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1. INTRODUCTION

In the area of signal processing, it is of interest to detect the number
of signals in presence of noise and estimate the parameters of the signals.

The problem of estimation of the number of signals was discussed by Liggett
(1973), Wax, Shan and Kailath (1984) and others in the literature within the
framework of testing for the equality of the last few eigenvalues of the co-
variance matrix. The model considered by them involve expressing the observation
vector as the sum of Gaussian vhite noise vector and a vector of certain Tinear
combinations of (random) signals radiated by sources. In this case, the number
of signals is related to the mu]ttp}icity of the smallest &igenvalues of the co-
variance matrix of the observation vector. The problem of testing the hypothesis
of the multiplicity of the smalTest eigenvalues of the covariance matrix was
dealt extensively in multivariate statistical literature (e.g., see Anderson
(1963), Krishnaiah (1976), and Rao (1983). Wax and Kailath (1984) considered

the problem of determination of the number of signals using information theoretic
criteria proposed by Akaike (1972), Rissanen (1978) and Schwartz (1978).

In the present paper, we use an alternative information theoretic criterion
for detection of the number of signals and establish its consistency. In Section
2 of the paper, we state briefly the problems considered in this paper. In
Sections 3 and 4, we establish the consistency of our procedures when the variance
of the white noise is unknown and krown respectively. In thé above
sections, we assumed that the distribution underlying the observations is complex
multivariate normal. In Section 5, we establish the consistency of our proce--
dure when the variance of white noise is unknown and satisfies certain condition

and the underlying distribution is complex elliptically symmetric. The problem

of detection of the number of signals when the noise covariance matrix is arbi-
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Correction to "On Detection of Number of Signals in Presence of Noise"

by L. C. Zhao, P. R. Krishnaiah and Z. D. Bai, CMA Technical Report 85-37

Page 11, lines 11 - 12: Replace

“But, for k > q, the above difference is not asymptotically positive

with probability one"

With:

“But, for k > q, log Lk - loqu is not distributed asymptotically as

chi-square”,
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trary is discussed by the authors in a forthcoming paper when an independent
estimate of the above covariance matrix is available. In this case, the problem
is equivalent to finding the multiplicity of the smallest eigenvalues of 21251
where 21 and Z, respectively denote the covariance matrices of the observation
vector and noise vector. This problem is related to the problem of relationship
between two covariance matrices studied by Rao (1983). In another forthcoming paper,

we considered the problem of drawing inference on the rank of the regression

matrix using information theoretic criteria similar to those used in the present

paper.
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2. PRELIMINARIES AND STATEMENT OF PROBLEMS
Consider the model

x(t) = As(t) + n(t) (2.1)

where A = [A(@l),...,A(¢q)], s(t) = (sl(t),...,sq(t))',g(t) = (nl(t),...,np(t))'
and g <p. In the above model, n{t) is the noise vector distributed independent

of f(t) as complex multivariate normal with mean vector 9 and covariance matrix
cZIp. Also, §(t) is distributed as complex multivariate normal with mean vector

9 and nonsingular covariance matrix ¥ and A(¢i): px1l is a complex vector of func-
tions of the elements of unknown veetor 8, associated with i<th signal. Also,
si(t) is the waveform associated with i-th signal. Then, the covariance matrix © of

x(t) is given by

T = A¥A + cZI (2.2)

where A' denotes the transpose of the complex conjugate of A. We assume that

x(ty),...,x(t ) are independent observations on x(t). Now, let i; > 02X denote

the eigenvalues of £, and 8, 3,..3_eq denote the nonzero eigenvalues of AvA' | Also,

let Hq denote the hypothesis A_ > = ...= ) =v2. Under H_, Ai = 02 + 8,
1

q g+l p q

(i =1, 2,...,9) and Aq+j = 02(j=1,2,....p-q). So, Hq is equivalent to the

hypothesis that q signals are transmitted. Various procedures (e.g., see
Anderson (1963), and Krishnaiah and Waikar (1971, 1972)) are available in the

literature for testing the hypothesis H_ for given value of q. Wax and Kailath

q
(1984) used Akaike's AICcriterion and Schwartz-Rissanen minimum distance length
(MDL) criterion for model selection for determination of the value of q.

