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physical significance and accuracy. The same five attributes discussed for each existing
model were examined for the new ARA conic model, so called because its principal mathemat-
ical surfaces are conic sections. The computer code used to exercise all nine soil con-
stitutive models under eleven stress and strain paths is called the Soil Element Model
(SEM). It can be incorporated in large finite difference or finite element codes for
analyzing the response of soil masses to complex dynamic loads.

The ARA conic model performs well over a wide range of loading conditions, many depar-
ting considerably from those used to determine the model parameters. The parameters are
determined in a straightforward manner, and the model reflects the influence of the inter-
mediate principal stress on shear strength through a shear failure surface involving three
independent stress invariants: the first total stress invariant and the second and third
deiator stre%;s invdriants. For this reason the model is also called a three invariant
model. Measured shear strengths in both compression and extension can be matched exactly,
and the mathemdtical formulation of the shear failure surface is such that the shear
strength for any value of the intermediate principal stress can be computed directly
*witnout trial and error. The ARA conic model also exhibits dilatancy, generates only * -
positive plastic work, and has a provision for strain softening in shear.
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APPENDIX A

ANALYSIS OF STRESS

K ~Stress Transformnation Equations -

Consider plane ABC of tetrahedron OABC in Figure (A.1), having the

outw~ard unit normal vector:

n~c a ~ (A.1)
alnl a2n2 a3ne3

Line OP is the shortest line from the coordinate origin to plane ABC,

and is therefore norrnal to the plane, so that the unit normal vector -n can

be drawn along OP. Let the distance OP be h, and let the coordinates of

any point, R, in plane ABC be (xi, x2  X3) so that the position vector of

point R is:

O* -e + +X e(A21 1 2 2 3 3(A2

Then since line OP is normal to the plane, the projection of on ni must

be of magnitude h, i.e.:

flO- a nX, + a nX + a X. =i h (A.3)
1n 2n2 JnX3 'inm

Equation (A.3) is the equation of a plane in rectangular Cartesian

coordinates, and by considering the intersections of the plane with the

three coordinate axes we obtain: Accesion For
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hII b (A.4b)a2n

h (A.4c)
3n

Because the area of a pyramid cross section taken parallel to the

base is proportional to the square of the perpendicular distance to the

cross section from the apex, the volume of a pyramid is given by the well

known formula:

volume = x base area

Therefore, the volume of tetrahedron 0ABC can be expressed in any of four

ways:

K h a BO)=b A C)= (raAB (A5V (area ABC) = (area BOC) (area AOC) (area AOB) (A.5)

from which it follows that, using Equations (A.4),

area BOC h (A.6a) " -

area ABC = 'ln

area AOC h (A.6b)

area ABC a2n

area AOB h (A.6c.
are a A a n 3n -

Consider now the stresses exerted on tetrahedron OABC by the

surrounding material, shown in Figure (A.2). The stress vectors an, _ .

-Go -o 2 and -03 are equal to the resultant forces acting on faces ABC, _01

BOC, AUC and AOB, respectively, divided by the area of the face on which

they act. In the limit, as the dimensions of the tetrahedron approach

zero, the stress vectors each represent a uniformly distributed force per j-. -

8- -
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• unit area. Equilibrium considerations dictate that the vector sum of all

forces acting on the tetrahedron be zero. Body forces, such as those due

to gravity arid inertia, need not be included in the vector equilibrium

equation for an infinitesimal tetrahedron, since their magnitudes are

proportional to h, whereas the magnitudes of surface forces areI.
proportional to h The body forces therefore approach zero more

rapidly than do the surface forces as the tetrahedron dimensions approach

zero. Therefore, the following development is as applicable to problems

of wave propagation as it is to static problems. The vector equilibrium

equation for the infinitesimal tetrahedron is:

n (area ABC) - P1 (area DOC) -2 (area AOC) - U3 (area AOB) = 0 (A.7)

Dividing both sides of Equation (A.7) by (area ABC) and using

Equations (A.6) yields

an = 010In + 02a2n + 03a3n = Qjajn (A.8)

B- Equation (A.8) is commonly referred to as Cauchy's equation. L

Each of the stress vectors in Figure (A.2) can be written in .;:-

component form, so that

'II  e I + '12 1e2 + o31e3  (A.9a)

0 07  e + e+ e (A. 9b)

-2 = 12 1 + 022e2 + 03 2 e3  (A.b)

1 + Q23e2 + "33e3 (A.9c)

where

99
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0ij =stress acting in direction ei, on the face with outward

Iunit normal ej
* Equations (A.9) can be written concisely in the form:

= u. .e.(A.10)
Ij

Substitution of Equation (A.10) into Equation (A.8) yields:

Cn ,j' Jn 13 1j jn (ijajne 1 A.1

or, in mnatrix form:

- {~ = {ri}(A.12)

The component of a n in the direction of the unit vector -m in

Figure (A.2) is:

Uin Mn G ~ n T {an iocn (A.13)

Consider now two rectangular Cartesian coordinate systens having a

I common origin, as shown in Figure (A.3), and let -

= stesscompnen deinedin he 12,3coodinae sste

=7i stress component defined in the 1,2',3' coordinate system

=cosine of the angle between e sand e'.j

Then Equation (A.13) gives

U ~ a..cia. - .. c. (A.14)iin 1 jn aml 13 cjn

or

ion

.%7:7 I



-.. 7' --. - v. , . - -T

T (A. 15)

From Equation (A.13) it also follows that the normal component of nin

* Figure (A.2), denoted 'n'is simply

ti n n C n= ), i CLn' (A.16)

Principal Stresses

It is of interest to investigate the change in 1'nn in

Equation (A.16) due to an infinitesimal change in ni. Figure (A.4) shows

that since n must remalin a unit vector, it can only change direction, so

that

where

If IT ft in 0  (A.18)

Equations (A.17) and A.18) merely state that an infinitesimal change in

the unit vector n must lie in the planv normal to n. The increment in

I ~ nn due to dn can now be obtained by differentiating Equation (A.16),

wiiich yields

T T T Tnnu fda n 'i~n fc r; (Zd~n = {dan . 2 c (A.19)
nn n-In .r al n a+0 (n

However, because there are assumed to be no distributed torques, the

stress madtrix is symmetric, i.e.:

T =a(A.20)

Thierefore, substitution of Equations (A.17) and (A.20) into

Equation (A.19), taking account of Equation (A.13), yields



do = 2dC{a T C{u I 2dA o (A.21)n-t tn

where atn is the shearing component of 0n in the direction of t. From

Equation (A.21) it follows that stationary values of normal stress occur

on planeF of zero shear. Therefore, to locate stationary values of normal -

stress, one seeks those directions for which the stress vector, an, has

no component normal to n, and is therefore parallel to n. For such a

"principal" direction,

" = n on (A.22)

Using Equation (A.12), Equation (A.22) can be written in matrix form as

IfL= = o (A.23)f n ', - n r {an

or, in homogeneous form

N- ofl{a = oA.24)

The expanded form of Equation (A.24) is

Gil 0 012 0313 ln 0A

02200 (A.25)
2 1 22 0 a 23 a2n

31 032 G33 - 13n

and since Equations (A.25) are a set of homogeneous linear equations, they PL£

possess a unique solution if and only if the determinant of the

coefficient matrix, in this case reterred to as the characteristic

determinant, is zero. The equation expressing this condition is the

characteristic equation:

- - .. . -'
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11 12 "13

021 -2"2 (A. 26)

031 "32 u33 -0

Expansion of Equation (A.26) yields

-(11 - )(022 - ")(c33 - 0) + 012023031 0 13021032

- 'i )'323'-32 - J12"21("33 - ) 13 (0 22 C) 0)31

3 + + . + 03)2 (311~0~

'33 01 i1 0 12 01l3

C 0 " 21 022 023=0

13 'Ii, 031 0 32 03 3

or

- 0o 12- 13) -(c 01)9(a 02)( 3 (a.2

Uwhere 01 3 2, and 073 are the three real roots of the cubic characteristic

equation, called thce principal stresses, and the stress invariants, I

1and 13 are aetimed as follows:

Ii 011 1 322 033 = 0 + 02 + 3 (.8

103



12=- 11 012 022 023 03 3 321

+ +

021 02 2 032 033 013 (11 I

=-(0102 +02c3 +0301) (A. 29)

011 ('12 013

13 0121 0 22 OI3 = 01273 (A. 30)

031 03 2 3 3

Cardan's classic solution of Equation (A.27) LUSPENSKY (1948:84)j- begins

by sEtting

S.0=5s n (A. 31)

which causes Equation (A.26) to take the form

-) - 012 013

21(C~ - I,-) - s2 0 (A.32)

031 032 (033 s

or

* ~11 -s s 12 S13

~21 ~ 22 - 23 =0 .3

~31 ~ 32 S3 3 -5

where the deviator stress matrix, s, is defined by the equation

S~o (A.34)

- 1,3-

7"



Expansion of Equation (A.33) yields

(s3 J -( . 5
- - =- (s - s2)(s s3 ) = 0 (A.35) 4 4

%shere S, s s3 are the three real roots (principal deviator stresses),

and the deviator stress invariants, J1 , d2 , and J3 are defined as follows:2~
qM. (A..36-.

1 Sll + s22 + s33 Sl + s2 + s3 =0 (A.36) P 4

12 S (12 + s22 s23 + 33 s3.

s21 s22 s32 s3 3  Is 13 sl) I) -

= - S + s2s3 + s3s1 )  (A.37)

S-.

S11 s12 '13

3 s21 s22 s23 = S2S3 (A.38)""

s31 s32 S3 3

The s2 term is absent from Equation (A.35) because J1 is zero, and

Equation (A.35) is therefore referred to as the reduced characteristic or

reduced cubic equation.

... The solution to Equation (A.35) is assumed to be of the form .-

s =A + B (A.39)

- so that

s A + 3A B 3AB2 + B3

3 3
A + B + 3AB(A + B)

-A + B + 3ABs

or

s 3ABs (A3 + B3) 0 (A.40) L -

105

*.*.*.. . . . .- ,,.



Comparison of Equations (A.40) and (A.35) shows that

3AB J 2 (A.41) -4

or

A3 B3 = (A.42) -"

and

3 3
A + B = (A.43) -

Thus, the sum and product of A3 and B3 are specified, which means that

A3 and B3 are the roots of a quadratic equation. To obtain the

quadratic equation we first obtain an expression for B3 from

Equation (A.43).

J3 (A.44)

Substitution of Equation (A.44) into Equation (A.42) then yields

_3  :

A3 (j 3 _ A3) = J3A3 _ (A3)2 =
33

or

(A 3 )2 - J3 A3  0 (A.45)

Because of the symmetry of Equations (A.42) and (A.43), B3 also

satisfies Equation (A.45). Therefore, the solutions for A3 and B3 are

A3  J3 J3"..'

T-, -- j - (A.46a) ..

106 7-.. ,,,._
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-. .- and .

a rid~

3 3 - ..,

The quantities A and B are real or complex, depending upon whether

U the quantity under the radical in Equations (A.46) is non-negative or

nEgative, which can be determined by evaluating the ratio

J3

4

2 - "

; . the three roots of Equation (A.35) are physical quantities, and are ;,

therefore real. Thus, we can assume that:

S s 2  > s3  (A.47)-'-.-

_ In addition, if we set

s + S
S3 r (A.48)

1s Sl s

2 =q  (A.49)

and define Lode's parameter by the relation

S + s
1 3

2 -r s 2  2 2s2 - S1 -s 3 ,.5,"
s1 - s3 s1 - 3
2

then

S r +q (A.51)

107
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s2 = r + jq (A.52)

s r - q (A.53)

In addition, Equation (A.36) requires that

s, + s2 + S3 3r + pq = 0 (A.54)

so that the deviator stress paramenters r and q are related by the

expression

r " " q (A.55)

and therefore the principal deviator stresses can all be expressed in

terms of the parameters and q as follows:

si = 1 - q (A.56)

s= 2 (A.57)

S3 ( + j) q (A.58)

Substitution of Equation (A.56-58) into the ratio in question reduces it

to a function of p only, as follows:

J3 P 2 3 P (- 2) 3

• 2- Is- - = _ -- 27- q (A.59)

2
- - 7[2p(3 -) - 2p(3 p) -(9 p2]

-. = 2 2 (A .60 )

•. :* . .. '...
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J3
______ ~ 3 +(A.61)

( 3/2  23+

*.According to Equation (A.50) the parameter varies between -1 (when

S= S3) and +1 (when s2 = sj). The ratio in Equation (A.61)

therefore also varies between +1 and -1, as can be verified by direct

calculation, and therefore the radicand in Equations (A.46) is

- nonpositive. This being the case, the quantities A3 and 83 are -

con~plex, and can therefore be represented by an Argand diagram as shown in

Figure (A.5).

The expressions for Aand B3  shown in Figure (A.5) are:

3J2 (J) 2)2 ~
A =-+ i -i e (A.62a)

23

B (2 =1.** e (A.62b)

where

J3
cos 1.= )+ - ' (A.63)

* .( 2) (3+ 2

Equation (A.63) is plotted in Figure A.6.

The desired values of A and B are therefore the complex cube roots of

* the expressions in Equations (A.62), i.e.:

lu. "

A Te (j 1,2,3) (A.64a)

109



I , 0

B : e (k : 1,2,3) (A.64b)

where

= ' - '- (A.65a)

2 (A.65b)
2

- - -- 4

+ 2r (A.65c)

and

= 312s -  3(A.66)

Now Equation (A.39) states that each of the three roots, s, s2, and

s3 is the sum of two quantities, A and S, whose product is real according

to Equation (A.41). Therefore, the values of A and B used to form

S (j = 1,2,3) must be complex conjugates, which requires that k = j in -

Equations (A.64). Equation (A.39) therefore takes the form:

sj : (e + e = 2 T_ cos W. (j = 1,2,3) (A.67) r -.

or

=, 2 COS cos A.68a)

= 2jT_ COS W~ (A.68b)

-2 2

3 = 2T cos IJ (A.68c)

110
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- so that Equation (A.31) takes the form:

I1 I FV 1-s + 2 cos' + (A.69a)

''1 2 I (A.69b)
2 2 T Cos ,2+-

+ cos + (A.69c)

o -s T3- Co ')3-

Principal Stress Directions

Once the principal stresses have been calculated, the direction

cosines associated with each principal stress can be obtained from three

separate solutions of Equation (A.25) in which a is successively set equal

to ci 02 and 03. In each solution at least one of the equations will be

redundant, so that a corresponding number of the direction cosines will be

" harbitrary. The directions thus obtained are those of the principal stress

axes, and can be shown to be orthogonal as follows. Let

= [1}1 { 2} ,{c3] (A.70)

if where { ] , {c21 and {I3} are the three principal directions. Then 1-
Equation (A.23) can be written in the form:

a = a cpr (A. 71)
- Pi

where

0U 0

..

F. 0~p : 2 0(A.72) I

": - 0 (73'':"

.. . . . ... . . . . . ..



Premultiplying both sides of Equation (A.71) by ci.then

transposing the result and taking account of Equation (A.20) yields

T T

pi

T T
ci 0 a= F0  a ai

(2T 0')r- = r, (aT a)(A.73)

The only way Equation (A.73) can be satisfied is for the matrix

aTa to be diagonal, which means the columns of a are orthogonal -

(perpendicular). Since the {cij} are unit vectors, we have

aT (A.74)

so that Equation (A.71) yields --

Ta a a = 0 (A.75)
pi

and

T- (A.76)

112



I. 24

I R

03 A

Pr 3 3

Figure A. 1. Tetrahedron OABC.
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A.

Figure A.,". Stresses exerted on tetrahedron OABC by the
surrounding materi al.
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11 3

IF 3
31

Figure A.3. Rotation of rectangular Cartesian
coordinates.
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dn + dd

~ + dn

Fiqure A.4. Infinitesimal change in a unit vector.
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~23 133

Figure A.9. Representation of the roots of Equation (A.45)
in an Argand diaoram.
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ii APPENDIX B4

CAYLEY-HAMILTON INVARIANT FORMULATIONS

If _is the 3 x 3 matrix containing the column vectors of direction

cosines of unit vectors in the three principal stress directions of the

stress matrix, a, and F7,j is the diagonal matrix of corresponding

principal stresses, then Equations (A.74-76) give
T4

ci T c~=I(A.74)

T (A.75)

arG T (A.76)
P- -

It is easy to generalize Equation (A.76) for highEr powers of

ano a~. For exaimple,

21, a_ ra T) = 2 (B.1)

and, in general,

na a - T = (n an integer) (B.2)

Now if Equation (A.27) is written for each of the three principal

stresses, and the result put in diagonal matrix forn, we obtain

r3  1i 2 r- ,,i2 R 131= ro, (B.3)r

Premultiplication of Equation (B.3) by a and postmultiplication by

a' then yields

- 119



3 i2
_- Ia 1 2 -- 13 0 (B.4)

Equation (B.4) states that the stress matrix, _, satisfies the matrix

form of its own characteristic equation. This is a particular example of

the Cayley-Hamilton theorem, and leads to useful expressions for the

invariants 11, 12, 13, lJ2' and J3' as shown below.

Recall that the inverse of a square ratrix equals its adjoint (the

transpose of its matrix of cofactors), divided by its determinant. Thus,

* T

~ (B.5)
!01 0-

Now

rT12 = Tr(") Tr T  (B.6)

and

3 I 1 (B.7)

so that

Tr(0
1) Tr(Z T) I2(

1 2Tr(c == (B.8)"-.,

Now first note that

11 Tr(a) (B.9)

Next, premultiply Equation (B.4) by c-I to obtain

2 -1o -2- (B.)

Taking the trace of Equation (B.10) then yields -

120
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Tr(o) 1 1~ 312 3- 2-
3

-~ - 2 2 (.1
Tr(o 11 i 21 2 0 (.1

so that

- 2 =I[Tr( 2) -12] 
(B. 12)

Fi nal ly, taki ng the trace of Equation (9.4) yields

3 2
Tr(o) I I Tr(k 1 2 11 - 31 3

=To
3) 2 1 y, 2 2

Tr_ 1 -r. *-[Tr( a 1 1 j 31 3

II
3 3

=Tr(a) i- 2r + 12 ~- 1To 2 -33 =0 (B.13)

so that

1 3 2

PSince the deviator stress matrix, s, can be viewed as a particular

type of stress matrix whose trace (first invariant) is zero,

Equations (8.9), (8.12), and (8.14) yield

J, J Tr(s) 0 (8.15)

1 2
2 _ .Tr( s )(8.16)
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For machine computation, the following invariant expressions are

convenient because they do not require calculation of principal stresses:

I = 'll + 022 + 033 (8.18)

2 2 2 2 s2 s 2)
(Sl + s22 + s3) + 2(s12  + s23 31 (8.19)

J3 = S11s22s33 + s12s23s31 + s32s21s13 (B.20)

(SllS23 + 22s312 s33 s122

Equation (B.18) is iaentical to Equation (A.28); Equation (B.19) is

an expansion of Equation (B.16); and Equation (B.20) is an expansion of

Equation (A.38).

Another useful expression for J2 is obtained by setting

12 -- 6
J2 2 62

2 + 2 + 2 - + s3( + (s ' i
11 22 533) 11 S2 2  33 - (2 S2 S2

____________________________ ~12 + 23 ~31~
,. I

2 2 22( s 22 33 1122 - s2 2s33 - s33S11 + 2 2

6 12 s23 )32

_ 2+- , + 2 - L .

-(s s22 (S22 s33) s3 3  1 + (s2 + s2 2)
12 23~ 31

)2 + 2 +°)2 '"'
- (022 (a

(011 022 22 33 (33 1) + (o2 + + 2 (B 21)

-612 23 -311 1

By using Equation (A.34) in the form

0 = s + I (B.22) ""
3

122• " 3"."' -



Equations (B.12) and (B.14) can be made to yield

12 LTr( I] = Tr[(s+ I)2 -

i221 12 -1-

[Tr 2
7 - 7

12

2 - 3 (B.23)

and

13 = [2Tr(, 3) - 31 1Tr(a 2) +I

lf2Tr[(s + " I) - 31Tr[(s + 1)2] I

_-I 2 21i 1 3
- 1[2Tr(s 3 + 2 s+  1 +

+ 1 3 1 .Trs +

321i 1111 1

'3 - 712 +  7 lJ2 -6- 16.

3
I1J2  I13 + 71 (B.24)

so that

2  2 3 (B.25)
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and

1
U3 I1 + + I~ =1 + ([3.26)

Equations (B.22), (6.24), (B.25) and (B.26) show how any function of1,

1 29 and 1 3 can also be written as a function of III J 2 9 and J 1and

vice versa.
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APPENDIX C

OCTAHEDRAL PLANE PLOTS

The positive directions of the orthogonal principal stress axes,

. defined ,hy Equation (A.70), are arhitrary. Thus, the principal stress - 4

axes dp7ine eight octants within which the stress vector repeats itself in

a symmetrical fashion. It is convenient to use the principal stress axes

as coordinate axes, as shown in Figure (C.1). The principal stress axes

define the principal stress space, and in that coordinate system the

stress matrix reduces to the diagonal matrix of principal stresses.

0

0 0 (C.1)

- p

I The hydrostatic axis in principal stress space has the equation

1= q2 q3 (C.2)

and the unit vector pointing away from the origin along the hydrostatic principal

axis, having equal positive components along each of the three principal...

stress axes, is the octahedral unit normal, " ""

n I -e1 + e e3) (C.3) L -n0CT 1 +) 32 ..

The plane through a stressed point for which nOCT is the unit

- normal vector is called the octrahedral plane. Referring to

Equations (A.8) or (A.12), the octahedral stress vector, i.e., the stress

vector acting on the octahedral Dlane, is

e ++ :.....

"C- ( 1- + e + (3e3  (C.4) ". "
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The normal component of the octahedral stress vector, called the

octahedral normal stress, is

- -~ 1 + '2 +r73 11
"OCT = TOCT OCT = 3 C3..

and the tangential or in-plane component of 7OCT' called the octahedral

shear stress vector, 
is

TOCT = °OCT (O,T " OCT nOCT

1.-...OCT-
.-

G( I1 + (7P e2 + "3 ! e, C (e 1 + e 9 + e 3)""

S (s1 + s2e+ s3) (C.6)

The magnitude of the octahedral shear stress vector, called the

octahedral shear stress, is

TOCT = TT TOCT 3 3 (C.7)

so that Equations (A.6P) can he written in the form

S 0- ta)
;l 2 TOCT cos '1 (C.8a)

s5 cos (C.8h) . .

s3 : T0CT Cos J3  (C.8c)
.-'---

When plotting triaxial stress data it is convenient to work with a

mathematical vector, 7, called the principal stress vector, shown in . ....

Figure (C.2), the components of which are the principal stresses, i.e.
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J 'OT +~e1  2 + ce 3 (C. 9)O 'CT 111 2e2 3e3".

It is also convenient to define a second set of mutually orthogonal,

right-handed unit vectors, called the octahedral unit vectors, according "."1
" ~to the relations "" ,

n OT- _(el ee 3 ) (C.10)

ni - 1 1 - 3 ) (C.11)

e4 e e

n-n 3 xn 1r16
1 0 -1

-e 2e - 31 ?/T 3  (C.12)

The unit vectors ni and F are hoth normal to 50CT and therefore

hoth lie in the octahedral plane. The unit vector F has a positive "

I cnmponent, an equal and opposite e3 component, and no e2 component. The

Sn3  components of the principal stress vector are

x n (C.13)

2 - 1 s s -s2 -3 =2 S 3 2 s (C.14)
2 2 ' 2

F6
171 + '72 + r3 : .

- ~ - ___'____-_•.,

z o n ~ 4 4~~ (C.15)
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I

The octahedral plane component of the principal stress vector is

+. -1 -

e + -3 _e_ 4  F ('OT + e + e 3) -

=Se e se +se (C.16). .-

11 2 2 3 3

and the magnitude of the octahedral plane component of the principal

stress vector is

S 2 +? (C.17)R [R T • I +2 I 3 2 = TOCT

It can easily be verified by direct expansion, using Equations (C.l3) -. -

and (C.1d), that

2 ? 2
2 s - 2sIs 3 + s3 3sx +y 2 +

s1 2s S3 + S + 2s.2  + (..

2

2~ 2 2 2 2SI + s 2 s 3  R= 2J2  T OCT (C.18)

Now Equations (C.13) and (C.14) also yield

272- 
-I 

2 s 1 s 3

_ (C.(5)x F3- 3 3 F

where u is Lode's parameter, defined by Equation (A.50), so that,

referring to Figure (C.3),

y : R 2' (C. 20)
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or

2 'OThc 2)

or

Compari son of Equations (C.8b) and (C.21) shows that

COS'~ (C .22)
2

which can be checked, since

co 4 cos 3u 3 cos

cos w2 2

(3 p ) 3 p7~y

3 2 3

ii (3 + 2.3/2 (3 +-~

(3 ++ -(C.23)

which agrees with Equation (A.63). Thus, Equations (C.13) and (C.14) can

be written in the form

X- IYTOT sin (C.24)

O F CT Cos F3 T (C.25)
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A common equation for soil shear strength is the Mohr-Coulomb

equation, which can be written in the form e-

q = (d + p) sin 0 (C.26)

where the friction angle, 0, may depend on p; d is a constant material

parameter; and "

01 + ("3P = 2-- (C.27)

* 1 - 3q - 2 (C.28)

Now Equations (C.13) and (C.14) can also be written in the form

x 4 -q (C.29)

0(I  2 + 3 )
- 3( I - )

y0) 3(a 03) .,6 (oOCT - p) (C.30)

Substituting Equation (C.26) into Equation (C.29), then solving for p

yields

x = 4/ (d + p) sin 0 (C.31)

4sp = x d (C.32)2 sinT

ana substituting Equation (C.32) into Equation (C.30) yields

('+ OCT (d si n

= 6(d + (OCT) - x (C.33)
sin -

Finally, if we set

, X (C. 34)
X d + 0OCT

130

x - . . -.

-_ ~ ~ ~ ~ ~ ~ ~ ~ ~ .. *...... .........-.....- ,....".-." .......-.......'. ,.. ' . ....... . ' ,.



y d (C. 35)
+ "OCT

ii thern Equations (C.19) and (C.33) yield

y w~ (C.36)

sy n~p ' x (C.37)

-~ (. 38)

ro~-w a rapid m~ethod for plotting triaxial

-It- a Cen Equations (C.36) and (c.37),

- * i~ution (L.?6) applies fLN~erkle (1971:346)].

-11 ,Lr ta' lurc criterion than the

i~r w'4Ach thec octahedral shear stress is a

~'strtss and the octahedral polar angle,

(C.39)

s! j-t j urii~ut (otdhe:Cral Cross section can be obtained by

R OCT

~TCT P(UT JY3 3 (C. 40)
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Figure C.1. Octahedral unit vectors in principal
stress space.
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APPENDIX 0

BIASIC EOUATIONS OF ELASTOPLASTICITY

If a cylindrical soil specimen is consolidated under an isotropic

stressc then suhbjected to drained compressive

loading, unloading, and reloading under constant confining stress

= "Tc'~ .~3) the stress-strain curve appears as

shown in Figure (D.1). Several important features are shown in

Figure (D.1):

1. The stress-strain curve is nonlinear, even for small stresses and
strai ns.

2. Upon unloading from point A, some of the total strain is
recoverable (BE), bit the remainder is irrecoverable (OB).

3.Reloading occurs along a path (BC) somewhat different from the
unloading path (AB), until nearing the previous maximum stress.
At this point additional loading approaches and proceeds along
what appears to be a continuation of the virgin compression curve
(OA), with little apparent further influence of previous
unloading or reloading.

4. Unloading and reloading occur along paths whose secant from zero
to maximum stress has a slope very close to that of the initial
tangent to the stress-strain curve. This means that the
irrecoverable portion of any strain increment is essentially the
rdifference between the total strain increment and the strain
increment associated with a straight line stress-strain curve
having a slope equal to that of the initial tangent to the actual.
stress-strain curve.

By conve~ntion, recoverable strains are called elastic, and

irrecoverable strains are called plastic. If the unloading and reloading

curves in Figure (0.1) b~oth retraced the virgin loading curve (OA) instead

of following curves (AB) and (BC) the stress-strain behavior would be

called nonlinearly elastic. As it is, the linear portion of the stress-

strain behavior shown in Figure (0.1) is elastic, and the nonlinear

portion is plastic. Since some of the stress-strain behavior is elastic
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and the rest is plastic, the overall stress-strain behavior is called

elastoplastic.

