: A Ax -b y ib u (A15

Update: 0 =Yxme

Let 0*denote a minimizing solution of either (A.11) or (A.12) and let

(A.10) describe the resulting tuned model. Define the parameter error

0*=e (A.16)

Comnbining (A.10), (A.1'4), and (A.16) gives the equivalent equation error

* system:

....................................



*~~~~r . WO -

• '" ..

e - e* - O'z , e* = yp - ez

Sz= x (A. 17) 0m "%%

0=Yze

which is a degenerate form of (A.1), i.e., the state is not driven by the

non-linear term z'6 as it is in the adaptive case (A.7).

In the output error case, combining (A.10), (A.15), and (A.16) gives

the equivilent system 07 .

e *= e, - 'z, e, = yp - m. -

z = Afz - bfu + b Z'e (A.18)
f fu p fy

= Yze - -

which is also a degenerate form of (A.1). Note, however, that in the output

error case, the state equation is driven by zt8 whereas in the equation er-

ror case it is not. Hence, the output error systems is much more like the -

adaptive system (A.7) and can exhibit the same type of instabilities and

parameter drift that have been reported in several studies, e.g., Rohrs et ". -

al. (1982, 19B3), Reidle and Kokotovic (198 4 ).

B-

. . . . . . . . . . . -

-. .. .-.



APPENDIX B

METHODS OF AVERAGING FOR ADAPTIVE sysTEmso

Robert L. Kosut *.-

Inl grated Systems. Inc .
101 University Avenue
Palo Alto, CA 914301

. " j°

Narendra, Lin, and Valvanni (1980), Landau,...

(1979) . In order to apply the aver'aging theory to
Abstract Obtain this result, the linearized system has

first to be decoupled into slow (parameter) states
and fast states. It is this transformation which
is essential to the averaging approach and is a

A sammary Of methods of averaging analysis major contribution in the Riedle-Kokotovic method.
ivs< d foe- cont inuous- t ime, dda pL va

sys te. Tti5 averaging re sults of Riedle and Averaging has also been applied to the
1939.1 and of Liung (19-7) are examined count er-exampl e of Rohrs et al. (198?) by AsltromT

si. nown to be closely related. Both (1983, 19814). In this analysis, by "freezing" th,
rei- s eult in a sharp stability-instability parameters, the parameter and state equations are

br,,ni-y whin -an be tested in the frequency decoupled thereby obtaining the asymptotic
0mi i rirtf-prel ed as a signal drpendent trajectories. Both of these averaging analyses

;Sit! vily c:nli tion. assume that the system is periodic or almost
periodic, an assumption that ran te dispensed with
by introducing the notion of a lordi (moving)
average, Kosut, Anderson, and Mareels (1985). In
the same reference, the averaging approach is also
shown to be applicable to discrete-time systems.

In Riedle and Kokotovic (1985), the
averaging approach is extended to nonlinear
systems - and generalizes Astrom's analysis by. -

:r.,,~dur ion

introducing the Integral manifold which completely
sepaates the parameter and state equations. This

T.h'>,-,!Y developed in Kosul and Anderson latter approach is valid for the nonlinear
)9 ") shows that. the stability of adaptive adaptive system, and not just the linearized part.

sytem3 In th n'ighborhood of tn, equilibrium Similar results can also be found in Fu, Bodson,
irs dependent on the stability of - and Sastry (1985).

(19','9 of ordertime-varying equtoatons. These a7
*ss-~i llyare a linearization of the adaptiveAnaegigmto wsalodvopdb

sy-m an gre r.fErred to here as tht linearized L A n (17 raging ue i n reeie yeursv
iartite system. be (9 ) ouse in scr ete-timatescursi-e

parameter estimation. The analysis shows that the
'n a recenl paper by Riedle and Kokotovic convergence properties of the estimates can be

classical mthod of avrging a determined from the stability properties of amh of ( related set of ordinary differential equations;

srystized adaptive system. The result is a sharp a Alyseo n . al r e e as t ODE

stbilhity-instability boundary determined by a aaysis,

B. nl dependent p esitivity condition. This e n th er esaiz te s lt s
r-ii!t as signifi-,n ly weak. r than the SPR taine tbries d pan p oe tesvae he in 15a ndes

strictly positive real) condition required Int thesye po ic 1
"o s i f d i y m gshow (heuristically) how they are relsted to thbdtlocal stbility andlysis of Kosul and Anderson

(1983, 1984) and Ihe ODE averaging approarh of
Ljung (1977).

Rv-srar-n apppprrohed by AFOeR unddr Contratt

F4WS '2-84 -C-0054
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3 ata aijPs1V1

A It hUgh It I15, util ikf-y IhO i 1ruly p.'nfric
I pl rror syst em con t fortnd to c,,ptur U! ill

i (f a~ipi v systen ; Lh. r:;( :,~ipiveIt is Of nrterest Lo dett-rmir,j under what

ye It a-un i n Figure 1 is offeiied ais a good cc, nd 1 .Iona the adipti ye error system (,2.1, 3)
a n , -I i on f Gr tihp p u Tpii-, n of anal, y is 5. The produr-en bourid'd outputs (O,e,v ,z$ fcr all bounid. d

3~ vs--' 10M,~- ions 't: initial parametLer e.rrors U(o) ER . Tnijs is w~jit

out s,, aresult is possible to prove provid-d

Z - Z. - v (2. ta) I ~ ' y"lbl tblt. A ttrs.

-Hv I2t)1 H (s) c SPR with gradient (3.1)
za ev

.A V- z' (2.10 ) H ev(a) -1/2 E SPR with least squares
(3.?)

z~(2. 1d)

F3.) Z* c LP and either (3.3)
S- pmntL o f (2.1) a be found in Kosut and a 1 A -LrL(.1

Frii-lar,-r (198-, 1985) and in Kosut rand Johnson
.4 '0K' . ~In (2.1). e(t) c R1 is a measured error, Ie,4 n 35

wnr1~aicih drives the parameter update (,.1d), b iwcL n 35
z R Pis th- regressor, and 0 f t) c R Pis the z PE (persistently exciting)

p e rror between the current estimate at t
ai rlparameter setting 0. Lz R p. ThePaaeecovreet aonatinR orCa

as. it:nof 0. is based on complete knowledge of Prmtrcnegnet osati rt
tI ln n itrbne. Tesse well defined subset in Rp, requires that (3.41) be

osprding to this setting is referred to as the srntee o
- ~ ~ , e .n:ss . The signals e.(t) CPand z,(t) c L

* ~ ~ ~ ~~ -r, -atpuls Of the tuned system, and are e, ~L ~ P 36

rEf err<d to as the tuned error and tunefd~;v esp-ctvely Th sinal lt)c Rcan The above results can be found in Kosut and
rri~ s- error. y Th ina ~t Friedlander (1982, 1985) and in FBoyd and Sastry

as he dapiveconrol(19811). Although of theoretical significance.

The : -erators H and H are dependent on they are not feasible to obtain in practice. In
is-rteho ves err n the first place, due to unmodeled dynamics (Rohrs

efe~s~ret al. 1952, 1984). H (a) E SPR is pratically
r- st grals . Wez assume here that H and e

ar- I:n~rtin--nvrint(LT) it ~be impossible to achieve in adaptive feedback and
'iZYre transer-tfuncinsi H TI) and h H (). h even in some output error identifies- tion. (This

lran-sf fr tin eapHentepa ob is not the case in equation. error identification.)
ro~~-s isL~iandtheadativ cotroleris Secondly, when e. E:L as in (3.5), it is requiredr r,' l! i LT an th ad pti, cntrlle is that z c PE which can not be guaranteed in advance

i r in the- alaptive parameters. The stability
* -f since z is inside the adaptive loop. Case (3.6)

V H z osq~c ftedfnto which requries z, e PE which is feasiblt to
~ h2ur~ aamtrSetn.establish - conflicts with e,,6 c L e L.. The

re oeraor depndson he coic oflatter implies e* (t) - 0 which can only Occur for
l~e.±rup'ltealgritm. e wll estictz* c PE -and where there are no unnodeled

upnrcn e to oitm the follwin rerestaitvs dynamics which we argue is not possible.

i nl'rt With these impossible to satisfy theoretical
requirements, it is doubtful that a global

(rz)(t) - Z(tl (2.2) stability theory can be attained which relies on
passivity, i.e., condition (3.1,?). On the

>0practical side, however, there is substantial .
evidence of well engineered algorithms that work
without SPH, e.g., Astrom (1983). These do not

* 'KurioL-ist, Squires work for all O(o) and for all e,,z in L., but
rather, for restricted magnitudes and signal

(zt)-P(t)z(t) spectrums. For example, If H (s) is SPR for w <

I then It is expected that Re adaptive system
0~~ fl- w~ be well behaved provided there Is

at i t) - Z(t) zlt)' (2.3) insignificant excitation aboveB.

Pro: -P10 1>
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". lIv,.it:,nili tZ ',fl Gain Theory and B. Recursive Least .Iquar-s Algorithm

In this case we have from (2.3) that

(rz,)(t) -P,(t)z,(t) k

By restricting the magnitude of 0(o) and the 1
magnitude dnd sp.ctrum of z,(t) and e,(t), it is g P'(t)- z,(t)z(t)' P'(O)>0.
,,sSible topr btain conlitions to prove local
stability. ..g., Kosut and Anderson (1983, 1985). When z, e PE there exists a > 0 such that- V.
The local stability property hinges on two
premises: (1) the error system trajectories are in
a (not necessary small) neighborhood of the tuned -1 -,
so5Utw inn, ond (?) the linear time varying system P'(t)-1 P"(0) + z*(T)tx(i)'di
which mnAps w -0 as given by 0

" =- (f'zw)(t) HevZ().)+ (rw)(t) (4.1) ") at,."I
H ev(z,()0()) Thus, it is convenient to define

is L - stable, i.e., there exists constants k and I p,(t)-1 for-t >.0
SZt. C < kl wl b. The choice of r' comes t J'.- (..'r-t>-

from (2.2) or (2.3) and z,(t) is the tuned Hence
regressor. We can regard (4.1) as a linearization Hence
of the update algorithm. There are several ways R(t)-1 tP(t) <.
to establish the L stability of (4.1). * , a

Gradient Algorithm and we can write (4.1) and (2.3) as,

We first, consider the case when r represents R_ .1 R-Irw ZH (zO)] (4.14)
the. gradient algorithm, i.e., (rz,)(t) - cz,(t) t ev 10)]
with F > o. 1

R ( z~z, - R)
In Anderson (1977), it i3 shown that if H

* s) c SPR and z. PE, then for all c > 0, w . 61
is exponentially stable, and hence, L.- stable. When H (S) - - is not SPR we can now follow Ljung
In Anderson t al. (1985), if He()( 19 7 7 )ed for t > s and s sufficiently large,

ev ev replace the right-hand side by its average.
* sLHs), Iv(S) E SPR, A(s) is stable, and z, E PE Letting "overbar" denote average (assuming it
then for-sufficiently small E and II1tL2 , w 0 exists) we have:
is still exponentially stable, and hence is L.- -I .__ _.

stable. This latter method relies on loop- t - -
transformations and applicaiton of small gain t ..
theory. 1

,(t). (Z*z-- R).

Another approach is to use averaging. In
Riadie and Kokotovic (1984) it is shown that. if z* Integrating from s to s + T, T > o, gives

PE with th- Fourier series representation

jW t B*T -_-1
z Z't) I a(Wk )e (4.2) [O(s.T)-O(s)3/f dt/t- R (w- (ZHeZ)O)

(4.6)
and if the eigenvalues of the real matrix

B - E a( )) a(-W )' H (-jW ) (4.3) +
k k k ev k [R(s.T)-R(s)]/f dt/t R (14.7)

all have positive real parts, then for all
sufficiently small E > o, w - 0 is exponentially
stable, and hence, L.-stable. Moreover, If any
one eigenvalue of B has a negative real part, then s*T
w - 0 is exponentially unstable. Hence, there Now change time scales s + T i + Ai, Ai - f * *
exists w E L s.t, I0(t)l- - as t
exp3nentially fast. It is obvious then when dt/t and letting s -, gives the differentia?

