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The purpose of this study was to produce a set of critical value tables

for the Cauchy distribution using three popular goodness-of-fit tests, the

Kolmogorov-Smirnov, the Anderson-Darling, and the Cramer-von Mises. This

will allow anyone doing hypothesis testing to test a null hypothesis involving

the Cauchy. To determine the confidence the user may have when using these

tables, a power comparison was run against several alternate distributions.

When preparing this thesis, I received a great deal of help and support

from others. My faculty advisor, Dr. A.H. Moore, helped keep me within the

original scope of the thesis effort, which made it possible to finish on time.

Capt. Jim Porter was very helpful in finalizing my computer programs, and

without his help I would still be working on those programs. My two little

boys, Mike and Matt, helped me by maintaining my overall perspective, and

providing me enough breaks to maintain my sanity. Finally, my wife Kellie

deserves more thanks than she will probably ever get as she supported me -'

through my numerous long nights during the thesis preparation.

Frank Ocaslo
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Abstract :-','

The Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises

critical values are generated for the Cauchy distribution. The critical values

are used for testing the null hypothesis that a set of observations follow a

Cauchy distribution when the location and scale parameters are unknown and

estimated from the sample. A Monte Carlo simulation, using 5000 repititions,

was used to generate the critical values for sample sizes of 5(5)30 and 50.

A power study was performed using Monte Carlo simulation for the

Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises tests. Sample

Ssizes of 5, 15, 25, and 50 were used for six alternate distributions, for alpha

levels of .05 and .01. Analyzing by sample size shows very poor power for a

sample size of five. As the sample size Increases so does the power, so that

at a sample size of fifty, the powers against three of the six distributions is

.5 or better. Among the three tests, the Kolmogorov-Smirnov is consistently

more powerful, regardless of sample size or alpha level.

S S .' %. ',. . . . . . . . . . . . . . . . . . .



A MODIFIED KOLMOGOROV-SMIRNOV,

ANDERSON-DARLING, AND CRAMER-VON MISES TEST

FOR THE CAUCHY D I STR I BUT ION

WITH UNKNOWN LOCATION AND SCALE PARAMETERS .

1. Introduction. ,
I. ~IEQ-. -

Chapter y "Iei--

This chapter gives an outline of the scope of this thesis. Some

background will be covered on data analysis and modeling, tying that into

goodness-of-fit testing. Then the Problem Statement, the Research Question,

and the Research Objectives will be given.

Background

When data are being analyzed, one of the first things to do Is develop a

valid model of that data. This is a four step process (5:332), with the first

being data collection. The next step is to analyze the empirical data

distribution and attempt to match it against a known distribution. This is

dons using a histogram, which gives a visual image of the data distribution.

Third, the parameters of that known distribution, most often location and

..... ..- :'
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scale, are estimated from the data. A familiar example of these parameters

Is the mean and variance of the Normal distribution. The fourth step is to

apply goodness- of-fit tests. Here a null hypothesis (H.) is proposed which

states that the actual distribution of the data is the known distribution,

whereas the alternate tpothesis (H1) is that the actual distribution is not

the known distribution. The tests measure the fit between the empirical and

known distributions. To use the tests, statistics are calculated from the data

and compared to critical value tables which have been developed for various

distributions. The comparison will result in accepting or rejecting Ho . If Ho

is rejected, the process is repeated, starting with the second step.

0 The three goodness-of-fit tests used for this thesis apply different

techniques to determine fit. The Kolmogorov-Smirnov (KS) test uses the

absolute difference between the empirical and known distributions. A

problem with the KS test is that it tends to have smaller discrepencies at the

tails rather than near the median of the distribution (39:6). One way to

overcome this problem is to use the squared differences between the

distributions. The Anderson-Darling (AD) test uses a weighted squared

difference and the Cramer-von Mises (CVII) uses only the squared difference.

This thesis will look at the Cauchy distribution. It is similar in shape to :

the Normal except that it has longer and flatter tails (21:154). In physics,

~.ui ;i.-. ..-. ?-
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the Cauchy is used in modeling Brownian motion (32:161).

Probleml Statement ...

Highly accurate goodness-of-fit tests have not been developed for the Cauchy

distribution with unknown location and scale parameters. These tests would

require critical value tables based on the data sample size and parameters.

Reeearch uestion

How can the KS, AD, and CVM tests be modified for the Cauchy distribution
L .

when the location and scale parameters are unknown?

Research Obiectives

1. Generate and document critical value tables for the modified

Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises -.

goodness-of-fit tests.

2. Do a power study of the Kolmogorov-Smirnov, Anderson-Darling,

and Cramer-von Ilises tests to determine the most powerful. The

power is the probability of rejecting Ho when H1 is true (6:79). The

higher the power, the greater the confidence in the test results.

3
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II. Godness pi f.j .Tests

ChaOte Overview

This chapter will develop the background for goodness-of-fit (GOF) tests.