Multiaxial elastoplasticity theory extrapolates the above one-

dimensional stress-strain observations, aria assumes that plastic strains

are superimposed on elastic strains. Thus

E + e (.1)1i3 13 13i

with a similar relation holdiny for each strain increment.

dE. = . + dF?. (D.)

When the elastic behavior is isotropic, the stress increments are

related to the elastic strain increments by the equations --

e (
doi3 ijkl dEkl (D.3)

where the elastic incremental stiffness tensor is given by the expression

Ce - MK 6 + M-K)(0.4) ""-
C MK 6M(1-K) (DA)j
ijkl 0 ij'kl +ikAjl

and (1 constrained elastic modulus

Ko= coefficient of elastic lateral stress at rest.

The parameters 1i1 and K are sometimes assumed to be constant, independent

of strain, and are sometimes assumed to vary in a prescribed manner.
m. L -

Once the possibility of plastic strains is recognized, four questions

arise:

1. Can plastic strains occur? "

2. If they occur, what will be their relative algebraic values?
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*3. If they occur, what will be their actual algebraic values?

4. Will they occur?

Obviously, Question 2 is a subset of Question 3. The reasons for listing c 4

* the two questions separately are the mathematical and physical conditions

used to answer them, which are explained below.

mThe mathematical theory of elastoplasticity presented here contains 4

four parts, each needed to answer one of the above four questions:

1. A yield criterion, assumed to be of the form

~~f(r.., 0 ( .5pjij = 0 (0.5).
I Ej

satisfaction of which is a necessary condition for the occurrence
of additional plastic strain at a point.

2. A plastic potential function, goij), for which

dEP. = dx (D.6)oi j i " 1[

which gives the relative algebraic values of the plastic strain A

increments, i.e. the direction of the plastic strain increment
* vector in stress space. Equation (D.6) is called a flow rule,

and the scalar constant dx is determined by the next condition.

3. The requirement that Equation (D.5) be satisfied not only at the A
beginning of yielding, but throughout yielding as well, so that ..- .

df doi + dP 0 (D.7)4f ao j j i-1-1

Equation (D.7) is called the consistency condition, and yields
the value of dx in Equation (0.6). It therefore permits
calculation of the actual algebraic values of the plastic strain
increments.

4. The requirement that the calculated plastic strain increments
*1 " lead to a positive plastic work increment,

dW: ai=jdJ > 0 (D.8)iLi
139
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Equation (0.8) is called the dissipation condition. If it i, no~t
satisfied, then additional plastic strain does not occur at a
point, in which case all strain increments are elastic.

Equations (D.S), (D.6), (D.7), and (D.8) have been written assuming

one yield criterion (or yield surface), and one plastic potential

function. There can, however, be more than one yield surface, and an

equal number of corresponding plastic potential functions. If this

happens, then the above four equations apply to each active yield

surface. Thus, if m yield surfaces are active, there will he a ,Pt of

plastic strain increments for each active yield surface, the values of

which are determined 'y 4m equations (counting Equation (D.6) as one

tensor equation.)

The stress tensor ,.. contains nine elements,

'11 12 13

Eij = 721 22 723 (D.9)

'731 rT32 33

but only six are independent because

Each stress component, aij , can be expresed as a function of the

three principal stresses, 1 °2 ' and the nine direction cosines

of the three principal stress axes with respect to the arbitrary Cartesian

axes used to define the ij. However, if a unit vector pointing in the

direction of the ith principal stress axis is ei' then because the three

principal stress axes are orthogonal, we have

ei" e = 6 ij (D.11)." 'i': ,

140l

. . .. .



Equation (0.11) represents six independent scalar equations involving

the nine principal stress axis direction cosines. Thus, there are only

0 threp independent principal stress axis direction cosines. Let them be

1, 1 2, and a3 " Then w can write

.. .. 'a l, (D.12) ''''"

"ij ij ' 3' 2 32'a3

If a material is isotropic, the dependencies of the yield function,

f, in Equation (0.) and of the plastic potential function, g, in

Eqmntion (D.6) on the principal stresses cl, ' and (3 are

indOPppndent of the orientation of the principal stress axes with respect

to tlp coordinate axes. This means that not only do a,, a2, and a3

not ipoear in the expressions for f or g, but also the stress functions 4

%,,,ich do appear in those expressions are insensitive to subscript

in,trchanqes, i.e., they are symmetric functions of ai, 12 and (3"

The tntal stress invariants 11, 12, and 13 satisfy the required L

cnndi~ions of symmetry. They are, from Appendix A:

I 1I + +  (A.28)

1. ii 12 "22 "23 033 ('31
12 + + ) (A.29) .

22 32 "33 '13 'l

1i "12 'T13

I ! (2 (A.30)3 [2 1 '2? '23

'31 32 '733

Equation (D.6) gives the relative values of the plastic strain

increments, from which the relative values of the principal plastic strain
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increments and the orientation of the principal plastic strain increment

axes can be determined. Since the plastic potential function, g, is a -

function of the three total stress invariants, Ii, 12, and 13 given

by Equations (A.28), (A.2(), and (A.30), we have

g = g(T1,12,I3) (D.13)

so that Equation (D.6) can he written in the form

& P  d 39 dx( g  l -2 -13 (D.14)l ii a Ii a ij a1 I. arij a1I a ii -- "
13 2 a . 311 2 a ~ l.,.. ._-1-

2a-

Now Equations (A.28) and (A.29) yield

S 0 0 2" -T

I1 1 0 (D.15)" .. iLO
..-' .. .....

0 1 .~ .* .. ..

2? 33) O1 31

22
12 -( 33 + 11) 32

a13 23 - (all + G22)

a j i 1 alij :ij 1 ij (D.16)

To obtain the derivatives aI3/2aij we first expand the expression for

13 in Equation (A.30). Referring to the development of Equation (A.27),

we obtain

all a 12 a (0.17)

3 :'I1 1 '22 '23 ''22133 + '12'23031 + 013121132
"31 "32 133 - 011123"32- "12121"33- 013n22"31 ". -
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Differentiation of Equation (0.17) now yields

31
22? 33 - 23'732 - 1 Dla

313
3-=-~13 31 (D.18b)
12 ?13 1 1

.313

),7 21 32 -'?2"31 -13 (D.18c)

913

= - n 1 ~ 3  -rT ~ =(D.18d)

21 I3JL (i

r ""22- C13 3 ~13 3 1 = 22(.1

11%7 1~1 2 (D.18f)

313

33

= "23 - 1372 ) ='32 D11

32

3733 1123 1121 '32.8i

17

121= 1 = ij ~ Tr (_7 Z) (0.19)

'3 7
3 

'

143

7L



The compact form of Equations (D.18) is

3  (D.20)
ij J .

Substitution of Equations (D.15), (D.16), and (D.20) into Equation (D.14)

yields 
--

di d dx E- i 9i -+ lg) + V .1 (D.21)al a 1  2 al 1 1.j 3 .

Since Z has the same principal axes as does _, it follows from

Equation (D.21) that dEp also has the same principal axes as does .

This condition is a consequence of the assumption of material isotropy,

and not an independent assumption. "

A convenient assumption concerning the dependence of the yield

function, f, in Equation (D.5) on plastic strain is that f is a function

of stress, 7ij, and plastic work, Wp, where plastic work is in turn a

function of plastic strain [Malvern (196q:367)1.

f(.ij' ) = frij, WP(Pj). (D.22)

The plastic work increment in Equation (D.8) can he written in the form

dWp  
- dEip  : 0 dcrP (D.23)a i . J id -"

so that

: ij (D.24)

'ia-
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II. . ...

Substitution of Equation (D.21) into Equation (D.23) yields

dWP = o. .dj? dX {-i Tr(k) + -2 Fr( 2) 1 i 3  1. Tr

ij ij - +" .1 ' -

-dx I~ + 2 1~~ 12 + 3 1 3j] hdx (0.25)

I .where -

'2 g I + 3 ag1 (0.26)
311 3122 77

The above expression for h agrees with Euler's theorem, since the 4

invariants I1, 12, and 13 are homogeneous functions of degree 1, 2,

and 3, respectively LSokolnikoff and Redheffer (1966:325)].

* Equation (D.13), which assumes the plastic potential function depends

explicitly on the total stress invariants, I1, 12, and 13, gives

reasonably good results for stress or strain paths involving mainly

- 3 volumetric compression. However, shear strength data, plotted in the

octahedral plane as described in Appendix C, suggest that a plastic

potential function for stress or strain paths involving significant shear

deformation is better assumed to depend explicitly on the first total

stress invariant, I, and the second and third deviator stress

invariants, J2, and J3, so that

g(l,J2,J 3 (D.27) .. 

Equation (D.6) then yields

F3a a as a
d = d a 9 dA + I  2k + d3 aSkl

aj a ij L' ij z aska ij ad3 as kl aj iij

(0.28)
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where

-- =6 (D.15)

and by analogy with Equations (D.16) and (D.2u)

2
Sk l - kl (D .29 )

3j

as l S kl (D.30)

and since Equation (A.34) can be written in the form

Ikl 0k1 1 (0.31)

we have

k 1 1
S6 .6 (D.32) " . : :

+ S

kSk ik jl jijk

13a

Substitution of Equations (0.15), (0.29), (0.30), and (0.32) into ,

Equation (0.28) now yields...

dx 6 + + a (Si 1 (D.33)

ij ij + 3 ij' "
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The plastic work increment in Equations (D.8) or (D.23) is therefore

(dWp  : .d , . 6 .. + s.. dEP.)d i Ij I j 1 a)

= IL Tr(I) + _ Tr(s Tr(s

: dA + 2 g J + 3 ag J  hdx (D.34)
LiI a'2 2 a-3]

where
3 9 ag 3aJ +- (.5

- 1, 1 + aJ 2  e 3 3

Comparison of Equations (D.26) and (D.35) shows that

2 1- 1 + 3 2g 1 2g J2 + 3 1- J2 (D.36)31 2 3 13 =  2 2  aj3

Finally, the plastic work increment, dWP, can be expressed as the sum

of a volumetric term and a deviatoric or distortional term. This is done by

expressing the stress components, aij, and plastic strain increments,

d~j, as the sums of their volumetric and deviatoric components.

(kk (D37
.- ------ 6.. +5. (0.37) " '

ij i ij

me m d = 6dm + de. (D.38)
1 - 3 Ij j

The expression for the plastic work increment can now be written in the form

dWP = ijd pj : ij + si i +  de"

.kk dep  + dep. (D.39)

,3 mm ij 1j

The first term in Equation (D.39) is the volumetric plastic work incre- AA

ment; the second term is the deviatoric or distortional plastic work increment.
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APPENDIX E

VECTOR REPRESENTATION OF A GENERAL W
STRESS OR STRAIN STATE

Consider the two-dimensional rectangular Cartesian coordinate system

i (X,Y) shown in Figure (E.la). The X and Y axes define a two-dimensional .

vector space, and the line x = y is a one-dimensional vector subspace.

Point P in the one-dimensional subspace can be located by the single

coordinate s = 42 x.

In three dimensions a similar situation exists, as shown in

Figure (E.lb). The X,Y, and Z axes define a three-dimensional vector

space, and the plane x : y containing the Z axis is a two-dimensional

vector subspace. Point P in the two-dimensional subspace can be located

by the two coordinates (s F jx, z).

I Generalization of the above analysis for an n-dimensional vector -

space is straightforward. If an n-dimensional vector space is defined by

the coordinates xi i = 1,n), then the hyperplane xi = xj (i j j) is

an (n-1)-dimensional vector subspace. A point in that subspace can be

located by the coordinates

(x1, 2, .. Xiii , i ', X i .i+ .. Xj-1  Xj+1 ' . Xn) - "

Now consider a general stress tensor, or matrix,

"- 11 012 013 '-.

= ] 02 (E.1)
3 1 a32 a3
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which has nine components. The nine stress components can be used to

define a nine-dimensional vector space, in which the location of a point

is specified by a vector having nine components.

all

022

033

012

{o9} a23 (E.2)

0731

021
"~33 L _ .-

013

However, only six stress components in Equations (E.1) and (E.2) are

independent because the stress matrix is symmetric according to

Equation (A.20), i.e.,

o~i~ =(E.3)

so that

0-21 
= 12 ..(E.4a)

"32 = "23 (E.4b)

13 : 031 (E.4c)

Therefore, only the six-dimensional vector subspace defined by

Equations (E.4), of the nine-dimensional vector space defined by r
Equation (E.2) will ever be needed. Thus, a general stress sate can be

specified by the six-dimensional vector
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a2 022

= = (E.5)

F200

Note carefully that 01, 02, and 03 in Equation (E.5) are not

necessarily principal stresses, but simply the first three elements of the

column vector [GI1 which represent the normal stresses all, a 22' and a33 .

Expressions for the total and deviator stress invariants can be

developed using the notation of Equation (E.5). The total stress

invariants, 11, 12, and 131 are

I + ~2(E.6)
1 01 G2+ 03

12~0o 2300)+1 2 52 + 2) (E.7)

I+1 1 2 2 2(E8
I3 01 234***0405a6~ 7~ (10j5 G0206 03 G4) E

and if we set

{rn} (E.9)
0

(0

0

then the deviator stress vector can be written in the form
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1 .4

{sI = - m (E.1O)
3

so that the deviator stress invariants, J J and J are

J1 =lS + 2 + s3 =0 (E.i1)

1 26
94

2 +15 252 34

s l  s + s s + + s6 (E.1)
22

J3 =  SlSS +  1 sss6 (s s s ? s 2) (E.13)

The derivatives of the total stress invariants are

S = { . ::..(E.14)

[ 2m ( E .1 5 ) I I

(E.16)

where 7 1 J,

2 22
-'-''

-3 = 33 (E.17)

7 4 1.2 Z12

"31

The derivatives of the deviator stress vector are

[ s _I - 3 {m i n (E.18)
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and the derivatives of the deviator stress invariants are

{2 fs} (E.19)

3 (E.20)

as I,* is

where

Ss 3 3  (E.21)

S4 1
s '12

S6  31

* so that

[ 2 aS1 2{1(, )i} {)(.2

{a,21 [a-j [j'2l 3 Ii nlmT

[is -~ 3(3 I 1 {mT s =2s (E.23)
F 11 W-m {1 is

In a similar manner, a general strain state can be represented by a

six-dimensional column vector. The total strain vector is

E2 £2

f £E = £33 (E.24)

£4

6 31
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and the deviator strain vector is

{e f El - kk {rnT (E.195)

Stress and strain increment vectors can he defined in the same way

dy dc
2 2

'd, d "3  - d"33  (E .26)

5dc5 d

r76  /d 311

dE-, V..
dE de1

62 22

{d~ dc d 3 (E.27)
dE4 c3

dEs V2

d E6  d 3
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APPENDIX F

INCREMENTAL FLEXIBILITY MATRIX FOR
STRESS CONTROL

Consider a rate independent elastoplastic model having two

independent, strain hardening yield surfaces and two corresponding plastic

potential functions. Using nomenclature similar to Lade's, one yield

surface will be called the compressive yield surface and the other the

expansive yield surface. Four incremental deformation modes are possible

for such a model:

1. Both yield surfaces active, which implies both compressive (C)OL and expansive (P) yielding, plus elastic (E) response (the ECP

mode).

2. Only the compressive yield surface active, which implies
compressive yielding plus elastic response (the EC mode).

3. Only the expansive yield surface active, which implies expansive
yielding plus elastic response (the EP mode).

4. Only elastic response (the E mode). -

For such a model a plastic strain increment has two components: r

compressive and expansive.

d? = de c + dePi (F.1)

L 4

Thus, a total strain increment is the sum of three components:

elastic, compressive plastic, and expansive plastic.

d dEie + dP = d e  + d--" +Fiiji + diij + dij

The compressive and expansive plastic work functions are

Wc f j cc(F.3) ~
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W= f Mde7 (F. 4)

Both the compressive and expansive yield criteria are assumed to have

a particularly simple form, based on that of EquAtion (0.22).

compressive: fc = (f ) f j (WC) =0 (F.5)

Sexpansive: f = f' f'' (W ) =0 (F.6)

Whien the ECP node is active, the two consistency Equations (0.7) are

df = dcr-~ dWc 0 (F.7)

fafI)T df''
df ~ = , 7 dW =0 (F.8)

PdW p
p

Now Equation (0.25) yields

dklc h d (F.9)

dW h dx (F.10)
p p p

wh~ere

h = ;Tfgc (F.11)

T [ag h = (F.12) 7I

When the compressive and expansive plastic potential functions are

Cornvex, hc and h~ will both be positive, so that dxc and dxA must

both he positive for dWc and dW~ to both be positive. Substitution of
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Equation (F.9) into Equation (F.7), and Equation (F.10) into

Equiation (F.8) yields

=f Idol hcdx c  0 (F.13) - - '
c dW ac c ; d

T
C°

[3f']Tdf'
df p =- d - hpdp = 0 (F.14)

dW p p

Equations (F.13) and (F.14) can be written together in the form

-dft = FT {du - I {dA) = {0) (F.15)

whe re

F (F.16)

Ch c  0

~WC
df = (F.17)

0 h

{dJ = ' 33 (E.26)"-'--
L

&{d7 3 (F.18) . -"

k~

- o
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The solution of Equation (F.15) is

{d, -Dj T (F. 19)

Provided dxand dX are both positive, so that aW~ and dW are both
cp Cp

positive, the total strain increment is, according to Equation (F.1)

! . dc = dE} + fdE1F (F. 20)

Njow the elastic strain increment is related to the stress increment

by the equation

e e
{dE} H Hfd,' (F.21)

vwhere

7He elastic incremental flexibility matrix, defined by

Equation (J.23)

and the plastic strain increment is given by the flow rule,

Equation (0.6), as

( dPI G {dx} (F. 22)

* where

07

Substitution of Equations (F.21) and (F.22) into Equation (F.20) yields

{dE} =He {do} + G {dX}
e T

=He {da} + G rD -1 F {do}

SHe + GT -1 FT {d.}

=H 'P {do} (F. 24)
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where the elastoplastic incremental flexibility matrix, Hep, is given hy

the expression

Hep He + G (F.25)

Now Equations (F.13) and (F.14) are uncoupled when {dal is known, so that

3f, T

d ,c D3 (F.26)

11

T

d D (F.27)
PD~22.•

which is the same result obtained hy expanding Equation (F.19).

Equation (F.25) can thus be written in the form

HeJH{ a ,T T

HDI - - + _P (F.28)D 1- D22 a!::j

When the EC mode is active, dx is set equal to zero and dxc is

p .

calculated by Equation (F.26), as before. When that result is positive the

elastoplastic incremental flexibility matrix is obtained by deleting the i

expansive term from Equation (F.28), which yields

1T
Hep He-+1 c] C (F.2 f)

When the EP node is active, dxc is set equal to zero and dxp is

calculated by Equation (F.27) as before. When that result is positive the

elastuplastic incremental flexibility matrix is obtained by deleting the

compressive term from Equation (F.28), which yields

-160
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-.- H Te 1- (F.30)022L
Whnthe E mode is active, both dx and dx are set equal to zero,c p

iiand the elastic increnental flexibility matrix is obtained by deleting both

the compressive and expansive terms from Equation (F.28), which yieldszi

He HP = H (F.31)

The logic for deciding which incremental deformation mode is active,

under stress control, is discussed in Appendix H.

I
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STRAIN C-NTRO

The ateial n tis pperix uils onthedeveopmnt n Apendx F

WhentheECPmodeis ctie, he cnsiteny euatins or tw

in he mteral int thistappendixabuildsronethe development in Appaedi f.

yil ufc oe aetefr fEquation (F.21 w).it

fdfa C FTe o} {d d} e,{O (G.15)

where

cc elastic incremental stiffness matrix, defined by

Equation (J.32).

In addition, we write Equation (F.20) in the form

{dr e2 =dEl - fdEPI (G.2)

ana again use the flow rule to obtain an expression for the plastic strain

increment. 4

-d~ G {dA) (F. 22)

Substi tuti on of Equations (G.1), (G.2), arid (F.22) into

Equation (F.15) yields

{df) F FCe {{dF- ~G fdxj - Dj {d,) {O) (G.3)

or (FTCeG + Dj)(d)~ F FTC {dE} (G.4)
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Solving Equation (G.4) for (dx} yields

T e T e
{dx} (F C G + rDl)F F C {dEj (G.5)

Provided dx and dx are both positive, we substitute
C p

Equations (G.2), (F.22) and (G.5) into Equation (G.1) to obtain an

expression for the stress increment, {do , in terms of the prescribed

total strain increment, fdcl.

=CC~ -f~ G (F CeG + rT-D. FTCC de]

=[C e C eG (FT C + FlDJ) F TCe]{dTl

- p fC d E (G.6)

where the elastoplastic incremental stiffness matrix for the ECP mode is

dThfined by the expression

CCp - e e CCeC- (FTr G + rD - FTCe (G.7)

The fact that HeP as defined by Equation (F.25) and Cep sp-

defined !y Equation (G.7) are the inverse of one another can be proven by

show..ing that

H eC~P-ep e H = (G.8)

In verifying Equation (6.8) use is made of the fact that

Hfe = Ce H I (J.31)

When the EC mode is active, dx is set equal to zero so that

Equation (G.3) reduces to

df~ Ce - U - dAk D dA x 0 (G.9)
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or

fi + dxT C (G. 10)
af .I "

Solving Equation (G.10) for dxc yields

af Ce

dxc - f T (G.11) .;

C'5;- c + D1 " ""

Provided dxc is positive, we suhstitute Equations (G.2), (F.22),

and (G.11) into Equation (G.1) to obtain an expression for the stress

increment, {d , in terms of the prescribed total strain increment, {dE}.

d')K = Ced} = c e dE d.

~ fag~fa I~ Te{E

30 ,% .% ",

e fc Ce &-D
ret 3 Cy a7

-T -o - T

ep  d} (G.12)

where the elastoplastic incremental stiffness matrix for the EC mode is a

defined by the expression" .>.-

Ce  agc afcl TC e . -'''-,...

T(G.13) - - -
.afc T e [agct 1':

aT- IN -+. D1l""1::
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The fact that HeP as defined hy Equation (F.21) and Ce p as

defined by Equation (G.13) a,'e the inverse of one another can be proven by

showing that

HePC ep = cePHep I (G.8)

again using Equation (J.31).

When the EP mode is active, dAc is set equal to zero so that

Equation (G.3) reduces to

-- ~ T FfaIgl 1....

df= {± C e d j D 2 2 dxp 0 (G.14)

T -.

.:. ~or -- "

= Ce {dE} (G.15)
22+ D2 d """ C{ °"

Solving Equation (G.15) for dx- yields

Ce {d}-

d), (G.16)

-e + D22 . .

Provided dx is positive, we substitute Equations (G.2), (F.22),
p

and G16) into Equation (G.1) to obtain an expression for the stress

increment,{dK,7 in terms of the prescribed total strain increment, {del}.

-.d, Ce { e }
e Ce  d - o dx .-d

I

,- : j ...

-..-..*..

T 11I

U3 +a D22
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= C 'i-P idE (G.17)

where the elastoplastic incremental stiffness matrix for the EP mode is

defined by the expression

fag Caf' T
Ce -p Pk Ce

CT e [P +

ra 'j C -aj 2

The fact that Hep as defined by Equation (F.30) and Cep as

defined by Equation (G.18) are the inverse of one another can be proven by

showing that

HepCep -CePHeP I (G.8)

again, using Equation (J.31).

When the E mode is active, both dx and dx are set equal to 'c p

zero, so that Equation (G.2) reduces to

Ld& e f dcr (G.19)

and therefore Equaition (0.1) takes the form

{dry edEj rPdE) (G.20)

where the elastoplastic incremental stiffness matrix for the E mode is

simply the elastic incremental stiffness matrix.

Ce Ce (G.21)
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The logic for deciding which incremental deformation mode is active,

under strain control, is discussed in Appendix I.

irl
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APPENDIX H

INCREMENTAL DEFORMATION MODE LOGIC FOR STRESS CONTROL

The material in this appendix builds on the development in Appendix F.

Equations (F.26) and (F.27) can be written in the form - .

df'
dx (H.1)

df'
= p (H.2)

p 22

where

f T,. .- - ,

df T { do (H.3)

df'p : f-RdJ (H.4)

When D1I is positive, implying strain hardening behavior of the

compressive yield surface, dfc must be positive for dxc to be

positive. The sane argument applies to 02D df, and dx
, P-,:..

Therefore, in view of Equations (F.9), (F.1O), (F.11), and (F.12), and the

dissipation condition as stated in Equation (0.8), the incremental -

deformation mode logic for a strain hardening material under stress

control is as shown in Table (H.1).

When both the compressive and expansive yield criteria are satisfied,

i.e., when the stress point lies at the intersection of the compressive

and expansive yield surfaces (the corner conditions f f 0) the above

incremental deformation mode logic can also be represented graphically, as

168
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shown in Figure (H.1). The figure is drawn in -he plane of principal

stress space containing the yield surface gradient vectors Vf' and Vf'

• because Equations (H.1), (H.2), (H.3), and (H.4) show that the quantities

dx and dx are proportional to the dot products of do with Vf' and if',
c p c

respectively. It follows that dx and dx are determined by the component
c p

of do in the plane containing vfc' and Vfp. Thus if we set 4

[ f (H.5)

then n will be a unit vector perpendicular to the plane containing Vf' and

vf'. And if we set

do do - (do , n (H.6)

then d w will be the component of -do in the plane containing Vf' and

Vf'. It is -d* which determines dxc and dxp for the corner condition,

as shown in Figure (H.1). The component of do normal to the plane

containing if' and Vf', i.e., (. n)n, causes only elastic deformation.cp
SI The equations of Appendix F can now be generalized for the corner

condition by using the ramp function, R(x), defined in Figure (H.2) as

R(x) = f(z) dz dy = x (x > 0) (H.7)

00 00=0 (x < 0)

" so that one incremental flexibility equation yields the total strain

increment for any stress increment at the corner. The generalization of

Equation (F.24) is

169
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H {d} + Rfdf') + p R (df') (H.8)
D D

Equation (H.8) applies for all four incremental deformation modes at

the corner.

Negative values of D1 1 or D2 2, implying strain softening, result

in lack of uniqueness under stress control. For example, if D2 2 is

negative a stress change for which df is negative can be caused
p

either by expansive yielding or elastic unloading, and there is no way to

distinguish between the two under stress control.

A computational problem which needs to be addressed is how to avoid

violation of a yield surface which is inactive at the start of a stress

increment. If the stress point lies beneath a yield surface at the start

of a stress increment, what assurance is there that the stress increment

will not be so large (or the distance to the inactive yield surface so

small) that the stress increment "punches through" the inactive yield

surface The answer is "none" unless a restriction on the magnitude of

the stress increment vector is established to prevent yield surface

violation in the EC, EP, and E modes. When the compressive yield surface

is inactive, the restriction on {dal is

faf'- T
df' f Ti < f" ff (H.9)''--. --.
c = -c c c 'H"

and when the expansive yield surface is inactive, the restriction on {dol is

df' = dj} < f - f' fp (H.10)

Tf f0.1.. '.

170 ' """

.. . . .. .- .-. .. .-- .. -.. . - '.-.,

.. . . . .... ..-... ....-.- ... .-. . ..-.-... ..-.-... . . -'. . -... . . ..4.. . . . ,-,. -., -.. ,- " ."- -"-. .-.. -.- . - - ,



a

Table (H.2) shows that for each combination of initial conditions and

incremental deformation mode a distinct set of four conditions must be

satisfied to ensure positive energy dissipation and prevent yield surface

violation. Each set is a subset of the following four general conditions:
*' ""dfc < "fc (H.11) :['

Mu I
dff < f (H.12)
p- p

dxc > 0 (H.13)

dx > 0 (H.14)

Expressions (H.11) and (H.12) ensure that fc and f arec p

* nonpositive, and Expressions (H.13) and (H.14) require that dx and dxc p
be nonnegative.

The restrictions on the magnitude of the stress increment vector

defined by Equations (H.9) and (H.10) are implemented as follows. Assume

- the expansive yield surface to be inactive and the compressive yield

surface active at the start of a stress increment, i.e., fc 0 and
cr

I fp < 0. Then if the ratio

df'
(H.15)

p p

exceeds 1.0, the expansive yield surface will be violated unless the stress

increment is reduced. This is done by splitting the stress increment into

two parts hy setting

fdqT = {dqy I + d,! (H.16)
1 2

where
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[da [do1 (H. 17)

p -

[da 1 - {do (H.18)

The stress subincrement {du)l, is just sufficient to bring the

stress point into contact with the expansive yield surface. The remaining

stress subincrement, {do}2 is then applied assuming the expansive yield

surface to be active (ECP or EP mode).

