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1. INTRODUCTION

In the area of signal processing, it is of interest to detect the number

of signals in presence of noise and estimate the parameters of the signals.

The problem of estimation of the number of signals was discussed by Liggett

(1973), Wax, Shan and Kailath (1984) and others in the literature within the

framework of testing for the equality of the last few eigenvalues of the co-

variance matrix. The model considered by them involve expressing the observation

vector as the sum of Gaussian white noise vector and a vector of certain linear

combinations of (random) signals radiated by sources. In this case, the number

of signals is related to the multtplicity of the smallest digenvalues of the co-

* variance matrix of the observation vector. The problem of testing the hypothesis

of the multiplicity of the sralTest eigenvalues of the covariance matrix was

dealt extensively in multivariate statistical literature (e.g., see Anderson

(1963), KrIshnaiah (1976), and Rao (1983). Wax and Kailath (1984) considered

the problem of determination of the number of signals using information theoretic

criteria proposed by Akaike (1972), Rissanen (1978) and Schwartz (1978).

In the present paper, we use an alternative information theoretic criterion

for detection of the number of signals and establish its consistency. In Section

2 of the paper, we state briefly the problems considered in this paper. In

* Sections 3 and 4, we establish the consistency of our procedures when the variance

of the white noise is unknown and krrown ,respectively. In the above

sections, we assumed that the distribution underlying the observations is complex

multivariate normal. In Section 5, we establish the consistency of our proce-

dure when the variance of white noise is unknown and satisfies certain condition

and the underlying distribution is complex elliptically symmetric. The problem

0of detection of the number of signals when the noise covariance matrix is arbi-

0 e



Correction to "On Detection of Number of Signals in Presence of Noise"
by L. C. Zhao, P. R. Krishnaiah and Z. D. Bai, CMA Technical Report 85-37

Page 11, lines 11 - 12: Replace

"But, for k > q, the above difference is not asymptotically positive

with probability one"

With:

"But, for k > q, log Lk - logLq is not distributed asymptotically as

* chi-square".

i,. ---
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trary is discussed by the authors in a forthcoming paper when an independent

estimate of the above covariance matrix is available. In this case, the problem

is equivalent to finding the multiplicity of the smallest eigenvalues of z1 21

where E1 and E2 respectively denote the covariance matrices of the observation

vector and noise vector. This problem is related to the problem of relationship

between two covariance matrices studied by Rao (1983). In another forthcoming paper,

we considered the problem of drawing inference on the rank of the regression

matrix using information theoretic criteria similar to those used in the present

paper.
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2. PRELIMINARIES AND STATEMENT OF PROBLEMS

Consider the model

x(t) = As(t) + n(t) (2.1)

where A = q s(t) = (si(t)...,sq(t))',n(t) = (n1(t),...,np M))'

and q <p. In the above model, n(t) is the noise vector distributed independent

of s(t) as complex multivariate normal with mean vector 0 and covariance matrix

a . Also, s(t) is distributed as complex multivariate normal with mean vector

0 and nonsingular covariance matrix T and A( i): p xl is a complex vector of func-
-1

* tions of the elements of unknown vector o. associated w4th f-th signal. ,Also,
si(t) is the waveform associated .with i-th signal. Then, the covariance matrix Z of

x(t) is given by

, '2I
= A' A + 1 (2.2)

where A' denotes the transpose of the complex conjugate of A. We assume that

X(t)9,...,x(tn) are independent observations on x(t). Now, let A >...> denote

the eigenvalues of E, and e1 >...6 q denote the nonzero eigenvalues of AiA' . Also,
-q"" 2 =2let Hq denote the hypothesis Xq > Xq+ 1 = ... p =: . Under Hq9 Xi  +

(i=1,2.,)an= j= l
i2,...,q) and q+j (j=1,2,...,p-q). So, Hq is equivalent to the

hypothesis that q signals are transmitted. Various procedures (e.g., see

Anderson (1963), and Krishnaiah and Waikar (1971, 1972)) are available in the

literature for testing the hypothesis Hq for given value of q. Wax and Kailath

(1984) used Akaike's AICcriterion and Schwartz-Rissanen minimum distance length

(MDL) criterion for model selection for determination of the value of q.