According to the AIC criterion, the value of q is estimated to be a where q is

....................
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chosen such that

AIC(q) = min{AIC(0),...,AIC(p-1)}
and
AIC(k) = - 2 1ong + 2v(k,p).
Lk is the likelihood ratio test statistic for testing Hk agai

that £ is arbitrary, and v(k,p) denotes the number of free pa
to be estimated under Hk‘ According to the MDL criterion, th

estimated as a where a is chosen such that

MDL(q) = min{MDL(0),...,MDL(p-1)}
MDL(K) = - Tog L, + TogN iy.p).
2

In the present paper, we consider the following alternat
theoretic criterion for model selection for estimation of the

According to this new information theoretic criterion for mod

we estimate q with a where a is chosen such that

1(q,Cy) = min{I1(0,Cy) ..., 1(p-1,Cy)3

I(k,CN) = long + CN v(k,p)

and CN is chosen such that

Tim {CN/N} =0
[

™,

;im {Cy/ ToglogN}
-0

........
ot ate

...................

(2.3)

(2.4)

nst the altarnative
rameters that have

e value of q is

(2.5)

(2.6)

ive information

value of q.

el selection,

(2.7)

(2.8)

(2.9)

(2.10)
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Ai We are interested in establishing the strong consistency of the above procedure
o for the cases when 02 is unknown and known under the assumption that the

1%

N distribution underlying the data is complex multivariate normal. We are also
o

~f interested in extending the above results to the situation when the underlying
fj distribution is complex elliptically symmetric. The probability of correct

;Q detection of the procedure proposed by us is given by

;"

N P(CD) = PLI(G,Cy) - T(kCy) < 05 k= 0,1,e..,(p-1)s kig| H 1.

"

o Investigation has to be made on the evaluation of P(CD).

;

L]

&

[\

T
w

N

"~
4

.’-

b

A

'v

\.
= !

A wa ';r"ﬁ‘l %!

it
X w
-




2

3. CONSISTENCY OF I(a,CN) CRITERION WHEN o~ IS KNOWN

AND THE UNDERLYING DISTRIBUTION IS COMPLEX MULTIVARIATE NORMAL

2

-\ ‘) ~
!i:J In this section, we establish the consistency of the estimate q of g when
:j)‘ the criterion I(a,cN) is used and 02 is unknown. The main result of this section
'ﬁﬁ? is stated in the following theorem:

iﬁ% T-.JREM 3.1. Suppose x(t) is a complex, stationary process with E(x(t)) = 0

> 3. -

and E(i'(t)x(t))24'€< » for some e > 0. Also, we assume that {x(tI), i=1,2,...}

3 : is a stationary and ¢ - mixing sample ‘sequence with ¢ being decreasing and 2 ¢*(n)
v =
e _ n=
{;; . Also, Gz(u v) >0 for u,v=1,2,. .+»P, and Yy = (y1uv) = x(ti)x'(ti) - I, where
".:h ~ -~

o §%(uv) = E y2 v } (3.1)
Bty ’ Yuv +2 2 yluvy1+i,uv ' '
NS i=1

l;ﬁf Let a be chosen such that

ey 1{a,€y) = min{1(0,Cy),...,1(p=1,C\)} (3.2)
ff& where I(k,QN) was defined by ( 2.8 ) and Cy ¥s chosen satisfying (2.9) and
) (2. 10). Then a is a strongly consisbent estimate of q.

L

iﬁ} We need the following results to prove the above theorem.