H v(s) is not SPR, but only approximately so, then equations:
t le Riedle-Kjkctovic result provides a sharp
5tability-instability boundary. Note than when -1(T) - RA(1)-Iw - B 0A(T)] (4.8)
H (s) is SPR and z. c PE we have from Anderson A." .A .A(

MT 77) that w - 0 is exp. stable for all c > o.
On the other hand, the result In Anderson et. al. A R-) (49)
'19'5) remains valid for H (5) c SPR (A(s) - o) = - RA('

because then c > o is bouned above by infinity.
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with B zh.V gjv-n by (4.3). Thes with the gradient algorithm (?.?), let ..

eqU it 1011S a s.,ri Ia tho asymptotie behavior of
(4.1) in just the same wiy as they do for 0(t) - (t) %" discreLP-tiffl- (LJung 19"M) (5.51 %

Observ- tht in (4.9) as i ' , RA 1) - Y(t) - .

z .z. Thus, wh,'n He (s) - is not and

?E with Fourier representation (4.2) the

asymptotes are stable if f(t,O,x) - z,(t)eM(t)- Q,(t) x c'x D x %-:

Re (L) > o (4.10) Q(t) - z,(t)c' eM(t)D (5.6) "

" where g(t,Ox) b(zf t) - Dx)'O

L (z.z-) B With the recursive least squares algorithm (2.3),
define: 

", ,

- ( (w (CL )(-wa )'H v(-J"k) 1()
' 

Pt
.

<k (4.11) R t p(t) (5.7)

and let

If Re H(j ) p > 0 at low frequencies, and if 1O(t)
5(u

a )I is smil1 at frequencies where Re H(J w) < s(t) " 1 , )<(t) - - (5.8)

0, then Re A(L) p. Thus, all parameter (col(R(t))) t

asymptotes hav:C a uniform rate of convergence
w,ih is not the etse for the gradient algorithm where the oprerator col[R} stacks up the columns

with a time-invariant gain, of the matrix R to form a vector. Thus,

"': .- f(t,.0¢,x) - " " '

""r;n: MrGnaArcR (z%(t)e,(t) - Q,(t) x + c'xDx) (5-9)
m. . A; a- n i  More General Approah (, (5.9) Dx)'.,,R

collz,(t)z,(t)' - z,(t)(Dx)' - Dxz,(L).
:::' l '," Dx (Dx)' - R) ' "

In this setion we will establish a general

frrm of ,n, adaptive error system (2.1,3) which is g(t,O,x) - b(z1 (t) - Dx)'O (5.10)

. useful for application of averaging methods. The

first step is to transform (2.1,3) into a set of

nonlinear time-varying differential equations. To The coll.] operator was used by Ljung (1978) to a
do this observe that if H (s) are strictly proper develop the discrete-time version of (5.3), (5.4).

functions (a convenient i~yustrative, but not

necessary, assumption) then we can write
-1 Heuristics: The Integral Manifold

H (s) =c'(s1-A) b
ev -1 (5.1) The basic idea in the application of

H (s) - D(sl-A) -b averaging methods to (5.3,4) is to see what

w A Rn Rn, with happens when Y(t) is small. Essentiallyl, ¢(t) -

where A 
n  , D Rpn, slows down and we can repalce the right hand side

(,b,[c D']) a minimal representation. Also, Re of (5.3) with its average, i.e.,
A A) < 0 reflecting the fact that H and H (s)

*are stable. The error system (2.1)ey then"v
".-.. equivalently expressed as 0 - .(t)f(o) (5.11)

e - e. - c'x where f(*) - lim i ft(t,Ox(t,4))dt (5.12)

z - z. - Dx - -
(5.2) assuming the limit exists. (Such is the case, for

Ax - bz'D example, when f(t,0,x) and g(t,o,x) are periodic
in t for all bounded 0 and x). To arrive at
(5.11) formally requires the Introduction of the

0 - frz)e integral manifold as suggested by Reidle and

Kokotovic (19-85) [see Hale (1969) for discussion

•y eliminating the variables e and z we can reduce 
of the Integral manifold-

:5.2) to the coupled state-space description: The integral manifold M of (5.3,4) is the

set,

- - Y(t) f(t,Q,x) (5.3)
M = (t,o,x : x(t) - h(t,*(t)) (5.13)

"- Ax g(t,0,x) (5.4)
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By subs~titutiingx -h(t,,V) int (5.3,14), the Theoremn

partial differential equation Let o denote a solution of

L) hf(t,$,h) - Ah 4 g(t,$,h) (5.114) ( )-o

Whenever '(t) is sufficiently small, a reasonable and define the matrix,
approximation is to h(t,$p) is given by h 0(t.0)
whic~h is the solution to 0c--i

0-t A ~,, Provided Re A(G) 4 o:.."dd.

-F(0 ho + bz 4,(t)'0 (5.15) (1) If Re X(0) < 0 then 0 Is u.a.s.

*where the last line follows from (5.6) with (ii) If max Re A(G) > o then * 0is unstable.

FVJO) - A - bUj'D (5.16)
Application to Gradient Algorithm

In (5.14), 0 and t are regarded as
*independent variables and, hence, we can define Applying this result to (5.5.6) with the

the stabilizing parameter set
gradient algorithm and with zc PE and ze,

D = 0 E Rp: He )(FCO) < o) (5.17) - o, gives G - -B with B from (4.3). Since 1(~t)
s- c > o, we can only conclude that if' He AMB >0 o

Tnus. for Y't) sufficiently small, we can refer to and e is sufficiently small, then 0(t) approaches
h(t,fl) with 0 c D as the stable manifold, which an c-neighborhood of 0 - o as t + -. Provided of

Wa willby 0 £course that O(t) c D long enough for transients -

appoxmae 0 t,) D. to die out, which istmunprovable as yet in general.%
L The, final transformation on (5.3,14) is

o!b'ained by examining the behavior of (O,x) in the
*naighborhood of the stable manifold. Introduce Application to Recursive Least Squares Algorithm
*the error state, Under ths same conditions and with the same

C. - - ht,$)S~t8 provisions as above, G --L with L from ~ .

(4.11). This time, since Y~t) - 1/t *o as t .=

we can conclude that if Re A (L) > o, then 0(t)
-UUsing (5.18), and (5.3,14), with the approximation o as t * at a rate 1it.

h (t,G) for h~t,' ), we have

= i(t)f(t,O~h (t,())+0) (5.19) Rfrne
0

C, =F(~)C,(5.20) Anderson, B.D.O. (1977). "Expon-ntlal Stability of
Linear Equations Arising in Adaptive

If 'ft) is sufficiently small and 0 remains Identification", IEEE Trans. on Aut. Control, Vol.
C nov nslowly) inD then &(t)- o exp. fast. As AC-2?, pp. 83-88.

the stability of (5.19) Is identical to the Anderson, B.D.O. , R. Bitmead, C R. Johnson, Jr.,
stability of the asymptotic system: and R.L. Kosut (19814), "Stability Theorems for the

Relaxation of the Strictly Positive Real Condition
in Hyperstable Adaptive Systems", Proc. 23rd IEEE
COC, Las Vegas, NV.

OA (. - NO~A (7)) (5.21) Astrom, K.J. (19814), "Interactions Between
Excitation and Unmodeled Dynamics in Adaptive

whereControl", Proc. 23rd IEEE CDC. San Diego, CA.

T Astrom, K.J. (1983), "Analysis of Rohr's Counter,.
f()-lim 1. f f(t,o,h (t,0))dt (5.22) Example to Adaptive Control", Proc. 22 IEEE CDC,

T.- o0 San Antonio, Texas.

*.assuming the limit exists. The stability of Astrom, K.J. (1983), "Theory and Applications of
(5.21) is given as follows. The proof is in Hale Adaptive Control -A Survey", Automatica, Vol. 19,

((969).pp. 471-1486.
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APPENDIX C

Fundamentals of Control for Large Space Structures:.. . - =.-

Robust and Adaptive Design [.iA

p Abstract CONTROLLER
BANDWIDTH

This report gives a summary overview of

robust and adaptive control design for LSS. SYSTEM MODES

It is one section of a larger internal report in

progress. 0.010. ,.0 ,0'.0

FREQUENCY (Hz)

11-2.2.7.4.1 Control Design for HAC/LAC Fig. 11.2.28 Flexible Structure Mode Location

- Architecture. In this section we will discuss the and Controller Bandwidth

steps involved in control design for the HAC/LAC The control design approach must properly han-

architecture. Although the architecture is special- die the poorly known higher-frequency modes by

ized. the control design methodology is not and can ,daz t.lrl".

* " be quite general. We will discuss three methodolo- not destabilizing them while controlling the low- ""-frequency modes. Indeed. no matter where the .,.:

-- gies for design: (1) an LQG based methodology feunymds ned omte hr h
controller roll-off frequency is situated, the infinite

whose genesis is the ACOSS/VCOSS programs. nature of the modal spectrum implies that there will
and (2) a more recent approach involving whatnareothmdaspcumipeshateewil L--

ands kn2)n a more retepproachivon g what -be modes within and beyond the roll-off region. fur-

.ois izkn on" a ese pateramethaos and requc- thermore, destabilization is likely and almost certain - "-

optimization*'. These latter methods are frequency- t cu nteri-f ein iuto hc a" "" dmain oientedrathe than tate-sace orentedto occur in the roll-off region, a situation which can .-...'""

domain oriented rather than state-space orientedonywrefrclsypakdm esndow.• ~~only worsen for closely packed modes and low "-""

like the LQG approach. (3) We will also discuss an n'-."-"e
adaptive control strategy which can be utilized for natural damping. This phenomenon sometimes

referred to as "spillover" is one of the most crucial

online Sel-calibration.We refer tothis approahhas been problems faced by the control designer. In more

a v a t T a c bgeneral terms. spillover can be viewed as an aspect

developed by ISI under an on-going research con- o b fnlle

tract with the Directorate of Aerospace Sciences ofdiscussed problemof robust cntrldesign this will be

in AFOSR Modeling of Flexible Spacecraft. A central issue

in the active control of space structures is the devel-

Limitations of Design. Independent of the opment of "correct" mathematical models for the

design method. the defining characteristic of the open- and closed-loop dynamical plants. Programs

-, ."" vibration control problem is there are an infinite such as NASTRAN and SPAR are the primary cur- -'

number (theoretically) of elastic modes. with low rent tools lot generating dynamical models of con-

" natural damping. and the controller bandwidth ceptual spacecraft whose structure cannot be ideal-

!- .:,' extends over a significant-number of these modes ized by simple models of beams. plates. and beams

(Fig 11.2-28). The low frequency modes interact not with Jumped masses.

only with the attitude controller but contribute Finite-element structural programs generally pro- -. "

directly to the deformation geometry of the structure viete-ece nto es inruwt p a s eo m aly fr-
whc itefmyrqieacrt.oto.Poe vide the control designers with a set of modal fre.

Swhich itself may require accurate control. Proper quencies and a set of mode shapes (eigenvectors)

control synthesis requires that performance criteria corresponding to appropriate boundary values

be precisely formulated or the control problem is (e.g - free-free modes) These eigenvectors are

ill-posed.
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* given in discretized form. i e . a set of modal dis-
placements in the x. y and z directions at each low damping in a wide range of modes for maxi- a

nodal station In some cases. modal rotations are mum robustness. Figure 1I 2.29 shows the control-

. also required In addition. coordinates and a "map" design procedure with integrated LAC and HAC ..

" of the structure's nodes must be provided to allow designs. "

the reconstruction of physical displacements in
terms of their modal expansions.