First, hypothesis testing will be covered as an introduction to GOF. This will

be followed by a look at GOF tests. The X2 will be covered as the most

common of these tests. Then the concept of the empirical distribution

function (EDF), and its use in GOF, will be discussed. Finally, the EDF tests

which will be used in this thesis, the Kolmogorov-Smirnov (KS), the

Anderson-Darling (AD) and the Cramer-von Mises (CVM), will be introduced. . -

Uyoothesil Testing

In hypothesis testing, a specific statement (called the hypothesis) is

made about a population. Then a sample is taken from that population. Based

on that sample, a decision is made for or against accepting the hypothesis

(7:75). That decision is based on the following test procedure (7:75-77):

1. A hypothesis to be tested, the null hypotheses (H.), is made about L

the population. The negative of H0 is also set up and labelled H,.

2. To make the decision, a test statistic is used. This statistic

4
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would assign real numbers to points in the sample space and allow

ordering of those points based on their ability to tell the

difference between a true and a false H.

3. A rule is established to determine which values of the statistic

will allow acceptance and which rejection. For this thesis, larger

values of the statistic tend toward rejection of Ho.That value of

the test statistic which is the cutoff between accepting and

rejecting is called the critical value, and if the test statistic is

greater than that value, H. is rejected.

4. A random sample is taken from the population. Based on that

* ~ sample the test statistic is evaluated, and the hypothesis is then

either accepted or rejected.

The sample that is taken is only part of the population, and therefore

contains only part of the total information available. This leads to a

possibility of error when deciding whether to accept or reject Ho. This error

can surface in two ways: Ho can be rejected when it Is actually true, which Is

called a Type I error; H. can be accepted when it is actually false, which Is -

called a Type II error (7:78). Since hypothesis testing is concerned with

minimizing these errors, the maximum probabilities of making these errors

".". ..' ... . -.' '....'.- ' '_.."_..... ' ' ,:_':.'..,__..--.' ._ _'.,-,-.' ." " '. .' ',-.'_'.¢ _ _._,.,: '_ _,_ . "5,"
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have been given the labels of a for Tgpe I and p for Type II. Related to p Is

the parameter of power, or I-n, the probability of rejecting Ho when false.

The basic thrust behind hypothesis testing is to reject 140, while with

GOF testing the reverse is true (:72).

GO Tests
L

H in GOF tests is that a selected distribution fits the distribution

underlying the population sample. One common wag to get that selected

distribution is to plot the sample data points using a histogram and pick a

distribution that visually matches that histogram.

GOF tests try to determine if there is any evidence of disagreement

between the sample and the selected distribution (1:72). The assumption is

that the sample data fits the distribution unless there is enough evidence to

disprove that issumption. An intuitive approach to collecting the evidence is

to first plot the sample distribution function:

F0(X)-rn (1)"

where r~number of xi 1 x. Then compare Fn(X) with the assumed distribution,

a and visually inspect for substantial disagreement (11:290). However, to

, , . . .



attain accurate, reproduceable results some standard is required to measure

the discrepancy. This is where the GOF tests come in.

The best-known GOF test is the Chi-Square (1:73). The test first groups

the sample data into classes then compares the observed frequency of Fn(X) In

each of the classes with the expected frequency of the assumed distribution

(39:2). The test statistic is (1:73):

X2 [(f - f )2 ( fo)- 1] (2)

where

40

f= the observed frequency per class

fl the expected frequency per class

k = the number of classes

Some of the advantages with this test are it is good for a discrete

distribution and the statistic can be adjusted if the parameters of Fn(X) are

estimated from the sample (33:731). A disadvantage Is that the sample sizes

must be fairly large (n > 25) for the test to work. This minimum n Is to allow

sufficient data points In each class to calculate the test statistic (1:73).

Another set of GOF tests use statistics based on the sample, or

. ..,
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empirical, distribution function, otherwise known as EDF statistics (33:732).

With these tests, a comparison is made between Fn(X) (the EDF). and F(X). the

assumed cumulative distribution function (CDF), to see if they match (35:1).

Fn(X) is defined above, where the n values of x are a random sample from X.

From the xi, if X(2), X(, ..., x are set up as ascending ordered statistics, then

F0(X) Is defined by (35:1)

* Fn(X) 0 (3)

& s-.1

FnlX) =I/n xi I x I x6+1),1 1 , ..,(n- 1 ) (4) ...-.'

Frj(l) :I x ( <x. (5) .-•

The expectation is that Fn(X), the proportion of the random sample < x, would

give a good estimate of F(X), the probability of X < x, which it does (35:1).

This leads to the development of the EDF statistics which use the discrepancy

between Fn(X) and F(X) to determine if the sample comes from F(X).

Some advantages with using EDF statistics are that, unlike the

Chi-Square, they can be used with small sample sizes, and, when F(X) is fully

specified, they are more powerful than the Chi-Square test (33:732). One

disadvantage is that EDF statistics cannot be used for discrete distributions.

Another disagvantage was that, initially, EDF statistics coulu only be

-.... ,
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used when F(X) was fully specified. This was due to the use of the probability

integral transformation, which, when used with a fully specified CDF, will

convert the values of that CDF to ordered values from zero to one based on a

uniform distribution (39:5). If the parameters of F(X) were estimated, the

cumulative distribution of the EDF statistics would depend not only on the

sample size, but also on the value of the unknown parameters (33:731). This

limitation to a fully specified F(X) prevented the widespread use of EDF

statistics, since the parameters of the assumed distribution are usually not

known beforehand and must be estimated from the sample data.