:%j LEMMA 3.1. Suppose {xi,i > 1} is a stationary ¢-mi xing sequence with E(Xl) =0
A o L

LB and E([x, |2+e < = for some € > 0. Also, ¢ is decreasing with § ¢%(n) < =.
g n=1

NS Then

I ) 2 2,4

- lim sup{ ¥ x./(2n8° 1og logn %)%} = 1 a.s. (3.2)
oy Noroo =1 !

-

e 2 2 : v 4

N where & = EX] + 2 Z EX1 147 7 0 1s assumed. Here, we note that ] 4*(n) < =
i n=1

Ll implies & < o

BaY D

o For a proof of the above lemma, the reader is referred to Reznik (1968) or
el

1280 Stout (1974).
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:--* LEMMA 3.2. Suppose that A, An’ n=1,2,... are all pxp symmetric matrices such
that Ay - A = 0(a)) and o) + 0 as n > =, Denote by &) > 2y > ... > A, and
Pea)
o )\gn) > el > )\;()n) the eigenvalues of A and A, respectively. Then we have
-‘:' x(") =X = 0(e,) as me, i=1 )
._; ; ; n s N
PROOF. Without loss of generality, we can assume A = diag[illu ""’;rIu 1,
i 1 r
where A > Az > eee > AL According to Bai (1984), we know Agn) R 0.
e At first we consider the special case where r = 1, For any i,
e
o - -1 (m3
‘; 0 |>\1. Ip - Anl I(>‘1' -Al)Ip - (An-A)[
.'.“ ( ) p ¢ ( ) 2 (3.3)
s = n)_> P - n)_y yp-
»;-_,-:1 (3707 + b (DT0GTA,)770,,
R "
i where DI, is the sum of all L-ordered principal minors of An - A. Since An - A=
O(an), we have D, = O(aﬁ). By (3.3) we know
bt (n) = (n) = (=2+1,, £
5 I -yl izzlh’. - AT 0(e)
o which impTies [3{™ - X /| = 0(a) as me for i = 1,...,p.
e
:-'_‘_:.'.v Now we consider the general case. Suppose i < uy. We have
%
- (n)
s 0 'Ai Ip = A \
b (n)_:
s (Ai -Al)Iul \
s (n)_; \
R
el - (A -A)
Ry (n)_; f
" ()\1 =-A )I
P r H ]
Q. Ny 7
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(m)_;

R A (x1")-x )Iul-ng) B(;)

3 g sy

L )

= = Jegg 10§, - el - s{ple{p) a0y,

Since Bég) - diag[(il-iz)luz,...,(il-ir)lur], Bég) is nonsingular for all

. large n. Thus

(n)_: (n) _ pln)p(n)-1o(n), _

> . . (n) _ (n)p(n)-1,(n) _ 2
2 From An A O(an), it follows that B11 O(an) and 812 822 821 = O(an).
.i7 Using the result proved just before, we get
-
L (n) _ 7 _
i Al - )‘l = O(an)

‘}Z for i =1, ...,u;. By the same approach, we can prove

x(") - i = 0(a ), 1 = us+...+ +1 +...4 h=1 3
i h n’?* 1-11 s Uh_l ,-~-’U1 soe Uha = lyeee s, ( '5)

which complete the proof of the lemma.

i
:
L

(et

Hr~1=

[ ] Let £; > ... > tp denote the eigenvalues of t, where N: =
1

Using Lemma 3.1 and the conditions imposed on {g(ti), i=1,2,...}, we have

i

a.s. (3.6)
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When x(t) is distributed as complex multivariate normal, the likelihood
function for testing the hypothesis Hk against the alternative that I has

general structure is known to be
P 3
2N N(p-k)
L, = { ( 2) : (3.8)
K L=+l / X -k+1 1 §