According to the AIC criterion, the value of q is estimated to be q where q is

-0-

q * * . ....,' ~ * * ~ * *



4

chosen such that

AIC(q) = min{AIC(O),...,AIC(p-1)} (2.3)

and

AIC(k) = - 2 logL k + 2v(k,p). (2.4)

Lk is the likelihood ratio test statistic for testing Hk against the altwrnative

that E is arbitrary, and v(k,p) denotes the number of free parameters that have

to be estimated under Hk. According to the MDL criterion, the value of q is

estimated as q where q is chosen such that

MDL(q) = min{MDL(O),...,MDL(p-I)} (2.5)

MDL(k) = - log Lk + logN v(k,p). (2.6)
2

In the present paper, we consider the following alternative information

theoretic criterion for model selection for estimation of the value of q.

According to this new information theoretic criterion for model selection,

we estimate q with q where q is chosen such that

I(q,C N ) n min{I(OCN),.. ;,I(p-I,CN) }  (2.7)

I(k,CN) = - logL k + CN v(k,p) (2.8)

and CN is chosen such that

lim {CN/N} = 0 (2.9)

V.--

lim {CNI loglogN} = . (2.10)
N--N

S".
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We are interested in establishing the strong consistency of the above procedure

for the cases when a 2 is unknown and known under the assumption that the

'- distribution underlying the data is complex multivariate normal. We are also

interested in extending the above results to the situation when the underlying

distribution is complex elliptically symmetric. The probability of correct

detection of the procedure proposed by us is given by

P(CD) = P[I(.qC N ) - I( k,CN) < 0; k= 0,1,... ,(p-1); ktq Hq] .

Investigation has to be made on the evaluation of P(CD).

44
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3. CONSISTENCY OF I(q,C N) CRITERION WHEN a2 IS KNOWN

AND THE UNDERLYING DISTRIBUTION IS COMPLEX MULTIVARIATE NORMAL

In this section, we establish the consistency of the estimate q of q when

the criterion I(q,C N) is used and a2 is unknown. The main result of this section

is stated in the following theorem:

T .JREM 3.1. Suppose x(t) is a complex, stationary process with E(x(t)) = 0

and E(i'(t)x(t)) < for some e > 0. Also, we assume that {x(ti), i=1,2,...}

is a stationary and 0 - mixing sample sequence with 0 being decreasing ani 0'(n)
... n=1

, Also, 62(u'v) >0 for u,v=1,2,...,p, and Yi = (yiuv) = x(ti)R'(ti) - z, where

- 2(u,v) =E y 12 lE{YluvYl+ i,uv } .(31
"2" = EYluv +- 2 (3.1)

Let q be chosen such that

I(qC N) = min{I(O,CN),...,I(p-1,CN)} (3.2)

where I(k,CN) was defined by ( 2.8 ) and CN is chosen satisfying (2.9) and

(2. 1O).Then q is a strongly consistent estimate of q.

We need the following results to prove the above theorem.

LEMMA 3.1. Suppose {xi ,i > 11 is a stationary 4-mixing sequence with E(x1 ) = 0

and E(Ix 11 2+t < for some c > 0. Also, F is decreasing with ¢ (n) < .

n=l
Then

lim.sup{" xi/(2n62 log logn = 1 a.s. (3.2)(3.2
where 62 =E + 2 2 EXIXI+ i ) 0 is assumed. Here, we note that I ''(n) <

i=1 n=1

implies 62 < c.

* For a proof of the above lemma, the reader is referred to Reznik (1968) or

Stout (1974).

W" 2"
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LEMMA 3.2. Suppose that A, A n 1,2,... are all pxp symmetric matrices such

that An -A = O(n) and an - 0 as n - . Denote by A 1 > 2 >... > p and

S> ... > (n) the eigenvalues of A and A respectively. Then we have

(n) .= O(a ) as n-.c, i =I n

PROOF. Without loss of generality, we can assume A = diag[ ,... ],
1 r n _r

where xI > X2 > ... > Ar. According to Bai (1984), we know xi x 0.

