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R Preface s

- With the increasinc complexity of today's
micreprocesscrs, gate level analysis and testing is no

longer practical. 1In addition, since the Air Force is now

using off-the-shelf microprocessors, manufacturing details

are not always available., 1In an earlier thesis, Captain

James Hamby and Lt Galen Guillory presented a method for o
analyzing and modeling these new microprocessors at the

functional level without using manufacturing information.

are o
, .

In this follow-on thesis, I document the simulation of those ﬁ]
microprocessor models developed by Hamby and Guillory and .
present an evaluation of their modeling approach based on

(o the results. I selected this topic because it provided an -

opportunity to apply much of the course material taken while
at AFIT, it introduced me to new areas in the field of
computer architecture, and it enabled me to examine a valid
problem facing today's Air Force.

I would like to extend my sincere appreciation to my

Thesis Advisor, Major Fred Zapka, who provided me with
first-rate guidance whenever the direction of my work became
clouded with technical and administrative problems. Without

his expert instruction and consistent enthusiasm, I would
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work and the quality of this report would have diminished
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substantially. I would also like to thank my Thesis Reader,
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Lt Col Hal Carter, for his support; particularly for
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acquiring the simulation package that made this work
possible and assisting in its installation. I also thank
Major Ken Melendez of the Foreign Technology Division (FTD)
for his support as the sponsor of this project and hope that
mv work has been beneficial to FTD. Finally, I would like to
thank my wife, Leois, and my son, Allen, for their endless
patience, understanding, and support during those many hours

we were separated by this work.
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Abstract

In a prior thesis project, a functional level model of
. portions of the Motorolz MC68000 microprocessor was Q\ﬁf
i developed using signal analvsis supported by limited N

technical data. Representative parts of the instruction set

and exception processing structure were modeled wit& the
I Computer Design Language (CDL). In this follow=-on eﬁfbxt,
those CDL models are transformed into eguivalent models
using ISP', an enhanced version of the Instruction Set
Processor (ISP) hardware design language. This language
transformation enabled the models to be simulated using
N.mPc, a VAX 11/780-hosted software package developed
i (® specifically to support the design of digital systems, To
evaluate the correctness of the models, the simulation
results are analyzed against signal data gathered with the
i aid of a logic analyzer during the actual operation of the
MC68000 when processing the modeled instructions. The

accuracy and completeness of the models suggest that this

) functional approach to microprocessor modeling is a valid
one,
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THE SIMULATION AND ANALYSIS OF A RTL MODEL OF THE

l MOTOROLA MC68000 WITH N,MPC

I. Introduction

Background

The number of off-the-shelf commercial microprocessors
i used in Zir Force weapons systems is increasing at a
dramatic rate. 1In contrast to specially-developed

microprocessors designed for specific applications,

R off-the-shelf devices are readily available, less costly,

and usually shorten system development time., However, they

have one significant disadvantage - detailed technical data i:i;
i ﬁi important to systems development is often unavailable. o
Technical data of interest include the schematic and logic
diagrams, microcode descriptions, and production masks that

. are normallyv provided with specially-developed devices.

Because functional models of microprocessors are Eﬁifi

invaluable to their successful integration into modern -fﬁg

> weapons sytems, the Air Force has a strong interest in t;iq
uncovering a method to develop functional microprocessor -

models without the benefit of the detailed technical data =~

K the situation common to off-the-shelf device utilization.
In an effort to assist the Air Force in obtaining a

solution to this important problem, Captain James R. Hamby

ang 1Lt Galen J. Guillory directed their thesis research to

developing a functional model of the Motorola MC68000

........
.................
S
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microprocessor within the "data-poor" environment just - jﬁ
4
<

described. Documented in their joint thesis entitled RIS

"Architectural Analysis and Modelinc of A Motorola MC68000 ;[ff

T
e le

Microprocesscr," a functional model of the MC68000 was L

v
s
v

ale

B A2

developed without the @id of anyv manufacturer's schematics iﬁéi
or other technical datez not readily available toc a retail
]

purchaser of the syvstem (8:I-€). By successfully modeling

the MC68000, Captain Bamby and 1Lt Guillory hoped tc -

B

demonstrete that not only could a model be developed within
the information conegtraints, but that such & model could

also be constructed in an efficient and structured manner,

ot

within a reasonable period of time, and without encountering

overwhelming technical difficulties.

® 2 functional level model describes the register

transfer operations within a device., It enables sytems

T .nv, VRIS A

developers to observe the internal timing and control of

logic and register transfer operations long before the

microprocessor is included in production systems. Because
& the detailed gate circuitry is not modeled, functional

i‘ models are relatively easy to implement, understand, and
maintein,

There were two basic approaches that Bamby and Guillory

could have taken to analyze and develop a model of the
MC68000. One commonly used method requires that the
microprocessor be disassembled, Durinc states of

disassembly, electron microscope photographs are taken so

that the actual circuitry of the chip can be reconstructed

'.-'.“.',*rr—-.'.v.t'- g
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from the photographs., A model can easily be constructed
from the resulting logic diagrams and microcode. Although
this method produces a very accurate model, it is a very
time-consuming and complex process (8:I-8).

An untried, alternative approach reqguired that the
timing and voltage levels of the MC68000's pin signals be
analyzed while the processor was in operation. The
functions performed by the processor could then be modeled
using a computer hardware design language. This approach
promised faster and more efficient model development, but
the accuracy of the resulting model was uncertain. Captain
Hamby and 1Lt Guillory used this second, unchartered
modeling approach to build their functional model.

Now that a functional model of the MC68000 has been
developed within the imposed constraints, some basic
guestions naturally arise. Is this "blackbox" approach to
microprocessor modeling a sound one? Can an accurate and
complete functional model of a microprocessor that expresses
the timing, control, parallelism, microprogramming, and
other internal operations of today's complex microprocessors
be developed by examining input and output signals only? If
deficiencies are inherent in this modeling approach, can
they be corrected, neglected, or compensated for? Or, are
they numerous and significant enough to eliminate this
approach as a viable modeling technique in favor of the
first, more complex approach? Answers to these questions

are essential before this approach can gain acceptance as
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the solution to the modeling dilemma confronting the Air

Force and other DoD agencies. e

Problem

This research objective was to evaluate the approach to

microprocessor modeling chosen by Captain Hamby and 1Lt e
Guillory by simulating their model and then analyzing the o
simulation results against the data they observed during the
operation of an actual processor under equivalent

conditions. The adequacy of the model will mirror the

viability of their approach.

Scope
Due to time constraints, Captain Hamby and 1Lt Guillory
did not model the entire microprocessor. Portions of the oo

MC68000 modeled include the read and write bus cycles,

representative instruction types, and exception processing RS

sequences (8:II-1). The current model was not extended or EK;;
optimized, nor were other microprocessors modeled so that &Ea
broader inferences regarding the effectiveness of this Z;S;
approach to microprocessor modeling could be made. All i:j
effort was focused on examining and drawing conclusions from E}#g
the existing partial model. Because this research yielded ﬁ @
positive results, additional research aimed at completing i;;
the existing model as well as modeling other architectures é;&
will more conclusively demonstrate the practicality and #Zé

2

applicability of this modeling approach.

(‘.-A '\. - PPN !. t. l.‘ .*
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Assumptions
N.mPc (network of microprocessors) is a register Sl
transfer level (RTL) simulation system that has been

successfully used by government and industrial engineering

shops in designing VLSI and multiple microprocessor systems
{5:76). Thg validity of this research was heavily dependent
upon a simulation package that is efficient, reliable, and f;ﬁ
most important, comprehensive and accurate, Because N.mPcC ?;;
was the only RTL simulation package available for this

research, and its performance had not been personally

observed, texts, periodicals, and the developer's =
documentation were used to vouch for its worthiness.

Subsequently, an up-front assumption was that N.mPc would

@_ perform well, and it did.

Summary of Current Knowledge
Most (if not all) microprocessors have been modeled 1
with computer hardware design languages, and many have been i@f
simulated with N.mPc. As a result, MC68000 simulations are S§§:
available from which comparisons can be made to help Eﬁi
determine the accuracy of the model constructed by Captain fﬁ?
Hamby and 1Lt Guillory. However, the significance of this ;?ﬁ:
research is not centered around the simulation of their if;
model, but rather their approach to model development. Up %jj
to now, attempts to develop functional microprocessor models ;ii
using their "blackbox" approach have been negligible. If E;é
their approach can be validated, then this technique will E?ﬁ
become a great boon to governmental agencies and commercial i;%
1-5 f_ﬁ
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businesses employing microprocessor technology.

The approach to evaluating their modeling technique was , o
basically seguential in nature. The simulation, and the o~
subsequent evaluation and documentation of its results
fcllowed periods during which the Motorola MC68000
microprocessor, the N.mPc simulation package, both the CDL
and ISP' computer hardware design languages, and the MC68000 o

Educational Computer Board (ECB) were learned. The solution

steps to this research problem were:

1) Before the N.mPc software could be used to simulate Lo
the "Hamby and Guillory" model, it was first brought
"on-line". The package had been delivered to AFIT via tape,
but was not yet operational. Using the system documentation

provided (i.e., installation and user's manuals), the system

was successfully installed on our SSC VAX 11/780 for this

variation of the Instruction Set Processor (1ISP) hardware

thesis effort. N
2) Captain Hamby and 1Lt Guillory selected the Computer Ei
Design Language (CDL) to describe their model because it was ?ﬁ;
relatively simple to use and understand, and they were -
familiar with its structure. However, to simulate a EE
microprocessor using N.mPc, it had to be described with a S;;

design language. Therefore, both the ISP' and CDL hardware ,ﬁbg
design languages had to be mastered before the necessary ;ﬁﬁ
;? conversion could be accomplished. E:;
55 3) Once an ISP' model was constructed, the operational %;?
+ NS

I-6 e
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N.mPc simulator was used to ezercise the model to generate
an operational scenerio of the MC68000 as it executed the e
same instruction sequences selected by Hamby and Guillory.

Chapter VI of their thesis outlines these instructions.

4) The simulation results were then compared with the
aocumented logic analyzer signals that described the ECB's
. MC68000 when executing equivalent instruction sequences. A
functionally correct model would accurately project all P
event occurrences on the system bus. The simulated results

should have coincided with that of the physical hardware at

e

each clock cycle (7:459). Any differences required that the Wi
model be carefullv examined for errors. If the model's
microinstruction seguences were not at fault, then the
microprocessor's actual operation was again monitored to
determine if the logic analyzer data was incorrect, The
68000's ability to prefetch instructions and generate

vectors were expected to be likely causes of model errors.

Since the prefetch occurs in parallel with instruction fti
execution, it was difficult for Hamby and Guillory to i =
simultaneously monitor both events. The actual generation i;,
of vectors was difficult to analyze because this event is gii
totally internally-accomplished (8:V~1,V-2). The time E?

required to complete this portion of the research depended {f'
upon the adequacy of the model. Each difference triggered o

its own "trouble-shooting" session. Once all of the Q;Q
differences had been reconciled, the corrected model was ii:
simulated to produce a valid operational scenerio. The E;E

1-7 k
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final product of this step was a model that accurately
reflected the MC68000's actual operation, a detailed log of ;;;;
any deficiencies detected, the source of these deficiencies,
the corrections made, and an assessment cof each deficiency's

overall impact on the model.

5) Finallyv, the overall effectiveness of the model was
assessed and documented based on the types and numbers of
errors encounterec¢, especiallv those that had a significant -
bearinc on the feasibility of the modeling approach under -
study. Although this thesis played the "devil's advocate"

and concentrated fully on reporting obstacles that may

hinder or prohibit this approach from being used, the EK{}
positive attributes of this model and approach are also . 5
fully documented. : ;;.i

Qverview of Presentation o

Chapter II next outlines the requirements of this fi’-
thesis in detail. To familiarize the reader with both the »fﬂk
Motorola MC68000 and the N.mPc simulation package, Chapters §E§§
III and IV provide brief descriptions of each. Chapter V iﬁiﬁ
details the CDL-to-ISP' model transformation process. The 'i“g
N.mPc simulation of the MC68000 model and the analysis of : :
its results are presented in Chapter VI, Finally, Chapter Lf;f
VII contains several conclusions and recommendations and is 3;&;

P

followed by a short chapter that documents the time spent on

% r

LR
each prhase of this thesis project. Fié
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Introduction

This chapter elaborates further on the research
approach by outlining the requirements of this prcject in
detail. As mentioned, this effort required that the
feollowing five objectives be achieved;

i) install the N.mPc simulation package;

2) transform the existing CDL models into equivalent,
simulatable ISP' models;

3) develop a simulation strategy.that enables the
observation of those same signals as monitored and
documented by Eamby and Guillory:

4) simulate the models and then analyze and report the
results, and finally:

5) prepare a detailed time log of all work associated

with this effort.

I c

Release II of N.mPc was on-loaded onto AFIT's SSC VAX

11/780 from its delivered magnetic tape medium. After being

on-loaded, the necessary directory structuring and file
relocation was accomplished before the system could be
brought on-line and operationally certified. Once
operational, all unneccessary software such as
documentation, superfluous ISP' library models, and test
programs were removed to minimize N.mPc's demands on the

VAX's limited storage space. N.mPc's system protection

II-1
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mechanisms were also then reconfigured to enable access from

i this and other interested user's login directories.

Mod ansfo

Because the scope of Hamby and Guillory's research did

not include consolidating or generalizing their numerous

instruction descriptions, they in effect developed a single
model of the MC68000 hardware elements that was accompanied ;
. by multiple, independent models of the following 't*ﬁ’
instructions and exceptions: MOVE, JMP, ADD, BEQ, BTST, e

Illegal Instruction, and Address Error, These models could

be individually appended to the lone hardware description to
form individually simulatable instructions and exception
conditions,

To simplify the model transformation process, this same
3 level of development was preserved. A single ISP’
description of the hardware elements was developed tc
support multiple instruction or exception processing
models. This "multiple model" approach simplified model

f: development, made the size of the model manageable, aided in

the debugging process, and helped approximate & one-to-one
correspondence between CDL and ISP' statements so that model

equivalency could more readily be established.

' In order to execute the assembly language test routines
E: on the MC68000 ISP' model, the 68000's instruction set had
e to be described via N.mPc's assembler component, Metamicro.

Metamicro allows its users to define the structure and

ﬁ: semantics of the target processor's instruction set so that
X 11-2
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source programs designed to run on that processor can be

i | written and assembled. A second N.mPc component, the
Linking/Loader, then allows the user to load programs
assembled by Metamicro into the microprocessor's simulated

i memecry for execution. Rather than develop auxillary
Fetamicrc and Linking/Loader routines to construct a
workable simulation, these routines were extracted from

l N.mPc's microprocessor library. With minor modifications,
they supported the assembling and loading of the test
routines into the MC68000 model.

R

ulati trateo

To develop their models, Hamby and Guillory used a
logic analyzer to monitor numerous MC68000 signals that
provided information pertinent to instruction processing, _3f’
These signals varied slightly, depending on which Siiﬂ
instruction or exception sequence was modeled, but at most e

included the following 20 signals:

- FCO
- FC1
- FC2
- DTACK'
R/W
- LDS!
~ UDS!
-~ AS!
~ DO
N 10 - D1

. 11 - D2

ARy BT

WO urd Wl
f

[ 4

B ol i
o
.

i 12 - D3
N 13 - D4
[ 14 - D5

N 17 - Al
X . II-3
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18 - A2

19 - A3

20 - n4
These signals were examined on both the positive and
negative transitions of each clock signal tc emulate a
two-phase clock and therefore increase the operational
resolution of their model's timing., To accurately compare
and contrast the simulation results with the observed data,
it was essential that a simulation strategy be developed for
each instruction or exception sequence that enabled the
observation of these same signals at the positive and

negative transitions of each simulated clock cycle.

c3 N . ,

The methodology of the simulation analysis phase has

" been carefully documented in steps 4 and 5 of the research
approach (pages I-7 and I-8) and will not be heavily

expanded here., However, it should be noted that existing

models of the MC68000 that are resident in N.mPc's
microprocessor library were used in conjunction with the
documented logic analyzer results and ECB operation to * ?E¥h
assist in the identification of any model discrepancies and

their corresponding remedies.

. {1ed Time

As done during Hamby's and Guillory's thesis effort, a

detailed time log was maintained and then analyzed at the

conclusion of this project. It too includes information on

the time spent during each phase of this project such as
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researching, writing, modeling, analyzing, and so on.
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ITI. oducti tc _the Motorola MC 0C Microprocesso

Introduction
A basic understanding of the M68000's architectural

features and its capabilities will prepare the reader for

the material of later chapters that describe the development
ané simulation of the }M68000 model. This chapter introduces
the M68000 with descriptions of its signals, register - ;
organization, instruction set, system architecture, data - ?

types, and addressing modes. -

W :

ll . “
S
I YRR

M68000 Introduction

The MC68000 is a 16-bit microprogrammed microprocessor ]

with a 32-bit internal architecture. First introduced by

r.\

Motorola in late 1979, this VLSI microprocessor combines
state-of-the art technogy (HMOS) and advanced design
techniques to achieve very fast processing speeds and high

circuit densities (11:1). The chip contains approximately

68000 transistors (hence it's name) and is available in

several different operating frequency versions. The 4, 6,
8, and 10~MHz versions have respective clock cycles of 250,
167, 125, and 100 ns.

The 68000's microprogrammed architecture makes future <eiln
enchancements easy to accomplish. The first version, the
MC68000, implements only that subset of the complete 68000
architecture that is allowed by current technology
constraints., The 68000's design specifies several features, hﬁ{:

such as floating-point and string operations, that are not

ITI~1
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4
implemented in the first version but have now been
I specified. Unused space has been left in the architecture
to accomodate new features that future advances in
technology will make possible (21:44),
I Signa scription
The 68000 is packaged in a 64-pin DIP (dual in-line
package) as illustrated in Figure III-1. The 64-pin count is
i significantly greater than the conventional 40-pin
microprocessors., To achieve creater data transfer rates,
] the 68000 does not multiplex its address and data lines as
F is commonly done. The 64 pins can be functionally broken
down into the following groups: 23 for the address bus, 16
for the data bus, five for asynchronous bus control, three
i @L* for bus arbitration, three for interrupt control, three to

indicate the processor state, three for system control, and
three for MC6800 peripheral control. The remaining five are
used to provide power supply, ground, and the system clock
(Figure III-2). Although the internal data paths are 32 bits
wide, packaging limitations constrain the number of data

pins to 16 and additional operations are reguired to

transfer more than 2 16-bit word. The 23 address lines

(Al1-A23) enable the 68000 to directly address eight

¥

- megawords of memory space., Individual bytes are addressed
v via two control lines: the upper and lower data strobes

;T (UDS' and LDS') (signals followed by a "'" are active low).
N Vhen UDS' is low,

X III-2
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Figure III-2. Input and Output Signals (11:33) v L
L
data is transferred on lines D8~D15 of the data bus. If T
LDS' is low, then data is transferred on lines DO0O-D7. 'i
Finallv, if both UDS' and LDS' are low, data is transferred ﬁ"i

on all 16 data lines.

The 68000 can be interfaced with either asynchronous or
synchronous devices and has a separate set of control lines 1
for each. It has three control lines to interface with

synchronous peripheral devices in the MC6800 family. They

are: enable (E), valid peripheral address (VPA'), and valid :Ffi
memory address (VMA'). The address strobe (AS'), read/write ;i?;

control (R/W), data transfer acknowledge (DTACK'), as well

as UDS' and LDS' are used to communicate with asynchronous

devices,

Ty
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Three function code lines (FCO, FCl, and FC2) inform
external devices whether the 68000 is in a user or
supervisor state. They also indicate the type of cycle
currently being executed. An external device such as a
memory management unit (MMU) can use these signals to ensure
that its operations are conducted when the 68000 is in the
proper state. These function control lines can also be
decoded to extend the 68000's memory space from 16 megabytes
up to 64 megabytes (22:260).

The system control lines are used to halt or reset the
processor as well as inform the 68000 of bus errors. The
three interrupt control pins carry the priority level of a

device requesting interrupt service.

Register Qrgapization (22:229-232)

The MC60000 provides 17 32-bit general-purpose
registers, a 32-bit program counter, and a l6-bit status
register as illustrated in Figure III-3. Eight of the
general-purpose registers are data registers, seven are
address registers, and two are system stack pointers (user
and supervisor). The eight data registers can be used to
perform byte, 16-bit word, or 32-bit longword operations.
When a data register is used as either a source or
destination operand, only the appropriate low-order portion
is changed, the remaining high-order portion is left
unchanged. All data registers can also function as index

registers under programmer control.