We will first prove the consistency of the method based upon the criterion

I(Q,CN) when k < q. Let 6,(k) = Tog L, and

G, = Gy(k) - CN[k(Zp-k)+1] (3.9)

where k(2p-k)+1l is the number of free parameters that have to be estimated

under the hypothesis H, and L, is given by (3.8).Using (3.7), we get

N-+eo

Tim (6, (a)-6,(k)) = W(g,k) a.s. (3.10)

where
p
W(g,k) = Tog( T a,) - (p-q 109(1——-7
i=q+l 1zd+1 1
( h i)+ ( 5 ;) ( )
- Tog( m ;) + (p-k)lo . 3.11
ka1 | ’ (p KT 3 by
q q
= (q-k)logﬂr——gy 12, )1/(q k)
E j=k+l |
+ (p-k)[]og(alA1+a2A2) - (a11ogA1+azlogA2)]
where
a; = (a-k)/(p-k}, ay = (p-q)/(p-k)
p
R = BIRUERS = SR
1 Q=K e P=Q) j-q+1 '
T T S N e
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By the well known arithmetic mean geometric mean inequatity, we have
W(q,k) > (p—k)[1og(a1A1+a2A2) - (a11ogA1+a2'logA2)] . (3.12)

Also, A A,. By Jensen's inequality, we have

1> R

W(q,k) > 0. (3.13)
Using (3.9), (3.10),(3.13) and 1im(CN/N) = 0, we obtain
N
G(q) - G(k) = NW(q,k)(1+6(1)) a.s.
So, with probability one for large N, we have
G(q) > G(k). (3.14)

Now we assume k > q and k < p-1, Without loss of generality we can
assume o° = 1. By (3.7) we have 1im(£j-1) =0 a.s. for j = g+l,...,p. Using
N-+co

Taylor's expansion, we get for k > q

p P
- 1
Gy (k) = N{1=E+11og(1+zi-1) - (p-k)log(1+ ok 1_=E+1(4'.1.-1))}

4 p
e N 2 ; N \
o7, D e ¢ grl 1 @1 (1)) s,

By(3.7) we see that

Gl(k) 0( ToglogN} a.s., p-1 >k >q

(3.15)
0(loqlogN) a.s.

G1(a)

From (3.9), (3.15) and CN/10910gN) + o, we get




11
- G(q) - G(k) = CN(k-q)(Zp-k-q) + 0(loglogh)

(3.16)
= Cy(k-q)(2p-k-q)(1+0(1)) a.s.
Thus with probability one for large N we have
G(q) > G(k). (3.17)

From (3.14) and (3.17), it follows that with probability one for large N

q =q.

Thus the proof of Theorem 1 is completed.

When x(t) is distributed as real multivariate normal, the proof goes along

f&;i the same lines as in the complex case.

e Wax and Kailath (1985) showed that (MDL(q)-MDL(k)) is asymptotically

e negative with probability one for k < q. But, for k > q, the above difference
'§$3 is not asymptotically positive with probability one. So, the strong consistency
i

,Eiﬁ: of the MDL criterion does not follow from the arguments 6f Wax and Kailath (1985).
C:i But, it follows from our results by taking CN = %iogN.- Wax and Kailath (1985)
= -:ﬁ' .

-:E: pointed out that the AIC criterion is not consistent. Hannan and Quinn (1979)
iiﬁ considered an information theoretic criterion to determine the order of an
Agi, autoregressive process; this criterion will be discussed in a subsequent
2&;} communication.
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?Q 4. DETECTION OF THE NUMBER OF SIGNALS WHEN
L VARIANCE OF WHITE NOISE IS KNOWN
;Zj In Section 3, we discussed a model selection criterion for detection of
?k the number of signals when the distribution underliying the observations is
. complex multivariate normal and the variance of white noise is unknown. 1In
Ny,
‘3? this section, we derive analogous criterion when the underlying distribution
e
3% is (real) multivariate normal and the variance of the white noise is known. The
. strong consistency of the above criterion is also established.
“E: In the model (2.1), we assume that the noise vector n(t) is distributed as
j& the multivariate normal with mean vector 0 and covariance matrix oZIp, A is
.f a real matrix of rank q < N, and the signal vector s(t) is distributed independent
%ﬁi of n(t) as a multivariate normal with mean vector O and nonsingular covariance
b matrix ¥. Then, the covariance matrix of x(t) is © = AvA' + cZI. We assume that
n o i$ known. Without loss of generality, we assume that o® = 1. Let Ay 2. 2 Ap
N ,
AN denote the eigenvalues of . Now, let
.:; _ ) ~
o) Ot AL 2 eee 22> Ayg = e -Ap-l. (4.1)
‘\,-..:
1:3 The k-th model M, is the one for which o, is true. We are interested in
N1
u-'J
E selecting one of the p models Mg,Mp,....M ;.
o
N The 1ikelihood function is given by
- L(e) = - § Tog|z| - 5 tr z7l3 (4.2)
-,‘
3! where
o
b - - N
o £= Y X% /N, (4.3)
S j=1 =~
Y
Ny