At first we consider the special case where r = 1. For any i,

0= IAin)Ip - An' = l(X~n)-l)Ip - (An-A)f

p (3.3)

(= An), )p + 1 (n)1, )p-D
.1 1 +  ( ~ l )Z- 1)Z (Pi

where It is the sum of all t-ordered principal minors of An - A. Since An - A =

O(n), we have D= O(cn). By (3,3) we knownn
1-";n) p (n

I~n)i - A1  -< 1 " -

which implies Ixin) X1= O(a as n-).- for i =11.

' Now we consider the general case. Suppose i < uI. We have

0= I (n)Ip A

(A-".) /))

(n). - (An-A)

( 1 - Xr)i

%
• o2

^S '
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-B~n 22 -~

'= ~,-B(n) I ) B(n) - B -

22 i 12 22 21

Since -** diag[(l x. x-)I ], 2 is nonsingular for all

large n. Thus

i(. n)_- ' -B(n) - (n)B(n)-1B( n), = (3.4
) 11 B 11 B12 22 22(34

From A - A = O(a ), it follows that B (n = 0(c )and B ()B(n)-1B(n)= O(a2).
11 22

Using the result proved just before, we get

i n

A}n _" -A =0(an)

for i = 1, "'. By the same approach, we can prove

'n) " )h = O(an), i = i l .. uhl+l,...,1l ...+lh, h 1,...,r, (3.5)

which complete the proof of the lemma.
A N -

Let t> ... > Z denote the eigenvalues of z, where Nz = ! X(ti)X'(ti).-p i=1i 1.

Using Lemma 3.1 and the conditions imposed on {X(ti), i = 1,2,...!, we have

- F= 0(4 loql' a.s. (3.6)

Now, applying Lemma 3.2, we obtain

Z.Ao N) a(3.7)

for j I 1, 2,...,p.

...

6 - ' F ' ' - - ' ' . . . .. . ... .. ..
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When x(t) is distributed as complex multivariate normal, the likelihood

function for testing the hypothesis Hk against the alternative that zhas

general structure is known to be

L k =(3.8)
Lik+l 1 P- i=k+1

We will first prove the consistency of the method based upon the criterion

I(q,C N when k < q. Let G (k) =log L k and

Gk Gl(k) -CN [k(2p-k)+1] (3.9)

where k(2p-k) +1 is the number of free parameters that have to be estimated

under the hypothesis Hk and Lk is given by (3. 8). Using (3.7), we get

lrn 1( =~)G~) W(q,k) a.s. (3.10)

where

W(q,k) =log( n x -q~o -1 p
i-q+1 =q~pq

p I p
-log( nt x.) + (p-k)log( Tp'-k7 xi). (3.11)

i=k+l 1~ ~

q q
=(q-k)log [T.--k,- i+Ii/ i~l/1 -Q]

+ (p-k)[log(azA +iA)- (ajlogAj+a~logA2)

where

al (q-k)I(p-k), OL2 =(p-q)/(p-k)

p =
A1=(~) 1 ~ 1 i A2  (p- q7)

-7 ki q+1
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By the well known arithmetic mean geometric mean inequatity, we have

W(q,k) > (p-k)[log(i 1A1+a2A2 ) - (al logA1+a 2 logA 2 )]. (3.12)

Also, A1 > A2 . By Jensen's inequality, we have

W(q,k) > 0. (3.13)

Using (3.9), (3.10), (3.13) and lim(CN/N) = 0, we obtain

G(q) - G(k) = NW(q,k)(1+0(1)) a.s.

So, with probability one for large N, we have

G(q) > G(k). (3.14)

Now we assume k > q and k < p-1. Without loss of generality we can

- assume 2 =1. By (3.7) we have lim(t.-l) = 0 a.s. for j = q+l,...,p. Using

Taylor's expansion, we get for k > q

4. Gl(k) = N{1log(1+ti-1) - (p-k)log(l+ pF. i + Ii

2 2I". i=j+l(ti-l)2(1+o(1)) + N7(1+o(I)) a.s.