A similar procedure is used when the compressive yield surface is

inactive and the expansive yield surface active at the start of a stress

increment, i.e., f < 0 and f 0, using the ratioc p
dfc  . ,-..

cc (H.19).. •-

When both yield surfaces are inactive at the start of a stress (H.19)
V|

increment, i.e., f < 0 and fp < 0, compute both C and p Unless

both ratios are less than 1.0, set

{do} = {dO}, + do )2  (H.16) T

where

} {do} ( 2

{do} 2 = (1- ){do} (H.21)

: larger of and C (H.22)

The stress subincrement {do}, will bring the stress point into " .

contact with one yield surface, at which point one of the first two tests .
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must he applied to see whether {da' 2 should be split to avoid violation

of the other yield surface.

W When both to and are greater than 1.0, e.g., when
p

- >  > 1.0, we could set

'd, fda}- - . - ,

c 'p p

and apply each stress subincrenent in succession without recomputing the

initial conditions at the start of the second and third stress

- suhincrements. However, this is not recommended because it is numerically .4

less accurate than recomputing a new set of initial conditions at the start

of each new stress increment.

17,-N.
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TABLE H.1.

INCREMENTAL DEFORMATION NODE LOGIC FOR A
STRAIN HARDENING, TWO YIELD SURFACE ELASTOPLASTIC

MODEL UNDER STRESS CONTROL

0>0

> 0 ECP EC
=0 dfc _________

< 0

E P E
< 0
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TABLE H.2

RESTRICTIONS IMPOSED FOR EACH INITIAL CONDITION

IZ iAND INCREMENTAL DEFORMATION MODE

{-Initial
Conditions Incremental Deformation Mode

f f ECP EC EP E
I p

0 0 fc = 0 df = 0 dfc < 0 df < 0
C C

dfp = 0 dfp < 0 dfp 0 dfp < 0

GA > 0 dx > 0 dxc =0 dx = 0
c ~ C

dx > 0 dx =0 dx > 0 dAx = 0
p p p

0 < 0 n/a dfc =0 n/a df, < 0

lb df< -f df -f

dx > 0 dxc = 0

dx = 0 dx =0
p p

< 0 0 n/a n/a df < -f df < -f

df 0 dfp< 0
p

dx =0 dxc =0

d), > 0 dx 0
p

<0 <0 n/a n/a n/a dfc -fc

df<p -fp
p- p

d1c7= 0 . *.* '8

. -:-d .- 0
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EI
.4

dq

Figure H.1. Incremental deformation mode logic for a strain
hardening, two yield surface elastoplastic model
under stress control , at the corner.
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R(x)

x x

R(x) f ff(z) dzdy x (x>O0)

=0 (X <0)

Figure H.2. The ramp function.
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APPENDIX I

INCREMENTAL DEFORMATION MODE LOGIC FOR STRAIN CONTROL

The incremental deformation mode logic for a strain hardening, two

yield surface elastoplastic model under stress control, as presented in

Appendix H, is simple because the two yield criteria are defined in stress

space. For the corner condition, the incremental deformation mode is

determinded by the component of d in the plane containing Vf and vf .

All stress increment vectors are possible, and each stress increment

vector leads to one and only one strain increment vector, as indicated by

Equation (H.8).

H dI R (df'c )  + IR (df') ( )- ---.
{dE} He -977 3 a c (H.8)

D 2 2

However, it remains to be seen whether there are some strain increment

vectors not produced by any stress increment vector, or whether two - -

different stress increment vectors can produce the same strain increment, "

vector.

The situation under strain control is more complicated than that

under stress control, because each incremental deformation mode has a

different incremental stiffness matrix. However, the conditions listed in

Table (H.2) also apply under strain control, and what must be done is to

express those conditions in terms of a prescribed strain increment rather " ! t2'-"7

than a prescribed stress increment.

The conditions dfc = 0 and dfp 0, when they apply, are taken .

care of by the consistency conditions, Equations (F.7) and (F.8). The .
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conditions dxc = 0 and dp 0, when they apply, are taken care of
p

arbitrarily. It is the conditions d c > 0, dxp > 0, dfc < -fc

and df < -f which require further discussion.
S."p

First, consider the corner conditions f = f = 0. For the ECP
moec p

.mode Equation (G.5) can be written in the form

{dx} L- I {dfe} (1.1)

where

L I =}L 1[ 1 { = FTCeG + FD.

2- I 22

[L11 +01 [f' T 1L 21L
af Taf Te ['gc a ""-:T:e:f-

= a I(o - La J -- o) -(1.2)-
I C D - C 02',1 ,, 1/ - T e Pagcl - Tce fagl +D.:-

N, ua<ja- 1 2

" 11 and D22 are defined by Equations (F.11), (F.12), and (F.17), and

the elastic trial matrix, {dfe}, is defined as

* ce

e{df : FTce {dE} (1.3)
d(f' "'" ".. (. ~pe) :.::

The two columns of the vertically partitionedL matrix in

Equation (1.2) can each be interpreted as a two component vector, and can

be represented graphically in the plane containing both of them (the

L plane), as shown in Figure (1.1). The lengths of the column vectors,

L, andL are

2 2.(1.4)
Li = L 1 1  L 2 1 (.4)
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2 2
L L + L,(

I
21_2 2

and the acute or obtuse angle between them can be found by computing their .

cross product,

L L L 2  (L L L L)

L1 xL 2  2 21  L22 1 22 21 12)j3

e. 0 0

SLe 3  L1L2 sin 0 e3  (1.6)

where

LI LI2:.-.
L11  L12

L= 11L 2 2 - L2 1 L1 2  L =(I7) -
L21 L22 : ":::

Therefore, if L > 0 the acute or obtuse angle fromL 1 to L2 is

nonzero and counterclockwise.

Now, consider the inverse of L, which appears in Equation (I.1), and

set 1 "

1F 1 1
L __ __

.%[121 22 [Li

L22 12 -
--I I(1.8)"

L2 1  L ll

The relation between the row vectors of the horizontally partitioned .;

* 'M matrix and the column vectors of the vertically partitioned L matrix is
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shown in Figure (1.2). In order for IN to be the inverse of L, it must he

that

14 L -1 (1.9)

H 0 (1.10)

= 1 (1.12)

which dictates the slopes of the vectors M, and -'2 in Figure (1.2), as

well as their lengths

r 1 L 2 2 L2 L2 (1.13)

1 22 12

fl2  .' L 1 +L 11  (1.14)

*Equation (I.1) can now be expanded to yield

d.N - ij~ *f' > 0 1.5

d~ - .df >0(1.16)
p 2 je

-Equations (1.15) and (1.16) will be satisfied if and only if the

vector df e lies hetween the vectors L, and L2 in Figure (1.2).

That zone is labelled ECP in Figure (1.3).

When dfe is parallel to L1, Equation (1.16) gives
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Also, in that case

df' df'
e ce (.8

so that

-c df' -

dx -M T c (1.19)c 1 e 1 L 1

Similarly, when df-; is parallel to L2, we have

dx 0 (1.20)

df' df'
(1.21) -

L L2

df'
*d), -1 -dT=-P = (1.22)

p 2 e L22

For the EC mode Equation (G.11) can be written in the form

d ce
dx= >1 >0 (.9

which is the same as the expression obtained when df e is parallel to

L in the ECP mode. When L1> 0, Equation (1.19) requires that1k

d f' > 0 (1.23)

In addition, when dx =0, Equations (H.4), (G.1), (G.2), and
p

(F.22) yield

d f = f.j T =T ~e {{ j- -a}c J
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=df' L dx
pe 21 c

df'
pe 211T~O(.4

When L11 > 0, Equation (1.24) yields

L1  df% L1  df~ - L 1 dfc M f 0(.5

The zone of the L plane in which both Equations (1.13) and (12)are 1
satisfied is the EC zone in Figure (1.3).

For the EP mode, Equation (G.16) can be written in the form

df'

dx~ p = > 0 (1.22)

which is the same as the expression obtained when df i aallt
e i aallt

L in the ECP mode. When L2  > 0, Equation (1.22) requires that

df' ) o(1.26)

In addition, when dx c 0, Equations (H.3), (G.1), (G.2), and (F.22)

yield

faf'j T faf) T g

df' [-C C e [I{d } g Ce -

=df' L dx_

ce 12 p

=df' -di < 0 (1.27)
C ce C22 pe-

*When L22) > 0, Equation (1.27) yields -

L22 d1  L22 dfce - 12 df'e= 1 (.8
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The zone of the L plane in which both Equations (1.26) and (1.28) are

satisfied is the EP zone in Figure (1.3).

For the E mode,

{dA) = = {0} (1.29)

so that Equations (H.3), (H.4), (G.1), (G.2), and (F.22) yield

df' {f' dil -SCT Ce {d, df' < (1.30)fac - -= J - c e -"- -

and

f, fl T faf'2  T e
df p J {d = _ Ce {dE} = df'< 0 (1.31)

The zone of the L plane in which both Equations (1.30) and (1.31) are

satisfied is the E zone in Figure (1.3). '

Figure (1.3), which is called a polar mode check, shows both the

vectors L1 and L in the first quadrant, with a counterclockwise acute

angle between L, and L2 . However, there are other possibilities. If

we assume the compressive yield surface to be always strain hardening so

that L1l > 0, but admit the possibility of strain softening for the

expansive yield surface so that L22 might be negative, then there are

twelve possible relative angular positions for L, and L2. Because

L1l > 0, L1 must lie in the first or fourth quadrant. But L2 can

lie in any quadrant, and when L2 lies in the quadrant opposite (i.e.,

not adjacent to) the quadrant containing L1 the obtuse angle between

L and L2 can be either counterclockwise or clockwise. The twelve

relative angular possibilities for L, and L2, together with their
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impact on both uniqueness and completeness of the incremental deformation

mode solution are tabulated below:

*QUADRANT ANGLE
CASE L2  LI to L2  UNIQUE COMPLETE

1 1 2 CCW Yes Yes
2 1 1 CCW Yes Yes
3 1 1 CW Yes No

K 4 1 4 CW No No
5 1 3 CW No No
6 1 3 CCW No Yes
7 4 2 CCW Yes Yes
8 4 1 CCW Yes Yes
9 4 4 CCW No No

10 4 4 CW No No
11 4 3 CW No No
12 4 2 CW No Yes

In the above table a unique solution is one having no overlap between

incremental deformation mode zones, and a complete solution is one for

which no angular zones are prohibited. It turns out that the only cases

for which the incremental deformation mode solution is both unique and

complete are those for which

L > 0 (1.32)

L > 0(1.33),22>oU ;

L L1 IL 22  L12L21 > 0 (1.34)

Now consider the case in which the stress point lies on the

compressive yield surface but below the expansive yield surface, so that

Sfc = 0 hut fp < 0. Equation (1.19) still applies, so that

df," di~ce ..
d c  > 0 (1.19)

135
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There is no danger of the stress point punching through the

compressive yield surface, because if dxc > 0 the consistency condition

. dfc = 0 prevents punch through; and if dc < 0 it is because

df ce < 0, so that the stress point stays on or pulls away from the

compressive yield surface. However, a restriction is needed to avoid

violation of the expansive yield surface. Equation (1.24) can be

generalized to give
LL

21
df' = df' L - R(df' ) (1.35)
p pe ce

Then if the ratio

df'
,= d p (1.36)

p

- exceeds 1.0, the expansive yield surface will be violated unless the

strain increment is reduced. This is done by splitting the strain

increment into two parts by setting

{dE}= {dE} 1 + {de} 2  (1.37)

"* where

I {ds} (1.38)

p

{dE}i = p {dE (1.39)

The strain subincrement {dE} I. is just sufficient to bring the L

stress point into contact with the expansive yield surface. The remaining .

strain subincrement, {dE}2, is then applied assuming the expansive yield

surface to be active (ECP or EP mode).
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A similar procedure is used when the compressive yield surface is

inactive and the expansive yield surface active at the start of a strain

increment, i.e., fc < 0 and f = 0, using Equation (1.22)

dfp
: '- =i df - > 0 Q 1 .2 2 ) " "

(222

a generalization of Equation (1.27),

df' d R(df (1.40)c ce 2 Rfdf)

and the ratio

df'

="c 
(1.41)

c

When both yield surfaces are inactive at the start of a strain

increment, i.e., fc < 0 and fp < 0, compute both

df'
ce (1.42)Cc  : T-f--( .2

* c

and

df'pe "-(1.43)
pp (

Unless both ratios are less than 1.0, set

{dE} = dE}l + {de} (1.44)

where

1r

1del {dE} (1.45)
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-dc) = (1 - {de} (1.46)
2

= larger of %c and Cp (1.47)

The strain subincrement {dJ) I will bring the stress point into

contact with one yield surface, at which point one of the first two tests

must be applied to see whether {d& 2 should be split to avoid violation

of the other yield surface.
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e 3  e 1  <e 2

L12  -

L2

e 2  L
P 21

e e1

Figure I.1. The partitioned column vectors L and L
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L4 2

L-

L 1 121

12

Figure 1.2. Relation between the row vectors of M and the
column vectors of L. %
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SFigure 1.3. Incremental deformation mode logic for a strain
hardening, two yield surface elastoplastic model
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APPENDIX J 4

ELASTIC STRESS-STRAIN EQUATIONS

The theory of linear elasticity assumes the stress vector {f} in

Equation (E.5) and the strain vector {E'; in Equation (E.24) are related 5y .

a set of linear equations of the form

:,.= H~t i (3.1) .
e4

where the elements of the elastic flexibility matrix, He, are constant.

First consider the work done when two successive stress increments,

d+"1 and fd 2 , are added to an existing stress, {1. The increment

of work must be independent of the order of application of the stress

increments, so that

dW = J 1Jd + (K + { J {dj - ,. I

17T dE 2 + ,I+ {d, 2] {d&<) (J.2).-" {dE 2 2 1 E 1)"- :::::

Equation (3.2) yields : 7

{dT T T
1 2 d y 2 {d1l: {dCl {dc} 2 (.3)

and from Equation (J.1) we have

dE He {d I  (J.4)

He {d }.5) 
J

*,- .. ,

Substitution of Equations (J.4) and (J.5) into Equation (J.3) yields
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do H i j f {dy 1 , f d" (J.6)
1- 1- 2

and Equation (J.6) will be satisfied if and only if the elastic

flexibility matrix, He, is symmetric, i.e.,

ej e

tIex t consider whiat happens when the positive direction of one of the

coordinate ixes, say X1, is reversed. Because the positive direction of

the corrpsponding particle displacement is also reverser], the two strain

elements

£4 AJ 12 ax l+~ ) P~l.8)

and

12 u u1) (J.9)

E 6= 31= r. ax+ ax3'

* change sign, hut the other four strain elements remain unchanged.

Similarly, the two stress elements (74 = v (12 and 06 = v 1 G31

I change sign, but the other four stress elements remain unchanged.

The only way for the above two conditions (symmetry and independence

of stress axis reversal) to be satisfied is for lie to be of the form

a b c OO 0

b d e 00 0

He _ c e f 0 0 0 (.0

0 0 00 hO0

LO0 0000 iJ
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In addition, if the material is isotropic, then the relationship

between each normal stress and the corresponding extensional strain, each -

and the corresponding shear strain must he the sane. Thus,

Equation (J.10) reduces to

a b h 0 o 0

b a b 0 0 0

He : b b a 0 0 0.(3.11)

0 0 0 g 0 0

0 0 0 0 g 0

-0 0 0 0 0 g .

With He defined by Equation (J.11), the first, second and fourth of

Equations (J.1) take the form

E = arl b 2  bc3  (J.12)

E2= bo 1 + a 2 + b(3  (J.13) 0

£4 = gn4  (J.14)

so that

El £2

I (a - b) (J.15)2 =2 ""'"'

If the X1 and X2 axes are now rotated until the shear strain, E4, and

the shear stress, o, reach a maximum, a Mohr circle analysis shows that

Equation (J.14) would take the form

g + (J.16)
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Substitution of Equations (J.14) and (3.15) into the left hand side

of Equation (3.16) yields

1a- b)2 (1?) g ( 1 2~ (.7

end Equation (3.17) will be satisfied if and only if

a -b g (3.18)

Therefore, if we set

a (3.19)

b(J.20) -

(J.21)

1 1then Equation (3.18) yields

1 1 v +
G E

or

E 2)'G (1 v) (3.22)

so that the final form, of Equation (3.11) is

I -V -V 0 0 0

-v 1 -V 0 0 0

He 1 -V -V 1 0 0 0(23
-0 0 0 1+v 0 0

0 0 0 0 1+v 0

0 0 0 0 0 I~v
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With He defined by Equation (J.23), the tensor stress-strain

equations represented by Equation (J.1) can be written in the form

Eij [(I + )0ij kk 6ij (J.24)

so that the volumetric strain is

1 - 2v
£kk =kk 3.5

and therefore the deviator strains are

-kk 1 -2v kkeij =Eij - Oij 4 ( + Voi k~ ki] 76j" " :

ij~~ -'..k -iI

V kk 61 V S (J.26)

= (-ij - j- 6i) = j s (0.26)

Equations (J.25) and (J.26) can be inverted in the form

sE e. (J.27)

E E ~~(J.28) ZI""
Gkk = 2v 'kk (..-.)

so that

"kk 6 E (Ei -kk 6) + E £ki
+J : i 6ij =  6' i 'ij ji + 3(i - 2v) -kk j " "ii>'

= "13 +  i (J.29) -_- 'i.

which means that the elastic stiffness matrix, Ce in the equations

{f E: (J.30) ..-

where

Hece ce I (J.31) w "
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-p-

* is

1 TV 0 0 0
V 0

C e E ( I ) - v ) 0T1V 10 0 0 J .3 2 )=- 17 1 - 2 v ( . 2 ' . '
0 0 0 -F

0 0 0 0 0 0
l -2v"-1--.2v

0 0 0 0 1

Equation (J.31) can be written in terms of two quantities familar in

soil mechanics, viz.

E(1-V) = constrained modulus (J.33)r = (l+vl(l_2v) 
.,

KO  V coefficient of lateral stress at rest (J.34)

so that

1 K K 0 0 0
0 0

K 1 K0  0 0 0
00

SK
o  K o  1 0 0 0eCe  M~ 

(J.35).-.--

0 0 0 1-K 0 0
0

0 0 0 0 1-K0  0 A

0 0 0 0 0 I-K0

In an elastoplastic model, Equations (J.1) and (J.29) are written in

* incremental form.

{d~e} : He {do} (J.36)

{d } : Ce {dEe} (J.37)
197

. ... . . .. . . . . . . .

*"T. J. --.



- - - - ----- .,-

e e

The elastic incremental flexibility and stiffness matrixes, He and Ce,

are still written in the form of Equations (J.23), (J.31) or (J.35), but

the elastic constants may be assumed to vary with stress and/or strain.

II
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APPENDIX K

SPECIAL EQUATIONS FOR THE TRIAXIAL TEST

in the triaxial test the normal stresses are principal stresses, and

the lateral principal stresses are equal. Consequently, the stress matrix

and its matrix of cofactors reduces to

" r0 0 017

rL 0

7 r 0 7a 0
0 0

*R and the total stress invariants are

II = 7a + 27 r

12 = -r(27a + 7r.

2 .
13 a r

The deviator stress matrix and its matrix of cofactors are

_s~ = - ( K . 6 )- .

- "K '"2•i
(a 2 0 

(K.7)

"10 0 2 - '
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I-d~viato, stress invariants are

0 (K.8)

a r) K9
3

a r(K. 10)

+ ? /

r (K.11)

2 2 2 a r~2 (.2

a a 'rI (K.13)

1 3 (ra 7r-

______ _~'~r~ sg a ar (K .14)

j-- )s f axial symmetry, the orientation of the coordinate axes,

r ho~ I x 3 elastopolastic incremental stiffness matrix, Cep,

*-. hc prCrt,) y that

2? 33

21C (K.17)

2 3 32
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The 3 x 3 elastoplastic incremental flexibility matrix, HeP, has the

same properties.

12 For hydrostatic compression

;-a = r = OCT (K.19)'a r' "'OCTi,

E KK (K.20)

a r 3

and the 3 x 3 incremental stiffness matrix has the additional property that

ep ep ep L,-j

C Ce C3 (K.21)
11 ~22 33

ep p ep ep C ep Cep (K.22)
12 13 21 ?3 31 32

Therefore, the octahedral normal stress increment is

(CteP + 2 CepCll 1 1 ep

d du = C 2C P dd: ( 11 1 dEKK= B dEK (K.23)
OCT a 11 1 a3 KK

where the elastoplastic incremental bulk modulus for pure hydrostatic

compression, Bep, is

Ce + 2CeBeP 11 12 (K.24)
3

As long as the octahedral normal stress increases monotonically, the

- incremental deformation mode is the EC mode. Unloading and reloading are . ...

elastic.

For triaxial compression at constant cell pressure, starting from

isotropic consolidation, the ECP mode is active as long as (oa - Or)

is increasing. Since

do = 0 (K.25)
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the incremental flexibility equations take the form

- ~~led, a K2)

a 11 a Eep

-E H ep di dE e ~Pd, (K.27)
r 21 a H p a a .

where the elastoplastic incremental Young's modulus, E ep, is

Eep -I
E HeP (K.28)

H11

and the elastoplastic incremental Poisson's ratio, vep, is

H ep
~ep (K.29)

H 1

If the calculation is performed under axial strain control, then

Equation (K.26) is written in the form

d(- a pd (K.30)
a Hep a

1H

Trne ab)ove equations can be written in incremental stiffness form as

well, by setting

d7 CeP dE + 2CeP de (K.31)
a 11 a 12 r

d,7 =O=C dEa + (C +Cep)dE (K.32)-
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Equation (K.32) yields

d ~p CCP dE a Vep dea (K.33)
V22 23/

where

Ps ep
V ep= 21 (K.3d)

C ep + Cep
22 23

Suhstitution of Equation (K.33) into Equation (K.31) yieldsL

dr Cep -) ep Ce de EeP d,, (K.35)dTa (C11 12 a a

r ~ where

Cep cep

E ep C ep 12 21 (K. 36)

Conpari son of Equations (K.29) and (K.34), and (K.28) and (K.36) shows that

*ep H21 C 21 (.7
Hep Cep + CCp
H11 C22 C23

1e 2 p Cep
E ep 1 ~ CepP. 12 21 (K.38)

Hep -11 ep + ep
11 22 23

which is confi med by forming the inverse of the 2 x 2 matrix of

*coefficients of Equations (K.31) and (K.32).

For a general triaxial stress path test in which

da du (K.39)
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so that

d qa r 1r -a (K. 40) --

dp -daa + dor I + a

the incremental deformation mode is determined by the methods of

Appendix H, since

df ~={f {d,7J (K.41)

df ~ T {dri (K.42)

where

{d, d r3 (K.43)

The methods of Appendix H apply nio matter whether the calculations

are performed under axial stress or strain control, because the stress

path is prescribed by Equation (K.39).

The incremental flexibility equations take the form

dc= (He11 + 2. He12 da (K.44)

d(H [H 1eP dry (K.45)r 1 22 23 a

If the calculation is performed under axial strain control,

Equations (K.44) and (K.45) are written in the form K

a =a (K.46)
H P + ?. HeP11 12
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d-' "L21 p j 22 23,.d E d ea  = d e (K.47)
Hep + 2a Hp

where

Hep + a(H e H e)
S2= - (K.48)

Hep + 2 o HCP
11 1?

The corresponding incremental stiffness equations take the form

dr C ep d + 2C ep dE (K.49)
a 11 a 12 Er

d.= - doa =ep d a + (Cep + Cp) dE (K.50)
r a 21 a C22 23 r

Elimination of dqr between Equations (K.49) and (K.50) yields

d, CeP de + (ep CU) d
I r 21 a 22 23 r

= aCeP dE P 2 d (K.51)
11 a 12 r

so that

(Cep + ep _ Cep) dEr  (aC ep) dE-.

22 23 r 11 21 a

or

- /' ,,ep reP ""

r - ( 21 - ?dE aIIsd dc (K.52)
r rcep + cep 2 e  a a

22 23 '12)-
2
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whe re

Cep - a Cep

8 = 21 11(K. 53)
p + ep 2aC22 C23 - 12-[> .

Substitution of Equation (K.52) into Equation (K.40) yields

.4

d7 (Ce + 28 Cep) dE (K.54)
a 11 12 a

If the calculation is performed under axial stress control,

Equation (K.54) is written in the form

d,7

dc a(K.55)a Cep+2 ~a + 2s Cep " '
11 12

For constrained (one-dimensional) compression

dEr =0 (K.56)

A constrained compression test is a particular strain path test, so

that the incremental deformation mode is determined by the nethods of

Appendix I. The incremental stiffness equations take the form .A

d C Pd dE a (K.57)a a a"- -'

Cep
& ep C P 21 d KeP du (K.58) . _

r 21 Ca ep a o a
C11 '

where the incremental elastoplastic constrained modulus, Mep, is

ep (K.59)
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and the incremental elastoplastic coefficient of lateral stress, Kep, is

~ep
Kep - 21(K60

*0 C eP

For constant volume compressionj

a c +2de r 0 (K. 61)

so that

r= -- de (K.62)

A constant volune test is also a particular strain path test, so that the

incremental deformation mode is again determined by the methods of -

Appendix 1. The incremental stiffness equations take the form

d (eP CeP) dc (K.63)a 11 12 a

A!=[C~ep- 1. (Cep Cep) d K.4
7r 1 2 22 2 dca (.4

so that

d, a d,- (K.65)r a

* 'where

* Ce -. (C, - Cep)
(K.66)

Cep - ep
11 12

If the calculation is performed under axial stress control,

Equation (K.63) is written in the formn

aa

2n7



For a general triaxial strain path test in which

cit r 6 d a

1' the incremental deformation mode is determined by the m~ethods of Appendix I

The incremental stiffness equations take the form

dr 1 2 8 12 dE (K.69)

tha [Ce 8 (Cep cPj cit aE(.0

so ta

where

Cep
21 6 (Ce + Cep)

(K.72)
C ep -28 Cep
11 12

If the calculation is performed under axial stress control,

Equation (K.69) is written in the form

di E ~ 7 (K.73)
a Cep
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APPENDIX L

TRANSIENT RESPONSE OF A THREE ELEMENT
VISCOELSTIC M'ODEL

Consider the three element viscoelastic model shown in Figure (L.1).

The basic equations governing the model response are LBland (1960:3)].

F1  F2 = F (L.1)

x1  x 2 = x (L.2)

F1 =kl1x (L.3)

F2 =k 2 x2 + n2 dt (L.4)

Substitution of Equations (L.1), (L.2), and (L.3) into Equation (L.4)

yields
F d F

F k2 x - =11)+ rI2 (x

2 2x T 2I.or V

F kx - F + dx -2 dF

I I

or

F (k 2 dx k1 k2
d- + k2) F = k + 2 x (L.5)
dt d2 t 2/t n2 ..- -

Equation (L.5) can be written in the form

+ aF g(t) (L.6)
v. dt
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- - - - - - -- - - - - - -- - -

where

k k1 + k 2

a (L.7)

1dtn 2 j

Assuming that

x(0-) =F(G-) = 0 (L.§)

the solution to Equation (L.6) is

F(t) = (~e a(t.10)

0

Substitution of Equation ([.8) into Equation (L.10) yields

Ft =k 1  dx a(t-)d k 2 f ,-a(t-Y),ci(,]1F-t k e d- xY~

L~ 0  0

The second integral on the RHS of Equation (L.11) can be integrated

*by parts by setting .1

U X(y) ([.12)

dU =x -a [.3

dV - dat Y y(.4

I a(t-f) (.5

a
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so that

t t t1
-a(tY) 1y ( a(t-y) - x -a(t--

(xY)e dy )e- J e d] 1
0 0 0

1~ -t COx e-a(t-y) dy(L. 16)

arG substitution of Equation (L.16) irto Equation (L.11) yields

F(t) x(t) + - _ d2a -atyk k k k~a

Fkt 1 2 1 I2 X-a-at - y)) d" "2k 0

tF
Il1 + ,- ea v ~ -- dy (L.17) .-...