The important point here is that, for any nontri- -,

vial flexible satellite configuration. the volume of .

information is so large that the data handling must 4 .
remain entirely within the computer and its mass-
stuw--ge facilites. Development of this database in a -

form usable by control synthesis software, is a fun-
* damental necessity for the synthesis and evaluation

of complex controls which require modal trunca-
tion. actuator/sensor location and type changes. STRUCTURE DESICNPERFORMANCE -~ " 

°

and evaluation of system performance for parame- CONSTRAINTS-

ter and system Order changes. Preparation of a
structure for controls is a major part of the overall ACTUATOR!SENSOR N.,.

effort required to develop structural control systems. S

", Nonlinear Models. For single-body monolithic sTRucTURALYSIS -

structures, the fine-pointing attitude dynamics areI MODEL

"* subsumed in the rotational rigid body modes EVALUATION MODEL -

* included in the modal matrix. When only "smal"
motions of a space structure are being considered. NACcEPTABLE ANALYSIS

the conventional linear structural dynamics analyses

(NASTRAN and SPAR) are adequate. and the ACTUATORS-SENSORS I
rigid-body modes are formally handled together ACCEPABLE
with the elastic modes. even though the actuators
necessary to control them will be different. in gen-
eral, from those used to control elastic vibrations. "O-PEN-LOOP IOELO -I

When larger attitude angles need to be considered, MAC MODEL LAC MODEL -

if the angular rates remain small. the linear equa-
tions are still applicable provided that the rigid body
modes are now given in terms of three attitude
angles which then constitute the first three modal CONTROLLER

coordinates The displacements are then interpreted REDUCTIONON,

as the linear deformations of the structure with R N

respect to the rotated frame This procedure EVALUATION

removes the kinematic nonlinearities resulting from
the linear stretching of the structure under the classi Fig. 11.2-29 Analytical Control-Design

cal rigid-body modes However. for large angular Procedure

rates, nonlinear dynamic effects have to be mod.
eled. even though structural deformations can still

be represented by linear equations -

Two-Level Control Design: The HAC/LAC
* Methodology. The two-level approach consists of .,

a wide-band, low-authority control (LAC) and a
narrow-band. high-authority control (HAC). HAC
provides high damping or mode-shape adjustment

in a selected number of modes to meet performance
requirements. LAC. on the other hand. introduces
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' LAC I usualv impl'mented with colocated sen.
snrl and actuators However. the theory, based on MAC MOD. ,
the work nf Aubruni is applicabh. to multiple 9ANV OT%i~-- --w40h - u N C E T A N 'r i IN A C. ," .' ,

actuators sensors with cross-ledback and possible CON1ROLLER DUE TO MODES * E

filters lAub 1] OUTSIDE MAC BAN'DWIDTH

HAC uses a collection of sensors and actuators

', not necessarily colocated Selecting the increase in ,-. .. % 
"

damping ratio is realized by any number of meth- TFREOUNCY

ods. including: LQG with frequency shaping. LAC MODEL BANDWIDTH

Q-parametizaton. or Ho-optimization. These ... AC..

methods provide roll-off over desired frequency Z FREQUENCY-

regions HAC may destabilize modes not used in INTEGRATED-0 ACLAC DESIGN ''v''o

the design LAC is. therefore. necessary to "'clean MAC-LAC DE.iN

up'. problems created by HAC. UNCERTAINTY REGION

The need to integrate HAC with LAC is shown in
FREQUENCY -- I&,

Fig 11.2-30. HAC is based on models valid over a

limited frequency region. It produces large increases Fig. 11.2-30 Need to Integrate High.Authorily
' =" in damping ratio and disturbance rejection in the fre- Controller (HAC) and Low. -.

quency range of interest. The effect of the HAC Authority Controller (L.AC)
controller on modes not used in the control design
and outside the controller bandwidth may be stabi- d t)

lizing or destabilizing. LAC is designed to provide . y. .-
protection such that adequate damping is provided Ps-
in the mode most adversely perturbed by HAC.
With reference to Fig. 11.2-30. the LAC moves the c,

entire uncertainty region above the zero level damp-
Ing ratio. Fig. 1/.2.31 Vibration Suppression Control ,.

In the next few sections. a more in-depth discus- System

U I sion of the blocks in Fig. 11.2-29 will be presented. in
particular: actuator, sensor location, model and function matrix. Neglecting the rigid body modes in

controller reduction methods. and HAC/LAC syn- P(s) and assuming infinite bandwidth sensors and

thesis These methodologies rely on certain proper- actuators. 2..,

ties of feedback control: this raises the issue of P = CkIS)

robust control design which is fundamental to the k=1 L

whole design philosophy of feedback. especially for
LSS. and this will be discussed first. where 2..""

Robust Control Design. This section will describe C k 2 (S2

how to evaluate the robustness of a control design. s 2Fkk -k

The evaluation is independent of the methodology
used to achieve a particular design To illustrate the Suppose that n of the modes are known. Let P,(s)

technique we will consider the robust control prob- denote the known part of P(s). "
lem of vibration suppression with unmodeled high- For example. Pa(s) can be obtained from P(s) by
frequency dynamics. Figure 11.2-31 shows the con- modal truncation. i.e.. the first n-modes of P(s) are
trol system where P(s) is the plant transfer function retained. One can ask the question: is this the best '." '
matrix from actuator inputs to LOS sensor measure- choice foi a given model order n? In general. it

ments. and where C(s) is the controller transfer depends on what is meant by best." For closed-
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loop control it is usually better to retain those magnitude Except for the mag in-mag-out bound. i%
n-m(,des which most affect the closed-loop perfor- all other bounds depend directly on the frequency
mance How to select these modes will be discussed dependent quantity fH(j lW(j,)]J A natural fie
in the section on model reduction quency domain performance criterion is then

Assuming the modes have been selected, define
Lo H 0 iW (i"IJ Pt1)

model error as 01 ,

At.",s) Pts) Pnts) " Gk(Sl a .
(, kk where p(s,) is selected on the basis of power. .. $.*,

energy. and magnitude specifications on the output
observe that 6(s) is stable because both P(s) and signals In terms of model error performance specifi-
P,.(s) are stable. Hence. it can be shown that the cation is satisfied if "-
closed-loop system is stable if. o e',"gv[ ]iJ < 8i n 0.11. ..

U with bprn(w) is the performance margin given by

where Q.(s) is given by Qn(s) = C(s)
11 [,P ,slC(.s)]- and where " 1)denotes the maxi- Ip 1 _  Pn • , _ S [. •'i''

mum singular value of the matrix argument. The ,

quantity ,.,1 is referred to as the "stability mar- and where bn(w) is the performance of the nominal
gin'. hence. the subscripts "sm"•. (See [Doy. 1]. closed-loop system Hn(s) with no model error.
[Kos I]) Then. -"

The stability robustness test depends on the loca- Pn() n Wl.w"]

tion of uncertainty. Additive perturbations such as a'

those just discussed result in the test as shown. The
table in Fig. 11.2-32 shows a variety of stability mar- which must always be smaller than P(w) in order for
gins corresponding to generic forms of model error. 6p (w) to be meaningful. Note that bprn ) > 6sM( ).
In Fig 11.2-32. P = plant. C = control. M nominal as would be expected since performance includes
model, and -. = model error. The stability margin is stability. As before. the location of uncertainty mod- -.
expressed as a function of C and I which are ifies the calculation of 6p,(,). "
known quantities Examples of some model error Usefulness of Stability/Performance - -

tess are shown in Fig. 11.2-33 for the CSDL #2 Robustness Tests
VCOSS model The stability'performance robustness tests are
Performance Robustness. The stability robust- indispensible in obtaining a realistic preliminary
ness tests can be extended to evaluate performance design. They are used in a number of places in the
robustness to model error. The evaluation is deter- design cycle to establish the HAC /LAC gains, effect -"

mined by how performance is measured. Consider of actuator/sensor dynamics. and the criteria for
the closed-loop system model and controller reduction, which will be dis-

cussed in the next section. The tests are also invalu-
tyt) His)dtt) able in establishing criteria for online system identifi-

cation and control, which will be discussed later on -

with H(s) the closed-loop transfer function, in this section.
Althot:gh dfi) is not precisely known. it can be con- Model Reduction. In general. the requirements
sidered as the output of a weighting filter W(s) for model reduction for active control of large space - - .-

. driven by -noise- w(t). then d(t) = W(s) w(t). structures must include the following:
Output performance versus input is shown in 1. The reduced model should be suitable for con-

Fig 11.2-34 The table is derived by bounding the trol design and synthesis. It should incorporate
noe input wit) in terms of po'er. energy. and all features critical for the selection of a feedback

..:.. :~ .,- . .*

-- - - -'-"-- - -- 
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Fig. 11.2-32 Source of Model Error in Spacecraft System

structure and control gains, unique coordinate representation for which control-
2. The reduced model should accurately incorpo- lability and observability rankings are identical. The

3 rate actuator effectiveness, sensor measure- definition of internally balanced coordinates follows:
ments and disturbance distibution [ACOSS. 11.

3 The dynamical characteristics of interest in the Def. An asymptotically stable model

structure should be represented in the reduced x = Ax Bul is internally
model. ',' -

A basic methodology for model reduction which has ly Cx

been used successfully in ACOSS/VCOSS and a
number of other programs. internal balancing. is balanced over 10i 1FF
now described. Other approaches also exist which
will be examined in the program. A lT .At eAt 2

Internal Balancing J eBB e 'd e CTCe dt-
To determine the most important modes for con- f o

trol design. many criteria must be considered includ-
ing controllability. disturbability. observability in per- 1• - 2 2 2.
formance. and observabilitv in the measurements. where . - diag a a 2 2

Any mode which is highly controllable. observable.
and disturbable must clearly be included in the

design model. however highly controllable-but- > >

unobservable modes. for example. are difficult to
judge 'Moore (Moo. 1] has developed an "internal Notice that the balanced representation is such

- ,- -- balancing- approach whereby asymptotically stable that the controllability Giamian and observablit. "
" linear models are transformed to an essentially Gramian are equal and diagonal. The o,•s are
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Fig. 11.2.34 Performance Robustness Criteria

termed "second-order modes," In general. the _. ____- __"_-- ___"_" ___;____~0.0009 -............ .... . - -- - - -- - - - - - - -
required transformation "scrambles" the original I.00 --"-- --....-

coordinate system such that the physical meaning of 0 0. 0003 .-.---.... --. .

the states is lost. 0.000• ,,,o~ o, , ---' --.-: -----!- ......... .... - ' - - --------- . .. .. .. .. .
However. for lightly damped structural models 0.:

with decoupled dynamics. the internally balanced 0. , I " , ,. .

coordinate representation is approximately equal to 0.03 --------- ---..-- . ,
0 .0 2 --- -. .--- .. .. .. . . . . . ..- -.. .

a scaled representation of the model states. Thus it

is possible to write approximate formulae for the U 0.00L, I I , h..I _
*O s

states in terms of the original model. Three modal w , ,
rankings are considered: j0.05 :'-: "! . .. . .. .. 'i'"

0 disturbance inputs to LOS 0. 5. 10. 15. 20. 30. 40. 8s. so.MODE NUMBER i.::

0 actuator inputs to LO S MOD..NU-.-

* actuator inputs to sensor outputs Fig. 11.2-35 Open-Loop Model Analysis
These "second-order modes" rankings give -'-"-'

important evaluations about which modes to retain extended to finding a reduced model Pn(s) of a high -.-

and validity of actuator/sensor placement. These order model P(s) such that
rankings are shown in Fig 11.2-35 along with LOS r--
modal cost [Gre, 1) computed using the colored W(j.)[P(J")" Pn(i")J I
noise disturbance.

Here the absolute values of the modal costs (for where Wo(s) and W,(s) are output and input fre-
the VCOSS I model) are used. The RMS second- quency dependent weighting matrices. These can
order modes and modal costs are plotted versus be chosen to reflect closed-loop requirements on
mode number in Fig. 11.2-35. Immediately 'ident model error. vis a vis. frequency-domain stability

is the clustering of these modal phenomena. The and performance margins For example. stability of
disturbance effect as seen through the line-of-sight is the closed-loop system with C(s) designed from
constrained to clusters of modes as is the ability to P,(s) is guaranteed if:

measure and control the model. The coincidence of W.(s) I
the controllable clusters and disturbable clusters W,(s) = W,(s) = C(s)Il + P (s)C, (s } -  "
indicates a favorable actuator/sensor configuration The problem is that W (s) is dependent on Pn(s)

for the problem which is unknown. The let out is that its shape is
Frequency Weighted Balanced Realizations. partially determined by the performance spec: thus.
Balanced realization model reduction can be we can make an initial guess This technique is
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refrred to as dancd oop shaping This ,
involves an iterative problem which is solvable via Wd n, } .. Car an rn Ill)

successive approximation,

Compensator Order-Reduction. An alternate to

plant order reduction is to design a high order com- where the coefficient matrix C., is a matrix of

pensatoy and then reduce the compensator order (damping) gains. and 0,,. On denote, respectively. % %

Let C(s) denote a high order compensator of order the values of the nth mode shape at actuator station .

