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The purpose of this study wes to produce a set of critical value tables
for the Cauchy distribution using three popular goodness-of-fit tests, the
Kolmagorov-Smirmoy, the Anderson-Darling, and the Cramer-von Mises. This
will allow anyone doing hypothesis testing to test a pull hypothesis involving
the Cauchy. To determine the confidence the user may have when using these
tables, a power comparison was run against several alternate distributions.

when prepering this thesis, | received a great deal of help and support
from others. My faculty advisor, Dr. AH. Moore, helped keep me within the
original scope of the thesis effort, which made it possible to finish on time.
Cept. Jim Porter was very helpful in finalizing my computer programs, and
without his help | would still be working on those programs. My two little
boys, Mike and Mett, helped me by maintaining my overall perspective, and
providing me enough breaks to maintain my senity. Finally, my wife Kellie
deserves more thanks than she will probably ever get as she supported me

through my numerous long nights during the thesis preparation.

Frank Ocasio
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Abstract

i The Koimogorov-Smirnov, Anderson-Darling, and Cramer-von Mises
critical velues are generated for the Cauchy distribution. The critical values
- are used for testing the null hypothesis that a set of observations follow &
Couchy distribution when the location and scele parameters are unknown and
'ﬁ estimated from the sample. A Monte Cerlo simulation, using S000 repititions,
was used to generate the critical values for sample sizes of 5(5)30 and S0.

A power study was performed using Monte Carlo simulation for the
* e Kolmogorov-Smirnov, Anderson-Darling, end Cremer-von Mises tests. Sample
sizes of 5, 15, 25, and SO were used for six alternate distributions, for alphe

levels of .05 and .01. Analyzing by sample size shows very poor power for 8

g ¥

sample size of five. As the sample size increases so does the power, so thet
J at o0 sample size of fifty, the powers against three of the six distributions is
S or better. Among the three tests, the Kolmogorov-Smirnov is consistently

e more powerful, regerdless of sample size or alpha level.
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A MODIFIED KOLMOGOROY-SMIRNOY,

ANDERSON-DARLING, AND CRAMER-YON MISES TEST
FOR THE CAUCHY DISTRIBUTION

WITH UNKNOWN LOCATION AND SCALE PARAMETERS

Chopter Overview

This chapter gives an outline of the scope of this thesis. Some
background will be covered on data analysis and modeling, tying that into
goodness-of-fit testing. Then the Problem Statement, the Research Question,

and the Research Objectives will be given.

Background

When data are being analyzed, one of the first things to do is develop &
valid model of that date. This is a four step process (5:332), with the first
being dota collection. The next step is to analyze the empirical date
distribution and attempt to match it against a known distribution. This is
done using a histogram, which gives 8 visual image of the dota distribution.

Third, the parameters of thet known distribution, most often location and

L4
P4




scale, are estimated from the date. A familiaer example of these parameters

is the mean and variance of the Normal distribution. The fourth step is to
apply goodness- of-fit tests. Here a null hypothesis (l-lo) is proposed which
states that the actual distribution of the data is the known distribution,
whereas the alternate nypothesis (H,) is that’ the actusl distribution is not

the known distribution. The tests measure the fit between the empirical and

 known distributions. To use the tests, statistics are calculated from the data

and compared to critical velue tables which have been developed for various
distributions. The comparison will result in accepting or rejecting H,. If H,

is rejected, the process is repeated, starting with the second step.

The three goodness-of-fit tests used for this thesis apply different
technigues to determine fit. The Kolmogorov-Smirnov (KS) test uses the
absolute difference between the empirical and known distributions. A
problem with the KS test is that it tends to have smaller discrepencies at the
tails rother than near the median of the distribution (39:6). One way to
overcome this problem is to use the squared differences between the
distributions. The Anderson-Darling (AD) test uses a weighted squared
difference and the Cramer-von Mises (CVM) uses only the squared difference.

This thesis will look at the Cauchy distribution. It is similar in shape to

the Normal except that it has longer and flatter tails (21:154). In physics,
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the Cauchy is used in modeling Brownian motion (32:161).

Problem Stotement

Highly accurote goodness-of-fit tests have not been developed for the Cauchy

distribution with unknown locetion and scale parsmeters. These tests would

require critical velue tables based on the data sample size and parameters.
Research Question
How can the KS, AD, and CVM tests be modified for the Cauchy distribution o o
L :
when the location and scale paremeters are unknown? ‘
(e .
Research Objectives o
1. Generate and document critical value tables for the modified
S-‘: ~';
Kolmogorov-Smirnov, Anderson-Derling, and Cremer-von Mises i‘_;;:;.;:.
goodness-of-{it tests. R
2. Do o power study of the Koimogorov-Smirnov, Anderson-Darling, ‘ B
end Cramer-von Mises tests to determine the most powerful. The
power is the probability of rejecting H, when H, is true (6:79). The [“
EGEN
e
higher the power, the grester the confidence in the test results. :2‘
NN,
My
3 o
b
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Il. Goodness of Fit Tests

Chapter OQverview
This chapter will develop the background for goodness-of-fit (GOF) tests.

First, hypothesis testing will be covered as an introduction to GOF. This will

be followed by a look at GOF tests. The X2 will be covered as the most
common of these tests. Then the concept of the empirical distribution
function (EDF), and its use in GOF, will be d:scussed. Finally, the EDF tests
which will be used in this thesis, the Koimogorovy-Smirnev (KS), the

Anderson-Darling (AD) and the Cramer-von Mises (CYM), will be introduced.

Hyoothesis Testing

In hypothesis testing, a specific statement (called the hypothesis) is
made about o population. Then a sample is taken from that population. Based
on that sample, a decision is made for or against accepting the hypothesis

(7:75). Thet decision is based on the following test procedure (7:75-77):

1. A hypothesis to be tested, the null hypotheses (Hy), is made about

the population. The negative of H, is also set up and labelled H,.

2. To meke the decision, a test statistic is used. This stetistic
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would assign real numbers to points in the sample space and sllow

ordering of those points based on their ability to tell the

difference between a true and a false Ho-

3. A rule is established to determine which values of the statistic

will allow acceptance and which rejection. For this thesis, larger
values of the statistic tend toward rejection of Hy That value of

the test statistic which is the cutoff between accepting and

rejecting is called the critical velue, and if the test statistic is
greater then that value, H, is rejected. '%

4. A random sample is taken from the population. Based on that
sample the test statistic is evaluated, and the hypothesis is then 'Aﬁ
either accepted or rejected. T

The sample that is taken is only part of the population, and therefore ‘*

contains only part of the total information available. This leads to o

possibility of error when deciding whether to accept or reject H,. This error R

cen surface in two ways: H, can be rejected when it is actually true, which is
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called a Type | error; H, can be accepted when it is actually false, which is

called o Type 11 error (7:78). Since hypothesis testing is concerned with

WL
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minimizing these errors, the maximum probabilities of making these errors
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have been given the labels of « for Type | and p for Type |I. Related to § is "\

the parameter of power, or 1-@, the probability of rejecting H, when false.

