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On Learning the
Past Tenses of English Verbs

DAVID E. RUMELHART and JAMES L. MeCLELLAND

THE ISSUE

Scholars of language and psycholinguistics have been among the first to stress the importance
of rules in describing human behavior. The reason for this is obvious. Many aspects of .
language can be characterized by rules, and the speakers of natural languages speak the language
correctly. Therefore, systems of rules are useful in characterizing what they will and will not
say. Though we all make mistakes when we speak, we have a pretty good ear for what is right
and what is wrong-and our judgements of correctness--or grammaticality-are generally even
easier to characterize by rules than actual utterances.

On the evidence that what we will and won't say and what we will and won't accept can be
characterized by rules, it has been argued that, in some sense, we 'know" the rules of our
language. The sense in which we know them is not the same as the sense in which we know
such "rules" as 'i before e except after c," however, since we need not necessarily be able to
state the rules explicitly. We know them in a way that allows us to use them to make judge-
ments of grammaticality, it is often said, or to speak and understand, but this knowledge is not
in a form or location which permits it to be encoded into a communicable verbal statement.
Because of this, this knowledge is said to be implicit.

So far there is considerable agreement. However, the exact characterization of implicit
knowledge is a matter of great controversy. One view, which is perhaps extreme but is
nevertheless quite clear, holds that the rules of language are stored in explicit form as proposi-
tions, and are used by language production, comprehension, and judgment mechanisms. These
propositions cannot be described verbally only because they are sequestered in a specialized

. •subsystem which is used in language processing, or because they are written in a special code
that only the language processing system can understand. This view we will call the explicit.
inaccessible rule view.

On the explicit, inaccessible rule view, language acquisition is thought of as the process of
inducing rules. The language mechanisms are thought to include a subsystem-often called the
language acquisition device (LAD)-whos business it is to discover the rules. A considerable
amount of effort has been expended on the attempt to describe how the LAD might operate,
and there are a number of different proposals which have been laid out. Generally, though,

V. "
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2 RUMELHART and MCCLELLA'JD

they share three assumptions:

The mechanism hypothesizes explicit, inaccessible rules.

* Hypotheses are rejected and replaced as they prove inadequate to account for the utter-
ances the learner hears. ,,.',

The LAD is presumed to have innare knowledge of the possible range of human "
languages and, therefore, is presumed to consider only hypotheses within the con-
straints imposed by a set of linguistic uversals.

The recent book by Pinker (1984) contains a state-of-the-art example of a model based on this .-
approach. ..-.-

We propose an alternative to explicit, inaccessible rules. We suggest that lawful behavior
and judgements may be produced by a mechanism in which there is no explicit representation
of the rule. Instead, we suggest that the mechanisms that process language and make judge-
ments of grammaticality are constructed in such a way that their performance is characterizable
by rules, but that the rules themselves are not written in explicit form anywhere in the mechan-
ism. An illustration of this view, which we owe to Bates (1979), is provided by the honey-
comb. The regular structure of the honeycomb arises from the interaction of forces that wax
balls exert on each other when compressed. The honeycomb can be described by a rule, but
the mechanism which produces it does not contain any statement of this rule.

In our earlier work with the interactive activation model of word perception (McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1981, 1982), we noted that lawful behavior emerged
from the interactions of a set of word and letter units. Each word unit stood for a particular
word and had connections to units for the letters of the word. There were no separate units
for common lctter clusters and no explicit provision for dealing differently with orthographi--
cally regular letter sequences-strings that accorded with the rules of English-as opposed to
irregular sequences. Yet the model did behave differently with orthographically regular non- - - -

words than it behaved with words. In fact, the model simulated rather closely a number of
results in the word perception literature relating to the finding that subjects perceive letters in --

orthographically regular letter strings more accurately than they perceive letters in irregular,
random letter strings. Thus, the behavior of the model was lawful even though it contained no
explicit rules.

It should be said that the pattern of perceptual facilitation shown by the model did not
correspond exactly to any system of orthographic rules that we know of. The model produced
as much facilitation, for example, for special nonwords like SLNT, which are clearly irregular,
as it did for matched regular nonwords like SLET. Thus, it is not correct to say that the model ..

exactly mimicked the behavior we would expect to emerge from a system which makes use of *'""

explicit orthographic rules. However, neither do human subjects. Just like the model, they
showed equal facilitation for vowclless strings like SLNT as for regular nonwords like SLET.
Thus, human perceptual performance seems, in this case at least, to be characterized only
approximately by rules.

Some people have been tempted to argue that the behavior of the model shows that we can
do without linguistic rules. We prefer, however, to put the matter in a slightly different light.
There is no denying that rules still provide a fairly close characterization of the performance of
our subjects. And we have no doubt that rules are even more useful in characterizations of
sentence production, comprehension, and grammaticality judgements. We would only suggest
that parallel distributed processing models may provide a mechanism sufficient to capture law-
ful behavior, without requiring the postulation of explicit but inaccessible rules. Put suc-
cinctly, our claim is that PDP models provide an alternative to the explicit but inaccessible
rules account of implicit knowledge of rules.

We can anticipate two kinds of arguments against this kind of claim. The first kind would
claim that although certain types of rule-guided behavior might emerge from PDP models, the

..-..
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models simply lack the computational power needed to carry out certain types of operations *

which can be easily handled by a system using explicit rules. We believe that this argument is A
simply mistaken. We discuss the issue of computational power of PDP models in Chapter 4.
Some applications of PDP models to sentence processing are described in Chapter 19. The
second kind of argument would be that the details of language behavior, and, indeed, the
details of the language acquisition process, would provide unequivocal evidence in favor of a
system of explicit rules.

It is this latter kind of argument we wish to address in the present chapter. We have
selected a phenomenon that is often thought of as demonstrating the acquisition of a linguistic
rule. And we have developed a parallel distributed processing model that learns in a natural
way to behave in accordance with the rule, mimicking the general trends seen in the acquisition
data.

THE PHENOMENON

The phenomenon we wish to account for is actually a sequence of three stages in the acquisi-
tion of the use of past tense by children learning English as their native tongue. Descriptions
of development of the use of the past tense may be found in Brown (1973), Ervin (1964), and
Kuczaj (1977).

In Stage 1, children use only a small number of verbs in the past tense. Such verbs tend to
be very high-frequency words, and the majority of these are irregular. At this stage, children r
tend to get the past tenses of these words correct if they use the past tense at all. For exam-
ple, a child's lexicon of past-tense words at this stage might consist of cane, got, gave, looked.
needed, took, and went. Of these seven verbs, only two are regular-the other five are generally
idiosyncratic examples o! irregular verbs. In this stage, there is no evidence of the use of the
rule--it appears that children simply know a small number of separate items.

In Stage 2, evidence of implicit knowledge of a linguistic rule emerges. At this stage, chil-
dren use a much larger number of verbs in the past tense. These verbs include a few more
irregular items, but it turns out that the majority of the words at this stage are examples of the
regular past tense in English. Some examples are wiped and pulled.

The evidence that the Stage 2 child actually has a linguistic rule comes not from the mere
fact that he or she knows a number of regular forms. Thcre are two additional and crucial
facts:

The child can now generate a past tense for an invented word. For example, Berko
(1958) has shown that if children can be convinced to use rick to describe an action,
they will tend to say ricked when the occasion arises to use the word in the past tense.

Children now incorrectly supply regular past-tense endings for words which they used
correctly in Stage 1. These errors may involve either adding ed to the root as in corned
/k'md/, or adding ed to the irregular past tense form as in canted /kAmd/ (Ervin, 1964;

Kuczaj, 1977).

Such findings have been taken as fairly strong support for the assertion that the child at this
stage has acquired the past-tense 'rule.' To quote Berko (1958):

If a child knows that the plural of witch is witches, he may simply have memorized the

The notation of phonemes used in this chspter is somewhat nonstandard. It is derived from the computer-
readable dictionary containing phonetic transcriptions of the verbs used in the simulations. A key is given in Table

S.n
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4 RUIEELHART and MCCLELLAND

plural form. If, however, he tells us that the plural of gautch is gutches, we have evi-
dence that he actually knows, albeit unconsciously, one of those rules which the
descriptive linguist, too, would set forth in his grammar. (p. 151)

In Stage 3, the regular and irregular forms coexist. That is, children have regained the use of
the correct irregular forms of the past tense, while they continue to apply the regular form to
new words they learn. Regularizations persist into adulthood-in fact, there is a class of words
for which either a regular or an irregular version are both considered acceptable--but for the
commonest irregulars such as those the child acquired first, they tend to be rather rare. At this
stage there arc some clusters of exceptions to the basic, regular past-tense pattern of English.
Each cluster includes a number of words which undergo identical changes from the present to
the past tense. For example, there is a ing/ang cluster, an ing/ung cluster, an eetl/it cluster, etc.
Therc is also a group of words ending in /d/ or /t/ for which the present and past are identical.

Table 1 summarizes the major characteristics of the three stages.

Variability and Gradualness

The characterization of past-tense acquisition as a sequence of three stages is somewhat
misleading. It may suggest that the stages are clearly demarcated and that performance in each
stage is sharply distinguished from performance in other stages.

In fact, the acquisition process is quite gradual. Little detailed data exists on the transition
from Stage 1 to Stage 2, but the transition from Stage 2 to Stage 3 is quite protracted and
extends over several years (Kuczaj, 1977). Further, performance in Stage 2 is extremely variable.
Correct use of irregular forms is never completely absent, and the same child may be observed
to use the correct past of an irregular, the base+ed form, and the past+ed form, within the
same conversation..,. -

Other Facts About Past-Tense Acquisition

Beyond these points, there is now considerable data on the detailed types of errors children
make throughout the acquisition process, both from Kuczaj (1977) and more recently from
Bybee and Slobin (1982). We will consider aspects of these findings in more detail below. For
now, we mention one intriguing fact: According to Kuczaj (1977), there is an interesting
difference in the errors children make to irregular verbs at different points in Stage 2. Early
on, regularizations are typically of the base+ed form, like goed; later on, there is a large
increase in the frequency of past +ed errors, such as wented.

TABLE I

CILARACTERISTICS OF TILE ThtREE STAGES

OF PAST TENSE ACOUISMON

Verb Type Stage I Stage 2 Stage 3

Early Verbs Correct Regularized Correct
Regular - Correct Correct
Other Irregular - Regularized Correct or Regularized
Novel - Regularized Regularized

. . . . -. ., .-
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THE MODEL
:..-*-.-

The goal of our simulation of the acquisition of past tense was to simulate the three-stage
performance summarized in Table 1, and to see whether we could capture other aspects of -
acquisition. In particular, we wanted to show that the kind of gradual change characteristic of
normal acquisition was also a characteristic of our distributed model, and we wanted to see
whether the model would capture detailed aspects of the phenomenon, such as the change in
error type in later phases of development and the change in differences in error patterns
observed for different types of words.

We were not prepared to produce a full-blown language processor that would learn the past
tense from full sentences heard in everyday experience. Rather, we have explored a very simple
past-tense learning environment designed to capture the essential characteristics necessary to
produce the three stages of acquisition. In this environment, the model is presented, as learn-
ing experiences, with pairs of inputs-one capturing the phonological structure of the root
form of a word and the other capturing the phonological structure of the correct past-tense
version of that word. The behavior of the model can be tested by giving it just the root form
of a word and examining what it generates as its 'current guess' of the corresponding past-tense
form.

Structure of the Model

The basic structure of the model is illustrated in Figure 1. The model consists of two basic
parts: (a) A simple pattern associaror network similar to those studied by Kohonen (1977; 1984;
see Chapter 2) which learns the relationships between the base form and the past-tense form,
and (b) a decoding network which converts a featural representation of the past-tense form
into a phonological representation. All learning occurs in the pattern associator; the decoding
network is simply a mechanism for converting a featural representation which may be a near

Fixed '.-'*-'
Encoding Pattern Associator Decoding/Binding
Network Modifiable Connections Network

lit 11-11:.

Phonological 4 4 Phonological
representation representation
of root form Wickelfeature Wickelfeature of past tense

representation representation
of root form of past tense

FIGURE 1. The bteic structu'e of the model.

*. .. .- . .
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6 RUMELIIART and MCCLELLAND J,

miss to any phonological pattern into a legitimate phonological representation. Our primary .

focus here is on the pattern associator. We discuss the details of the decoding network in the
Appendix.