12~t-ye d
1 20

If the oisplacement, x(y), is a Heaviside step pulse, so that dX/dy

is a Dirac-delta function, i.e.

x(y) XH(y) (L.I )

Sdx = X (y) (L.19)

wh ere

X = constant (L.20)

H(y) 0 (y < 0)

1 (y = 0) "2"

=>1 (y>O)

f(y) = 0 (y 0 0) (L.22)
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f -) 6Y d -Y f( 0 ~ > 0) (L.2 3

then Equation (L.17) yields tile relaxation response

F ( t) k k
R Rt12 + 1 ,-at(L.24)

anc cifferentiation of Equation ([.23) yields

oR k~ak
2

(R = 'l -1 at 1 -at (.5

1 2 n

Equation (L.24) yields

R(C+) k (L.26)

R-) T k 2  k ;k2([.27)
1 2 +T

and Equation (L.25) yields

kL

R(O+) =-(L.28)

Referring to Figure ([.2) we define

t- P(O+) -R(() 1 T- 12 ([.29)
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so that thc pardricters k 1' 2' and n2 can be calculdtE-d from the cquaticns

ki = R(O+) (L.30)

2 R (+) (L.32

2 2 (0+)

rNcte that Figure (L.1) shows only one of two possible viscoclastic

r'ncels containing two springs and one (ashpot [Bland (1960:3)], ano that

2' ad is configuration

('epcndent anc therefore not unique.
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F(t) 4

k1 .
1+X1

11 + 12 + x(t)

22 12+x2(t)

. -

F(t)

N..

Figure L.I. Three element viscoelastic model.
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R(t)

R(O+)J

-R(O+)

.3 t*t

.Figure L.2. Relaxation response of a three element
viscoelastic model.
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APPENDIX M
4

YOUNG'S MODULUS FOR A HYPERBOLIC STRESS-STRAIN CURVE

The fact that a hyperbolic equation of the form

Y X (.. 1 ) 77
a + bx "-.

can be written in the linear form

= a + bx (N,.2)

y

has long been used to obtain an empirical formula for data originating at

the origin and rising with steadily decreasing slope to approach a

horizontal asymptote [Saxelby (1913:138); Running (1917:39,53)].

Southwell used the method in 1932 to determine the critical load of an

elastic column with initial curvature; Gregory used it in 1959 to study

structural stability; Kondner and Krizek used it in 1962 to fit a

hyperbola to footing load--settlement data; Kondner and Zelasko used it in

1963 and 1964 to fit a hyperbola to triaxial compression data for both

sand and clay; and Duncan and Chang used it in 1970, also to fit a

hyperbola to triaxial compression data for soil, as a means of obtaining a

general expression for the tangent Young's modulus to use in a finite

element computer code [Southwell (1932); Southwell (1936); Gregory (1959); .

Gregory (1960); Timoshenko and Gere (1961); Kondner and Krizek (1962);

Kondner (1963); Kondner and Zelasko (1963); Kondner and Zelasko (1964);

Duncan and Chang (1970)].
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For the case of cylindrical compression under constant confining

(radial) stress, the intermediate and minor principal stresses are equal

and constant, so that

.

Equation (J.23) therefore yields

GE - d(a I - G 3C)

v. he re

ET =tangent Young's modulus for a nonlinear stress-strain curve

a d , therefore

ET "I "3C) f5

Sr If the relation between principal stress difference and axial strain

is assumed to be of the hyperbolic form

"1 -
03 = a bE (M.6)

the it follows that

lim (0"3I E1  1 (M~.7)

E 0

and

d~l (°1 °3C (FI4) "

. lim - (M.8)
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Thus, the parameter a in Equation (M.6) is the reciprocal of the

initial slope of the stress-strain curve, and the parameter b is the

reciprocal of the upper asymptotic limit of the principal stress

difference. The parameters a and b are commonly estimated by plotting

El/(c I - 03C) against El and fitting a straight line to that plot,

as shown in Figure (M.1), because Equation (M.6) has the linear form

01 03C- a + bE1  
(.9)

Note, however, that the values of the parameters a and b obtained by

linear regression for Equation (11.9) are not the same as those obtained by

nonlinear regression for Equation (M.6), or even those obtained by linear

regression for the equation

1 -a I + b (M.10)

01 03C 

.. .

because the error functions to be minimized in each case are different.

Note also that if we set

Wit-(01 - ult a 01.11)

E. - S = E 1 n0 (M.11

then Equation (M.6) can be written in the form
" -E 

1

1 03 C) E 1 0 ( .12)
(01 - 3 )ul t - El

1 % ,
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Duncan and Chang used Janbu's empirical relation between Ei and

' i "3C [Janbu (1963)], which is

i 1iKp ( 3 (M.13)
a a)

where

pa= atmospheric pressure

and K and n are dimensionless constants often obtained by fitting a

straight line to a plot of
E.

lo (E_) versus log 10 ('3C) because Equation (M.13) has the linear form' 9 1 0 .:- : .:

loglo = lOglo K + n loglo ("3C (N. 14)

Again note, however, that the values of the parameters K and n

- obtained by linear regression for Equation (M.14) are not the same as

those obtained by nonlinear regression for Equation (M.13).

Duncan and Chang also used the Mohr-Coulomb failure criterion to

relate measured strength, (a 1 3C) f , to cell pressure, 73C, as shown in

Figure (M.2).

-3C1 2(c cos + 3C sin ) (M.15)
03C- f = 1 - sin "

They found that the measured strength, (01 - a3C)f' fell below the

fitted asymptotic strength, (GI - 3C)ult, by a factor Rf, so that

(01 - 3Cf : Rf (0j -3C)ult =-Rf (0.75 < Rf < 1.00) (M.16)
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However, the above observation is not consistent with much of

Kondrer's published data, and may be affected by the hyperbolic curvc 4

fitting procedure used.

To obtain an expression for ET as a function of - we

writc Equation (1I.6) in the form

I -
. .C.

-00

1( i - 3C ult (I,17)

E1O 1 - (1 -1 3C1

- a3C)ul t

Differentiation of Equation (N.17) with respect to oI - C then

yields

d1l 1 1 (3C.18)

E- 3 = T E - -._. .
d( l ~~" '3) E)[ ° 3C2

so that

d(cld- 3C) = E E ( l 3C (M. 19)

dEjT('-0Cut

Substitution of Equations (M.13), (M.15), and (M.16) into Equation (M.19)

therefore yields

3C n Rf (1 sin)

ET Kp~ o~n f( ~f ~0 ~) (M. 20
T Pa 2 (c cos 0 +o3C sin

What Duncan and Chang did to obtain a general expression for ET for

finite element code use was assume that for any stress path, even when

03 is not constant, the relation between ET, 01, and 03 is that

obtained by replacing c3C in Equation (M.20) by 3, to obtain
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(j n Rf (1 -sin 2(co si OT(M 2
ET = KPa n - 2c cos + (Y3sin (M.21)

Equation (M.21) does not take full account of the stress path . -.

dependence of triaxial compressive strength for a ,ohr-Coulomb material,

as illustrated by Figure (M.3). If the current stress point is point B,

Equation (11.21) assumes the stress path to failure is BD, even though the

actual stress path may be ABC. The difference in cempressive strengths

for the two stress paths is considerable, although admittedly that .

cifference will decrease as the stress point approaches the failure line.

2I
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p .

v "'-221



1~ 3c

fitted curve

~1 3c ult =b

0)f - fE

10

I 3c

soC

Figure M.1. Linear determination of hyperbolic parameters. NO
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d c i

I -3 f +

2 3c 2

2(c cos , + sin

3c€

I 3c f 1I. sin-,

Figure M.2. Mohr-Coulomb strength equation for constant
minor principal effective stress.
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strength for a Mohr-Coulomb material.
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APPENDIX N

a A HYPERBOLIC EXPRESSION FOR POISSON'S RATIO .

In a triaxial compression test at constant cell pressure, a plot of

axial strain versus radial strain for stress levols well below the failure -.

level might appear as shown in Figure (N.1) [cf Desai and Abel

(1Q72:323)]. Such a plot suggests the possibility of a hyperbolic fit, of

the form L

EIEl -E- (N.I)

(E3

which means that

. ." -fC1  (N.2)c3  1 r d, 1 iIii

and therefore

E3f i__ _"

V (N.3)
I T  -d  ( 1 - 1l 2 -  ( 1 - d l) 2

where, from test data [Kulhawy, Duncan and Seed (1969)] found that

V f =G -F log,0 (73) (N.4)f: a- F 0 Pa) i; :

The parameter d is obtained as the slope of a plot of -E3/I

versus -cl, since Equation (N.1) has the linear form

-3 _ f + _ c (N.5)

Ci4 3
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The parameters F and G are obtained from a semilogarithmic plot of

vi versus loglo (03C/Pa).

Substitution of Equations (M.17), (M.13), (M.16), and (M.15) into

Equation (N.3) yields

G - F log10 (a(N6)

d0d - 03C )72

- (O1C)n Rf (1 - sin - 3C) 
KaL - 2 (c cos 0 + y3Csin 6)

The assumption that c3C can be replaced by 03 for an arbitrary

stress path leads to the expression

G - F log,, (- 
,

vT = ~ (N.7) 1
(1 - A) 2 (-.. "

where

A = - 0 (14.8) .-t.
1o3 n Rf(l sin W)aI 3

sin 1o -. 03
KPa (a) L 2  (c Cos + 03 sin n0-.. ,

Although Equation (N.1) implies an upper asymptotic limit on I" "

equal to li/d, there is obviously no reason why the axial strain in a

triaxial compression test should be limited, and it was not the authors'

intent that Equations (N.7) and (N.8) be used at stress levels approaching

failure rKulhawy (1984)]. More complete relations between EI and E3

for triaxial compression tests at constant cell pressure on a loose and a

dense sand would have the shapes shown in Figure (.2). Obviously,

neither curve is hyperbolic in the strain range approaching a constant

volume critical state, and the authors' intent was to use the hyperbolic

-22.6. |



fit only for the early upturning portions of these curves. Consequently,

when Equations (N.7) and (N.8) are used in a computer program to handle

problems involving possibly large strains, an arbitrary upper limit on

Vmay need to be established.

I
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UC

Figure N.I. Relation between major (axial) and minor
(radial) principal strains in the early
phase of a triaxial compression test at

* constant cell pressure. - L
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densea

L

£3

Figure N.2. More complete relation between major (axial) and minor
(radial) principal strains in a triaxial compression
test at constant cell pressure.
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APPENDIX 0 -

HYPERBOLIC MODEL FOR CYCLIC SIMPLE SHEAR

[Pyke (1979:721)] proposed a variation of the hyperbolic shear model .-.

for irregular cyclic loading, in which the simple shear stress-strain - .

curve, starting at the latest point of strain reversal, (cTc), is a

hyperbola with fixed initial slope, GMAX, and fixed upper and lower

asymptotes, T and -Ty, as shown in Figure (0.1). If dy > 0 after
y

reversal, hyperbola PQ applies, having the equation

T-T ~~ GIA('y - d 0 01
GMA X( - c

T T c (d y > 0 ) (0 .1 )- - --

1 + MA L -"

Ty C): -

and if dy < 0 after reversal, hyperbola PR applies, having the equation

GX (yc - Y)
T T vX (dy < 0) (0.2)

(yc - Y)  2
1~ (jy~c +--_.v

Equation (0.2) can be written in the form

T _T 1 MX(y Yd (dy < 0) (0.3)c 1 +  _y G A c)(y -yc 
-. ;

Sc)

which is identical to Equation (0.1) except for the sign of the T
y

term. Therefore, Equations (0.1) and (0.3) can be combined in the form;

GMA ( - - -f.-...
T T = (0.4)

c 1 x

y c,

23t
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* - -bM W•r{!.,-- - ..--

where

T * T sgn (dy) (0.5)

y y

Differentiation of Equation (0.4) yields the tangent shear modulus,

d(T- ) G MA X

C T y - TC/ C

The parameters Ty and GMA X can be obtained from a simple shear

test, in which the relation between T and y is assumed to be hyperbolic

(YC= TC= 0), so that Equation (0.1) reduces to

G 'Y
T = (0.7)1+ G MA X  . T

ty

A plot of T/y versus T should then follow the linear form

G (1 .8) )y MAX

Uy

1'. .

. .~..... * .
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Figure 0.1. Pyke hyperbolic shear model.

232

-.. * **..-



nY 
-

Iy

TI

-Yy

Fgr .. Lna loAoXeemnnghproi oe

1aaetr fo ylcsipeser

233



k- RL7-

APPENDIX P

YIELD SURFACE VIOLATION CORRECTION FOR AN
ELASTIC-PERFECTLY PLASTIC MODEL

An elastic-perfectly plastic model does not strain harden. Instead

the yield surface remains fixed, and so it is often called a failure

surface. The failure surface is concave with respect to the origin in

stress space, and its intersection with any octaheelral plane is a closed -

curve, with its center on the hydrostatic axis and having six-fold angular

symmetry. When the stress point lies inside the failure surface, i.e.,

when the shortest line from the stress point to the hydrostatic axis ooes .

not intersect the failure surface, the material responds entirely

elastically. Plastic strains occur only when the stress point lies on the

failure surface; and the stress point is prohibited from going beyond the

failure surface by a correction procedure which will now be explained.

Consider a failure surface having the equation

f (I1 , J 0 (P.1) ,

Its octahedral cross-section is a circle with its center on the

hydrostatic axis; and its intersection with any plane containing the

hydrostatic axis is a scaled plot of Equation (P.1), shown in -

Figure (P.1). Assume that a strain-controlled elastic trial calculation

starting from Point 1 in Figure (P.1) has moved the stress point to

Point 3, passing throLgh the failure surface at Point 2. The objective of

the corrcction procedure is to bring the stress point back to the failure

surface at constant total strain. This is done by using the consistency
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condition starting from Point 2, and a (pos,.ibly nonassociative) flow rule

to find that portion of the total strain increment which is: plastic,

normal to the plastic potential surface at Point 4, and just sufficient so

that the remaining elastic strain increment causes the stress increment to

terminate in the failure surface (at Point 5).

L The consistency condition without strain hardening reduces from .

Equation (D.7) to simply
3f].

df= =0 (P.2)

where

af [)'I=+- A] + af J2_ (P.3)

and

af f (P.4)

{-,1-- - = (E.14) "

'f ll (P .5)

a4j

I = {s} [cf Equation (E.22)] (P.6)

so that Equation (P.3) takes the form
S.1j

f f {m} fil {s} (P.7)
"~~ ~ J'2 

"°'- ,2". 2 3 5
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In addition, if the plastic potential functior, is of the same form as

the failure criterion, i.e.,

9 = g ( F1 J2) (P.8)

and if

2 9 (P.9)

9F2 gll (P.10)

the n

[-}= {m} + {s) (P.11)

24Ji

Now if, in Equations (J.27) and (J.28), we set

E
E =-rvT K (P.12)

E
= 2G (P.13)

where K and G are the elastic bulk and shear moduli, respectively, then

Equation (J.30) can be written in the form

C K m} {m}T + 2G I - . {i} {mi)

. K - {m {m}T + 2G I (P.14)

Then with a view toward evaluating Equation (G.16), Equations (P.7) and

(P.14) yield

1k-L
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T e = 3Kf I  {mT + U T (P.15)

so that Equations (P.11) and (P.15) yield

"f T C g 9Kfg + fll 91  (P.16)

Setting D,2 equal to zero because of the absence of strain hardening,

Equation (G.16) therefore yields

dd E f3

d, 9Kf g1  + Gf Ig 1 I _ 9Kf1g1  + GfiIgli (P.17)

Note that the elastic trial calculation is assumed to start from
Point 2, rather than Point 1. This is why the value of the yield .

function, f, at Point 3 (f3) is substituted for the differential dfE

in the runerator of the first form of Equation (P.17). It is f3 which " I

is needed, and that can be found from the equation3 1(F) "f3 f [( 11)3 (j7" 3] (P.18) .--'--"

i E where

(11)3 = (Ii)I + 3K { m}T {dE} (P.19)

= 1s I T (P.20)
S2) 3 Y fS 3 {5}3

{s3 =s + 2G (de} (P.21)

and

•de} l Ml{ {dc} (J.26)

23
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Having dA, the adjustments to I, and can be calculateG from

the equations

-c d - dA m{m;  g11  Is (P.22)

d-CKK - i{mT{dc p  3g dA,  (P.23)

P;= - {m {m ' { _ {s1 (P.24)
2

(d 3 dEKK
(11)p  -3K P - 9Kg dA (P.25)

(d {s - 20 {CeC-P =Gi dx (P.26)

2

and therefore the values of I1, 2 ant {s} at Point 5 in

Figure (P.1) are

(Ii)5 =(I )3 - 9Kg I  dx (P.27) .

,= , d, (P.28) L

53 ) (P.29)=s 4IJT {s}3

Note that the derivatives fl, fll' gl, and gll are evaluated

at Point 4 and not Point 5. Therefore, the values of 11 and F'"2

calculated by Equations (P.27) and (P.28) may still define a stress point

lying slightly outside the yield surface. Therefore, if

f > E > 0 (P.30)

where E is a specified tolerance, then repeat the correction procedure by

treating Point 5 as a new Point 3, and defining a new Point 4.
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Equation (G.18) can be used to evaluate the incremental stiffness

matrix for a point on the failure surface. Equations (P.11) and (P.14)

yield

. ce [2g1 G91"',-"- - 3Kg I  < + is" (P.31)

Substitution of Equations (P.I), (P.16) and (P.31) irto Equation (G.18)

yields

c e  f TC

Ce  J 2} {sII ~ 3Kfl{m} + --j2-H {s..L1._. .

T (P 32)---- f, . ..... 1

9Kfig I + Gfiigi.

.. . .

IFI
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1 3

Figure P.1. Correction procedure for elastic-perfectly
plastic failure surface violation.
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APPENDIX Q

I AFWL ENGINEERING MODEL INCREMENTAL PLASTIC RESPONSE

Figure (Q.1) shows the shear failure and plastic potential surfaces,

* ~ and hysteretic hydrostat which partially define a modified version of the

AFWL engineering model in use at Applied Research Associates. Each

segment of the failure surface has an equation of the form

f(( F-2 (a + hI) = 0 (0.1)

and the von Mises plastic potential function has the equation

g( 1142 J2 (Q.2)

so that Equations (P.4), (P.5), (P.9), and (P.10) yield

fl = -b (Q.3)

f = (Q.4)

gl 0 (Q.5)

g 1 1 (Q.6)

and, therefore, Equation (P.32) yields

CeP Ce

IS

- C - .~~l G {s-;fV.
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Substitution of Equation (P.14) into Equation (Q.7) yields

Cep (K ml rn1T + 2GI + 3Kb T G (Q.R)

Now the total strain increment can be written in the form

[d = 1 [m] m]T  [dj + [del(.9)

so that Equations (Q.8) and (Q.0) yield

-ePd = - 2G {m]d + m[]~

+ 2K Is}1m {T[dJ+ 2de. ."
[dj~~ K rT.E

G T[d.

4J2

+2 (de} [d j + K- T[de] (Q.10)

so that

dl : IT d d ] : 3K[ml]T[d E (Q.11)
[d + GT [dir de] ""

r 2 [sZ{d,] 3Kb2m]t [T [

3Kb mT{dE]  (Q.12)
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Comparison of Equations (Q.11) and (Q.12) shows that

~d =J b(dI 1)  (.3 ..

which means that if the stress increment starts in the failure surface it

ends in the same failure surface.

EL Notice that the last two terms on the RHS of Equation (Q.1O) for [d} 4

contribute nothing to either d11 or d#, They do, however,

contribute to dJ3, and represent components of a circular stress path

increment in the octahedral plane. The first term on the RHS of .

Equation (Q.1O) is an incremental vector pointing along the hydrostatic

axis. The second and fourth terms are incremental vectors pointing in the -.-
"

I

,. current radial direction, and the third term is an incremental vector .

which returns the stress point to the same circle on which the second

incremental vector terminates. The relation between these incremental

U vectors is shown in Figure (0.2).

2431

:i.'. :::: 243 .:::,



J2 -

von Mises limit

von Mises potential ,- '.-:-

Drucker-Prager portion

I1  ." ; .

T 1

a) Shear failure and plastic potential surfaces

b) hydrostat
1 /3

initial loading

unl oading/rel oading

v

Figure Q.1. Modified AFWL Engineering Model.
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Figure Q.2. Physical significance of terms 2, 3, and four
on the RHS of Equation (Q.10).
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APPENDIX R

DRAINED CAP MODEL AND COMPUTATIONAL ALGORITHM

The cap model is an isotropic, rate independent, elastoplastic model

with two yield surfaces. The shear yield surface does not strain harder,

and is called the shear failure surface. The cap yield surface both

hardens and softens in response to plastic volumetric strain. Both yield

surfaces are associative. Figure (R.1) shows the two cap model yield

surfaces, which intersect at the corner point, I, = k.

The shear failure surface has the equation

-F = f(lI1)  (1I1  > T) (R.1) .

= 0 (1, < T) (R.2)

where T is the tension cutoff, and

> 0 (R.3)

The cap yield surface has the equation

A[ : F(ll9k) (L < I, < X) (R.4)""-,-

2 = -. '

where

k k(EKK) (R.5) ,.-

Mr.I KKx = X( K,.
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dX0 (R.7)

K K

L =k (k > 0)(R8
=0 (k <0)j

F(X,k) 0 (R.9)

F(L,k) =f(k) (R.10)

aF > 0 (L < I, X) (R. 12)

When k < 0 a von fuses cap transition surface is defined by the equation

=F(0,k) =f(k) (k < I< 0) (R.13)

aand therefore when 11< 0, the yield criterion is the lesser of the

shear failure criterion and the von Mises transition, i.e.,

- Fe (11 k) min ff(I1  f(k)j (T < I <0) (R.14)

Within the yield surfaces the material is hypoelastic without

hysteresis, with incremental bulk and shear unloading/reloading moduli

defined by the equations

KS =K (11 ,k) (R.15) b

G =G( 7k) (R.16)

The particular cap model discussed here is that presented by Baladi

and Akers (1981), except that the shear failure criterion has the equation
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F2 f(1+aI1  C(1 e (R 17)~f(lI) = (Cs  l)+ (

The ellipsoidal, strain hardening cap yield surface has the equation

+1 (L < I1  X) (P.16)

so that

4ji7 F(I1 ,k) =f(k) 1 (I )

f(k) (X-)2 - IL) 2  1 (X-)2 - IL) 2  (P.19)
(X-L 11

where "

R X-L (R.20)T(T)

R is the ratio of the cap ellipse principal axes, but it is not obvious

which is the major and which the minor principal axis until the model

parameters have been determined. The relation between plastic volumetric

pp
strain, e- and peak hydrostatic effective stress, aOCT-

determined by hydrostatic unloading, is

PK = W - e-3D(GOCT - Gr (R.21)

where W and D are material constants, and C is the hydrostatic
r

component of the geostatic effective stress tensor. This relation is

shown in Figure (R.2). The relation between X, the value of I at which

the ellipsoidal cap meets the I axis, is patterned after -

- *-.'%

Equation (R.21). However, a mathematical device is inserted to prevent

further shrinking of the cap due to dilatancy on the shear failure surface 0- N ,'
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7 . 7

when the corner has shrunk to the axis. This means k cannot be

negative. T he relation between X and i K is constructed by defining
5, KK
an auxiliary plastic volumetric strain variable, z, for which P

dz = 0 (k < 0 and deP < 0)
-K } (R.22)

= dE K (otherwise) "

so that z will decrease due to dilatancy on the shear failure surface only

when k > 0. Then z is related to X by the equation

z =f dz =W -eD(- 3r (R.23)

Inversicn cf Equation (R.23) yields

X 3G In (R.24)

The parameters W and D in Equations (R.21), (R.23), and (R.24) can be

obtained from a drained isotropic compression test in which KK  ..

increases continuously so that EK and z are identical.

The relations betweer, X, k L, R, and z can be obtained by combining

5 the results of drained isotropic compression tests and drained triaxial

compression tests at constant cell pressure. For drained triaxial

" compression tests at constant cell pressure, Equations (K.3) and (K.9)

* yield .
I= a + 2O3C = (ol 03C) + 3 3C (R.25)

and

'.-" _i - _3C (R.26)
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I

so that

1  3 + (R.27) .

Figure (R.3) shows the hypothetical results of such a test.

Figure (R.3a) shows the loading stress path, with slope 1I3. When the

stress point is at P, the flow rule predicts the plastic strain increment,

TEP, will be normal to the cap surface passing through P, and therefore

dP K >0 at all points on the stress Dath until failure occurs at
KK>

Point S on the shear failure surface. Only then does dilatancy suddenly

occur, according to the theory of the cap model. Figure (R.3b) shows the

stress-strain response, assuming strain control. Failure occurs at Point S,

at which - 03C) is a maximum. From unloading data a curve showirg

the plastic volumetric strain, K corresponding to a given value of

I  3 on the loading stress-strain curve can be constructed, and from

that curve the plastic volumetric strain at failure, E f can be
KK,f'

found. The triaxial compressive strength, 1 - a3C)f, is the

ordinate at Point S on the stress-strain curve, so that Equations (R.25) and

(R.26) yield r' _

if--3C)f + 303C (R.28) -"i l f 1 ( ° 3C f ..3C

J2f ( (R.29) -

Figure (R.4) shows how the results of isotropic and triaxial

compression tests can be combined on a three-axis plot which yields X,

k : L, and R as functions of PK For computational purposes
KK'

EPK is replaced by z to prevent excessive shrinking of the cap. The
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above discussion is conceptual. Cap model users often determine or refine

the model parameters by trial and error.

The drained hypoelastic incremental unloading/reloading bulk modulus

is defined by the equation

K s - K2 s(II - 3Gr)

Ks =I
2 j - K K isrj (R. 30)

and the hypoelastic incremental unloading/reloading shear modulus, which

applies to both drained and undrained conditions, is defined by an

equation of the same form

G : -G - Gle (R.31)

The parameters Kis, KIS, K2S, Gi, GI, and G2 are material

constants. The shear modulus is obtained from the unloading/reloading

portion of a plot of (oI - 03) against (c, - E3)' measured curing

a triaxial compression test with both axial and radial or volumetric

strain measurements.

Equations (R.17), (R.21), (R.30), and (R.31) are all of the form

y a + bx - ce -dx (R.32)

" -" the parameters of which can be determined as follows:

1. Plot X against .The value of extrapolated to ->O is b. • -x ".

See Figure (R.5a).

2. Plot y-bx against!. The value of y-bx extrapolated to 0-->0 is a.

x x

See Figure (R.5b). .-
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3. Plot In (a + bx - y) against x. The y intercept is In c and the

slope is -d, since Equation (R.32) yields

ln(a + bx - y) = ln(cedx) = ln c - dx (R .33

See Figure (R.5c).

The cap model response to prescribed strain inputs is hypoelastic,

provided the stress point lies witl-in the yield surfaces. In this case

Equations (R.15) and (R.16) yield

dlI = 3KsdEKK (R.34)

and

ds. 2 e. (R.35)

If the assumed hypoelastic stress increment (the elastic trial)

violates the tension cutoff the first stress invariant is set equal to -T,

and all deviator stresses are set equal to zero. In this case the plastic

volumetric strain increment is calculated from the equation

n+1I E "- .''
I1 T = 3K dEp  (R.36)

1K1 "

so that

1E-T

dEP K  1 (P.37)
KK 3K

If the elastic trial point lies to the left of the corner and

violates the shear failure surface, the stress point is corrected back to

the shear failure surface using the method of Appendix P for a perfectly

plastic material. Since the cap model is entirely associative,

Equations (P.17), (P.23), and (P.27) yield - .. -*
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a fE
dx (R.38)

'" ~dF 2-"..
9K(;, ) + G

n1 = E - 3K d (R.40)
1K 1 K

and

.+ ( n+li f(1  ) (R.41)

The cap shrinks (if possible) in response to the dilatant plastic

volumetric strain given by Equation (R.39).

Equations (R.40) and (R.41) define a point on the shear failure

surface (extended beyond the corner, if necessary), but that point will

violate the cap if the point lies to the right of the shrunken corner.

*. This situation is shown in Figure (R.6), where N is the initial stress

point, E the elastic trial point, T the shear failure surface correction

point assuming the plastic strain increment to be directed along normal PQ

to the shear failure surface, C the initial corner, and D the shrunken

corner (which may coincide with C). If the shear failure surface

correction point had been taken as P instead of T, implying a plastic

strain increment lying along vertical PR, the corner would have remained

. at C and cap violation would not have occurred. As the assumed shear

failure surface correction point moves from P toward T along the shear

failure surface the direction of the plastic strain increment shifts from

PR toward PQ and the corner point shrinks (if it can) from C toward D.