The basic thrust behind hypothesis testing is to reject Hy, while with

% GOF testing the reverse is true (1:72). i
: ;
4

GOF Tests

I
i}
»
}
s

EI L

Hg in GOF tests is that a selected distribution fits the distribution

Ol 2ui g A g

underlying the population sample. One common way to get that selected
distribution is to ptot the sample data points using 8 histogram and pick e
distribution that visually matches that histogram.

\e GOF tests try to determine if there is any evidence of disagreement
between the sample and the selected distribution (1:72). The assumption is
that the sample data fits the distribution uniess there is enough evidence to

disprove that essumption. An intuitive approach to coliecting the evidence is

to first plot the sample distribution function:

Fo{X): r/n (1)

where r=number of x; ¢ x. Then compare F,(X) with the assumed distribution,

--"-- - -
BN LRI
A ond visuelly inspect for substential disagreement (11:290). However, to R
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attein accurate, reproduceable results some standard is required to measure

the discrepancy. This is where the GOF tests come in.

The best-known GOF test is the Chi-Square (1:73). The test first groups

the sample data into classes then compares the observed frequency of F (X} in

each of the classes with the expected frequéncy of the assumed distribution

(39:2). The test statistic is (1:73):

X2 = f.' I, - 1, 201, (2

where

f,, = the observed frequency per class

f.‘ = the expected frequency per class

k =the number of classes

Some of the adventages with this test are it is good for a discrete

distribution and the statistic cen be adjusted if the paremeters of F{X) are

estimated from the sample (33:731). A disadvantage is that the sample sizes
must be fairly large (n > 25) for the test to work. This minimum n is to allow

sufficient data points in each class to calculate the test statistic (1:73).

Another set of GOF tests use statistics based on the sample, or

T

. P
. "
e S
. .
LN .
AR .
L o o
’ [l .'
R | SR



-~;‘;W}‘f!.q.![! FF'{“"f'!'thﬂ‘!fﬂfl"f‘!T'T'Z'l'R't'szvtV.r.?t‘.-.».F;Nﬁ‘:r_r PLAnAGane e fas Sat et b Sak ot St Savh Sa S 4

empirical, distribution function, otherwise known as EDF statistics (33:732).

With these tests, a8 comparison is made between F(X) (the EDF), and F(X), the

assumed cumulative distribution function (CDF), to see if they match (35:1).

R

RO

F.(X) is defined above, where the n values of x; are a random sample from X. ;:3:.‘_'1
From the x;, if X1)» Kz)» -~ ¥ny OFC set up as ascending ordered statistics, then

Fo(X) 1s defined by (35:1) | -

FX)=0 X < Reqy 3)

FolX) = 1/n X X < Ryyqye§ 2 1, ., (0-1) (4) h.;;:-_:'::{

FulX) = 1 X < *- (3) ':

beoeg

The expectation is that F.(X), the proportion of the reandom sample < x, would k\

give a good estimate of F(X), the probability of X < x, which it does (35:1). o

This leads to the development of the EDF statistics which use the discrepancy

between F,(X) and F(X) to determine if the sample comes from F(X).

Some advantages with using EDF statistics are that, unitke the

L4
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Chi-Square, they can be used with small sample sizes, and, when F(X) is fully

$5r
e
i,

1
\.4 ie

specified, they are more powerful than the Chi-Square test (33:732). One
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disadvantage is that EDF statistics cannot be used for discrete distributions.
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Another disagventage was thet, initially, EDF stotistics coulu only be
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used when F(X) was fully specified. This was due to the use of the probability
integrel transformation, which, when used with a fully specified COF, will
convert the values of that CDF to ordered values from zero to one based on a

uniform distribution (39:5). If the parameters of F(X) were estimeted, the Fn

e
cumulative distribution of the EDF statistics would depend not only on the ai'
sample size, but also on the value of the unknown parameters (33:731). This H:
limitation to a fully specified F(X) prevented the widespread use of EDF “":
statistics, since the parameters of the assumed distribution are ususlly not .
known beforehand and must be estimeted from the sample detoe. k‘u

in 1948, David and Johnson {10) changed that when they showed thet if ,=
inveriant estimates of only the location end scale parameters are taken from H
the sample data, then the cumulative distribution of the EDF stotistics will ;-.
depend on the functional form of F(X), not on the estimated parameters. This
cleered the way for modified (using estimated parameters) tables of critical [:-—
values to be generated for a variety of distributions which would depend only \:
on sample size and significance level {«). The first was H. W. LillieTors for L;_

AR
the normal (25) and exponential distribution (26). J. G. Bush did tables for the L\%
Wweibull distribution (6), and P. J. Viviano did sc for the Gamma distribution &
(36). Green and Hegazy did tables for the Uniform, Normal, Laplace, g:
Exponentiel end Cauchy distributions (16). This thesis will do a new set of t::'t
criticel velue tables for the Cauchy because Green and Hegazy did not use the “:{
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» same estimating technique for parameter estimation, and they did not use the :'3‘
bootstrap interpolation technique, yhich will be discussed in Chepter IV.

As with oll the GOF tests, the intent in hypothesis testing when using | :—T

EDF statistics is to accept H,. This can make power problems a significant ,\’:

concern. The desire would be for the results of the testing to be powerful,

i.e., to accept H, and aiso feel confident that the alternate hypothesis is false.

However, this is not always the case. One problem is that though EDF =

stotistics can be used with small sample sizes, the results are not very

powerful (29:3). For example when Green and Hegazy did power studies on P
their statistics, for n = 5, the power was never greater than 0.5 (16). Another
\e problem is that the stetistics are more powerful against some distributions o

R4

(*21:3). This makes the results of power studies helpful to anyone using

these statistics, since, assuming H, is accepted, the power study can be

P AR RN
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referenced to determine how much confidence can be had in the results.
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EDF Statistics
This thesis will work with three EDF stetistics, the Kolmogorov-Smirnov

statistic (KS), the Cramer-von Mises statistic (CYM), and the Anderson-

R, TR
AR VeSS,
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Darling statistic (AD).

s The KS statistic is defined as (*21:15):
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D = mox [F*(x) - F(X)I (6)

where

the x; are ordered

F*(x) is the CDF value of the data point
It is based on the greatest vertical difference between the two functions
(35:2), and has these advantages over the Chi-Square (26:76):

- It does not lose information by grouping whereas the Chi-Squere
does, end this information loss s large for small semples, making
the KS statistic a better choice for small samples.

- The KS statistic is easier to determine computationally.

One problem with the KS is its insensitivity to differences in the tails, since
both functions tend to O and 1 in those extremes (12:3).