Units. The pattern associator contains two pools of units. One pool, called the input pool,
is used to represent the input pattern corresponding to the root form of the verb to be
learned. The other pool, called the output pool, is used to represent the output pattern gen- Z
erated by the model as its current guess as to the past tense corresponding to the root forn
represented in the irputs.

Each unit stands for a particular feature of the input or output string. Ihe particular
features we used are important to the behavior of the model, so they arc described in aseparate section below.

Connections. The pattern associator contains a modifiable connection linking each input
unit to each output unit. Initially, these connections are all set to 0 so that there is no
influence of the input units on the output units. Learning, as in other PDP models described
in this book, involves modification of the strengths of these interconnections, as described
below.

Operation of the Model

On test trials, the simulation is given a phoneme string corresponding to the root of a word.
It then performs the following actions. First, it encodes the root string as a pattern of activa-
tion over the input units. The encoding scheme used is described below. Node activations are
discrete in this model, so the activation values of all the units that should be on to represent
this word are set to 1, and all the others are set to 0. Then, for each output unit, the model
computes the net input to it from all of the weighted connections from the input units. The
net input is simply the sum over all input units of the input unit activation times the
corrcsponding weight. Thus, algebraically, the net input to output unit i is

net, , "'il '

where a, represents the activation of input unit j, and wj represents the weight from unit j to
unit i.

Each unit has a threshold, 0, which is adjusted by the learning procedure that we will
describe in a moment. The probability that the unit is turned on depends on the amount the
net input exceeds the threshold. The logistic probability function is used here as in the
Boltzmann machine (Chapter 7) and in harmony theory (Chapter 6) to determine whether the
unit should be turned on. The probability is given by

p (1)p (a, I) = - , --- / .. L'

where T represents the temperature of the system. The logistic function is shown in Figure 2.

The usc of this probabilistic response rule allows the system to produce different responses on
different occasions with the same network. It also causes the system to learn more slowly so
the effect of regular verbs on the irregulars continues over a much longer period of time. As
discussed in Chapter 2, the temperature, T, can be manipulated so that at very high tempera-
tures the response of the units is highly variable; with lower values of T, the units behave more
like linear threshold units.

Since the pattern associator built into the model is a one-layer net with no feedback connec-
tions and no connections from one input unit to another or from one output unit to another,

- . -.. ...
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1.0

0
P, 0.5

0.0
-5 -4 -3 -2 -1 0 1 2 3 4 5

net i - Oi /T

FIGURE 2. The logistic function used to calculate probability of activation. The x-axis sbows values of
net, - OI/T and the y-axis indicates thecorresponding probability that unit i will be activated.

iterative computation is of no benefit. Therefore, the processing of an input pattern is a sim-
pie matter of first calculating the net input to each output unit and then setting its activationprobabilisticaly on the basis of the logistic equation given above. The temperature T only

enters in in setting the variability of the output units; a fixed value of T was used throughout
the simulations.

To determine how well the model did at producing the correct output, we simply compare
the pattern of output Wickelphone activations to the pattern that the correct response would
have generated. To do this, we first translate the correct response into a target pattern of
activation for the output units, based on the same encoding scheme used for the input units.
We then compare the obtained pattern with the target pattern on a unit-by-unit basis. If the
output perfectly reproduces the target, then there should be a I in the output pattern wherever
there is a 1 in the target. Such cases are called hits, following the conventions of signal detec-
tion theory (Green & Swets, 1966). There should also be a 0 in the output whenever there is a
0 in the target. Such cases are called correct rejections. Cases in which there are Is in the out-
put but not in the target are called false alarms, and cases in which there are Os in the output
which should be present in the input are called misses. A variety of measures of performance
can be computed. We can measure the percentage of output units that match the correct past
tense, or we can compare the output to the pattern for any other response alternative we might
care to evaluate. This allows us to look at the output of the system independently of the
decoding network. We can also employ the decoding network and have the system synthesize a
phonological string. We can measure the performance of the system either at the featural level
or at the level of strings of phonemes. We shall employ both of these mechanisms in the
evaluation of different aspects of the overall model.

.. .......



8 RUMELILART and MCCLEiLLAND

Learning

On a learning trial, the model is presented with both the root form of the verb and the tar-
get. As on a test trial, the pattern associator network computes the output it would generate
from the input. Then, for each output unit, the model compares its answer with the target.
Connection strengths arc adjusted using the classic perceptron convergence procedure (Rosen-
blatt, 1962). The perceptron convergence procedure is simply a discrete variant of the delta rule
presented in Chapter 2 and discussed in many places in this book. The exact procedure is as

follows: We can think of the target as supplying a teaching input to each output unit, telling
it what value it ought to have. When the actual output matches the target output, the model
is doing the right thing and so none of the weights on the lines coming into the unit are

adjusted. When the computed output is 0 and the target says it should be 1, we want to
increase the probability that the unit will be active the next time the same input pattern is
presented. To do this, we increase the weights from all of the input units that are active by a
small amount -q. At the same time, the threshold is also reduced by n. When the computed
output is I and the target says it should be 0, we want to decrease the probability that the unit
will be active the next time the same input pattern is presented. To do this, the weights from
all of the input units that are active are reduced by "9, and the threshold is increased by Y. In
all of our simulations, the value of - is simply set to 1. Thus, each change in a weight is a unit
change, either up or down. For nonstochastic units, it is well known that the perceptron con- -.

vergence procedure will find a set of weights which will allow the model to get each output
unit correct, provided that such a set of weights exists. For the stochastic case, it is possible
for the learning procedure to find a set of weights that will make the probability of error as
low as desired. Such a set of weights exists if a set of weights exists that will always get the
right answer for nonstochastic units.

Learning Regular and Exceptional Patterns in a Pattern Associator

In this section, we present an illustration of the behavior of a simple pattern associator
model. The model is a scaled-down version of the main simulation described in the next see-
tion. We describe the scaled-down version first because in this model it is possible to actually
examine the matrix of connection weights, and from this to see clearly how the model works
and why it produces the basic three-stage learning phenomenon characteristic of acquisition of
the past tense. Various a.pccts of pattern associator networks are described in a number of
places in this book (Chapters 1, 2, 8, 9, 11, and 12, in particular) and elsewhere (Anderson,
1973, 1977; Anderson, Silverstein, Ritz, & Jones, 1977; Kohonen, 1977, 1984). Here we focus
our attention on their application to the representation of rules for mapping one set of pat- , 1

terns into another.
For the illustration model, we use a simple network of eight input and eight output units

and a set of connections from each input unit to each output unit. The network is illustrated
in Figure 3. The network is shown with a set of connections sufficient for associating the pat-
tern of activation illustrated on the input units with the pattern of activation ilustrated on the
output units. (Active units are darkened; positive and negative connections arc indicated by
numbers written on each connection). Next to the network is the matrix of connections
abstracted from the actual network itself, with numerical values assigned to the positive and
negative connections. Note that each weight is located in the matrix at the point where it
occurred in the actual network diagram. Thus, the entry in the ith row of the jth column
indicates the connection w, from the jth input unit to the ith output unit.

U'sing this diagram, it is easy to compute the net inputs that will arise on the output units
when an input pattern is presented. For each output unit, one simply scans across its rows and - -

adds up all the weights found in co!t!mns associated with active input units. (This is exactly

2,. ,......
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-. - .Y - +15 +15 + 15

J7777ZIY _Z _ -15.-15. -15.
X, +15 * +15 * +15

. -15 * -15 . * -15 -

S+ Y + + Y -15 -15 . -15

7 +15 +15 . . +15

* -15 -15 -15

• -15 * -15 . . -15 " "

FIGURE 3. Simple network used in illustrating basic properties of pattern associator networks; excitatory and inhi-
bitory connections needed to allow the active input pattern to produce the illustrated output pattern are indicated
with + and -. Next to the network, the matrix of weights indicating the strengths of the connections from each in- ,
put unit to each output unit. Input units are indexed by the column they appear in; output units are indexed by
row.

what the simulation program does!) The reader can verify that when the input pattern illus-

trated in the left-hand panel is presented, each output unit that should be on in the output %
pattern receives a net input of +45; each output unit that should be off receives a net input of
-45.2 Plugging these values into Equation 1, using a temperature of 15, 3 we can compute that
each output unit will take on the correct value about 95% of the time. The reader can check
this in Figure 2; when the net input is +45, the exponent in the denominator of the logistic
function is 3, and when the net input is -45, the exponent is -3. These correspond to activa- jl
tion probabilities of about .95 and .05, respectively.

One of the basic properties of the pattern associator is that it can store the connections
appropriate for mapping a number of different input patterns to a number of different output
patterns. The perceptron convergence procedure can accommodate a number of arbitrary asso-
ciations between input patterns and output patterns, as long as the input patterns form a

"- linearly independent set (see Chapters 9 and II). Table 2 illustrates this aspect of the model.

The first two cells of the table show the connections that the model learns when it is trained
on each of the two indicated associations separately. The third cell shows connections learned
by the model when it is trained on both patterns in alternation, first seeing one and then seeing
the other of the two. Again, the reader can verify that if either input pattern is presented to a
network with this set of connections, the correct corresponding output pattern is recon-
structed with high probability; each output unit that should be on gets a net input of at least

2 In the examples we will be considering in this section, the thresholds of the units are fixed at 0. Threshold terms
add an extra degree of freedom for each output unit and allow the unit to come on in the absence of input, but they
are otherwise inessential to the operation of the model. Computationally, they are equivalent to an adjustable
weight to an extra input unit that is always on.

3 For the actual simulations of verb leaning, we used a value of T equal to 200. This means that for a fixed value
of the weight on an input line, the effect of that line being active on the unit's probability of firing is much lower -
than it is in these illustrations. This is balanced by the fact that in the verb learning smulations, a much larger
number of inputs contribute to the activation of each output unit. Responsibility for turning a unit on is simply
more distributed when larger input patterns are used.

• * . *: k- --. -.- . . . . . . . . . . .. xi::_ --- .A - -_
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TABLE 2

WEIGIHS IN THE 8-UNIT NETWORK

AFTER VARIOUS LEARNING EXPERIENCES

A. Weights acquired in learning B. Weights acquired in learning
(247) (146) (346). (367)

is 15 15 -16 -16 -16-16 -16 -16 -17 -17 -17 ;!
-17 -17 -17 17 17 17
16 16 16 -16 -16 -16

-16 -16 -16 -17 -17 -17

17 17 17 16 16 16 -
-16 -16 -16 1717 . 7
-17 -17 -27 -7 -17 .- 17

C. Weights acquired in learning D. Weights acquired in learning
A and B together the rule of 78

24-24 -24 24 61-37-37 -5 -5 -3 -6 -7
-13-13-26 -13-13 -35 60-38 -4 -6 -3 -5 .,*

-23 24 1 24 -23 -39 -35 61 -4 -5 -4 -7 -6
24 -25 -1 -25 24 -6 -4 -5 59 -37 -37 -8 -7 *""

-13 -13 -26 -13 -13 -5 -5 -4 -36 60 -38 -7 -7
13 13 26 13 13 -5 -4 -6 .37 -38 60 -8 -7

-25 24 -1 24 -25 1 ] . -50 51
-12 -13 -25 -13 -12 -1 -2 1 49 -50 .

+45, and each output unit that should be off gets a net input below -45.
The restriction of networks such as this to linearly independent sets of patterns is a severe

one since there are only N linearly independent patterns of length N. That means that we
could store at most eight unrelated associations in the network and maintain accurate perfor-
mance. However, if the patterns all conform to a general rule, the capacity of the network can
be greatly enhanced. For example, the set of connections shown in cell D of Table 2 is capable -.-

of processing all of the patterns defined by what we call the rule of 78. The rule is described
in Table 3. There are 18 different input/output pattern pairs corresponding to this rule, but
they present no difficulty to the network. Through repeated presentations of examples of the
rule, the perccptron convergence procedure learned the set of weights shown in cell D of Table -.-

2. Again, the reader can verify that it works for any legal association fitting the rule of 78.
(Note that for this example, the "regular" pairing of (1 4 7) with (1 4 8) was used rather than .. '
the exceptional mapping illustrated in Table 3).