“
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Figure III-3, Register Organization (21:45)

The seven address registers are normally used for word or
longword address operations. However, all can also function
either as base registers, index registers, or software stack
pointers. The address registers do not support byte
operations. When an address register is a source of an
operand, either the entire low-order word or the entire
longword is used depending on the operation size., When used
as the destination of an operand, the entire register is

affected, regardless of the operation size. If the

ITI-6
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operation size is a word, the information destined for the
register will automatically be sign extended.

Although the program counter is 32 bits long, only the
low-order 24 bits are currently being used. The high-order
bvyte is ignored. Bits 1-23 of the PC are routed to chip's
23 address lines. Bit 0 6f the PC is internally encoded
with the operand length in the instruction being executed to
generate the two data strobe signals UDS' and LDS' described
earlier,

The two independent system stack pointers share address
A7. The A7 address register acts as a user stack pointer
when the 68000 is in a user state, and as a sytem stack
pointer when the 68000 is in a supervisor state,

The status register is divided into a system byte and a
user byte, The user byte contains five condition code bits
(0-4) to record the status of completed operations. They
are: carry (C), overflow (V), zero (Z), negative (N), and
extend (X). The extend bit acts as a carry for
multiprecision arithmetic operations. The status register's
system byte has three fields. The interrupt mask is
contained in bits 8-10 and provides eight levels of
interrupts., With the exception of level seven, all
interrupt levels less than or equal to the mask are
ignored. Critical interrupts such as system power failures
are assigned level seven, The supervisor (S) bit is used to
determine whether the 68000 is in a user or supervisor

state, The trace mode (T) bit will allow the 68000 to

u e vrTwywy
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single step through & procram. After each instruction is f
executed, the 68000 will vector to a special user-written o
routine that examines the contents of a memory location,
register, or performs other debug operations, ifﬂ
SV
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Figure III-4, Instruction Cache (12:3) R
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The 68000 employs a pipelined architecture in which the

instruction fetch, decode, and execute cycles are fully
e overlapped. An attempt has also been made to minimize

delays in branching by prefetching instructions associated
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with the most likely branch condition (23:29). Additionally, T

the MC68020 contains an on-board instruction cache that :¢4

allows repeated instruction streams to execute significantly

faster while freeing the external bus for other processors

(PFigure I1I1I-4),. *;é
Pipelined processing is accomplished via the

three-sectioned Execution Unit (Fi.ure III-5). Each section

contains in its register file some of the 17 general-purpose -

registers described earlier, as well &as others transparent

to the user. Each section also contains its own l16-bit ALU.

These three sections are dynamically configured by the o

e

microcode (they can be isolated or concatenated as
necessary) to provide simultaneous address and data
processing (15:37). . -
Instructions are brought in through £he 16 data lines
into the Instruction Register and Instruction Decode Unit.
The Instruction Decode Unit generates an address for the v
microinstruction in the Micro Control Store.
Timing-independent information is sent directly to the
Execution Unit, .
The Control Store is a two-level structure containing a -
vertically-microcoded Micro Control Store and a horizontally
microcoded Nano Control Store, The Micro Control Store
generates a 9~bit address for the nanoinstruction in the
Nano Contrel Store, as well as issues branching signals to
the Instruction Decode Unit to cause its next address to be

incremented or altered based on conditions received from

.................
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the Execution Unit. The Nano Control Store houses 280 68-bit
< - control words that directly control the Execution Unit.
Approximately 2880 bytes of control store is used, about
half that of an equivalent csingle level implementation

(23:29) .,

The 68000 does not include an on-board memory
management unit (MMU). It can be operated with or without
one. However, the MC68451 MMU can be interfaced with the

68000 to provide for vertical addressing, segmentation, and

]
rih
A

y

13

b
v

b

memory protection for multiprocescsing environments.

Data Types and QOrganization

The 68000 can operate on five basic data types: bits,

bytes, BCD digits, 16~bit words, and 32-bit longwords,

o
£
These data types are stored in memory as depicted in Figure :
I1I-6. Bytes are individually accessible., The high-order -
‘.

byte is assigned its word's even address (Figure III-7) 2
. a*
- while the low-order byte has an odd address that is one more *
f;i than its word's. Instructions and data are accessed only on
, —

Deums: Caie
¢ Buwry COond Dwite! s = ¥ Eyle
15 14 13 12 X L G b 7 ¢ S 4 ) Z 1 c

> MSD
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- Figure III-6. Data Organization In Memory (10:2-2,2-3)
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even byte boundaries. Longword data occupies two

| consecutive addresses in memory (l:2).

WORZ ORSANIIATION IN MINOHY
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I V. org DOOUC
Byte 0OCO0 ] Byre 000001
Wvor 0 Oz
Bvie 030002 - Byie DOOOG3

'\J
N

w
L
w
L3 ]
-
o

1
!
)
|
l ‘ Waic FFFFFE
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R Figure III-7. Memory Word Organization (11:14)
Bddressing Modes (20:232-257)
The 68000 offers 14 operand addressing modes giving it
C

a very flexible addressing capability. As Figure III-8 e
illustrates, these modes fall into six basic groups: ygfﬁ
register direct, address register indirect, absolute,

program counter relative, immediate, and implied.

The register direct mode indicates that the instruction
operand is one of the 68000's 17 general-purpose registers.,
Data or address register direct specifies that the operand
is in one of the eight data registers or eight address

registers (including the stack pointer) respectively.

The memory address mode indicates that the instruction
f operand is located in one of the 68000's memory locations,
i With address register indirect addressing, the contents of

R ar, address register points to an operand. There are five
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register to be used as a stack pointer so that the
programmer is able to maintain eight stacks at once.
III-14
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EA = {AR)

EA = (An). An= An + N
Anw= An -l EA = (AR
EA = (AM) + 06

EA = (AN} + (N.0) + 3g

hamedicte Data Addressing
immediaie
JUICkE Immedizte

DATA = Next Wora(s)
Inherent Data

]

Implied Acaressing
implied Register

EA = SR, USP, SP, PC

NOTES:

LA = Etiective Address

An = Agarecs Regieter

Dn = Dala Regisier

An = Agaresc or Data Register usea as Inoex Register
SR = Staluc Register

T
PC = Frogrem Counter

ds = Bight-bit Ofiset {displacement)

Oyg = Sixteen-tit Ufiset (cisplacemeant;

N =1 for Byte, 2 for Words and 4 fur
Long Woras

( )= Contents cf

- = Replaces

Figure III-8., Addressing Modes

variations of this mode.

(10:1-5)

In thé simplest mode, register

indirect, the address register itself holds the effective

address.

The postincrement and predecrement modes

automatically update an address register so that the

programmer does not have to use a separate instruction,

These modes are useful for moving blocks of data from one

section of memory to another.

They also permit any address
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Register indirect with offset and indexed register indirect
with offset support data table manipulation by permitting
offsets and indexes to be applied tc an indirect address
pointer. Address register indirect with offset adds a
16-bit signed displacement to the contents of an address
register as the effective address of an operand. Indexed
address register indirect with offset adds an eight-bit
signed displacement and the contents of an index register
(any one of the address or data registers) to the contents
of an address register to produce the effective address of
an operand. This mode is useful for accessing
two-dimensional arrays.

In absclute addressing, the effective address is

o contained in the instruction rather than a register. An
instruction employing absolute short addressing will contain
a 1l6-bit address whereas an instruction using absolute long
addressing will contain & 32-bit address.

Program counter relative addressing modes are useful
for developing relocatable programs. In relative with
offset, the effective address is the sum of the address in
the program counter and a 16-bit displacement., The
effective address in relative with index and offset is the
sum of the address in the PC, the contents of an index
register, and an eight-bit displacement. These two relative
modes are useful for manipulating lists, tables, and
arrays.

Immediate data addressing is used to specify a constant
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data operand ac opposed tc the contents of & register or
memory location, Implicit addressing instructions
implicitly refer to the program counter, system stack

pointer, user stack pointer, or the status register,

Instruction Set (22:241-257)

Instructions vary from one to five words in length
(Figure III-9). All instructions consist of an operation
word (op word) containing the instruction type and effective
address (addressing mode and register). Additional

information may be required to fully specify the operand(s),

and this effective adé@ress extention is contained in the

instruction words that follow the op word. If there are any

"N
i
g
"9

operands, they vary from a single 16-bit operand to two

INSTRUCTION FORMAT e ?‘
1 14 13 12 1 10 8 8 7 ] 5 4 3 2 1 0 ﬁifiﬁ
Operation yorc - 1
(First Word Specties Coaration and Moges) Pt
Immedate Opsrand . -ﬂ

(It Any, One or Two Weras)

Suuice Etiecuve Acgress Extension
(M Any, Ons ¢cr Two Werds)

Desunauon Ettecive Aooress Exter.sion S
(1§ Any. One or Two Woras) =

SINGLE-EFFECTIVE-ADDRESS
INSTHRUCTION OFERATION WORD GENEARAL FOAMAT

11

10

9

&

7

8

w

15 14

13 12

3 2 1 0 o

X

Ellecuve Adcress
X b ¢ X X X X Mode 1 Aeqisier

Figure III-9. Instruction Format (10:2-4) Tl
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32-bit operands. Because the 68000 was designed by
programmers to support programmers, special emphasis has il
been given to instructions that support high-level

languages. The instruction set contains 56 basic

instructions, but by combining these with variations of each R
ané tne 14 addressing modes, over 1000 distinct instructions
become available.

The instruction set provides for the following -

..'J,..

operation types: data movement, integer arithmetic, logicel,
shift and rotate, bit manipulation, Binary Coded Decimal,
program control, and system control. Figure III-10 lists -
the 56 basic instructions., Mcst instructions can operate on
byte, word, or longword data depending on whether the

programmer includes a ".B", ".W", or ".L" suffix to the

R ,A ,
‘ P ety . T T
[ ¥ .
| oo M PR .
R .o . .
. [ v a4 ‘ . -
.M'xx.l; PP

instruction mnemonic.

Data movement instructions are usecd to transfer
information between memoryv and the general-purpose a

registers. The principle instruction in this group is the

MOVE instruction which can be used to transfer data between
memory locations, between a memory location and a data
register, or between data registers. EXG will exchange the
contents of any two general-purpose registers, and the
high-order and low-order 16 bits of a 32-bit register can be : 'a
exchanged via the SWAP instruction., The 68000's LINK and jf}i

UNLK instructions are used to allocate and deallocate data

areas in the system stack for nested subroutines, linked

lists, and other procedures,

IT1I-17
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Mnemonic Description
AgCD Add Decimea! wiih Extend
ADD Add
AND Logical And
ASL Arthmetic Shift Lef:
ASR Arithmetic Shift Right
Bec Brancr Conditionaliy
BCHG Bit Test and Change
BCLR Bit Test and Clear
BRA Branch Always
BSET Bit Test and Set
BSR Branch (o Subroutine
BTST Bit Test
CHK Chect Register Against Bounds
4 CLR Clear Operand
. CMP Compare
3
DBcc Test Cond., Decrement and Branch
F DIVS Signed Divige
Divu Unsigned Divide
}
EOR Exclusive Or
EXG Exchange Registers
EXT Sign Extend
JMP Jump ;
JSR Jump to Subroutine -
LEA Load Effecuive Address
LINK Link Stac
LSL Logica! Shift Left
LSR Logical Shift Right
MOVE Move
MOVEM Move Multiple Registers
MOVEP Move Peripheral Data
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NOP No Operation
NOT One's Complement
OR Logica! Or
PEA Push Eftective Address

Figure III-10., MC68000 Instruction Set (10:1-6)
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Mnemonic | Description
SBCD Suttract Decimal with Extendg
Sce Set Conditional
STOP Slop
sus Subtract
SWAP Swap Data Register Halves
TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
157 Test
UNLK Unlink
RESET Resat External Davices
ROL Rotate Left without Extend
ROR Rotate Right without Extend
ROXL Rotate Left with Extend
ROXR Rotate Right with Extend
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine

Figure III-10. MC68000 Instruction Set (continued)

Using its integer arithmetic instructions, the 68000
can add, subtract, multiply, divide, and compare two
Operands. It can also clear, test, sign extend, and negate
(two's complement) a single operand. The 68000 also has
special instructions to add, subtract, or negate
multiprecision numbers (ADDX, SUBX, and NEGX), It is also
possible to operate on mixed size data using the sign extend
(EXT) instruction. This instruction extends the sign bit as
necessary from a byte to a word, or from a word to a
longword. Thus, a byte can be added to a word, or a word
can be multiplied by a byte.

Multiprecision arithmetic operations on Binary Coded

Decimal numbers can be accomplished with the add decimal

ITI-19
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with extend (ABCD), subtract decimal with extend (SBCD), and f;;
negate decimal with extend (NBCD) instructions. ;ﬁ;
The 68000 has a capable set of bit-manipulating 5;;
instructions, It uses four special instructions to test the {55
state of a bit in 2 memory location or register, record the Sty
state of that bit in the zero (Z) condition code flag, and
then perform some operation based on the teét result, They
are: bit test (BTST), bit test and set (BSET), bit test and --;
clear (BCLR), and bit test and change (BCHG).
Program control instructions transfer program control
from one portion of a program to another. Of these, the ;?;
test condition, decrement, and branch (DBcc) is a unigue "
high-level type instruction designed to act as a terminator
for repetitive loops. When a DBcc instruction is executed, el
the 68000 examines the status register condition codes. If
a condition is met, program execution falls through to the
next instruction. If the condition is not met, the 68000 L
decrements the specified register. 1If the register is
decremented to -1, program execution falls through to the e
next instruction; else the 68000 branches to the specified =
label, S
The system control instructions include a s
trap-generating instruction that initiates a trap operation
unconditionally (TRAP), and two instructions that initiate

trap instructions based on some condition, trap on overflow K

LA

z
s

P
PR R

(TRAPV) and check register against bounds (CHK). The TRAP

o

-
ol i
D

Sule )

instruction can be used for emulating instructions that will

LA
o)
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eventually be microcoded in future versions of the 68000,

T v
()
. e

A1l instructions can be executed while the 68000 is in e
the supervisor state. When in the user state, instructions
that can have an adverse effect on the system cannot be ﬁgl
executed. These include the STOP and RESET instructions, 2l
instructions to modify the entire status fegister, and the -
move to and from user stack pointer instructions (MOVE USP
and MOVE from USP). 20

The fastest instruction, a register-to-register “
transfer, executes in four clock cycles, or 400 ns at 10 S
MHz. The slowest instruction, a signed divide, requires 170 R
clock cycles or 17 us at 10 MHz. ;;z

Because the 68000 uses memory-mapped I/0, there are no ;jq

separate I/0 instructions. Each device is assigned

locations in the 68000's memory space and 1/0 operations are ;ﬁ;
accomplished via the MOVE instructions. EE;
Additionally, floating point and string manipulation Eﬁf
instructions are not available in the 68000's instruction i§£
NN

set. They have been specified in the design but not ;E}
implemented in current versions. However, each is presently ifj
being implemented either by software or hardware. Two 68000 {1;
instruction op codes (1010 and 1111) have been reserved for .%E
unimplemented instructions and are assigned Trap vectors for ;:;
emulation, A user-written routine can accomplish the Ei?
desired instruction. When newer versions of the 68000 are :%E
produced containing the desired instruction, it can be tﬁ:

installed and the user~written routines discarded (3:98).
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Motorola has also produced support chips that provide
floating point operations. The MC68341 ROM and the MC68881 }.5
Floating Point Co-processor perform normal arithmetic

operations as well as some other related operations (square

root, compare, absolute value, etc.) using & floating point Oy
format.
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IV. 1Introduction to N,mPc

Introduction

N.mPc is a register transfer level (RTL) simulation
system used to assist in the architectural design of digital
systems. N.mPc enables system architects, digital
engineers, anc programmers to test and evaluate their
designs prior to system implementation.,

N.mPc (PMS notation for "network of microprocessors")
was designed and implemented by the Department of Computer
Engineering and Science at Case Western Reserve University
between 1975 and 1979. Its objectives were to:

1) allow specification of heterogeneous multiprocessor
systems;

2) allow modeling at multiple levels of abtraction;

3} allow changes to topologies and microprocessor
descriptions with a minimum of work and expense;

4) not impose any particular design style;

5) include facilities for monitoring and controlling
simulations of the target achitectures;

6) be useable by non-hardware specialists; and

7) perform well when simulating and evaluating large
architectures (18:1),

The resulting system was written in the programming
language C and runs on DEC PDP~1l1 and VAX computers under
the VMS and UNIX (V6,V7, and 4.1 BSD) operating systems.

N.mPc consists of six major components: the ISP' compiler,

Iv-1
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the Metamicro assembler, the Linking/Loader, the Ecologist,
the Simulateé Memory Processor (SMP), and the Runtime
system. They combine to create and control target
architecture simula*ions. The system hardware to be

simulated is described by these three components:

1) ISP'. ISP' (ISP' is an extention of the Instruction
Set Processor language developed by Bell and Newell) is a

RTL compiler that includes many features of high level

languages to allow the user to model system hardware f
components. The ISP' compiler translates ISP' harcdware i"}ﬁ
descriptions into executable object modules for the host IR

. |

computer,

2) Ecologist. The Ecologist defines the structure of
the target system. It uses a system topology file
describing the ISP' object modules to be combined to form
the simulation program.

3) SMP. The SMP initializes the target machine's memory

components with the programs developed by the user to be
hosted@ on the simulated system.

The two components used to develop software for the

P
o
e

simulation model are:
1) Metamicro. Metamicro is a generalized assembler that &
allows the user to develop an assembler for any target iﬁ;ﬁ

A b

processor by describing it through a macro-based language
(19:3). It allows the user to specify the format, mnemonics,
and associated bit patterns of the target instruction set

(18:3) so that an assembly language program developed by the

Iv-2
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user can execute or an ISP' hardware engine (5:77).

2) Lirking/Loader. The Linking/Loader enablecs the user
to develop a linker and loader for any target processor by
describing its addrecssing modes. It links modules assembled

separatelyv by Metamicro and loads the resulting object code

into the simulated memory in accordance with strategies R
developed by the user. 'E
The system designer interacts with the simulation R _:;
program created by the Ecologist through the Runtime o ’
system. The Runtime system allows the user to control and ' ]
monitor the simulation, as well as create the ;Hx;a
performance-evaluation and simulation libraries (5:77). With ’
the Runtime system, the user is able to gather the same
performance information that would ordinarily require the jffﬁj
use of logic analyzers, oscilloscopes, and program : ?
debuggers.

Figure IV-1 on the following page presents a detailed

“"

block diagram of the N.mPc system and enhances the narrative
that follows. To simulate a system design with N.mPc, the

individual hardware components are first described using RRATA

ISP', The Ecclogist then uses a description of the

interconnection topology to bind these compiled hardware
descriptions into a network of communicating processors.
Assemblers for the processors comprising the system and

their associated application programs are then developed e

using Metamicro. Linking/Loader is used to link the various SN

modules assembled by Metamicro and then load the resulting
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object code into the memory components of the simulation
model. Finally, using the Runtime package, the user can
simulate and observe the operation of the hardware and

software components to test and evaluate the system.