In 1948, David and Johnson (10) changed that when they showed that if

Invariant estimates of only the location and scale parameters are taken from

the sample data, then the cumulative distribution of the EDF statistics will

depend on the functional form of F(X), not on the estimated parameters. This

cleared the way f cr modified (using estimated parameters) tables of critical

values to be generated for a variety of distributions which would depend only

on sample size and significance level 1W). The first was H. W. Lilliefors for f.

the normal (25) and exponential distribution (26). J. 6. Bush did tables for the

Weibull distribution (6), and P. J. Viviano did so for the Gamma distribution

(36). Green and Hegazy did tables for the Uniform, Normal, Laplace,

Exponential and Cauchy distributions (16). This thesis will do a new set of

-* - critical value tables for the Cauchy because Green and Hegazy did not use the

9



same estimating technique for parameter estimation, and they did not use the

bootstrap interpolation technique, which will be discussed in Chapter IV.

As with all the GOF tests, the intent in hypothesis testing when using

EDF statistics is to accept Ho.This can make power problems a significant

concern. The desire would be for the results of the testing to be powerful,

i.e., to accept Ho and also feel confident that the alternate hypothesis is false.

However, this is not always the case. One problem is that though EDF

statistics can be used with small sample sizes, the results are not very

powerful (29:3). For example when Green and Hegazy did power studies on

their statistics, for n = 5, the power was never greater than 0.5 (16). Another

problem is that the statistics are more powerful against some distributions

('21:3). This makes the results of power studies helpful to anyone using

these statistics, since, assuming H6 is accepted, the power study can be

referenced to determine how much confidence can be had in the results.

Saistis

This thesis will work with three EDF statistics, the Kolmogorov-Smirnov

statistic (KS), the Cramer-von Mlises statistic (CVM), and the Anderson-

Darling statistic (AD).

The KS statistic is defined as (*21:15):

10
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D max IF*(x) - F(X)I (6)

where

the x, are ordered

F*(x) is the CDF value of the data point

It is based on the greatest vertical difference between the two functions

(35:2), and has these advantages over the Chi-Square (28:76):

- It does not lose information by grouping whereas the Chi-Square

does, and this information loss is large for small samples, making

the KS statistic a better choice for small samples.

kjo- The KS statistic is easier to determine computationallg.

One problem with the KS is its insensitivity to differences in the tails, since

both functions tend to 0 and I in those extremes (12:3).

A more flexible set of statistics Is the Cramer-von M1ses1 family, to

which both of the other statistics belong. This family incorporates a weight

function, %I(X), which allows weighting the deviations based on the .

importance of different portions of the distribution function (2:194). These

statistics are based on the integral of the weighted squared difference

between the assumed distribution and the EDF (35:2):

W* (Fn(X) - F(X) 2 4'(X) dx (7)
I-we

II "-N:-



The CVM statistic is W* with T(X) 1 (35:2). The computational form of

this statistic is (16:205):

W2 (12n "  [Y - (21 - 1)(2n)' 1  (0)

where Yi F(xi) .

The AD statistic sets the weight function equal to the Inverse of the

variance of F(X) (35:2):

,1 F(X) = [1 F(X))(I 1- F(X) " rl (9)

This assigns equal weights to each point of F(X) (2:195), Increasing the

weight given to the tails of the distribution, and providing better detection of

differences In the tails than the KS or the CIVM statistics (34:360).

The computational form of this statistic is ( 6:206):

A=-n -(nr'( (21 - I)[In Y In(I- .)-1 (10)

V ...

12
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Ill. Ibi~michg Distribution

Chapter Overview

This chapter will discuss various aspects of the Cauchy distribution.

The first aspect is the definition of the distribution, covering the pertinent --

equations. Then the properties of the Cauchy are covered, followed by a brief

glance at some of its uses. Finally, parameter estimation for the Cauchy will

be discussed, from a general look at estimation to a discussion of the

estimation technique to be used in this thesis.

DefI niti on

The Cauchy probability density function (PDF) Is (21:154):

where

A Is the scale parameter .

6 Is the location parameter C

The CDF for the Cauchy Is (17:404):

13



!4 -ir tan 11(x - e)/x\ (12)

The characteristic function is (22:1 1):

C lt) exp(ite - Itlk) (13)

The K' partial derivative of Cx(t)/Ik with respect to t, when evaluated at t

0, is the KIh moment (22:11).

Prooerties of the Cauchy

Given Cx(t), an evaluation of the first partial derivative with respect to t

at t 0 yields an imaginary solution, resulting in all higher partials being

imaginary (22:11). This leads to an oddity of the Cauchy, namely, that it has

no moments of order z 1, and therefore has an infinite expected value and

standard deviation (21:154).

Though It has no finite expected value, the Cauchy is symmetric about its

expected value, and Is a member of the symmetric stable family (24:133).

This symmetry is similar to the Normal, except for the longer and flatter

tails of the Cauchy (21:154).