Also, let 6, > ... 3_6p be the eigenvalues of f. In addition, let T denote

)
12
)
i
¥
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13
the number of §;'s which are greater than one. Also, let d < 7. We will first

*
calculate L ()‘d-l-l”"’)‘p) = Sup L(e) where Sup L{8) indicates that L(8) is
o o
d d

maximized subject to the condition that A2 22> L

Write A = diag(xl,...,x ), & = diag(sl,...,sp). There exist two real

p
orthogonal matrices 01 and 02 such that
]

L= 011\01, L= OZAOZ,

Put Q = 0201 Then we have

P '
L(e) = -g- 1 0gh; - g- tra"1Q aQ.
Jj=

1
1

Since Q is orthogonal, we have

1.' P
tra” Q AQ > 2 61/)\-: d
=g 1

and the equality holds for Q = Ip (see Von Neumann (1937)). So,

p p
Sup L(e) = Sup{- N logh, - o T (8:/2 )} (4.4
°Z °: ’zjzlgi ijIJJ )

i.e.,
' N Nt
L*(Ad+1’... ,Ap) = - ? 109()\d+1...>\p) - 2‘ j=§+1 Sjlkj

d
+ sup{- g- Tog (Al...kd) - g- 2 ‘Sj/"j} (4.5)
°d j=1

N N 4
= - -2- 1°g(kd+1 e e lp) - 2‘ jg%.'-l Gj/kj

- -g- log(s)...84) - g- d (4.5)
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) 14
ey where the supremum is attained at 55 % Ay for ji=1,2,...,d.
;:Sj First, we assume that T < k. In this case
o sup L(6) = sup  L*(A_,1,.005h) (4.6)
6€9k o( 1,k) T+]? p
:Z'-j:f where sn(lp ) indicates that the supremum is taken over i .y > ... > % > 1 and
i o(r,k '
'; Aep = -ee = Ay = 1. But
o L ) NI "
su sevesh ) = .-
o2 MR U R R A
g g §; + 3 sup { |Z< Tog A Z 5 4.7
- - . e -y - .- 1 R .
o =ks1 ! I Aaa1> e2hel ieE IPERUTL S
(ot : :
;Z: Also, 8; < land x; >1fori=x+1,..,k So,
hd - (Tog A, + (8,/2:)) < & (4.8)
.(?: 1 1 i i *
nb
D3 and the equality holds only when Ay = L Since the above A,i's can be arbitrarily
W approximated to one, we have . P
N N ¢
sup L(e) = 2 logs; - N7/2 - b8, (4.9)
S S€ RS ? sty
el
"..:-t
[ when v« k. Next, let t > k. Then
u
N = _N N
;Z'-'i‘: ::g L(e) = - 5 109(8;...8,) -5k
XY k
1*1‘3' N N
3 + sup {- % log(Ay,qe..n.) - E §:/1;1
i Noq=...sh sl 2 SO FE AR
"t:\.'_ k+1 P
- N lfmga Ny b (4.10)
KL Tin 17T 2 1=E+1 !
."z
= Combining (4.9) and (4.10), we obtain
o5 p N NP
el sup L(8) =- 2 logs, - = + ¥ (logs,+1-5.) . (4.11)
8€o 2 I i=l#min(t,k) |
e
L
0y But the supremum of L(9) over the whole parametric space is given by