ISP' (20:1-5)

As mentionec earlier, ISP' is a programming language
for describing processors and other hardware elements at the
register transfer level. Systems designers use ISP' to
model many types of hardware elements such as ALU's,
memories, or CPU's, An ISP' source program consists of
structure, procedure, ané process declarations. The
processor's structure is first described through three
declaration types:

1) states - the microprocessor's registers are
represented by states. Instruction registers, program
counters, flags, etc. are declared as states., The
following example declares an array of eight registers, each

containing B8 bits:
state D{0:7]1<7:0>;

2) memories- random access memories are declared to host the
simulated microprocessor's instructions and data. A memory
with 64K 16-bit words can be declared with the following

declaration:
memory M[0:65537]<15:0>;
3) ports - a microprocessor's address bus, data bus, and

Iv~5
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control signals are declarecd as ports., Ports correspond to
the pins on an IC chip. The ports of system hardware
elements may be later connected by the Ecologist to enable
conmunications between microprocessors or between a
microprocessor and its peripherals. Here is an example of

an 8-bit data bus declaration:
port databus<l:8>;

The hardware structure declarations are followed by
procedure and process declarations. A process is locp whose
instructions are repeated for the duration of the
simulation. The following example from the ISP' user's

manual illustrates a process:

state counter<lé>;

delay (1) ;
counter <= counter + 1

)
Main is a keyword which identifies a process. The process
"main®” and its instructions (enclosed in parenthesis) are
separated by the delimiter ":=", In this process, a l6-bit
counter is continually incremented with one simulation unit
of time delay between incrementations. The actual
simulation time units are defined in the system topology
Ggescription processed by the Ecologist. This counter would
operate at eight MHZ if a simulation time unit was defined

tc be 125 nanoseconds (ns) in the topology file. Note from




the preceding example that ISP' statements are separated by

a ";" and assignments are made with a "<=" symbol. Consider

the slightly more complex example from the same manual:

state counter <16>, save <16>;
port ck, switch;

when (ck:lead) := (
if switch
(counter <= save;
save <= counter;
next
)i
counter <= counter + 1
)
In addition to "counter", there exists another 16-bit
register "save", and two single-line ports "ck" and
"switch". When the leading edge of "ck" occurs, the
processor accomplishes one of two possible actions; if
switch is true, the registers "counter" and "save" are
exchanged and then "counter" is incremented, else "counter"
is incremented without a prior register swap. Because ISP'
is a register transfer language, assignments are performed
concurrently. If not, in the above example the register
"save" would receive its 0ld value. The "next" statement
enables sequential assignments by causing the preceding
assignments to be made, Without it, all three of the
example assignments would be made concurrently (if switch

were true) and the result in "counter"™ would be

indeterminate. Because the statement "next" is implied at

the end of each process, the assignment to "counter" is made

at the end of the "when" process. The "delay" and "wait"
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statements also cause assignments to be made., For

additional detail on these and other constructs, refer to

the ISP' User's Manual. To further the reader's "feel" for

the language, Appendix K contains an ISP' description of the

Reduced Instruction Set Computer (RISC 1) developed at the ;ﬁiLf
University of California at Berkeley. This model was i
developed as a part of a local computer architecture course

tc advance the understanding of RISC's innovative o
architectural concepts (e.c., register windowing, constant

width instructions, and consistent instruction execution

times).,

lietamicro (16)
Metamicro is a generalized micro assembler which uses a
I (! description of a processor's instructinn set to assemble ;
programs. Rogers and Ordy characterize an assembler as a ii i
translator which takes a computer instruction in a form ;{ifi
l understandable by its writer, and then creates an :TT;»
instruction with the same meaning, and in a form understood T

by the digital hardware (16:17). Metamicro satisfies this

w s T T

- description by allowing the user to specify the input form, b,
output form, and translation rules for a given

; microprocessor's assembly language. The user first

' .
' describes the construction of the target processor's

instruction set using Metamicro constructs. This e
; description is then used to assemble applications programs

written in the target processor's instruction set. Figure

IV-2 contains a partial Metamicro description of the Intel

i 1v-8
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8080 instruction set. Even though only two instructions are
modeled (Add Register to B (add) and Add Register to A with
Carry (adc)), it will serve as an adequate introduction to

Metamicro.

instr inst[3,1]<8> $ ! three words of eight bits each
. ! default instruction length one
format op = inst[0]<7:6>, ! op code
dst = inst[0]<5:3>, ! destruction
scCr = inst{0]1<2:0>% ! source
macroe b =0 &,
c =1 &,
G =2 &, {
e =3 &, _
h = 4 §&, .
1 =5 &, - ST
m = 6 &, . '
sreg(x) = src = X $ &, -i
add (x) = 0Op = 23 _':::
dst = 0; :
sreg(x) & , ! add reg or men
adc(x) = op = 2;
dst = 0;
sreg(x) & $ ! adc reg or mem
Figure IV-2. Metamicro Description (19:Chap 2:7)

The instruction declaration is used to inform the assembler

of the instruction's size and format. It allows the user to

specify both the maximum and mimimum number of words in an

instruction, as well as its word width. In the example

3
s 3
5

R
.
’

- =
A Y-:f‘ f'

program above, the instruction declaration is:

©elaty

instr inst[3,1])<8> §

Iv-9
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The name "inst" is used to symbolicelly reference the
instruction. To enable variable length instructions, the
maximum instruction word size has been set at three while
the minimum is declared to be one ([3,1]). Since the basic

word size has been declared to be eight bits (<8>), we can

create one, two, or three byte instructions. The $ “lt
character terminates all Metamicro statements. The "!" is
useéd for commenting by causing Metamicro to ignore the L
remainder of the current line.

The fcrmat declaration specifies the subfields of. each
instruction word signficant to the model that we wish to ~fiif

3
symbolically reference (19:Chap 2:8). In the example format o ?

declaration:

format op = inst [0] <7:6>, ! op code P
dst = inst{0] <5:3>, ! destination SN
src = inst[0] <2:0>$ ! source X
v \.
the instruction bit fields that contain the op code and the f\dg

source and destination registers are identified.
Specifically, the src register is identified by bits 0-2 in
the first byte of the instruction and the dst register is
identified by bits 3-5. Finally, the op code is contained in

bits 6-7.

A macro is used to translate the instruction mnemonics

developed by the user to correspond with a microprocessor's

assembler into statements compatible with Metamicro. A macro

element has the following structure:




macro_name = macro_body &

Macro_name is the identifier by which the macro will be
referenced. A parenthesized parameter list may be appended
to macro_name. The character & is used to delineate
multiple macros within the macro declaration section.
Macro_body may contain statements, macro calls, etc.

In the example of Figure IV-2, the macro declaration
section begins with the keyword "macro" and forms the bulk

of the instruction set description.

macro

SN Ak whEHO
"]
-

add(x) = op = 2;

dst = 0;

sreg(x) &, ! add reg or mem
adc(x) = op = 2;

dst = 0;

sreg(x) &$ | adc reg or mem

The macros b,c,d,e,h,1l,m, and a provide values for the
respective register names which are assigned to the src
subfield by another macro "sreg". The macro sreg is a
utility macrc that simplifies the coding of statements which
appear in several macros. It makes assignments to the src
field of an instruction,

Before continuing, it is necessary to introduce an
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applications program that can be assembled by the above

Metamicro description (19:Chap 2:8). e

include 8080.m$ o

begin :@?ﬁ
add(b) i RN
adc (m)
end
The characteristics of the processor are defined in the
declaration section., This file comprises the corresponding
instruction section of the example Metamicro program of
Figure IV-2, It contains the applications program
instructions that are assembled according to the translation 4
rules established in the declaration section.
The instruction section is separated from the
G!. declaration section by the keyword "begin” and terminated by .

the keyword "end". In this example, the declaration section

has been put in a file of its own (8080.m) and the user

begins the source code with an "include" statement to e

prepend it to the instruction section. - ﬁxi
Whenever one of the two instruction mnemonics (add or ii

adc) is encountered by Metamicro, its corresponding macro in igf

the declaration section is expanded in line during the

assembly process so that the correct assignments are made to

W Y e v e e

instruction subfields. For example, when the add(b) o
instruction is encountered, the add(x) macro assigns 2 (1l0b) éé;
to the op code subfield, 0 (000b) as the destination Egé
register, and, through the invocation of macros b and {ﬂ

gl
0

sreg(x), also assigns 0 (000b) to the source register. The

Iv-12
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adc(m) instruction differs only in that register six
identifies the memory location to be added to register
zero. The macro sreg(x) is common to both instructions.

A Metamicro description of the RISC 1's instruction set
is contained in Appendix L to give the reader an opportunity
to amplify this brief introduction to Metamicro. This
assembler will transform programs written in RISC's assembly
language into machine code that can be executed by the RISC

1 processor modeled in Appendix K.

Linking/Loader (17)

The user can develop a linker and loader for any target
processor by describing its addressing modes with thne
Linking/Loader. The Linking/Loader links the various files
assembled by Metamicro and loads the resulting object code
into the simulated memory. Options are available to specify
different loading algorithms that may be more suitable for a
given simulation.

To generate the actual executable instructions, the
user builds a command program to describe to Linking/Loader
how instructions are modified to resolve label references
made in Metamicro. A Linking/Loader command program is
constructed from five declaration types:

1) instr - informs the Linking/Loader of an
instruction's size and format;

2) format - specifies the instruction subfields that
will be symbolically referenced;

3) mode - describes how referenced labels are resolved

IV-13
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N
into address operands;
4) space - declares available memory space; and s
5) transfer - provides the Linking/Loader with
information pertinent to the relocation of instruction
segments. RS

Figure IV-3 is a generalized Linking/Loader command

program for the Intel 8080 microprocessor.

instr inst[3,1]<8>$

inst[0]<7:6>, T
inst[0]}<5:3>, P
inst{0]1<2:0>, N

inst[0]<5:4>,
inst[0]<7:0>,
inst[1]1<7:0>, T
inst[2]<7:0>% e

format op
dst
src
rx
wdl
wd2
wd3

space <0:4095>8$

mode case length eqgl 3:
wd?2 address$ -
wd3 address”-8$

breaks$
esac,
default:
wdl
wad2
break$
esac$

addressS$
address”-8$

twn

transfer { new
wdl 0303$%

wd2 address$

wd3 address”-8S

length = 3% } €*3

Figure IV-3. Linking/loader Command Program (19:Chap 2:10)

The Linking/Loader "instr" and "format" declarations are

............................................
.....................................................
.................................................
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equivalent to those of Metamicro that were presented earlier

and will not be discussed again here,
The "mode" declaration details how addresses are

resolved for a particular microprocessor. The mode

declaration section processes only those instructions that PN

reference labels. When Metamicro builds an instruction it

tracks the number of labels referenced by that instruction

and places an associated address for each reference into an R

= address array for that instruction.

The mode declaration is similar to the case statement
ii of several high level programming languages. The algorithm
of the mode declaration of Figure IV-3 first determines the

addressing mode of the instruction by examining its length.

ii G! The 8080 has a single addressing mode, direct address, and
& . it occurs when the instruction is three bytes long

:g (19:Chap2:10). Each instruction generated by Metamirco has a
ii length associated with it and is stored in the variable

"length"., If this initial expression is true, the second

[ word of the instruction (wd2) receives the lower eight bits

of the label's address and the instruction's third word

(wd3) receives the upper eight bits. The "=" means to

logically "or" the expression value on the right into the 21-‘

-,

identifier on the le:st, If the expression on the right
Ry
exceeds the bit length of the identifier on the left, then ﬁf <
PO
only the least significant bits are or'ed, Because 'ﬂiﬁ
G
o
"address" is a 32-bit field and wd2 is eight, wd2 receives »
the eight least significant bits of address. Note that }i§
}?ﬁ
AR
AN
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"address" is the first element in the address array created
by Metamicro for an instruction referencing a label. The
"“" is the shift operator and the value to its right is the
shift value. A positive shift value signifies a left
logical shift by abs(value) bits whereas a negative value
indicates a right arithmetic shift by abs(value) bits. In
the example of Figure IV-3, wd3 receives bits 8~15 of
"address" as a result of the "shift and or" operation. This
technique is frequently used to break large addresses into
smaller instruction worde.

The break statement causes the current case statement
to be exited without executing any more statements in the
mode declaration. The current instruction is thus resolved
and placed in the output file., Case statements are
terminated by the keyword "esac".

If the initial case entrance expression evaluated to
false, then the default case is entered and words one and
two of the instruction (wdl and wd2) would receive the
address. This is the case when the label referred to is a
data constant (19:Chap2:11).

The space declaration describes the target processor's
memory space. Linking/Loader allocates applications program
instructions assembled by Metamicro into this space. The
space declaration of Figure IV-3 defines a 4k memory.

During the loading process, the Linking/Loader may
break a group of logically contiguous instructions into

segments and place them into disjoint areas of the target
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machine's defined memory space. To ensure that target
machine instructions appear logically contiguous to the
user, when this occurs the Linking/Loader adds a new
statement to unconditionally transfer the program flow to
the disjoiht segments. The Linking/Loader builds this new

instruction in accordance with the format specified in the

4 transfer declaration.
Linking/Loader places the transfer destination address
.l into the variable "address" and the user must use this

variable to include the transfer address into the

unconditional transfer instruction. In the example of
Figure IV-3, the Unconditional Jump instruction is used to
provide logical continuity if memory allocation is not

physically contiguous (19:Chap2:11).

Ecologist (13)

The Ecologist uses the files representing the
descriptions of the system's hardware and software
components to build the N.mPc simulations. The Ecologist
builds the simulation from a topology file constructed by .
the user to describe the interconnections between the system
components, The topology file describes the total system to
be modeled. Each hardware component of the sytem described
by ISP' models must be compiled before the Ecologist can
build the simulation. If the simulation includes memories,
the applications programs must also have been assembled by
Metamicro and then linked and loaded by the Linking/Loader,

The topology file is comprised of five declaration




" .

sections which may or may not be included depending on the
nature of the ISP' model.

1) Signal - A signal is the name of the connection that
exists between ISP' ports. The value of a signal is the
logical "or"™ of all the ports tied to it. An example of a

signal declaration is:
signal ADDRESS(23), DATA(l6), R_W;

This declaration begins with the keyword "signal" and

describes a 23-bit address bus, 16-bit data bus, and a

. read/write control line.

i _
= 2) Processor - For each ISP' output file comprising the

simulation, a processor declaration must exist. The
I ® following example depicts a processor declaration.

processor cpu = "M68000C,.sim";
i The keyword "processor" begins the process declaration. At
ff simulation time, the ISP' hardware model will be refered to
? by the name "cpu". M68000.sim is the UNIX file containing
;3 the ISP' compiled output.,
. 3) Time Delay - If an ISP' model has used a timed delay
E” call, the Ecologist will expect a time delay declaration for
; that module., The time delay declaration is used to give the
:? relative delay times a real time analogy. The basic unit of
Ej simulation time is one ns. An example of the time delay
i' declaration is:
time delay 60 ns;
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This declaration will cause each unit of delay in the 1SP'
model to correspond to 60 ns.

4) Connection - The user connects ISP' module ports to
the declared signals via the connection declaration., All
ports in an ISP' module must be connected to a signal. For

example,

connection abus = ADDRESS,
dbus = DATA,
rw = R_W;

would connect the ports abus, dbus, and rw to the signals
declared earlier, Note that ports and signals must be the
same width to enable connection.

5) Initial - The initial contents of ISP' memories are
specified by the initial declaration. Each memory image
produced by Metamicro, Linking/Loader, and SMP action is
associated with an ISP' model of the supporting memory via
the "initial" declaration. In the following example, the

memory image "sortimage" (sort algorithm) is bound to a

memory named "mem":
initial mem = sortimage;

Figure IV-4 illustrates a topology file that describes a
simulation comprised of a Motorola 68000 with an external
memory that will be loaded with the sorting algorithm

"sortimage" introduced above.

R R S Y M A A AVt a0 o
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signal

ADDRESS (23), Address Bus

|
As, ! Address Strobe
DATA(16), ! Data Bus
ubs, ! Upper Data Strobe
LDS, ! Lower Data Strobe
DTACK, ! Data Transfer Acknowledge
R_W, ! Read/Write
FC(3): ! Function Code
processor cpu = "m68000b,.sim";

time delay 60 ns;

ccennections ADDRESS = ADDRESS,

AS = AS,

DATA = DATA,

UDS = UDS,

LDS = LDS,

DTACK = DTACK,

R_W = R_W,

FC = FC;
processor mem = "mf8000bm.sim";
time delay 100 ns;
connections ADDRESS = ADDRESS,

AS = ASI

DATA = DATA,

UDS = UDS,

LDS = LDS,

DTACK = DTACK,

R_W = R_W,

FC = FC
initial memn = sortimage;

Figure IV-4, Motorcla MC68000 Topology File

simulated memory Processor (13:10,11)

The Simulated Memory Processor (SMP) is responsible fbr
preparing memories for simulation. If the simulation uses
memories, the Ecologist collects a list of the memory files
specified in the "initial" declaration of the topology file
and passes it to the SMP for processing. The SMP's two
major functions are memory image processing and global label

collection.

The Linking/Loader produces a memory image file
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representing the linked output of up to ten Metamicro
assemblecd input programs. SMP takes this file and reformats
it into fixed size pages and at the same time produces a
page table. The user can specify the page size. Depending
on the memory locations addressed, pages are swapped between
the simulation program and the Simulated Memory Managers
over UNIX pipes.

All labels that are declared as global in Metamicro
source programs are placed into a common file by the SMP for

use during the simulation. At runtime, these global labels

may be used to reference addresses in the memory being —n

simulated,

Runtime (14)

The user executes the simulation through the Runtime
package. The Runtime's Command Interpreter (CI) provides the
interface between the simulation and the user. This process
accepts commands from the user to examine or modify the
simulation states, to control the execution of the
simulation, to set execution breakpoints, or to establish
mechanisms that allow the automatic collection of data from
a running simulation (9:4).

The user begins a simulation by entering the simulation
program name produced by the Ecologist, After an
introductory message, the CI issues a "#" prompt enabling
the user to enter a command. Several of these Runtime
commands are introduced below. For a complete and more

detailed list, refer to the N.mPc Runtime User's Manual.
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1) examine - the examine commané is used to display the

contents of & single state, port, or memory location., For

example,
examine cpu:abus

will display the current value of the abus port from

the ISP' process cpu. Note that the ISP' process name will be one

specified in the topology file.

2) deposit - deposit allows the user to write a value

into a state, port, or memory location, For example,

deposit 0b00011011 cpu:ir

will place the binary value 00011011 into cpu's ir

register. Note that Cb specifies that the value that follows will

be binary.

3) states - while "examine" operates on a single state,
the states command allows all states for a given ISP'

process to be examined. Example:

states cpu

This command will display the contents of all

registers on board the processor "cpu".

£) ports - performs the same function for ports as

states doecs for registers.

5) memory - memory is used to examine multiple memory

locations, For example,

Iv-22
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memory cpu:mem 100 110

will display locations 100~110 of a memory named "mem" Lo

that has been declared in the ISP' process cpu. Note that numbers

beginning with 1-9 are assumed to be decimal.

.4

6) display -~ the display command is used to display the E
contents of a state, port, or memory location when it is 4..;?
written to during a running simulation. For example, ?T?:

display cpu:ir

will cause the contents of the register ir to be
displayed each time it is written to. Also included in the

display will be the current simulation time.

e
. 7) bkpt - the bkpt (breakpoint) command causes the
- simulation to stop when a particular time or condition
. exists, For example,
bkpt 1250
will cause the simulation to stop in 1250 ns so that
the user can monitor the simulation. ' L
g 8) repeat - if the repeat command prepends bkpt then ﬁiﬁf
. | SPA|
the breakpoint will be continually repeated. For example, EF&Q
A
repeat bkpt 1250 g;bﬁ
.
RIS

will cause the simulation to stop every 1250 ns.
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9) run - the run command starts a simulation executing
or restarts a stopped simulation,

10) quit - the command quit terminates a simulation.

& Vs ccess

Appendix A provides the interested reader with
information to supplement departmental N.mPc documentation
packages to allow access and use of the system as locally
installed. 1Included is:

1) a functional description of each of N.mPc's major
components and simulation files,

2) an organizational representation of each N.mPc
component along with their input and output files,

3) instructions for accessing the system,

4) a listing of N.mPc's directory structure that
includes its microprocessor library, and

5) an example of a N.mPc simulation output product,
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model the MC68000 for simulation.

ISP' could be used to construct an equivalent model of
the 68000 basically by ignoring some of its advanced
features and instead using its rudimentary operations to
create the necessary mechanisms to emulate CDL's control,
timing, and parallelism capabilities, Prior to outlining
the adjustments necessary to create an eguivalent ISP' model
from the CDL model provided, these two CHDL's will be

compared and contrasted.

CbL/ISp! ison

Although both ISP' and CDL are languages capable of
describing computer components and hardware operations at
the RTL (computer organization and design), there is a
fundamental difference between the two. CDL is a-
"nonprocedural” language. Nonprocedural languages attach no
meaning to the lexicographical ordering of the statements
describing the operation of the system (2:138),
Microstatements are associated with a label that describes
the conditions in which they are executed. As an example,
consider the following CDL execution statements extracted

from the MC68000 model (8:VI-17):

/ctrl*K(4)*P(1)/ PFR <~ EXDBUF
/ctrl*K(4)*p(2)/ ASN <~ 1, LDSN <- 1, UDSN <-1, T <~ O,
IR <~ PFR, PC <~ PCadd2
The label /ctrl*K(4)*P(l)/ specifies the conditions in which

the microstatement PFR <~ EXDBUF is performed. Reordering

LAME Sadral




these two execution statements would have no effect on the

timing of the microoperations. Whenever the conditions of
the label are satisfied, its microstatements are executed. T

In contrast, here is the ISP' eguivalent:

if ctrl and K egl 4
(
wait (Pl:lead);
PFR = EXDBUF; . :
next; R
wait (P2:lead); A K
ASN = 1

.
'
.
!