There are some other properties to note (30:303-305):

14
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1. The distribution of the reciprocal of a Cauchy variable is the same

as that of the variable.

2. The arithmetic means of samples from the Cauchy have the same
,-.. . . -

distribution as the Cauchy.

3. The distribution of the product and quotient of two Cauchy

variables is:

f(u) =[1 2(u2 - I)r'log (U2) (14)

fo~rthe Cauchj

As a member of the symmetrical stable family of distributions, the

Cauchy has applications in economic modeling and estimation (15:275).

Time-series and cross-section data for such things as personal Incomes,

stock and commodity price changes, and employment measures of businesses

often were assumed to behave as normally distributed random variables.

However, frequency functions consistently came up with too much mass in the

tails to be accounted for by the normal. The Cauchy, with its longer and .

flatter tails, allows for that mass. This backs up the statement made by "'"*

Haas and Bain that "the Cauchy distribution should be considered as a possible

model whenever one needs a density function with heavier tails than the

normal distribution allows' (17:403).

Fig. I Is a geometrical application of the Cauchy distribution (21:161).

15
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I

In this model the Cauchy distribution represents the distribution of P, the

point of intersection of a variable straight line with a fixed straight line.

The variable straight line is randomly oriented in two dimensions through the

fixed point A. The result is the distance OP is Cauchy distributed with 8 0.

A

o P

Fig 1. Cauchy Distribution Model (21.101)

Using this model, the Cauchy distribution can represent the distribution

of points where particles from a point source, shown as A, impact a fixed

straight line (21:161). This is used in physics, where the Cauchg distribution

Is used to help describe the motion of a random point In standard Brownian

motion (32).

Estimation is a procedure that allows generalizing from a sample to a

population (37:334). In this thesis the concern is with point estimation,

16
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where a sample statistic is used to estimate a population parameter. There

are several desirable properties for point estimators (37:335-342):

1. Unbiasedness: where the expected value of the estimator (6) is

equal to the parameter ( 8), i.e., E(G) = 8.

2. Consistency: where the larger the sample, the higher the

probability of 6 being close to 8.

3. Relative Efficiency: that the estimator be more efficient (smaller

c) than other estimators.

4. Sufficiency: that the estimator contain all the information

available in the data about the parameter.

One method of estimation uses the sample as the guide to the parameter

(37:345). With sample values (xj, x2,..., xn), a likelihood function is set up:

L( x,,...,xn8) (15)

This Is the likelihood of getting this particular sample, given some 8. The

maximum likelihood principle says to take as an estimate of 0 that value

which, while within the range of 8, makes the likelihood function as large as

possible (23:35). For computational purposes, it is usually easier to work

with log L.

An attractive feature of the maximum likelihood estimator (MLE) is that

17
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it is invariant (37:346). Invariance, in terms of the variables used above,

means that if G is the MLE of 8 and h(O) has an inverse, then h(G) is an MLE of

h(8). An example is with a sample taken from a normally distributed

population. For this case S2 , the sample variance, Is an MLE of a2, the

population variance. Invariance says that the sample standard deviation, S, is

also an MLE of the population standard deviation, cr. The invariance of the MLE

is important for this thesis, since invariant estimators of the location and

scale parameters are needed to develop critical value tables when F(X), the

hypothesi zed di stri buti on, i s not f ullIg speci f ied. .-.

Applied to the Cauchy distribution, the likelihood function is (17:404):

L( x1,..., xnl 8, X) h{axI+ (xi - 8(x,)- 1  (16)

and the maximum likelihood equations are:

1 [lx 1 - §)1~ [-1 (I I -Xi A)2 , 2r1) 0 (17)

[1( -§2IjI 2  (17)

where 8 and , are the MLE f or 8 end X, respectively. These equations are then

solved for 8 and .



The MLE is not the only estimation technique that could ".ve been used

for this thesis. Another popular estimator is the BLUE, or best linear

1 unbiased estimator. However, a study by Haas, Bain, and Antle (17) concluded

that the MLE i s a better esti mator f or the Cauchy di stnibuti on,si nce they

I found the confidence intervals developed for the parameters were narrower

with the tILE than with the BLUE.

19
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Chapter Overview

This chapter looks at the methodology used to complete this thesis. The

specific steps used in the Monte Carlo method to generate the critical value

tables will be looked at first, followed by a discussion of the steps used to do

the power study.

GeneratinW the Critical Tab] es

This thesis used the Monte Carlo method to generate critical value tables

for the Cauchy distribution. This method is a way to investigate the behavior

of probabalistic processes. It takes random numbers, chosen so that they

simulate the properties of the process being investigated, and observes their

behavior, from which conclusions can be drawn about that process (10:2-4).

Fig. 2 is a flow chart showing the logic for generating the critical value

tables (6:13-14). The following discussion will elaborate on those steps:

Step 1: Random Deviate Generation. To start the Monte Carlo analysis,

random Cauchy deviates need to be attained. A commercially available

computer subroutine, GGCAY, was used to generate those deviates. It is part

of the International Mathematical and Statistic Libranj (IMSL) (20:Chapt 6). !