-'.',.By(3.7) we see that

G1 (k) = O(loglogN} a.s., p-I > k > q
(3.15)

GI(q) = 0(loqlogN) a.s.

From (3.9), (3.15) and CN/ lQ91g ) *-, we get

-. °, , - ' , 2 _ ' ' . ', '. ' 
•

, " : . - , " .*4. " .- . -V . . - V -. . - . . . . . .
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- G(q) - G(k) = CN(k-q)(2p-k-q) + O(loglogt)

(3.16)
= CN(k-q)(2p-k-q)(1+o(1)) a.s.

Thus with probability one for large N we have

G(q) > G(k). (3.17)

From (3.14) and (3.17), it follows that with probability one for large N

., ,.q = q.

Thus the proof of Theorem 1 is completed.

o_ When x(t) is distributed as real multivariate normal, the proof goes along

the same lines as in the complex case.

Wax and Kailath (1985) showed that (MDL(q)-MDL(k)) is asymptotically

negative with probability one for k < q. But, for k > q, the above difference

is not asymptotically positive with probability one. So, the strong consistency

of the MDL criterion does not follow from the arguments 6f Wax and Kailath (1985).

But, it follows from our results by taking CM =logN. Wax and Kailath (1985)

pointed out that the AIC criterion is not consistent. Hannan and Quinn (1979)

:.9. considered an information theoretic criterion to determine the order of an

autoregressive process; this criterion will be discussed in a subsequent

communi cat ion.
k:.-.A"

-
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4. DETECTION OF THE NUMBER OF SIGNALS WHEN
VARIANCE OF WHITE NOISE IS KNOWN

In Section 3, we discussed a model selection criterion for detection of

the number of signals when the distribution underlying the observations is

complex multivariate normal and the variance of white noise is unknown. In

this section, we derive analogous criterion when the underlying distribution

is (real) multivariate normal and the variance of the white noise is known. The

strong consistency of the above criterion is also established.

.9. In the model (2.1), we assume that the noise vector n(t) is distributed as

the multivariate normal with mean vector 0 and covariance matrix 21p, A is

0a real matrix of rank q < N, and the signal vector s(t) is distributed independent

of n(t) as a multivariate normal with mean vector 0 and nonsingular covariance

22matrix 'V. Then,,the covariance matrix of x(t) is 1 = ATAI + oI. We assume that

2 is known. Without loss of generality, we assume that 2= 1. Let 1 XP "

denote the eigenvalues of Z. Now, let

Ok: X 1 > > X k > Xk+ 1 = ... =Xp = 1. (4.1)

".. The k-th model Mk is the one for which 0k is true. We are interested in

V selecting one of the p models MOM 1 ...IM p_.

The likelihood function is given by

L(e) N loglz tr Z- (4.2)

where

N
' :! jx x N. (4.3)

j

" Also, let I > ... > p be the eigenvalues of r. In addition, let T denote
.~p
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the number of si's which are greater than one. Also, let d < * We will first

calculate L ' ' p) = Sup L(e) where Siip L(e) indicates that L(e) isdd d

maximized subject to the condition that Xl " d > 1.

Write A = diag(X1 ....xp ), A = diag( 1 ,...,sp) . There exist two real

orthogonal matrices 01 and 02 such that

0~ 0
1A 01 , 0 = O2

Put Q = 0201. Then we have
P

L(O) r llogkj -7 trA Q AQ.

Since Q is orthogonal, we have

trAIQ AQ 1 6 'i •

j=1

and the equality holds for Q = Ip (see Von Neumann (1937)). So,
p P

Sup L(e) Sup{- 2~ l ogX~ - 1 *' (6 /X-)} (4.4)
0d d J j1

i-i i.e.,

* p
L*(Xo+1= - log(xd+1...Xp) - +1

Nd

Sup{- T log (Xi. - Xd) T _ A/} (4.5)

4.. p

..... l X. . A

-. -%. l,~&10 6 - 6d ) - d (4.5)
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where the supremum is attained at 4j = Ij for j= 1,2,... ,d.