b e W v W 7 o p P P T P P T W T T
)
0 15
-;4‘: o So, the logarithm of the 1ikelihood ratio test statistic for testing o, is
b .
P given by
g
| | I (Togs,+1-5,) (4.12)
e L, = ; 0g6.+1-6,) . .
o k" Z j<Lemin(1,k) e
e Now, let
: LA (4.13)
L, = (1ogs.+1-5.) . 4.13
L k = 2 i=§ +1 i
o
b
i We know from(3.7) that
. Suppose the true model is Mq. Then
3
.:.';-::', = = =1. 4.15
o A2 eee 2Ag > Agyy T e =21 (4.15)
- From (4.14), we know with probability one, that 85 > 1 fori=1,2,...,q
and min(q,t) = q for large N. So, the statistics Lq and ’Lq have the same distri-
bution asymptotically. Here, we note that Anderson (1963) suggested to use L q
R a :
as a statistic to test c-)q and pointed out that the asymptotic distribution of
.‘-, .
'.:‘_3- Lq is chi-square with (p-q)(p-q+1)/2 degrees of freedom. Rao (1983) pointed
3{:.':3; out that I:q is not the LRT statistic.
hisnn
Q_._- We will now consider the problem of selecting one of the models Mo’Ml’
+e+sM,_; by using an information theoretic criterion. Let
. 6(k) = L, - Cyk(2p-k+1)/2 (4.16)
Y
\;\ where C, sati sfies the following conditions
:;):.
- (1) Yim(Cy/N) = 0 (ii) TVim(C,/loglogN)
.. m(Cy =0, ii m(Cy/i09 = @
A Noeo N
_:\‘f.
£7
Ea"
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We select the model Ma where a is chosen such that

"_:-:“\:: G(a) = max G(k) . (4.17)
O O<ksp-1

SR

T+ .

) We will now show that q is a consistent estimate of q.

ii&- THEOREM 4.1. If NI is distributed as central Wishart matrix with N degrees
ok of freedom and E(E) = ¢, then a is a strongly consistent estimate of q.

PROOF. Suppose that @q is the true model and k < q. We have

e G(q) - 6(k) =L, = L - Cy(g-k)(2p-k-g+1)/2. (4.18)

n,"‘\» q

o As mentioned above, with probability one, we have for large N,
e 65> 1, 1 = 1,...,q, and min(q,7) = q. (4.19)

Thus with probability cne for large N,

1, .k 1, &
L -L, ==xN" (logs +1-5;) - 5 N E (logs,+1-5.)
k =2 i=§+l 1 i 2 s=b+1 i i

1 1
=-xN (Togs;+1-5.) = 5 N Wy(q,k),
Z 1=2+1 gog™i=047 = 7 N Wy\d

o where
® q
: Wy (g,k) =~ E (logs,+1-8.).

(X We have

‘ q
a 1im Wy(q,k) &:3- W(q,k) = - E (Toga;+1-1;) > 0.
Nepeo i=k+1

l.‘. A.A
¢

fede %0 %0 % 0]

Hence, with probability one, we have for large N,

LA

'ni
-

Ly - by > % N W(q,k),

“'r""r‘- )
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and

G(q) - G(k) > 0. (4.20)

Here we used the condition lim CN/N = 0,
N

Now we assume that k > q. By (4.19) we have

p
L =L, ] <N Togs, + 1 - &.].

Since lai -1 = O(nggﬁpgﬂ_DI/Z) a.s. for i > g, we can use Taylor's expansion,

to get

L L N 4 1 2
Ity - bl < 1.=§+1 5(8;-1)"(1+0(1)) a.s.

= 0(loglogN) . a.s.
From CNlloglogN,+ =, _ we see that with probability one, for large N,
G(q) - G(k) = 0(ToglogN) + CN(k-q)(Zp-k-q+1)/2 > 0. (4.21)
From (4.20) and (4.21), it follows that with probability one for large N,
q = q.