A more flexible set of statistics is the Cramer-von Mises family, to
which both of the other statistics belong. This fomily incorporetes a weight
function, ¥(X), which allows weighting the deviations based on the
importance of different portions of the distribution function (2:194). These
statistics are based on the integral of the weighted squered difference

between the agssumed distribution and the EDF (35:2):
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The CVM statistic is W* with ¥(X) = 1 (35:2). The computational form of

this statistic is (16:205):

W2z (1205 + Y- (21 - 1)20)P (6)

where Y; = F(x;) . .

The AD statistic sets the weight function equal to the inverse of the

variance of F(X) (35:2):
VI F(X)) = [{ FOOM1- FOOM (9)

This assigns equal weights to each point of F(X) (2:195), increasing the
weight given to the tails of the distribution, and providing better detection of
differences in the tails than the KS or the CVM statistics (34:360).

The computational form of this statistic is (16:206):

A== 2 (21~ Dl n(1-¥,, )1
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M. The Couchy Distribution

Chapter Overview

This chapter will discuss various aspects of the Ceuchy distribution.
The first aspect is the definition of the distribution, covering the pertinent
equations. Then the properties of the Cauchy are covered, followed by a brief
glance at some of its uses. Finally, parameter estimﬁtion for the Cauchy will
be discussed, from a general 1ook at estimetion to a discussion of the

estimation technique to be used in this thesis.

Definition

The Cauchy probability density function (PDF) is (21:154):

(e “H1+{(x-0) /AR)! (11)

where
A0
A is the scale parameter

8 is the location parameter

The COF for the Cauchy is (17:404):

‘‘‘‘‘‘‘



% + 7 'ten”(x - 8)/A) (12)

The characteristic function is (22:11):

C,(t) = exp(it8 - ItIr) (13)
‘ - The K™ partial derivative of C,(t)/ik with respect to t, when evaluated at t = f
0, is the K™ moment (22:11).
5
Properties of the Couchy
! L Given C,(t), an evaluation of the first partial derivative with respect to t L
ot t = 0 yields an imaginery solution, resuiting in all higher partials being o
* imaginary (22:11). This leads to an oddity of the Cauchy, namely, that it has C
; no moments of order 2 1, and therefore has an infinite expected value and .
| stenderd deviation (21:154). _':;'f
j Though it has no finite expected value, the Cauchy is symmetric about its ;”
| expected velue, and is a member of the symmetric stable family (24:133). [}
i This symmetry is similer to the Normal, except for the longer and flatter L-'_i:
5 tfls of the Cauchy (21:154).
There are some other properties to note (30:303-305): r
S — =
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1. The distribution of the reciprocal of a Couchy veriable is the same
as that of the variable.

2. The erithmetic means of samples from the Cauchy have the same

. T 1 e e e
P AT ARV
LA P

distribution as the Cauchy.

3. The distribution of the product and quotient of two Cauchy =

variables is: A
1(u) = [72( - 1) og (W) (14) '
Uses for the Couchy t
As 8 member of the symmetrical stable fomily of distributions, the T

\ Cauchy has applications in economic modeling and estimation (15:275). _,*

* Time-series and cross-section data for such things as personail incomes,
stock snd commedity price changes, and employment measures of businesses :

often were assumed to behave as normally distributed rendom veriables. ['"

However, frequency functions consistentiy came up with too much mass in the \

teils to be accounted for by the normal. The Cauchy, with its longer and E'
flatter tails, allows for that mass. This backs up the statement made by :
Hoas ond Bain that “the Cauchy distribution should be considered as 8 possible E‘“ =

model whenever one needs a density function with heavier tails than the \\\
T
normal distribution allows™ (17:403). SO

Fig. 1 is a geometrical application of the Cauchy distribution (21:161). \:

1S : :":th

T e
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In this model the Cauchy distiribution represents the distribution of P, the R

point of intersection of a variable straight line with a fixed straight line.

The variable straight line is randomly oriented in two dimensions through the

fixed point A. The result is the distance OP is Cauchy distributed with 6 = 0.

W et et
' R

Fig 1. Cauchy Distribution Model (21.161)

Using this model, the Cauchy distribution can represent the distribution
v"\
of points where particles from a point source, shown as A, impact a fixed r- .

straight line (21:161). This is used in physics, where the Cauchy distribution
is used to help describe the motion of a random point in standerd Brownian : f

motion (32). \

Estimation NN
Estimation is a procedure that allows generalizing from a sample to s

population (37:334). In this thesis the concern is with point estimation, N,

- P L) -
S el el s a4l mT et aT e s BRI - - et %
B PRI . R . .
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where a sample statistic is used to estimate a population paremeter. There
ore several desirable properties for point estimators (37:335-342):
1. Unbiasedness: where the expected value of the estimator (G) is
equal to the parameter (8 ), ie, E(G)=9 .
2. Consistency: where the lerger the sample, the higher the
probability of G being close to 6.
3. Relative Efficiency: that the estimator be more efficient (smaller
«) than other estimators.
4. Sufficiency: thet the estimator contain all the information
available in the data about the parameter.

One method of estimation uses the sample as the guide to the parameter

(37:345). With sample values (x,, %, , ..., X), 8 likelihood function is set up:

L xy,..., %,18) (15)

This is the likelihood of getting this particular sample, given some 8. The
maximum likelihood principle says to take as an estimate of 0 thet value
which, while within the renge of 8, makes the likelihood function as large as
possible (23:35). For computational purposes, it is usually easier to work

with log L.

An ottractive feature of the maximum likelihood estimator (MLE) is that




it is invariant (37:346). inveriance, in terms of the variables used above,
means that if G is the MLE of 8 and h(B) has an inverse, then h(G) is an MLE of

h(B). An example is with a sample teken from & normally distributed ) .

population. For this case S2, the sample variance, ivs on MLE of 02, the
population variance. Invariance says that the sample standard deviation, S, is ' oS
8lso an MLE of the population standard deviation, 0. The invariance of the MLE

is important for this thesis, since invariant estimators of the location and ) ’_ _;
scale parameters are needed to develop critical value tables when F(X), the

hypothesized distribution, is not fully specified.

Applied to the Cauchy distribution, the likelihood function is (17.404):

\ Vo

L%y, %018, A = TTHIALT + (% - B/ARIY (16) i

[

and the maximum likelihood equations are:

Vo

3 ay 1o A2 22 -

2y - X1+ - 8232 =0 (17 Sl

. i
El1e(%-0232) 7 =un (18) S
where 6 and A are the MLE for 8 and A, respectively. These equations are then RN
solved for 8 and . \;




The MLE is not the only estimation technique that could have been used

for this thesis. Another popular estimator is the BLUE, or best lineor

.i unbiased estimator. However, a study by Haas, Bain, and Antle (17) concluded
thet the MLE is o better estimator for the Cauchy distribution,since they

l found the confidence intervals developed for the parameters were narrower

with the MLE than with the BLUE.
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IV. Methodology

Chapter Overview

This chapter looks at the methodology used to complete this thesis. The
specific steps used in the Monte Carlo method to generste the critical value
tables will be looked ot first, followed by e discussion of the steps used to do
the power study.