Step 2: Ordering the Random Deviates. Another IMSL subroutine, VSRTA,- .

20 .- '-
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was used to order the deviates.

Step 3: Estimating the Parameters. As mentioned In Chapter III, the MLE

was used to estimate the location and scale parameters. The actual computer

program for the MLE was derived from a program Included in a text by D. F. .7

Andrews and P. J. Bickel (4:17).

Step 4: Generate the Hypothesized Distribution Function F(x). With the

estimated location and scale parameters from Step 3 and the ordered deviates

from Step 2, equation (12) yields the hypothesized CDF.

Step 5: Calculate the Modified KS, AD, and CVM test statistics.

Equations (6), (8), and (10) are solved using the hypothesized CDF and the

ordered random deviates.

Step 6: Repeat 5000 times. Steps I - 5 will be repeated 5000 times to

generate 5000 independent KS, AD, and CVM statistics.

Step 7: Determine the Critical Values. A bit of background is Important

here to understand this step. Critical values are Important In hypothesis

testing since these values are what will be checked to verify Ho.The whole

purpose of this thesis Is to generate those critical value tables to use when

Ho states that the actual distribution of the data is Cauchy. Since all the

values derived up until now are based on Cauchy random deviates, that 1o is . -

true for our samples.
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Steps I - 6 have generated 5000 order statistics for each of the GOF

r tests. Combined with commonly used a levels, where x is the maximum

probability of rejecting a true Ha, all that needs to be determined is the point

where, in the range of the order statistics, each of the a levels fall. The

mirror image of this is to work with the percentiles, or the I - a levels.

These then become the minimum probability of accepting Ha when true. The

points where those levels fall are the critical values.

To get the critical values different techniques are available. A

straightforward technique is to select that order statistic which, as a .

percentage of the total statistics, matches the percentile level, e.g., for the

80th percentile and 5000 order statistics, the critical value would be the

4000th one. This was the technique used by Green and Hegazy (16). Recently,

a more precise technique has been developed, that of plotting positions (29:7).

Plotting positions depend on the bootstrap method (13). The technique

Involves locating the discrete order statistics on a continuous spectrum.

This is accomplished by taking the space between the statistics and

representing it as a plecewise linear function. With that function, it is

possible to interpolate between the discrete values of the statistics and get

more accurate critical values (29:7). The interpolation is done by plotting the

order statistics against a plotting position which represents the order

statistics on a zero to one scale.
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There are many different plotting positions, and prior theses have looked

at them and did not find any significant difference between them when it

comes to calculating the EDF statistics (6;29;30). Harter (19) recently did an

extensive analysis of various of the plotting positions. One of his findings

was that as samples Increased over a sample size of 20, the differences

between them for the positions they d 'termined were insignificant. With

5000 independent values for each test statistic, one plotting position for this

thesis Is justified.

This thesis will use the median rank plotting convention. Harter shows

this to be closely approximated by (19:1617):

Vi 0-0.3)/(n-0.4) (19)

whereZ

n = 5000

Ream (29:11-23) gives an in-depth Illustration on how plotting positions

are used to determine critical values, therefore only a brief overview will be

done here. The order statistics X01), X(2),.., Xc,.o) are plotted along the,..

abscissa axis, while the 5000 plotting position are plotted along the ordinate

axis. Both sets of points are assigned to positions 2 to 5001. For the

plotting positions, the Interval 10,11 is completed by setting the first position

25
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to be Yo 0, and the 5002nd position to be Y., -1. For the order statistics,

linear extrapolation is used to determine the first and last entries. The first

entry is made by linearly extrapolating from the first and second order

statistics, limited by a nonnegativity restriction. The last entry is similarly

extrapolated from the last and next to last order statistics. For the purposes

of the computer program used to generate these values, an array of 5002

values was used for each axis. --

The extrapolation of X(e,) and X(o) uses V mx + b, the linear

slope-intercept formula. The first endpoint is calculated as follows: .

m ( 2  Y)/(X- )o) o) (20)

b:=Y-mX( 1) (21)

Xfo) = - b/m (22)

Since a negative value is not allowed, the minimum value for X(o) is 0 leading

to: "- ,*

X(M max (0, -b/m) (23) .
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Similarly, the value for X ,oocan be found.

If straight lines are used between all the 5002 points, a piecewise linear

function is produced. At this point linear interpolation can be used to

determine any value that might fall between any two consecutive points,

necessary in order to calculate the critical values. For example, to find the

85th percentile, the largest plotting position, Y ,less than .85 is found.

Then the corresponding X0, along with Xtl) and Y,+, are used to linearly

Interpolate the critical value using:

m:(Iv 1 - V( )/(Xc -X(o) (24)

b= = - m (25)

Critical Value = (p - b)/m (26)

The critical value percentiles used for this thesis were 80, 85, 90, 95, 99.

Step 1: Repeat steps 1-7 for each of sample sizes 5,10,15,20,25, and 30.

These sample sizes have been used in developing critical value tables for

other distributions (6;27).

The resulting critical value tables are in Appendix A.
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The Power a:udq

Once the critical value tables are generated, this thesis then compares

the power of the three test statistics against several alternate distributions.