First, we assume that T < k. In this case

sup L(e) = sup L*(XT+l,...$Xp (4.6)o~ k  0('r,k) + "'

where sup indicates that the supremum is taken over X+I >k 1 and

Xk+1 = .. = = 1. But

4i( k)ps-- sup log A

Als, 6 ad Xi 1 or i 1 i 2 o

4 :" ''1 +- Nsup {- log x." [ 4 Ip*} (4.7).
2 + >_.. >1 i= +l =1

- (log xi + (6i/Xi)) < si (4.8)

and the equality holds only when x = 1. Since the above xiIs can be arbitrarily
approximated to one, we have " p

sup L(o) N log - NT/2' = (4.9)
ee i=1~

when .i4 k. Next, let r > k. Then

sup L(e) - .log(4l...6k) - k

p
+ sup N log(Xk+ 1...xp) - N. .

,k+l=..=,zjE)

N kN N
- logsi k - -Z ~ . (4.10)

Combining (4.9) and (4.10), we obtain

"" p
sup L(e) =- logsi - I (logsi+1-6i5 . (4.11)W- ego k  i1 1=+i in(-rk)

But the supremum of L(9) over the whole parametric space is given by

0 "-" " "logs i- '
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So, the logarithm of the likelihood ratio test statistic for testing ek is

given by

L N p (l g i+1-di) "  (4.12)

Lk =7 l=+min( ki

Now, let

N (4.13)

Lk-7i=k+1 lo61-)
.4,

We know from(3.7) that

6I - U = o((lo1OQN) I/2) a.s. (4.14)
1 i-N

Suppose the true model is Mq* Then

q" > -X q+. (4.15)
'>'" 1- -"' q •)q+1 p '

From (4.14), we know with probability one, that 61 - I for i =1,2...,q

and min(q,.r) = q for large N. So, the statistics L and L have the same distri-q q
bution asymptotically. Here, we note that Anderson (1963) suggested to use Lq

as a statistic to test eq and pointed out that the asymptotic distribution of

L is chi-square with (p-q)(p-q+l)/2 degrees of freedom. Rao (1983) pointedq
out that L is not the LRT statistic.q

- We will now consider the problem of selecting one of the models M ,MI
0 1

... ,Mp_I by using an information theoretic criterion. Let

G(k) = Lk - CNk(2p-k+I)/ 2  (4.16)

where CN satisfies the following conditions

(i) lim(CN/N) = 0, (ii) lim(CN/ioglogN)
N." N

• 'p , % ' - " ' M
°

" ' " '. . . . •" '. # ' 'r' ' " J . . " , ' - " . * ''• , . . " ,
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We select the model M- where q is chosen such that
q

' G(q) = max G(k). (4.17)
% : o<k<p-1

We will now show that q is a consistent estimate of q.

THEOREM 4.1. If Nz is distributed as central Wishart matrix with N degrees

of freedom and E(z) = z, then q is a strongly consistent estimate of q.

PROOF. Suppose that 0q is the true model and k < q. We have

G(q) - G(k) = Lq - Lk - CN(q-k)(2p-k-q+l)/2 . (4.18)

-. As mentioned above, with probability one, we have for large N,

-. > I, i = l,...,q, and min(q,T) = q. (4.19)

Thus with probability one for large N,

1 1

.Lq L=- N j (logsl+l- i ) - N (logsi+l-s i )""- =q+I ill+

; -- 1 N l~ Oogyl-si) 1 N WN(q,k),

where

* q
W N(q~k) = J+ -si16)

We have
U- q

lim WN(q,k) .. W(q,k) - - (lgXi+l-Xi) > 0.

Hence, with probability one, we have for larqe N,

L- > N W(qk)s

_, q Lk

"0 ". , '-' . ' Z - - -- . - '- " . - ' - ':-.- - . " 4 . " -"
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* and

G(q) - G(k) > 0. (4.20)

Here we used the condition lrn C N/N =0.