Generoting the Critical Yolue Tables

This thesis used the Monte Caric method to generate criticel value tabies
for the Cauchy distribution. This method is & way to investigate the behavior
of probabalistic processes. It takes random numbers, chosen so that they
simulate the properties of the process being investigated, and observes their
behavior, from which conclusions can be drawn about that process (18:2-4).

Fig. 2 is a flow chart showing the logic for generating the critical vaiue
tables (6:13-14). The following discussion will elaborate on those steps:

Step 1: Random Deviate Generation. To start the Monte Carlo anslysis,
raendom Cauchy deviates need to be attained. A commercially available
computer subroutine, GGCAY, was used to generate those deviates. it is part
of the International Mathematical and Statistic Library (IMSL) (20:Chept G).

Step 2: Ordering the Rendom Deviates. Another IMSL subroutine, VSRTA,
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was used to order the deviates.

Step 3: Estimeting the Parameters. As mentioned in Chapter 111, the MLE
was used to estimate the location end scale parameters. The actual computer'
progrom for the MLE wes derived from & program included in a text by D. F.

p Andrews and P. J. Bickel (4:17). ' M“

Step 4: Generate the Hypothesized Distribution Function F{x). With the

estimated location and scale parameters from Step 3‘ and the ordered deviates - |
from Step 2, equation (12) yields the hypothesized CDF. ,

Step 5: Colculate the Modified KS, AD, and CVM test statistics. L
Equations (6), (8), and {(10) are solved using the hypothesized COF and the
ordered random deviates.

Step 6: Repeat 5000 times. Steps 1 -5 will be repeated S000 times to
generate 5000 independent KS, AD, and CYM statistics.

Step 7: Determine the Critical Values. A bit of background is important R

here to understand this step. Critical values are important in hypothesis

testing since these values are what will be checked to verify H,. The whole p-_r-:

purpose of this thesis is to generate those critical value tables to use when

Hy states that the actual distribution of the data is Cauchy. Since all the {
W3

volues derived up until now are based on Cauchy random deviates, that H;, is :
. _\;,".";

true for our samples. o
N




Steps 1 - 6 have generated S000 order statistics for each of the GOF k:

tests. Combined with commonly used « levels, where « is the maximum :Zéﬁ
’ t
probability of rejecting & true H, all that needs to be determined is the point ‘
where, in the range of the order statistics, each of the « levels fall. The ‘.i‘
mirror image of this is to work with the percentiles, or the 1 - « levels. &'
These then become the minimum probability of accepting H, when true. The i
_h points where those levels fall are the critical values. L
P' To get the critical values different technigues are available. A f
% straightforward technique is to select thet order statistic which, as o r‘f
l percentage of the totel stotistics, motches the percentile level, e.g., for the
: B80th percentile and 5000 order statistics, the critical velue would be the | r—f
4000th one. This was the technique used by Green and Hegazy ( 16). Recently, (
a more precise technique has been developed, that of plotting positions (29:7). C‘«:—

Plotting positions depend on the bootstrap method (13). The technique
involves locating the discrete order statistics on a continuous spectrum.

This is accomplished by teking the space between the statistics end

representing it as a piecewise linear function. With that function, it is SR
possible to interpolote between the discrete values of the statistics end get [r"r
more accurate critical velues (29:7). The interpolation is done by plotting the :«-‘a

order stotistics against o plotting position which represents the order

stetistics on o zero to one scole.




There are many different plotting positions, and prior theses have looked
at them and did not find any significant difference between them when it
comes to calculating the EDF statistics (6;29;38). Harter (19) recently did on'
extensive analysis of various of the plotting positions. One of his findings
was that as samples increased over a sample size of 20, the differences
between them for the positions they d :termined were insignificant. With
5000 independent values for each test statistic, one plotting position for this
thesis is justified.

This thesis will use the median rank plotting convention. Harter shows

this to be closely approximated by (19:1617):

¥, = (1-0.3)/(n-0.4) (19)

where
i=1,.n
n = 5000
Ream (29:11-23) gives an in-depth illustration on how plotting positions

are used to determine critical values, therefore only a brief overview will be
done here. The order statistics xm, xw,.., x(m, are plotted along the

abscissa axis, while the S000 plotting position are plotted along the ordinate
axis. Both sets of points are assigned to positions 2 to S001. For the

plotting positions, the intervel [0,1] is completed by setting the first position
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tobeY =0, and the 5002nd position to be Y., = 1. For the order statistics,

linear extrapolation is used to determine the first and last entries. The first _
entry is made by lineerly extrapolating from the first and second order
statistics, limited by & nonnegativity restriction. The last entry is similarly
extrapolated from the last and next to last order statistics. For the purposes
of the computer program used to generate these values, an array of 5002

values was used for each axis.
The extrapolation of x(som) and x(o, uses ¥ = mx + b, the linear

slope-intercept formula. The first endpoint is celculoted as follows:
m= (¥~ ¥, )/ (Xg = Kyy) (20)
b=¥,-mX, 1
Xy = ~b/m (22)
. Since 8 negotive value is not allowed, the minimum value for X, is O leading

to:

Xy = Max (0, -b/m) (23)




AV R

Similarly, the value for x(:mt) can be found.

If streight lines are used between all the 5002 points, a piecewise linear
function is produced. At this point linesr interpolation cen be used to
- determine any value that might fall between any two consecutive points,

necessery in order to calculate the critical w;olues. For example, to find the

85th percentile, the largest plotting position, Y, ,less than .85 is found.

Then the corresponding X, along with x(m) and ¥,,, 6re used to linearly

interpolate the critical value using:

, m=(Yy = ¥ WXy~ %) (24)
(e

b= ¥, -m¥g (25)

Critical Value = {p - b)/m (26)

The critical value percentiles used for this thesis were 80, 85, 90, 95, 99.

Step 8: Repeat steps 1-7 for each of sample sizes 5,10,15,20,25, end 30.

These sample sizes have been used in developing critical value tables for *’

A

other distributions {6,27). -
The resulting criticel value tables are in Appendix A. i
PN

27 ?:: ¥
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The Power Study

Once the critical value tables are generated, this thesis then compares
the power of the three test statistics egainst several alternate distributions..
As mentioned previously, the concept of power is ivmportont when using EDF
statistics, since the intent with the hypothesis testing is to accept the null
hypothesis. At the same time, one wants to feel confident that the slternate
hypothesis is false. By having 8 comparison of the power of the three
statistics, someone testing for the Couchy distribution can select the test
which best protects against likely alternate distributions.

The alternate distributions used for this thesis are the Weibull, with
shape parameter of 3.5, the Gamma, with shape parameter of 2.0, the Betae,
with the P and Q parameters of 2 and 3, respectively, the Exponential, with
the shape paerameter of 2.0, the Normal, and the Double Exponential, with the
shape parameter of 2.0.