Jar
Do
"
22
o

1
1
R

grg-~e 111

FR;
C + 2

=B

OO

»

o

T 2 LT .

:'.\ . """.
.

~—
~e

Being a "procedural" language, the sequential ordering
of ISP' statements implies an explicit ordering of its
activities, and the activation of activities is conditioned
by the completion of the preceding ones (2:138), If the

conditions of the "if" statement are satisfied, then the

microstatements enclosed in parenthesis are executed, Also,
should the order of the two "wait" statements be changed, é?bf
then the execution of their following microstatements will
be reversed., This is an undesirable result since we want
PFR (prefetch register) to receive EXDBUF (external data
buffer) before it is loaded into IR (instruction register).
In CDL, there is no provision for the partitioning of a
hardware description into blocks of related execution

statements to reflect a particular organization or hierarchy

PO S AP TP P I PR,




Execution statements have a

of activities (2:144).
sequential appearance with two columns formed by their
labels and microstatements (2:138). ISP' descriptions follow
the structure of C programs and possesses many of its
high-level programming constructs (e.g., case, do-until,
while). As such, it does not impose a rigid repetitive
design style upon the user. The above example also
highlights several other major differences between CDL and
ISP'.

Because CDL labels identify the conditions under which
their associated microstatements are performed, there is a
clear delineation between data and control. Special control
variables separated by slashes specify the conditions
necessary to execute the microstatements., Sequencing
through microstatements is accomplished by modifying the
control variables in the label. If the label's control
expression evaluates to true, then its accompanying
microstatements are executed, otherwise they are ignored,

In contrast, ISP's conditional statements form the
equivalent of labels. Delinear ambiguity exists between the
conditional expressions representing control, and their
dependent microstatements, The conditional test is
performed and the following microstatements are either
executed or skipped depending on the outcome, Additionally,
in CDL, timing is provided by including in the label a
specialized control component, the clock. The following

example from Hamby and Guillory's model declaration section
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illustrates clock usage:
Clock, P(1-2) $ two phase clock

This clock statement declares a two-phase clock to provide a
two-phase clock cycle for their MC68000 model (4:6). As a
result, clock pulses P(1l) and P(2) alternate values between
one and zero in accordance with a frequency specified by the
host simulation package. Action by this independent
activity automatically modifies label control expression to
direct the timing of microstatement executions. ISP' has no
such clock structure. As with control, the timing of its
microstatements are provided by conditional statements in
conjunction with several specialized monitoring facilities
such as the "when" process and "wait" statement. Below is
an example of a wait statement taken from the previous ISP’

example.

wait (Pl:lead);

PFR = EXDBUF;
In this example, the wait statement will cause the process
to halt execution until the port signal "Pl" transitions
high. The microstatements following it will not be executed

until this occurs, Similarly,

when(ck:lead) :=

(
address = adr_reg;

read = lo

)

k
3
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will cause the series of statements associated with the
"when" process to be executed when "ck" transitions high.
However, these two monitoring facilities can only be

used in conjunction with external signals (port signals) and

cannot be triggered by local state change (change in the
state of an internal register). This requirement prohibits B
their use when a singlé hardware component is modeled. :
ISP' also provides a "delay" statement to cause a
process to wait a specified number of time units before

resuming. The time specified is independent of real time,

rather it is a simulated time that corresponds to the real ;@;L
time in the system being simulated. The delay statement is t:{g
not used to direct the execution of microstatements but is f
used to specify the simulation time in which a ,;Z;;

microstatement is executed., Whether a microstatement is
executed or not is dependent upon the outcome of prior
conditional statements,

Another of the specialized structures available in CDL
but not found in ISP' is the "decoder™. As does its real
word counterpart, CDL's decoder translates the binary value
of its inputs into a single output signal (4:6). For

example, the MC68000 decoder statement
Decoder, K(0-255) = T(0-7)

specifies a 8 x 256 decoder, K. Its eight inputs are
attached to register T (which had been previously declared);

thus, the binary value of T will determine which of K's 256
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output lines becomes high. Decoder output is often used in

a label's control expression to direct the sequencing of CDL

microstatement execution., Another example taken from the

MC68000 CDL model depicts this process.

/etrl*K(1)*P(2)/ T <- CountupT
/ctrl*kK(2)*p(1)/ IF (DTACKN = 0) THEN
(T <- CountupT)

From this examplé, it is easy to see that the output of
decoder K controls the segencing of these two
microstatements. Since the decoder K is attached to
register T, when the operator "Countup" in the first
microstatement increments register T, K(2) will become high
and provide the potential for the next microstatement to be
executed. While such a combinatorial circuit is not

provided by ISP', it can be duplicated by the following

microstatement:
RK[T]

if registers T and K have previously*been declared as

follows:

state T<B8:0>,
K[0:255];
In thie example, T has nine bits because the most
significant bit is interpreted by ISP' as the sign bit.
A statement found in ISP' but not CDL is the "next"

statement, As mentioned in the previous chapter, the next

'''''''''
...........
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statement forces sequentiality. All assignments preceding
it are performed concurrently. In a CDL execution
statement, zll microstatements associated with the statement
label are executed concurrently. Sequentiality is achieved
via decoders and clock pulses in the label's control

expression, Similarly, ISP' uses its next statement to

support both sequential and concurrent operations. By

following a group of assignment statements with a "next"

statement, sequential execution of concurrent statement

groups can be achieved.

ké Another special CDL statement not provided by ISP' is ;g?ﬂ

|
: the "switch” statement. It is used to represent the manual e
A switches of a computer's control panel used by the operator -

(4:4). The declaration

Switch, POWER (ON, OFF)

models a power switch that can either be on or off to
control power-up/power-down microoperations, If in this

_; example,
/POWER (ON) / R <~ 0, A <K-1

the simulated power switch is set on, then the accompanying

microstatements will be performed.

s Finally, there are several structure declarations that
are basically the same in both ISP' and CDL, but they
possess minor differences worth identifying., First, a

T memory is declared in ISP' by specifying the keyword
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"memory" followed by its identification and size

specification. For example,
memory Mem{0:4095]<7:0>;

describes a 4 kbyte memory identified as "Mem". An

equivalent CDL memory statement would be

Register, MAR(0-12)

Memory, Mem (MAR) = Mem(0-4095,0-7)
Note that the CDL declaration specifies a memory address
register (MAR) via subscript. This is because each memory

is associated with a specific address register and it must

be used to address a given location (4:4). In contrast, ISP'

memories are not bound to a specific register. It enables
its users to arbitrarily select any of its available
registers to index into memory at any given time.

To represent register subfields, CDL uses the

"subregister" statement while ISP provides a "format"

statement. For example, here are statements in both CDL and

ISP' to identify the subfields of a instruction register:

ISP
state IR<0:15>;
format OPCODE = IRK12:15>,
OPER1 = IR<K6:11>,
OPER2Z = IR<0:5>;

CDL

Register, IR(0-15)
Subregister, IR(OPCODE) = IR(12-15),
IR(OPER1) = IR(6-11),

LA A Skin DA A K Gl B A gt S A Al Bl Sl S it el B A dnl Ani defiafied Ak n S Al Aak Astoie) |
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IR(OPER2) = IR(0-5)

The major difference is that CDL does not allow independent
naming of its subregisters. The parent register must

if precede the subscripted subregister name (4:3).

0 One final item worth mentioning is the difference
between ISP' and CDL bus structures, A bus declaration in

CDL such as:

Bus, IABUS(0-31),
EXDBUS (0-15)
specifies a 32-bit internal address bus and a 16-bit
external data bus. However, this declaration differs from
the "register" statement only by their keywords. The

declaration

Register, IABUS(0-31),
EXDBUS(0-15)

- would provide functionally equivalent model components. The

capabilities of the "register" and "bus" statements are the

3

same; each provides a storage element capable of being

modified by an assignment operation.

ISP' has no special statement to model internal data

buses. Therefore, as in the example above, registers would
be used in their place. But ISP' does have a declaration to
represent an er:ternal data bus; the "port" statement. The
"port" statement does have special significance, however.

Example:
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;

- port EXDBUS<0:15>;

i declares a 16-bit external data bus named EXDBUS. The port

| EXDBUS provides a means of communicating with external ISP!'
processes that comprise the system being modeled. Ports are

‘ "connected" to the ports of other ISP' components to model a
system's communication and control links.

B fects u ifferenc ]

Having described the basic inherent differences that :1

exist between ISP' and CDL, it now becomes necessary to 1_{5

i point out the effects of these differences on the :
CDL~to-ISP' model transformation process. As mentioned in
Chapter II, the foremost objective of the transformation

I ® process is to produce an ISP' model that is functionally

h equivalent to its CDL counterpart. An additional

self-imposed constraint was to attempt to create as much

. one-to-one correspondence between CDL and ISP' statements as

Ei possible to make model equivalency more readily apparent and

;j aid in the model development and debugging process.

21 Similarities in the declaration statements of both CDL

;- and ISP' made transformation of hardware component

;. statements relatively easy and straightforward. However,

; the transformation of the microstatements was not as direct:

EE the principeal reason being the significant differences that

:5 exist in the way timing and control information are

b )

; represented. In this section, differences in the model

. declaration sections, as well as those major differences in

K v-11
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the representation of timing and control information that

had a broad impact on the way in which all instructions were

transformed are identified.

Registers. The declaration sections from both the
MC68000 CDL model and the resulting ISP' equivalent are
presented in Appendix B. The first minor change made during
the transformaticn was that the address and data registers
were declared as an array of registers in the ISP' model
rather than by individual statements., Both have equivalent
results; the ISP' declaration only reduced the number of
register statements (CDL has an equivalent capability but
was not used). One additional difference is that CDL uses
the convention that the most significant bit is determined
by the size of its numerical bit designators. In ISP' the
most significant bit always occupies the leftmost position

regardless of its numerical designator. For example,

CDL ISP’

in the above declarations the most significant bit of the
CDL register declaration would be PC(31), while it would be
PC<O0> for the ISP' declaration. To compensate for these

differing conventions, ISP' registers are declared with its

register bounds reversed so that microstatements referencing

register bit positions would not have to be changed (i.e.,
PC<31:0>). In this way, a reference to bit 31 of PC would

specify the most significant bit in either language model.
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Subregisters. The next major difference occurs in the
subregister statements. Since ISP' format statements allow
the independent naming of register subfields, the
parentheses enclosing subregister subscripts have not been
included in its subregister declarations. For example, the

CDL declaration

PC(LOW) = PC(0-15),

becomes

PCLOW = PC<15:0>,

in ISP'.

Buses. At mentioned earlier, the ISP' port is provided
to allow communications with other external components of
the system being modeled. The CDL external bus declarations
(DBUS and ABUS) do not have a special simulation function,
but only serve to represent a bus structure. Even though
these external buses are declared as ports in the ISP
description, they are unconnected and nonfunctional since
there are no external system components., And since there
are no ISP' structures representing internal buses,
equivalent register statements are used to describe internal
buses in the manner of the earlier example (page V-10).

Decoders. Hamby and Guillory used CDL decoder
statements to decode the instruction register to provide the
control information to trigger the microstatements necessary

to execute the instruction (8:VI-8). They are:
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Decoders, A(0-3)=IR(14-15),
B(0-3)=IR(12-13),
C(0-7)=IR(9-11),
D(0-7)=IR(6-8), el
E(0-7)=IR(3-5),
F(0-7)=IR(0-2),

G(0-15)=IR(8-11),

E(

1(0~-3)=IR(6~7), e
The . Motorola's MOVE.W D1,D2 instruction can be used to ‘L“%
demonstrate their use, Since this instruction's binary E
representation is 0011010000000001, the instruction :“f
register's portion of the label's control expression becomes i;
/BA(0)*B(3) *C(2) *D(0) *E (0) *F (1) *..../ . i
[ -
Since decoder structures do not exist in ISP, those above aé;
were eliminated from the ISP' model. 1Instead, the ?~
o instruction register decoding process was described by an ‘i\
ISP' "case" statement that used the instruction register as VE
the evaluated expression. As an example, the ISP' case ?:
statement ;:;
>f
Ei case IR
o 0b0011010000000001: MOVEWD1D2 B
3 0b0100111011010000: JIMPAO Roves
" esac Co
g: would execute the procedure MOVEWD1D2 or JMPAO depending on E&g;
!5 the binary value in the instruction register IR. The 53:
5 procedures MOVEWD1D2 and JMPA0 would contain the éﬁ;
microstatements necessary to accomplish their respective ;;E
instructions, This example is the initial instance where ;;;
the differences in the handling of control information in ;?:
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nonprocedural CDL requires significant changes during the
development of its ISP' equivalent.

Clock, ISP' does not support CDL's explicit two-phase
clock declaration used in Hamby and Guillory's 68000 model.
Because of its clock capability, CDL is best suited for
synchronous systems while ISP' is oriented towards
asynchronous systems (2:148). Timing signals necessary for

) processor operation in ISP' are normally provided by an
externally-modeled clock forming part of a system. The
absence of this independent, specialized timing component
was also a major cause of model differences.

There were basically two approaches that could be used
to circumvent this difference., First, an external clock

could be modeled that provided alternating phase-one and

| o
phase-two signals. These signals would be received via
ports to support the activation of "wait" statements. As an
i example, listed below are several execution statements

extracted from the CDL model of one of the 68000's MOVE

instructions.

/ctrl*K(2)*P(l)/ IF (DTACKN=0) THEN
(T<~CountupT)
/ctrl*K{2)*P(2)/ T<~CountupT
/ctrl*K(3)*P(1l)/ 1IF (DTACKN=1l) THEN
(T<~CountdnT)
/ctrl*K(3)*pP(2)/ EXDBUF<-DBUS,
T<~Countup?T

Each label's control expression contains three elements of
timing and control, "Ctrl" represents the decoded contents

of the instruction register used to select the execution

E vV-15




YR Y U P T T Y YT YTV Twy aalia aon Bubfal et Aaa et b it et o a st Ty P ST N T P R R ™ 7 N Sy T W T TV TV YT T

statements for a particular instruction., The timing and
sequencing of the execution statements for that instruction
are governed by the "K" and "P" elements, The K elements
are timing signals from a clock-cycle counter. These
signals are created by declaring a 8 X 256 decoder per the

earlier CDL example:
Decoder, K(0-256)=T(0-7) .

The binary value of T will translate into one and only one
of K's 256 output signals that can be used to count clock
cycles and sequence through CDL execution statements.
Decrementing the value of the control register T via
the "CountdnT" operator also changes the corresponding state
of K's control signal output. In this way, one is able to
recover a clock cycle. The above CDL routine represents a
loop that allows the processor to wait for DTACKN to become
low. CDL's ability to segregate control and data, while at
the same time enabling control to be modified via its
microoperations, is a major stumbling block in the efficient
transformation from CDL to ISP'. With ISP', the control
provided by K must be handled by conditional statements that
become part of the ISP' microstatements themselves.
Efficient transformation is also exacerbated by the fact
that alternating phase-one and phase-two timing signals are
automatically provided by an external clock to provide an
additional level of sequencing within each clock cycle.

Assuming an externally modified two-phase clock, the ISP'




model that follows is equivalent to the previous CDL

routine.,

case ctrl
decoded instruction 1: lst instruction's routine
decoded instruction 2: 2nd instruction's routine

. . L ]
decoded instruction n: last instruction's routine

esac;
instruction n's routine :=

b - (

#; while RK<2>
! ' (
' wait (phil:lead);

if not DTACKN
(

T =T+ 1;
delay (1)
b
while R<2>
do

(
wait (phi2:lead);
T=T+ 1;
delay(1l):
while EK<3>
(
wait (phil:lead);
if DTACKN
(
T=T-1;
delay (1)
)

)
)
until not DTACKN;
while K<3>

(

wait (phi2:lead);
EXDBUF = DBUS;
T=T+ 1;

delay (1)

)




Clock and Clock-Cycle Counter Representation. From the above

CDL and ISP' examples, a couple of facts emanating from the
differences between procedural ISP' and nonprocedural CDL
become clear:

1) the models become dissimilar in appearance, and the
equivalency of the models becomes obscured by differences in
the method in which timing and control signals are
represented.

2) the flow of execution of the ISP' model is more
difficult to follow because of the infusion of the
conditional constructs (i.e., while, wait, do.,..until) into
the microstatements in order to represent the timing and
control.

These elements have an adverse impact on the process of
establishing model equivalency that is essential to
validation of the models developed by Hamby and Guillory.
Such diversity would also hamper attempts to loéate causes
of differences between the simulation results and the
documented logic analyzer output.

One fact not made clear by the above examples is that
the ISP' simulation will be much more complex because of the
additional modeling of the clock-cycle counter and two-phase
clock components. Modeling these devices, and the
synchronization that must be achieved between the resulting
system components, significantly increases the complexity of
the simulation's construction,

An alternate ISP' representation of the above sequence

PRI L
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A
. that includes an internal two-phase clock and control L
v A register is depicted below. R
«
_ T = 2; next e
- phil = hi; o
o phi2 = lo;
. while DTACKN eql hi
( co
next; e
phil = lo; .ot
phi2 = hi; next slals
T = 3; next L

. phil = hi;

- phi2 = lo; next

, T =2
)¢

next;

< T = 3; next

a phil = lo;

.- phi2 = hi;

- - EXDBUF = DBUS; next

- (2 . !

o One first notes that the clock-cycle counter K is not

fﬁ present, Although it better depicts the actual operations

;j taking place within the microprocessor, it has been removed

- because it is nonessential to the model's accuracy. The

f; condition K<2> is equivalent to the condition T eql 2. Thus

. the elimination of decoder K resulted in a simpler model by ﬁ%

o removing an unnecessary level of indirection. fi;;

I 1

- The wait and while statements associated with the =

% control signals have also been eliminated. This was

A achieved by modeling an internal two-phase clock and

f_ ikl‘ clock-cycle counter. The processor no longer relies on

’ v-19
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external components to provide these signals. It provides
them itself by including statements that represent the
required clock states at appropriate points in an
instruction's microstatement sequence. Thus, rather testing
for K<3> and then waiting for phil, it directly sets T = 3
and phil = hi and then executes the microstatements
associated with phase one of clock cycie three.

By internally modeling these components, the speed of
the simulation increases because the process representing
the microprocessor is not idled by the delay and wait
Statements, These statements transfer simulation execution
to the other system components by placing the 68000 model in
the "wait" state and then "running" the process representing
either the external clock or clock-cycle counter as
appropriate (6:3). This continual process-swapping severely
slows the simulation., Also, because the fregquency of the
68000's host clock waé not reflected in the original CDL
model, the delay statements become unnecessary. The models
are functionally equivalent, only the later does not reflect
independent timing and control signals. The ISP' example
also assumes a correctly functioning clock and control
register, which is acceptable when not modeling hardware
fazilure.

This representation brings the CDL and ISP' models more
in-line with one another. 1In the ISP' model, separate
timing and control signal statements now lead their

corresponding microinstructions., This representation makes

AR
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equivalency easier to establish and greatly simplifies
development of the simulation system. An external clock and
clock-cycle counter no longer has to be modeled and
interfaced with the MC68000. For these reasons, the second

ISP' modeling approach was selected., Rather than strive for

the segregation of control and timing information from the
microstatements as is done in the real world and handled so

nicely by CDL, these elements are internally modeled to

enhance model semblance and reduce simulation complexity, :y:
while at the same time preserving the functional accuracy of '*3
the MC68000 model. RO

.

Switch. Because ISP' does not support a "switch"
statement, it was modeled with a single bit register named
"SWITCH" that is either set to high to simulate system power

on, or low to simulate power off.

Model Changes

Now, modifications made to the model that are not the

result of the inherent differences that exist between CDL
and ISP' are presented. These changes or additions were
made to enable a functioning simulation, initialize the

model's storage components, or to modify component

declarations, Changes peculiar to a particular instruction
are discussed in the next chapter which analyzes the results

of the model's simulation.