Now we assume that k > q. By (4.19) we have

IL q- Lkl N 2 Ilogs 1 + 1-
q~i =q+1

Sic \7-- a.s. for i > q, we can use Taylor's expansion,
N

to get

ILq - Lk 1N 1) .(1(o~i) a.s.
iq+1

=0(loglogN) a.s.

From CN/logogI1 9N~ we see that with probability one, for large N,

G(q) - G(k) =0(loglogN) + C N(k-q)(2p-k-q+1)/2 > 0. (4.21)

From (4.20) and (4.21), it follows that with probability one for large N,

q =q.

-, Thus Theorem 4.1 is proved.

When the underlying distribution is complex multivariate normal, the

proof for the consistency of the method goes along the same lines as in the

real case.

I..Z
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5. DETERMINATION OF THE NUMBER OF SIGNALS WHEN THE

UNDERLYING DISTRIBUTION IS ELLIPTICALLY SYMMETRIC

In this section, we discuss procedures for determination of the

number of signals. transmitted when the underlying distribution is real

or complex elliptically symmetric. Here, we note that a random vector y

is said to to elliptically symmetric if its density is of the form

f(y) = Jzl'll2g( (y-U)'z-l(y-P)) (5.1)

where g is a non-increasing function in [o,-). Multivariate normal and

multivariate t distributions are special cases of the elliptically symmetric

distributions. Kelker (1970) proposed the elliptically symmetric distributions

and studied some of its properties. Krishnaiah and Lin (1984) proposed

complex elliptically symmetric distribution and studied some of its properties.

A complex random vector x = x + ix2 is said to be estributed as complex

elliptically symmetric distribution if its density is of the form

f(x) = - (5.2)

where z is Hermitian,5 denotes the complex conjugate of a, and h (.) is a

non-increasing function in [o,-). The covariance matrix of (xj, xi) has

the structure

(Z 2  z)

O44

4,I
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Complex multivariate normal considered by Wooding (1958) and Goodman (1963)

and complex multivariate t distribution are special cases of the complex

elliptically symmetric distribution. The density of the complex multivariate

normal is known to be

f(x) =T 1exp{-(x-IJ) -1(iT) }. (5.3)

Now, consider the signal process x(t) in (2.1) but assume that the joint

density of xI = X(tl),...,xN = X(tN) is

"f(xl,1...,qx N) =IZI- Nh(N tr E-1I (5.4)

N

where NE I xj!. Let XI > ... > be the eigenvalues of z and let

.p denote the eigenvalues of z. Also, let ek denote the model in

which

1 " >k,+l, .. p =2 (5.5)

2.
where a is unknown.'Let f(x ,... ,xNI1k) denote the-likelihood function

under k-th model ok Also, let

*Q L(ok) = log f(xl,... ,XNlk) (5.6)

for k = 0,1,...,p-1. We know that for given xl,...X the minimum of

trzz-1 is X Iz:i (see von Neumann (1937)). So,
U.- o j=1

p p
max L(k) = max{-N _ log X + log-'.max ok kJI 1  j lo h(N=I X It)P (5.7)

k.k j=1 j 1



20

'" where the maximum is taken subject to (5.5). Suppose h(t) has a continuous

derivative h'(t) on [0,o) and the equation

Nph(y) = y~h'(y) (5.8)

has a unique solution y = Np/yh. Then, the above maximum is reached at

X I : = Xk C12 kh (5.9)
Tk {1 (t +' - +T-71

and
p

max L(ak) = - (Np/2)log' h + logh(Np/Yh) - N logt i + Gl(k) (5.10)
• Ok  i=1

* k k

where

S 1 p
GP Nlogff t I ti)P-e (5.11)
1 ! - klog i i=k+1

Under the conditions of Theorem 3.1. we observe that, for k < q,

lim N(Gl(k)-Gl(k-1)) = W(k,k-1) > 0 a.s. (5.12)

and for k > q(k<p-l)