Thus Theorem 4.1 is proved.
When the underlying distribution is complex multivariate normal, the
proof for the consistency of the method goes along the same lines as in the

real case.
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5. DETERMINATION OF THE NUMBER OF SIGNALS WHEN THE
UNDERLYING DISTRIBUTION IS ELLIPTICALLY SYMMETRIC

In this section, we discuss procedures for determination of the
number of signals. transmitted when the underlying distribution is real
or complex elliptically symmetric. Here, we note that a random vector y

is said to to elliptically symmetric if its density is of the form

-1/2

fly) = |27 3905y 27 y-u) (5.1)

where g is a non-increasing function in [o0,»). Multivariate normal and
multivariate t distributions are special cases of the elliptically symmetric
distributions. Kelker (1970) proposed the elliptically symmetric distributions
and studied some of its properties. Krishnaiah and Lin (1984) proposed

complex elliptically symmetric distribution and studied some of its properties.
A complex random vector X = Xq + 152 is said to be distributed as complex

elliptically symmetric distribution if its dersity is of the form

£0) = |27t xen) 27 HER) (5.2)

where I is Hermitian,§ denotes the complex conjugate of a, and h (-) is a
non-increasing function in [0,»). The covariance matrix of (xi, xé) has

the structure

e
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Complex multivariate normal considered by Wooding (1958) and Goodman (1963)
and complex multivariate t distribution are special cases of the complex

elliptically symmetric distribution. The density of the complex multivariate

normal is known to be
-1 V=] p—
f(x) = Tz exp{-(x-u)'Z (f-g)}. (5.3)

Now, consider the signal process x(t) in (2.1) but assume that the joint

density of Xy = f(tl)"'°’§N = f(tN) is

F(xp0eeeaxy) = [2] RN tr £715) (5.4)
~ N -
where Nz = § XjX5. Let A > ... > %, be the eigenvalues of = and Tet
==
4 > .;._3 Zp denote the eigenvalues of . Also, let 0, denote the model in
which

Alz.-.cixk>)\k+1 =...o = A =g (5-5)

where 02 is unknown. Let f(xl,...,leek) denote the-Tikelihood function

under k-th model O Also, let

L(ek) = log f(fl"“’leek) (5.6)

for k = 0,1,...,p-1. We know that for given Al,...,Ap the minimum of
" p
trez ! ds ) A;IKi (see von Neumann (1937)). So,

j=1
p p -1
max L(o,) = max{-N ] Tog a; + log h(N ] 25°2.)} (5.7)
0 o, 41 J =13 Y
k k
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where the maximum is taken subject to (5.5). Suppose h(t) has a continuous

derivative h'(t) on [0,») and the equation

Nph(y) = y[h'(y)] (5.8)

has a unique solution y = Np/yh. Then, the above maximum is reached at

xl Xk 02
i A 5 W Cavweo (5.9)
Pk kel P
and
p
max L(3,) = - (Np/2)Togy, + logh(Np/v,) - N } logl, + G,(k) (5.10)
oy K h h i=1 i 1
where
p 1 p ,
G, (k) = Nlog] 1 £./(=% 2P k) 5.11
LA jeke 1 mig&l‘ (5.11)

Under the conditions of Theorem 3.1. we observe that, for k < q,
1im (G, (K)-G,(k-1)) = W(k,k-1) > 0 a.s. (5.12)
Noreo N1 1
and for k > q(k<p-1)
16, (0-6,(k-1)) = o( Loglogy 4 (5.13)
where

W(k k1) = (pk+1) (109 (rpdaryOx gt - +1,)