The logic of the power study basically follows thet of the criticel value
table generation, except that instead of starting with Cauchy random
devietes, deviates from the above named distributions are used. Since the
program to accomplish the power study is simpler and less time consuming
when run, the number of statistics calculated for each distribution was set at
10,000 instead of the 5,000 used for the critical velue tables.

The first step in the power study involved generating random deviates
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for the alternate distributions using IMSL subroutines. Then, since the null
hypothesis is that the underlying distribution is Cauchy, steps 2,3,4, and S of
Fig.2 were performed. This involved ordering the date, estimating the
parameters, computing the hypothesized F(x), and éolculoting the test
stotistics. These statistics are then compared with the critical values
generated for each respective test for alphas of .05 and .01. A counter is
incremented each time the calculated test statistic exceeds the critical
velue. This tracks how meny times the null hypothesis is correctly rejected.
Then, the total number of rejections is divided by 10,000 to obtain the power.
This is repeated for each of the alternate distributions, and finally for each
of the different sample sizes (5, 15, 25, 50). The resulting power comparison

tables are in Appendix B.

---------------------------
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V. Use of the Tables

Chepter Overview
This chapter will discuss the basic procedure involved in using the

critical velue tables generated in this thesis.

Use of the Tobles

The critical value tables will be used to determine whether or not to

accept the null hypothesis, thet the distribution of the sample date points,

Fa(x), is the Cauchy distribution, F(x). The appropriate statistic is calculated
using equation (6), (8), or (10). The celculated statistic is compared to the
critical value in the tables (for a given n and «) ond if the statistic value is
grester than the critical value, the null hypothesis is rejected.

The following steps are used in the above analysis (6:26-29):

1. The user will select the appropriate c-level and sample size. As
stated earlier, « sets the maximum probability of rejecting the null
hypothesis when it is true.

2. Select n random observations from the total population. Order

these observations from the smallest to the largest.

3. Estimate the location and scale parameters for the sample. The

ala




estimator must be inveriant for the results to be meaningful.
4. Specify the Couchy distribution using the above estimated location ‘
and scale parameter.
S. Calculate the test statistic of interest .-- KS, CYM or AD. This can ~::

be done using Eq (€}, (8), or (10), respectively.

6. Given the n and «, look up the critical value from the tables in
Appendix A. ‘ )
7. If the test steatistic value is greater than the critical value, then
the null hypothesis is rejected. However, if the critical value is less than or " s

equal to the test statistic value, then there is a failure to reject the null
hypothesis. The conclusion is that there is insufficient evidence to reject the

null hypothesis.

31
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Vi. Resulls

Chapter Overview

This chapter discusses the results of this thesis -- the critical value

tables and the power tables.

Criticel Yalue Tables

The criticol value tables for the modified KS, CYM, and AD tests are in
Appendix A. They ere orgonized by alpha level (.20, .15, .10, .05, .01) and
sample size (5,10,15,20,25,30,50).

The KS critical values all decrease as n increases and « increases. The
rote of decrease slows down with increasing n and . It could be thet if n ~
were increased to 40 or 50 the critical values would stabilize at some value.

The CYM and the AD critical values also decrease, but only as the «-level

| increases, while holding n constant. With « constant, there is little change

with changing n, in fact, the statistics stay very close together, with slight *

fluctuation. 5
L.
Since the critical values sre generated through a Monte Carlo process,
there is & degree of variability introduced. The error of a Monte Carlo process

is proportional to 1/(N)*, with N being the number of iterstions of the

............................................................................
.............




simuletion (6:33). Therefore, by running the simulation with N = 10000 rather
than 5000, some of the patterns seen could change. However, due to the
greatly increased computer time needed to go from 5000 to 10000, that
option was not possible for this thesis.
Power Tables
The first ‘alternate’ distribution used in the power study was the

Cauchy. This was done to validate the values generated in the first part of
the thesis. To be valid, the power would have to be close to the «-levels, and
that is the case. The powers are not exactly equal to the «-levels, but that is
o result of the variability in the Monte Carlo process, as mentioned above.

Among the three tests, the KS is cdnsistentlg more powerful, across all
nand «. There are only 3 or 4 instances where it comes in second and then
only in the third significant digit. This could be a result of the KS being
fairly insensitive to discrepencies in the tails. The Cauchy hes longer and
flatter tails and the KS might be deemphasizing the difference there.

Analyzing by sample size shows very poor power ot n = 5 (085 being the
highest), with power increasing as n increases. When one gets to a sample
size of 50, three distributions, the Exponential, the Gamma, and the Beta,
have powrs above 0.5 (1.0, .947, 586 respectively). This mokes sense as the
emount of information available increases with sample size.

When a-levels ere analyzed, for « = .01, the only reasonabie power is

_______
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against the Exponential and the Gamma, with o power of .991 end .719
respectively. The next best is only .176. As o increases 10 .05, power
increases across the board, getting up to 1.0 for the Exponentiel. When
looking et the alternate distributions, the distributions with reasonable
power ore the Exponential, the Gamma, and the Beta. The highest power

. among o1l the other distributions is .259, not enough to instill any confiuence
i ~ in the results of the GOF test.

Given the above analysis, if the Cauchy is the distribution in the null

; hypothesis, one should try for 6 sample size of SO or better, and if that is not

possible, accept an « of .05 or greater.
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VIl. Conciusions and Recommendations

Chantr Qrerven

This chapter gives the conclusions reached in this thesis, and the .....-:J
recommendations made for further study. "'

1. The critical value tables generated for the Koimegorov-Smirnov, the _,
Cramer-von Mises, and the Anderson-Darling goodness-of-fit tests for the f‘:"
Couchy distribution are velid. By using the Cauchy as one of the ‘alternate’ -‘-:i:.:
distributions when doing the power study, the values were validated. ,;...J

2. Regarding the choice of a test, if the alternate hypothesis is the
Exponential, the Gamma, or the Beta, and the sample size is greater than five,

then ell three of the tests are fairly powerful. However, the Kolmogorov-
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Smirnov test is the most powerful of the three in any situation.

3. After analyzing the power test, there is a good deal of power
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available against the Exponentiel, the Gamma, and the Beta.

o«
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1. if possible, the critical value tabies should be redone with 10,000 t;
N
stetistics. This would reduce the variability due to the Monte Carlo process, 7
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ond would make one more certain of the patterns evident in the tables.

2. With the improvement in power evidenced in the power tables, further
power studies should be attempted with larger sample sizes end o-levels.
The goal should be to find what combinations would increase the power
against the weaker distributions {(Weibull, Normal, and Double Exponential).