TABLE 3

TIlE RULE OF 78

Input patterns consist of one active (1 2 3)
unit from each of the following sets: (45 6)

(78)

The output pattern paired with a given The same unit from (1 2 3) The same
input pattern consists of: unit from (4 5 6) The other unit from

(78)

Examples: 247- 248
168- 167
357. 358

An exception: 147 * 147

. S . ", . . . , - . - . , • . ..-.- *- ., .- £ # ." .- - . . 5- . . .- .. .- . - , .. .. - .. . -. . . .* . " ,° -
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We have, then, observed an important property of the pattern associator: If there is some
structure to a set of patterns, the network may be able to learn to respond appropriately to all
of the members of the set. This is true, even though the input vectors most certainly do not
form a linearly independent set. The model works anyway because the response that the model . .

should make to some of the patterns can be predicted from the responses that it should make W.--
to others of the patterns. %e

Now let's consider a case more like the situation a young child faces in learning the past .
tenses of English verbs. Here, there is a regular pattern, similar to the rule of 78. In addition,
however, there are exceptions. Among the first words the child learns are many exceptions, but
as the child learns more and more verbs, the proportion that are regular increases steadily. For
an adult, the vast majority of verbs are regular.

To examine what would happen in a pattern associator in this kind of a situation, we first
presented the illustrative 8-unit model with two pattern-pairs. One of these was a regular
example of the 78 rule [(2 5 8) - (2 5 7)]. The other was an exception to the rule
[(1 4 7)- (1 4 7)]. The simulation saw both pairs 20 times, and connection strengths were
adjusted after each presentation. The resulting set of connections is shown in cell A of Table
4. This number of learning trials is not enough to lead to perfect performance; but after this
much experience, the model tends to get the right answer for each output unit close to 90 per-
cent of the time. At this point, the fact that one of the patterns is an example of a general
rule and the other is an exception to that rule is irrelevant to the model. It learns a set of con-
nections that can accommodate these two patterns, but it cannot generalize to new instances

- of the rule.
., This situation, we suggest, characterizes the situation that the language learner faces early on

in learning the past tense. The child knows, at this point, only a few high-frequency verbs, and
these tend, by and large, to be irregular, as we shall see below. Thus each is treated by the net-
work as a separate association, and very little generalization is possible.

But as the child learns more and more verbs, the proportion of regular verbs increases. This
changes the situation for the learning model. Now the model is faced with a number of exam--77
pies, all of which follow the rule, as well as a smattering of irregular forms. This new situation '
changes the experience of the network, and thus the pattern of interconnections it contains.

TABLE 4 b i

REPRESENTING EXCEPIfONS: WEIGtI'S IN HiE 8-UNIT NETWORK7

A. After 20 exposures to B. After 10 more exposures to
(147) -(1 4 7), (2 5 8) -(2 5 7) all 8I associations

12-12 . 12-12 12 -12 44-34-26 -2 -10 -4 -8 -8
-11 13 -11 13 -11 13 -32 46 -27 -11 2 -4 -9 -4

-11 -11 -11 -11 -11 -11 -30 -24 43 -5 -5 -1 -2 -9
12 -12 12 -12 12 -12 -1 -7 -7 45 -34 -26 -4 -11 F-,-

-1 !1 -I 11 -11 11 -8 -3 -3 -31 44 -27 -7 -7
-11 -12 -11 -12 -11 -12 -6 -8 -3 -31 -28 42 -7 -10
12 11 12 11 12 11 11 -2 -6 11 -2 -6 -35 38

-11 -13 -11 -13 -11 -13 -9 -4 7 -13 1 6 36 -42

C After 30 more exposures to D. After a total of 500 exposures
all 18 associations to all 18 associations.-

61 -38 -38 -6 -5 -4 -6 -9 64 -39 -39 -5 -4 -5 -7 -7

-3R 62 -39 -6 -5 -4 -8 -7 -39 63 -39 -5 -5 -5 -7 -8
-37 -38 62 -5 -5 -3 -7 6 -39 -40 64 -5 -5 -5 -8 -7

-4 -6 -6 62 -40 -38 -8 -8 -5 -5 -5 64 40 -39 -8 -7
-5 -5 -4 .38 62 -38 -7 -7 -5 -5 -5 -39 63 -39 -7 -8
-6 -4 -5 -38 -39 62 -8 -7 -5 -5 -5 -39 -39 63 -8 -7
20 -5 -4 22 -5 -6 -50 61 71 -28 -29 70 -28 -28 -92 106

-19 8 5 -18 5 7 54 -60 -70 27 28 -70 27 28 91 -106

- - - - - - - - - - - -- - -- *- .-- - .- 6. . . . . .
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Because of the predominance of the regular form in th input. the network learns the regular.
pattern, temporarily 'overregularizing' exceptions that it may have previously learned.

Our illustration takes this situation to an extreme, perhaps, to illustrate the point. For the 4
second stage of learning, we present the model with the entire set of eighteen input patterns
consisting of one active unit from (12 3), one from (4 5 6), and one from (7 8). All of these
patterns are regular except the one exception already used in the first stage of training. -,

At the end of 10 exposures to the full set of 18 patterns, the model has learned a set of con- ., ,
nection strengths that predominantly captures the *regular pattern.' At this point, its response
to the exceptional pattern is worse than it was before the beginning of Phase 2; rather than get-
ting the right output for Units 7 and 8, the network is now regulrizing it. 7,

The reason for this behavior is very simple. All that is happening is that the model is con-
tinually being bombarded with learning experiences directing it to learn the rule of 78. On
only one learning trial out of 18 is it exposed to an exception to this rule.

In this example, the deck has been stacked very strongly against the exception. For several
Icarning cycles, it is in fact quite difficult to tell from the connections that the model is being
exposed to an exception mixed in with the regular pattern. At the end of 10 cycles, we can see
that the model is building up extra excitatory connections from input Units 1 and 4 to output
Unit 7 and extra inhibitory strength from Units 1 and 4 to Unit 8, but these are not strong
enough to make the model get the right answer for output Units 7 and 8 when the (1 4 7)
input pattern is shown. Even after 40 trials (panel C of Table 4), the model still gets the wrong %

answer on Units 7 and 8 for the (1 4 7) pattern more than half the time. (The reader can still
be checking these assertions by computing the net input to each output unit that would result
from presenting the (14 7) pattern.) . ""

It is only after the model has reached the stage where it is making very few mistakes on the
17 regular patterns that it begins to accommodate to the exception. This amounts to making
the connection from Units 1 and 4 to output Unit 7 strongly excitatory and making the con- V
nections from these units to output Unit 8 strongly inhibitory. The model must also make
several adjustments to other connections so that the adjustments just mentioned do not cause
errors on regular patterns similar to the exceptions, such as (1 5 7), (2 4 7), etc. Finally, in
panel D, after a total of 500 cycles through the full set of 18 patterns, the weights are sufficient . -

to get the right answer nearly all of the time. Further improvement would be very gradual
since the network makes errors so infrequently at this stage that there is very little opportunity W-
for change.

It is interesting to consider for a moment how an association is represented is a model like
this. We might be tempted to think of the representation of an association as the difference
between the set of connection strengths needed to represent a set of associations that includes
the association and the set of strengths needed to represent the same set excluding the associa-
tion of interest. Using this definition, we see that the representation of a particular associa-
tion is far from invariant. What this means is that learning that occurs in one situation (e.g.,
in which there is a small set of unrelated associations) does not necessarily transfer to a new
situation (e.g., in which there are a number of regular associations). This is essentially why the
early learning our illustrative model exhibits of the (1 4 7) - (1 4 7) association in the context
of just one other association can no longer support correct performance when the larger
ensemble of regular patterns is introduced.

Obviously, the example we have considered in this section is highly simplified. However, it
illustrates several basic facts about pattern associators. One is that they tend to exploit regular- 7.

% ity that exists in the mapping from one set of patterns to another. Indeed, this is one of the
main advantages of the use of distributed representations. Second, they allow exceptions and
regular patterns to coexist in the same network. Third, if there is a predominant regularity in a
set of patterns, this can swamp exceptional patterns until the set of connections has been

* acquired that captures the predominant regularity. Then further, gradual tuning can occur that

adjusts these connections to accommodate both the regular patterns and the exception. These
basic properties of the pattern associator model lie at the heart of the three-stage acquisition
process, and account for the gradualness of the transition from Stage 2 to Stage 3.

|.-.."..,... ...
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Featural Representations of Phonological Patterns

The preceding section describes basic aspects of the behavior of the pattern associator model
and captures fairly well what happens when a pattern associator is applied to the processing of
English verbs, following a training schedule similar to the one we have just considered for the
acquisition of the rule of 78. There is one caveat, however: The input and target patterns---.
the base forms of the verbs and the correct past tenses of these verbs-must be represented in
the model in such a way that the features provide a convenient basis for capturing the regulari-
ties embodied in the past-tense forms of English verbs. Basically, there were two considera-
tions:

* We needed a representation which permitted a differentiation of all of the root forms
of English and their past tenses.

0 We wanted a representation which would provide a natural basis for generalizations to
emerge about what aspects of a present tense correspond to what aspects of the past
tense.

A scheme which meets the first criterion but not the second is the scheme proposed by
Wickelgren (1969). He suggested that words should be represented as sequences of context-
sensitive phoneme units, which represent each phone in a word as a triple, consisting of the
phone itself, its predecessor, and its successor. We call these triples Wickelphones. Notation-
ally, we write each Wickelphone as a triple of phonemes, consisting of the central phoneme,
subscripted on the left by its predecessor and on the right by its successor. A phoneme occur-
ring at the beginning of a word is preceded by a special symbol (#) standing for the word
boundary; likewise, a phoneme occurring at the end of a word is followed by #. The word
/kat/, for example, would be represented as #k,, kat, and *tp. Though the Wickelphones in a
word are not strictly position specific, it turns out that (a) few words contain more than one
occurrence of any given Wickelphone, and (b) there are no two words we know of that consist
of the same sequence of Wickelphones. For example, /slit/ and /silt/ contain no Wickel- -

phones in common.
One nice property of Wickelphones is that they capture enough of the context in which a

phoneme occurs to provide a sufficient basis for differentiating between the different cases of
the past-tense rule and for characterizing the contextual variables which determine the subregu-
larities among the irregular past-tense verbs. For example, the word-final phoneme which
determines whether we should add /d/, /t/ or /'d/ in forming the regular past. And it is the
sequence N, which is transformed to aNp in the ing - wrg pattern found in words like sing.

The trouble with the Wickelphone solution is that there arc too many of them, and they are
too specific. Assuming that we distinguish 35 different phonemes, the number of Wickel-
phones would be 353, or 42,875, not even counting the Wickclphones containing word boun-
daries. And, if we postulate one input unit and one output unit in our model for each Wick-
clphone, we require rather a large connection matrix (43X104 squared, or about 2x109) to
represent all their possible connections.

Obviously, a more compact representation is required. This can be obtained by representing .-.
each Wickclphone as a distributed pattern of activation over a set of feature detectors. The
basic idea is that we represent each phoneme, not by a single Wickclphone, but by a pattern of
what we call Wickelfeatwes. Each Wickelfeature is a conjunctive, or context-sensitive, feature,
capturing a feature of the central phoneme, a feature of the predecessor, and a feature of the
successor.

... ,..............
-_-._-i- '" " " " " " . . - ' ~~ ~~ ~~ ~~- -"' " " " " " -"- -a- . , - " . " " . ' ' - - " " "--',"''-"---,1 -''''-... . '''.-.. . . .'''', .<2P";-'..-' ""-,-."-I ' ,"--,-, . '" ","*.,"." - ."''. ."
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Details of the Wickelfeature representation. For concreteness, we will now describe the ]
details of the feature coding scheme we used. It contains several arbitrary properties, but it
also captures the basic principles of coarse, conjunctive coding described in Chapter 3. First, q
we will describe the simple feature representation scheme we used for coding a single phoneme
as a pattern of features without regard to its predecessor and successor. Then we describe how
this scheme can be extended to code whole Wickelphones. Finally, we show how we 'blur %"4
this representation, to promote generalization further.

To characterize each phoneme, we devised the highly simplified feature set illustrated in
Table 5. The purpose of the scheme was (a) to give as many of the phonemes as possible a dis-
tinctive code, (b) to allow code similarity to reflect the similarity structure of the phonemes in
a way that seemed sufficient for our present purposes, and (c) to keep the number of different
features as small as possible.

The coding scheme can be thought of as categorizing each phoneme on each of four dimen-
sions. The first dimension divides the phonemes into three major types: interrupted consonants
(stops and nasals), continuous consonants (fricatives, liquids, and semivowels), and vowels.
The second dimension further subdivides these major classes. The interrupted consonants are
divided into plain stops and nasals; the continuous consonants into fricatives and sonorants
(liquids and semivowels arc lumped together); and the vowels into high and low. The third
dimension classifies the phonemes into three rough places of articulation-front, middle, and
back. The fourth subcategorizes the consonants into voiced vs. voiceless categories and sub-
categorizes the vowels into long and short. As it stands, the coding scheme gives identical
codes to six pairs of phonemes, as indicated by the duplicate entries in the cells of the table.
A more adequate scheme could easily be constructed by increasing the number of dimensions
and/or values on the dimensions.