1 K
" TpkeTy 0%k - é’gﬁ%yhg(ﬁ“kﬂ*---”p)) : (5.14)

We see that Gl(k) is non-decreasing function of k for ke{0,1,...,p-1}. If
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o
<t . o
o we draw the points (0, G,(0)), (1,G,(1)), ...,(p-1,6;(p-1)) in the Descartes
: coordinate plane, and construct a polygonal line with these points as its p
-
vertexes, then Gl(k)-Gl(k-l) is just the slope of the k-th segment. Suppose
f'i- that q is the true number of signals. For convenience we temporarily assume
_. q > 0. As shown in (5.12) and (5.13), we can assert with probability one that,
N
' for large N,
Gl(k) - G1 (k-1) > C,N for k < q (5.15)
P
e and
' Gl(k) - Gl(k'l) = 0(]0910‘3”) for q < k i p‘l’ (5°15)
e
o where C, > 0 is a constant. Thus we see that, the slope G, (k) - G;(k-1)
has a significant change for k < q and q < k < p-1, ard the true value
i g is just the largest k for which Gl(k) - Gl(k-l) > Cy» where Cy satisfies
: the following conditions:
.‘:‘.
| |
1im(Cy/N) = 0 1im(CyAoglogh) = = = . (5.17)
Nooo N>
S
i:; If we put Gl(-l) = - =, then the same is true for q = 0. Motivated by
.l -~
":’ (5.15) and (5.16), we estimate the number of signals q with q where
1‘:;5;3 q = max{k<p-1: G(k) - G  (k=1) > €)1 (5.18)
L Under the conditions of Theorem 3.1, we can show that a is a consistent
N
_‘:3:} estimate of q by following the same Tines as in Section 3.
1
gq In general, we do not know whether the conditions of Theorem 3.1 are
%4
He
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satisfied. In these cases, we make the following assumptions:
(1) hm N(G (k)-G (k-1)) 0 for k>q
(5.18)
. .1 a,s
(ii) 11m-N(G1(k)-Gl(k-1» =" W(k,k-1) > 0 for k< q
Noco

where we denote XO = « for convenience. In this case, we need to assume that
the smallest non-zero eigenvalue of Awﬂ'is distinguishable from 02, namely,

the ratio of signal intensity to that of noise can be detected by the sensor.
We assume that (Aq-oz)/o2 >e >0and e is known for the given receiver. In

this case, we estimate q with a where a is chosen such that

A

q = max{ksp-1: Gy(k) - G;(k-1) > 5 N}, (5.19)
where we denote Gl(-l) = - = for convenience. Also,
w s Oir':l;;-l(p-k+1){'log(p_,1<+1 kre) - BRkplogs) > 0, (5.20)
and
=1 - —(T;a— (5.21)

We now establish the strong consistency of a. To prove this, we write

=1 - _p-k
D= SR
1 P
Ay = 5% E Ae/Xys Ay =

Suppose that g is the true number of signals and k < q. Then
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lim %—(Gl(k)-Gl(k-l)) = W(k,k-1) a.s. (5.22)

Wik,k=1) = (p-k+1){1og(ak+skAk) - ek1ogAk} > 0.
Consider fk(x) = log(ak+skx) - 3k1ogx for x (0,1]. We have
Fr(X) = = oy B (1-x)/x (o #8,x) < 0,0 < x <1,

so that fk(x) is a decreasing function on (0,1]. But if Aq 3_(1+e)02,

then for 0 <k <g-1,

- 1 -k 1 ¢ € _
A PR TR P ekl e TR S -yt 6
and
NS
Aq G/)‘qf—1+g<6
Thus for 0 < k < g,
W(k,k-1) > v, (5.23)

From (5.22) and (5.23), it follows that, with probability one for large N,
Gy (k) - Gy(k-1) > 5N, k <q. (5.24)
On the other hand, if q<k < p-1,

m %(Gl(k)) - 6;(k=1)) = 0 a.s. (5.25)

So with probability one, for large N,

Gy (k) = Gy(k-1) < % N for g < k < p-1. (5.26)
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Thus from (5.24) and (5.26) it follows, with probability one, for large N,

B a = q. (5.27)
8

|
" and the assertion is proved.
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