N designed to control P(s) of order N or larger Let a and sensor station r.

Cn(s) denote a reduced version of C(s) to order Equation (11-1) may also be used to compute the
n < N Motivated by the stability robustness theory. unknown gains C., if the dX, are considered to be .4

view C(s) - C,(s) as a perturbation Hence. the desired root shifts or. equivalently, desired modal

closed-loop system with P(s) and Cn(s) is stable if: dampings. While an exact "inversion" of Eq (1l-1l

does not generally exist, weighted least-squares
type solutions can be devised to determine the actu- " 

- -

~ ~ ~,,~ Iator control gains C. necessary to produce the
"C ) < required modal damping ratios. This determination

of the gains is the synthesis of LAC systems.

For structures which already have some damping
where or control systems in which sensor. actuator, or filter

Ws) = (I d Ps) C(s))- dynamics can either be ignored or are already
T wih ihigh order embedded in the plant dynamics, the root perturba-The weight W~s)is stable because the hg re

control C(s) stabilizes the closed loop system. In this tion techniques and cost function minimization
methods above can similarly be used to synthesizecase W~s) is known and we can apply internal bal- l w a t oit o tos

ancing to find Cr(s) The disadvantage to this low-authority controls.

method is that it is necessary to find a high-order Robustness of LAC systems. When sensors and

compensator The advantage is that once it is actuators are colocated (i.e.. a = r). are comple-

found. internal balancing applies immediately since mentarv. and only rate feedback is used. formula
the weights are known On the other hand. direct (I-i) reduces to

plant order reduction does not involve control

design for the high order plant. but does involve an dn %1n "  Ca an L
iteratlve process since the weights are functions of a " -

the (unknown) reduced model.

Low-Authority Control Design. Low-authority which shows that the root shifts are always towards,. ,.. "

control (LAC) systems. when applied to structures. the left of the j-axis if all the gains are negative. This

are vibration control systems consisting of distrib- robustness result is obviously based on the assump-
uted sensors and actuators with limited damping tion that both sensors and actuators have infinite
authority The control system is allowed to modify bandwidth. and also that the structure was initially

only moderately the natural modes and frequencies undamped. Several departures from this idealiza- -.

of the structure This basic assumption, combined tion occur in the actual practical implementation of
with Jacobi's root perturbation formula. leads to a the LAC systems. The most severe of these results
fundamental LAC formula for predicting algebrai- from the finiteness of the actuators' bandwidths.

cally the root shifts produced by introducing an LAC More precisely, the second-order roll-off introduced
structural control system. Specifically. for an by the actuator dynamics will always destabilize an

undamped. open-loop structure. the predicted root undamped structure. However. when some natural - - -

shift (dX,)r is given by damping is present in the structure. or when a pas-
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sive dampei is mounted in parallel with the actua-I "
toi, additional active damping can be obtained with- S k sC I URI

out destabilizing the structure

High-Authorlty Control Design. The HAC con-
trol design procedure can be based on any number "NOMINAL LCIC

of multivarTiable design methods. e.g.. LQG. FINUNENcY HAPN(,,iN' OVAiIONS CONTIOLLRATOR

Q-parameteization. H. -optimization. etc Increased FILTERS

penalties in the LQG cost functional are placed at
those frequencies where less response is desired. The
concept of frequency-shaped cost functionals was Fig. 112.36 L(C Contro With e

"" introduced prior to ACOSS [Gup. 1]. Frequency-Shaping Filters"- ....

.- -The frequency shaping methods are useful in sev-
-- eral areas of large space structures control. Three

principal applications are important: (1) robustness Summary. The application of frequency-shaping
(spillover avoidance). (2) disturbance rejection, and methods to large space structures leads to a linear

(3) state estimation. controller with memory. However. additional states
Management of Spillover. Spillover in closed- are needed to represent frequency-dependent

loop control of space structures is managed by weights. hence. there is an increase in the controller
injecting minimum control power at the natural fre- order. The software needed for these controller
quencies of the unmodeled modes. Procedures for designs 's similar to that for standard LQG problems.

controlling spillover at high-frequencies are usually Controller Design Using Q-parametrization
discussed, although similar techniques are applica- and H-Optimization. During the last decade,
ble for other regimes. mathematical theories of servo design have been

The high-frequency spillover may be controlled based mainly on quadratic minimization of the

by modifying the state or the control weighting. Weiner-Hopf-Kalman type. usually applied to state-
Conversion to the frequency domain gives the fol- space models. e.g.. LQG controls. However.
lowing performance index, despite the academic success of these methods. - -

classical frequency response techniques relying on
"lead-lag compensators" to reduce sensitivity have
continued to dominate industrial servo design. One

2w reason is that quadratic design tends to have poor
R) sensitivity. On the other hand. the frequency

"- ~~domain description has proven to be more suitable ':' "

to characterize uncertainties which arise in the plant -.-

approximation identification. and frequency
The problem of robustness (spillover manage- domain technique usually results in more robust

ment is solved by making Q and R functions of fre- design. e.g., frequency-shaped LQG can be viewed
quency. Figure 11.2-36 depicts the modification to as an indirect frequency-domain design approach
the nominal LQG controller. Observe that fre- Two direct multivariable frequency domain - "-"-
quency shaping adds filters whose inputs are the design techniques have become popular in recent .. •- -

inro,ations outputs of the state-estimator in the years. the Q-parametrization technique and the H.-
* - LQG controller, optimal sensitivity.

64

-- --- ------ -- --.-- ' ---- L - ----.--. ---- ----.--- '----"--. -"--- - -.--. . .- "



K ~- r

Q-Parametrizatlon Deslgn. Consider the linear and output y2 They specify respectivel, the servo-
unitv-fe.dback systems shown in Fig II 2-37 where performanc, and reyulator performance of the
P(s) is the given Ii,.. me-invariant plant. C(s) is feedback system S The two transfer functions are
the linear compensator. ul is the reference input, given by 0
u, and d are respectively the plant-input distur- H PQ AND
bance and plant-output disturbance, and Y2 fs the y2u

plant output. H 7 I PO
Y2 d0

2151 Therefore. the control design problem reduces to

ii) Iis) Yvit) e2t5 v2 t') choosing the parameter Q so that the closed-loop
.s"- , -sstem S is stable and that H and H 2  are %

"satisfactory" After the parameter Q is chosen, the
corresponding compensator C can be obtained by
the formula [Cal. 1. Chap. 8]

Fig. 11.2-37 The Unity.feedback Systems C Q fi -P()-

Hence. there is a one-to-one correspondence
between C and Q. Consequently. for each parame- " ."The closed-loop system input-output transfer

functionis given by ter Q chosen, there is a unique compensator C . -
function is given by which achieves the specified Q.r[ ~- -

C (I * PC) PC (I PC) -C (I PC) The selection of the parameter Q in the design - p s es : a t
Hyu = P I P

-
p (I * CP)

°1 
( PC)

- 1  process raises several questions: What are the con- .. ..-

ditions on Q so that the resulting compensator C is

(For simplicity. we drop the argument s in P(s). realizable (e.g.. proper)? What are the class of all . -

C(s). etc. in this section.) Q's which result in a stable feedback system? How is - -"

an "optimal" Q chosen? dl

By introducing the parameter (transfer function) Realizability. If the plant P is realizable, then the
ru! [compensator C is realizable if and only if the param-

Hy - eter Q is realizable. Note that a physical plant is
= 1 Y2 always realizable.

Global Parametization. If the open-loop plant P
is stable, then the closed-loop system S is stable ifand only if Q is stable since sums and products of

H,, can be rewritten as stable transfer function matrices are stable Conse-
quently. the class of all stabilizing compensators is

HQ - -Q given by
Yu -PQ (I 'POP I- Po (0 I PQ)-' 0 IS STABLE)

Note that the closed-loop input-output transfer and the class of all achievable stable input-output
function, for the given plant P. is completely speci- transfer matrix H and the class of all achievable
fied by the parameter Q in a very simple manner: it stable disturbance-to-output transfer matrix H 2 "1 -
involves only sums and products of P and Q are given respectively by

In a typical control system design problem. the
two most important closed-loop transfer functions {PQ Q IS STABLE)

are H"u and H., H, is the transfer function and
from reference input ut to output y2 and H. 2 u is the
transfer function from plant-output disturbance d, fiPQo 0 IS STABLE)
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These sets give global parametrization of all stabili- However, all the proposed algorithms are concep-
zating compensators. and all achievable I, 0 charac- tual in nature. suitable only for simple text book
terstics in terms of a stable proper transfer matrix Q example. More effort is needed toward a numeri-

In other words, the class of all "feasible" designs are cally robust synthesis procedure. Relevant research

P parametrized bv Q. results available during the JOSE period of perfor-L
If the open-loop plant P is not stable. additional mance will be evaluated and used as appropriate.

constraints have to be added to the choice of Q. in 11-2.2.7.4.2 Adaptive Control Techniques.

addition to stability and realiability of Q. For exam- Uncertainties in both disturbance spectra and sys- 'a,

pie. Q must contain right half plane zeroes to cancel tem dynamical characteristics will limit the perfor-

the unstable poles of P. Currently. there are three mance obtainable with fixed gain, fixed order con-

approaches to obtain global parametrization of a trols. The use of adaptive type control. where
given unstable plant: (i) Factorization representation disturbance and 'or plant dynamics are identified

theory IDes. 11 (ii) Direct approach Zam. I]: prior to or during control. give system designers

(iii) Two-step compensation [Zam. 1]. more options for minimizing the risk in achieving

Optimality. The Q-parametrization alone does not performance benchmarks. For the case of SBL

quantatively address the issue of optimal design. spacecraft. where performance levels are extremely

The designer selects Q from the class of "feasible" high. it is absolutely necessary that disturbance and

designs. on the basis of the desired input-output plant models be equally accurate. Since data from

response, a priori knowledge of external distur- ground tests do not usually represent the flight con-

0 bances. bandwidth, dynamic range and uncertainty dition accurately. it follows that an on-line proce-

of the plant. etc. dure for identificaion and control is necessary.