Using the above code, each phoneme can be characterized by one value on each dimension.

If we assigned a unit for each value on each dimension, we would need 10 units to represent
the features of a single phoneme since two dimensions have three values and two have two
values. We could then indicate the pattern of these features that corresponds to a particular
phoneme as a pattern of activation over the 10 units.

Now, one way to represent each Wickelphone would simply be to use three sets of feature ,.-.-,
patterns: one for the phoneme itself, one for its predecessor, and one for its successor. To

TABLE5

CATEGORIZATION OF PHIONEMES ON FOUR SIMPLE DIMENSIONS

PI ¢"% .

Front Middle Back

V/L U/S V/L U/S V/L U/S

Int-:rupted Stop b p d t k
Nasa m n N

Cont. Consonant Fric. v/D f/T Z 8 Z/j S/C
LIq/SV w/I - r - y h

Vowd High E i 0 U U

Low A • I a/ W ./o

Key: N - ng in sing; D - th in the; T th in with; Z - z in .ure; S sh in ship; "

C -chin chip. E- ecinbeet; i -i inbit; 0- oain bat. -u in butorschwa;
U - oo in boor;u - oo in o; A - ai in hit; e - e in ber; I -ie in bite;
a -ainba;a -•ainfther; W -owincow; * -awn saw;o-o in hot

"i.',
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capture the word-boundary marker, we would need to introduce a special eleventh feature.
Thus, the Wickelphone #, can be represented by

f (000) (00) (000) (00) 1
[(100) (10) (001) (01) 0
[ (001) (01) (010) (01) 0 I.

Using this scheme, a Wickelphone could be represented as a pattern of activation over a set of .r. .-
33 units.

However, there is one drawback with this. The representation is not sufficient to capture
more than one Wickelphone at a time. If we add another Wickelphone, the representation
gives us no way of knowing which features belong together.We need a representation, then, that provides us with a way of determining which features, '""
go together. This is just the job that can be done with detectors for Wickwlfcatures--triples of ]
features, one from the central phoneme, one from the predecessor phoneme, and one from the %--'
successor phoneme.

Using this scheme, each detector would be activated when the word contained a Wickel-
phone containing its particular combination of three features. Since each phoneme of a Wick-
elphone can be characterized by 11 features (including the word-boundary feature) and each ..

Wickelphone contains three phonemes, there are llxllxll possible Wickelfeature detectors. ...* ,
Actually, we are not interested in representing phonemes that cross word boundaries, so we
only need 10 features for the center phoneme.

Though this leaves us with a fairly reasonable number of units (liXIOxil or 1,210), it is still
large by the standards of what will easily fit in available computers. However, it is possible to
cut the number down still further without much loss of representational capacity since a
representation using all 1,210 units would be highly redundant; it would represent each feature
of each of the three phonemes 16 different times, one for each of the conjunctions of that
feature with one of the four features of one of the other phonemes and one of the four
features of the other.

To cut down on this redundancy and on the number of units required, we simply eliminated
all those Wickelfeatures specifying values on two different dimensions of the predecessor and
the successor phonemes. We kept all the Wickelfeature detectors for all cc binations of
different values on the same dimension for the predecessor and successor phonen.es. It turns
out that there are 260 of these (ignoring the word-boundary feature), and each feature of each
member of each phoneme triple is still represented four different times. In addition, we kept
the 100 possible Wickclfeatures combining a preceding word-boundary feature with any feature
of the main phoneme and any feature of the successor; and the 100 Wickelfeatures combining a
following word boundary feature with any feature of the main phoneme and any feature of the
successor. All in all then, we used only 460 of the 1,210 possible Wickclfeatures.

Using this representation, a verb is represented by a pattern of activation over a set of 460
Wickc!feature units. Each Wickclphone activates 16 Wickclfcature units. Table 6 shows the 16
Wickclfcature units activated by the Wickciphone kA,, the central Wickelphone in the word
came. The first Wickelfcature is turned on whenever we have a Wickelphone in which the
preceding contextual phoneme is an interrupted consonant, the central phoneme is a vowel,
and the following phoneme is an interrupted consonant. This Wickelfcature is turned on for -* ',-
the Wickclphonc ka. since /k and /m/, the context phonemes, are both interrupted con- •

sonants and /A/, the central phoneme, is a vowel. This same Wickelfeature would be turned
on in the representation of bid, P t, ,,ap, and many other Wickelfatures. Similarly, the sixth
Wickelfcature listed in the table will be turned on whenever the preceding phoneme is made in
the back, and the central and following phonemes are both made in the front. Again, this is
turned on because /k is made in the back and /A/ and /m/ arc both made in the front. In
addition to hA,, this feature would be turned on for the Wickciphones al., gAp, kAp, and oth- -----I
ers. Similarly, each of the sixteen Wickelfcaturcs stands for a conjunction of three phonetic

- ... a-~,..".. . . . . . . . .
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TABLE 6

THE SIXTEEN WICKELFEATURES FOR IE WICKELPIIONE kAn

Feature Preceding Context Central Phoneme Following Context
I Interrupted Vowel Interrupted!
2 Bak Vowd Front

3 Stop Vowel Nasal

4 Voiced Vowel Unvoiced

5 Interrupted Front Vowel
6 Back Front Front
7 Stop Front Nasal
8 Voiced Front Unvoiced

9 Interrupted Low Interrupted
10 Back Low Front
11 Stop Low Nasal
12 Voiced Low Unvoiced

13 Interrupted Long Vowel
14 Back Long Front
15 Stop Long Nasal
16 Voiced Long Unvoiced

features and occurs in the representation of a large number of Wickelphones.

Now, words are simply lists of Wickelphones. Thus, words can be represented by simply
turning on all of the Wickclfeatures in any Wickelphone of a word. Thus, a word with three
Wickelphones (such as came, which has the Wickelphones #kA- kA,, and amf) will ha'- at
most 48 Wickelfcatures turned on. Since the various Wickelphones may have some Wickcl-
features in common, typically there will be less than 16 times the number of Wickelfeatures
turned on for most words. It is important to note the temporal order is entirely implicit in
this representation. All words, no matter how many phonemes in the word, will be
represented by a subset of the 460 Wickelfeatures.

Blurring the Wickelfeature representation. The representational scheme just outlined con-
stitutes what we call the primary representation of a Wickelphone. In order to promote faster
generalization, we further blurred the representation. This is accomplished by turning on, in
addition to the 16 primary Wickelfcaturcs, a randomly selected subset of the similar Wickel-
features, specifically, those having the same value for the central feature and one of the two

" context phonemes. That is, whenever the Wickelfcature for the conjunction of phonemic
features f 1, f 2, and f 3 is turned on, each Wickelfcature of the form < ?f 2f 3> and
< f J 2?> may be turned on as well. Here ". stands for 'any feature.* This causes each word

to activate a larger set of Wickelfcatures, allowing what is learned about one sequence of
phonemes to generalize more readily to other similar but not identical sequences.

To avoid having too much randomners in the representation of a particular Wickelphone, we
turned on the same subset of additional Wickelfeatures each time a particular Wickelphone
was to be represented. Based on subsequent experience with related models (see Chapter 19),
we do not believe this makes very much difference.

There is a kind of trade-off between the discriminability among the base forms of verbs that
the representation provides and the amount of generalization. We need a representation which
allows for rapid generalization while at the same time maintains adequate discriminability. We
can manipulate this factor by manipulating the probability p that any one of these similar
Wickclfeatures will be turned on. In our simulations we found that turning on the additional
features with fairly high probability (.9) led to adequate discriminability while also producing
relatively rapid generalization.

Although the model is not completely immune to the possibility that two different words
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will be represented by the same pattern, we have encountered no difficulty decoding any of the
verbs we have studied. However, we do not claim that Wickelfeatures necessarily capture all -"

the information needed to support the generalizations we might need to make for this or other
morphological processes. Some morphological processes might require the use of units which
were further differentiated according to vowel stress or other potential distinguishing charac-
teristics. All we claim for the present coding scheme is its sufficiency for the task of represent-
ing the past tenses of the 500 most frequent verbs in English and the importance of the basic
principles of distributed, coarse (what we are calling blurred), conjunctive coding that it embo-
dies (see Chapter 3).

Summary of the Structure of the Model

In summary, our model contained two sets of 460 Wickelfeature units, one set (the input
units) to represent the base form of each verb and one set (the output units) to represent the
past-tense form of each verb.

The model is tested by typing in an input phoneme string, which is translated by the fixed
encoding network into a pattern of activation over the set of input units. Each active input
unit contributes to the net input of each output unit, by an amount and direction (positive or
negative) determined by the weight on the connection between the input unit and the output
unit. The output units are then turned on or off probabilistically, with the probability increas-
ing with the difference between the net input and the threshold, according to the logistic
activation function. The output pattern generated in this way can be compared with various
alternative possible output patterns, such as the correct past-tense form or some other possible
response of interest, or can be used to drive the decoder network described in the Appendix.

The model is trained by providing it with pairs of patterns, consisting of the base pattern
and the target, or correct, output. Thus, in accordance with common assumptions about the
nature of the learning situation that faces the young child, the model receives only correct
input from the outside world. However, it compares what it generates internally to the target
output, and when it gets the wrong answer for a particular output unit, it adjusts the strength
of the connection between the input and the output units so as to reduce the probability that
it will make the same mistake the next time the same input pattern is presented. The adjust-
ment of connections is an extremely simple and local procedure, but it appears to be sufficient . -

to capture what we know about the acquisition of the past tense, as we shall see in the next
section.

THE SIMULATIONS

The simulations described in this section are concerned with demonstrating three main

points:

* That the model captures the basic three-stage pattern of acquisition.

" That the model captures most aspects of differences in performance on different types
of regular and irregular verbs.

* That the model is capable of responding appropriately to verbs it has never seen - - .

before, as well as to regular and irregular verbs actually experienced during training.

........................................
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In the sections that follow we will consider these three aspects of the model's performance in
turn. 

"'a c i

The corpus of verbs used in the simulations consisted of a set of 506 verbs. All verbs were
chosen from the Kucera and Francis (1967) word list and were ordered according to frequency
of their gerund form. We divided the verbs into three classes: 10 high-frequency verbs, 410
medium-frequency verbs, and 86 low-frequency verbs. The ten highest frequency verbs were:
come (/km/), get (/get/), give (/giv/), look (/Auk/), take (/tAk/), go (/go/), have (/hav/), live
(/iiv), and feel (/fEl). There is a total of 8 irregular and 2 regular verbs among the top 10.
Of the medium-frequency verbs, 334 were regular and 76 were irregular. Of the low-frequency
verbs, 72 were regular and 14 were irregular.

The Three-Stage Learning Curve

The results described in this and the following sections were obtained from a single (long)
simulation run. The run was intended to capture approximately the experience with past
tenses of a young child picking up English from everyday conversation. Our conception of the
nature of this experience is simply that the child learns first about the present and past tenses
of the highest frequency verbs; later on, learning occurs for a much larger ensemble of verbs,
including a much larger proportion of regular forms. Although the child would be hearing
present and past tenses of all kinds of verbs throughout development, we assume that he is
only able to learn past tenses for verbs that he has already mastered fairly well in the present
tcnse.

To simulate the earliest phase of past-tense learning, the model was first trained on the 10
high-frequency verbs, receiving 10 cycles of training presentations through the set of 10 verbs.
This was enough to produce quite good performance on these verbs. We take the performance
of the model at this point to correspond to the performance of a child in Phase 1 of acquisi- .-

tion. To simulate later phases of learning, the 410 medium-frequency verbs were added to the
first 10 verbs, and the system was given 190 more learning trials, with each trial consisting of
one presentation of each of the 420 verbs. The responses of the model early on in this phase of
training correspond to Phase 2 of the acquisition pyocess; its ultimate performance at the end
of 190 exposures to each of the 420 verbs corresponds to Phase 3. At this point, the model
exhibits almost errorless performance on the basic 420 verbs. Finally, the set of 86 lower fre-
quency verbs were presented to the system and the transfer responses to these were recorded. " '
During this phase, connection strengths were not idjusfod. Performance of the model on these
transfer verbs is considered in a later section

We do not claim, of course, that this training experience exactly captures the learning experi-
ence of the young child. It should be perf.cily clear that this training experience exaggerates
the difference between early phases of lea-ning and later phases, as well as the abruptness of
the transition to a larger corpus of verbs. However, it is generally observed that the early,
rather limited vocabulary of young children undergoes an explosive growth at some point in
development (Brown, 1973). Thus, the actual transition in a child's vocabulary of verbs would
appear quite abrupt on a time-scale of years so that our assumptions about abruptness of onset
may not be too far off the mark.