Eventually the assumed corrected stress point meets the shrunken corner
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MIr

(somewhere between C and D) and that is the final corrected stress point.

If k = 0 so the cap cannot shrink, then D coincides with C and

therefore C must be the final corrected stress point. Then

1 n =0 (R.42)

and

= f(k n) f(O) (R.43)

If kn > 0 so the cap can shrink, then the hardening relation

between the amount of dilatant plastic volumetric strain on the shear

failure surface and the shrinking of the cap must be satisfied. This

relation and the elastic bulk stress-strain equation take the form

1n+1 =E - Kdc kn+1 = n +(dk ' c
1 1 1 3 EKK k k+ KdE K KK (.4

which yields

- knI kn-l - k (P.45) --

so that

1E / k '~+ 3Kn

knil= n = - "n~ l (R.46)

dK 31

. . . . . . . . .
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The drivaive kKd is determined empirically. (See

Figure (R.4).) The final oeviator stresses, after all the above

corrections have been applied, are given by the equation

n+1 2_~ E R.7

dit 2

If the elastic trial point lies to the right of the corner and

violates the cap, a trial and error correction is used (in place of the

incremental equations of Appendix G). The correction places the final

stress point on the expanded cap and also satisfies a secant flow rule.

The expanded yield surface has the equation .-

3nj F(Il kn A(X -L )- 1  
-L )

2 1' n+ 1

( n1 < X )(R.48)

and the flow rule takes the form

-c cix ----- d),s 1  + a 6(R.49)

where

I L
a 3= T R-- -2 < 11 <X) (R.50)

1 R (X_ L) (i L)

Note that

(R.51)

L
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Equation (R.49) yields

-K 3a dx (R.52)

and Equations (R.49) and (R.52) yield

de.4 d (R.53)-4
2 F

Now

In~ I E I 3K dE - 1E 1 9Kadx (R.54)

anc

~n+1 n p n- 2iV1 ] G i
s i Si Cde. S.. - dx (R.55)

and Equation (R.55) yields

(1+ G x) i 5  (R. 56)

and taking the square root of one-half the trace of Equation (R.56) yields

n+I 1Ep7

Eliminating dx between Equations (R.54) and (R.57) yields

1E - n+1 F,~2 TE nR58+1

dx11 1 1 F2 F2+1(.8
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so that

n+1 G 1E C(E -n+1) (R. 59)ml F~ 27F 1 1

Equations (R.48) and (R.59) are the two equations which the final

stress point must satisfy.

Figure (R.7) illustrates the trial and error solution process, which

proceeds (conceptually) as follows:

I 1. Assume k(= L).

2. Determine dPK, R, and X from empirical relations. [See

Figure (R.4)].

3. Compute II from Equation (R.54).

4. Compute a from Equation (R.50).

5. Compute JI-from Equation (R.59). Steps 3 and 5 locate a point

on the flow path in Figure (R.7).

3 6. Compute F from Equation (R.48). Steps 3 and 6 locate a point

on the yield path in Figure (R.7).

* 7. The flow path and yield path eventually intersect at

= |n+1 n- ..

The flow path cannot pass to the left of the expanded corner and miss

the yield surface altogether, because Equations (R.51) and (R.59) show

that the flow path would have a vertical secant if I were equal to L.

Therefore, the flow path will always intersect the yiela path (or the

expanded cap) to the right of the expanded corner. Also, since

Equations (R.51) and (R.59) show that the flow path has a horizontal

secant when I  X, it is convenient to (conceptually) set :
a co (II > X) (R.60)
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so that the flow path will be a horizontal straight line until I,< X.

Based on the above analysis, it is apparent that

k_ k < I(R.61)

so that the range of k to be tested in the trial and error solution of

Equations (R.48) and (R.59) is bounded. -

Simultaneous solution of Equations (R.48) and (R.59) actually

consists of finding the value of k -kn+1 for which

kn < k< IE

L < I, X

and

17 E G (E
2 I I f(11,k) (k.62)

or

b E (L <11 <X) (R.63)

where

b =f(1 19k) G (IE I ~ > 0 (R.64)

The function on the LHS of Equation (R.63) is not bounded, so it is

convenient to work with the bounded function

P(k) 92 EL <_, (R.65) 4

S+ b
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for which -1 < P(k) < 1, and which has the same root as Equation (R.63)

because the denominator is always positive. The function P(k) decreases

steadily as k increases. Because it is possible to have I > Xn

it is desirable to also define

P(k) (I > X) (R.66)X -L 1 - 46

sc that P(k) will decrease steadily as k increases (and I1 decreases)

even if 11 > X, and will be equal to 1 when ,= X and therefore never

less than the upper bound on P(k) for the range (L < I1< X). And

because it is possible to have I, < L during the trial and error

process, it is desirable to define

I- X
P(k) =I < L) (R.67)

so that P(k) will also decrease steadily as k increases (and I

decreases) even if I < L, and will be equal to -1 when II = L and

therefore never greater than the lower bound on P(k) for the range

(L < 11 < X). Equations (R.66) and (R.67) ensure that the final value
_|of Inin+1 in +I  Xn + l1';

n1 will lie in the interval Ln l < < n and

also that Equation (R.60) will not be needed because the quantity a will

be used to calculate P(k) only when I lies in the desired interval.

Once k n+ 1  L is found, dP X , and R are .- 4
= ~KK'

deternined empirically, In 1 is calculated by Equation (R.54),

.•jn+l by Equation (R.48), and the deviator stress components by

Equation (R.47).

When dealing with finite stress or strain differences during

unloading/reloading, or during any phase of isotropic compression, direct I,
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integration of Equations (R.30) and (R.31) is sometimes advantageous.

Both are of the general form

Ay -BeC (P.68)
x

so that

dx = dy - c~l

A - Be-Cy- Ae - B

or

AC dx AaCy [In(AeCY - B)] (R.69)

ana therefore

C,>2  B\

- x -- In e A(R.70)
A2 1 ACCy B

Also

2 In +(Cl- eC(x 2 - i](R.71)

For arained hydr.ostatic unloading/reloading

X E K (R.72)

1 I~ 3  r (k.73)

3K
A- S (R.74)
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B K 5K1  (R.75)

C=2 S (R.76)

3K K
AC - Is2 (R. 77)

B =Ki (R. 78)

so that Equation (R.70) yields I

I - K S ( 3G Ki]
1- K12 LeK2S (11, K Inr K s (R.79)
isK 2S EK, 2S (I MG K t

-e (1,1 r- s

and Equation (k.71) yielas

11,2 =3G r1. KLin jK15 + [Ke ~ -
3 r KS]