3. Other distributions should be investigated in further power studies to
determine if there are other distributions against which the GOF tests are

also powerful.
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APPENDIX A

. This includes critical value tables for the Kolmogorov-Smirnov, the
._. Cramer-von Mises, and the Anderson-Darling Tests.
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TABLE I
CRITICAL VALUES FCR ThE MCOIFIED KS TEST

ALPHA N CRITICAL VALUE
.20 s 0.2898729
<20 10 0.2089256
.20 15 0.1745029
<20 2¢ 0.1542405
.20 25 0.1385744
20 30 0.1271262

. %20 50 06589140
.15 5 042054260
.15 10 0.2196148
.15 15 0.1829€46
.15 2¢ 051619531
.15 25 0.1453200
.15 3G 0.1328C64
.15 50 0.1025580
10 5 <2252105
10 10 0.2235590
«10 15 0.1960747
.10 20 0.1727150
<10 25 0.1548475
.10 36 0.1435490
«10 50 6.10$9258
"« 05 5 +21480C30
.05 10 0.2544265
.05 15 0.2142220
<05 20 0.1878866
<05 25 0.1698837
.05 30 0.1564234
+05 £0 0.21200229
.01 5 0.3£40281
.01 10 0.2967503
<01 15 G.2463241
.01 20 0.2202671
.01 25 0.2011247
.01 36 0.1826519
.01 50 0.1413185
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TABLE 11 e
CRITICAL VALUES FCR THE MCCIFIED CVM TEST RO
ALPHA N CRITICAL VALUE el
«20 £ 0.CS71847 -
e <20 10 0.0510C45 ] S
; "«20 15 0.0914536 _ —
20 20 0.C530557 AERCA
T re20 25 0.0518¢03 R
.20 3c 0.0925299 o
«20 50 0.0911552
. e15 5 ' 041148650 .
. e15 10 ' 01064403 AR
¢ "«15 15 0.1068219 R
\ <15 20 . 0108781 Ll
. "«15 € 0.1075¢€84 S
- «15 30 .0.1050€52 SN
e15 50 0.1055738 N
.10 5 0.1264753
.10 1¢ 0.1280515
8 ‘ «10 20 0.1290561
"e10 s 0.13041703
‘e10 ac 0.1211479
.10 56 0.1266534
«05 5 0.1668584
‘:~ «05 10 0.1643178
K <05 15 0.1663567
«0S 20 0.1694294
<05 2¢ 0.1711€56
«05 .30 0.1705763
«05 50 0.1629755
, "e01 s 0.2162196
N . <01 10 0.2393¢59
- "a01 15 © 0.2558281
<01 20 0.2500¢14
_«01 < 0.2658464
.01 30 0.2640229
g «C1 S0 0.2547285 OO
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TABLE III
CRITICAL VALUES FCR THE MCDIFIED AC TEST
ALFHA N CRITICAL VALUE
«20 5 0.7511249
.20 10 0.7006519
<20 15 0.7101€63
«20 20 0.7105255
«20 25 0.£6593738
«20 30 0.7045876
o0 50 0.£554132
.15 5 ,0.88292¢4
e15 10 ' 0.8037849
e15 15 0.8106228
.15 20 0.8156878
.15 25 0.7957106 AR,
e15 30 0.8128590 S
.15 5C - 0.7880¢€11 . A
.10 5 1.7459€34
e10 10 0.5686159 :
«10 15 0.5728056 B
.10 20 0.5603571 g
.10 25 0.5719502 he A
«10 30 0.$705017 R
.10 50 0.5272754
«05 5 1.2589739
«05 10 1.2246506
<05 ‘15 1.2866E55
«0S 2¢ 1.25€6166
"«05 2s 1.2332463
«0S 30 1.2496C85
«05 S0 1.1945103
.01 S 2.16697458
«01 10 1.8335295
.01 15 5e9464778
.01 20 1.£6302€92
-01 25 1.9715£00
.01 30 1.5268277
.01 50 1.8649824
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APPENDIX B

P ". This is the result of the power study.
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4 TABLE 1v
. POWER TEST FOR THE CAUCHY CISTRIBUTIGN
BT S E S S S E E R R E S S S S S S S S S S SE S S SIS T S SSESESNESEICSC =SS SIS EIss==Ts=T==2=sz=T=======3
I LEVEL OF SIGNIFICANCE = ,0S
g It 2+t EE E 2 A S+ F P& R E 2 P R R R S R A R E A R F R B R A S F S S A R P R FE SR SN S XN S S 5 & £
] ALTERNATE CISTRIBUTICNS
. N TEST CAUCH WEIBL GAMMA BETA EXFCON NORML CBLeXxP
! _ . SH=:.5  SH=2. P2C3  SH=2. SK=2. N
5 K-S C.C51 0.C40 0.C<3 0.042 0.085 c.C38 0.C07 S
5 CvM 0.051 0.C35 0.047 0.C26 0.C79 0.C33 0.005 -
5 A-C 0.CS54 0.029 0.041 0.C20 C.Cé&8 0.C2¢ 0.004
. 15 K-S 0.C51 0.G54 0.178 0.C84 0.423 0.C50 0.011
15 CVM 0.C52 0.C32 0149 0.054 0.354 0.C29 0.CC4
15 A-0 0.C45 0.C15 0.CS5 0.029 0.259 0.C15 0.C01
25 K-35 0.G50 0.Cé3 0.415 0.129 0.EQS 0.060 0.020
25 CYM 0047 0.036 0.285 0.078 0.€19 0.C032 0.010 RS
J s D A D DD A > AP > = D = - D D T A Y D = D = D > - - -y - - D D - — .- - - - - ,:
50 K-35 0.C54 0.225 0.%47 0.586 1.000 0.184 0.259 N
N S0 CVM C.0°51 0.115 0.724 0.287 0.9562 0.C57 01393 -
: . 50 A-C C.C51 0.212 0.7E9 0.478 C.S76 0.170 0.313
i ._Q===================:========================:=:======================= & .
. LEYEL CF SIGNIFICANCE = .01
:=:==================:==========:=============:::======;::::::::::::::
. ALTERNATE CISTRIBUTIONS
- N TEST CALCH WEIBL Garpa BETA EXFCN NORML DBLEXP
’ SH=Z.5 SH=2. P2C3 SH=2. Sk=2.
) S K-S 0.C03 0.CCS 0.C06 0.C05 0.Cl1 0.C04 0.000
o 5 CvM 0.C10 0.C05 0.00¢ 0.C0¢ 0.C13 0.C05 0.C00
; S a-0 0.C10 0.C04 C.CC6 0.C04% 0.C11 0.CC4 0.€09
15 LY 0.C15 0.C11 0.Cé€0 0.C23 0e159 0.C11 0.C0G1
% 15 CYyM 0.C10 0.003 0.036 0.0CS 0.134 0.C04 0.CC0
. 15 A-C 0.C10 0.CC1 0.C17 0.C02 0.C84 0.€02 0.0C0
> 25 K-S 0.C09 0.C10 0.125 0.025 C.489 0.C10 0.C01
F 25 CVM 0.C09 0.CC4 0.C89 c.012 0.3230 0.C032 0.C00
J D) A A D G D an D o D D P D D D AP D . - D A WD R D D R W - - D D A W D D D - - -
S0 K-S 0.€12 0.C26 0.719 0.176 0.591 0.€33  0.032 R
L) cvM 0.C13 0.C12 0.353 0.052 0.828 0.C11 0.008 LT
L) A-0 0.012 0.C12 0.275 0.CS8 0.E16 0.C10 0.C12 -
P T T P P P T - - - - > w - > DD P " - - D - D " - " - - - - - - an > an = r.‘( .f.
"':'.aaaszss:==s===:=-.-:3::=::::==:3::3:::a33333333=3===:====:==:::===3:=== \ "::‘:,
S

.::
Y
»
-
2
E
::.