Figure 4 shows the basic results for the high-frequency verbs. What we see is that during the
first 10 trials there is no difference between regular and irregular verbs. However, beginning on
Tnal 11 when the 410 midfrequency verbs were introduced, the regular verbs show better per-
formance. It is important to notice that there is no interfering effect on the regular verbs as
the midfrequency verbs are being learned. There is, however, substantial interference on the
irregular verbs. This interference leae- to a dip in performance on the irregular verbs. Equal-
ity of performance between regular and irregular verbs is never again attained during the train-
ing period. This is the so-called U-shaped learning curve for the learning of the irregular past

" 6.-:''
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High Frequency Verbs
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FIGURE 4. Tle percentage of correct features for regular and irregular high-frequency verbs as a function of trials.

tense. Performance is high when only a few high-frequency, largely irregular verbs are learned,
but then drops as the bulk of lower frequency regular verbs are being learned.

We have thus far only shown that performance on high-frequency irregular verbs drops; we
have not said anything about the nature of the errors. To examine this question, the response
strength of various possible response alternatives must be compared. To do this, we compared
the strength of response for several different response alternatives. We compared strengths for
the correct past tense, the present, the base+ed and the past+ed. Thus, for example with the
verb give we compared the response strength of /gAv/, /giv/, /givd/, and /gAvd/. We deter-
mined the response strengths by assuming that these response alternatives were competing to
account for the features that were actually turned on in the output. The details of the corn-
petition mechanism, called a binding network, are described in the Appendix. For present pur-
poses, suffice it to say that each alterrative gets a score that represents the percentage of the
total features that it accounts for. If two alternatives both account for a given feature, they
divide the score for that feature in proportion to the number of features each accounts for
uniquely. We take these response strengths to correspond roughly to relative response proba-
bilities, though we imagine that the actual generation of overt responses is accomplished by a
different version of the binding network, described below. In any case, the total strength of
all the alternatives cannot be greater than 1, and if a number of features are accounted for by --.-
none of the alternatives, the total will be less than 1.

Figure 5 compares the response strengths for the correct alternative to the combined strength
of the regularized alternatives. 4 Note in the figure that during the first 10 trials the response
strength of the correct alternative grows rapidly to over .5 while that of the regularized alterna-
tive drops from about .2 to .1. After the midfrequency verbs are introduced, the response

Unless otherwise indicatcd. the regularized alternatives are considered the bate+ed and past+ed alternatives. In a
later section of the paper we shall discuas the pattern of differences between these alternatives. In most cases the
hase+cd alternative is much stronger than the past +ed alternative.

.2-- g.- -
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High Frequency Irregulars

1.0

o 0.4

S 0.2

0.0

0 40 80 120 160 200

Tials

FIGURE 5. Response strengths for the high-frequency irregular verbs. The response strengths for the correct
responses are compared with those for the regularized alternatives as a function of trials.

strength for the correct alternative drops rapidly while the strengths of regularized alternatives
jump up. From about Trials 11 through 30, the regularized alternatives together are stronger
than the correct response. After about Trial 30, the strength of the correct response again
exceeds the regularized alternatives and continues to grow throughout the 200-trial learning
phase. By the end, the correct response is much the strongest with all other alternatives below

The rapidity of the growth of the regularized alternatives is due to the sudden influx of the
medium-frequency verbs. In real life we would expect the medium-frequency verbs to come in
somewhat more slowly so that the period of maximal regularization would have a somewhat
slower onset.

Figure 6 shows the same data in a slightly different way. In this case, we have plotted the
ratio of the correct response to the sum of the correct and regularized response strengths.
Points on the curve below the .5 line are in the region where the regularized response is greater
that the correct response. Here we see clearly the three stages. In the first stage, the first 10
trials of lcarning, performance on these high-frequency verbs is quite good. Virtually no regu-
larization takes place. During the next 20 trials, the system regularizes and systematically makes
errors on the verbs that it previously responded to correctly. Finally, during the remaining tri-
als the model slowly eliminates the regularization responses as it approaches adult performance.

In summary, then, the model captures the three phases of learning quite well, as well as the
gradual transition from Phase 2 to Phase 3. It does so without any explicit learning of rules.
The regularization is the product of the gradual tuning of connection strengths in response to
the predominantly regular correspondence exhibited by the medium-frequency words. It is not
quite right to say that individual pairs are being stored in the network in any simple sense. The
connection strengths the model builds up to handle the irregular forms do not represent these
items in any separable way; they represent them in the way they must be represented to be
stored along with the other verbs in the same set of connections.

- - ,-".o% -
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High Frequency Irregulars
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FIGURE 6. The ratio of the correct response to the sum of the correct and regularized response. Points on the

curve below the .5 line are in the region where the regularized response is greater than the correct response.

Before discussing the implications of these kinds of results further, it is useful to look more
closely at the kinds of errors made and at the learning rates of the medium-frequency regular
and irregular verbs.

Learning the medium-frequency verbs. Figure 7A compares the learning curves for the reg-ular verbs of high and medium frequency, and Figure 7B compares the learning curves for the

corresponding groups of irregular verbs. Within only two or three trials the medium-frequency
verbs catch up with their high-frequency counterparts. Indeed, in the case of the irregular
verbs, the medium-frequency verbs seem to surpass the high-frequency ones. As we shall see in
the following section, this results from the fact that the high-frequency verbs include some of
the most difficult pairs to learn, including, for example, the go/went pair which is the very most
difficult to learn (aside from the verb be, this is the only verb in English in which the past and
root form are completely unrelated). It should also be noted that even at this early stage of
learning there is substantial generalization. Already, on Trial 11, the very first exposure to the
medium-frequency verbs, between 65 and 75 percent of the features are produced corrcc'ly.
Chance responding is only 50 percent. Moreover, on their first presentation, 10 percent more
of the features of regular verbs are correctly responded to than irregular ones. Eventually,
after 200 trials of learning, nearly all of the features are being correctly generated and the sys-
tem is near asymptotic performance on this verb set. As we shall see below, during most of
the learning period the difference between high- and medium-frequency verbs is not important.
Rather, the differences between different classes of verbs is the primary determiner of perfor.-
mance. We now turn to a discussion of these different types.

................................
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FIGURE 7. The learning curves for the high- and medium-frequency verbs.

* Types of Regular and Irregular Verbs

To this point, we have treated regular and irregular verbs as two homogeneous classes. In%
*fact, there are a number ef distinguishable types of regular and irregular verbs. Bybee and Slo-
* bin (1982) have studied the different acquisition patterns of the each type of verb. In this sec.

tion we compare their results to the responses produced by our simulation model.
Bybee and Slobin divided the irregular verbs into nine classes, defined as followsO

I. Verbs that do not change at all to form the past tense, e.g., beat, cut, hit.

11. Verbs that change a final /d/ to /t/ to form the past tense, e.g., send/sent, build/built.

Ill. Verbs that undergo an internal vowel change and also add a final /t/ or /d/, e.g.,
feel/f elf, lose/lost, say/said, tell/told.

IV. Verbs that undergo an internal vowel change, delete a final consonant, and add a final
/t/ or /d/, e.g., bring/broaught, catch/caught.6

* $Criteria from Bytbee and Slobin. IWR2. pp. 26P,269.

6 Following Byb~ee and Slobin. we included Mbuylouht in this clas even though no final consonant is deleted.
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V. Verbs that undergo an internal vowel change whose stems end in a dental, e.g., bite/bit,
find/found, ride/rode.

Via. Verbs that undergo a vowel change of fi/ to /a/ e.g., sing/sag, drink/drank. t A
VIb. Verbs that undergo an internal vowel change of / or /a/ to // e.g., sting/stung,

hang/hung. 
7

VII. All other verbs that undergo an internal vowel change, e.g., give/gave, break/broke. 23'.
VIII. All verbs that undergo a vowel change and that end in a dipthongal sequence, e.g.,

blow/blew, fly/flew.

A complete listing by type of all of the irregular verbs used in our study is given in Table 7.
In addition to these types of irregular verbs, we distinguished three categories of regular

verbs: (a) those ending in a vowel or voiced consonant, which take a /d/ to form the past
tense; (b) those ending in a voiceless consonant, which take a /t/; and (c) those ending in /t/
or /d/, which take a final /d/ to form the past tense. The number of regular verbs in each
category, for each of the three frequency levels, is given in Table 8.

TABLE 7

IRREGULAR VERBS

Frequency

Type High Medium Low

beat fit set spread thrust
hit cut put bid

,, build send spend bend lend

Iii feel deal do flee tell sell creep
hear keep leave sleep weep
lose mean say sweep

IV have think buy bring catch

make seek teach

V get meet shoot write lead breed
understand sit mislead wind
bleed feed stand light grind
find fight read meet
hide hold ride

VIA drink ring sing swim

Vib drag hang swing dig cling

stick

0 VIi give shake arise rise run teaS -

take become bear wear speak
come brake drive strike

fall freeze choose

Vill go throw blow grow
draw fly know see

7 For many purposes we combine Claases Via and Vtb in our analysea.

-. - ii.-oK..°
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TABLE 3

NUMBER OF REGULAR VERBS OF EACH TYPE

Frequency

SType Suffix Example High Medium Low

End in dental /^d/ start 0 94 13

End in voiceless /t/ look 1 64 30
consonant

End in voiced /d/ move 1 176 29 . ,
consonant or
Vowel

Type 1.: No-change verbs. A small set of English verbs require no change between their
present- and past-tense forms. One factor common to all such verbs is that they already end in
/t/or /d/. Thus, they superficially have the regular past-tense form-even in the present tense.
Stemberger (1981) points out that it is common in inflectional languages not to add an addi-
tional inflection to base forms that already appear to have the inflection. Not all verbs ending
in /t/ or /d/ show no change between present and past (in fact the majority of such verbs in
English do show a change between present and past tense), but there is a reasonably large
group--the Type I verbs of Bybee and Slobin-that do show this trend. Bybee and Slobin - .
(1982) suggest that children learn relatively early on that past-tense verbs in English tend to end
in /t/ or /d/ and thus are able to correctly respond to the no-change verbs rather early. Early
in learning, they suggest, children also incorrectly generalize this "no-change rule" to verbs
whose present and past tenses differ.

The pattern of performance just described shows up very clearly in data Bybee and Slobin
(1982) report from an elicitation task with preschool children. In this task, preschoolers were
given the present-tense form of each of several verbs and were asked to produce the
corrcsponding past-tense form. They used the set of 33 verbs shown in Table 9.

The results were very interesting. Bybee and Slobin found that verbs not ending in tid were _

predominately regularized and verbs ending in tid were predominately used as no-change verbs.
The number of occurrences of each kind is shown in Table 10. These preschool children have,
at this stage, both learned to regularize verbs not ending in t/d and, largely, to leave verbs end-
ing in tid without an additional ending.

Interestingly, our simulations show the same pattern of results. The system learns both to
regularize and has a propensity not to add an additional ending to verbs already ending in tid.
In order to compare the simulation results to the human data we looked at the performance of
the same verbs used by Bybee and Slobin in our simulations. Of the 33 verbs, 27 were in the
high- and medium-frequency lists and thus were included in the training set used in the simula-
tion. The other six verbs (smoke, catch, lend, pat, hurt and shut) were either in the low-

TABLE 9

VERBS USED BY BYBEE & SLOI3LN

Type of Verb Verb List

Regular walk smoke melt pat smile climb
Vowel change drink break run swim throw meet shoot ride
Vowel change + t~d do buy lose sell sleep help teach catch
No change hit hurt set shut cut put beat
Other go make build lend

L-. -.-
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TABLE 10

REGULAR AND NO CHANGE RESPONSES
TO t/d AND OTHER VERBS

(Da from Bybee & Slobin, 198)

Verb Ending Regular Suffix No Cbage

, Not t/d 203 34

,/i 42 157

frequency sample or did not appear in our sample at all. Therefore, we will report on 27 out
of the 33 verbs that Bybee and Slobin tested.