Memory Respor.ses. Upon reexamining the earlier CDL
example, I
PR
sl
s

o
‘s

5
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/ctrl*K(2)*P(1l)/ IF (DTACKN=0) THEN

\ao (T<-CountupT) Eﬁ*f
/ctrl*K(2)*P(2)/ T<-CountupT L
/ctrl*K(3)*P(1)/ 1IF (DTACKN=1) THEN feam—

(T<-CountdnT)
/ctrl*K(3)*P(2)/ EXDBUF<-DBUS,
T<-CountupT

one notices that during the simulation the value of DTACKN
must be low for these execution statements to complete, else
the routine would be caught in an infinite loop executing
the second and third CDL execution statements., Because
Hamby and Guillory did not intend to externally model the
ECB's memory, the activities asséciated with that memory's ' .;
processing of the data and control signals that exist 4
between it and the 68000 (i.e., R_W, ASN, LDSN, UDSN, ABUS,
DBUS) do not appear in their CDL model of the 68000.
However, in order to produce a functioning simulation, the

memory's responses to actions initiated by the 68000 must be

represented. Again, one becomes faced with the decision to
either externally model the ECB's memory to represent the

real-word environment, or as was done with the timing and

i control signals, place the memory responses in-line with the
68000's microinstructions at points that coincide with the
results observed by Hamby and Guillory on the logic analyzer

f.: and documented in Chapter V1 of their thesis.

For example, according to the logic analyzer output for ;;ﬁ
-.;:

the MOVE.W D1,D2 instruction, the ECB's memory placed the

instruction reguested during its prefetch cycle on the data
bus during phase one of clock cycle three. It alsoc took

DTACKN low at that time indicating that valid data was on

V=22
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the bus. Although the CDL model does not reflect the

memory's responses, they must be modeled somewhere to
provide a working simulation, To simplify the construction
of the simulation, memory responses were inserted in-line
with the code in accordance with the logic analyzer

results. This does not detract from the model's accuracy.

]
Accordingly, the ISP' model becomes ]
. ?
) 2
T = 2; next R
- phil = hi; Sy
% phi2 = lo; b .
- while DTACKN eql hi BRSRSE
y ( B
. next;
9 phil = lo;
. phi2 = hi; next
(o T = 3; next
phil = hi;
g phi2 = l1lo;
. DBUS<15:8> = M[ABUS]:
: DBUS<7:0> = M[ABUS + 11];
DTACKN = lo; next
T =2
- )i
3 next;
T = 3; next
phil = lo;
phi2 = hi;
EXDBUF = DBUS; next
Now the memory location's contents specified by the address -
bus (ABUS) is placed on the data bus (DBUS) and DTACKN is S
taken low. This will enable the MOVE instruction to b,zf
A
- .- prefetch the next instrivction and proceed with its &sri
- | execution, Memory reads or writes requiring wait states ?Q"ﬁ
;:;::‘,:‘
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were modeled by including a "wait-cycle" counter in the loop
to accomplish the data transfer on the correct clock cycle.
EXABUF Size. Hamby and Guillory declared a 16-bit
external address buffer with the "EXABUF(0-15)" statement.
Because the MC68000 has a 23-bit address bus, the buffer
size was enlarged to 23 bits with the following ISP' port

declaration:
EXABUF<23:1>, .

ABUS Utilization. In none of the instruction seguences

did Hamby and Guillory explicitly move the contents of the
external address buffer (EXABUF) to the address bus (ABUS).
In practice, when the data is loaded into EXABUF, its
contents would automatically appear on the address bus (if
ABUS had been enabled). Subsequently, there is an implied
transfer of an address to the address bus when EXABUF is
loaded. However, since the CDL bus declaration does not
provide any physical relationship between any of its

declared buses and system registers, such a transfer must be

accomplished explicitly by the statement "ABUS = EXABUF".
This additional address transfer allowed a more accurate

representation of the memory addressing mechanism. Now,

rather than identifying a memory location with the ISP'

statement
DBUS<15:8> = M{EXABUF];

N the statement

........................................
.......................

.........................................................




DBUS<15:8> = M[ABUS];

can be used and more accurately describes the memory
addressing process.

Memory Declaration. Hamby and Guillory also specified
an eight-megaword memory with the declaration "Memory M( ) =
M(0-8388607,0~15)" (8:VI-8). This corresponds to the
MC68000's maximum physical addressing range. However, to
more accurately represent the ECB environment, the memory
size was reduced to 32 kbytes with the declaration "memory
M[0:32767]<7:0>" without affecting the model's functional
accuracy.

High Impedance Representation. The entire data and
address buses were placed in a high state to simulate their
high impedance states whenever not being used by the 68000
or its memory. Although not modeled by Hamby and Guillory,
this matches the logic analyzer's output. The ISP'

statements

DBUS = Oxffff;
ABUS = Oxffffff;

were added to the ISP' microstatements as needed to place
the data or address bus in a high impedance state whenever
appropriate (i.e., DBENABLE, ABENABLE = lo). Likewise, the
ECB's empty memory locations are also in a high state.
Therefore, simulated memory locations immediately following
the JMP (AO0) instruction of all test routines are

initialized to the high state to meet the observed results

v-25




(unused memory locations are set to a low state by N.mPc).

Power-On_ Sequence. A power-on and initialization

N routine (power_on_initialize) was added to the model to:

1) accomplish the 68B000's power-on Seguence as
described by Eamby and Guillory (8:VI-9),

2) initialize appropriate registers prior to each test
routine as specified by Hamby and Guillory in Appendix A of
their thesis,

3) initialize the data and address buses to the high
impedance state,

- 4) initialize the 68000's active low memory control
signals to the high state, and

5) initialize memory to the high state.

(o Sition ulati
Not relevant to the MC68000 microprocessor model's

accuracy, but important to the development of the simulation
package, is the development of Metamicro and Linking/Loader
programs. In addition to the model of the 68000 processor,
a description of the 68000's instruction set had to be
developed to transform the MC68000 assembly language test
routines into executable code for the processor model., A
loader is needed to initialize the 68000's internal memory
with this code. Because N.mPc's library included programs
that could be modified to accomplish these functions, they
were useé rather than undertake an extensive and redundant

- S development effort. The Metamicro and Linking/Loader

descriptions used were developed by Samir Shah while a
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graduate student at Case Western Reserve University and are
included in appendices D and F respectively with the
modifications described below.

Program Loader. One of the changes made to Shah's
Linking/Loader description was an alteraticn of the "space "
statement., To reflect the fact that a2ll instruction test
routines were loaded into the ECB's 32-kbyte memory
beginning at address location 1000 hex, the space
declaration for them was changed from "space<0:4095>$" to
"space <4096:32767>S". Because the exception processing
routines required use of lower memory to support the vector
table and system stack area, their Linking/Loader
description's space declaration became "space <0:32767>8".
Program location was then accomplished within Metamicro. To
support the use of labels within a program, the "mode"

declaration was enhanced with the following statements:

case Opcode eql 6:
Il = address - , - 2 §
break$
esac,
And finally, the assignment "I0 = 0x4d $" within the
"transfer" statement was changed to "I0 = 0x4e $" to
accurately represent the JMP instruction's format.
MC68000 Assembler. Hamby and Guillory initialized bit
13 of the status register (mode selection bit) to zero with

the priviledged instruction "AND.W #SDFFF,SR" to indicate

the user mode. Because Shah did not model priviledged

R I A
e e N




instructions in his Metamicro description of the 68000, this
instruction was not included in the early simulation test
routines. 1Instead bit 13 of the status register was set to
zerc in the power—~on and initialization routine without
model degradation because the 68000's output signals were
only examined when the instruction of interest was executing
and not during the éxecution of the AND.W instruction.

Since this instruction was omitted from the test routines,
address register A[0] was loaded with 1000 hex instead of
1004 hex to enable the JMP (A0) to function correctly. Once
Metamicrc was mastered, Shah's Metamicro description of the
68000's instruction set was modified so it could assemble
the "AND.¥W #S51000,SR" instruction. As a result, some later
routines include this instruction. 1In those that do, the PC
and A[0] are initialized to 1004 hex in the instruction's
ISP' description. These routines also use the later version
of the modified Linking/Loader program.

Prom the test routines in Appendix D, one notes that
basic differences exist between them and the standard
MC68000 assembly code. They are:

1) the operand's size specification is segregated from
the instruction mnemonic,

2) prefixes are incuded to specify each operand's
addressing mode (special symbols such as "#" and "$" are not
recognized by Metamicro),

3) all operands are separated by commas, and

4) parenthesis surround an instruction's operands,

v-28
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VI. Simulation Analysis

Introduction e
An ISP' model was constructed and then simulated for fi

A

each CDL instruction or exception model developed by Hamby ey

and Guillory. In addition to the MOVE (16 variations), JMP,

ADD, BEQ, and BTST instructions, they also included the

i. Illegal Instruction and Address Error exceptions. The :éi
results of each simulation were carefully compared with the

3 logic analyzer data tabulated by Hamby and Guillory in

‘ Chapter VI of their thesis. Differences were analyzed for %%¥
their causes and they in turn were evaluated for their “

severity. A difference's impact on the validity of this

approach to microprocessor modeling could be gauged in terms we
of the answer to the following question: could the noted
difference be explained?

Regardless of their numbers and type, abnormalities g

ko
whose causes could be isolated, could also be eliminated by ?Gf

correcting either the model or logic analyzer output data as

appropriate. Although it is possible to model unexplained
(but predictable) behavior, many differences (especially fii?
those that are repetitive) that cannot be satisfactorily :il
interpreted would strongly suggest that this particular E?S
~
approach is not practical when a highly accurate model is Eg&
the objective. ES%
Because there were no differences that were a:\
unexplanable, the results of the simulations' analyses isag
e
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; L indicate that the models developed by Hamby and Guillory ff{:ﬁ
accurately describe the MC68000's behavior when processing
the above instructions and exceptions. Differences that

were considered major (primarily because of their

repetitiveness), centered around the state of the address

- and data buses (ABUS and DBUS) during transitional periods _g:'
- and had little effect on the functional accuracy of the ‘
. model. The consistent accuracy of Hamby and Guillory's f;;;;
models strongly supports this approach as a microprocessor |
modeling techniqgue.

In this chapter the overall results of the analyses are e

i
first presented. Here the results of the individual model igi;
R
analyses have been consolidated and evaluated to identify ;;g?
(o the major or consistent differences that reflect on the {“*ﬁ

viability of this modeling approach. These differences are
identified, interpreted, and then individually and
collectively assessed for their impact on this approach.
This discussion is followed by sections that detail the

simulation results for the individually modeled instructions

or exceptions from which the assessment of this approach was

formed,

Analysis Results
Based on the analysis of the simulation results, there
is little doubt that microprocessors can be accurately

modeled through signal analysis with minimal supporting

technical data. Except on those rare occasions when

microstatements were incorrect or omitted, the simulation




results deviated little from the analyzer output,

particularly with the 68000's memory control signals (i.e.,

DTACKN, AS, UDS, LDS, and R/W). However, as mentioned there

were some deviations from the data and address bus states

reported by the logic analyzer whenever these buses would

transition to the high impedance state at the beginning of a

read or write cycle. The differences were consistent and
predictable throughout the instruction models and result
from the 68000's inability to complete its activities well
within the logic analyzer's sampling intervals. These bus
differences do not have a major impact on the éccuracy of
the models because they are of short duration (half clock
cycle) and they occur at points where the ABUS or DBUS are
not being monitored by either the processor or its memory.
The problem of accurately modeling the high impedance
state is really inconsequential to the functional
correctness of the model; however, a major section is
devoted to discussing this problem, even at the risk of

overstating its significance., With so few global

inconsistencies in the models, considerable attention can be
given to this anomaly. The accuracy and completeness of the

models developed by Hamby and Guillory is a tribute to their

hard work and thorough understanding of microprocessor

structure and operation,

High Impedance State
The differing times in which the 68000 and its

supporting memory release the data and address buses during

VI-3




read and write cycles made their state difficult to

accurately model during the transition to a new cycle. The

specific problem areas are addressed in detail in the
sections that follow.

Data Bus. The available technical data specifies that :;‘;
during a read cycle the memory must remove its data and data =

transfer acknowledge (DTACK) signal within one clock period

of recognizing the 68000's negation of the address strobe :}: q
(AS) that occurs during phase two of the last read clock 7 -i
cycle (11:38). On the other hand, during a write cycle the f¥€7f
technical data (1:4) specifies that the 68000 will release %F%;

the data bus no earlier than 60 ns from AS negation (no

maximum figure is provided). AS is also negated during

phase two of a write's last clock cycle, Based on the logic
analyzer results, it appears that the ECB's memory releases

the data bus much sooner after the completion of a read

cycle than the 68000 does when completing a write cycle.

For a read or write cycle, the logic analyzer finds the ‘;i{?
data bus in the high impedance state during phase one of |
their initial clock cycle - provided they do not follow E;;g

another write cycle., Should they happen to follow another

write cycle, then the logic analyzer does not see the data

bus returned to the high state until phase two of their
initial cycle. While the specific point in which the bus is
"high-impedanced" cannot be determined for either the read

or write cycle, time intervals for each can be estimated

using available timing information.
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The logic analyzer samples data at the low and high
transitions of the system clock in accordance with Figure
VI-1l. The figure shows that for any clock period, the phase
one sample will reflect changes that occur with the clock
signal high and phase two will catch state changes that

occur during the low clock signal.

Cycle

[N
-—3
N

Zz |

-
W\
1]
23]
r
N
-

Figure VI-1. Logic Analyzer Sampling Points

Performance specifications for the Hewlett Packard
1600A Logic State Analyzer indicate that data must be
present at least 20 ns prior to clock transition for it to
be captured during the current phase (24:1-1). Figure
VI-2(a) presents the maximum time (120 ns) in which the
68000 will place the data bus in the high impedance state
upon entering a read or write cycle (1:4). In order for the
logic analyzer to capture the high impedance state during
phase one, then the bus must be in this state within 95 ns
of the beginning of the read or write cycle. It appears
that the 68000 disables the bus somewhere between 86 and 110
ns after the start of the first clock cycle. Because the
signals have a 10 ns rise/fall time (l1:4), the bus will
reach the high impedance state in 96 to 120 ns (Figure

VIi-2(b)). These figures indicate that the logic analyzer
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- should not show the data bus returning to the high impedance

. state until phase two of the first clock cvcle for both read

and write cvcles. This is not the case.

s —20 —

-
s

ll
w
Iy

\J}
|

]
~3
>

I

. G! Lzta --‘\\\ (c)
e

T

. Figure VI-2, Data Bus High Impedance Timing (1:5,6)
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Since the 68000 does not place the data bus in a high
impedance state in sufficient time to be captured by the
; logic analyzer on phase one of clock cycle zero for either a
read or write cycle, then the only explanation for the logic
analyzer results is that a previous cycle is sometimes able
¥ to return DBUS to high impedance so that it is captured by
: the logic analyzer during phase one, even though the current

cycle fails to do so itself.

During a read cycle it is the memory's responsibility

to return the data bus to the high impedance state once the




s .

68000 has received the requested data. As mentioned

earlier, it has up to a full clock cycle from phase two of

the last read clock cycle to do this. The change could take

place as late as phase two of the following clock cycle,

i However, it appears that the ECB memory responds much faster
than necessary. Referring to Figure VI-2(c¢), the ECB memory
must disable DBUS no later than 85 ns into the following

i clock cycle because it is being captured by the logic

analvzer during phase one. In the case where the 68000 is

responsible for returning the bus to the high impedance

state (end of a write cycle), it fails to do so in time to

compensate for the initial clock cycle's failure. 1In fact,

it is possible that the 68000 relies on the following read

I o or write cycle to accomplish this, : | iii
Hamby and Guillory's model specifies that the data bus

is disabled during phase one of both the read and write

' clock cycles and is reflected in the initial simulation
results. However, because the 68000 does not accomplich
this action in time during a write cycle to be captured by

;' the logic analyzer until the next phase, it appears as
though the model is inaccurate. The technical data supports
their model even though the timing resolution of the logic

¥ analyzer disguises its accuracy.

In terms of accurately modeling any instruction, one
must then be aware of the types of cycles and their ordering

h so that the state of the data bus can be accurately

portrayed at any given time. That is, one must know whether
X VI-7
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the previous cycle was a read or write so that the correct
variation of the current cycle can be determined and modeled
to place the data bus in the high impedance state at the
correct moment. This adjustment was made during the model
trans®~rmations once the problem was recognized, It is
important to note that even though this was easily
accomplished, it is not necessary in terms of a correctly
functioning model. The state of the data bus is of no
conseguence during the initial phase of a read or write
clock cvcle because no device is monitoring it at that

point, During either a read or write cycle, the 68000 can

receive or issue valid data no sooner than a full clock
cycle later. ‘ifi
Adéress Bus. A similar situation exists whenever the s
address bus (ABUS) is transitioning to the high impedance
state. As with the data bus, the 68000 places ABUS in the
high impedance state no later than 120 ns from the beginning
of a read or write cycle., The logic analyzer results
indicate that ABUS is in an indeterminate state during phase f}f;i
one of the initial period in a read or write cycle., 1In some ;fiﬁ’
instances the address bus was found in a high impedance
state during phase one; however, there were just as many
other cases where it contained the address from the previous }l;“é
reac or write cycle, or it was in a state somewhere between

the two (previous address and high impedance). This

strongly indicates that the logic analyzer was sampling the

data at approximately the same instant in which the 68000

vi-8




was returning the bus to the high impedance state.
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Figure VI-3. High Impedance On Address Bus

Looking at Figure VI-3, it appears that this is occurring at
approximately 85 ns into the initial clock cycle. 1If the
68000 disables the bus at 85 ns into its cycle, then with a
10 ns rise/fall time the bus will return to high impedance
at 95 ns (the cutoff time for the logic analyzer to capture
it). Timing is critical and & delay of as little as a
single nanosecond will mean the difference between the logic
analyzer catching the address bus in the high impedance
state durino phase one or not.

As with data bus modeling, even though the simulation
results will not always agree with the results of the logic
analyzer (the simulation will always reach the high
impedance state), this indeterminate state lasts but a half
clock cycle and occurs at & point where the bus is of no
consequence to system devices., For both read and write
cycles, the 68000 does not take AS low to indicate a wvalid

address until a full clock cycle later.

e acacall i




..............

-+ - a - . : o

The simulation results for each modeled instruction

i

|

will be individually compared and contrasted with logic B
analyzer's reflection of the 68000's actual operation. Each :3
section contains a brief description of the instruction cor IS5
exception, lists the simulation data, and then explains E_J?
their differences and corrections. The individual ISP' >ﬁ
models of each instruction or exception seqguence, the files N
that controlled the simulations, and the simulation output [
from which the tabulated signal data was prepared appear in : Zi
Appendices C, G, and H recpectively. Appendix F lists the -é
instruction test routines that were executed on the models ﬁ : g
during the simulations. The CDL models and logic analyzer ?
data from which the comparisons were made are contained in o d

Appendices I and J respectively. All addresses and data ISE&
values used in the discussion are given in hexadecimal. |

Excluding wait cycles, read cycles require four clock ;?:4
cycles to execute. The ECB memory required one and a half :
clock cycles to provide the requested data causing the 68000
to run a full wait cycle during its reads. Subsequently, ijfié
all read cycles require five clock cycles to complete. £ Pt4
bDuring writes to memory, the 68000 must also wait one and a o
half cycles before the ECB memory formally acknowledges data - ’:;
receipt. With the wait cycle included, a normal four-cycle )

write will also require five clock cycles to execute. As a

matter of convention, all instruction cycle lengths given in

this chapter will include wait cycles.