As mentioned previously, the concept of power is important when using EDF

statistics, since the intent with the hypothesis testing is to accept the null

hypothesis. At the same time, one wants to feel confident that the alternate

hypothesis is false. By having a comparison of the power of the three

statistics, someone testing for the Cauchy distribution can select the test

which best protects against likely alternate distributions. k . ..

The alternate distributions used for this thesis are the Weibul1, with

shape parameter of 3.5, the Gamma, with shape parameter of 2.0, the Beta,

with the P and Q parameters of 2 and 3, respectively, the Exponential, with

the shape parameter of 2.0, the Normal, and the Double Exponential, with the

shape parameter of 2.0.

The logic of the power study basically follows that of the critical value

* table generation, except that Instead of starting with Cauchy random

deviates, deviates from the above named distributions are used. Since the

program to accomplish the power study Is simpler and less time consuming

when run, the number of statistics calculated for each distribution was set at

10,000 instead of the 5,000 used for the critical value tables.

The first step in the power study Involved generating random deviates
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for the alternate distributions using IMSL subroutines. Then, since the null

hypothesis is that the underlying distribution Is Cauchy, steps 2,3,4, and 5 of

Fig.2 were performed. This involved ordering the data, estimating the

parameters, computing the hypothesized F(x), and calculating the test

statistics. These statistics are then compared with the critical values

generated for each respective test for alphas of .05 and .0 1. A counter is

Incremented each time the calculated test statistic exceeds the critical

value. This tracks how many times the null hypothesis is correctly rejected.

Then, the total number of rejections is divided by 10,000 to obtain the power.

This is repeated for each of the alternate distributions, and finally for each -

of the different sample sizes (5, 15, 25, 50). The resulting power comparison

tables are in Appendix B.
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" v~~. Use 91 the Tables":..-,

Cheater Overview

This chapter will discuss the basic procedure involved in using the

critical value tables generated in this thesis.

us gf the Tab les ...

The critical value tables will be used to determine whether or not to

accept the null hypothesis, that the distribution of the sample data points,

Fnlx), is the Cauchy distribution, Flx). The appropriate statistic is calculated

using equation (6), (0), or (10). The calculated statistic is compared to the

critical value in the tables (for a given n and a) and if the statistic value is

greater than the critical value, the null hypothesis Is rejected.

The following steps are used In the above analysis (6:28-29):

1. The user will select the appropriate a-level and sample size. As

stated earlier, a sets the maximum probability of rejecting the null

hypothesis when It Is true.

2. Select n random observations from the total population. Order

these observations from the smallest to the largest.

3. Estimate the location and scale parameters for the sample. The
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estimator must be invariant for the results to be meaningful.

4. Specify the Cauchy distribution using the above estimated location

and scale parameter.

5. Calculate the test statistic of interest -- KS, CVM or AD. This can

be done using Eq (E), (8), or (10), respectively.

6. Given the n and a, look up the critical value from the tables in

Appendix A.

7. If the test statistic value is greater than the critical value, then

the null hypothesis is rejected. However, if the critical value is less than or

equal to the test statistic value, then there is a failure to reject the null

hypothesis. The conclusion is that there is insufficient evidence to reject the

null hypothesis.
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VI. Results

Chapter Overview

This chapter discusses the results of this thesis -- the critical value

tables and the power tables.

Critica Value Tables

The critical value tables for the modified KS, CVM, and AD tests are In

Appendix A. They are organized by alpha level (.20, .15, .10, .05, .01) and

sample size (5,10,15,20,25,30,50).

The KS critical values all decrease as n increases and a increases. The

rate of decrease slows down with increasing n and a. It could be that If n

were increased to 40 or 50 the critical values would stabilize at some value.

The CVM and the AD critical values also decrease, but only as the a-level

increases, while holding n constant. With a constant, there is little change L

with changing n, In fact, the statistics stay very close together, with slight

fluctuation.

Since the critical values are generated through a Monte Carlo process,

there is a degree of variability introduced. The error of a Monte Carlo process .-. ".,

Is proportional to I /(N)4, with N being the number of iterations of the .i.-. .
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simulation (6:33). Therefore, by running the simulation with N = 10000 rather

than 5000, some of the patterns seen could change. However, due to the

greatly increased computer time needed to go from 5000 to 10000, that

option was not possible for this thesis.

Power Tables

The first 'alternate' distribution used in the power study was the

Cauchy. This was done to validate the values generated in the first part of

the thesis. To be valid, the power would have to be close to the *-levels, and

that Is the case. The powers are not exactly equal to the a-levels, but that is

a result of the variability in the Monte Carlo process, as mentioned above.

Among the three tests, the KS Is consistently more powerful, across all

n and a. There are only 3 or 4 instances where it comes in second and then

only in the third significant digit. This could be a result of the KS being

fairly Insensitive to discrepencies in the tails. The Cauchy has longer and

flatter tails and the KS might be deemphasizing the difference there.