It is not clear what span of learning trials in our simulation corresponds best to the level of
the preschoolers in Bybee and Slobin's experiment. Presumably the period during which regu-
larization is occurring is best. The combined strength of the regularized alternatives exceeds
correct response strength for irregulars from about Trial 11 through Trials 20 to 30 depending
on which particular irregular verbs we look at. We therefore have tabulated our results over
three different time ranges-Trials 11 through 15, Trials 16 through 20, and Trials 21 through
30. In each case we calculated the average strength of the regularized response &ternatives and
of the no-change response alternatives. Table 11 gives these strengths for each of the different r

time periods.
The simulation results show clearly the same patterns evident in the Bybee and Slobin data.

Verbs ending in tid always show a stronger no-change response and a weaker regularized
response than those not ending in t/d. During the very early stages of learning, however, the
regularized response is stronger than the no-change response-even if the verb does end with
t/d. This suggests that the generalization that the past tense of t/d verbs is formed by adding
fd/ is stronger than the generalization that verbs ending in i/d should not have an ending
added. However, as learning proceeds, this secondary generalization is made (though for only a
subset of the t/d verbs, as we shall see), and the simulation shows the same interaction that
Bybee and Slobin (1982) found in their preschoolers.

The data and the simulations results just described conflate two aspects of performance,
namely, the tendency to make no-change errors with tid verbs that are not no-change verbs and
the tendency to make correct no-change responses to the t/d verbs that are no-change verbs.
Though Bybee and Slobin did not report their data broken down by this factor, we can exam-
inc the results of the simulation to see whether in fact the model is making more no-change
errors with i/d verbs for which this response is incorrect. To examine this issue, we return to
the full corpus of verbs and consider the tendency to make no-change errors separately for
irregular verbs other than Type I verbs and for regular verbs.

Erroneous no-change responses are clearly stronger for both regular and irregular t/d verbs.

TABLE 11

AVERAGE SIMULAIED STRENGTHS OF

REGULARIZED AND NO-CHANGE RESPONSES

Time Period Verb Ending Regularized No Change

11-15 not r/d 0.44 010
rid 0.35 0.27

16-20 not tid 0.32 0.12
t/d 0.25 0.35

21-30 not t/d 0.52 0.11
%1d 0.32 0.41

S.-
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Figure 8A compares the strength of the erroneous no-change responses for irregular verbs end-
ing in td (Types I1 and V) versus those not ending in td (Types Ill, IV, VI, VII, and VIII).
The no-change response is erroneous in all of these cases. Note, however, that the erroneous
no-change responses are stronger for the t/d verbs than for the other types of irregular verbs.
Figure 8B shows the strength of erroneous no-change responses for regular verbs ending in id %

versus those not ending in td. Again, the response strength for the no-change response is
clearly greater when the regular verb ends in a dental.

* - We also compared the regularization responses for irregular verbs whose stems end in td
with irregulars not ending in td. The results are shown in Figure 8C. In this case, the regulari-
zation responses arc initially stronger for verbs that do not end in tid than for those that do.
Thus, we see that even when focusing only on erroneous responses, the system shows a greater
propensity to respond with no change to t/d verbs, whether or not the verb is regular, and a
somewhat greater tendency to regularize irregulars not ending in rid.

There is some evidence in the literature on language acquisition that performance on Type I
verbs is better sooner than for irregular verbs involving vowel changes-Types Ill through VIII.
Kuczaj (1978) reports an experiment in which children were to judge the grammaticality of sen-
tences involving past tenses. The children were given sentences involving words like hit or hit-
red or are or eared and asked whether the sentences sounded 'silly.* The results, averaged over
three age groups from 3;4 to 9;0 years, showed that 70 percent of the responses to the no-
change verbs were correct whereas only 31 percent of the responses to vowel-change irregular
verbs were correct. Most of the errors involved incorrect acceptance of a regularized form.
Thus, the results show a clear difference between the verb types, with performance on the Type
I verbs superior to that on Type Ill through VIII verbs. '-

The simulation model too shows better performance on Type I verbs than on any of the
other types. These verbs show fewer errors than any of the other irregular verbs. Indeed the
error rate on Type I verbs is equal to that on the most difficult of the regular verbs. Table 12
gives the average number of Wickelfeatures incorrectly generated (out of 460) at different
periods during the Icarning processes for no-change (i.e., Type I) irregular verbs, vowel-change
(i.e., Type Ill-VIII) irregular verbs, regular verbs ending in td, regular verbs not ending in t/d,
and regular verbs ending in rid whose stem is a CVC (consonant-vowel-consonant) monosyll-
able. The table clearly shows that throughout learning, fewer incorrect Wickelfeatures are gen-
crated for no-change verbs than for vowel-change verbs. Interestingly, the table also shows that
one subset of regulars are no easier than the Type I irregulars. These are the regular verbs
which look on the surface most like Type I verbs, namely, the monosyllabic CVC regular verbs
ending in rid. These include such verbs as bar, wait, shout, head, etc. Although we know of no
data indicating that people make more no-change errors on these verbs than on multisyllabic
vcrbs ending in rid, this is a clear prediction of our model. Essentially what is happening is
that the model is learning that monosyllables ending in tid sometimes take no additional

TABLE 12

AVERAGE NUMBER OF WICKELFEATURES INCORRECTLY GENERATED

Tna_ Irregula Verbs Regular Verbs

Numba Type I Types Ill-VUI Ending in t/d Not Ending in fid CVt/d '" -

11-15 A9.8 123.9 74.1 82.8 87.3
16-20 576 93.7 45.3 51.2 60.5
21-30 45 5 78.2 32.9 37.4 47.9 "
32-50 344 61.3 22.9 26.0 37.3

51-100 188 39.0 1.4 12.9 21.5
101-200 I ]A 21 5 6.4 7.4 12.7

.. "..-i,:
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Types Ill-VII: Vowel-change verbs. To look at error patterns on vowel-change verbs
(Types III-VIII) Bybee and Slobin (1992) analyzed data from the spontaneous speech of
preschoolers ranging from one-and-one-half to five years of age. The data came from indepen-
dent sets of data collected by Susan Ervin-Tripp and Wick Miller, by Dan Slobin, and by Zell
Greenberg. In all, speech from 31 children involving the use of 69 irregular verbs was studied.
Bybee and Slobin recorded the percentages of regularizations for each of the various types of
vowcl-change verbs. Table 13 gives the percentages of regularization by preschoolers, ranked
from most to fewest erroneous regularizations. The results show that the two verb types which
involve adding a t/d plus a vowel change (Types II and IV) show the least regularizations,
whereas the verb type in which the present tense ends in a diphthong (Type VIII) shows by far
the most regularization.

It is not entirely clear what statistic in our motel best corresponds to the percentage of regu-
larizations. It will be recalled that we colle. -t response strength measures for four different
response types for irregular verbs. These were the correct response, the no-change response,
the basc+ed regularization response, and the past+ed regularization response. If we imagine
that no-change responses are, in general, difficult to observe in spontaneous speech, perhaps
the measure that would be most closely related to the percentage of regularizations would be
the ratio of the sum of the strengths of the regularization responses to the sum of the strengths .
of regularization responses and the correct response--that is, ¢ -

(base +ed + past +ed - correct)

As with our previous simulation, it is not entirely clear what portion of the learning curve
corresponds to the developmental level of the children in this group. We therefore calculated
this ratio for several different time periods around the period of maximal overgeneralization. %
Table 14 shows the results of these simulations.

The spread between different verb classes is not as great in the simulation as in the children's "- -" -

data, but the simulated rank orders show a remarkable similarity to the rcsults from the spon-
taneous speech of the preschoolers, especially in the earliest time veriod. Type VIII verbs
show uniformly strong patterns of regularization whereas Type III and Type IV verbs, those
whose past tense involves adding a t/d at the end, show relatively weak regularization
responses. Type VI and Type VII verbs produce somewhat disparate results. For Type VI
verbs, the simulation conforms fairly closely to the children's speech data in the earliest time
period, but it shows rather less strength for regularizations of these verbs in the later time
periods and in the average over Trials 11-30. For Type VII verbs, the model errs in the oppo-
site direction: Here it tends to show rather greater strength for regularizations of these verbs
than we see in the children's speech. One possible reason for these discrepancies may be the

TABLE 13

PERCENTAGE OF REGULARIZATION

BY PRESCIIOOLERS

(Data from Bybee & Slobin. 192)

Percent ap -.
Verb Type Example Regualarizations

ViII blew go -" ."

Vi sang 55
V bit 34

ViI broke 32
Il fdt 13
IV caught 10

r- W. At
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TABLE 14 oo..

STRENGTH OF REGULARIZATION RESPONSES
RELATAVE TO CORRECT RESPONSES.

Trials Trials Trials Trials -:'",
Data I I-13 5 6-20 21.30 1 1-30 . .'

Order Type Percent Type Ratio Type Ratio Type Ratio Type Rat in

2 V [ 55 V H .80 V [( .74 VaI .61 VU[ .69
3 V 34 VI .76 V .60 IV .4 V ,36
4 VII 32 V .72 IV .59 V .46 IV .56

5 111 13 IV .69 111 .57 ait .44 111 .536 IV 10 LI .67 V .52 VI .40 V .52

model's insensitivity to word frequency. Type VI verbs ar, in fact, relatively low-frequency ::::
verbs, and thus, in the children's speech these verbs may actually be at a relatively earlier stage

in acquisition than some of the more frequent irregular verbs. Type VII verbs arc, in general, .. :
much more frequent-in fact, on the average they occur more than twice as often (in the
gerund form) in the KucTra-Francis count than the Type VI verbs. In our simulations, all

medium-frequency verbs were presented equally often and the distinction was not made. A-" "
higher fidelity simulation including finer gradations of frequency variations among the verb 0.-:''
types might lead to a closer correspondence with the empirical results. In any case, these verbs.':"""'''

-r - -.

aside, Orhe r Tyeieretuyplationsestcaurthmjo Tyeatrsof type datio Teypice tio

Bybee and Slobin attribute the pattern of results they found to factors that would not bc e,-.,
relevant to our model. They proposed, for example, that Type III and IV verbs were more

easily learned because the final t/d signaled to the child that they were in fact past tenses so the
child would not have to rely on context as much in order to determine that these were past-
tense forms. In our simulations, we found these verbs to be easy to [carm, but it must have .'
been for a different reason since the learning system was always informed as to what the .. ,
correct past tense really was. Similarly, Bybee and Slobin argued that Type VIII verbs were the
most difficult because the past and present tenses were so phonologically different that the
child could not easily determine that the past and present tenses of these verbs actually go
togcthir. Again, our simulation showed Type VIII verbs to be the most difficult, but this had
nothing to do with putting the past and presente oc thn tiche model was always
given the present and past tenses together.

Our model, then, must off r a different interprtation of Bybee and Slobin's findings. The
main factor appears to be the degree to which the relation between the present and past tense
of the verb is idiosyncratic. Type VIII verbs are most difficult because the relationship
between base form and past tense is most idiosyncratic for these verbs. Thus, the natural n-
cralizations implicit in the population of verbs must be overcome for these verbs, and they

must be overcome in a different way for each of them. A very basic aspect of the mapping ---.- "
from present to past tense is that most of the word, and in particular everything up to the final .

vowel, is unchanged. For regular verbs, all of the phonemes present in the base form are
preserved in the past tense. Thus, verbs that make changes to the base form ar going against ...
the grain more than those that do not; the larger the changes, the harder they will be to learn. .Another factor is that past tenses of verbs generally end in //or/d/. TeIvrwrhVerbs that violate the basic past-tensc pattern are all at a disadvantage in the model, of

course, but some suffer less than others because there are other verbs that deviate from the

basic pattern in the same way Thus, these ese less idiosyncratic than verbs such as
gowent, seefsaw, and drawdrew which represent completely idiosyncratic vowel changes. The -
difficulty with Type VIII verbs, then, is simply that, as a class, they arm simply moreagai

"- . :-.--'the.grain.more than those.--.-.that.-' do-.-.. not the. large the".. chages th harder the will be to .ler. . - .-
--- ' -. " ".- °-Another-_:factor' "is that past.'." tens.es• of" verbs"-gener -ly .end" in •/t/. or ,/d/.
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idiosyncratic than other verbs. Type [II and IV verbs (e.g., feel/felt, catch/,caugh), on the other
hand, share with the vast bulk of the verbs in English the feature that the past tense involves
the addition of a td. The addition of the td makes these verbs easier than, say, Type VII
verbs (e.g., come/came) because in Type VII verbs the system must not only learn that there is a '.".
vowel change, but it must also learn that there is not an addition of t/d to the end of the verb.