Optimal design based on the Q-parametrization
and fractional representation framework has
become very popular in the research community. In this section a method for on-orbit identification

The Ho-optimal s design are among the and control of flexible spacecraft referred to as

results available. "adaptive calibration", is described. This method is

Hoo-Optimal Sensitivity Design. The Hoo- being developed by ISI in an on-going basic

optimal sensitivity design is an extension of the research program in adaptive control supported by

Q-par -netrization technique to include a quantita- AFOSR Directorate of Aerospace Science. The

I mtive performance measure of the closed-loop system basic objective of this research program is to estab-

and achievable optimality based on the perfor- lish the theoretical foundations and performance

mance measure. Roughly speaking. the Hoe design limitations for adaptive control applications to large
. problem is the following- given an open-loop plant space structures. An important element of the

Pis) and a low-pass weighting function W(s). find research is to examine implementation concepts

the compensator C(s) so that the Hoc-norm of the which can lead to appropriate hardware develop-

weighted sensitivity (I + PC) - 'W is minimized sub- ment. A summary of recent results is in [Kos. 11.
ject to the stability of the closed-loop system. The program was originally formulated in late

Using the Q-parametrization formulation, the 1982 in response to the increasing concern that per- -- .-

problem is equivalent to the following: find a Q in formance robustness of Air Force LSS type system ....-

H- such that the closed-loop system is stable and would be inadequate to meet mission objectives

that (I - PQ)W is minimized Since the weighted The need to identify modal frequencies. for exam-
sensitivity function is affine in Q. the equivalent ple. in high-performance disturbance rejection

problem is easier to solve than the original problem. systems has been shown in ACOSS (2981) and
Solution to the Hoo-optimal Sensitivity Prob- VCOSS (1982), The deployment of high-
lem. Based on the fractional representation performance optical or RF systems may require on-

"" '" (Coprime factorization) formulation, several solu- line identification of critical mcdal parameters before ' -

tions have been proposed and algorithms given, full control authority can be exercised Parameter
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sensitivil\ manifested b. performance degradation referred to as "recursive'' if the identification rate is a

* or loss of stabilit. (poor tobustnessd may be effec- fixed multipk of the controller rat I identification f

tively reduced by adaptive feedback mechaniza- is used when necessary for calibration the scheme is e

li tons Reducing the effects of on-board disturbance referred to as adaptive calibration
sources on the system performance (disturbance Although a great deal of research results are avail-

rejection) is particularly important for planned Air able about adaptive control and identification,
Force missions. For these cases. adaptive control unmodeled dynamics and broadband disturbances

mechanizations are needed to produce the three-to- will significantly upset most algorithms Hence. the

five orders-of-magnitude reductions in line-of-sight lack of a well-developed robustness theory for adap-

jitter required by the mission. tive mechanizations required a reexamination of the
AFOSR Research Program Summary. The problem at a more fundamental level. I e . develop-

" research was originally directed toward real-time ment of model and disturbance uncertainty bounds

adaptation using standard estimator and controllers for which adaptive algorithms would exhibit (stable)
. forms in the basic adaptive control structure. as desired performance Toward this end there have

shown in Fig. 11.2-38. Most adaptive control algo- been two major accomplishments:
rithms can be described in this form For example. €]i Development of Theory In examining the - "

*one could select from the following catalogs of possible use of recursive adaptive control it was nec-
major areas essary to generate new theory of use on large space

structures [Kos 3). This theory accounts for the
Model Control Design jAdaptation effect of unmodeled dvnamics with distributed

ARMAX Model Reference Gradient parameter systems. such as flexible space struc-
State- Self-Tuning Recursive Least lures. and extends current adaptive theory in sev-

Squares eral directions
Space Pole-Placement Recursive Max In the first place. current adaptive theory provides

Likelihood conditions for "global- stability. i.e.. bounded-input.

Extended Kalman bounded-output stability with no limitation on the

Filter size (or spectrum) of the bounded-inputs (e.g.. dis-

turbances and references). Secondly. the theory is
DISTURBANCES limited to finite-dimensional linear systems This lat-

ter condition cannot be satisfied by a flexible space ---

SYTM 9.OUPT structure, which is a distributed Parameter system.
Also. the disturbance and reference inputs effecting
the spacecraft have limited magnitudes and spec-

INPUTS- PARAMETER trums and these limits are known. although not pre-

cisely. The developed theory circumvents those dif-
PARAER ficulties by providing conditions for -local- stability.

CONTROL LAW i.e.. limitations in input size and spectrum are
accounted. The theory also allows for a distributed
system as well as providing quantifiable bounds on

oBecrvEs permissible model error. These results extend the

Fig. 11.2.38 Adaptive Control System state-of-the-art in adaptive theory beyond the cur-

rent limits
The schemes also differ in terms of update rates. (2) Adaptive Calibration: The use of "'slow" .

Typically the outer control loop is at a fast rate, adaptive control, which is more practical than recur- ,..
whereas the parameters from identification are sive adaptive control in most space applications.
updated more slowly. Adaptive schemes are necessitated a new methodology development 4
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merging key ideas in parameter ettimation, system PSI)
ide.ntilication, and robust contiol design The term

slow" means that there is sufficient time to run
baich identification before the control system is..
modified The methodology developed resolves a

long standing problem with adaptive systems of this
type. namely, the means to provide a guaranteed ~
level of performance given an identified" model of .- .- '

the system together with the model error between

the system and the identified model. In fact. the
methodology generates performance versus model Pso
error tables (to be stored in the computer) from
which the control design is immediately obtained. CSDL MODEL NO. 2

" - Moreover. the order of the control design is deter-

mined strictly on the basis of model error and per- Fig. 11-2.40 Draper Simulation System
formance demand, rather than trial and error as has
been suggested in the past 2 Estimate 6(w) = model error versus frequency

Application of Adaptive Calibration. The basic using FFT. This is dashed curve in Fig. 11.2-41.

problem with control based on identified models is 3. Using the identified model M(s) and the model
that without a measure of model error it is very easy error 6(w). synthesize a robust control (eg.. Sec-

to destabilize the system-particularly when the goal tion 2.2.7.5). ,,

is high performance-as in SBL. Adaptive calibra- 4. Calculate 6SM - stability margin. This is the ,..
tion is an approach which incorporates a measure of dashed curve in Fig.l.2-41. Compare to model

S. model error with robust control design in an iterative error 6 both plotted in Fig. 11.2-42. If acceptable
way so that identification is performed only where it go to Step 7 and implement controller. Other-
is needed. A proposed adaptive calibration system wise go to Step 6.

- is shown in Fig. 11.2-39. with test results. using the 6. Modify filter windows, number of parameters " "
CSDL #2 model. shown in Fig. 11.2-40. The adap- (e.g.. number of modes). or input spectrum and
tive calibration procedure involves the following then repeat Step 1 to obtain new ID model.

steps: Fig. 11.2-42 shows result of identification after

i 1. The model M(s) is a 10-mode model which has one mode is added in the frequency domain

been obtained from 1/0 data. region where the test fails.
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APPENDIX D

STABILITY THEORY FOR ADAPTIVE SYSTEMS: METHODS OF AVERAGING AND

PERSISTENCY OF EXCITATION**.
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ABSTRACT

A method of averaging is developed for the stability analysis of j
linear differential equations with small time-varying coefficients which do

not necessarily possess a (global) average. The technique is then applied

to determine the stability of a linear equation which arises in the study of

[ adaptive systems where the adaptive parameters are slowly varying. TheI.., LI'
stability conditions are stated in the frequency-domain which shows the. :[. ,.-.

relation between persistent excitation and unmodeled dynamics.

*Supported by AFOSR under contract F49620-C-814 00514 while this author was a

Visiting Fellow at the Australian National University.

#Supported as a Research Assistant by the National Fund for Scientific

Research, Belgium, which support is acknowledged.

72



, . ... '

WR.

1. INTRODUCTI ON

For a large class of adaptive feedback systems, as well as for some

output error identification schemes, a stability analysis in the neighbor-

hood of the desired behavior leads to investigating the stability of the

following homogeneous linear system of differential - operator equations .

(see e.g. 1I] [3])

6 = - c u(t) H(u(.)'e()), Vt c (1.1) -R

Pwhere 6(0) E R , is a positive constant, u(-): R R is regulated and

bounded, and H is a linear time-invariant operator whose transfer function

H(s) is proper, rational, and stable, i.e., all poles have negative real

parts.

Linearization and Local Stability

In r2], for example, system (1.1) is obtained as a result of lineari-

zation of the adaptive system in the neighborhood of a "tuned" system, i.e.,

a system where the adaptive parameters are set to a constant value 0* C RP

and whose behavior is deemed acceptable. Hence, in (1.1), 6(t) is the

vector of parameter errors between the parameter estimate at time t and

the tuned value 0*, u(t) is the regressor vector from the tuned system

(e.g., filtered revisions of measured signals), and the scalar c is the

magnitude of the adaptation gain which essentially controls the rate of .* '.

adaptation. The operator H depends on the actual system being controlled

or identified and also on the tuned parameter setting 0*.

It is shown in [2,3] that if the zero solution of (1.1) is uniformly

asymptotically stable (u.a.s), then the adaptive system is locally stable, -
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I.e., thc adapt ive system br-havior' will rem:tin in a neighborhood of the

drsIred behavior provided Ihe initial parameter error 0(0) and the effect or

external disturbances are sufficiently small. Although the results In [2,3]

were arrived at using input-output properties [16], the local stability

property also follows from the results on "total" stability [4].

Unmodeled Dynamics and Slow Adaptation

In the ideal case there are a sufficient number of adaptive parameters

ii "(the number p) such that the tuned parameter setting results in H(s) being

strictly positive real (SPR), i.e., Re H(jw) > 0, YW E R+. Under these

conditions, we have the following results (see e.g [5]-[8], [1]): (1) the
zero solution of (1.1) is stable, i.e., 6(t) is bounded but not necessarily

constant; (2) if, in addition, u(t) is persistently exciting, then the zero

' solution is uniformly asymptotically stable (u.a.s.), thus, 6(t) 4 0

exponpntially fast as t =. The trouble starts when there are an

insufficient number of parameters to obtain H(s) c SPR, as is the case in

adaptive control when the plant has unmodeled dynamics (see e.g. [2, 7],
• [ ~12] ).:"'

In this paper we will examine the stability of (1.1) when e is small,

u(t) is persistently exciting, and H(s) is not necessarily SPR but only

stable. Reidle and Kokotovic [9] refer to this case as "slow adaptation"

and by using the methods of averaging described by Hale [10), they show that

the stability of the zero solution of (1.1) is critically dependent on the

Lspectrum of the excitation in relation to the frequency response H(jw).

With the same assumptions, Astrom [11] uses averaging techniques to analyze

the interaction between unmodeled dynamics and external inputs in the

counter-example posed by Rohrs et al. [123. Both these analyses require the

assumption that u(t) Is almost periodic. In this case Reidle and

Kokotovic [9] show that the zero solution of (1.1) is u.a.s. if

I.

A [r(w)n(w)'] Re H(Jw))> 0 (1.2)
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whore lz and {,X(W), u, III are, respectively, the Four'ier exponents and

cofficients of u(t). Condition (1.2) can be considered as a positivity

condition, but unlike the SPR condition Re H(jw) is not required to be

positive at all frequpncies. *

Averaging: Uses and Limitations

The main contribution of this paper is to extend the theory of

averaging to include the case when u(t) does not have a (generalized)

Fourier series representation, but is only known to be regulated and

bounded. Thus, u(t) need not be almost periodic nor even possess a (global)

average value. We also state stability conditions in the frequency-domain

in a form similar to (1.2). Analagous results are stated for the discrete- d

time system

e(t+1) e(t) - u(t) H(u(,)'e(-)), Vt C Z (1.3)

T: -. "p

where we only require u(-) c . and H to be linear-time-invariant and ,

stable. Averaging results for (1.3) with H - 1 and with u(-) not almost 4
periodic can also be found in [13]; and this suggests the po..sibility of

being able to dispense with the almost periodicity assumption on u(.) and

analyzing (1.1) with a non-SPR operator H. "

The averaging theory developed here, as well as averaging theory in -M

general, has its uses and limitations for adaptive system. In the first

place, the theory requires slow adaptation which can be counter-productive

because performance can be below par for the long period of time it takes

for the parameters to readjust. Secondly, averaging theory is a form of

linearization, thus, the (nonlinear) adaptive system must be initialized in

a (not necessarily small) neighborhood of the tuned system. On the positive

side, however, we do obtain frequency domain conditions which explain the

system behavior near the tuned solutions. In this sense, we can consider l
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th,. results of iveragting t hory to be necessary conditions for good

performance of adaptive systems.I i
To obtain the herald,,d goal of frequency domain stability conditions,

• " it may be inevitable to encounter linearization. Somewhat less intuitively

appealing results can be obtained without resorting to direct linearization ,

IN or averaging, e.g., in [,3], [14] and [15] the results arise from a

• "combination of small gain theory and perturbation theory.

Organization of Paper

The paper is organized as follows: Section 2 develops methods of

* .- averaging for general systems described by linear differential equations -

both homogenous and inhomogeneous systems are considered. The reader can

regard this section independently from the rest of the paper, because the

systems of linear equations considered are the most general and need not

arise from adaptive systems. In Section 3 we apply the general results of

* Section 2 to (1.1) and obtain frequency domain stability conditions. In

Section 4 we analyze the effect of unmodeled dynamics. In Section 5 we

state the discrete-time versions of the results obtained in Section 1, and,

as in Section 1, these results are of general interest.
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ME THOD OF-AVERAGING

2.1 LINEAR HOMOGENEOUS SYSTEMS '.~

in this section we will consider the homogeneous linear system

E A(t)x (2.1)

Lemma (2.2)

Suppose in (2.1) that A() ~- Rnx is regulated and bounded. Then

Vs,Tr c R, the transition matrix *(s+T,s) of (2.1) is given by ~

0(s-t,s) =exp[c-t A (s)] +R(s,ci) (2.3)

where

A (s) - A(t) dt (2.4~)
5

Is the local average value of A~t) on the interval s < t < s + -, and

II!R( c-t) 11 r(crIIJAIj 1) -(c- I Al 1 J) 2 exp(ctrIIAIK.) (2.5)

See Appendix for proof.
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R omarks

(1) Assuming that A(t) is regulatpd and bounded is sufficient for the ,-.-. ,

existence and uniqueness of solutions [17].