1(G1(k)-Gl(k-1)) = loglogN) a.s. (5.13)

where

W(k,k-1) = (p-k+l)[log(-(-lk; (xk)l+...+Xp

Sp- k) p (5.14)-(p-k+1) ONx - (p-kT+1l (p__Xk+l+ ' " •+

We see that Gl(k) is non-decreasing function of k for ke{0,1,...,p-1}. If
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we draw the points (0, G 1(0)), (1,G 1(1))q ...,(p-iG (p-1)) in the Descartes

coordinate plane, and construct a polygonal line with these points as its p

vertexes, then Gl(k)-Gl(k-1) is just the slope of the k-th segment. Suppose

that q is the true number of signals. For convenience we temporarily assume

q > 0. As shown in (5.12) and (5.13), we can assert with probability one that,

for large N,

Gl(k) - Gl(k-1) > ClN for k < q (5.15)

and

G1 (k) - Gl(k-1) = O(loglogH) for q < k < p-1, (5.16)
o

where C1 > 0 is a constant. Thus we see that, the slope Gl(k) - Gl(k-1)

has a significant change for k < q and q < k < p-i, ard the true value

q is just the largest k for which G1(k) - Gl(k-1) > CN, where CN satisfies

the following conditions:

lim(CN/N) : 0 lim(CN/AglogNl.) = . (5.17)
Wom N-)oo

If we put G1(-1) = - , then the same is true for q =0. Motivated by

(5.15) and (5.16), we estimdte the number of signals q with q where

q = max{k<_p-1: Gi(k) Gl(k-1) CN}. (5.18)

" Under the conditions of Theorem 3.1, we can show that q is a consistent

estimate of q by following the same lines as in Section 3.

In general, we do not know whether the conditions of Theorem 3.1 are

dF

:'N;:::
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satisfied. In these cases, we make the following assumptions:

(i) lim (Gj(k)-Gl(k-1))a'SO for k > q':12"11N--

(5.18)

. :* 1 (ii) lim G k-l)) W k,k-1) > 0 for k < q

where we denote x for convenience. In this case, we need to assume that
0 2the smallest non-zero eigenvalue of A A'is distinguishable from a , namely,

the ratio of signal intensity to that of noise can be detected by the sensor.

. We assume that (x q2)/a2> e > 0 and e is known for the given receiver. In

this case, we estimate q with q where q is chosen such that
0

q =-max{k<p-1: Gl(k) - G (k-l) > " N}, (5.19)

where we denote GI(-I) = - for convenience. Also,

' = min (p-k+l){1og I + k6) - logs} > 0, (5.20)
O<k<p-1 "{ - -Tg

and

- -1 (5.21)

We now establish the strong consistency of q. To prove this, we write

.k p-+' ak k '

Ak p-T i=:+li/xk- 0

Suppose that q is the true number of signals and k < q. Then

0 . " . " . " - " , " . " . " . " . " " " - " . " . " " . " , ' " " " , " . . . " ' w " '



23

N -!Gj(k)-Gj(k-1)) =W(k,k-1) a.s. (5.22)

W(k,k-1) = -kl)- g SlogA~l>0

Consider fk(x) = log(ak +6 kx) - ak logx for x (0,1]. We have

Tj~x) = ak~k(1-x)/x(ak+Bkx) < 0, 0 < x < 1

2so that f k(x) is a decreasing function on (0,1]. But if (1+ >

then forO0 < k < q-1,

and

A 21

Thus for 0.< k < q

From (5.22) and (5.23), it follows that, with probability one for large N,

GI(k) - Gl(k-1) > . . N, k < q. (5.24)

On the other hand, if q <k < p-i,

1 im k(G((Q) G (k1) 0 a.s. (5.25)

So with probability one, for large N,

Gl(k) -Gl(k-1) < ~.N for q < k < p-i. (5.26)
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Thus from (5.24) and (5.26) it follows, with probability one, for large N,

q q. (5.27)

and the assertion is proved.

-.4.

..
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