B! ¥ BN

- - -

P

A I

. a7

U
o e
.

(RN

P
. " ata
- pe e

Bibliography

1. Amstadter, Bertram L. Reliability Mathematics. New York: McGraw-Hill,
1971.

2. Anderson, T.W. ond D.A. Darling. “Asymptotic Theory of Goodness of Fit
Criteria Based on Stochastic Processes,” Annels of Mathematical Statistics,
23: 193-212(1952).

3. Anderson, T.W. and D.A. Darling. "A Test of Goodness of Fit,” Journal of
the Americon Stetisticel Association, 49: 765-769 (Dec. 1954).

4. Andrews, DF. and P.J. Bickel. Robust Estimates of Location. New Jersey:
Princeton University Press, 1972.

S. Benks, Jerry and John S. Carson. Discrete-Event System Simulation.
Englewood Cliffs: Prentice-Hall, 1984.

6. Bush, John G. A Modified Cramer-VYon Mises and Anderson-Darling Test

for the Weibull Distribution with Unknown Location and Scale Perameters. MS
Thesis, GOR/ma/81D. School of Engineering, Air Force Institute of Technology

(AU), Wright-Patterson AFB, OH, December 1961.

7. Conover, W.J. Practical Nonparametric Statistics (Second Edition). New
York: John Wiley and Sons, 1980.

8. Copas, JB. "On the Unimodeality of the Likelihood for the Couchy
Distribution,” Biometrika, 62: 701-704 (1975).

9. Derling, D.A. “The Kolmogorov-Smirnov, Cramer-Von Mises Tests,” The
Annals of Mathematice) Statistics, 28: 623-838 (1957).

10. David, F.N. and N.L. Johnson. “The Probability Integral Transformation
When Parameters are Estimated from the Sampie,” Biometriks, 35: 182-190
(1948).

11. Durbin, J. and M. Knott. “Components of Cramer-von Mises Statistics. |,”
Journal of Royol Statistical Society, 34(B): 290-307 (1972).



HA S e e S et A A S S et i et IR AN A i A S ML ARG Al Sl Sl Sl et S gl S S S it Sedh A St An kRt Sed ek sl tad Shd Aut Andl ol el Al S

-

LRSS NN N =S

.......................

12. Eesterling, Robert G. “Goodness of Fit and Parameter Estimation,”

Technometrics, 18: 1-9 (1976).

13. Efron, B. "Bootstrap Methods: Another Look at the Jackknife,” The Annals
of Stetistics, 7: 1-26 (1979).

14. Gabrielsen, Gorm. “On the Unimodality of the Likelihood for the Cauchy
Distribution: Some Comments,” Biometrike, 69: 677-678 (1982).

15. Granger, Clive W.J. and Daniel Orr. “Infinite Variance and Research
Strategy in Time Series Analysis,” Journal of the American Statistical
Association, 67: 275-285 (1972).

16. Green, JR. and Y.A.S. Hegazy. "Powerful Modif ied‘ EDF Goodness-of-Fit
Tests,” Journa) of the American Statistical Association, 71: 204-209 (1976).

17. Heas, Gerold and Lee Bain and Cherles Antle. “Inferences for the Ceuchy
Distribution Based on Maximum Likelihood Estimators,” Bigpmetrika, 57(2):
403-408 (1970).

18. Hammersley, J.M. and D.C. Handscomb. Monte Corlo Methods. London:
Lo Mehtuen and Co., 1967.

19. Herter, HL. "Another Look at Plotting Positions,” Communications in
Stotistics, A13(13): 1613-1633 (1964).

20. Intermatignal Mothematics and Statistics Librery Reference Manual -
0008. Houston: IMSL, 1960.

21. Johnson, Norman L. and Samuel Kotz. Continuous Univariate Distributions
- 1. Boston: Houghton Mifflin, 1970.

22. Jonson, Edward C. Conditional Nearly Best Linear Estimation of the
Locotion and Scale Parameters of the Couchy Distribution by the Use of
Censored Order Statistics. MS Thesis. GRE/MATH/69-4. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB,
OH, December 1969.

23. Kendall, Maurice G. and Alan Stuert. The Advanced Theory of Statistics:
Yolume 2. New York: Hafner Publishing, 1961.

24. Knight, Frank B. “A Cheracterization of the Cauchy Type,” Proceedings of
the American Mathematical Society, 35: 130-135 (1976).

.......
---------

I\-
I\ -

"
A
s
RN S A
AR

ety
e
EJ

v e rEr—er s s
P M Pl
TR r s
N '_rr_' r,' KR v iy

.,
7’

Ll 2 de e v 0
Ll

L



..........

25. Lilliefors, Hubert W. “On the Koimogorov-Smirnov Test for Normality

Associetion, 62: 399-402 (1967).

26. Lilliefors, Hubert W. “On the Kolmogorov-Smirnov Test for the
Exponential Distribution with Mean Unknown,” Journal of the American
Stotisticol Assaciation, 64: 367-389 (1969).

27. Mann, Nancy R. end Ernest M. Scheuer and Kenneth W. Fertig. “A New
Goodness-of-Fit Test for the Two-Parameter Weibull or Extreme Yalue

Distribution with Unknown Parameters,” Communicetions in Statistics, 2(5):
383-400 (1973).

- 28. Massey, Frank J. Jr. “The Kolmogorov-Smirnov Test for Goodness of Fit,"

Journal of the American Statistical Association, 46: 68-78 (1951).

29. Reom, Thomas J. A New Goodness of Fit Test for Normality With Mean
ond Yeriance Unknown. MS Thesis, GOR/MA/81D. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB, OH, December
1961.

30. Rider, Poul R. “Distributions of Product and Quotient of Cauchy
Veriables,” Americon Mathematical Monthly, 72: 303-305 (1965).

31. Schuster, Eugene F. “On the Goodness-of-Fit Problem for Continuous

Symmetric Distributions,” Journol of the Americen Statisticel Association,
668: 713-715(1973).

32. Spitzer, F. “Some Theorems Concerning 2--Dimensionel Brownian Motion,”
Ironsoctions of the American Mothemoticol Society, 87: 187-197 (1958).