(2) Observe that Lemma (2.2) is valid Vs,T E R+ and ¥c c R. in the
p sequel we use Lemma (2.2) only for the case when E > 0 and ci is small.

The stability properties of (2.1) can be established by application of

Lemma (2.2) as stated in Theorem (2.9) below. We first require

Definition F16 (2.6)"

The function i(-): Cn xn - R, defined by

P.(M) limr (1I am 1)/ai (2.7)

anxn

is called the measure of the matrix M, where is the matrix norm on Cn x n  -

induced by the vector norm 1I1 on Cn. For example, if 1I1 is the Euclidean

norm then 1 (M) = max [(M+M*)/2]. For any norm on C we have the relation, -

-j(-M) < Re X(M) < p(M), YM C Cnxn (2.8)
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Theonrtm (2.9)

Suppose A 't) in (2.1) is regulated and bounded with th'p sequonce of

local average values (A T NT), Vk E Z4) Then:

i) If 3 T 0 and a > 0 such that

-jA(T a, Yk c (2 10)

T~ +

then 3n > 0 such that YET c (0, n) the zero solution of (2.1) is u.a.s.

(ii) If 3T > 0 and a > 0 such that -.

jj[IA (kT)] < - a, Yk c Z (2.11)

then 3 >~ 0 such that YET c (0, fl) the zero solution of (2.1) is completely

unstable.

Remarks

(1) The proof (see Appendix) is based on Lemma (2.2) and the

inequality [16]:

exp{-ETur[-A T(kT)]1 < 10((k+1)T,kT) -R(kT,cT)i -

< eXp[ET YjATN)J k E £ (2.12)
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wh,-re .'.,)and R(.. are as dof Ined i n Lemma (2.?2).

(P Whenever (2.10) holds we have 1xjTT kM < 1, Vk F.Z which

insures a contraction (for small ET) on the Interval S < t < S 4 T. It is

possible to weaken condition (2.10) and still have a contraction by just N

enforcing IexplET A (kT)II < 1 directly as is done by Coppel (181.

(3) Note that Thereom (2.9) can be stated in terms of stronger "

* conditions on oiEA (s)], Vs c R.

Using the same technique, but allowing A(-) (equivalently A T(.)) to

possess a global average, we obtain the following sharper result.

*Theorem (2.13)

Suppose A(t) in (2.1) is regulated, bounded, and has a (global)

average A E R ,i.e.,

lim A (s) =A (2.14J)
T

Iuniformly Vs c R with Re X(A) 0. Under these conditions:

(I) If a > 0such that

Re )A(i) < a (2.15)

then co~ > 0 such that Vc c (0, E.), the zero solution of (2.1) is u.a.s.

(ii) If a > 0 such that
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max R, A (A) ) 216)

then 3%, > 0 such that Vc c (0, c.), the zero solution of (2.1) Is unstable.'y

AL'

Discussion

The results in Theorem (2.9) and Theorem (2.13) generalize some

results obtained by averaging methods such as those described by Hale [10],

or as obtained by Coppel [18] using the notion of integral smallness.

Theorem (2.13) is a classical result of averaging theory, except that as

stated allows for functions which are not necessarily almost periodic. The

class of functions allowed in theorem (2.13) - regulated, bounded, with an

average - is not precisely characterized. Obviously it includes the class

of asymptotically almost periodic functions of the form [193

A(t) = A (t) + AI(t) (2.17)
p

•nxn . "-.-,

where Ap (t) is almost periodic and AC) L 1

Theorem (2.9) considers a larger class of functions -- those without

an average -- at the expense of a weaker result: the stability --

instability boundary is not as sharp as in theorem (2.13).

An example of a function which satisfies the conditions of theorem

(2.9), but not of (2.13) is'

A~t) =A 0  (1142) A (sin log t +cos log t) (2.18)

where A - A' > 0, 1-I, 2 such that A - A, > 0. This function does not .Y.

have a global average, as can be seen from

81 . . .. '-.".... -°-. °--
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fA(t)dt A. A rsin log TST 4 i lg 1) 2.9
T si T o ( 54-](.9 __

However, it satisfies the conditions of Theorem (2.9) because from (2.18),

s+ T

4JA(t) dt > A A > 0, Vs c R, VT > 0. (2.20).

-,- +T 0' 1' 4c

From the proof of Theorem (2.9) we can extract a value for n and also

state bounds on the exponential rates of growth or decay of the transition

matrix (t. for all t > A. Specifically, we have: .--

Corollary (2.21) 7.

If A(t) is regulated and bounded with IA(.)II or m, then-

mi) Whenever (2.10) holds for some T > 0, the zero solution of (2.1)

S is u.a.s. VET c (0, n) where:

--

(a) n 0 satisfies exp C-na) r(nm) (2.22)

(b) (t,r E R owith t > h(2.23)

10(tl~l< K eXp(-C(t-T)O)

SiTwhere

K -exp("T(mB)) > 1

exp(- TO) n exp(-Ta) r(-Tm) < 1
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1iW

(i) Whenever (2.11) holds for some T 0, the zero solution of (2.1)

is unstable VcT E (0,n) where: Z

(a) n > 0 satisfies exp(na) - r(rm) - 1 (2.24)" -

(b) Vt,T C R+ with t > T, (2.25)

¢(t,t)I > K exp(c(t ')8) "

where

K- exp(-cT(m+B)) < 1

exp(cT$) - exp(cTa) - r(cTm) > 1

2.2 LINEAR INHOMOGENEOUS SYSTEMS

In this section we extend the results of Section 2 to the inhomo- - "

geneous system

• . .

X (p(t) + A(t)x) (2.26) ....

Theorem (2.27)

Suppose in (2.26) that A(.): R+ R Rxf and R Rn are regulated

and bounded. Let A (s), Vs,i c R+ denote the local average value of A(t) as

defined by (2.4) and let p (s) denote the local average value of p(t)

defined by

-|
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pi p(t) dt.. (2.28)___
1s

Sd

Under these conditions, Vs,i cR+

IX(S+T)-OKS+-[.S)rX(S) + Crp (S)JI (c I A . P . (2.29)

* , where

q(CT,IjAII.) -(ET) 211AII~exp(ECIAIL.) (2.30)

Combining this result with Theorem (2.9) and Corollary (2.21) gives

Corollary (2.31)

Under the conditions of Theorem (2.27), if a > 0 and T > 0 such that

[A T (kT)l < a, Vk E (2.32)

then VFET E (0, ,

lixil. q1 Sup 14T(kT)I +q 211pj1. (2.33)

with

q- cT exp(cT(m-0))/(l exp(-ET$)) (2-34i)

c T exp(ETm)[1 + cTm exp(cTm)/(l exp(-cT$))
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whore m = IJAI and where ii > 0 and B > 0 satisfy (2.??) and (2.23),

respectively, i.e., E

exp(-na) * (nm )'exp( nm) % 4

(2.35)

exp(-cTB) - exp(-cTa) + (cTm) 2exp(ETm)

Remarks

Observe that as cT * 0, q, 1/ and q2/T * 1. Hence, as cT * 0 we -.

see that lixjIl is overbounded by the largest value of the sequence of local

averages {IPT(kr)t, k E Z I and not Hlpil. For example, if p(t) = sin 2,t -
T T

then p~jl = 1 whereas JPT(kT)j 0, Yk E Z,.
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1 3. FREQUENCY-DOMAIN STABILITY CONDITIONS

In this section we apply the results of Section 2 to the homogeneous

p linear system (1.1), i.e.,

,*.f-. -=t

p?

-C u(t) H(u(-)'e(-)). e(0) c (3.1)

where H is a linear time invariant operator with transfer function H(s).

We first show that for sufficiently small c > 0, the stability analysis of

(3.1) can be determined from the stability of an "averaged" system

S=E avg{u(t)(Hu)'(t))0

where avg {-} has yet to be precisely defined. Using this result we then

establish stability conditions in the frequency-domain involving the Fourier

transform H(jw) and the "spectral" content of u(t), where this notion has

also to be defined. Finally, we show that the appropriately defined

•spectral content of u(t) necessarily requires that u(t) have a persistency

• "of excitation property, and that the dominant excitation should be at those

frequencies where Re H(jw) > 0.

The first step in the analysis is to transform (3.1) into a form

suitable for application of Theorem (2.9).

* .'. -
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CL6() C mmvt)J (3.?)

Asdwheumte iuin (.1) tht ut)is regulated and bounded. Hi

causa lSea ie-vaian boeratolwhes trae functppoxiat H(s)3i

proper, Prtinal conditostbe nde these condxmaions ar stte 0n shthat

(311 b 0elow .1 iseuvln to-

(2 Esiae fo c, andt +jj ar~~vt' e obane3rm.hpofofLa

wherels-A hee it olosi

aenereithe funbcion is miia, c is reult and bounded< .Thn

(1 cice (t)i bo/[junded, jjj Itflow )htwecnaprxmt (3.)

-1-5
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where K > 1 and a > 0 are found from "

Iexp(tA)I < K exp (-ta), Vt c R+ (3.6)

with

9. iji (1 +diluII./t.) 1(3.7)

, H l Lo I(3.8)

where Lo(t) satisfies,

" o = AL. + bu(t)', L (O) = 0 E R (39)

We now use Lemma (3.2) to establish frequency domain stability .

conditions for (3.1). This requires that u(t) be restricted to those

functions which have a Fourier series representation on any finite interval.

A known class of such functions is defined as follows.

* Definition [20)

A function f(-): R " Rn is a n function if it is regulated, bounded

and i a constant 6 > 0 such that any two points t,, t. c R+ where f(.) is

discontinuous are separated by at least an interval 6, i.e., It, - t21 > 6.

Frequency-domain stability conditions for (3.1) can now be stated.
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Theorem (3.11)

Assume in (3.1) that:

(Al) H is linear with stable proper rational atr0andersuhtht

function ()adimpulse response h(t). Thus, 4 n uhta

ht)-h(0)6Ct)I a exp(-bt), Vt H4 (.)

(A2) u(-) c CPwith piece-wise Fourier series representation,-

aW t
u~t) a (W C )e m Vt c [kT,(k+1)T], Vk c (3.13)

mZ k M + .-

MEed

for any T > 6 where w 27rm/T.

Define the matrix sequence in R by

RT(k) a c((W )ai (W ) H(-jw ), Vk c Z (3.i14)
T mEZ km k m mT

p Under these conditions:

() If i T > 6 and ai > 0 such that

)IitR (k)3 < (ai' 2(a/b 2)jjujj.IT), 'fk E Z4  (3.15)

then EC > 0 such that Vc c (0, c,) the zero solution of (3.1) is u.a.s.

(Iii If T > 6 and ai > 0 such that

89 4 0

.........................................



IR NT)] < - (,V Na/b )Ilull-/T), Vk Z (3.16)

then -, > 0 such that Vc c (0, E,) the zero solution of (3.1) is unstable.

Remarks

(1) The existence of the piece-wise Fourier series representation

_A (3.13) for u(t) is guaranteed by u(.) Cp [17]. The Fourier coefficients

a (w are the coefficients of the T-periodic function
k m

jWm
u k(t) = k (W m)e , Vt e R+ (3.17)

k.m-Zk m

which is equal to u(t) for kT < t < (k+1)T and, in general, not equal to

u(t) on any other interval. Thus, uk(t) is just u(t), Vt c [kT, (k+1)T],

repeated with period T. Observe that the spectrum of u (t) is what
k

determines the stability-instability boundary and not the spectrum of u(t). '-.. .

i These will merge only when u(-) has a (global) average as assumed in Theorem

(3.23) below.