Type VI verbs (sing/sang, drag/drug) are interesting from this point of view, because they
Ie involve fairly common subregularities not found in other classes of verbs such as those in Type -..

V. In the model, the Type VI verbs may be learned relatively quickly because of this subregu-
larity.

Types of regularization. We have mentioned that there are two distinct ways in which a .-
child can regularize an irregular verb: The child can use the base+ed form or the past+ed "

form. Kuczaj (1977) has provided evidence that the proportion of past+ed forms increases,
relative to the number of base+ed forms, as the child gets older. He found, for example, that
the nine youngest children he studied had more base+ed regularizations than past+ed regulari-
zations whereas four out of the five oldest children showed more past+ed than base+ed regu-
larizations. In this section, we consider whether our model exhibits this same general pattern. .

Since the base form and the past-tense form are identical for Type I verbs, we restrict our
analysis of this issue to Types II through VIII.

Figure 9 compares the average response strengths for base+ed and past+ed regularizations as
a function of amount of training. The results of this analysis are more or less consistent with
Kuczaj's finding. Early in learning, the base-Ied response alternative is clearly the stronger of
the two. As the system learns, however, the two come together so that by about 100 trials the
base+ed and the past+ed response alternatives are roughly equally strong. Clearly, the simula-
tions show that the percentage of regularizations that are past +ed increases with experience--
just as Kuczaj found in children. In addition, the two curves come together rather late, con-
sistent with the fact, reported by Kuczaj (1977), that these past+ed forms predominate for the

Verb Types II-VIII

' 0.3 Base+ed

4.)

0.2

0

M0 .
Cu

0.01
0 40 80 120 160 200

Trials
FIGURE--: 9. ff
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most part in children who are exhibiting rather few regularization errors of either type. Of the
four children exhibiting more past+ed regularizations. three were regularizing less than 12% of
the time.

A closer look at the various types of irregular verbs shows that this curve is the average of I.W ,
two quite different patterns. Table 15 shows the overall percentage of regularization strength
due to the base+ed alternative. It is clear from the table that the verbs fall into two general
categories, those of Types III, IV, and VIII which have an overall preponderance of base+ed
strength (the percentages are all above .5) and Types II, VII, V, and VI which show an overall
preponderance of past +ed strength (the percentages are all well below .5). The major variable
which seems to account for the ordering shown in the table is the amount the ending is ,,.7. 7
changed in going from the base form to the past-tense form. If the ending is changed little, as
in sing/sang or come/cwne, the past+ed response is relatively stronger. If the past tense involves
a greater change of the ending, such as see/saw, or sleep/stept, then the past+ed form is much
weaker. Roughly, the idea is this: To form the past+ed for these verbs two operations must
occur. The normal past tense must be created, and the regular ending must be appended.
When these two operations involve very different parts of the verb, they can occur somewhat
independently and both can readily occur. When, on the other hand, both changes occur to
the same portion of the verb, they conflict with one another and a clear past+ed response is %
difficult to generate. The Type II verbs, which do show an overall preponderance of past+ed
regularization strength, might seem to violate this pattern since it involves some change to the
end in its past-tense form. Note, however, that the change is only a one feature change from 6"-
/d/ to /t/ and thus is closer to the pattern of the verbs involving no change to the final
phonemes of the verb. Figure 19A shows the pattern of response strengths to base+ed and
past +cd regularizations for verb Types II, VII, V, and VI which involve relatively little change
of the final phonemes from base to past form. Figure 10B shows the pattern of response
strengths to base4ed and past+ed for verb Types III, IV, and VIII. Figure 10A shows very
clearly the pattern expected from Kuczaj's results. Early in learning, base+ed responses are by
far the strongest. With experience the past +ed response becomes stronger and stronger relative

to the base+ed regularizations until, at about Trial 40, it begins to exceed it. Figure 10B shows
a different pattern. For these verbs the past+ed form is weak throughout learning and never
comes close to the base+ed regularization response. Unfortunately, Kuczaj did not present
data on the relative frequency of the two types of regularizations separately for different verb
types. Thus for the present, this difference in type of regularization responses remains an
untested prediction of the model. - __.-

-" ," =.,

TABLE 15

PERCENi AGE OF REGULARIZATION

STRENGTH DUE TO BASE+ED

Verb Type Percent basc+ed Examples

it 077 sicep/q, t
IV 0.69 catch/caught

VIII 0.68 we/saw
II 0.38 spend/spent

VII 0.38 come/came
V 0.37 bite/bit

VI 0.26 ging/sang
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* Transfer to Novel Verbs

To this point we have only reported on the behavior of the system on verbs that it was actu-
ally taugh1t. In this section, we consider the response of the model to the set of 86 low-
frequency verbs which it never saw during training. This test allows us to examine how well

* the behavior of the model Generalizes to novel verbs. In this section we also consider responses
to different types of regular verbs, and we examine the model's performance in generating
unconstrained responses.

Overall degree of transfer. Perhaps the first question to ask is how accurately the model
generates the correct features of the new verbs. Table 16 shows the percentage of Wickel-
features correctly generated, averaged over the regular and irregular verbs. Overall, the perfor-
mance is quite good. Over 90 percent of the Wickelfeatures are correctly generated without

TABLE 16

PROPORTION OF WICKELFEATUIRES

CORRECTLY GENERATED

Regular .92
Irregular .84
Overall .91
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any experience whatsoever with these verbs. Performance is, of course, poorer on the irregular %
verbs, in which the actual past tense is relatively idiosyncratic. But even there, almost 85 per-
cent of the Wickelfeatures are correctly generated.

Unconstrained responses. Up until this point we have always proceeded by giving the
model a set of response alternatives and letting it assign a response strength to each one. This
allows us to get relative response strengths among the set of response alternatives we have pro-
vided. Of course, we chose as response alternatives those which we had reason to believe were
among the strongest. There is the possibility, however, that the output of the model might
actually favor some other, untested alternative some of the time. To see how well the output
of the model is really doing at specifying correct past tenses or errors of the kind that children
actually make, we must allow the model to choose among all possible strings of phonemes.

To do this, we implemented a second version of the binding network. This version is also
described in the Appendix. Instead of a competition among alternative strings, it involves a
competition among individual Wickelphone alternatives, coupled with mutual facilitation
between mutually compatible Wickelphones such as kA and kA. 9

The results from the free-generation test are quite consistent with our expectations from the
constrained alternative phase, though they did uncover a few interesting aspects of the model's
performance that we had not anticipated. In our analysis of these results we have considered
only responses with a strength of at least .2. Of the 86 test verbs, There were 65 cases in which
exactly one of the alternatives exceeded .2. Of these, 55 were simple regularization responses,
four were no-change responses, three involved double marking of regular verbs, (e.g., type was
responded to with /tipt'd,/), and there was one case of a vowel change (e.g., slip/slept). There
were 14 cases in which two alternatives exceeded threshold and one case in which three
exceeded threshold. Finally, in six cases, no response alternative exceeded threshold. This
occurred with the regular verbs jump, pump, soak, warm, trail, and glare. In this case there rwere
a number of alternatives, including the correct past-tense form of each of these verbs, compet-
ing with a response strength of about .1.

Table 17 shows the responses generated for the 14 irregular verbs. The responses here are
very clear. All of the above-threshold responses made to an irregular verb were either regulari- .....-

zation responses, no-change responses (to Types I and V verbs as expected) or correct vowel-
change generalizations. The fact that bid is correctly generated as the past for bid, that wept is
correctly generated as the past for weep, and that clung is correctly generated as a past tense for
cling illustrates that the system is not only sensitive to the major regular past-tense pattern, but
is sensitive to the subregularities as well. It should also be noted that the no-change responses
to the verbs grind and wind occurs on monosyllabic Type V verbs ending in t/d. again showing
evidence of a role for this subregularity in English past-tense formation.

Of the 72 regular verbs in our low-frequency sample, the six verbs mentioned above did not
have any response alternatives above threshold. On 48 of the remaining 66 regular verbs, the
only response exceeding threshold was the correct one. The threshold responses to the remain-
ing 18 verbs are shown in Table 18.

Note that for 12 of the 18 verbs listed in the table, the correct response is above threshold.
That means that of the 66 regular verbs to which any response at all exceeded threshold, the
correct response exceeded threshold in 60 cases. It is interesting to note, also, that the model
never chooses the incorrect variant of the regular past tense. As shown in Table 8, verbs end-
ing in a /t/ or /d/ take /d/ in the past tense; verbs ending in unvoiced consonants take /t/,
and verbs ending in vowels or voiced consonants take /d/. On no occasion does the model
assign a strength greater than .2 an incorrect variant of the past tense. Thus, the model has

9 The major problem with this method of generating responses is that it is tremendously computer intensive. Had
we used this method to generate responses throughout the learning phase, we estimate that it would have taken over
three years of computer time to complete the learning phase alonel This compares to the 260 hours of computer time
the learning phase took with the response alternatives supplied. It took about 28 hours to complete the response
generation process in testing just the 56 low-frequency verbs used in this section of the study.

.~~~~~~~~~~~.......... ... ... ..... . . . ............................ ...... .. .. ... .. .. ... % -:-

...... ..... ..... .....

.. . : ' _# € ¢_" .- .- 2' ' '' ' ''-.'. .•".. . ... .-. " .. " ".. ... - "W " - - ", -. . '- ''"',.'.. '. ''-' .- " .i



34 RUMELHART and MCCLELLAND

TABLE 17

TIHE MODEL'S RESPONSES TO UNFAMILIAR

LOW-FREQUENCY IRREGULAR VERBS

Verb Presented Phonetic Phonetic English Response
Type Word Input Response Rendition Strength

I bid /bid/ /bid/ (bid) 0.55
thrust /W'st/ /rast'd/ (thrusted) 0.57

11 bend /bend/ /bend"d/ (bended) 0.28 .

lend Alced/ /lend'd/ (lended) 0.70

ItI creep /krap/ /krapt/ (creeped) 0.51
weep /WEp/ /wEpt/ (weeped) 0.34

/wept/ (wept) 0.33

IV catch Aac/ Aact/ (catched) 0.67

V breed /bred/ /brEd'd/ (breeded) 0.48

grind /grnd/ /grmd/ (grind) 0.44
wind /wind/ /wind/ (wind) 0.37

VI cling /kliN/ /kliNd/ (clinged) 0.28
/kl'N/ (clung) 0.23

dig /dig/ /digd/ (digged) 0.22
stick /stikl /stikt/ (sticked) 0.53

VII tear /terl /tcrd/ (teared) 0.90

clearly learned the substructure of the regular correspondence and adds the correct variant to
all different types of base forms. These results clearly demonstrate that the model acts in
accordance with the regular pattern for English verbs and that it can apply this pattern with a
high level of success to novel as well as familiar verbs.

In addition to the regular responses, five of the responses were no-change responses. In
three cases the no-change response was to a verb ending in t/d. Four of the responses followed
the pattern of Type III verbs, modifying the vowel and adding a final /t/. Thus, for example,
we have the past of sip rendered as sept, presumably on the model of sleep/slept, keep/kept,

sweep/swept, etc. Interestingly, three of the four cases involved verbs whose base form ended in
/p/ just as in the models listed above. Even though these last responses are, strictly speaking,
incorrect, they all indicate a sensitivity to the regular and subregular patterns of the English
past tense.

Perhaps the most surprising result evident from the table is the occurrence of a double past
marker on the responses to seven of the verbs. Although we know of no references to this
phenomenon in the literature, we expect that children (and adults) do occasionally make this
kind of error. It is interesting, and possibly significant, that all seven of these responses
occurred to verbs whose correct past tense is the addition of a /t/. It would be interesting to
see whether children's errors of this type follow a similar pattern.

Finally, there were just four responses that involved the addition or modification of con-
sonants. These were maded as a past tense of mate, squawked as a past tense for squat, membled
as a past tense for mail, and toureder as a past tense for tour. It is unlikely that humans would
make these errors, especially the last two, but these responses are, for the most part, near thres-
hold. Furthermore, it seems likely that many of these responses could be filtered out if the
model incorporated an auto-associative network of connections among the output units. Such
a network could be used to clean up the output pattern and would probably increase the ten-
dency of the model to avoid bizarre responses. Unfortunately, we have not yet had the chance
to implement this suggestion.

• .