Analyzing by sample size shows very poor power at n 5 (.085 being the

highest), with power Increasing as n Increases. When one gets to a sample

size of 50, three distributions, the Exponential, the Gamma, and the Beta,

have powrs above 0.5 (1.0, .947, .516 respectively). This makes sense as the

amount of Information available increases with sample size.

When a -levels are analyzed, for a = .0 1, the only reasonable power Is
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against the Exponential and the Gamma, with a power of .991 and .719

.*-" respectively. The next best is onlg.176. As a increases to .05, power

increases across the board, getting up to 1.0 for the Exponential. When

looking at the alternate distributions, the distributions with reasonable

power are the Exponential, the Gamma, and the Beta. The highest power

among all the other distributions Is .259, not enough to instill any confiience

In the results of the GOF test.

Given the above analysis, if the Cauchy is the distribution In the null

hypothesis, one should try for a sample size of 50 or better, and if that is not

possible, accept an x of .05 or greater.

3,
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VII. Conclusions and Recommendations

ChaDter Overview

This chapter gives the conclusions reached in this thesis, and the

recommendations made for further study.

Conclusions

1. The critical value tables generated for the Kolmogorov-Smirnov, the ..-

Cramer-von Mises, and the Anderson-Darling goodness-of-fit tests for the

Cauchy distribution are valid. By using the Cauchy as one of the 'alternate'

distributions when doing the power study, the values were validated.

2. Regarding the choice of a test, if the alternate hypothesis is the

Exponential, the Gamma, or the Beta, and the sample size Is greater than five,

then all three of the tests are fairly powerful. However, the Kolmogorov-

Smirnov test is the most powerful of the three In any situation.

3. After analyzing the power test, there is a good deal of power

available against the Exponential, the Gamma, and the Beta.

Recommendations.

1. If possible, the critical value tables should be redone with 10,000

statistics. This would reduce the variability due to the Monte Carlo process,
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and would make one more certain of the patterns evident in the tables.

2. With the Improvement in power evidenced In the power tables, further

power studies should be attempted with larger sample sizes and a-levels.

The goal should be to find what combinations would Increase the power

against the weaker distributions (Weibull, Normal, and Double Exponential).

3. Other distributions should be investigated in further power studies to

determine if there are other distributions against which the GOF tests are

also powerful.
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APPEN~DIX A

-This includes critical. value tables for the Kolno)gorov-Snirnov, the
Cramer-von hises,- and the Anderson-Darling Tests. -
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TABLE I

CRITICAL VALUES FCR ThE MCOIFIED KS TEST
ALPHA N CR17ICAL VALUE
.20 5 0.2898729
.20 10 0.20892S6
.20 15 0.1745039
.20 20 0.1542405
.20 25 0.1385744
".20 30 0.1271362
.20 50 p.CS89140

------------------------------------------------------------
.15 5 ,, 0.3054360
.15 10 0.2196148
.15 15 0.1839E46
.15 20 041619S31
.15 25 0.1453200
.15 3C 0.1338C64
.15 so 0.1025580

------------------------------------------------------------
.10 5 0.3252105
.10 10 0.2135S90
.10 is 0.1960747
1.10 20 0.1727150 -

.10 25 0.1548475 K"
.10 30 0.1435490
.10 50 0.105958

------------------------------------

.05 s 0.148oC30

.05 10 0.2544265
.05 15 0.2142230
.05 20 0.2878E66
.05 25 0.1698e37
.05 30 0.1564334

*.05 0 0.1200229

.01 5 0.3840281
S01 10 0.2967503
.01 15 q.2463341
.01 20 0.2202671
.01 25 0.2011247
.01 30 0.1826S19 .
.01 50 0.1418185

----------------------------------------
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TABLE I I
CRITICAL VALUES FCR TEE M'CIFIED CVM IEST
ALPHA N CRITICAL VALUE
.20 5 0.C71e47
.20 10 0.0910C45

.i0 15 .C914!36
.20 20 O.CSB0557
.20 25 000918403
e20 3C 0.092529
.20 50 0.C911552

.15 5 ' 0.1148650

.15 10 .0.1064403

.15 15 0.1068219

.15 20 0.1087681
.15 25 0.1075684
.15 30 .0.100ES52

s15 50 0.1055738

.10 5 0.1364753

.10 10 0.1280515
.10 15 0.1262S27
.10 20 0.1290561
°10 25 0.1304103
.10 3G 0.1311479
.10 5G 0.1266S34

-------------------------------------------------------------
.05 5 0.1668S84

.05 10 0.1643178
ea 15 0:16635670,05 20 0.1694394 '''''
0.05 2 0.1711696

.05 .30 0.1705763

.05 50 0.1629795
-------------------------------- -----------------------------

.01 5 0.2162196
.01 10 0.2393C59
.01 15 0.2558281
001 20 0.2500614

.01 25 0.2658464_*,.*
.01 30 0.2640329
.c1 so 0.2547.85.-

-------------------------------------------------------------

39 %.

...- S...