Vi-10
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When running the simulations, 16 of the MC68000's 64
pins were monitored to provide sufficient information to

identify the internal processing taking place. These RO

signals along with the columns in which their states appear

in the simulation data are identifiecd below. ;iL;
4
Column Signal ‘
0 FCO (Function Code 0 output) i;.:
- 1 FCl (Function Code 1 output) K |
2 FC2 (Function Code 2 output) ‘
3 DTACK' (Data Transfer Acknowledge

input from memory)
4 R/W' (Read/Write signal)
5 LDS' (Lower Data Strobe) . .
6 UDS' (Upper Data Strobe) ., #
7 AS' (Address Strobe)
8 D0 (Data line 0)

9 D1 (Data line 1)

10 D2 (Data line 2) g
, 11 D3 (Data line 3) - .
. o 12 D4 (Data line 4) -t

13 D5 (Data line 5) R

14 D6 (Data line 6)

15 D7 (Data line 7) -

For several of the instructions, it was necessary to tjg‘

monitor the addrecss bus as well. Whenever this was done,
only the first four data lines (D0-D3) were monitored. ii}v;
D4-D7 were replaced with Al-A4 and the results entered in :5--!
columns 12-15 of the simulation data. The only exception to .
this convention occurs while simulating the Illegal
Instruction exception sequence. 1In this lone case, address
lines Al-A4 were monitored in addition to the eight data

< lines D0-D7 to provide greater data range when alsc
observing addresses. For this instruction, Al-A4 appear in

columns 16-19,

. vIi-11




MOVE,.W DI1,D2

The MOVE.W D1,D2 instruction was the first to be

modeled and simulated, This single-word instruction uses
the data register direct addressing mode to move the
contents of data register D1 to data register D2, Because
& this instruction is executed in a single read cycle
(prefetch), it required only five clock cycles to execute.
Only the function code, peripheral control, and data lines

were monitored during the simulation. The simulation

— IYV‘T‘\' oy
Kl . ‘lll . .
. p P

]

" _;.AA‘L

results were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 sSbD/ TCCC

. SSW A210
@ C
K

(0) P(1) 1111 1111 1111 1010 SDhata bus (8-=15) in high
(0) P(2) 1111 1111 1111 1010 Simpedance state, R/W!'
$signal (4) indicates a
Sread cycle, function codes
$(0-2) identify user
Sprogram mode.
K(1) P(1) 1111 1111 0001 1010 SAS' (7) indicates a
- K(1) P(2) 1111 1111 0001 1010 Svalid address on address
) Sbus; UDS', LDS' (5-6) for
. $a word size operation.
K(2) P(1) 1111 1111 0001 1010 SDTACK' (3) not asserted
K(2) P(2) 1111 1111 0001 1010 Sby peripheral device (data
$not ready) so processor
Sruns a wait cycle. e
K(3) P(1) 0000 0001 0001 0010 SData applied to data bus oo
K(3) P(2) 0000 0001 0001 0010 $(8-15), DTACK' (3) asserted o
Sindicating to processor o
Sthat data is on the bus. S
SThe data on the bus is e
$code for MOVE.W D1,D2 K

.o
Par 4
.
P4

Sinstruction indicating :i“_
Sthat this is a prefetch. RN

K(4) P(1l) 0000 0001 0001 0010 Ry
K(4) P(2) 0000 0001 1111 1010 SAS', UDS', LDS' (5-7) -

VI-12




Schange to notify
Speripheral device that
Stransfer is complete.

Because the simulation results echoed the results

observed through the logic analyzer during the actual
operation of the MC68000, Hamby and Guillory appeared to N
have little difficulty modeling this version of the MOVE
instruction. There were, however, two changes made to their
model during its transformation to ISP'. At phase two of
clock cycles zero and three, decoder K was directly
incremented with the CDL statement "K <~ Countupk".

Incrementing K directly would not achieve the desired ‘rg}

e

results, The decoder's successive output line can be
activated by incrementing its input clock cycle register, T,

with the CDL statement "T <- CountupT" (T = T + 1 in ISP'). 2ol

MOVE.W D1, (Al)

The MOVE.W D1, (Al) instruction uses both the data

> a [t T
P A A I L
IR AN
et e

| 20 S
1

register direct and address register indirect addressing
modes to move the contents of data register D1 into the

memory locations identified by the contents of address

1]

register Al. This version of the MOVE instruction consisted .
of single read and write cycles requiring 10 clock cycles to
execute, During the simulation, no address lines were

monitored and the results did not differ from the logic A

analyzer data. They were:

I
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K(1)
K (1)

K(5)

K(5)

K(6)

K(6)

K(8)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(2)

P(1)

15-12 11-8
DCDD DDDD AULR DFFF
7654 3210

——— i — ——— —

1111 1111
1111 1111

1111 1111
1111 1111

1000 0001
1000 0001

1000 0001

1000 0001

1111 1111

1111 1111
1111 1111

0101 0101

0101 0101
0161 0101

0101 0101

''''''''''''''

......................

- -

.......

0001 1010
0001 1010

0001 1010
0001 1010

0001 0010
0001 0010

0001 0010

1111 1010

1111 1010

1111 1001
0110 1001

0110 1001

0000 1001
€000 1001

0000 1001

(columns)
(signals)

$Data bus (8-15) in high
Simpedance state, R/W'
$signal (4) indicates a
Sread cycle, function codes
$(0~2) identify user
Sprogram mode.

SAS' (7) indicates &

Svalid address on address
Sbus; UDS', LDS' (5-6) for
Sa word size operation,
SDTACK' (3) not asserted
Sby peripheral device (data
Snot ready) so processor
Sruns a wait cycle.

$hata applied to data bus
$(8-15), DTACK' (3) asserted
Sindicating to processor
Sthat data is on the bus.
SThe data on the bus is
Scode for MOVE.W D1, (Al)
Sinstruction indicating
Sthat this is a prefetch.

SAS', UDS', LDS' (5-7)
Schange to notify
Speripheral device that
Stransfer is complete,
$Begin write cycle,

S$Data bus (8~15) in

$high impedance state.
SFunction code (0-2)

Sis user data mode.

SAS' (7) asserted to
Sindicate valid address on
$ bus, R/W' (4) changes
Sto write cycle,

S$bata put on data bus
$(8-15). Data is 55 hex
Swhich is same as data
$stored in Dl.

SUDS', LDS' (5-6) identify
Sword size, DTACK' (3) not
Sasserted by peripheral
$so wait rycle run by
Sprocessor,

SDTACK' (3) not asserted

VI-14
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K(7) P(2) 0101 0101 0000 1001 $sc T is decremented and
Sanother wait cycle run,

K(8) P(l) 0101 0101 0000 0001 SDTACK' (3) is asserted

K(8) P(2) 0101 0101 0000 0001 sindicating peripheral has
$successfully stored data.

K(9) P(1) 0101 0101 0000 0001 :ix;
K(9) P(2) 0101 0101 1110 1001 $AS', UDS', LDS' (5-7) Ay
$Schange to signal L
Speripheral that write R
Scycle is complete. T
MOVE.L DI1,Al

The single-word instruction MOVE.L D1,2]1 uses both the
data register and address register direct addressing modes

to move the 32-bit contents of data register D1 to address

register Al., This instruction consists of a single read
cycle that required five clock cycles to execute. No E\;A

- address lines were monitored. The results were:

(o 15-12 11-8 7--4 3--0 (columns)
- DDDD DDDD AULR DFFF (signals)
N 7654 3210 SDD/ TCCC

- SSW A210
- C )
K(0) P(1) 1111 1111 1111 1010 SData bus (8-15) in high e
K(0) P(2) 1111 1111 1111 1010 Simpedance state, R/W' B
_ $signal (4) indicates a S
" Sread cycle, function codes RN
$(0-2) identify user BT
Sprogram mode. NARE
K(l) P(1) 1111 1111 0001 1010 S$AS' (7) indicates a e
K(1) P(2) 1111 1111 0001 1010 Svalid address on address o
$bus; UDS', LDS' (5-6) for W
$a word size operation. s
K(2) P(1) 1111 1111 0001 1010 SDTACK' (3) not asserted t"’

K(2) P(2) 1111 1111 0001 1010 Sby peripheral device (data PR
Snot ready) so processor Al
Sruns a wait cycle.

K(3) P(1) 010C 0001 0001 0010 SData applied to data bus .

K(3) P(2) 0100 0001 0001 0010 $(8-15), DTACK' (3) asserted .
Sindicating to processor $-
Sthat data is on the bus.,

R SThe data on the bus is

. $code for MOVE.L D1,Al
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Sinstruction indicating
Sthat this is a prefetch.
K(4) P(1) 0100 0001 0001 0010
K(4) P(2) 0100 0001 1111 1010 S$SAS', UDS', LDS' (5-7)
Schange to notify
Speripheral device that
Stransfer is complete.

The only difference between the simulation results and
the data from the logic analyzer occurs at phase two of
clock cycle two. The logic analyzer shows the data bus
changed from its high impedance state of the previous cycle
to "1011 1111" on its way to the valid data state "0100
0001" at phase one of clock cycle three. Because this
occurs at a point in the read cycle where the memory is
placing data onto the bus, it appears that the logic
analyzer has caught the data bus in transition to its valid

data state., The simulation differs by maintaining the high

impedance state during this phase,

MOVE.W D1, (Al)+

MOVE.W D1, (Al)+ is a single word instruction that uses
the data register direct and postincrement register indirect
addressing modes to move the contents of data register Dl to
the memory location pointed to by the contents of address
register Rl. After Al is used to address the memory
location, it is incremented by two. It is comprised of
single read and write cycles that require ten clock periods
to execute,

Instead of monitoring eight data lines, only the first
four were examined during the execution of this

instruction. Hamby and Guillory replaced data lines D4-D7

VI-16
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with the four least significant address lines (Al-A4) to
view the postincrement process. The reader should be aware
that these lines do not include bit zero of the program
counter; they only represent PC<4:1>, PC<0> does not appear
on the address bus, Rather, it is internally encoded along
with the instruction's operand length to activate the upper
and lower data strobes (UDS and LDS) (11:38).

The 68000 uses PC<0> to determine which byte to read or
write and then activates either UDS, LDS, or both depending
on the operand size, Whenever the instruction specifies a
byte operand, UDS is activated if PC<0> is zero. If it is a
one, then LDS is activated. For word size operands, both
UDS and LDS are activated and PC<0> must be zero to avoid an
address error exception. Therefore, for the word or
longwbrd size instructions that dominate the models, an
extra zero should be appended to the address bus data to
arrive at the correct memory address accessed by the
processor. In terms of an accurate representation of this
process in the instruction models, the sequence of CDL
microstatements that transfer the program counter to the
address bus (i.e., IABUS <- PC, EXABUF <~ IABUS, and ABUS <-
EXABUF) should be changed at both of the first two stages to
support this fact (i.e., IABUS<31l:1> <~ PC<31l:1> and EXABUF

<~ IRBUS<31:1>). The simulation results were:

Se




(columns)
(signals)

P(1) $Begin read cycle.
P(2) SAddress lines (12-15)

Sare 1006, location of
P(1) $instruction being
P(2) Sprefetched

P(1)
P(2)

P(1) Shata applied to data bus
P(2) $(8-11), Data is code
: $for MOVE.W D1, (Al)+.

P(1)
P(2) SEnd read cycle

P(1) S$Begin write cycle.

P(2) SAddress lines (12-15)
Sare 2000.

P(1)

P(2) Shata put on dat~ bus
$(8-11)., Data is .» hex

P(1) Sdata being moved.

P(2)

P(l)
P(2)

P(1)
P(2)

P(1)
P(2) SEnd write cycle.
In their CDL model, Hamby and Guillory neglected to

increment the program counter or place the contents of the

prefetch register intc the instruction register during phase

two of clock cycle nine, These microstatements were added
to the ISP' version., The only difference that occurred

between the simulation and the logic analyzer data is the
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data that zppears on the address bus at phase one of clock
cycle zero. The simulation reflects the high impedance

state while the logic analvzer depicts a partial return to
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the high impedance state from the address that last avpeared
on the bus (1004 - the address of the current instruction).
The reasons for this difference have been explained and will

not be further elaborated upon here.

MOVE.W D1,04(A1)

MOVE.W D1,04(Al) is a two-word instruction that uses
the data register direct and register indirect with offset
addressing modes to move the contents of data register Dl to
the memory location pointed to by the sum of both address
register Al and the value of the instruction's extention
word., The instruction consisted of two read cycles
(displacement fetch and instruction prefetch) and one write
cycle (move data). It required 15 clock cycles to execute,
The four least significant address and data lines were

monitored during the simulation. The results were:

15-12 11-8 7--4 3~--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 spDD/ TCCC

(0) P(1) 1111 1111 1111 1010 S$Begin read cycle.
(0) P(2) 0011 1111 1111 1010 $Address lines (12-15)
Sare 1006, location of

(1) P(1) 0011 1111 0001 1010 Sinstruction being
K(l1) P(2) 001l 1111 0001 1010 Sprefetched

K(2) P(1) 0011 1111 0001 1010
K(2) P(2) 0011 1111 0001 1010
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1) 0011 0100 0001 0010 Sbata applied to data bus
2) 0011 0100 0001 0010 s$(8-11l). Data is 04,
Sthe displacement.
K(4) P(1) 0011 0100 0001 0010
2) 0011 0100 1111 1010 SEnc read cycle.

WLy

X
K(

K(5) P(1) 1111 1111 1111 1010 SBegin read cycle.
K(5) P(2) 0100.1111 1111 1010 SAGdress lines (12-15)

Sare 1008, location of
K(6) P{1) 0100 111) 0001 1010 Sinstruction being
R(6) P(2) 0100 1111 0001 1010 Sprefetched.

K(7) P(l) 0100 1111 0001 1010
K(7) P(2) 0100 1111 0001 1010

K(8) P(1) 0100 0001 0001 0010 Shata applied to data bus
K(8) P(2) 0100 0001 0001 0010 $(8~11). Data is code
Sfor MOVE.W D1,08(Al).
(9) P(1) 0100 0001 0001 0010
K(S) P(2) 0100 0001 1111 1010 SEnd read cycle.

K(10) P(1) 1111 1111 1111 1010 $SBegin write cycle.

K(10) P(2) 0010 1111 1111 1001 SAddress lines (12-15)
Sare 2004.

K(11) P(1) 0010 1111 0110 1001

K(11) P(2) 0010 0101 0110 1001 SData put on data bus
$(8-11). Data is 5 hex,

RK(12) P(1) 0010 0101 0000 1001 $Sdata being moved.

K(12) P(2) 0010 0101 0000 1001

K(13) P(1l) 0010 0101 0000 1001
K(12) P(2) 0010 0101 0000 1001

Sy

K(13) P(l) 0010 0101 0000 0001 ?iﬂﬂ
K(13) P(2) 0010 0101 0000 0001 S

K(14) P(1) 0010 0101 0000 0001
K(14) P(2) 0010 0101 1110 1001 SEnd write cycle.

The only difference between the simulation and the
logic analyzer results occured on the address bus. At phase
one of clock cycles zero and ten the logic analyzer catches
the bus transitioning tc the high impedance state whereas
the simulation fully captures high impedance. This
difference has been discussed earlier.

Alsc, for one and a half clock cycles beginning at

........................................
.................................




phase one of clock cycle 13, the logic analyzer data ’ﬁ;il

indicates that the address bus (A4-Al) is in state "0011"
whereas on the previous cycle (phase two of clock cycle 12)
it held the address of the memory location to which the data

from D1 would be moved (2004). This address manifested

itself as "0010" on A4-Al (add a zero to catch PC<0>). A
change to "0011" would indicate that the address was
incremented to 2006 in the midst of a write cycle and then
again returned to 2004 one and a half clock cycles later.,
Because this is abnormal behavior for the address bus during
a write cycle, and it could not be duplicated, it appears to

be a typing mistake.

MOVE.W D1,04(Al,D7)
MOVE.W D1,04(Al1,D7) is also a two-word instruction that

uses the data register direct and indexed register indirect

with offset addressing modes to move the contents of data

register Dl to the memory location determined by the sum of

the index register (D7), the displacement (4), and the value

4
<
of address register Al. It required 17 clock cycles to ;
execute its two read and one write cycles. The same signals L,p:!
were monitored as with the previous instruction. The

simulation results were: NI

15-12 11-8 7--4 3~--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 8SDD/ TCCC

SSW A210




K(11l) P(1)
K(1l1l) P(2)

K(12) P(1)
K(12) P(2)

K(13) P(1)
K(13) P(2)

K(14) P(1)
K(14) P(2)

K(15) P(1)
K(1l4) P(2)

K(15) P(1l)
K(15) P(2)

K(l6) P(1)
K(16) P(2)

..........

1111
0011

0011
0011

0011
0011

0011
0011

0011
0011

1111
1111

1111
1111

1111
0100

0160
0100

0160
0100

0100
0100

0100
0100

1111
0101

0101
0101

0101
0101

0101
0101

0101
0101

0101
0101

1111 1111
1111 1111

1111 0001
1111 0001

1111 0001
1111 0001

0100 0001
0100 0001

0100 0001
0100 1111

1111 1111
1111 1111

1111 1111
1111 1111

1111 1111
1111 1111

1111 0001
1111 0001

1111 0001
1111 0001

0001 0001
0001 0001

0001 0001
0001 1111

1111 1111
1111 1111

1111 0110
0101 0110

0101 0000
0101 0000

0101 0000
0101 0000

0101 0000
0101 0000

0101 0000
0101 1110

1C¢10
1010

1010
1010

1010
1010

0010
0010

0010
1010

1010
1020

1010
1010

1010
1010

1010
1010

1010
1010

0010
0010

0010
1010

1010
1001

1001
1001

1001
1001

1001l
1001

0001
0001

0001
1001

P et

$Begin read cycle.
SAcdress lines (12-15)
Sare 1006, location of
Sinstruction being
Sprefetched

Sbata applied to data bus
$(8-11). Data is 04,
Sthe displacement.

SEnd read cycle.

S$Address and data
Sbuses (8-15) go high.

$Begin read cycle.
SAddress lines (12-15)
Sare 1008, location of
Sinstruction being
Sprefetched.

Sbata applied to data bus
$(8~11). Data is code
$for MOVE.W D1,08(Al1,D7).

SEnd read cycle.
$Begin write cycle,
$Address lines (12-15)
Sare 200A.

Shata put on data bus

$(8-11). bata is 5 hex,
Sdata being moved.

SEnd write cycle.

.............................




The logic analyvzer results indicate that the MC68000
returns both the address and data bus to the high impedance
state at phase one of clock cycle five, This phase begins a
two-cycle sequence of micro-operations that compute the
destination address by adding both the displacement and the
contents of the index register to the value contained in
address register Al. The microstatements that return the bus

to the high impedance state were not present in the CDL

model. The assignments "ADENABLE = lo" and "DBENABLE = lo"
were added to the ISP' model of this instruction to correct
this omission. ]

There were also the usual deviations relative to the | 4
high impedance state on the address bus at the start of read
and write cycles. These occurred at phase one of clock

cycles zero and 12.

't

M 7

MOVE.W D1,$2004 uses the data register direct and :;.i#
absolute short addressing modes to move the contents of data L
register D1 to the memory locations beginning at address

2004, This two-word instruction required 15 clock cycles to

execute its two read and one write cycles., As with the

previous instruction, the four least significant address and L]

data lines were monitored., The simulation results were:
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15-12
AAAA
4321

11-8 7--4
DDDD AULR
3210 SDD/

SSwW

3-=-0 (columns)
DFFF (signals)

1010 SBRegin read cycle.
1010 SAddress lines (12-15)

Sare 1006, location of
1010 S$instruction being
1010 Sprefetched

0010 $Data applied to data bus
0010 $(8-11). Data is 04,
$the displacement.

1010 SEnd read cycle.

1010 S$Begin read cycle.
1010 SAddress lines (12-15)

Sare 1008, location of
1010 Sinstruction being
1010 Sprefetched.

0010 SData applied to data bus
0010 $(8-11). Data is code
Sfor MOVE.W D1,$2008.

1010 SEnd read cycle.

1010 S$Begin write cycle.
1001 SAddress lines (12-15)
Sare 2004.

1001 SDhata put on data bus
$(8-11)., Data is 5 hex,
1001 Sdata being moved.
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K(14) P(2) 0010 0101 1120 1001 SEnd write cycle.

The only differences occurred at phase one of clock
cycles zero and ten where the logic analyzer again did not
let the address bus complete its return to the high.

impedance state,

MOVE W ]
MOVE.W Al,D3 is a single-word instruction that uses the

address register direct and data register direct addressing

AL

modes to move the contents of address register Al to data

register D3. It consists of a single read cycle (instruction

prefetch) that required five clock cycles to execute, No
address lines were monitored during this simulation. The

results were:

15-12 11-8 7-=-4 3~--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

1111 1111 1111 1010 $Begin read cycle,

P(2) 1111 1111 0001 1010

K(3) P(1) 0000 1001 0001 0010 Sbata applied to data bus

K(3) P(2) 0000 1001 0001 0010 S$(8~15). Data is code
$for MOVE.W Al,D3.

(4 P(1) 000G 1001 0001 0OOlo

(4) P(2) 0000 1001 1111 1010 SEnd read cycle.