33. Stephens, M.A. “EDF Statistics for Goodness of Fit and Some

Comporisons,” Journol of the Americon Statistical Associotion, 69: 730-737
(1974).

34. Stephens, M.A. "Asymptotic Resuits for Goodness-of-Fit Statistics With
Unknown Parameters,” Anngls of Statistics, 4 357-369 (1976).

35. Stephens, M.A. The Anderson-Darling Statistic. Grant
DAAG29-77-G-0031. U.S. Army Research Office, Stanford University,

Stenford, CA, October 1979 (AD-A079 807).

ARdaiatate 2R




LA S A Ad S Sug Sag *aie Sate sl ibie S Siatt e gt AR I A R R Al b Rl Sl el Bl ha il Aufviod Y At ot avh ati svi suh SR aSe- nte o M MRS AR il et uhd o de o - hnankos ieos Ao s B B Al a

'
i-,

36. Viviano, PhilipJ. A Modified Kolmogoroy-Smimov, Anderson-Darling, and PA
Cramer-von Mises Test for the Gamma Distribution with Unknown Locetion

and Scale Parameters. MS Thesis, GOR/MA/82D. School of Engineering, Air

e Force Institute of Technology (AU), Wright Patterson AFB, OH, December 1982.

4
-4
IS

R
°14
“q
L}
o>

37. Winkler, Robert L. and William L. Heys. Statistics: Probability,
Inference, and Decision (Second Edition). New York: Holt, Rinehart, and
Winston, 1975,

38. Woodbury, Larry B. A New Goodness of Fit Test for the Uniform
Distribution With Unspecified Parameters. MS Thesis, GOR/MA/82D. School

\ of Engineering, Air Force Institute of Technology (AU), Wright Patterson AFB,
'l OH, December 1982.

39. Yoder, John D. Modified Kolmogoroy~-Smirnov, Anderson-Darling and
Cromer-von Mises Tests for the Logistic Distribution with Unknown Location

: and Scele Parameters. MS Thesis, GOR/ENC/83D. School of Engineering, Air

) Force Institute of Technology (AU), Wright Patterson AFB, OH, December 1983.

L1-




VITA

Ceptain Frank Ocasio was born on 16 August 1953 in New York City, New

York. He graduated from high school in New York City in 1971 and ettended
Rensselaer Polytechnic Institute from which he received the degree of
Bachelor of Science in Management in August 1974. He was then employed by b !

Carroll's Development Corporation as a restaurant menager until he entered

L b
o aald

Officer Training School in February 1976. He was commissioned a second i *

lieutenant in May 1978. His first assignment was to the 756th Radar

Seuadron at Finland Air Force Station, Minnesota as a Logistics Support L—“;
Officer. InMay 1980 he was assigned to the 3515th USAF Recruiting

S
Squadron as an OTS Officer. In November 1981 he was assigned to DCS p ,*‘;
Recruiting Service, HQ Air Training Command, Randolph AFB, Texas where he L”T

served as o staff officer. While ot Randolph, he attended St. Mery's University
during the evenings until June 1983 when he received the degree of Master of

Science in Systems Engineering. He entered the School of Engineering, Air

Force Institute of Technology, in May 1984.

Permanent address: 7667 Terrasa Drive

San Antonio, Texas 78239

47

RENEN
e E i

:
O T O T R T SRS NG L AT R W AR UL SRR SRR et G Ot
T et e e T T L T T N T e e e L LT R M )




ﬂ_ !I . In- I‘!’

a
I'

Ll F_ ! ,. ,l..]l!.-.."‘!l!‘ A giio

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

R S o B g el R Nl st i prh Sk Get A e i - Sl A A Al B

REPORT DOCUME

NTATION PAGE

N1 REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. RESTRICTIVE MARR NGS

28 SECURITY CLASSIFICATION AUTHORITY

A

25. DECLASSIFICATION/OOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
unlimited

4. PERFOAMING ORGANIZATION REPORT NUMBER(S)

AFIT/GSO/MA/&5D-5

5. MONITORING QRGANIZATION REPORT NUMBERIS)

6a. NAME OF PERFORMING ORGANIZATION
School of Engineering
AF Inst of Technology

b. OFFICE SYMBOL
(11 appiicable)

AFIT/ENC

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State and ZIP Code)

Wright-Patterson AFB OH 45433

7b. ADDRESS (City, State ana ZIP Code)

8s. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(1f applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

t&, ADORESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

11. TITLE (Include Security Classification)

See Box 19

PROGRAM
ELEMENT NO.

PROJECT
NOQ.

TASK
NO.

WORK UNIT
NO.

12. PERSONAL AUTHORI(S)

Frank Ocasio, Capt, USAF

. Ja. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

MS Thesis FROM 10 1985 December 53
16. SUPPLEMENTARY NOTATION
E. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROuP SUB. GR, Nonparametric Statistics, Statistical Tests, Statistical
_ 12 01 Distributions, Distribution Functions
.:: 19. ABSTRACT /Continue on reverse if necessary and identify by block number)
: Title: A MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING, AND CRAMER-VON MISES TEST

Thesis Advisor:

Dr. Albert H. Moore, Professor

FOR THE CAUCHY DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PAPAMETERS

oved 13 tﬂc relower. 1AW AFR "‘V
% WOLAVER e omord
Dean tor Research and Projessionss Dwselepment
Als Foroe Imstitute of Technology (ASOT

wwmonm

'20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION

e e g

Y
|
N
i

5 ‘;-;':'NCLASSIFIED/UNLIM|TED ® same as ret T pricusers O UNCLASSIFIED
'.* 22s. NAME OF RESPONSIBLE INDIVIOUAL 22b. TELEPHONE NUMBER 22¢c. OFFICE SYMBOL
‘-‘ finclude Area Code)
< B, Albert H. Moore, Professor (513) 255-3008 AFIT/ENC
Y DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
A P s T ST TS e SR R S B R R AR R SRR R




i EARR MR MR Mt A i A A7) AT e I St it By

ABSTRACT R

The Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises Sl
critical values are generated for the Cauchy distribution. The ’
critical values are used for testing the null hypothesis that a set
of observations follow a Cauchy distribution when the location and
scale parameters are unknown and estimated from the sample. A Monte
Carlo simulation, using 5000 repetitions, was used to generate the
critical values for sample sizes of 5(5)30 and 50. Fiore 5t of T/ 4

A power study was performed using Monte Carlo simulation for

the Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises|tests.
Sample sizes of 5, 15, 25 and 50 were used for six alternate distribu-
tions, for alpha levels of .05 and .0l. Analyzing by sample size shows I
very poor power for a sample size of five. As the sample size increases —
so does the power, so that at a sample size of fifty, the powers against SRS
three of the six distributions is .5 or better. Among the three tests, e
the Kolmogorov-Smirnov is consistently more powerful, regardless of
sample size or alpha level. )&- .
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