(2) The matrix RT(k) can be equivalently expressed as the local

" average value of u (t)(Hu )" (t), i.e.,
k k

(k+1 )T

RT(k) - kT uk(t)(Huk ).(t)dt (3.18)
kT

where (Huk).(t) is the "steady-state" part of (Huk )(t), i.e.,

(Hu k).(t) How )x )aIk(Wm)e m Vt E R (3.19)
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(3 fwe US(' the- mfrinurc pi(M) =maix X(M-#* W.? then (3. 15) and

(3.16) become, rcspectivc-ly, .

AN (k)] > az ?(a/b 2)I JulI-/T, 'Vk E (3.20) ~K

and

where Q (k) is the Hermitian part of R (k), i.e.,
T T

QT(k) =X Re~ci (W )a~ (w )]Re[H(jw )J(3.22)
T EZ k m k m m

(5) The "initial conditiens" at t =kT contribute to the term

2(a/b )IuII'/T in (3-15)-(3.16) or (3.20)-(3.21). Hence, the average

energy in u (t)(HU ).(t) must dominate long enough (T sufficiently large) to -
k k

overcome these (possibly) negative effects.

As before, if u~t) is further restricted such that R (-) has a global .4.
T

average, then we can sharpen the stability-instability boundary. For

example, if u~t) is almost periodic then a Fourier series representation

exists Vt E R and R TC() has an average [101. The stability conditions for

this case are stated as follows.
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Theorem (3.23)

Suppose In (3.1) that u(t) is almost periodic with Fourier series

jk~j
U(t) a c(w) e~ Vt c R+ (3.24)

where 0 c R are the distinct Fourier exponents and fca(w), W E 9) are the

Fourier coefficients. Define the matrix R c R nxn by

R - c(w) cg(w)* H(-jw) (3.25)
WL E 1

If Re A(R) s0 then E.£ > 0 such that VE (0, e.) the zero solution of

(3.1) is:

*(1) u.a.s if Re )X(R) >0 (3. 26)

S(ii) unstable if max Re X(R) < 0 (3.27)

Discussion

The proof of Theorem (3.23) is entirely analogous to that of Theorem

(2.13). Theorem (3.23) is the result obtained in [9] when u~t) Is almost

periodic. Theorem (3.11) is a generalization in that u(-) c C

Observe that the stability-instability boundary determined by (3.20)-

(3.22) exists if and only if

A[QT(k)] 0, Vk £(3.28)
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By (3.22), this will hold if and only if for some finite integer q > p,

rank [a (0), CL (w), a (W)J - p, Yk c Z . (3.29)
k k k q

Hence, Theorem (3.11) implicitly restricts u(.) E CP to those functions6
whose (time-varying) Fourier coefficients satisfy the rank condition above.

This class of functions, however, are precisely those which can be cate-

gorized as persistently exciting:

Definition [1] (3.30)

n.-
A function f(-): R -- > Rn is persistently exciting over an interval h

if it is regulated, bounded, and - constants h > 0 and B > 0 such that

s+h -

mi X(1 f f(t)f(t)'dt) > V Vs C R (3.36)

Denote such functions by u() PEn(h,).

Hence, we immediately see that if u(t) in (3.1) is in PEP(h,B) and Cp6
then (3.29) will hold for VT > h > 6. It is important to emphasize,

however, that even if u(t) is PE, u.a.s. of the zero solution of (3.1) is

guaranteed if (3.20) holds. The implication then is that u(T) must have a

dominant spectrum at those frequencies where Re[H(jw m)] > 0. Thus, we can

view (3.20) as a generalized positivity condition on the operator H.

Condition (3.20) is significantly weaker than the usual positivity .

conditions on H. For example, a strictly proper transfer function H(s) is

strictly positive real (SPR) if it is exponentially stable and constant

p > 0 such that [16]:
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... * . ~ ~

R rH(j.,)I > p H(J(.,) R (3.3P )
4%

This condition must hold at every frequncy, whereas (3.20) rquires

V.. Re [H(Jw )] > 0 t. those discrete frequencies in R where the magnitude of
m 4~

the input spectrum is large. Conversely, at those frequencies in R+ where

Re[H(jw )] < 0, the magnitude of the input spectrum should be small. Since
m

(3.25) will fail if Re H(ju(s) < 0, Vw c R+, it follows that Re H(jw) > 0 at

some frequencies, hence, the motivation to refer to (3.20) as a positivity

condition.

Although condition (3.20) is weaker than condition (3.32). we do pay I

the Piper. Suppose H(s) is SPR and (3.32) holds. If u(t) Is persistently

exciting than Theorem (3.11) states that the zero solution of (3.1) is

u.a.s. for sufficiently small c > 0. However, from other arguments (see

e.g. [I]) we know that under these same conditions the zero solution of j
* (3.1) is u.a.s. for all c > 0. Thus, Theorem (3.11) is conservative in this

case. However, when H(s) is not SPR but (3.32) holds at some frequencies,

- . Theorem (3.11) is now applicable whereas the results in [I] do not apply.

In fact in this latter case when E gets too large the zero solution of (3 1)

* *. can be unstable, even if (3.20) holds. For example, if in (3.1) u(t) -
sin(O.35t) and H(s) = 1/(s' + 2s + 2) then condition (3.20) is satisfied.

The simulations in Figure 3.1 with 0(O) - 1 show that the zero solution is* u.a.s. for c = 14 but is completely unstable for c - 8.
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II, EFFECT OF UNMODELED DYNAMICS

In this section we will consider the system

[ = -c u(t) H(u(-)'8(0)), 8(0) c R (4.1)

where H as before is linear with stable transfer function H(s). In addition".

we assume that H(s) has the decomposition

- ,*.%*

H(s) - Ho(s) + A(s) (4.2)

where Ho(s) is SPR, i.e., p > 0 such that _

Re Ho(jw) > plHo(jw)12  ,w c R (4.3) "'.,

and where A(s) represents unmodeled dynamics such that -

V(j)l _ (w ),  w E R (14.4) " .

We also assume that u(t) satisfies the conditions of Theorem (3.11) In that

3 T > 0 such that u(t) has the piece-wise Fourier series representation

mc k mmt- t (.(k.-)T

.8

u(t) a k k(w m)e , kT < t < (k,1)T (4.5)

mcR . .. =,

95 -
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where 2 -?im/T and k Z.. We also decompose

kT (W ak (Wrn 4 (W) Ym,k c Z (41.6)
ance bmne by is due to r

whrea (w)is due to predetermined inputs and 8k(Wmi) uet distub-

IkT(Wmj< 6 _(Wm' 'Vm C Z (41.7)

Hence, the functions w 4 6 Mce and m 4 6 (w )represent, respectively,H urn
bounds on the effect of unmodeled dynamics in H(s) and unknown elements of

* u(t) as a function of frequency. Combining the above assumptions with

Theorem (3.11) and using (3.25) gives:

L emma (41.8)

The zero solution of (41.1) is u.a.s. if c > 0 is sufficiently small

and if a > 0 and T > 0 such that Vk cZ

L mA[ PIH(iW )12 Re[X. (W))

q ax 2(&/b2)IjuII /T (41.9)

where
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qkT m Z ( H(LL)i IX kT(' m~I kT("r)IH (0 dm)I (4.10)

wi th X4 4

kT° (m)J =  kT (wn)m kT ( m )* '."':..b

(4I.11) . . . -- . '

11T(W ) 6 u(W )[6u(W )  a I (W )I]  '.'1-"'_ _

Discussion .k"J''""

* *. . . ,

Condition (4.8) shows that the dominant excitation must act in the _.,.
frequency range where H(s) - Ho(s) c SPR. Moreover, there must be enough

excitation and positivity in Re Ho,(jw) in this range to overcome initial ...

conditions (the 1/T term) and the effect of unmodeled dynamics and unknown ' '.-,

disturbances (the qk term). Typically, the disturbances and unmodeled-."- -

effects occur at high frequencies and the known efforts in Ho(S) and aOr(Wm).. ..

kT~~k m m k

at low frequencies. For example, if there is a frequency we such that m ' [:'

(4..12)

S (w), 6 (w) small for w < < w e

then condition (4.8) holds if k d Z+,ei on s a nt

xc o ad plHo(J ) Re[XO (W) > > r (an (4.13)toverome"niia

m~~k mTmH

)< WW sa>or

.n- c i -c

--:.'-
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Observe that robustness conditions (4.8) or (4.13) are dependent on the in

put signal spectrum as as well as the unmodeled dynamics. In non-adaptive

linear systems the robustness conditions only involve system dynamics.
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VI

'DISCRETE-TIMESYSTEMS

1.d

In this section we state the discrete-time versions of' Lemma (2.2),

p Theorem (5.2) and Theorem (2.13) for the linear homogeneous difference

equation *

X(t~1) =(I + E A~t)) x(t), t C Z (5.1)

The results are identical to the continuous-time results, and the same

comments apply mutatis mutandis. The proof of the following Lemma is in the

appendix.

SL emma (5.2)

nxnr
Suppose in (5.1) that A(-) E E. Then Vfs,.[ C Z+, the transition

matrix 4(s+T,s) of (5.1) is given by

O(S+-',S) =I ECt A Cs) +R(s,ci) (5.3)

where

5*T -1
(5C) -- A~t) (5.14)

1t-s

Is the local average value of A~t) on the interval s < t < s i , and
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O- (Ij JAI )' -(1 1 Ji AI I.), V, > 0

.5c- IJA JV' Y < 1/IIAII. (5.5)

Remarks a

(1) A similar result can be found in 1133.

(2) The conditions on AC-) Z+ + Rn are weaker than those imposed

- in the continuous-time version in Lemma (2.2). In the discrete-time case we

only need A(-) E E.x whereas in continuous-time A(-) is regulated and

bounded.

The following stability result follows immediately from Lemma (5.2).

UTheorem (5.6)

Suppose in (5.1) that A(-) E i.x with the sequence of local average

values 1AT(kT), k c Z 1. Then:mT
i)If 3 T c +and a >0 such that

piCAT(kT)] 3 < ct k c Z(5.7)

then 3n > 0 such that VcT c (0, n)the zero solution of (5.1) is u.a.s.

(ii) If T c Z and a > 0 such that

14-AT(M]) < -a, Vk c (5.8)
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-- - a ' . .,-.... L ..

then 3 ,j > 0 such that VWT (0, YI) the zero solution of (5.1) Is unstable.

If we let A() have a (global) average than by applying the 
same

Ns.

argument in the proof of Theorem (2.13) we obtain the following analogous

result.

Theorem (5.9) -

Suppose in (5.1) that A(-) t E with (global) average A nxn .

e.,.•.. 
..

urn ACs) = A. (5. 10)
T -%71

uniformly Vs c Z where Re A(A) 0. Under these conditions:

(i) If 3 a > 0 such that '.

Re )(A) < - (5.11)

then c , > 0 such that VC E (0, ,), the zero solution of (5.1) is u.a.s. - -

(ii) If a ( > 0 such that N!

max Re A(A) > a (5.12)

then E ,0 > 0 such that V¥ E (0, E,), the zero solution of (5.1) is

unstable. 
•
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APPENDIX

A. Proof of Lemma (2.2)

Cyr
Using the Peano-Baker series representation for the transition matrix

of (2.1) gives:

O(S = I ) E f A(t)dt

t' tk

+= E A(t,) fA(t2) 2 . f A(t k)dt, dt k (A. 1) 1

Using definitions (2.3) -(2.4) for R(s,e.!) and A. (s), respectively,

together with the series expansion for eXP(ET A T s)) results in,

kk

+ E J A(t,) f A~t,) f A~t< )dt,.. dt3 (A.2)

k

< 21. (cTIIAI) /k!, Vs c R (A.3)
h- 2

= C.!IAII )2 exp~c.iIAH,.) (A.4~)

since IA.!.I IIAC.)IL. This proves (2.5).

102



GL- . I .- - .