At phase one of clock cycle zero of their CDL model,
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Hamby and Guillory included the microstatement "IDBUS <~
Al (LWORD)" to place the low word of address register Al onto '”'ﬁ
the internal data bus, Subregister Al1(LWORD) did not appear
in the declaration section of their CDL model but was added

to the ISP' version of this instruction.

At phase two of clock cycle two the logic analyzer

- shows the data bus changed from the high impedance state of
i‘ the previous cycle to "1011 1111" on its way to the valid ;;;j
' |
data state "0000 1001" at phase one of clock cycle three, o

As occurred during the MOVE.L D1,Al simulation, the logic

analyzer caught the bus transitioning to high impedance

whereas the simulation shows the process completed,

E.W (A D
MOVE.W (Al),D2 uses the address register indirect and

data register direct addressing modes to move the contents

of the memory locations pointed to by address register Al to
data register D2. This single-word instruction required 10 .~
clock cycles to execute its two read cycles, Both the

simulation and logic analyzer results were in agreement, No

address lines were monitored during the simulation. The -

vl T N o . . : . .
f e e RS AR S A el .o .
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results were:
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15-12 11-8 7=--4 3-~0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

Ssw A2l10

°p

A
v
Ay
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K(0) P(1) 1111 1111 1111 1010 SBegin read cycle.
K(0) P(2) 1111 1111 1111 1010
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R(1) P(1) 1111 1111 0001 1010
K(1) P(2) 1111 1111 0001 1010
K(2) P(1) 1111 1111 0001 1010 s

K(2) P(2) 1111 1111 0001 1010

RK(3) P(1) 0001 0001 0001 0010 SData applied to data bus S
K(3) P(2) 0001 0001 0001 0010 $(8-15). Data is code o

sfor MOVE.W (Al),D2. ot
K(4) P(1l) 0001 0001 0001 0010 et
K(4) P(2) 0001 0001 1111 1010 SEnd read cycle, ce
K(5) P(1) 1111 1111 1111 1010 SBegin read cycle.
K(5) P(2) 1111 1111 1111 1001 SFunction codes (0-2)

$change to user data
K(6) P(1l) 1111 1111 0001 1001 Smode. -
K(6) P(2) 1111 1111 0001 1001
R(7) P(1) 1111 1111 0001 1001 E
R(7) P(2) 1111 1111 0001 1001 .
K(8) P(l1) -0101 0101 0001 0001 SData applied to data bus e
K(8) P(2) 0101 0101 0001 0001 s(8~15). Data is 55 hex, 256

Sdata being moved. ,
0101 0101 0001 0001 Ll
0101 0101 1111 1001 $End read cycle, :
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et
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E.W +,
MOVE.W (Al)+,D6 uses the postincrement register
indirect and data register direct addressing modes to move ﬁiﬁ
the contents of the memory locations pointed to by address
register Al to data register D6é. Address register Al is
incremented by two after being used as a pointer. This &fq
single-word instruction required 10 clock cycles to execute
its two read cycles. The four least significant address and
data lines were monitored during the simulation, The lﬂfi

results were:
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K(0)
K(0)

K(1)
K(1)

K(2)
K(2)

K(3)
K(3)

P(1)
P(2)

P(1l)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

11-8
DDDD
3210

—— — — e s T Pt Tt e s i G > S S S W

{columns)
(signals)

SBegin read cycle,
SAddress lines (12-15)
Sare 1006, location of
Sinstruction being
Sprefetched

SDhata applied to data bus
$(8-11). Data is code
$for MOVE.W (Al)+,D7.

SEnd read cycle,

$Begin read cycle,
SAddress lines (12-15)
Sare 2000 hex, location of
Sof data. Function codes
$(0-2) change to user
$Sdata mode.

$Data applied to data bus
$(8-11). Data is 5 hex,
Sdata being moved.

SEnd read cycle,

The simulation results again differed from the logic

analyzer data only on the address bus where the logic

analyzer failed to capture its high impedance state at phase

one of clock cvcle zero and five,

MOVE.W -(ALl),D4

MOVE.W -(Al) ,D4 vses the predecrement register indirect

and data register direct addressing modes to move the

L
.

.......

W e



_________

contents of the memory locations pointed to by address
register Al to data register D4, Address register Al is
decremented by two before being useé as a pointer.

single-word instruction required 12 clock cycles to execute

its two read cycles.

.......

The four least significant address and

data lines were monitored during the simulation. The

results were:

—— G — — —————_— —— —— —— — -

15-12 11-8

AAAA DDDD

4321 3210

K(0) P(1) 1111 1111
K(0) P(2) 0011 1111
K(1) P(1) 0011 1111
K(1) P(2) 0011 1111
K(2) P(l1) 0011 1111
K(2) P(2) 0011 1111
K(3) P(l) 0011 0001
K(3) P(2) 0011 0001
K(4) P(1) 0011 0001
K(4) P(2) 0011 0001
K{(5) P(1) 1111 1111
K(5) P(2) 1111 1111
K{6) P(1) 1111 1111
K(6) P(2) 1111 1111
K(7) P(1) 1111 1111
K(7) P(2) 0011 1111
K(8) P(1l) 0011 1111
K(8) P(2) 0011 1111
K(9) P(1) 0011 1111
RK(9) P(2) 0011 1111
K(10) P(1) 0011l 0101

(columns)
(signals)

$Begin read cycle.
$Address lines (12-15)
Sare 1006, location of

Sinstruction being
Sprefetched
$Data applied to data bus

$(8-11)., Data is code
sfor MOVE.W -~ (Al),D3.

SEnd read cycle.

SAaddress and data
Sbuses (8-15) go high.

$Begin read cycle.
SAddress lines (12-15)
Sare 2006, location of
Sdata. Function codes
$(0~2) change to user
$data mode.

SData applied to data bus

This

L I

)
PR
.

-

K]
A S,
A s,

R PR
SANERLN

oy



A I s St Jh e S B St i i iied Sats s lath Sa g B dunn g P — A LB ey M SRS aa ol A oS SdM S Bl aeh e Son aen oAl Sne ses se e gy

K(10) P(2) 0011 0101 0001 0001 $(8-11l). Data is 5 hex,
Sdata being moved.

K(11l) P(1) 0011 0101 0001 0001

K(1l) P(2) 0011 01061 1111 1001 $End read cycle.

The logic analyzer results indicate that the MC68000
returns both the address and data bus to the high impedance
state at phase one of clock cycle five. This phase begins a
two-cycle sequence in which address register Al is
decremented. The microstatements that return the bus to the
high impedance state were not present in the CDL model. The
assignments "ADENABLE = lo" and "DRPENABLE = lo" were added
to the ISP' model of this instruction to correct this
omission.

There were also the usual deviations relative to the
high impedance state on the address bus at the start of read

and write cycles. These occurred at phase one of clock

cycles zero and 5,

MOVE,wW 04 (Al) D1

The MOVE.W 04(Al) ,Dl instruction uses the data register
direct and register indirect with offset addressing modes to
move the contents of the memory locations determined by the
sum of the displacement (4 - located in the instruction's
extention word) and the contents of address register Al.
This two-word instruction required 15 clock cycles to
execute its three read cycles, No address lines were

monitored during the simulation., The results were:
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15-12 11-8 7--4 3--0 (columns)

DDDD DDDD AULR DFFF (signals) B

7654 3210 sDD/ TCCC Do
SSwW A210 ot

K(0) P(1) 1111 1111 1111 1010 SBegin read cycle.
K(0) P(2) 1111 1111 1111 1010

K(1) P(1) 1111 1111 0001 1010 S
R(1) P(2) 1111 1111 0001 1010 R

K(2) P(1) 1111 1111 0001 1010 o
K(2) P(2) 1111 1111 0001 1010 iutz

K(3) P(1) 0000 0100 0001 0010 Shata applied to data bus

K(3) P(2) 0000 0100 0001 0010 $(8-15). Data is 4 hex,
Sthe displacement.

K(4) P(1) 0000 0100 0001 OOlO

L VLSRRI

am g

K(4) P(2) 0000 0100 1111 1010 $End read cycle.

K(5) P(1) 1111 1111 1111 1010 $Begin read cycle. B
K(5) P(2) 1111 1111 1111 1010 -
K(6) P(1) 1111 1111 0001 1010 S
K(6) P(2) 1111 1111 0001 1010 S

K(7) P(1l) 1111 1111 0001 1010
K(7) P(2) 1111 1111 0001 1010

K(8) P(1) 0010 1001 0001 0010 S$hata applied to data bus

K(8) P(2) 0010 1001 0001 0010 S$(B-15). Data is code
$for MOVE.W 08(Al),D2,

)y P(1) 0010 1001 0001 0010

) P{(2) 0010 1001 1111 1010 SEnd read cycle.

K(10) P(1) 1111 1111 1111 1010 $Begin read cycle,

K(10) P(2) 1111 1111 1111 1001 SFunction codes (0-2)
. Schange to user data

K(11) P(1) 1111 1111 0001 1001 Smode.

K(11) P(2) 1111 1111 0001 1001

K(12) P(1) 1111 1111 0001 1001
K(12) P(2) 1111 1111 0001 1001

K(13) P(1) 0101 0101 0001 0001 SData applied to data bus

K(13) P(2) 0101 0101 0001 0001 $(8-15). Data is 55 hex,
$data being moved.

K(14) P(1) 0101 0101 0001 0001

K(14) P(2) 0101 0101 1111 1001 SEnd read cycle.
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The only difference between the simulation and logic

analyzer data appeared on the data bus at phase two of clock
cycle two., Here the logic analyzer caught the bus

transitioning to a valid data state from high impedance

3 r
' L

whereas the simulation maintained high impedance, AR

[ D D

MOVE.W 04(Al,D7),D2 is a two-word instruction that uses

\

the indexed register indirect with offset and data register
direct addressing modes to move the contents of the memory

locations determined by the sum of the index register D7,

"

the displacement (4), and the contents of address register
Al, to data register D2, This instruction required 17 clock
cycles to complete its three read cycles., The four least

significant address and data lines were monitored during the

ml R mp el

simulation. The results were:

15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)

K(0) P(1) 1111 1111 1111 1010 S$Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 Sadcdress lines (12-15)

Sare 1006, location of
K(1) P(l) 0011 1111 0001 1010 Sinstruction being
K(1) P(2) 0011 1111 0001 1010 Sprefetched

) P(1) 0011 0100 0001 0010 SData applied to data bus
y P(2) 0011 0100 0001 0010 $(8~11). Data is 4 hex,
Sthe displacement.

K(4) P(2) 0011 0100 1111 1010 $End read cycle,.
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(1) 1111 1111 1111 1010 $Address and data
(2) 1111 1111 1111 1010 Sbuses (8-15) go high.

) 1111 1111 1111 1010
) 1111 1111 1111 1010

(1) 1111 1111 1111 1010 $Begin read cycle,
R(7) P(2) 0100 1111 1111 1010 SAddress lines (12-15)

Sare 1008, location of
K(8) P(1) 0100 1111 0001 1010 Sinstruction being
K(8) P(2) 0100 1111 0001 1010 Sprefetched.

K(%) P(1) 0100 1111 0001 1010
K(S) P(2) 0100 1111 0001 1010

K(10) P(1) 0100 0001 0001 0010 SDhata applied to data bus -t
K(10) P(2) 0100 0001 0001 0010 S(8-11l). Data is code AR
sfor MOVE.W 04 (Al,D7),D3. R
K(11) P(l) 0100 0001 0001 OO0lO DO
K(11) P(2) 0100 0001 1111 1010 SEnd read cycle. o

K(12) P(1l) 1111 1111 1111 1010 SBegin read cycle,
K(12) P(2) 0101 1111 1111 1001 SAddress lines (12-15) NN

Sare 2002, location of T
K(13) P(1) 0101 1111 0001 1001 Sof data. Function codes
K(13) P(2) 0101 1111 0001 1001 $(0-2) change to user
$data mode.

(@ K(14) P(1) 0101 1111 0001 1001
K(14) P(2) 0101 1111 0001 1001

RK(15) P(1) 0101 0101 0001 0001 Sbhata applied to data bus
K(15) pP(2) 01C1 0101 0001 0001 $(8-11). Data is 5 hex,
Sdata being moved. R
K(16) P(1l) 0101 0101 0001 0001 I
K(16) P(2) 0101 0101 1111 1001 SEnd read cycle. -

The logic analyzer results indicate that the MC68000

Pt e
’ e e

returns both the address and data bus to the high impedance
state at phase one of clock cycle five, This phase begins a
two-cycle sequence in which the index register D7 is added jﬁlzﬂ

to the displacement register (DISREG). The microstatements

cYTe
' T'
»

that return the bus to the high impedance state were not
present in the CDL model, The assignments "ADENABLE = lo"
and "DBENABLE = lo" were added to the ISP' model of this

instruction to correct this omission.




There were also the usual deviations relative to the

high impedance state on the address bus at the start of read

and write cycles. These occurred at phase one of clock

cycles zero and 12.

MOVE.W $2004,D5

MOVE.W $2004,D5 uses the absolute short and data
register direct addressing modes to move the data word at
memory location 2004 into data register D5. This two-word
instruction required 15 clock cycles to complete its three
read cycles. The four least significant address and data
signals were monitored during the simulation. The results

were:

15-12 11-8 7--4 3-=0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 SAddress lines (12-15)

Sare 1006, location of
K(1) P(1) 0011 1111 0001 1010 Sinstruction being
K(1) P(2) 0011 1111 0001 1010 Sprefetched

K(2) P(1) 0011 1111 0001 1010

K(2) P(2) 0011 1111 0001 1010

K(3) P(1) 0011 0100 0001 0010 SData applied to data bus

K(3) P(2) 0011 0100 0001 0010 S(B8-11l). Data is 4 hex,
Slow byte of operand

K(4) P(1) 0011 0100 0001 0010 Saddress,

K(4) P(2) 0011 0100 1111 1010 SEnd read cycle.

K(5) P(1) 1111 1111 1111 1010 $Begin read cycle.

K(5) P(2) 0100 1111 1111 1010 SAddress lines (12-15)
Sare 1008, location of

K(6) P(1) 0100 1111 0001 1010 Sinstruction being

K(6) P(2) 0100 1111 0001 1010 Sprefetched.
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K(7) P(1) 0100 1111 0001 1010

K(7) P(2) 0100 1111 0001 1010

K(8) P(1) 0100 1000 0001 0010 SData applied to data bus
K(8) P(2) 0100 1000 0001 0010 S$(8-11l). Data is code

$for MOVE.W $2004,D6.
K(9) P(1) 0100 1000 0001 0010
K(¢) P(2) 0100 1000 1111 1010 SEnd read cycle.

K(10) P(1) 1111 1111 1111 1010 SBegin read cycle.

K(10) P(2) 0010 1111 1111 1001 SAddress lines (12-15)
Sare 2004, location of

K(11) P(1) 0010 1111 0001 1001 Sof data. Function codes

K(11l) P(2) 0010 1111 0001 1001 S${0-2) change to user
Sdata mode.

K(12) P(1) 0010 1111 o001 1001

K(12) P(Z) 0010 1111 0001 1001

K(13) P(1l) 0010 0101 0001 0001 Spata applied to data bus

K(13) P(2) 0010 0101 0001 0001 S(8-11). Data is 5 hex,

Sdata being moved.
0010 0101 0001 0001

1)
2) 0010 0101 1111 1001 SEnd read cycle.

The usual deviations relative to the high impedance
state on the address bus at the start of a read cycle

occurred at phase one of clock cycles zero and 10.

MOVE,W $2004,82008

MOVE.W $2008,52004 uses the absolute long addressing
mode to move the data word beginning at memory location 2004
tc 2008. This instruction is five words long and requires 35
clock cycles to complete its six read and one write cycles.
No address lines were monitored. The simulation results

were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210

...........................................
.........................................




K(10)
K(10)

K(1l1)
K(11)

K(12)
K(12)

K(13)
K(13)
K(14)
K(14)
K(15)
K(15)

K(16)
K(16)

K(17)
K(17)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

g o

(1)
(2)
(1
(2

‘v d

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
pP(2)

YT

1111
1111

0001
0001

0001
0001

0001
0001

0001
1111

1111
1111

0001
0001

0001
0001

0001
0001

0001
1111

1111
1111

0001
0001

0001
0001

0001
0001

0001
1111

1111
1111

0001
0001

0001
0001

1010
1010

1010
1010

1010
1010

0010
0010

0010
1010

1010
1010

1010
1010

1010
1010

0010
0010

0010
1010

1010
1010

1010

1010

1010
1010

0010
0010

0010
1010

1010
1001

1001
1001

1001
1001
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SBegin read cycle,

Shata applied to data bus
S$(8~15). Data is high
Sword of source address,
SEnd read cycle.

SBegin read cycle,

a0
3

SEnd read cycle.

;;i

ji:fﬂ

SData applied to data bus s
$(8~15). Data is low SRR
Sword of source address. O
-1

$Begin read cycle.

Shata applied to data bus
§(8-15). Data is high
Sword of destination,

$SEnd read cycle,

S$SBegin read cycle.
SFunction codes (0-2)
Schange to user data
Smode.
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K(18) P(1) 01lCl 0101 0001 0001 SDhata applied to data bus

K(18) P(2) 0101 0101 0001 0001 $(8-15). Data is 55 hex,
Sdata being moved.

K(19) P(1l) 0101 0101 0001 0001

K(19) P(2) 0101 0101 1111 1001 SEnd read cyvcle.

K(20) P(1) 1111 1111 1111 1001 SBegin read cycle.

K(20) P(2) 1111 1111 1111 1010 SFunction codes (0-2)
Schange to user program

K(21) P(1) 1111 1111 0001 1010 Smode.

K(21) P(2) 1111 1111 0001 1010

K(22) P(l) 1111 1111 0001 1010
K(22) P(2) 1111 1111 0001 1010

K(23) P(l) 0000 1000 0001 0010 SData applied to data bus

K(23) P(2) 0000 1000 0001 0010 S$(8-15). Data is low word
Sof destination.

P(1) 000C 1000 0001 0010

(24) P(2) 0000 1000 1111 1010 SEnd read cycle.

K(25) P(1) 1111 1111 1111 1010 S$Begin write cycle.

K(25) P(2) 1111 1111 1111 1001 SFunction codes (0-2)
$Schange to user data mode.

K(26) P(1) 1111 1111 0110 1001

K(26) P(2) 0101 0101 0110 1001 SData put on data bus
$(8~15), Data is 55 hex,

K(27) P(1l) 0101 0101 0000 1001 Sdata being moved.

@ K(27) P(2) 0101 0101 0000 1001

K(28) P(1) 0101 0101 0000 1001
K(27) P(2) 0101 0101 0000 1001

K(28) P(1l) 0101 0101 0000 0001
K(28) P(2) (0101 0101 0000 0001

K(29) P(1) 0101 0101 0000 0001
K(29) P(2) 0101 01C1 1110 1001 SEnd write cycle.

K(30) P(1) 1111 1111 1111 1001 $SBegin read cycle.

K{(30) P(2) 1111 1111 1111 1010 SFunction codes (0-2)
Schange to user program

K(31) P(1) 1111 1111 0001 1010 Smode.

K(31) P(2) 1111 1111 0001 1010

K(32) P{(1) 1111 1111 0001 1010
K(32) P(2) 1111 1111 0001 1010

K(33) P(1) 1101 0000 0001 0010 Shata applied to data bus

K(33) P(2) 1101 0000 0001 0010 $(8-15). Data is code
$for JMP, so this is

K(34) P(1) 1101 0000 0001 0010 Sa prefetch,

K(34) P(2) 1101 0000 1111 1010 SEnd read cycle.
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All differences between the simulation and logic
analyzer data occur on the data bus. At phase twc of clock
cycles 2, 7, 12, 22, and 26 the logic analyzer catches the
data bus transitioning to a valid data state. There is also
a difference at phase one of clock cycle 30. Because this

cycle follows a write cycle, the data buses'return to the

high impedance state is not captured until phase two.

MOVE,.W #$5555,D]1 - ?
MOVE.W #$5555,D1 uses the immediate and data register
direct addressing modes to move the hex value 5555 into data
register D1. This is a two-word instruction that requires 10 i ’ qJ
clock cyvcles to complete its two read cycles, The four

least significant signals on the address and data bus were T

monitored during the simulation. The results were:

15-12 11-8 7~-4 3--0 (columns)
AAAA DDDD AULR DFFF (signals) DRI
4321 3210 sSDD/ TCCC .