3K K
is 2S e -e

T (EIKK,2 EKK,1
is (R.bU) 1

Equation~ (R.21) also has the eneral form

Ep p W r eG -D1,2- 3Gr (R81
* ~~~~~KK,2 - KK,i l e '-eJ (.1

the inverse of which is

I G+1 1 1 R82
112 =Gr + l LeDIi 3 Gr EKK -: (R82
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Equations (R.79) and (R.b1) combineu give an expression for the

increase in total volumetric strain between any two stress points or the

drained loading hydrostat. The inverse calculation can be accomplished

graphically, as follows:

1. Stipulate I and P e
~1,1 KK,1 c KK , 1=li.

2. Assume E 

'

KK,2'

3. Calculate 11,2 by Equation (R.82).

e"

4. Calculate *K2 by Equation (R.79).

KP e j I
5. Plot E K,2 against EKK,2 as in Figure (R.8), and find

EKK,2 as shown.

6. For a given EKK enter the figure backward and find

EKK' andEKK , either of which can be used to find I.

-M
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Figure R.2. Relation between peak hydrostatic effective stress
and plastic volumetric strain.
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(b) Stress-Strain Response

Figure R.3. Results of a drained triaxial compression test at

constant cell pressure with unloading/reloading. L
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Figure R.4. Relations between cap parameters and plastic
volumetric strain.
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Figure R.5. Decaying exponential parameter determnination.
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Figure R.8. Relation between plastic, elastic and total
volumetric strain in drained isotropic
compress ion.
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APPENDIX S

UNDRAINED CAP MODEL AND COMPUTATIONAL ALGORITHM 4

During undrained isotropic compressive loading the measured total

stress incremental bulk modulus is assumed to have the same form as

Equation (R.30).

K im -K2n(1 1 -3Gr)
K im L -Kme m (S.1)m K

so that, by analogy with Equations (R.79) and (R.80),

KK (I -3Gr)
i~Kim2mi 1,2 r-Ki

EKK,2 - 3KK,I = I n K2(lil (S.2)
K em 2m Ml 3Gr)

e K im

3G + 1 + m1,2 r k {nim Le

3 KimK2m (

l-KIm KK,2 -KK,I (S.3)
p e

During undrained isotropic compression Equations (R.79), (R.8O),

(R.81), and (R.82) apply to the effective stresses, so that

F K2 S( 1, 2 -3 Gr)

i e -KI
e e is In (S.4)
KK,2 -KK,1 3Ki s K 2 S  2 s(i )

.I,2  =3G' n - 1r
,-2r K2 S 1 L

3K K
is 2S (e -e(.)

T" 1 KK,2 - KK,I )  (5.5)
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E~2-CK W LcD(Ii,13G) - ( i,2 ] (S.6)
, -- 3-.

I 3,2 'r ln F I(S 7)3'' E-S-

-D(Ii,,-3Gr K K,ew

The value of , corresponding to a given total volumetric strain

increment, cKK,2- EKK,I, can be calculated using Figure (R.8), and

either Equation (S.5) or (S.7)'

For, undrained triaxial compression at constant cell pressure the

slope of the total stress path in (Ii"J) space is i4,_ so that

1 1 3 3C + 3 3 + (S.8)

since

(S.9)

The procedure for calculating an effective stress path increment is

as follows:

1. Stipulate Ae1 and assume Ac3 .

2. Calculate the effective stresses o, 3, Ii, and

using the drained (effective stress) model.

3. Calculate 11 by Equation (S.3).

4. Calculate the excess pore pressure by the equation-

11 II ( .1 ).. .... -

u =.S31.)

5. Calculate the total radial stress by the equation

03 = + u(.

6. If 03 / 03C select a new value of AE3 and repeat steps 2-6.
•., 3 ..3C
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7. When (73 = 3C' calculate the total axial stress by the equation

~ Gi = 1+ u (S.12) ,:"

Equation (S.8) will be satisfied because it takes the form of

Equation (R.25).

Strain-controlled undrained response is calculated as follows:

1. Stipulate Aci...

2. Caculate ai and II using the drained (effective stress)

model.

3. Calculate 11 by Equations (S.3).

4. Calculate the excess pore pressure by Equation (S.10).

5. Calculate the total stresses by the equation

= 0 '.. + u6 (S.11)' ij Gi i i . +:.

Notice that this approach recognizes dilatancy in the effective stress -

model, but not in the total stress model.
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APPENDIX T - .

LADE MODEL CROSS SECTIONS AND PARAMETER DETERMINATION

Lade's failure criterion (the expansive yield surface at its maximum

extent) has the equation

fp1=i3  2 ,Pam = (T.1)

a4

or

13 a r (T.2) -

_"_I_-_ I1 m- I

1 1 l + 2 7 aa". -.

Nov., Equation (C.5) yields "

Ii = (T.3) • .

Equation (B.24) gives

1 2  I1 .

13 = 3 - + (B.24)

Equation (A.63) yields d

(1 ) 3/2-- --

03 = 2 cos 3w (T) (T.4)

and Equation (C.7) yields .. ,

2
2 OCT

(T.5)
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Substitution of Equations (T.3), (B.24), (T.4), and (T.5) into

Equation (T.2) yields 3

2 cos 3w 0

Cos 3L (TOCT\ 3  3 -,TOCT\ 2

~ ~OT 7- Y~~ (T.6)
=r

27

or
3

C O 3 -~ J C' ( 1 - 2 7 r ) = 0 ( T .7 )

F2 VOTJ £I OC T/ f

if we set

00 h (T.8)

Z = (T.9)

aOC T

A -(T.10)

127h 127

then Equation (T.7) can be written in the form

Az 3 -1.5z 
2 + B =0 (T. 12) ...

or p

z (1.5 -Az) =B
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or

z = B (iterate) (T.13) -
1.5 - Az

By fixing and therefore A in Equation (T.1O), and varying h ard

therefore B in Equation (T.11), Equation (T.13) will yield a longitudinal

cross section of the failure surface. By fixing h and therefore B, and

varying and therefore A, Equation (T.13) will yield a transverse

(octahedral) cross section. For triaxial compression

01 > a2 =03 (T.14)

so that if

01 1 + sin 0 I

-- N '1 - sin (T.15)
03 0

where 0 is the compression angle of obliquity, then , ..

I = o1 + 203 03 (N0 + 2) (T.16)

2 313 = 0103 = 03 ,(T.17)

and therefore Equation (T.2) yields

13

1 (N0 + 2)

where Equation (T.11) yields

B I 27r (T.11) .

and also

h = (T.19) - 4
27
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Values of r, B, and h corresponding to compression angles of

obliquity of 30, 35, 40, 45, and 50 degrees are tabulated below:

- r Bh

30 0.02400 0.35200 0.06818 .
35 0.02003 0.45920 0.04362
40 0.01600 0.56788 0.02818
45 0.01215 0.67199 0.01808
50 0.00867 0.76590 0.01132

Values of z for Lade's failure criterion are tabulated in

Table (T.1). The rows show longitudinal cross section values for a given ...

,, and the columns show octahedral cross section values for a given h. L.

The determination of Lade's model parameters proceeds as follows.

The unloadng/reloading elastic modulus, Eur , is measured on plots of

1 (1 - G3C1 against EjI from drained triaxial compression tests at I

constant cell pressure, and is assumed to be an exponential function of

cell pressure of the form

* n

Eur= K ur (|c (1.20)

Taking the logarithm of both sides of Equation (T.20) yields

• loglo0E ur =loglo0K ur + n lOglo (Pa (T.21) ),..i.o

so that the parameters Kur and n can be obtained from a log log plot of

E ur against O3C/Pa which should appear as a straight line. '--
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The unloading/reloading bulk modulus, B can be obtained from

ur_

drained isotropic compression tests with unloading, and since

Eur
B = (T.22) . 2
ur 3(1 - 2vr)

ur

where Vur is Poisson's ratio for unloading/reloading, the value of Vur

can be found from the expression

Vur = 1 Eur (T.23)
ur 79 - "- •. ".-

ur

Frequently, Vur is found to be relatively insensitive to 03C, ano

is therefore assumed constant.

Drained isotropic compression activates only the collapse yield

surface, so W can be determined from drained isotropic compression

tests with unloading as the area under a plot of octahedral normal stress

against plastic volumetric strain. For isotropic compressive primary

loading Equations (3.8.1), (3.8.2) and (3.8.3) yiela

f' = 3a2 f" (T.24)aW /
c OCT c = a2...1•.

so that

Wc C (T25)

ap Pa 2] p4

Taking the logarithm of both sides of Equation (T.25) yields -r

1 1° g 10 C + p log10 3 (T.26)
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so that the parameters C and p can be obtained from a log log plot of

2Wc/Pa against 3(OOCT/Pa)2 , which should appear as a straight

line.

Shear failure in a strain-controlled drained triaxial compression

test at constant cell pressure is defined as attainment of the maximum

value of (I -03C). At this point Equation (3.8.8) yields

['1 27)

(f')f ,IAX I - 2 = (T.27)

so that

3* ( f )Lf -2m (T.28)',-3 27

" Taking the logarithm of both sides of Equation (T.28) yields

log10  3 2) f log,, n- m loTo.29 (7.29)

so that the parameters nI and m can be obtained from a log log plot of

I6

3T- - 27) f against f' which should appear as a straight line.

Having the parameters Eur, Vur' C, and p, the elastic and

collapse plastic strains can be computed throughout a triaxial compression

test at constant cell pressure. The elastic and collapse plastic axial

anG volumetric strain increments are

". ".~ do - - '

d E (T.30)
1 E

ur
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dE~ =1Fu r d., (T. 31)

and

22d
dE1 = /2(T.32)

3 foy+ 2o~c2
1 3

c 2a 1(ao1 + 2G3C) dc,(. 3ve = (T.3322-

p I~

and the expansive axial and volumetric strain increments are

dEP dE1 -d' + de)(T.34)

dE dE -(de + de C (T.35)v v v v

The expansive plastic work is

W 01 P 1 a 3E3 a )dc + (T.36)
+ 2 1J3Ci3 3CJ 1 O3CcPV

The values of W1 corresponding to f= adf 06
and =0.6

respectively, are called W PPEAK andW ,0

The assumption is that WPPA is related to 03C by the expression

WPPA T'a '\3 (T.37)

Taking the logarithm of both sides of Equation (T.37) yields -

W~
1 0E10 log, 0T + 1 log 10  C)(T.38)
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so that the parameters 17 and 1 can be obtained from a log log plot of

__ _ _ P ,PEC

WPEKagainst G3, which should appear as a straight line.

PaP

Now because f and f are equal as long as -

p p (01 03C)

is increasing, and f Ifis a function of W according to
U.p p

Equation (3.8.9), let WppA be the value of W which maximizes
If

f (or f ) at the value Then Equation (3.8.9) yields
p p

df" 1f/q -bWfw 1 ~ 1
-ab bW p+ a p P /

d ae p P) qp eT

b (T.39)

so that at failure

dW 1 L b 0 (T.40)

and therefore since njis not zero,

1 (T.41)
q P,PEAK

Substitution of Equation (T.41) into Equation (3.8.9) yields

( P 1/q6

W eK
f"= P (T .42)

so that according to the definitions Of 14P,PEAK and WP,60 ,

1//
P,PEAK (.3
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and

WP, 6 0  /q

0.60 )= a 460 e A .4)

Note that Wp6 0 must be measured as a function of 03C, but no 4

empirical formula relating WP,6 0 to 03C is needed. Dividing

Equation (T.44) by Equation (T.43) yields

W WP,60 i/q

WP,PEAK /
(WP,60.-

0.60 e (T.45) -

P,PEAK/ -... ,

so that

W P,60 +P 6

in ppEAK P,PEAK-
q = - (T.46)

In 0.60

The assumption is that q is related to a3C by a linear equation of

the form

3q = + (T.47)

so that the parameters a and B can be obtained from an arithmetic plot of -

q against 3C/Pawhich should appear as a straight line.

Having both WpPEAK and q as functions of 03C' the parameter b

can be obtained as a function of 31 by Equation (T.41), and the-

parameter a can be obtained as a function of 03C by writing

Equation (T.43) in the form

-~ 4
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a= 1 (T.48)

II(WPEAK/q

The parameter r~in Equation (3.8.11) car, be determined from the

expansive plastic Poisson's ratio,

VP 3 (T.49)
dE1

obtained frocn a drained triaxial compression test at constant cell

pressure, where using the results of Equations (T.34) and (T.35) yields

dc~ p I-dE~ - dE:) (T .50)

* so that

3 dEp dE~p3 1 1- V
V = T _ = - T.1

d~ K 7 1/

Using the flow rule and Equation (3.8.11) yields

.3 "-

K n2

where

1"233



J = 3121 27 01 3C (T.55)

K 31 27c (T.56)
1 - 3C

so that

J + Kvp
= (1.57)

T2 G + Hvp

The assumption is that T2is linearly related to o c/Pa and

f pby an equation of the form

1(73 3C +Sf~ (T.58)
'2 ~ a

The parameters t, R, and S can be found by multilinear regr.cssion.
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TABLE T.1.

VALUES OF zFOR LADE'S FAILURE CRITERION

0. DEG

iq •

so 45 40 1 5 30

w 0.01132 001808 0.02818 0.04362 0.06818

120 0.96989 0.87226 0.77128 0.66861 0.56569
115 0.94775 0.85720 0.76119 0.66199 0.56149
110 0.89779 0.82084 0.73557 0.64456 0.55012
105 0.84263 0.77766 0.70321 0.62138 G.53434
100 0.79238 0.73624 0.67057 0.59687 0.51694
95 0.74967 0.69987 0.64086 0.57374 0.49991
90 0.71456 0.66932 0.61530 0.55330 0.48442

K85 C.68531 0.64356 0.59342 0.53551 0.47071
80 0.66106 0.62205 0.57501 0.52040 0.45893 J
75 0.64216 0.60520 0.56050 0.50840 0.44949
70 0.62872 0.59317 0.55007 0.49973 0.44263
65 0.62068 0.58596 0.54381 0.49450 0.41847
60 0.61801 0.58356 0.54173 0.49275 0.43708

f2. -_ r.
':... .: : . :::

.. . . . . . . . . . . . . .:... . ..
. .~ . .A S~a r..r.J P . '.,



APPENDIX U -':

ARA CONIC MODEL CROSS SECTIONS AND PARAMETER DETERMINATION

Triaxial cross sections of the conic model compressive and expansive

yield surfaces appear as shown in Figure (U.I).

The conic model failure criterion (the expansive yield surface at its

maximum extent) has the equation

T a )E c o s -w - p( T ) = , ( U .1 )

or

( i V° OCT/ "-
TOCT (1 - cos (U.)
Pa ° C 

'-'-'1 + M , - " ..T )

When w is fixed in Equation (U.2) the variation of T OCT with

-OCT becomes hyperbolic, taking the form": I 3 CO T (U. ) L-C-'

- E cos (U.3)
OCT( ) T .

The initial slope of the failure surface at zero octahedral normal

stress is

( d TO C T =( .4 ) ""__ _"": I -E cos 3
V °oOCT)o ; '

and the upper shear strength asymptotic limit is
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(~~) = /(U.s
(TOT) - co sJU,/\m

GOCT"

When aOCT is fixed in Equation (U.2) the variation of

TOCT/OCT becomes a triple ellipse, taking the form

1 + m OCT) (U.6)

ThC
TOCT FP U.6).....
"OCT  I - E cos 3wJ

The parameters n1 , m, and E can be determined from a series of

triaxial compression and extension tests. For triaxial compression

= 1200), Equation (U.3) reduces to

OCT 1T+"mJ i I 1 m 0') 
"

or

r OCT k-E m OCT (U.7)

rOC nl KIc k2c \7Pa)

where

k E (U.8)
1c - j

k2 =m (U.9) -

For triaxial extension (w = 600I, Equation (U.3) reduces to
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OC T

*~~~~~ OCT-- --..--.----

or p

OCT I + E + M 'O T.(.CT

OCT_ ____ 
PaOC U.

where OT '1(CT kl+k

k (U. 11)
k e T

k m (U. 12)
2e (1 )

Plots of Equations (U.7) and (U.10) are shown in Figure (U.2).
Having determined the parameters k 1,k 2ck le nd k 2e the

parameter m can be calculated from the expression

M 2  kZ (U.13)

lc lej

which provides a consistency check. The parameters r~and E can be

calculated from Equations (U.8) and (U.11), written in the form

k E =1 
I 2

so that

'k 2 
(U.14)

le Ic

283

........................ ---.-. . . . . . .... .



2kI c kle k 1C.
E = ikcnI Ik + k + (U.15)

le lc le Ic

- Having calculated the parameters nI and m (and E) from triaxial

compression and extension tests, the accuracy of the assumed octahedral

cross section form can be investigated by a series of true triaxial

tests. If, in Equation (U.6) we set

T (U.16)
+ m (aOCT \

LPa/

then Equation (U.6) can be written in the form

TOCT I_-___cos__ (U.17)

(O "Cos-

* which is the equation of a triple ellipse in polar coordinates.

. Equation (U.17) can be written in a linear form to obtain the octahedral

eccentricity, E, as a consistency check on the previously determined value

from Equation (U.15).

* ~I aOCT
1I- E cos 3-•(11.°8)

TOCT

. .A plot of Equation (U.18) is shown in Figure (U.3).

The method for computing the conic model octahedral cross section sets

02 = (A.65b)

in Figure (C.2), so that U.

tan w (U.19)
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where is Lode's parameter. And if we assume that d = 0 in Figure (C.2)

and Equation (C.26), then

O' =r rCT 3 z (U.20)
OOCT.

so that the horizontal projection of O'P can be calculated in two ways: -;

z sin - z cos s (U.21)

Solving Equation (U.21) for z yields

z (V3 sin + + cos eJ sin 0) = v2 sin 0

or

v2i s.-n

Z= / sin 0 (U.22)

V13 sin + cos sin 0

and solving Equation (U.21) for sin 0 yields

:3 z sin
sin 0 = (U.23)2 - z cos .-. ?"

Note that when m = 0, Equations (U.7) and (U.1O) yield

k (U.24)
1c -z

k (U.25)
1 - e

e , ~~-. ' W= .

Octahedral cross section data for the case (m = 0; -c 320;

= 350) are tabulated in Table U.1 and plotted in Figure (U.4). The

calculation sequence used to obtain the values shown in Table U.1 and

Figure (U.4) is as follows:
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t = - (U.19)

X.2 42sin ] c  ,

Z 2 (, 120 ° ) (U.26)
.3 sin

Z =( 600) (U.27)e 3 +sin]

-I + e (U.28)

z -z

E e (U.29)
,. -= + ZeZc  e -

n11

- E cos 3 (U.30)

S2zossin (U.31)sin] "2 z cosw -i->

Determination of the unloading/reloading Young's modulus parameters,

1 iK and n in Equation (4.6), for the conic model is accomplished in the
ur

same way as for the Lade model, as described in Appendix T. The same is

true for the unloading/reloading Poisson's ratio, Vur.

At the present time the parameters A, M, x, y, and s in

Equation (4.10) are determined by trial and error. When the

unloacing/reloading hysteresis option has been fully implemented, a method

for determining the parameters will be developed.

The parameters C and p in the compressive hardening rule,

Equation (3.8.3), can be determined in the same way as for the Lade model,

as described in Appendix T, but there is an easier way which avoids the
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numerical integration required to obtain Wc as a function of f . It

involves directly fitting the plastic hydrostat (the curve of cOCT

against cv obtained from drained isotropic compression tests with

unloading). Equation (T.25) can be written in the form

(OOCT 
2]Wc = 3a , P (U.32) .

a a Pa

so that the compressive plastic work increment generated by a compressive

plastic volumetric strain increment is

[(OCT p-i 0 OCT d OCTd Wc (T _OCT deC Cpp a  -a 6 p Pa -
6 L °PCT) 2 a a

p -1 doocT O (U.33)

and thereforec p[3 (OOCT 2] p- dcOC
d =6Cp (U.34,

v [ P a )j (d P a) "-T " 34)

Integration of Equation (U.34) yields *1

( 6Cp [p-i) ("'OCT 2p-1 (OOCT
v = ' a ) = L - a ) (U .35 )

where ,- . -

L =C P -1 (~ ) (U.36)

Q = 2p - 1 (U.37)

Taking the logarithm of both sides of Equation (U.35) yielus
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log10 E logic) L + Qlogio (.~)(U.38)

so that the parameters L and Q can be obtained from a log log plot of

c
• - against oOCT/Pa, which should appear as a straight line. The

parameter p can then be determined by writing Equation (U.37) in the form

Q+i (U.39)

and the parameter C can then be determined by writing Equation (U.36) in

the form

C = (U.40)

The parameter r in Equation (4.3) is not determined uniquely, but

rather adjusted by trial and error so the sum of the calculated elastic and

compressive plastic volumetric strains in a triaxial compression test at

constant cell pressure always exceeds the measured total volumetric strain,

and the difference steadily increases. The difference is minus the

- expansive plastic volumetric strain, and if the above relationship is not

I maintained it means the expansive plastic potential surface is generating

compressive plastic volumetric strain, which is impossible. The

relationship to be maintained is

de + deC > d v  (U.41) I.
v v v

or

1-2v 6c 2 + (1-r 2  a
urOT oIOC] 7  1( -uLdo1 + dOCT d 1 > dcv (U.42)

" ~~ P 211-.:

.. k a
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Determination of the expansive yield surface parameters E, m, and

in Equations (4.4) and (3.8.8) has already been discussed.

The parameters a, b, ard q in the expansive hardening rule,

Equation (3.8.9). can be determined in the same way as for the Lade nodel,

as described in Appendix T, but there is another way which uses the entire

curve of fp against Wp, rather than just the two values Wp,PEAK

and WP, 60. However, the method does involve a derivative.

Equation (3.8.9) gives

-bW (Wp\ i/q
f' =ae P (3.8.9)

so that

In f' In a - (bpa) + In (U.43)
pPp) a".a-

Differentiation of Equation (U.43) with respect to Wp/Pa yields

or-- .

adf'
+ q P (U.44 '' -" ""'" - "- qbp 

.
-

L()
p aI

p ddf'

The paraneters q and b can be obtained from an arithmetic plot of - %

d( P

which should appear as a straight line.
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W.. 1 777 ' -

The intercept is

Pa
qbp a PA (U.45)

= p,PEAK

and the slope is q. Having b and q, the parameter a can be obtained fromp /p /q , . .

an arithretic plot cf f against e (W ) which
p pa

shculC jappear as a straight line through the origin with slope a as

pr-cicted by Equation (2.8.0). The linear relation between 03C/Pa and

q indicated by Equation (T.47), plus Equations (T.41) and (T.48) apply to

tc conic mcdel as they co to the Lade model.

The parameter 2 in Equation (4.5) can be obtained from the

expansive plastic Poisson's ratio

P GE (T.49)
p

I obtained from a drained triaxial compression test at constant cell

pressure, as it is for the Lade model. The resulting expression is

P (vp - 0.5) (T.50)
'12 H (1 + P)

vohre

- (T.51)

a

a (T.52)

The linear relation between Ia' , and indicated by

Equation (T.58) applies to the conic mocel as it does to the Lade model. -
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TABLE U.1I

ARA MODEL FAILURE SURFACE OCTAHEDRAL CROSS SECTION

FOR (m 0; I = 32 DEGREES; E 35 DEGREES)

pz sing
DEG______

-1.0 120.00 0.60679 e.530
-0.9 117.457 0.60589 0.550
-0.8 114.791 0.60304 0.569
-0.7 112.006 0,59810 0.586
-0.6 109.107 0.5910S 0.602
-0.5 106.102 0.58198 0.614
-0.4 103.004 0.57118 0.625
-0.3 99.826 0.55901 0.632
-0.2 96.587 0.54597 0.636
-0.1 93.304 0.53259 0.637

090.000 0.51938 0.636
0.1 86.696 0.50681 0.633
0.2 83.413 0.49526 0.628
0.3 80.174 0.48500 0.622
0.4 76.996 0.47620 0.615
0.5 73.898 0.46894 0.608
0.6 70.8911 0.46321 0.600
0.7 67.994 0.45897 0.593
0.8 65.209 0.45610 0.586
0.9 62.543 0.45449 0.580
1.0 60.000 0.45398 0.574
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Figure U.1. Conic model yield surfaces.
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Figure U.3. Linear plot for checking the octahedral
eccentri ci ty.
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300

7 .. . . . . . . ,



APPENDIX V

EVALUATION OF EXISTING MODELS

V.A Linear Elastic

V.I.1 Motivation

* The principal advantages of a linear elastic constitutive model for

transient soil dynamics problems are the availability of or possibility of

obtaining closed form analytic solutions, and the existence of proven,

stable numerical solution techniques for use when a closed form solution

does not exist and is too difficult to obtain. The principal disadvantage

is that real soil departs from linear elastic behavior even at strains of

the order of 10- -

V.1.2 Assumptions

The classic theory of linear elasticity assumes a material to be

i homogeneous (having the same stress-strain characteristics at each point),

and isotropic (having its stress-strain characteristics the same in all

directions). The term elastic implies complete strain recovery upon

unloading, no matter how large or small the applied stresses. The

stresses at a point are assumed to depend only on the strains at that

point, through a system of homogeneous linear equations [Timoshenko and

Goodier (1970:1)]. Thus the linear elastic model is rate independent.

V.1.3 Basic Equations

The homogeneous linear equations relating strains to stresses in the

theory of linear elasticity are of the form

.1

r.: I. ...

.................................. .. . . .•

. . . . . .. . . . . . . . . . . . . . . . . . . . .



I

1 K0  K 0 0 0 El

2 K 1 K 0 0 0 E2
0 (V.1.1)

(3 K 0 K 0 1 0 0 0 E 3
:M

(74 0 0 0 1-K 0 0 0 E£4

(50 0 0 0 1-K 0  0 E5

0 0 0 0 0 1-Ko 6

where the column vectors, and E}, are defined by Equations (E.5) and

(E.24), and the elastic constants, M (the constrained modulus) and K0

(the coefficient of lateral stress at rest), are defined by Equations

(J.33) and (J.34).

V.1.4 Parameter Determination

There are a number of methods for measuring the elastic parameters, M

and K The constrained modulus, M, can he measured directly in the .

laboratory hy a constrained compression (oedometer) test, in which all

strains in Equation (V.1.1) are zero except El. In a laboratory

hyd-ostatic compression test

E VOL""""

E1 E 2 E3 --VOL (V.1.2)

and

'1 = 2 = 3= OCT (V.1.3)

so that Equation (V.1.1) yields

"OCT : M EVOL BVOL (V.1.4
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.4

where the elastic bulk modulus, B, is given by the expression

B =M (V.1.5)

~"-" and therefore (v1_ ii
(3B . )

Laboratory test specimens often suffer from disturbance due to field

sampling and specimen preparation, and may not be representative of an

entire soil mass. A popular method for determining elastic parameters

which are representative of an entire soil mass is by field measuarements

r of the two elastic hody wave velocities FTerzaghi (1943:463M]. They are: L

C1 = compressional wavespeed (V.1.7)

- and *. !

C2 = = P - shear wavespeed (V.1.8)

where G =M(
1 'o elastic shear modulus (V.1.9)

P= mass density

Then the elastic constants, 11 and Ko, are given hy the expressions

M pC2  (V.1.10)

..-. and

K0 =i- 2(C) 2 (V. 1.11)
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V.1.5 Computed Behavior

The parameters chosen to represent CARES-DRY Sand are listed in -

Table V.1.1. Since the linear elastic model cannot represent the behavior

of a highly non-linear, non-elastic material such as this over any

significant range of stress or strain, the choice of these parameters was

completely arbitrary. Computed behavior for this model is very

straightforward, as examination of Figures (V.1.1) through (V.1.41) shows.
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TABLE V.1.1. ELASTIC MODEL PROPERTIES FOR CARES-DRY SAND

Parameter Symbol -Variable Value Units

Bulk Modulus B BULK3 3.760x108  Pa
Shear Modiulus G SHEAR3 1.440x108  Pa
Mass Density p RHOREF 1900 Kg/rn3
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V.2 Linear Viscoelastic

V.2.1 Motivation

The principal advantages of a linear viscoelastic constitutive model

for transient soil dynamics problems are the availahility of or

possibility of ohtaining closed form solutions, the existpnce of proven,

stable numerical solution techniques for use when a closed form solution

does not exist and is too difficult to ohtain, and the ability of the

model to dissipate energy. The principal disadvantage is that the stress-

strain behavior of real soil often departs significantly from linear

viscoelasticity.

V.2.2 Assumptions

The classic theory of linear viscoelasticity assumes a material to be

homogeneous and isotropic. The stresses and stress time derivatives at a

point are assumed to depend only on the strains and strain time

derivatives at that point, through a system of linear differential

equations.

V.2.3 Basic Equations

The system of linear differential equations relating stress, strain

and their time derivatives at a point yields a set of hereditary stress-

strain relations of the same general form as Equation (V.1.1).

1 Ko K 0 0 0 de,

K I K 0 0 0 dE2  -.

o7 02

(3 Ko K 1 0 0 0 dE3

M* (V.2.1)
0 0 0 1-K 0 0 d

(Y5 0 0 0 0 1-K 0 de0

o 0 0 0 0 I-K .  de6
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except that the quantities M and K are influence functions of time,
0

rather than constants, and the notation x*dy indicates a superposition

inteoral FFung (jq6;:414)] of the form

x*dy f f x(t--) il dT (V.2.2)
0

V .2.4 Parameter Determination

There are a number of methods for measuring the parameters which

define the viscoelastic influence functions M(t) and K (t) in Equation

(V.?.1). The constrained modulus influence function, M(t), can be

measured directly in the laboratory by a constrained compression

- (oedometer) relaxation test, in which all strains in Equation (V.2.1) are "-:-

zero except El, and E, is a step function. Similarly, the bulk

modulus influence function,

- ~~I + ?Ko(t) :1'''

B(t) : M(t) L (V.2.3) .

can he measured directly in the laboratory by a hydrostatic compression

relaxation test, in which the volumetric strain is a step function. It is

often assumed that the bulk modulus influence function, B(t), and the

shear modulus influence function

- G(t) 3[M(t) - (t)] (V.2.4)
4

can be represented by simple viscoelastic models, such as the three

element model discussed in Appendix L. The model parameters defining B(t)

and G(t) can be determined from Figure (L.2) and Equations (L.30), (L.31)

and (L.32). The influence function M(t)K0 (t) can then be assembled

using the expression

M(t)K(t) 3(t) - M(t) (V.2.5)
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Table (V.2.1) lists the parameters used for demonstrating the

three-element viscoelastic model discussed in Appendix L. The parameters

were chosen to show a range of behavior when the applied constant strain

rate varied between 100/sec and 0.1/sec. Both static and dynamic uniaxial

strain tests were actually performed on CARES-DRY sand and reported in

Cargile (1984). The static tests were run at strain rates on the order of

0.001/sec. The dynamic tests were run at strain rates in the range of

20-85/sec. Some loading-rate effect (stiffening) was observed below

80 r.1Pa [Cargile (1984:37)].

V.2.5 Computed Behavior

Only the uniaxial strain compression test will be shown for this

model. Since the response would be linear and elastic but for the

time-dependent and energy damping dashpot, this test will suffice to

illustrate the effect of loading rate. Uniaxial strain load-unload cycles

were applied at four constant strain rates: 100, 10, 1 and 0.1 per

second. Figure (V.2.1) shows the axial stress-strain response for each

strain rate. Note the stiffening effect with increasing rate of load

application and the non-linear response, both a result of the dashpot

elements. Response of the bulk element is shown in Figure (V.2.2) and the

shear element response is shown in Figure (V.2.3). At very high strain

rates, the element stiffnesses collapse to the stand-alone spring

stiffnesses, KI. At near-static strain rates, the net stiffness is that

of two springs in series:

K KKlong-term 12

1 +K2  (V.2.6).
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At intermediate strain rates, there is a gradual transition between the

two cases.

The slope of the uniaxial stress path,

3(6 - &~C3

S 1 3(A I A 3 ii i

AC + 2LO3 (V.2.7)

can be expressed in terms of Ko as follows:

3(1- K)S

+ K (V.2.8)

so that

3-SK=

(V.2.9)

The calculated uniaxial stress paths are shown in Figure (V.2.4).

Here, K is seen to vary between the value at high strain rates,
0

:3K 1  2G1  -.
K 3K1 2 G 1  (V.2.1Oa)

K 3(480) 2(360) = 0.25 (S = 1.5) (V.2.lob)
°'I 3(480) + 4(360)

-- and the static value,

K 1K 2  GI1G2  "

3 -2K1 + K2 G + G2 -.

K1 2 1 2(.2laKo,2 - K K2 GIG2 (V.2.11a)-.il-i

K + K2  G G+G 2

1 21 2
3(185) - 2(86) 0.43 (S = .92) (V.2.11b)

Ko,2 = M S) + 4(86)
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TABLE V.2.1. VISCOELASTIC MODEL PARAMETERS FOR CARES-DRY SAND

Parameter Symbol Variable Value Units

Bulk Spring 1
Stiffness KI  BULKI 480 x 106 Pa

Bulk Spring 2
Stiffness K2  BULK2 300 x 106 Pa

Bulk Dashpot
Constant n2  C2 10 x 106 Pa-s

Shear Spring 1
Stiffness G1  SHEARI 360 x 106 Pa

Shear Spring 2Stiffness C2  SHEAR2 114 x 106 Pa

Shear Dashpot
Constant ns2  CS2 10 x 106 Pa-s

Mass Density RHOREF 1900 kg/m3

I%
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V.3 Hyperbolic

V.3.1 Motivation

The hyperbolic model consists of formulas for computing the tangent

Young's modulus and Poisson's ratio, for use in an incremental elastic

analysis. It is a simple, practical procedure for representing the ,

nonlinear, stress-dependent, inelastic stress-strain behavior of soils

[Duncan and Chang (1970:1650)]. Values of required parameters can be

derived from the results of standard laboratory triaxial tests, or from

more sophisticated test results if available. The hyperbolic model's

principal drawbacks are that it does not fully account for stress path

effects on strength, stiffness, or dilatancy.

V.3.2 Assumptions

The material is assumed to be homogeneous and isotropic, and the

m relation between the major and minor principal effective stresses and the

tangent Young's modulus measured in a triaxial compression test at

constant cell pressure is assumed to hold for any stress path. In their

original hyperbolic model Duncan and Chang assumed a constant Poisson's

ratio. An alternate version obtains a tangent Poisson's ratio by assuming

a hyperbolic relation between the major and minor principal strains,

together with the same hyperbolic relation between major principal strain

and principal stress difference used to obtain the tangent Young's

modulus. The tangent Poisson's ratio formulation is intended only for

stress levels well below failure.
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V. 3.3 Basic Equations

The equation for the tangent Young's modulus is

[.nI Rf( - sin O
Er = KPa L - 2(c cos 0 + 3(V.3.1

where pa atmospheric pressure

K, n, Rf = dimensionless empirical constants

C,= rohr-Coulomb strength parameters

"1i 03 major and minor principal effective stresses

Equation (V.3.1) is derived in Appendix M, and is identical to Equation

(H!.21

7L The equation for the tangent Poisson's ratio in the alternate version

is ( 3
G - F logl

vT= )2  (V.3.2)(1 - A)2 ". ''i

where

• d(oI 1 3) "" .

-o3A (V.3.3)[ Rf(1 - sin ON
Ka (PaflL 2(cco + nco G 3 sin

and, in addition to the quantities appearing in Equation (V3.1),

d, G, F = dimensionless empirical constants

Equations (V.3.2) and (V.3.3) are derived in Appendix N, and are identical "

to Equations (N.7) and (N.8), respectively. *: ::;-
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V.3.4 Parameter Determination

The determination of the parameters entering Equations (V.3.1),

(V.3.2), and (V.3.3) is explained in Appendices M and N, where the

* equations are derived.

Parameters for a modified hyperbolic model were determined for

CARES-DRY Sand. The principal differences between the model described in

appendices M and N and the model actually used are:

(a) Maximum past axial strain was used as a state variable to define

the unloading condition. Upon unloading, i.e.,

La <ta, max (V.3.4)

the tangent Young's Modulus and Poisson's ratio are set to

constant values,

ET Eur Kur Pa (V.3.5)

* VT = Vur (V.3.6)

(b) Shear stresses were further constrained to lie within the

failure envelope defined by the Mohr-Coulomb strength

parameters, c and 4. Plastic strains were computed using a

non-associated, Von Mises plastic potential.

(c) Pressure was not allowed to achieve negative values. If tensile

failure occured, all stresses were set to zero.

Parameters for unloading-reloading behavior (Kur V ur) and

strength parameters (c, 6) were determined by hand from examination of the

data for remolded specimens as presented in [Cargile (1984)]. All other
I

input parameters were automatically determined in the SEM. Figure

(V.3.1) shows the triaxial stress-strain data used for this fitting

r6
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process. In Figure (V.3.2) the axial data has been replotted on a Kondner

plot. Note that the data curves are very nearly hyperbolic, with most

deviation occurring at low strains. Figure (V.3.3) shows a logarithmic

plot of Ei vs. *3c, which is used for determining K and r. There is

considerable scatter in this fit. Tangent values of Poisson's ratio are

plotted in Figure (V.3.4) against radial strain. The data shows wide

variation, and Poisson's ratio exceeds 0.5 when the specimens are

dilating. A logarithmic fit for variation of initial Poisson's ratio with

confining pressure is shown in Figure (V.3.5). In the actual model

computation, the tangent Poisson's ratio is not allowed to exceed 0.5.

V.3.5 Calculated Behavior

Isotropic compression behavior for the hyperbolic model is compared

with test data in Figure (V.3.6). Since triaxial data and not IC data

were used to fit the loading modulus, and because the loading modulus is

strictly dependent on initial confining pressure and axial strain,

calculated and actual behavior are not expected to match for this test.

CTC behavior is covered in Figures (V.3.7) through (V.3.10).

Stress-strain data, used for parameter fitting, is matched well [Figure

(V.3.7)]. The inclusion of special unloading-reloading modifications

allows the model to undergo permanent compaction [Figures (V.3.7), "

(V.3.9), and (V.3.10)]. Since Poisson's ratio is artificially held to be

less than 0.5, dilation is not predicted [Figure (V.3.9)]. Initial bulk

stiffnesses are well matched, as seen in Figure (V.3.10), but once

dilation commences, calculated and actual pressure-volume responses .-. "-

diverge.

Since the CTE test involves axial expansion, the model responds by