R. Proof of Threorem (.)and Coro', ;ry (.1

The following inequality hodsY c R anfl ER4[11

Comnbining thisE inequality with (2.3) gives.

exp EcTij (-A (s)] < 10(s+Tr,s) sc-l

exp[CTPi ( S))], VsT C R. (B.2)

which implies,

10(s+-T.s)' < exp[criPdA Cs))] +r(CTm) (B.3)

>Os-'~ expr-ctjp(A Cs))] -r(E'rM) (B.'4)

where we have used (2.5) with HJAl! m.

We first prove part (i) by using condition (2.10) and inequality (B.3)

with T T and s =kT. This gives,

1o((k.1)T, kT)j < exp(-EToL) *r(cTm), Vk £ (B.5)

We now need to show that eOkT) @ e(k~l)T) is a contraction mapping, i.e.,

the right hand side of (B-5) is less than one for sufficiently small ET,

I.e., n > 0 and B> 0 such that V ET c (0, )
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I W.' V, . -

exp(-,Tu) * r(,Tm) = exp(-,T )

(B.6)

exp(-na) 4 r(nm) - 1 ."

,.. ",,

From the definition of r(.) in (2.5) it is obvious that (B.6) holds.
Observe that the expressions in (B.6) appear also in conditions (2.22),

(2.23) of Corollary (2.21).

For any t, s E R with t > s, there exists an integer k > 0 such that

s + kT < t < s + (k 1)T. Thus,

1$(t,s)j = 0(t,s+kT)0(s+kT,s+(k-1)T) .is+T, s)j . .... ' -

< c (tskT)!exp (-EkTB), by (B.6)

_< j(t,s+kT)jexp (-c(t-s-T)B), by kT > t-s-T
< exp(cT(m+a))exp (-E(t-s)a) (B.7) "''''"-

by the inequality [16]:

tL_

I0(t,s+kT)I < exp( f~k U[ EA(-)]d-r (B.8)

s+ kT ......

< exp(tm(t-s-kT)), by p[A(T)] < IA(T)l M _.

< exp(EmT) (B.9)

by t-s-kT c (0,T). This proves part (i) of Theorem (2.9). Note that (B.7)

is the same as (2.23) and, hence, we have also established part (I) of

Corollary (2.21).

104

."..'Y''.'-.."-'.'"-."-.' ' -.i'.''." i-.. . ',..'.-.-.".i'.',-.'.." ''-..-.... "."..".......'-........-...............-,."..,...-.--...'."................-......:



Using the same techniques, but starting with (B.14), we can also prove,

parts (ii) of Theorem (2.9) and Corollary (2.21).

C. Proof of Theorem (2.13) .

Assumption (2.114) means that V6 >0, T,(6) > 0 such that V#T >To

AT (S) Al <! 6, Vs cR, (C.1)

Fror (3~,with IIA(.)II = m and T >T,()

SI -sT)s < expLtpi(A + A T(s) -A)] +(ETm)' exp(ETm) (C.2)

< exp[cT(W~(A) +6)] +(ETm)
2 exp(ETm) (C.-3

n
Nzew, ct =se as a norm on R

2A
jXj (x'PX)11  (C.4J)

where P -P' > 0 is the solution of the Lyapunov equation,

Alp PA +21 -0 (C.5)4

Under this norm, the measure of a matrix M c Rflf becomes,
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-'li -. V L -- - -V- .v;A - 7V T- W. IT NIL .

PI(M) =max )1(M TP + PM)/? (C.6)

Hence, (C.3) becomes,

S3 IsT S) < exp[-cT(I-6)] (cTM) exp(cTM) (C-7)

By assumption (2.114) it is always possible to select T.(6) in (0.1) such

that 6 < 1. By inspection of (C.7), these exists c, > 0 such that Vc

* C(O,E,,), f4 (s+T,s)I < 1, Vs c E+, which completes the proof of part (i)

* Part (ii) can be proven in an analagous manner starting with (B.14) and using

(C.5) with A replaced by -A.

D. Proof of Theorem (2.27)

By the variation of constants formula any solution x(s+-I), Vs,rt c +

of (2.26) satisfies,

X(S-r) = *S-1,S)x(s) +E f (s-T'u) p(u) du (D.1)

where 4Cs+ ,s) is the transition matrix for x=c A(t)x.

S et

5+I~

f(u) =Jp(t)dt (D.2)
u

Hence,

f(s) - r p (s) (D.3)
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f (s+~ 0

where p (s) is defined in (2.28). Using (D.2) and integrating (D.1) by

parts gives,

x(s'-l) - 4(S+T,5)[X(5) + c rp Cs)] 
.

8+ T

+ E2 f *(s-t,u) A(u) f(u) du (D.J4)
5

Using,

in (D.4i) gives,9

IX(St-) - *S+T,s)[X(s) + ETP (S)JI 
..- 9.

s+ T
< C2 !IAII.III f exp[c(s+-r-u)I JAI I.Jdu (D6

-ClIlpll (exp(EtEIIAII.) -1)

< (c I) HAIL1 excp(E-IIIAII.)I~pJJL, by eu-1 < ao, a c R

q~c-tIAII.)lpll.(D.7) V
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which establishes (2.?8)-(?.30).

E. Proof of Corollary (2.31)

* For any t c R integer k > 0 such that kT < t < (k+l)T.

Hence,

t

Ix(t) j= (t, kT) X(kT) * E f (t,) p(-r) d I  (E.1)
kT

< exp(ETm)(Ix(kT)l * cr Ipll.) (E.2)

where m IIAII.. Since (2.32) holds by assumption, it follows that

I¢(kT,(k-1)T)I < exp(-LTB) where B satisfies (2.35). Combining this with

*I (D.7) for t=(k+1)T gives,

Ix(kT)I < exp(-cTB)[Ix(k-1)T)I + CllPTIl] + q(ET,m)jIpj. (E.3)

Using (E.3) recursively together with (E.2) and the assumption x(O) - 0

* "gives,

L.

jx(kT)j (ET exp(-cTB)IIPTII. + q(cT,m)jpl.-

(1 + exp(-cTB) +... + exp(-(k-1)cTB))

(cT exp(-cT8)jITI p q(cT,m)jjPjj,)/(1-exp(-cTO}))"'"

108_
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A

F. Proof of Lemma (3.2)

Using H(s) - d + c'(sI-A) b we can write (3.1) as

e-E(duu'e + uc'x), G(0) c R

(F.1)

=Ax + bu'e, X(0) =0 E

We now use the Lyapunov transformation developed in [9] where

x =Le (F.2)

and L satisfies,

L=AL +bul + c(dLuu' +Luc'L)

L(0) - 0 c (F-3)

We will show subsequently that IL(t)I is bounded if E is sufficiently .

small. In fact, if c is not small enough it is possible that IL(t)I -

in finite time. Assume for the moment that 3 c.> 0 such VC E (0, E.).

IL(t)I is bounded. Combining (F.1) -(F-3) gives,

8*-c (duu' +uc'L)e (F.14)
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We can decompose L as folIows:

L - L, 4 c L, (F.5)

U where

L. = AL. bu' (F.6)

L, AL, + d(L cL,)uu' (L, + cL1 )uc'(L, + cL,) (F.7)

Thus, (F.4) becomes

-c[duu' + uc'L0 + EUc'L,-

= -E[u(Hu)' + Eue'L,]8 (F.8)

which is precisely the form in (3.3) with v = c'L1 . It remains to prove

* that IL(t)j is bounded.

* - By the variation of constants formula, any solution L of (F.3)

satisfies,

t

L(t) - Lo(t) + J exp[(t-i)A] G[i, L(i)] dT (F.9)

where G(t,L): R+ x Rn xp *R is defined by,

1..0
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.- - To 9 .. 0 3;1-, -.

O~,L =dLu(t)u(t)' Lu(t)C'L (F.10)
as

nj
* ~Without loss of generality choose c c Rn such that li 1. Then, V t. > 0, ~ .'

ILI < k - IG(t,L)I < g(2.)Lj (F.11)

where

g(ZM Ilul(dtiull. + ) (F.12) .~~

* Since Re A(A) < 0 in (F.1), there exists positive constants K and a such

that Iexp(tA)I ( K exp (-at), Vt c R. For those values of t > 0 for which

ILt) < t. we have from (F.11),

t

IL to~ c . k gMi .f exp(-a(t-i))IL(ii)IdT (F.13)

where Lt, -HL.11. < t.. By the Beilman-Gronwall. Lemma [16],

IL(t)l SaKgt)[a - K g(2.) exp(-(a - K g(W)t)] (F.14)

a- cKgt

for all values of t > 0 for which IL(t)I < 2., provided that a -Ek g(t) > 0.

Hence, IL(t)I < t. for all t if



to a/[a -Lk 9(01.) < t~ (F. 15)

Combining (F.14I) and (F.15) gives

c < a (1-1.)/[K +1ul(iul L)J (F.16)

- Choosing 9i = * where

i* to [1 + (1 + dilull./t0 ) 1/~(F.1T)

* maximizes the right hand side of (F.16). The results in (3.41) -(3.9)

follow. This proves Lemma (3.2).

G. Proof of Theorem (311

Using Lemma (3.2) we have that Ve E (0, cd, (3.1) is equivalent to, A~

e=-c F(t)e (G.1)

NO) u(t)(Hu)(t)' c u(t)v(t)

with co and Ilvit,, are given In (3.41)-(3-9). Thus, we have the local -

average,
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k+% 1 )T

(k+ 1 )T (k+ )T

= .Ju(t)(Hu)(t)'dt * ~ Iu(t)v(t)'dt (G.3)
TkT TkT

(k+1 )T

' 1.k) f u(t)[(Hu)(t)-(Hu ).(t)]'dt

TT

kT

where we have used the expression for R T(k) in (3.18) and the definition of

* (Hu ).(t) in (3.19). Using assumption (3.12) we will show below that
ka

(k+1 )T

ifu(t)[(Hu)(t) -(Hu).(t)]'dti < 2(a/b2 )11u112. (G.5)
kT

* Hence, from (G.4),

p[-F (k)] < lj[-R (k)] 2(a/b2)Ijull./T E Ilulji~jviL (G.6)

+ £ I .uILII (G.7)

by (3.15). Using Theorem (2.9) with c < a/(IjuILIjvIL.) establishes part
(I). Part (ii) follows by using (3.17) to overbound IVtF (k)].

SWe now establish the bound in (G.5). For kT < t < (k.1)T,
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t

(Hu)(t) =Jh(t--)u( t)d-T '..

t k-i1 (r+ I)T

f h(t-T)u (t0dT f h(t-T)u (T)dT
0k r-O rT r

(by definition (3.17) for u Wt)
k

t-kT kit- rT htu(trd

h(J (t-T)dT f+() tTd

h( )ukr-O t-(r+1)T r

cc k-i t-rt

-(Hu).,Ct) -J h(-t)u (t- T)d-T f h~ru (t-T)dT I,
t kT kr-O t-(r+i)T

h by definition (3.19). Thus, from (3.12) we have

J(Hu)(t) -(Hu).(t)l jullJ. (a/b) [ebt) + k-i Cebt(~))ebt)
r= 0

LL

~lu(t)I.K(Hu)Ct) -(Hu)in(t)ldt <~ 11u1j(a/ba)(l-ebT

kT *

+(bTi -e(k-r)bTj

r-O

* 114
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;bT bT1
= Itu! (a/ t)(L-e )f 14 (e -1 4 1~1

-bT-

(by th(e geometric series formula)

u (a/") (1--bT W--kbT

-2 HU I(a/b)(e )(e )

which establishes (G.5) and completes the proof.

H. Proof of Lemma (5.2)

The transition matrix for (5.1) is given by

t= 5

5+t1 +7-1

E A~t) C A~t,)) A~t,) +
t-s t1-s t 2-S

+ET A(s+r-1) . . . A(s)

= I + EtrA (s) +R(s. r--) (H.2) -"

by definitions (5.3) and (5.14). Hence, using the binomial series formulae

we have,

+RS - ~ (IAI) (Ei IAII.)'
IRs 1j 2! (EA 2 3!
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4 . * ( I II K(H.3)

* 1*clAlK.) -(I E£IJIH) (H. 4)

The last inequality follows by Lagrange's remainder theorem. This proves-

the Lemma.
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