-k. k .. - - - . , • .,- - .
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TABLE 18

SYSTEM RESPONSES TO UNFAMILIAR LOW-FREQUENCY REGULAR VERBS

Verb Presented Phonetic Phonetic English Responhse
Type Word Input Response Rendition Renditioon6-

End in guard /~Srd/ /gard/ (guard) 0.29
id /gard'd/ (guarded) 0.26

kid /kid/ /kid/ (kid) 0.39
/kid'd/ (kidded) 0.24

mate /mAt/ fmAt'df (mated) 0.43
/MAd'd/ (maded) 0.23

squat /skwtl /skwctd/ (squated) 0.27
/skwt/ (squat) 0.22
/skwkt/ (squawked) 0.21

End in carp /krzrp/ fhstrpt/ (carped) 0.28
unvoiced /kapt *d/ (carpted) 0.21
consonant drip /drip/ /dript 'd/ (dripted) 0.28

/dript/ (dripped) 0-22

map /map/ Imapt'd/ (mapted) 0.24
/mapt/ (mapped) 0.22-. -

shape /SAP/ /SApt/ (shaped) 0.43
/sipt/ (shipped) 0.27?

sip /sip/ fsipt/ (sipped) 0.42
/Sept/ (sepped) 0.28

slip /slip/ /slept/ (slept) 0.40

smoke Asmok/ /smOktd/ (smokted) 0.29
/smOk/ (smoke) 0.22

snap /snap/ /snapt d/ (snapted) 0.40

step /step/ /stcpt *d/ (steptod) 0.59

type A/zP/ Atipt d/ (typted) 0.33

End in brown /brwn/ /brwnd/ (browned) 0.46
voiced /brnd/ (brawned) 0.39
consonant hug /h'9f /h'&I (hug) 0.59
or vowel

mail /mA'I/ /MAild/ (mailed) 0.38
/memb'id/ (membled) 0.23

tour Afur /tyrd'r/ (toureder) 0.31
/turd/ (toured) 0.25

Summary. Thc system has clearly learned thc essential characteristics of the past tcnse of
English. Not only can it respond correctly to the 460 vcrbs that it was taught, but it is able to
generalize and transfer rathcr well to the unfamiliar low-frequency verbs that had never been
presented during training. The system has learned about the conditions in which each of the
three regular past-tense endings are to be applied, and it has learned not only the dominant,
regular form of the past tense, but many of the subregularities as well.

It is true that the model does not act a.- a perfect rule-applying machine with novel past-
tense forms. However, it must be noted that pcople--or at least children, even in early grade-
school years-are: not perfect rule-applying machines either. For example, in Berko's classic
(1958) study, thoughi her kindergarten and first-grade subjects did often produce the correct
past forms of novel verbs like .rpow, mott, and rick, they did not do so invariably. In fact, the
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rate of regular past-tense forms given to Berko's novel verbs was only 51 percent. Thus, we see
little reason to believe that our model's "deficiencies are significantly greater than those of
native speakers of comparable experience.

CONCLUSIONS

We have shown that our simple learning model shows, to a remarkable degree, the charac-
teristics of young children learning the morphology of the past tense in English. We have
shown how our model generates the so-called U-shaped learning curve for irregular verbs and
that it exhibits a tendency to overgeneralize that is quite similar to the pattern exhibited by
young children. Both in children and in our model, the verb forms showing the most regulari-
zation are pairs such as know/knew and see/saw, whereas those showing the least regularization
arc pairs such as feel/felt and catch/caught. Early in learning, our model shows the pattern of
more no-change responses to verbs ending in tid whether or not they are regular verbs, just as
young children do. The model, like children, can generate the appropriate regular past-tense
form to unfamiliar verbs whose base form ends in various consonants or vowels. Thus, the
model generates an /'d/ suffix for verbs ending in tid, a /t/ suffix for verbs ending in an
unvoiced consonant, and a /d/ suffix for verbs ending in a voiced consonant or vowel.

In the model, as in children, different past-tense forms for the same word can coexist at the
same time. On rule accounts, such transitional behavior is puzzling and difficult explain. Our
model, like human children, shows an relatively larger proportion of past+ed regularizations
later in learning. Our model, like learners of English, will sometimes generate past-tense forms
to novel verbs which show sensitivities to the subregularities of English as well as the major
regularities. Thus. the past of cring can sometimes be rendered crang or crung. In short, our
simple learning model accounts for all of the major features of the acquisition of the morphol-
ogy of the English past tense.

In addition to our ability to account for the major known features of the acquisition process, -..-

there arc also a number of predictions that the model makes which have yet to be reported.
Thesc include:

0 We expect relatively more past +ed regularizations to irregulars whose correct past form
does not involve a modification of the final phoneme of the base form.

* We expect that early in learning, a no-change response will occur more frequently to a

CVC monosyllable ending in t/d than to a more complex base verb form. ".'.

* We expect that the double inflection responses (/dript'd/) will occasionally be made by

0 native speakers and that they will occur more frequently to verbs whose stem is ends in
/p/ or /k/.

The model is very rich and there are many other more specific predictions which can be derived
from it and evaluated by a careful analysis of acquisition data. -'

We have, we believe, provided a distinct alternative to the view that children learn the rules

of English past-tense formation in any explicit sense. We have shown that a reasonable
account of the acquisition of past tense can be provided without recourse to the notion of a
rule' as anything more than a description of the language. We have shown that, for this case,

there is no induction problem. The child need not figure out what the rules are, nor even that .,,

g, '_,7'

10 Unfortunately. Be:rko included only one regular verb to compare to her novel verbs. The verb was melt. Chil-
drn were 73 percent correct on this verb. 'he two novel verbs that required the same treatment as mett (mvtt and
bodd) each received only 33 percent correct rctponse-

-% ,"%
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there are rules. The child need not decide whether a verb is regular or irregular. T"here is no .
question as to whether the inflected form should be stored directly in the lexicon or derived
from more general principles. There isn't even a question (as far as generating the past-tense
form is concerned) as to whether a verb form is one encountered many times or one that is E
being generated for the first time. A uniform procedure is applied for producing the past-tense .
form in every case. The base form is supplied as input to the past-tense network and the -- 4.

resulting pattern of activation is interpreted as a phonological representation of the past form . ,
of that verb. This is the procedure whether the verb is regular or irregular, familiar or novel. .

In one sense, every form must be considered as being derived. In this sense, the network can
be considered to be one large rule for generating past tenses from base forms. In another
sense, it is possible to imagine that the system simply stores a set of rote associations between
base and past-tense forms with novel responses generated by "on-line generalizations from the ,
stored exemplars.

Neither of these descriptions is quite right, we believe. Associations are simply stored in the
network, but because we have a superpositional memory, similar patterns blend into one another
and reinforce each other. If there were no similar patterns (i.e., if the featural representations
of the base forms of verbs were orthogonal to one another) there would be no generalization. "
The system would be unable to general'ze and there would be no regularization. It is statistical .. ",
relationships among the base forms themselves that determine the pattern of responding. The
network merely reflects the statistics of the featural representations of the verb forms.

We chose the study of acquisition of past tense in part because the phenomenon of regulari- '

zation is an example often cited in support of the view that children do respond according to
general rules of language. Why otherwise, it is sometimes asked, should they generate forms .
that they have never heard? The answer we offer is that they do so because the past tenses of
similar verbs they are learning show such a consistent pattern that the generalization from these
similar verbs outweighs the relatively small amount of learning that has occurred on the irregu-
lar verb in question. We suspect that essentially similar ideas will prove useful in accounting
for other aspects of language acquisition. We view this work on past-tense morphology as a
step toward a revised understanding of language knowledge, language acquisition, and linguistic
information processing in general.
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APPENDIX

One important aspect of the Wickelfeature representation is that it completely suppressed
the temporal dimension. Temporal information is stored implicitly in the feature pattern. "
This gives us a representational format in which phonological forms of arbitrary length can be .
represented. It also avoids an a priori decision as to which part of the verb (beginning, end,
center, etc.) contains the past-tense inflection. This grows out of the learning process. Unfor-
tunately, it has its negative side as well. Since phonological forms do contain temporal infor-
mation, we need to have a method of converting from the Wickelfeature representation into
the time domain-in short, we need a decoding network which converts from the Wickel-
feature representation to either the Wickelphone or a phonological representational format. "-_-"
Since we have probabilistic units, this decoding process must be able to work in the face of
substantial noise. To do this we devised a special sort of decoding network which we call a
binding network. Roughly speaking, a binding network is a scheme whereby a number of units
compete for a set of available features--finally attaining a strength that is proportional to the
number of features the units account for. We proceed by first describing the idea behind the
binding network, then describing its application to produce the set of Wickelphones implicit .,-. ,
in the Wickelfeature representation, and finally to produce the set of phonological strings
implicit in the Wickelfeatures.

Binding Networks

The basic idea is simple. Imagine that there are a set of input features and a set of output
features. Each output feature is consistent with certain of the input features, inconsistent
with certain other of the input features, and neutral about still other of the input features.
The idea is to find a set of output features that accounts for as many as possible of the output
features while minimizing the number of input features accounted for by more than one out-
put feature. Thus, we want each of the output features to compete for input features. The
more input features it captures, the stronger its position in the competition and the more claim
it has on the features it accounts for. Thus consider the case in which the input features are
Wickelfeatures and the output features are Wickelphons. The Wickelphones compete among
one another for the available Wickelfeatures. Every time a particular Wickelphone 'captures" a
particular Wickclfeature, that input feature no longer provides support for other Wickel-
phones. In this way, the system comes up with a set of more or less nonoverlapping Wickel-
phones which account for as many as possible of the available Wickelfcatures. This means
that if two Wickelphons have many Wickelfeatures in common (e.g., ^, and kAm) but one of
them accounts for more features than the other, the one that accounts for the most features
will remove nearly all of the support for the very similar output feature which accounts for few
if any input features uniquely. The binding network described below has the property that if
two output units are competing for a set of input features, each will attain a strength propor-
tional to the number of input features uniquely accounted for by that output feature divided
by the total number of input features uniquely accounted for by any output feature.

This is accomplished by a network in which each input unit has a fixed amount of activation
(in our case we assumed that it had a total activation value of 1) to be distributed among the
output units consistent with that input feature. It distributes its activation in proportion to
the strength of the output feature to which it is connected. This is thus a network with a
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dynamic weight. The weight from input unit j to output unit i is thus given by

Iq = .at _,:
W j 

-

where kJ ranges over the set of output units consistent with input units j. The total strength
of output unit k at time t is a linear function of its inputs at time t-1 and is thus given by

• 7£ Zi,,,a - 1)

a,(,) = .ijWkj,(t) !
-()

where jk ranges over the set of input features consistent with output feature k, 1j, ranges over
the set of output features consistent with input feature jk, and ij takes on value 1 if input
feature j is present and is 0 otherwise. L,.

We used the binding network described above to find the set of Wickelphones which gave
optimal coverage to the Wickelfeatures in the input. The procedure was quite effective. We
used as the set of output all of the Wickelphones which occurred anywhere in any of the 500
or so verbs we studied. We found that the actual Wickelphones were always the strongest
when we had 80 percent or more of the correct Wickelfeatures. Performance dropped off as " .
the percentage of correct Wickelfeatures dropped. Still when as few as 50 percent of the
Wickelfeatures were correct, the correct Wickelphones were still the strongest most of the
time. Sometimes, however, a Wickelphone not actually in the input would become strong and
push out the "correct" Wickelphons. If we added the constraint that the Wickeiphones must
fit together to form an entire string (by having output features activate features that are con- -

sistent neighbors), we found that more than 60 percent of correct Wickelfeatures lead to the
correct output string more than 90 percent of the time.

The binding network described above is designed for a situation in which there is a set of
input features that is to be divided up among a set of output features. In this case, features
that are present, but not required for a particular output feature play no role in the evaluation L
of the output feature. Suppose, however, that we have a set of alternative output features one
of which is supposed to account for the entire pattern. In this case, input features that are l'*..-
present, but not consistent with a given output feature must count against that output feature.
One solution to this is to have input units excite consistent output units according the the rule
given above and to inhibit inconsistent output units. In the case in which we tried to con- -
struct the entire phonological string directly from a set of Wickelfeatures we used the follow-
ing activation rule:

ao(,) = ijWkj,(t)-ji,,

where 4k indexes the input features that are inconsistent with output feature k. In this case,
we used as output features all of the strings of less than 20 phonemes which could be generated
from the set of Wickelphones present in the entire corpus of verbs. This is the procedure
employed to produce responses to the lowest frequency verbs as shown in Tables 17 and 18.

-..
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