unloading with a high modulus and the unload-reload value of Poisson's

344



.~-. r .r .r-

ratio [Figures (V.3.11) and (V.3.12)]. Presence of the Mohr-Coulomb shear

failure envelope limits stress difference but does not predict the lower
S

observed values of shear strength in extension compared with those in

compression. Figure (V.3.13) shows that the predicted volume strains are

expansive while those measured were compressive. Pressure-volume behavior :e

is shown in Figure (V.3.14).

The PTC/E and PSC/E [Figores (V.3.15-V.3.18) and (V.3.19-V.3.20),

respectively] highlight features of this model, as it is currently

implemented: "_

(a) Loading and unloading behaviors, as determined by axial strain,

V rare substantially different [Figure (V.3.15) for RTC/E and

Figure (V.3.19) for PSC/EJ. This is due to the modified nature

of the unloading part of the model.

(b) Without recognition of the Mohr-Coulomb failure surface in the

model itself, all loading stress paths would have an ultimate

shear strength equal to (a1 - '3c)ULT as predicted by the

hyperbolic model for CTC behavior. This would severely

overestimate strength for certain stress paths such as CTE or

RTC. When the failure envelope is used, initial stress-strain

- resnonse is identical to CTC, but the material fails in shear

prior to (01 -3c)ULT
• This can be seen in Figures

(V.3.15) and (V.3.16) for RTC and in Figures (V.3.19) and

(V.3.20) for PSC and PSE.

(c) No dilation behavior is predicted in this model [Figure .

(V.3.17)], and the pressure-volume response is a function of

initial confining pressure and axial strain [Figure (V.3.18)].
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The behavior of the modified Duncan and Chang hyperbolic model is

summarized in Figures (V.3.21) and (V.3.22) for stress paths run in the -

triaxial cell from 7.1 MPa initial confining pressure.

Uniaxial compression response, starting at a low confining pressure

and tested to a relatively high level of stress, cannot be well predicted

by this model as is shown in Figures (V.3.23) through (V.3.25). Axial

stress-strain response [Figure (V.3.23)] is much too stiff because of the

large axial strains and modulus dependence on axial strain. Poisson's

ratio also is affected and quickly reaches the 0.5 limit imposed. This

limit affects the shear modulus, as can be seen in Figure (V.3.24).

Unload-reload behavior and compaction are reasonably well modeled.

Predicted uniaxial extension behavior [Figures (V.3.26) through

(V.3.28)] is essentially the same as that described for the

elastic-plastic model in Section V.5. This is a result of the linear

elastic unload-reload response with a Mohr-Coulomb failure surface.

The axisymmetric strain path exercises disclose some of the

consequences when this type of model is used for more general conditions

like those occurring in-situ. Predicted behavior for the WES strain paths

is compared with the data in Figure (V.3.29). For this strain path, axial

strain is increasing until the very last, while volume strain reverses.

Therefore this model, which uses axial strain to signal unloading, never

unloads and the result is the pressure-volume response shown. The bulk

modulus does not change upon increased radial expansion, but continues to

gradually decrease with increasing axial strain. Shear response is

reasonable but does not respond to the strain path changes as does the

data.
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The Lade strain path 1 results [Figure (V.3.30)] show an initial

break in the strain path and bulk modulus when the limit of 0.5 for

Poisson's ratio is reached. This results in a large departure from

observed behavior. Strain path 2 [Figure (V.3.31)] also causes the model

to stiffen .iust prior to the reversal in volume strain. This causes a r "

sharp drop in pressure (without unloading as defined by axial strain) and

the stress path encounters the failure surface. Again, deficiency in the

bulk response causes bad comparison with the data.

Results for the true triaxial strain path are shown in Figures

(V.3.32) and (V.3.33). The axisymmetric portion of the response looks

good, but when the strain path causes stress response out of the triaxial

plane, the results are not good. Note that this model keys on axial and

radial strains/stresses while ignoring the intermediate principal
strain/stresses. Figure (V.3.33) shows that although provision is made

for tensile failure, the material reloads before re-compacting.

L
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TABLE V.3.1(a). HYPERBOLIC MODEL PARAM4ETERS FOR CARES-DRY SAND

Parameter Symbol Variable Value Units* .

K HK A79.1 -

Constants Kur HKUR 40320 -

n HN 0.6057 -

Rf HRF 0.8475 -1Iohr-Cojl omb c HC 5.0 x 10 Pa -

Strength 0HPHI 30.0 degrees
Poisson's Ratio G HG 0.4924 -

Constants F HF -0.0935 -

d HO P.001, -

Unl oa d-Rel oad
Poisson's Ratio vur HNUR 0.200 -

Confining Pressure 03c HSIGMA3 See (b) below Pa
Initial Young's

Modul us Ei HEI See (b) below Pa
Stress Difference

at CTC Failure (1-c)f HFSDIFF See (b) below Pa
Initial Poisson' s
Ratio vi HNIJI See (b) below -

Mass Density pRHOREF 1900 kg/rn3

TABLE V.3.1(b) HYPERBOLIC MODEL CONFINING PRESSURE DEPENDENT PARAMETERS

c3c Ei HFSDIFF vi

(MPa) (MPa) (MPa) C-

0.1 48.17 1.93 0.491
0.4 113.9 2.56 0.435
1.8 277.4 5.33 0.343

.5415.0 8.73 0.350
7.0 631.5 15.73 0.321

20.0 1193 41.73 0.278
32.0 1585 65.73 0.259
59.0 229? 119.3 0.234

100.0 3161 201.7 0.213
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V.4 Pyke Cyclic Simple Shear

V.4.1 Motivation

- [Pyke (lP79)] proposed a hyperbolic model for irregular cyclic simple

shear, which, unlike Hasing-type models, limits the peak shear stress

under arhitrary loading. This is the model's principal advantage. Its

principal disadvantage is its restriction to one-dimensional simple

shear. In its present form, Pyke's model is not capable of handling

general multiaxial stress-strain paths, because:

a) The asymptotic strength is prescribed as a single magnitude.

b) The tangent shear modulus is computed for simple shear about one

axis only.

c) There is no provision for a second tangent elastic constant.

V.4.2 Assumptions

The basic assumption of the Pyke cyclic simple shear model is that

the simple shear stress-strain curve between any two consecutive points of

shear strain reversal is a hyperbola, with fixed initial slope immediately

after shear strain reversal, and fixed upper and lower shear stress -

asymptotic limits of equal magnitude.

V.4.3 Basic Equations

The general relation between shear stress and shear strain for

irregular cyclic simple shear is

T-GAX(Y - V .4. 1)
+ . (Y- y

cTy Tc

'* '3M11
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I

*" where Yt = simple shear strain and stress .-

Yc, T c simple shear strain and stress at last point of strain

reversal

GMAX slope of the simple shear stress-strain curve

immediately after strain reversal

y= magnitude of the upper and lower shear stress

asymptotic limits

and

y = y sgn (V) V.4.2) .

Equations (V.4.1) arid (V.4.2) are deriveo in Appendix 0, and are identical

to Equations (0.4) and (0.5). Differentiation of Equation (V.4.1) yields

the tangent shear modulus,

d( - c  GMA x

G = )c 2 (V.4.3)dl c)  G NT f ; X ( - c -2I+ T * - (

.. Equation (V.4.3) is identical to Equation (0.6).

V.4.4 Parameter Determination

The parameters GIAX and T are determined from the virgin simple

shear stress-strain curve for monotonic loaaing, usin9 a plot of T/y

versus ; based on the linear form of Equation (V.4.1) when

c 

-0c,which is

GM 1 (V.4.4)

Equation (V.4.4) is identical to Equation (0.8), and the corresponding
, V*

" plot is shown in Figure (0.2).
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Table (V.4.1) shows the parameters which were used for illustrating

the behavior of Pyke's 1-D shear model. The parameters were chosen 4

somewhat arbitrarily, as no simple shear test data is available for

CARES-DRY Sand.

V.4.5 Computed Behavior .

Figure (V.4.1) is the behavior predicted for simple shear by Pyke's

model. The test shown consisted of three fully-reversed cycles of shear

strain at each of three maximum strain levels: 0.5 percent, 2 percent,

and 4 percent. The important features of the model's response are:

(a) ratcheting of stress-strain loops upon cycling at a given strain

limit

(h) softening of response at progressively higher strain magnitudes

(c) stiffened response upon reversal of strain direction

The model, as it is currently implemented in the SEM, is not general

enough to handle the suite of exercises performed for the other models in

this report.

L
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TABLE V.4.1. PYKE MODEL PARAMETERS FOR CARES-DRY SAND

Parameter Symbol Variable Value UnitsI

Yield Shear Stress yTAUY 1.0 x 106 Pa
Maximum Shear

Modulus r~max GI AX 1.0 x 108 PaI
Mass Density pPH4OREF 1900 kg/ni 3

IF
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V.5 Elastic-Perfectly Plastic

V.5.1 Motivation

The principal advantaqes of an elastic-perfectly plastic model are

that it incorporates stress state limits observed in laboratory strength

tests, anO produces inelastic strains when a limiting stress state is

reached. The principal disadvantages are that nonlinear, inelastic

behavior does not occur until the failure surface is reached, and, with an

associated flow rule, predicted plastic volume increases at failure are

frequently too large.

V.5.2 Assumptions

An elastic-perfectly plastic, rate independent model assumes the

material remains linearly elastic until a limiting state of stress is

reached, defined by a failure criterion hasede on strength test data.

Neither stress nor strain rate affects the stress-strain relation.

Inelastic strains occur orly at failure. The flow rule can be associative

or non-associative.

V.5 ? Basic Equations

The particular elastic-perfectly plastic model studied here has a

modified, associative Drucker-Prager failure criterion [DiMaggio and

Sandler (1971:042)], of the form

f(I' )= - - Ce )= 0 (V.5.1)

- When the stress point lies below the failure surface, so that

( 0 (V.5.2)
f (11,F 2) < 0 (..) r-

the material behaves elastically, in accordance with the equations of

Appendices V and J. When a stress increment calculated assuming elastic

-. 3

• 
, % .. ..- -.- -_ - . . . , . .- - . -. .. . ..387. .
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behavior moves the stress point through the failure surface, so that

f II)E,( = ) > 0 (V.5.3)

a correction procedure is invoked to return the stress point to the

failure surface. The correction procedure is developed in Appendix P. It

starts by computing

dx = (V.5.4)
9Kf 2 + Gf2

I II

where K, G = elastic bulk and shear moduli

f = (f = -BCe (V.5.5)aI1 E

:(V.5.6)

Adjustments to the elastically computed invariant stress point coordinates

are then computed using the equations

(I1 ADJ = (I1)E - 9KfIdx (V.5.7)

=J DGf1 : -(V.5.8)

[~} ~d ~ [~}E(V.5.9)
2 E.

Unless

<0 (V.5.10)

the correction procedure is repeated.

V.5.4 Parameter Determination

The elastic hulk and shear moduli, K and G, are determined by the

methods described in Appendices V and J. The failure criterion

388



parameters, A, B, and C, are determined by nonlinear regression or simply

by eye, using shear strength data and the relations

•lira = A - C (V.5.11)

F2~

• ~~11)'0..-..

S4

lim F = A (V.5.12)
11

lim - -BC (V.5.13)
11) 0 1

Parameters for the elastic-perfectly plastic model exercises are

shown in Table V.5.1. The bulk and shear moduli and density are equal to

those chosen for the elastic model. The only difference between the

models is the introduction of a shear failure surface.

I b V.5.5 Computed Behavior

The behavior of the elastic and elastic-plastic models is identical

for isotropic compression [Figure (V.5.1)] and uniaxial strain compression

F [Figures (V.5.17-V.5.10)]. Note that the uniaxial strain compression

stress path lies entirely under the failure surface [Figure (V.5.18)] for

these parameters. CTC and CTE stress-strain behavior [Figures

(V.5.2-V.5.9)] is much improved over the elastic model by the failure

surface, but only for lower confining pressures (03c < 10 MPa). A

non-associated flow rule was used here, so the tendency for this material

to dilate with shearing is not predicted [Figures (V.5.2-V.5.5) for CTC,

and Figures (V.5.6-V.5.9) for CTE].

The RTC/E [Figures (V.5.10-V.5.13)] and PSC/E [Figures

(V.5.14-V.5.15)] calculated behavior again shows elastic behavior until -"

389
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the stress path reaches the failure surface. Behavior in the triaxial

cell as predicted by the elastic-perfectly plastic model is summarized in

Figure (V.5.16).

Predicted UXE behavior [Figures (V.5.20) and (3.5.21)] is more like

the data than the elastic model because of the addition of the failure

surface, but still does not match the overall shape of the observed stress

path.

The results of the axisvmmetric strain path calculations are shown in --

Figures (V.5.22) (WES paths) and (V.5.23-V.5.24) (Lade paths). In both

cases the hulk modulus is too high in comparison with the data, and so is

the shear modulus for the Lade paths. The true-triaxial strain path has a -.

similar problem as sen in Figures (V.5.25) and (V.5.26).

i

I|
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TABLE V.5.1. ELASTIC-PERFECTLY PLASTIC MODEL
PARAMETERS FOR CARES-DRY SAND . -

Parameter Symbol Variable Value Units -

Bulk Modulus K BULK 3.76 x 108 Pa 3
Shear Modulus G SHEAR 1.44 x 108 Pa

A CA 2.88 x 105 Pa
Failure Surface B CB 0.00 1/Pa

Corstants C CC 0.00 Pa
M CAN 0.215 --

Tension Cutoff T TCUTI 6.0 x 104 Pa
Flow Rule Switch* - RULE 1.0--
Mass Density PHOREF 100 kg/n 3

*0.0 =AssociatedL

1.0 = Non-Associated (von Mises plastic potential)
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V.6 fodified AFWL Engineering

V.6.1 Motivation

The AFWL engineering model is hypoelastic-perfectly plastic in shear,

and hypoelastic in compression. A hypoelastic material is one for which

the stress increrents are homogenous linear functions of the strain

increments. The coefficients in the linear functions may depend on stress

[Fung (OFP:44.); Nelson, Baron, and Sandler (1071:314)]. The principal

advantages of the AFWL engineering model are ease of fitting to labQratory

ard in-sitt, test data, simplicity of the shear plasticity formulation, and

the fact that the model exhibits compressive hysteresis, which most soils

do hut many Plastic-perfectly plastic models do not. Its principal

disadvantages are lack of hysteresis in pure shear at constant volume

below the failure surface, and lack of dilatancy because the plastic

potential function for yielding in shear is the von Mises function (a

right circular cylinder centered on the hydrostatic axis), which causes

plastic incompressibility in shear.

V.6.2 Assumptions

Figure (0.1) shows the shear failure surface, plastic potential

surface, and hysteretic hydrostat which partially define a modified

version of the AFWL engineering model in use at Applied Research

Associates. The initial loading hydrostat governs only when the

Printout cancelled hy operator
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I

segment slopes must be specified so as to avoid compressive energy

El creation, and Poisson's ratio must be specified on each hydrostat segment

so as to avoid distortional energy creation, as well as match constrained

compression stress paths for both initial loading and unloading/

* reloading. When the compressive vnlumetric strain falls below the value

at which the unloading hydrostat yields a value of 1 less than T, the

tension cutoff, both I and the hulk modulus, K, are set eoual to zero.

As the material recompresses after tensile failure, both I and K remain

zero until the compressive volumetric strain exceeds the value at which

the tirloading/reloading hydrostat crosses the volumetric strain axis. As

long as K is zero the shear modulus, G, is also zero, so that no j

hypoelastic deviator stress incremerts are cenerated. This means that all

stresses are zero, because the only point in Figure (Q.la) at which the

tension limit can he reached without previously violating the shear

failure surface is the point where the shear failure surface meets the

T, axis, and there the deviator stresses are already zero. Therefore

* when tensile failure occurs the stress point automatically moves from the

tensior ciitoff point to the origin in Figure (Q.la), and stays there until

the hydrostatic stress starts to build up from zero. When that happens

the shear moduluF aqain becomes nonzero, and hypoelastic deviator stress

increments once again start to accumulate. The AFWL engineering model is

rate independent, and the shear plastic flow, rule is nonassociative with

respect to the Drucker- PragE', portions of the shear failure surface and

associative with respect to the von Mises portion.
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V. 6.3 3asic Equations

The hydrostat defines the incremental elastic (hypoelastic) bulk

odulus as a function of current and maximum past compressive volumetric

strain, and compressive volumetric strain increment.

K K(,V, V,,d~v) (V.6.1)

where

£Vm = maximum past compressive volumetric strain

Poisson's ratio is also defined for each hydrostat segment, so that

v = v(,Vr,dv) (V.6.2)

Hypoelastic constrained compression and shear moduli are then computed

from the expressions

M 3K(1 - ) (V.6.3)+ V,,

G 3K(I - 2v) (-6"

2"1 + 4 (V.6.4)

The shear failure surface is a series of conical segments, each

having an equation of the form

f(11 F) J -2 (a + bIj) 0 (V.6.5)

When the stress point lies below the failure surface, so that

f(I1 4i72) < 0 ( 66

the material behaves incrementally elastically, in accordance with the

equations of Appendix J. When a stress increment calculated assuming

incrementally elastic behavior moves the stress point through the shear

failure surface, so that

fLI1(' = 6 > 0 (V.6.7)

a correction procedure is invoked to return the stress point to the shear

failure surface. The correction procedure is a special case of that
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developed in Appendix P. Since the von !lises plastic potential function

has the form

9 = FJ2(V.6.8)

it follows from Equations (V.6.r5) and (V.6.8) that

-b (V. 6.9) ..

f (V.6.10)

91 0(V.6.11)

1 (V.6.12)

so that Equations (P.17), (P.22), (P.25), (P.26), (P.28), (P.29), and

(P.32) yield

f3
= -x (V.6.13)

f3
* {deP-[1 (V.6.14)

2GF

(dI 1  0 (V.6.1q)

(d4?Up f4 (V.6.16)

(P2)4 a + b(110 3  (V.6.17)

[(j2) 4

I~S4 _F [s)2 3 (V.6.18)

Cep Ce + {s3 {~T G {s}{m}T (..9

Fromi Equation (V.6.19), the incremental constrained nodulus for a point on

the shear failure surface is

t4v M + 3Kb - Si2 (V.6.20)
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and the incremental constrained horizontal modulus for a point on the

shear failure surface is
i 3Kb G"."'

I K M+ ks 2 - s1s 2  (V.6.21)

Equations (V.6.20) and (V.6.21) provide the information required to -,

compute the constrained compression stress-strain curve and stress path,

since

(.~ KM V (V.6.22)

(V.6.23)
3K0  H

It is shown in Appendix Q that the incremental stiffness matrix defined hy

Equation (V.6.19) does produce a stress increment that lies in the shear

failure surface.

V.6.4 Parameter Determination

The parameters of the AFWL engineering model are determined by

fitting a series of straight lines to shear strength, hydrostatic 2

compression, apd constrained (uniaxial) compression or K test data.

For triaxial compression, Equations (K.3) and (K.9) yield

Ii Ca + 2(r (V.6.24) -
1 a r

and"

I °a - %r (V.6.25) ' """

Then assuming shear strength data are obtained from drained triaxial

compression tests at constant cell pressure, straight lines are fit to

consecutive portions of the data, plotted as 0 af (the dependent

variable) versus ar (the independent variable) either by eye or hy

linear regression. Successive linear relations between F2and are

422
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then obtained by a simple linear transformation, and these relations

constitute the shear failure criterion.

Since axial strain equals volumetric strain in a constrained .

compression test, Poisson's ratio can he calculated if both hydrostatic

and constrained compression test data are available, and if the fitted

straight line segments to both curves have common volumetric strain break

points. Equation (V.6.3) yields

3-M
3K - M _T (V.6.26).v "7"F +M - M .. o

3+

Otherwise, Poisson's ratio is assumed, and either M is calculated from

Equation (V.6.3) when only hydrostatic test data are available, or K is

calculated from the equation
M(I + V) -- '

K = 3-( - (V.6.27)

_ iwhe only constrained compression test data are available.
I

In case K test data are available (from constrained compression0

tests conducted in a triaxial cell, in which the confining stress is

* measured), Poisson's ratio can he computed from the hyperbolic relations -.

MH V (V.6.?P)
o  IT- = _V

V
K

0 (V.6.29)

This last method is the most desirable for airhlast loading applications,

hut K tests are more difficult and expensive than either simple

constrained compression (oedometer) or hydrostatic compression tests.

Modified AFWL engineering model parameters were determined for

remolded CARES-DRY sand by fitting uniaxial strain data (stress-strain and

stress path) and triaxial compression shear failure data. These

parameters are listed in Table (V.6.1).
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V.6.5 Computed Behavior

By examining Figures (V.6.17-V.6.19) one can see that an excellent

fit is achieved for uniaxial compression (UXC), since this data was used

for fitting. Isotropic compression behavior (which is a prediction) is

also well matched, as shown in Figure (V.6.1). CTC behavior [Figures - "

(V.6.?-V.F.5)] is well fit with respect to ultimate shear strength [Figure

(V.6.2)], but the match of stress-strain response prior to failure

deteriorates with increasing confining pressures and the model does not

predict any dilatancy [Figures (V.6.4) and (V.6.5)]. Because the AFWL

ongineering model considers any stress excursion causing volume expansion

to be unloading, and subsequently invokes a very high stiffness, CTE

stress-strAin behavior is rather poorly predicted [Figures (V.6.6) through

(V.6.9)]. Note also that a failure surface which is symmetrical about the

P-axis does not match triaxial extension data well. The sharp

discontinuities in stress-strain behavior caused by the load-unload

bifurcation are aoain demonstrated in the RTC/E calculated results

[Figures (V.6.10-V.6.13)]. Calculated pure shear behavior, which by AFWL

engineering standards is neither loading nor unloading, shows very stiff

behavior rFigures (V.6.14) and (V.6.1F)] because of the v convention

for deciding which bulk modulus to use. Figure (V.6.16) summarizes the

behavior calculated by the AFWL engineering model for stress paths run in

the triaxial device starting at 7.1 MPa confining pressure. An important

aspect of behavior to notice is the single P-es response enforced for

all stress paths.

Stress paths generated by uniaxial strain extension are not

characteristic of the data [Figure (V.6.20)] because of the symmetrical h i.'
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failure sutrface and elastic response prior to encountering the failure

surface. Shear response for the UXE test is shown in Figure (V.6.21).

Comparisons of calculated strain path results for this model with

actual data are only fair. Stress path shapes for both the WES strain

paths [Figure (V.6.??)2 and the Lade strain paths [Figures (V.6.23-

V.6.24)] are similar to the data, but off in both pressure and stress

difference magnitudes. A large part of the deviation occurs when the

specified strain path dictates expansive volumetric strain. At this

point, as 5hown in Figure (V.6.22), the shear modulus Jumps due to the

abrupt bulk modulus change at unloading. Eventually the failure surface

is reached and followed back down to its apex. The calculated response IL
for the true-triaxial strain path is compared with the data from Nellis

Baseline Sand in Figures (V.6.25) and (V.6.26). With the exception of the

initial direction of the stress path, these results are good.
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TABLE V.6.1. MOnDIFIED AFWL ENGINEERING MODEL
PAREMETERS FOR CARES-DRY SAND

Parameter Symbol Variable Value Units

No. Load Slopes r I  RNLS 8 --

No. Unload Slopes nu RNUS 5 --

BKL(1) 0.302 x 107 Pa
BKL(2) F.2F1 x 107 Pa
BKL(2) 1.491 x 108 Pa

Loading l  BKL(4) 3.530 x 108 Pa
Bulk Moduli BKL(5) 1.088 x 109 Pa

BKL(F) 3.419 x 109 Pa
PKL(7) .042 x 109 Pa
BKL(P) 2.792 x 1010 Pa
EBL(1) 0.01181 --

EBL(2) 0.08191 --

EBL(3) 0.1292 ... .
Loading Strain Ebl EBL(4) 0.1642 --

Break Points EBL(5) 0.2014 --

ERL(6) 0.2294 --

EBL(7) 0.2516 --

EBL(8) 1.0000 _-
Loading POL(1)-

Poisson's Ratio vi P0L(8) 0.32 ..
BK U(1) 9.000 x 1011 Pa
BKU(2) 4.500 x 1010 Pa

Unloading BKLI(3) 1.390 x 1010 Pa
Bulk Moduli KU  BKU(4) 4.725 x 109  Pa

BKU(5) 1.000 x 109 Pa
Unloating PBU(1) 1.045 x 1010 Pa

HyProstatic PBU(2) 2.800 x 108 Pa
Pressure PBU(3) 3.000 x 107 Pa
Break Points PBU(4) 2.000 x 107 Pa

PBU(5) -2.880 x 105  Pa
Unloading POU(1)- d

Poisson's Ratio vu POU(5) 0.20 --

Tension Cutoff T ST1 -2.880 x 105 Pa
F.S. Intercept Y Yi 2.880 x 105 Pa
F.S. Slope S Si 0.215 --

Von Mises Cutoff VM V11 1.750 x 108 Pa
Mass Density p RHOREF 1900 kg/m3

4 2' ,426"' --[-L
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V.7 Effective Stress Cap

V.7.1 Motivation

The cap model, in its various forms, sacrifices some analytical and

computational simplicity for a more accurate representation of soil

behavior than provided by simpler models. The perfectly plastic,

associative shear failure surface of the cap model discussed here

transitions exponentially from a Drucker-Prager asymptote at low confining

pressure to a von Mises asymptote at high confining pressure. Volumetric

hysteresis, and control over excessive dilatancy are provided by a strain

hardening, associative, ellipsoidal cap yield surface which intersects

both the shear failure surface and the hydrostatic axis. Inside the

failure and yield surfaces the material is hypoelastic without hysteresis,

with volumetric and deviatoric behavior uncoupled. The cap model

satisfies Drucker's stability postulate and the continuity condition, and

thus produces stable, unique solutions. The basic model is a drained

(effective stress) model, but an undrained (total stress) hydrostat is

also used to calculate pore pressure during undrained loading. The 6..

principal advantage of the cap model is accuracy in representing most

aspects of soil stress-strain behavior. The principal disadvantages are

he large number of material parameters required, the amount of trial and -

error based on experience needed to determine the parameters, inability to

predict dilatancy prior to shear failure, computational complexity, an

oversimplified approach to undrained response analysis, and lack of a

closed form relation between total volumetric strain and effective

octahedral normal stress.

p.
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V.7.2 Assumptions

The cap model assumes shear failure to be governed by a perfectly

plastic, associative failure surface, and plastic deformation beneath the

shear failure surface to he governed hy a strain hardening/softening,

associative cap yield surface which intersects both the shear failure -,

surface and the hydrostatic axis. The cap strain hardening parameter is

plastic volumetric strain, which increases during compression causing cap

expansion, and decreases due to dilatancy on the shear failure surface

causing cap contraction. Uncoupled volumetric and deviatoric hypoelastic

relations inside the failure and yield surfaces assume the bulk modulus to

be a function of the octahedral normal stress, and the shear modulus to be

a function of the octahedral shear stress. Dilatancy is recognized in the

drained (effective stress) model at failure, but not in the undrained

(total stress) model, which is represented by an undrained hydrostat. The

assumption is that total octahedral normal stress is uniquely related to

total volumetric strain, regardless of shear deformation. Pore pressure

is calculated as the difference between total and effective octahedral 1 .j

normal stress.

V.7.3 Basic Equations

The shear failure surface has the equation

F2 f(1) = (Cs + al) + CI - e- ) (I{ > T) (V.7.1)

(I'i< T) (V.7.2) ... !

where T is the tension cutoff, but the shear failure surface exists only

for 11 < k, where k is the value of I at which the shear

failure surface and the cap yield surface intersect. (See Figure (R.1).)
44..
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In the cap model discussed here k is prevented from becoming negative, so

that k = L, where L is the value of II at the center of the

ellipsoidal cap yield surface. Thus the ellipsoidal cap has a horizontal

tangent where it meets the shear failure surface, and there is no

von Mises transition. The cap yield surface equation is J- 

2 42

2= F(I ,k) R J X L) (I L (L < 1 < X) (V.7.3)

where

R X (V. 7.4) .

and X, L, ano R are all related to plastic volumetric strain, as shown in

Figure (R.4). In particular, X, the value of Il at which the

ellipsoidal cap yield surface intersects the hydrostatic axis, is related

to plastic volumetric strain by the equations

X =3G' 1 (n (V. 7.5)

where Gr is the hydrostatic component of geostatic effective stress, D

and W are material constants, and

z fdz (V.7.6)

where

dz = 0 (k = 0 and dekK < O)

= dEkK (otherwise) (V. 7.7)

Below the yield surfaces the material is hypoelastic without hysteresis,

with volumetric and deviatoric behavior uncoupled. Thus

SdI= 3K 6E V. 7. )

dsij 2Gde (V.7.9)
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where

K -sK 2s ( I  - 3Gr'-,

K 5  s 1 - K1 se (V. 7.10) .-• Ks = -Ks

G F -G2 /J2"
1 G1 1 - G e, (V.7.11)

and Kis, Ks, K2s, Gi ' G1, and G2 are material constants.

Equations (V.7.1) through (V.7.11) apply to the drained (effective

stress) cap model. In addition, an undrained (total stress) bulk modulus

for isotropic compressive loading is definec by an equation identical in

form to Equations (V.7.10) and (V.7.11).

____I 1K~i
fl Ki K im 3

K i m  K e - 2n I r (V.7.1Z)

In an undrained calculation pore pressure is calculated by the equation I

U 1- Ii (V.7.13)

A more detailed mathematical description of the cap model is given in -i

Appendices R and S.

V.7.4 Parametric Determination

All the cap model parameters can in principle be determined from

standard laboratory isotropic compression and triaxial compression tests

at constant cell pressure, as explained in Appendicies R and S. However,

the parameters thus determined are usually refined by trial and error to

match uniaxial ana triaxial compression test data, and sometimes even

dynamic field test data. The trial and error process is based on

experience, and has not been explained in step by step fashion in the dt  -

literature.
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Table (V.7.1) lists the cap model parameters used for modeling

remolded CARES-DRY Sand. The functions for the elastic bulk and shear

moduli have been reduced to constant linear relationships (Ki, Gi).

This is because when K = K(I) and G = ) it is difficult to
K maintain a reasonable uniaxial strain unload-reload stress path shape. -

The failure surface parameters (Cs a) were fit to standard triaxial test

results on dry material. The cap shape (R) was chosen based on previous

experience with dry alluvium, and its hardening parameters (W, D) were

iteratively fit to uniaxial compression stress-strain data.

V.7.5 Computed Behavior

V.7.5.1 Drained (or Dry) Model

As noted above, uniaxial compression stress-strain data was used for

fitting the cap model. Figure (V.7.18) shows this data, compared with

computed bahavior. The model cannot match the changes in curvature of the

stress-strain data because of the single exponential formulation of the

cap hardening function [Equation (R.?1)]. Rather, it is fit to produce an

1 acceptable response over the stress range of interest (oa- - 50 MPa,

in this case). Stress path data from the K test [Figure (V.7.19)] is
0

matched reasonably well, but this model does not produce any unload-reload

loops due to the purely elastic behavior under both the failure surface

and cap. The variation of shear stiffness in the uniaxial test is shown

* - in Figure (V.7.20). A comparison of the calculated isotropic compression

response with test data [Figure (V.7.1)] is similar to the calculated vs.

observed UXC comparison. Overall, the fit is good, but sharp changes in

stiffness with increasing pressure cannot be matched.
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Calculated CTC stress-strain response is better at lower confining

pressures than at the higher ones [see Figures (V.7.2) and (V.7.3)]. The

tests at 50 MPa and 1OO MPa confining pressure show much too stiff a

response but with a reasonable stress difference at failure. This is . "  '

because at higher initial confining pressures, the capacity for

irrecoverable volumetric compaction has nearly been exhausted, causing

very stiff volumetric response [see Figure (V.7.5)]. Figure (V.7.4) shows

that no dilation is predicted by the cap model for CTC because the stress

point is always located on the cap or at the intersection of the cap and

failure surface. Here, the plastic strain rate vector is forced to be

perpendicular to the P-axis.

CTE response [Figures (V.7.F-V.7.9)] at low strains is very stiff,

because initially the cap does not need to expand in order for the stress

point to move away from the P-axis. Thus, this initial behavior is

elastic [Figures (V.7.6) and (V.7.7)]. However, further outward movement

of the stress point requires the cap to move out to maintain its shape

(R= 2.5). This cap hardening is accompanied by compressive volumetric

strain [Figure (V.7.9)] and a much softer stress-strain response.

Eventually, the shear failure surface is reached, whereupon volumetric

straining stops [see Fioure (V.7.8)]. Thus there is no predicted dilation

here either, and in fact, the data tends to support this [Figure (V.7.8)].

The RTC and RTE exercises yield very different behavior from each

I other, as shown in Figures (V.7.10) through (V.7.13). During the RTC

test, the stress point moves off the P-axis into the elastic region and

thus yields very stiff initial stress-strain behavior. The failure

surface is soon encoiortered, however, and the material fails in shear and
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begins to dilate (Figure (V.7.12)] at constant pressure [Figure (V.7.13)].

i The cap subsequently retracts to meet the current stress point and dilation

is then stopped. RTE behavior, conversely, is initially soft because the

cap is being forced outward constantly [Figure (V.7.10)]. RTE volume

response is purely compressive. In fact, at 15 percent radial strain in

this test, the shear failure surface has still not been reached at any of

the confining pressures.

The PSC and PSE stress paths [Figures (V.7.14-V.7.16)] both force the
L

stress point directly outward from the P-axis, causing cap expansion and

therefore volumetric compression [Figure (V.7.16)]. When the failure

surface is reached, the plastic strain rate vector swings perpendicular to

the P-axis and volumetric strain ceases.

Figure (V.7.17) summarizes the behavior of the cap model for the tests

" i performed in the triaxial cell starting at 7.1 MPa confining pressure. Cap

model uniaxial extension (UXE) behavior is elastic until shear failure,

producing a stress path substantially different from that actually observed

U ([Figure (V.7.21)]. Figure (V.7.22) shows that dilation occurs when the

stress point is on the failure surface, meaning that the cap retraction in

this case is not fast enough to overtake the stress point and limit

subsequent dilation.

Cap model predictions of axisymmetric strain path experiments are

shown in Figures (V.7.23) through (V.7.25). The initial behavior in these

'- tests is dominated by an ad~iustment from isotropic stress to uniaxial

strain conditions. Apparently, the stress point moves up the cap until a

point on the cap is reached which has an outward-nornal plastic strain-rate

vector which produces a compressive increase in radial stress under
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uniaxial strain boundary conditions. Until this point is reached, radial