, 
5
d



TABLE III
C~tITICAL VALUES FCR TFE MCCIFIED AC TEST
ALPHA N CRITICAL VALUE
.20 5 0.1511249
.20 10 0.7006519
.20 1s 0.7101663
.20 20 0.7105355
e20 25 0.6993738
.20 30 0.7045E76

so 0.E554132

.15 5 I0.e839264

.15 10a 0.8087E49
o25 15 0.8106228
.15 20 0.81S6578
.15 25 0.7957106
*i5 30 0.8138590 -

.15 50 0.7880611

.10 5 1.0499034

.10 10 0.5686199

.10 15 O.S728056

.10 20 0.5603571
010 25 0.S719502
010 30 0.S705017
.10 50 0.5372754

--------------------------------------- ------

.05 5 1.3589739
.05 10 1.2246!06

(..05 1s 1.2566E5
005 ZC 1.25e6166
005 25 1.2332463
.05 30 1.249SC85
.05 50 1.1945103

------------------------------------------------------------------------------

.01 5 2.1669748
001 10 1.8335395
.01 15 : .9464778
.01 20 1.t30ZE92
.01 25 1.9715600
.01 30 1.S268377
001 50 1.2649824

------------------------------------------------------------------------------
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This is the result of the power study.
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TABLE IV

POkER TEST FOR THE CAUCHY CISTRIBUTICN

LEVEL OF SIGNIFICANCE = .05

ALTERNATE CISTIuTICN

N TEST CAUCH WEIBL GAPA BEA EXFCN NOFML OBLEXP
SH==.s SH=2. P2C3 SH=2. S.=2.

5 K-S C.C51 0.C40 O.0S3 0.042 0.085 0.C39 O.CO7
S CVM 0.051 0.C35 0.047 0.C36 0.C79 0.C33 0.005
5 A-C O.C54 0.029 0.041 0.020 0.C68 0.C26 0.004

---------------------------------------------------------------------------
is K-S 0.C51 0.G54 0.178 0.0e4 0.4Z3 0.C50 0.011
15 CVM 0.C52 0.C32 0.149 0.054 0.354 0.C29 0.C04 
15 A-0 O.C45 0.C15 0.0S5 0.029 0.259 0.C15 O.CO1

---------------------------------------------------------------------------
25 K-S O.G5O 0.C69 0.415 0.139 0.805 0.C60 0.020
25 CVM 0.047 0.036 0.285 0.078 0.E19 0.C32 0.010
25 A-C 0.C49 0.C28 0.254 O.C70 0.586 0.C26 0.010

50 K-S 0.C54 0.225 0.947 0.586 1.000 0.184 0.259
so CVM 0.051 0.115 0.724 0.287 0.562 O.C97 0.193
50 A-C C.C51 0.213 0.7E9 0.478 0.S76 0.2170 0.313

LEVEL CF SIGNIFICANCE = .01

--------------------------------------------------------------------------ALTERNATE ISTR I8UTIO N5 -

N TEST CALCH kEIEL GAPPA BETA EXFCN NOFI4L OBLEXP
SH=3.5 S-=2. P2C3 SH=2. Si=2.

---------------------------------------------------------------------------
S K-S 0.C08 0. CC5 0.C06 0.C05 0.C1l 0.C04 0.000
5 CV 0.C1o 0.c05 0.006 0.C06 C.C13 0.C05 0.CO 0 0
5 - .C1O D.C04 0.CC6 0.C04 O.C1l 0.CC4 O.c0

15 K-S 0.C15 O.Cl 0.C80 0.C23 0.199 O.Cil 0.001
15 CVm O.ClO 0.003 0.036 0.009 0.134 0.C04 0.C00
1 A-0 0.C10 0 COc1 C.17 O.CO3 0.084 0.C02 0.000
---------------------------------------------------------------------------
25 K-S 0.C09 0.clo 0.125 0.025 C.489 O.C1O 0.c01 .
25 CVM O.C09 0.CC4 0.C89 0.012 0.330 O.CO3 0 .C0
25 A-C 0.COB 0.002 0.0!5 0.c05 0.242 0.CO1 0.000
--------------------------------------------------------------------------

s0 K-S 0.C12 0.C36 0.719 0.116 0.591 0.C33 0.032
s0 CVM 0.C13 0.C12 0.3S3 0.052 0.e28 0.C11 0.008
so A-0 0.012 0.C12 0.315 0.C8 0o.E16 0.C10 0.012

*-- ------------------------------------------------------------------- ---_ =,
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ABSTRCT.

The Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises
critical values are generated for the Cauchy distribution. The .
critical values are used for testing the null hypothesis that a set
of observations follow a Cauchy distribution when the location and
scale parameters are unknown and estimated from the sample. A Monte
Carlo simulation, using 5000 repetitions, was used to generate the
critical values for sample sizes of 5(5)30 and 50. :, f f,+

A power study was performed using Monte Carlo simulation f r
the Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von .,Mises 'tests.
Sample sizes of 5, 15, 25 and 50 were used for six alternate distribu-
tions, for alpha levels of .05 and .01. Analyzing by sample size shows
very poor power for a sample size of five. As the sample size increases
so does the power, so that at a sample size of fifty, the powers against
three of the six distributions is .5 or better. Among the three tests,
the Kolmogorov-Smirnov is consistently more powerful, regardless of
sample size or alpha level. - ' "
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