stress increments are tensile and the mean normal stress drops. When this

point is reached, the stress path assumes a slope more typical of uniaxial

total strain. From there, the stress path breaks over toward the failure

surface when the strain path dictates volume expansion, and subseouently

follows the failure surface. With the exception of this initial behavior

the cap moeel matches both the WES data [Figure (V.7.23)] and the Lade

data [Figures (V.7.24) and (V.7.25)] reasonably well.

Figures (V.7.26) and (V.7.27) compare the truly-triaxial strain path

prediction for remolded CARES-DRY Sand with data from Ko's tests on Nellis

Baseline Sand [Ko and Meier (1983)]. The major departures from typical

alluvium data occur again at initial departure from the P-axis and during

reloading from the spalled condition.

V.7.5.2 Undrained Model

Since no data exists for undrained tests on saturated remolded

CARES-DRY Sand, only calculated results for CTC/CTE will be shown. This

will serve to illustrate how the undrained portion of the effective stress

cap model works.

Figure (V.7.?8) showvs the total and effective stress paths for the

CTC and CTE tests at three confining pressures (7, 59, and 100 MPa). The

difference between the two paths is the predicted pore pressure, which is

plotted against axial strain in Figure (V.7.29). Stress-strain response

for the axial and radial directions is shown in Figure (V.7.30) and the

volume strain prediction is plotted against axial strain in Figure

(V.7.31). Note that the volume strain in Figure (V.7.31), while not zero

for undrained loading, is almost two orders of magnitude less than that in

Fioure (V.7.1).
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ITABLE V.7.1. EFFECTIVE STRESS CAP MODEL PARAMETERS
FOR REMOLDED CARES-DRY SAND

Parameter Symbol Variable Value Units

Drained Elastic Ki AKI e'.0 x 10 Pa
Bulk Modulus K1  AKI -0-

K2  AK? -0-

IUndrained Kim AKIM 8.0 x 10 Pa
Bulk Modulus Kim AK1M 0

K 2m AK?M 0

Gi AGI 3.0 x 109 Pa
Shear Modulus G1  Ar.1 -0-

G2  AG? -0-

Cs AC me8 x 105  Pa
Failure Surface a AM 0.215 -

B RB -0--
bC CCC -0-

CapShpeRi ART 2.50 -

Ca hp I ARI -0-
R2 AR2 -0-

gCap Hardening W AW 0.200 -

D AD 1.800 x 10-P 1/Pa .
Mass Density PRHOREF 1900 kg/rn3
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V.8 Lade

V.8.1 Motivation

The Lade model discussed here is an elastoplastic model with two

yield surfaces. One, called the expansive yield surface, is bullet shaped

with its nose at the origin in stress space. The other, called the

collapse yield surface, is spherical with its center at the origin. Both

yield surfaces harden in response to the corresponding plastic work, and

the expansive yield surface also softens when the corresponding plastic

work exceeds a certain value. The collapse yield surface is associative

and the expansive yield surface non-associative. The principal advantage

of the Lade model is accuracy in representina most aspects of soil stress-

strain behavior. The model exhibits nonlinear, inelastic behavior in both

shear and compression even at small strains, and the expansive yield

B surface has a non-circular octahedral cross-section and therefore

indicates an influence of the intermediate principal effective stress (or

Lode's parameter) on shear strength. The principal disadvantages of the

F Lade model are possihlp underprediction of compressibility under the

influence of shear at small strains, lack of flexibility in matching true

triaxial shear strength data in the octahedral plane, lack of a device to

prevent negative plastic work, and possible instability and lack of

unioueness due to strain softening of the expansive yield surface.

V.8.2 Assumptions

The assumptions underlying the Lade model are hasically those

discussed in Appendix D, except the dissipation condition is not

enforced. Instead of a yield function defining the stress levels at which

plastic strain increments can occur, it defines the stress levels at which

plastic strain incrempnts will occur [Lade and Nelson (1981:50A,507)].
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The strain hardening parameter for each yield surface is the corresponding

plastic work, rather than plastic volumetric strain as with the cap

model. The use of two separate yield surfaces, each with its own

potential surface and hardening rule, assumes that a material really has " .

two separate yield surfaces. 4

V.8.3 Basic Equations

The collapse yield criterion has the equation

fc fc -c 0  (V.8.1) 

in which

2+ 2 3( 2 + 2c (V.8.2)fc 1 Ii = OCT OCT _ .-

C p2a W (V.8.3)

where "

Pa = atmospheric pressure

C, p = material parameters

and

Wc f[}oT [dc] (V.8.4)

The collapse plastic potential, to which the collapse plastic strain

increment vector, [d~ c] , is normal, is

29c f= I + 212 (V.8.5)

The expansive yield criterion has the equation

I II

f p - fp= (V.8.6)p p . .. . .
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I

in which

V.. 7

f' = f't faiur (V.8.8)
p prfAX T a u

bW~ 1 /q
f= ae P (V.8.9)

where

m, T1 , a, b, q = material parameters

and

Wp = jT~p] (V.8.10)

The expansive plastic potential, to which the expansive plastic strain
increment vector, EcIPI, is normal, is

F (!aii
p= 1 - 27 +n2 1I (V.8.11)

I- 
"T12 

I

* where n2 is also a material parameter. "

The unloading/reloading elastic modulus is assumed to be given by the

expression

Eur =KrP (V .8.12)

where

K ur' n = material parameters .,, -

* Poisson's ratio is usually assumed constant.

A method for calculating the octahedral cross-section of Lade's

failure surface (the expansive yield surface at its maximum extent) is

given in Appendix T.
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The computational features of Lade's model are covered in Appendices

F, G, H, I, J, K, and T. Using the value of Young's modulus from Equation

(V.8.12) and an assumed Poisson's ratio, the elastic incremental stiffness

matrix is given by Equation (J.31). The general equations of

elastoplasticity given in Appendix D apply, except that the dissipation

condition, Equation (D.8) is not enforced. The elastoplastic incremental

stiffness matrices are calculated as described in Appendix G, but the

polar mode check described in Appendix I is not used. Instead, if the

stress point lies on a yield surface, that surface is assumed to be

active. However, only positive plastic work increments are accumulated in

calculating total plastic work.

V.8.4 Parameter Determination

Determination of the material parameters in Equations (V.8.1) through

(V.8.12) by a series of linear laboratory test data plots is explained in

Appendix T. Parameters for CARES-DRY sand were determined by using an

automatic fitting routine in the Soil Element Model which is based on

Appendix T. Step-by-step results from this fitting process are shown in

Figures (V.8.1) through (V.8.18).

Elastic stiffness data (Young's Modulus) as determined from the

unload-reload portions of isotropic compression, uniaxial strain, and -

triaxial compression tests presented by [Cargile (1984)] are plotted

versus radial confining pressure in Figure (V.8.1). This plot yields

values for the modulus number, Kur, and exponent, n.

Figure (V.8.2) shows the loading hydrostatic data used for obtaining

collapse yield surface parameters. In Figure (V.8.3) the hydrostat has

been integrated to show collapse plastic work versus radial confining

pressure squared. Elastic properties are varied according to the
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previously determined relationship with c3 during integration. A single

i straight line is passed through the data (open circles) to determine the

collapse constant, C, and the exponent, p.

Figure (V.8.4) shows triaxial stress-strain data at five confining

pressures. When the data does not approach a "peak" response, it needs to

be artificially extended by some method. Extension to peak is necessary

for this type of hardening model to produce reasonably shaped

- stress-strain curves having the correct value of expansive plastic work at

peak stress difference. The method arbitrarily chosen here was to assume

a hyperbolic shape for the last twenty-five percent of both the axial and

radial stress difference-strain curves. A Kondner plot of strain divided

by stress difference vs. strain is then used to extend the data to

ninety-five percent of peak stress difference as predicted by the straight

i line fit. Two such plots are shown in Figures (V.8.5) and (V.8.6) for the

CARES-DRY data at 3.4 MPa and 7.0 MPa, respectively.

. "Peak response data from the extended stress-strain curves are plotted

i in Figure (V.8.7) as fp vs. aIl The parameters from this -I " ,max vs Pa --

fit, nl and m, define the shape and most expanded position of the

expansive yield surface, fp.

Given the previously determined elastic and collapse plastic work

relationships, collapse and expansive plastic strains resulting from the

triaxial test are calculated and plotted in Figures (V.8.8) and (V.8.9),

, respectively. Figures (V.8.10) through (V.8.14) show the components of

volume strain which are relevant to the Lade model: total, elastic,

collapse plastic, and expansive plastic (which is the difference between

total and elastic + collapse). The basic theory of the model requires
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that the strain associated with the expansive yield surface always be

expansive. Rut in Fiqures (V.P.11), (V.P.12), and (V.8.13), this does not

always happen. The reason for this is that at these confining pressures,

collapse behavior as determined by the isotropic test is stiffer than would

be indicated by the triaxial test. One remedy for this inconsistency is to

use an envelope of pressure-volume response which encompasses both tests.

The triaxial data and calculated expansive plastic strains are used to

determine the variation of the expansive yield surface, f with

expansive plastic work, W This is shown in Figure (V.8.15). Note that

the data does not conform to the idealized shapes for these curves as

postulated by the model. Values of plastic work at peak stress differencE

lay roughly on a straight line in log space [Figure (V.8.16)], but the shape

parameter, a, in arithmetic space does not [Figure (V.8.17)].

The expansive plastic potential parameters are derived from Figure

(V..P), which shows the variation of n2 with both f and 3C.

The straight lines lie in a plane which passes through the entire set of

data. The rough appearance of the data is primarily a result of three

factors:

(a) The data was digitized by hand from small plots, and radial strain ..-.

was calculated by graphically subtracting strain difference from

axial strain.

(h) Unload-reload loops were eliminated from the data, but did in fact

have a significant effect on volumetric response.

(c) The fitting process up to this point may introduce some

inconsistency between test data and predicted mode7 response.

If raw data had been available in digital form, and only loading had been "

performed in these specific tests, a much smoother plot would be expected.
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Table (V.8.1) summarizes the Lade model parameters for rerolded

CARES-DRY sand.

V.8.5 Computed Behavior

With a two-parameter exponential fit to the hydrostat, the Lade model

*can produce a curve of single inflection only, either convex or concave.

Figure (V.8.19) shows this, compared with the test data. The fit is

reasonable at higher stresses, but cannot match the low stress variations

in bulk modulus trend.

CTC stress-strain data, used to fit the model, is well matched

[Figures (V.8.20) and (V.8.21)]. Volumetric response is qualitatively

good [Figure (V.8.22)], hut overestimates the tendency for dilation in the .

looser (lower (73c) sar('s. Pressure-volume response comparisons [Figure

(V.8.23)] are very good, again with the exception of over-dilation at low

* stresses. CTE shear failure levels [Figure (V.8.24)] could be matched

better with a slightly lower asymmetry in the expansive yield surface.

Initial shear stiffness is too high [Figure (V.8.25)]. The test specimens

tended to compact only, while the model predicts a small amount of initial

elastic expansion, subsequent plastic compaction as the collapse yield

surface is pushed out, and finally dilation as the expansive yield surface

is pushed toward its ultimate position rFigures (V.8.26) and (V.8.27)].

The constant axial stress (RTC/RTE) and constant mean normal stress

(PSC/PSE) triaxial test exercises serve to illustrate the principal

aspects of the Lade model: work hardening/softening, asymmetric yield

surface, and shear-vnlume coupling (dilatancy). Due to the work-hardenin-

expansive yield surface, stress-strain behavior is smooth for both the

'- RTC/E tests [Figures (V.8.28-V.8.31)] and PSC/E tests [Figures (V.8.32-

V.8.34)]. Different levels of stress difference near shear failure for
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PSC and PSE [Figure (V.8.32)] are a result of the asymmetry of the failure

surface. Work softening is most evident in the RTE test [Figure (V.8.28)].

Note that this causes a negative net shear stiffness, as seen in Figure

(V.8.29). Dilation is evident for both the RTC/RTE tests [Figures (V.8.30)

and (V.8.31)] and the PSC/PSE tests FFigure (V.8.34)]. This is especially

important in the constant pressure tests.

Behavior predicted by the Lade model for tests run in the triaxial

device from 7.1 MPa confining pressure is summarized in Figure (V.8.35).

Note the variability in pressure volume response due to varying dilation.

Predicted uniaxial strain compression (UXC) behavior compares poorly

with the data [Figures (V.8.36) through (V.8.38)]. The calculated uniax is

very soft at low axial stress, due to the low initial confining pressure

(0.1 IlPa) and subsequent low elastic stiffness (E is a function ofur

radial stress). The model also suddenly softens at about Oa = 38 MPa

[Figures (V.8.36) and (V.8.37)] because the peak expansive plastic work is

attained. Clearlyv, this type of softening behavior is not appropriate for

this material under these test conditions. Qualitatively, the UXE stress A

paths compare ouite well with the data [Figure (V.8.39)], but again it

appears that somewhat more shear capacity in extension is required. Figure

(V.8.010) shows calculated UXE stress-strain response.

Calculated results for the WES strain paths, shown in Figure (V.8.41)

are reasonable but show a slightly high shear stiffness, as can be seen in

the plot of 1 3) vs. (E1-E 3 ). Neither calculated stress path

shows the rather flat stress difference response upon increased radial

expansion as is observed in the data. The second set of strain paths

(denoted "Lade") originates at a low confining pressure (03c : 0.4 MPa).
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This causes the Lade model to have a very low initial volumetric stiffness

and causes underestimated pressures [Figures (VY..42) and (V.8.43)]. The 4

overall shape of the calculated stress paths is very good. Figures

(V.P.46) and (V.8.4F) show predicted response for the true triaxial strain

path. Data for Nellis Baseline Sand is included on the plots for

comparison. Both the stress path and volume response comparisons look

quite reasonable.
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TABLE V.8.1(a). LADE MODEL PARAMETERS FOP
REMOLDED CARES-DRY SAND

Parameter Symbol Vari ab Ie Value Units

Moriul us Numhbr K EKL'P 363.5 --

Modulus Exponent n EN 0.8412 --

Poisson's Patio v POIS 0.20 --

Collapse Constant C C 2.700 1 -  --

Collapse Exponent p PC 0.6482 --

Yio fl Constant n, ETAI 84.52 --

Yield Exponent m CURVIM 0.2261 --

r R 0.1806 --

Plastic Potential s SS 0.7309 --

Constants t T -14.52 --

a ALPHA 1.972 --

Work-Hardenino B BETA 2.140 x o --

Constants P PW 0.6379 --

1 ELW 0.8077 --

q Q --

Peak Plastic Wp,pk WPPK Pa
Exp. Work a A varies, see --

b B Table V.8.1(b) --
MPa

Initial Confining a3c SIGMA3 M.-
Pressure

Initial Plastic W WC Pa
Comp. Work co

Mass Density p RHOREF 1900 kg/m3
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TABLE V.8.1(b). LADE MODEL PARAMETERS WHICH VARY WITH CONFINING PRESSURE

03c Q Wppk A B Wc,c,
(MPa) (Pa) (Pa)

0.1 1.97? 6.40 x 10O4  177.3 7.92P x 10-6 5.48 x 10 2

0.4 1.073?2.0? x 10 5 99.06 2.516 x 10-6 3.46 x 1

1.F 1.97F F.60 x 105 5A.31 7.664 x 10O7 2.3? x 1O 4

3.F 1.970 3.13 x 10 6 41.44 Ai.471 x 107 5.50 x 1

7.0 1.9P7 1.98 x !0 6 31.34 2.545 x 10-7 1.35 x 105

20.0 ?.014 4.6? x 10o6  20.85 1.075 x 10-7 5.27 x 105

32.0 ?.OdO 6.7F x 10 6 17.6? 7.264 x 10-8 9.70 x 105

59.0 2.006 1.10 x 107  1d.54 d.324 x 10- 2.13 x 106
*100.0 2.183 1.69 x 10 12.81 ?.704 x 10-8  4.5xi 6
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9.

APPENDIX W

DEVELOPMENT OF THE ARA CONIC MODEL

W.1 Motivation

Of the eight soil constitutive models examined in Section 3 and

Appendix V, the Lade model is most appealing from three important

standpoints:

a) favorable rating with respect to seven of the ten evaluation

criteria in Table 3.1;

b) accuracy and flexibility in reprcsenting soil stress-strain

;- behavior; and

c) ease of developing intuition for parameter physical significance

and accuracy.

-- i Consequently ARA elected to modify the Lade model rather than create a

. completely new one, to develop a soil constitutive model suitable for

S. analyzing the response of soil masses to complex dynamic loadings.

The modifications were designed to achieve the following additional

desirable features:

. a) better volumetric strain response under non-isotropic loading;

b) greater flexibility in matching shear strength data, in both the

triaxial and octahedral planes;

c) correct plastic mode selection based on the thermodynamically

-. related dissipation condition that a positive plastic work

" ". increment accompany yielding;

d) finite, reasonable friction angle at low confining pressure;

e) essentially constant shear strength at high confining pressure;
a n.c°

--'- and I

f) direct (noniterative) shear strength calculation in both the
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triaxial and octahedral planes.

Several Lade model features have been retained:

a) the basic model construction, i.e., two yield surfaces, one

compressive and one expansive, both strain hardening, the

compressive yield surface associative and the expansive yield

surface non-associative;

b) both the compressive and expansive wlorK hardening formulations;

and

c) the unloading/reloading elastic modulus formulation.

New features include:

a) an ellipsoidfal compressive yield surface to increase

compressibility in the presence of shear deformation;

b) a hyperbolic expansive yield surface writh a triple ellipsoidal

octahedral cross section, possessing a finite, adjustable slope

(friction angle) at low confining pressure, essentially constant

shear strength at high confining pressure, flexibility in

matching both compression and extension shear strength data, a

completely smooth octahedral cross section, and directly

computable shear strength;

c) enforcement of the dissipation condition;4

d) development of a polar mode check based on the dissipation

condition, to determine uniquely and without trial and error

which vield surfaces are active und4er a given state of stress and

prescribed total strain increment; and

e) determination of compressive yield surface parameters by fitting

the plastic hydrostat directly (using a linear transformation) -

rather than having to compute compressive plastic work.

55..
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I

*In addition, the work softening feature of the expansive hardening

function may be modified or deleted in future versions of the conic model

to insure uniqueness and stability, and to achieve a finite, constant

shear strength at large shear strain (a non-zero critical state). The

. model is called a conic model because all three controlling surfaces in 4

principal stress space have both triaxial and octahedral cross sections

which are conic sections. It is also called a three invariant model

because the expansive yield surface involves three independent stress

invariants: the first total stress invariant and the second and third

deviator stress invariants. The ARA conic model rates favorably with

respect to all ten evaluation criteria in Table 3.1.

-.At present the conic model uses the incremental stiffness formulation

developed in Appendix G, rather than a trial and error yield surface

violation correction procedure such as that discussed in Appendix S for

the cap model. However, the initial strain increments needed for

numerical stability of the conic model are very small (of the order of

10- ), and a trial and error correction procedure may be an economic -A

necessity when using it to solve dynamic or static boundary value problems.

W.? Assumptions

-•With one important exception, the assumptions underlying the conic

model are the same as those underlying the Lade model, discussed in

. : Section V.8.2. The one exception is the conic model enforces the

dissipation condition, whereas the Lade model does not. Using two

S- separate yield surfaces, each with its own potential surface and hardening

- rule, assumes a material really has two separate yield surfaces. The

- ' strain hardening parameter for each yield surface is the corresponding

. '4
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plastic work. Of course all these elements of an elastoplastic model

really amount to physically motivated curve fitting, the acid tests of -

which are predictive accuracy and ease of use.

W., Basic Equations

The conic model compressive yield criterion has the same general form

as does the Lade model.

fc = f -
f  0 (V.8.1)c c

but the stress related function, f' has a slightly different form.' ' a lgtydffrn om

fc 3 2 + 3r2  2 (W.1)

3GOCT OCT

where

r compressive yield surface ellipse axis ratio (see Figure (U.1)).

The compressive hardening function, f", has the same formc

as does the Lade model.

WjI/P

f 2g 1 p (V.8.3)
c a

where

Pa = atmospheric pressure

C, p = material parameters

and the compressive plastic work, Wc is defined by the equation

c Il T [d,,cl

W f T c (W.2)

The compressive plastic potential, to which the compressive plastic strain

increment vector, [d~c], is normal, is

2 2 2
f=3O 3 T2 (W.3)

OCT 3 r CT

The conic model expansive yield criterion has the same general form

as does the Lade model. ". IF

f = f' - fi = 0 (V.8.6) ., ,. °

but the stress related function, f' has a different form.
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Sa

(1 Ecos 3,)( + (W.4)
Pk\aJ OC /)

in which

pf p'ma at failure (V.8.8),.17" .. p max

, a.. The expansive hardening function, f", has the same form as does the Lade
model. P

-bW Wp\/q
f" = ae p P)(V.8.9)
p PPa

In Equations (W.4), (V.8.8) and (V.8.9)

E, m, nj, a, b, q = material parameters

and the expansive plastic work, Wp, is defined by the equation

Wp JHT pl (V.8.10)

The expansive plastic potential, to which the expansive plastic strain

increment vector, [dell, is normal, is

g p ( C )(1 Ecos 3wj (T) (W. 5)

where r2 is also a material parameter.

The unloading/reloading elastic modulus is assumed to be given by the

expression

n
a( OC "W6w. Eur KurPa (W.6)

C-: •where

Kur, n : material parameters

and the unloading/reloading Poisson's ratio, v is computed as
Vur*
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described in Appendix T, or assumed. When neither yield surface is active

the material response is incrementally elastic.

An unloading/reloading hysteresis option for cyclic loading has been

formulated but not yet fully implemented. The deviatoric strain

increments are considered completely elastic, so that the deviator stress

increments are given by the equation

Eurds.d. ij ( W. 7)
dsij 1 +  Vur _ W

However, a portion of the volumetric strain increment is attributed to

unloading/reloading shear hysteresis rather than to a change in octahedral

normal stress. In other words, a volumetric strain increment, do, would

accompany an octahedral shear strain increment, dz, even under constant

octahedral normal stress. If the octahedral shear strain is

z e i_ (W.8)

then the octahedral shear strain increment, dz, is given by the expressions

e..dei - "'
dz= 3z(z > 0)

(W•.9)
= 1I deijde.j (z = 0)

The octahedral shear strain, z, is nonnegative, but the octahedral shear

strain increment, dz, can be positive, zero, or negative. The volumetric

strain increment due to shear, de, is assumed to be related to the' .

octahedral shear strain increment, dz, by the equation

do dz (W.10)
A - zMe - (y e esgn dz)

.. .
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where

21A, t1, x, Y, s material parameters

N number of octahedral shear strain reversals

The parameters are chosen so the denominator in Equation (W.10) will

Su always be positive. Equation (W.1O) can accommodate irregular cyclic

loading, and produces hysteresis loops which narrow progressively as the

number of octahedral shear strain reversals, N, increases. The octahedral

normal stress increment is calculated by the equation

doocT = K(dEkk - de) (W.11)

The method for calculating the octahedral cross section of the conic

failure surface (the expansive yield surface at its maximum extent) is

given in Appendix U.

The computational features of the conic model are covered in the

appendices. Using the value of Young's modulus from Equation (W.6) and an

assumed Poisson's ratio, the elastic incremental stiffness matrix is given

by Equation (J.32). The general equations of elastoplasticity given in

S Appendix D apply. The elastoplastic incremental stiffness matrices are

calculated as described in Appendix G, and the polar mode check described

in Appendix I is used when the stress point is at the intersection of the

two yield surfaces.

W.A Parameter Determination %

Determination of the material parameters in Equations (V.8.1) through

(W.1O) is discussed in Appendix U. Figures (W.1) through (W.20)

illustrate the fitting process for the ARA model using remolded CARES-DRY

. - Sand data. All the fitting was performed automatically by the Soil

*Element Model. Figure (W.1) shows the variation of Young's modulus with
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1*1

maximum past pressure for this material. This plot represents the best

straight line fit to observed unload-reload stiffness from isotropic .

compression, uniaxial strain, and triaxial compression tests reported by

[Cargile (1984)J. The corresponding pressures are the test pressures at

0which unloading comnmenced. -

Figure (W.?) is the hydrostatic data (loading only) used to obtain

the compressive plastic work parameters. In Figure (W.3), this curve has .

been integrated to show compressive plastic work versus pressure. The

integration process assumes the variation of elastic properties with

confining pressure as previously determined. The data, shown as open

circles, does not fall along a single straight line, even in log-log

space. Therefore, several straight line seqments have been fit, as shown,

with breakpoints between them defined on the basis of compressive plastic

work. The ARA conic model is presently formulated so that up to four I

segments can be used.

Figure (W.4) shows triaxial compression stress-strain data, which, at

some confining pressures, has been artificially extended to near peak

response. This has been done by assuming a hyperbolic shape for the last

twenty-five percent of both the axial and radial stress difference-strain

curves. AKondner plot of strain/stress difference vs. strain is then

used to extend the data to ninety-five percent of peak stress difference

as predicteO by the straight line fit. Two such plots are shown in

Figures (W.5) and (W.6), for confining pressures of 3.4 MPa and 7.0 MPa,

respectively. Some type of data extension to "failure" is necessary for

this type of model to yield reasonable values of peak expansive work.

5.5
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Figure (W.7) defines the shape and maximum extension of the expansive

yield surface, f' Peak values have been plotted for triaxial tests " -
P.

run at five different confining pressures.

Given the previously determined elastic and compressive plastic work

behaviors, Figures (W.8) and (W.9) show the predicted compressive and _ 4

expansive plastic strains during the triaxial test. Figures (W.1O)

through (W.14) break down the total volumetric strain response at each

confining pressure into components. Shown are the total, elastic, and
L .

elastic plus compressive plastic strains. Expansive plastic strain is the

difference between the total and elastic plus compressive plastic curves.

According to the model theory, this should always be a negative quantity,

i.e., the expansive yield surface should always produce expansive volume

strain components. At some confining pressures, however, this does not

hold true. [See Figures (W.11), (W.13) and (W.Ih)]. This implies that

the volumetric response determined from the isotropic compression test

cannot be totally representative of the triaxial test volumetric

response. Note that this can be remedied by using an envelope of

pressure-volume behavior which encompasses both tests. Further adjustment

of the r factor may also help.

* The observed shape of the expansive surface hardening function is

shown in Figure (W.15) for each confining pressure. Peak values from

these curves are plotted in Figure (W.16), and shape-related values are

,. plotted in Figure (W.17).

. Parameters for the expansive plastic potential surface are derived

from a plot of n2 vs. f for several confining pressures, as shownPlo Ofn v.~

in Figure (W.18). The data are derived from triaxial volume response and

557. ".
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model predictions, and a plane is passed through the entire set. The very

rough appearance of the data is due to three factors:

(a) rough hand digitization of test data which had been plotted on a

small area;

(h) elimination of unload-reload loops from the data, which did in

fact have a significant effect on volumetric response (the large

dips, most noticeable at 0 3c5 , coincide with the eliminated

loops);

(c) previous fitting processes which may introduce some

inconsistencies between test data and predicted model response.

Ficures (W.19) and (W.?O) summarize the shape of the fitted expansive

and compressive surfaces in the triaxial and octahedral planes,

respectively. Tahle (W.1) summarizes the ARA parameters for remolded

CARES-DRY Sand.

W.5 Calculated Behavior

The multi-linear fit to compressive plastic work produces an

excellent fit to loading isotropic compression stress-strain data, as ,

shown in Figure (P.21). Note that both concave and convex behavior can be

matched for a large range of pressure. The model currently predicts only

linear elastic behavior on unloading-reloading, so the observed "tail" on

- the unload curve is not well modeled.

CTC stress-strain behavior is matched fairly accurately, as shown in

Figures (W.22) through (W.25). The model cannot follow the uneven volume

strain response shown in Figure (W.?), but does match the overall trends

- of compaction and subsequent dilation at each confining pressure. Figure

(W.25) shows very good prediction of pressure-volume hehavior for this - -

test.
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Peak values of stress difference for the CTE test were used for

defining the asymmetry of the expansive yield surface, so they are well

matched, as shown in Figure (W.?. The shape of the stress-strain

behavior is also predicted quite well [Figures (W.26) and (W.27)].

Observed volune behavior for this test is essentially all compaction, and

this is true for the calculated behavior as well [Figures (W.28) and

(W.?9)1. Note, however, that the model predicts dilation past 4-5 percent

axial strain, while the samples apparently did not dilate at all.

Calculated RTC/RTE behavior [Figures (W.30) through (W.33)]

illustrates several important features of the ARA model. Stress-strain

curves [Figures (W.30), (W.31) and (14.33)] are smooth for both tests.

Substantial softening of the expansive yield surface occurs during the RTE

tests. As shown in Figure (W.31), this results in a negative shear

i S stiffness past 20-25 percent strain difference. Dilation is predicted for

both tests [Figures fW.32) and (W.33)).

PSC/PSE calculations show non-symmetric stress strain behavior

I U [Figures (W.3d) and (W.35)], as would be expected due to the non-symmetric

yield surface. Note that no work softening is predicted, because W

p. pk

has not been achieved for any of the confining pressures. Volume strains

are predicted to he initially compressive due to outward movement of the

elliptical cap, and then expansive due to shear dilation [Figure (W.36)].

Figure (W.37) summarizes calculated behavior of the ARA model for several

different tests run in the triaxial device. All tests start at 7 MPa

initial confining pressure.

Uniaxial strain (IXC) data vs. calculation comparisons are shown in

Figures (W.38) through (W.40). Stress-strain behavior is only marginally

559 ,A22--
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good, because of the model's tendency to stiffen (due to dilatio,i) under

non-isotropic stress paths. The stress path is predicted quite Well, with

the exception of the non-linear unload-reload excursions.

The observed shape of the UXE stress path is predicted very well by

the ARA model as shown in Figure (W.41). Apparently, the ultimate

expansive yield surface position is somewhat more expanded than predicted

by the model. Figure (W.42) shows calculated UXE stress-strain response.

Axisymmetric strain path results for the ARA model [Figures (W.43)

through (W.d5)] indicate that the determined parameters produce behavior

which is too stiff at the WES level of confining pressure (7 MPa). This

point can be confirmed by re-comparing UXC calculation and test data at an p.

axial stress of about 12 MPa (corresponding to a pressure of about 7 MPa)

in Figure (1.?P). The stresses from the WES strain paths [Figure (W.43)]

are substantially overpredicted as a result. Stress difference also drops

too Quickly, as radial expansion is intensified. The model does somewhat

better with the Lade strain paths [Figures (W.44) and (W.45)], perhaps

because the initial confining pressure is lower. In fact, for these

paths, both shear and volume stiffness are somewhat underpredicted.

Figure (WLIF) shovws the predicted stress path for the true triaxial

test strain path, and Figure (W.47) shows the predicted pressure-volume

response.

*. . . °

• - ,'."L
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TABLE W.1(a) ARA MODEL PARAMETERS FOR
REMOLDED CARES-DRY SAND

Parameter Symbol Variable Value Units

Modul us Constant Kur AKUR 36.35
Modul us Exponent n AN 0.8412 -- -
Poisson's Ratio ye APO 0.200 --

No. fc Segments ncrv ACRV 3 --

Hardening Constant C1  AACC(1) 4.645xi0- 5

Hardening Exponent Seg. 1 PI AAPC(]) 1.401 --

Hardening Breakpoint hkI  ABRK(1) 2.195 --

C2  AACC(2) 6.086xi0 - 2

Seg. 2 P2  AAPC(2) 0.4667 --

bk2  ABRK(2) 22.84 --

-'" C3  AACC(3) 7.516x0- --.

Seg. 3 P3  AAPC(3) 0.2688 -

CAP Axes Ratio r AR 0.250 --

Yield Constant E AEY 0.111 --

Yield Exponent m AMY 2.875x10- 4  
--

Failure Constant nj AETA1 0.6454 --

P APBAR 0.5057 -- I
Work Hardening Constants I AL 0.8691 --

a AALPH 5.000 --

3 8 ABETA -?.631x10-3  --

t ATG -0.9646 --

Plastic Potential Constants R ARG 2.182x10- 3  " "

S ASG 1.860 --

- Plastic Expansive Work OOCT,max ASOCT Pa

at fp,rmax Wp,pk AWPPK Pa
Work Hardening Constants q AO varies, see --

a AA Table W.1(b) -'

b AB -

Plastic Potential Constant n2,0 AETA20 --

Initial Plastic Comp. Work WcO AWC Pa

Mass Density p RHOREF 1900 kg/m3
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TABLE W.l(b) CONFINING PRESSURE DEPENDENT
ARA MODEL PARAMETERS

0 3c Wppk qn2,0 Wc,o

(lPa) (Pa) (Pa)

. - .

0.1 5.07x10 4  4.997 0.9058 3.950x10-8  -0.9626 3.03x100

0.4 1.74x10 5  4.9P9 0.707F 1.151x10-6  -0.9602 1.62x102

1.8 6.25xlO 5  4.953 0.5471 3.232x10 7  -0.9554 9.97x103

3.5 l.llx1O 6  4.909 0.4856 1.830xi0 - 7  -0.9518 6.42x10 4

7.0 2.03x10 6  4.81P 0.4263 1.021x10 7  -0.9465 6.87x105

20.0 F.06xlO 6  4.481 0.3370 4.407x0 -8  -0.9340 1.21xlO6

32.0 7.62x106  4.170 0.2911 3.148xi0 -  -0.9258 1.56xi0 6

59.0 1.29x107  3.47d 0.2132 2.227x10 8  -0.9121 2.16x106

100.0 ?.0xlO7  2.405 0.1075 2.027x]0 8  -0.8961 2.87x106

5 6...

. d
4

- L '4
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