SSwW A210 R

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle, R
K(0) P(2) 0011 1111 1111 1010 SAddress lines (12-15) . «
Sare 1006, location of -

K(1) P(1) 0011 1111 0001 1010 Simmediate data.

K(1) P(2) 0011 1111 0001 1010

K(2) P(1) 0011 1111 0001 1010 ]
K(2) P(?) 0011 1111 0001 1010 ...
K(3) P(1) 0011 0101 0001 0010 SData applied to data bus Rl
K(3) P(2) 0011 0101 0001 0010 S$(8-11). Data is 5 hex, o

Simmediate data.

4 i
4) P(2) 0011 0101 1111 1010 $End read cycle. I
K(5) P(1) 1111 1111 1111 1010 $Begin read cycle. S

VI-38 ?i*i+
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K(5) P(2) 0100 1111 1111 1010 SAddress lines (12-15)

Sare 1008, location of
K(6) P(1l) 0100 1111 0001 1010 Sinstruction being
K(6) P(2) 0100 1111 0001 1013 Sprefetched,

K(7) P(1) 0100 1111 0001 1010
K(7) P(2) 0100 1111 0001 1Cl0O

1) 0100 1100 0001 0010 Spata applied to data bus
P(2) 0100 1100 0001 0010 s$(8-11). Data is code
Sfor MOVE.W #S$5555,D1.
K(S%) P(1) 0100 1100 0OCl 0010
K(8) P(2) 0100 1100 1111 1010 SEnd read cycle,
A difference occurs at phase one of clock cycle zero
where the logic analyzer captured the address bus

transitioning to the high impedance state whereas the

simulation fully reflects high impedance. Also, at phase

one of clock cycle nine, the logic analyzer data shows a

data bus state change where one should clearly not occur,

This is certainly a typing error.

JMP_(AO)

JMP (A0) uses the register indirect addressing mode to ]
direct the MC68000 to next execute the instruction located ;:Hji
at the address pointed to by address register A0, This ]
instruction ended all instruction test routines creating a
loop in which the instruction of interest was continually i':ﬂ;
executed. JMP is a single-word instruction that requires 10 ‘ 1
clock cycles to execute its two read cycles (instruction
prefetches). The simulation and logic analyzer results were
equivalent. No address lines were monitored during the

simulation. The results were:
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IS

K(0)
K(0)

K(1)
K(1)

K(2)
K(2)

K(3)
K (3)

K(4)
K(4)

K(5)
K(5)

K(6)
K(6)

K(7)
K(7)

K(8)
K(8)

K(9)
K(9)

ADRD.W D3,D5
ADD.W D3,D5 uses the data register direct addressing

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

15-12
DDDD
7654

11-8
DDDD
3210

(columns)
(signals)

$SBegin read cycle.

Shata applied to data bus
$(8-15). Data is all ones
Sbecause this a prefetch
Sand there are no instruct-
Sions following the JMP

$ (unused memory is all 1's).

$Begin read cycle.

Shata applied to data bus
$({8~15). Data is code for
SMOVE.W D1,D2, so this is a
$fetch,

SEnd read cycle.

mode to sum the contents of data registers D3 and D5 and

then store the result in D5, It is a single-word instruction

requiring five clock cycles to execute its read cycle

(prefetch). No address lines were monitored during its

simulation.

The results were:
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15-12 11-8 7--4 3--~0 (columns)
DDDD DDDD AULR DFFF (signals)

7654 3210 SDD/ TCCC e
SSW A210 ‘
c :
K -
K(0) P(1) 1111 1111 1111 1010 $Begin read cycle. oo

K(0) P(2) 1111 1111 1111 1010 S

K(1l) P(1) 1111 1111 0001 1010
K(1l) P(2) 1111 1111 0001 1010

K(2) P(1) 1111 1111 0001 1010 o
K(2) P(2) 1111 1111 0001 1010 -

K(3) P(1) 1000 0101 0001 0010 SData applied to data bus
K(3) P(2) 1000 0101 0001 0010 S$(8~15)., Data is code for
SMOVE.W D5, (A2),
K(4) P(1) 1000 0101 0001 0010 o
K(4) P(2) 1000 0101 1111 1010 SEnd read cycle. =t

The simulation and data logic analyzer results differed

only on the data bus at phase two of clock cycle two. Here

°
L*- the logic analyzer caught the data bus transitioning to a
valid data state while the simulation maintained high

o impedance. SR

BEQ (Branch If Equal) is one of 14 variations of the

MC68000's unconditional branch instructions. If the status

register's zero condition code bit is set, then the N
program's execution will branch and continue at the location i;
identified by the label "START"; otherwise, program fr‘
execution continues with the instruction immediately
following the BEQ instruction,

Hamby and Guillory tested the instruction "BEQ $1004" f:fz
where 1004 was the address of the first substantive ;ﬁ%&
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instruction of the test routine (MOVE.W D1,D3). However, the

simulation uses the label "START" to identify the location .
of the instruction., The location of this instruction o
differed in the simulation (1000) because its test routine

did not include as its first instruction "AND.W #SDFFF,SR" oo
to initialize the status register. This was accomplished in
the ISP' initialization routine for this instruction model.
This difference did not appear in the data being compared
because the address lines were not monitored.

The simulation test routine examined processing in the
case where the branch was taken as well as when it was not.
The single-word instruction's execution time is dependent e
upon whether the branch is taken. If the branch condition i
is true, then the instruction required 12 clock cycles to %ﬁ;
complete its two read cycles; otherwise, it is completed in
nine (single read cycle). ;§§§

The CDL model contained two discrepancies. At phase LEET
two of clock cycle four, the program counter is incremented
by two with the microstatement "PC <- PCadd2". This should gi?

not occur at this point because if the branch is taken the

program counter will again be adjusted by the instruction's %??
displacement at phase one of clock cycle nine (PC <- ;i;
PCaddIR(0-7)). This could be properly handled if the ;;i
compiler is aware that the program counter will be two words %Q?
beyond the BEQ instruction at the time of the branch and f?;
computes the displacement accordingly. But to remain ;ﬁ;

k..

consistent with previous micro-operations, the program S
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counter can best be incremented at phase two of clock cycle
eight where it will be incremented only when the branch is
not taken,

The microstatement "IR <~ PFR" was added to those
occurring at phase two of clock cycle 15. At this point, the
branch has been taken and the instruction branched to has
been fetched into the prefetch register. The contents of
the prefetch register in turn must be placed in the
instruction register so that the instruction can be decoded
for execution. Alternately, since this is actually a fetch
rather than a prefetch, instead of placing the contents of
the external data buffer into the prefetch register with the
statement "PFR <- EXDBUF" at phase one of clock cycle 15,
its contents could be placed directly into the instruction
register with the statement "IR <~ EXDBUF" with equivalent
results.,

The only difference between the simulation and logic
analyzer results again occurred when the logic analyzer
caught the data bus transitioning to a valid data state at
phase two of clock cycle two and 13. The complete results

were:

Analyzer output (condition true, branch taken):

15-12 11-8 7=-=-4 3~-0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 sSDD/ TCCC

SSW A210

K(0) P(1) 1111 1111 1111 1010 SBegin read cycle,

VI-43

...............

.................................................................
...............................
......................

:

..........
o




K(0) P(2) 1111 1111 1111 1010

K(1) P(1) 1111 1111 0001 1010
K(1) P(2) 1111 1111 0001 1010

K(2) P(1) 1111 1111 0001 1010

K(2) P(2) 1111 1111 0001 1010 N
- K(3) P(1) 1101 0000 0001 0010 SData applied to data bus s
K(3) P(2) 1101 0000 0001 0010 S(8-15). Data is code e

$for JMP (AOQ). _
K(4) P(1) 1101 0000 0001 00lO e
K(4) P(2) 1101 0000 1111 1010 SEnd read cycle. N

K(9) P(1l) 1111 1111 1111 1010 SData bus (8-15)
K(9) P(2) 1111 1111 1111 1010 Sgoes high,

K(10) P(1) 1111 1111 1111 1010

K(10) P(2) 1111 1111 1111 1010

K(11l) P(1) 1111 1111 0001 1010 $Begin read cycle.
K(1l) P(2) 1111 1111 0001 1010

K(1l2) P(1) 1111 1111 0001 1010
K(l2) P(2) 1111 1111 0001 1010

K(13) P(1) 1111 1111 0001l 1010
K(13) P(2) 1111 1111 0001 1010

4 o
@ R(14) P(1) 0000 0001 0001 0010 S$bhata applied to data bus Rk
K(14) P(2) 0000 0001 0001 0010 S(8-15). Data is code for
SMOVE.W D1,D3, so this is a
K(15) P(1l) 0000 0001 0001 0010 Sfetch. Lo
K(15) P(2) 0000 0001 1111 1010 SEnd read cycle. ?Qt
| ——
Analyzer output (condition false, branch not taken): T
15-12 11-8 7--4 3--0 (columns) R
DDDD DDDD AULR DFFF (signals) RO
7654 3210 SDD/ TCCC T
SSW A2l10 .o
o -
K

K{(0) P(1) 1111 1111 1111 1010 S$SBegin read cycle.
K(0) P(2) 1111 1111 1111 1010

K(1l) P(1l) 1111 1111 0001 1010
K(1) P(2) 1111 1111 0001 1010

- K(2)-P(l) 1111 1111 0001 1010
- K(2) P(2) 1111 1111 0001 1010

K(3) P(1) 0000 0010 0001 0010 SData applied to data bus
K(3) P(2) 0000 0010 0001 0010 $(8~15). Data is code
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Sfor MOVE.W D2,D3.

K(4) P(1) 0000 0010 0001 0010 )

K(4) P(2) 0000 0010 1111 1010 S$SEnd read cycle.

K(5) P(1) 1111 1111 1111 1010 SbData bus (8-15)

K(5) P(2) 1111 1111 1111 1010 Sgoes high,

R(6) P(1l) 1111 1111 1111 1010

K(6) P(2) 1111 1111 1111 1010

K(7) P(1) 1111 1111 1111 1010

K(7) P(2) 1111 1111 1111 1010

K(8) P(1l) 1111 1111 1111 1010

K(8) P(2) 1111 1111 1111 1010 SEnd BEQ.
BIST D1, (Al)

The BTST D1, (Al) instruction will direct the MC68000 to
retrieve a byte from the memory location specified by
address register Al and then test the bit identified by the
contents of data register Dl1. If the selected bit is zero,
then the status register's zero condition code bit (Z) is
set; it is otherwise cleared. This single-word instruction
reguired 10 clock cycles to execute its two read cycles. No
address signals were monitored during the simulation. The

results were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 Spp/ TCCC

SSW A210

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle,
K(0) P(2) 1111 1111 1111 1010

K(1l) P(1) 1111 1111 0001 1010
K(1) P(2) 1111 1111 0001 1010

K(2) pP(1) 1111 1111 0001 1010
K(2) P(2) 1111 1111 0001 1010

-
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K(3) P(1) 0000 0ClO
K(3) P(2) 0000 0010
K(4) P(1) 0000 o0O0lO0
K(4) P(2) 0000 0010

K(5) P(1) 1111 1111
K(5) P(2) 1111 1111

K(6) P(1) 1111 1111
K(6) P(2) 1111 1111
K(7) P(1) 1111 1111
R(7) P(2) 1111 1111
K(8) P(1) 0101 0101
K(8) P(2) 0101 0101
K(S) P(1) 0101 o0l01
K(®) P(2) 0101 o01C1

The simulation and logic analyzer results differed on
the data bus at phase two of clock cycle two. Again, the
logic analyzer caught the bus transitioning to a valid data

state while the simulation maintained high impedance.

0001
0001

0001
1111

1111
1111

0101
0101

0101
0101

0101
0101

0101
1111

0010
0010

0010
1010

1010
1001

1001
1001

1001
1001

0001
0001

0001
1001

I1legal . .

The Illegal instruction
an illegal instruction exception sequence, During this A
sequence, the status register is copied, the supervisor |
state entered, and the trace state turned off. A vector
number is generated to refer to the illegal instruction
vector., The current program counter (address of illegal

instruction) and a copy of the status register are saved on

the supervisor stack.

Processing resumes at the address

(4AFC) allows the user to force

SData applied to data bus
$(8~15). Data is code
Sfor MOVE.W D2,D3 so this
$is a prefetch.

SEnd read cycle.

$Begin read cycle,

SUDS' (6) not asserted
$so only the low byte
Sis read from memory.

Sbata applied to data bus
$(8-15). Data is 55 hex.

SEnd read cycle,

, r ,,.‘ ‘

Rk S

contained in the exception vector (11:66).

During the execution of a MC68000 instruction, the Zlfﬁ3

program counter points to the next instruction so that it is
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in position for the current instruction's prefetch cycle.
Therefore, during the model transformation process, the CDL
microstatement "PC <- PCsub4" at phase two of clock cycle
one was changed to "PC = PC - 2" in its ISP' counterpart in
order to accurately locate the address of the illegal
instruction.

For this instruction, address lines Al-A4 were
monitored along with the lower eight data bus lines D0-D7 to

facilitate data bus analysis. The simulation results were:

19-16 15-12 11-8 7--4 3--0 (columns)
AAAR DDDD DDDD AULR DFFF (signals)
4321 7654 3210 SpD/ TCCC

K(0) P(1) 1111 1111 1111 1111 1010 SK(0) thru K(4) is a
K(0) P(2) 0110 1111 1111 1111 1010 Sread cycle just like

Sthe one described
K(l) P(1) 0110 1111 1111 0001 1010 Sfor the MOVE.W Dn,Dn
K(1l) P(2) 0110 1111 1111 0001 1010 Sinstruction.

2) P(1) 0110 1111 1111 0001 1010
2) P(2) 0110 1111 1111 0001 1010

3) P(1) 0110 0000 0001 0001 0010 SData (8-15) is
3) P(2) 0110 0000 0001 0001 0010 Scode for
Sfor MOVE.W D1,D2.

K(4) P(1) 0110 0000 0001 0001 0010

K(4) P(2) 0110 0000 0001 1111 1010 SEnd read cycle

K(5) P(1) 0110 1111 1111 1111 1010 Spata Bus (8-15)

K(5) P(2) 1111 1111 1111 1111 1010 Sand address bus
$(16-19) go high.

RK(6) P(1) 1111 1111 1111 1111 1010

K(6) P(2) 1111 1111 1111 1111 1010

K(7) P(1) 1111 1111 1111 1111 1010

K(7) P(2) 1111 1111 1111 1111 1010

K(&) P(1) 1111 1111 1111 1111 1010

K(8) P(2) 1111 1111 1111 1111 1010
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K(9)
K(9)

K(10)

R(10)

K{1l1l)
K(1l)

K(12)
K(11)

R(12)
K(12)

K(13)
K(13)

K(14)
K(14)

K(15)
K(15)

K(16)
K(16)

K(17)
K(16)

K(17)
K(17)

=R
——
[ =)
o0 m
Nt St

K(19)
K(19)

K(20)
K(20)

K(21)
K(21)

K(22)
K(21)

K(22)

P(1l)
P(2)

P(1)

P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1l)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)
P(2)

P(1)

o
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1111
0010

0010

0010

0010
0010

0010
0010

0010
0010

0010
0010

1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
0000

1111
0001

0001
0001

0001
0001

0001
0001

0001

B

1111
1111

1111

0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
1111

1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
1111

1111
0000

0000
0000

0000
0000

0000

----------

1111
1111

1111

1010

1010
1010

1010
1010

1010
1010

1010
1010

1010
1111

1111
0100

0100
0100

0100
0100

0100
0100

0100
0100

0100
1111

1111
0000

0000
0000

0000
0000

0000

1111
1111

0110

0110

0000
0000

0000
0000

0000
0000

0000
1110

1111
1111

0110
0110

0000
0000

0000
0000

0000
0000

0000
1110

1111
1111

0110
0110

0000
0000

0000
0000

0000

1010
1101

1101

1101

1101
1101

1101
1101

0101
0101

0101
1101

1101
1101

1101
1101

1101
1101

1101
1101

0101
0101

0l01
1101

1101
1101

1101
1101

1101
1101

1101
1101

0101

$Begin a write cycle
$just like the one
Sdescribed for the
SMOVE.W Dn, (An)
$instruction, except
$for function codes
sand data. Function
Scode (0-2) is
Ssupervisor data
Smode.

$Dhata (8~15) is low
Sword of the PC.

$End Write Cycle.

S$Begin write cycle
$just like preceding
Sone except for data.

$Data (8-15) is SR
Scontents.

$End write cycle.

SBegin write cycle
Sjust like preceding
Sone except for data.

$bata (8-15) is high
Sword of PC.




0001

0001
0001

1111
1000

1000
1000

1000
1000

1000
1000

1000
1000

1111
1001

1001
1001

1001
1001

1001
1001

1001
1001

1001
0001

0001
0001

0001
0001

0001
0001

0001
0001

1111
1111

00060

0000
0000

0000
1111

1111
1111

1111
1111

0000
0000

0000
0000

1111
1111

1111
1111

1111
1111

0000
0000

0000
0000

1111
1111

1111
1111

1111
1111

0111
0111

0111
0111

1111
1111

0000

0000
0000

0000
1111

1111
1111

1111
1111

0000
0000

0000
0000

1111
1111

1111
1111

1111
1111

0010

0010

0010
0010

1111
1111

1111
1111

1111
1111

0011
0011

0011
0011

1111
1111

0000

0000
1110

1111
1111

0001
0001

0001
0001

0001
0001

0001
1111

1111
1111

0001
0001

0001
0001

0001
0001

0001
1111

1111
1111

0001
0001

0001
0001

0001
0001

0001
0001

1111
1111

VI-49

0101

0101
1101

1101
1101

1101
1101

1101
1101

0101
0101

0101
1101

1101
1101

1101
1101

1101
1101

0101
0101

0101
1101

1101
1110

1110
1110

1110
1110

0110
0110

0110
0110

1110
1110

% LA S Al St Sl e s S Sl

SEnd write cycle.

$Begin read cycle
$just like above
Sexcept data and
$function codes.

Sbata (8-15) is high
$Sword of the address
Sof the exception
Shandler routine,
SEnd read cycle.

$Begin read cycle
Sjust like
Spreceding one
Sexcept for data.

Shata (8-15) is low
Sword of address of
Sexception handler
Sroutine.

$End read cycle.

SK(34) thru K(38) is
Sa read cycle just
$like preceding one
Sexcept data and
$function codes.
SFunction code (0~2)
Ssupervisor program
Smode.

$Data (8-15) is
Sreturn from
Sexception used as
Sexception handler
Sroutine

S$End read cycle,.

Sbata bus (8-15)
Sand address bus
$go high.
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K(40) P{1) 1111 1111 1111 1111 1110 v
K(40) P(2) 1111 1111 1111 1111 1110 SEnd exception
Sprocessing
1
Per the introductory discussion regarding the high ﬁ?fj
4

impedance state of the address bus, at phase one of any new
cycle, differences occur on ABUS whenever it is changing to
the high impedance state. These take place at phase one of
clock cycles 5, 14, 19, 24, 29, 34, and 39, Contrary to the
earlier discussion regarding the high impedance state of the
data bus, there are no differences on the data bus at phase
one of those cycles that follow & write cycle. The logic
analyzer's inability to capture its true state was
anticipated and the instruction was moc-led so that the data
bus appears to return to the high impedance state during
phase two.

Because the contents of the system stack pointer is
repeatedly decremented and placed on the address bus during
this sequence, its initial contents should be known in order
to accurately describe the value on the data bus at all
times. The ECB initializes the system stack pointer

(SYSTACK) with the wvalue 0786.

Address Error Exception

An address exeception sequence is initiated whenever
the 68000 attempts to fetch a word or longword operand from
an odd address. Whenever this occurs, the current bus cycle
is aborted, the processor terminates current processing and
begins a 60-clock cycle exception sequence that includes

four read and seven write cycles,
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move a word from data register D1 to an odd memory location
with the instruction "MOVE.W D1, (RAl)" (Al was initialized to

2001) . The address bus is not monitored during the execution

of this instruction,

15-12
DDDD
7654

11-8
DDDD
3210

The simulation results were:

The odd address error was generated by attempting to

(columns)
(signals)

$Begin read cycle,

SData applied to data bus
$(8-15), Data is code for
SNOP, so this is a
Sprefetch.

SEnd read cycle.

$Begin a write cycle.

SData put on data bus 2
$(8-15)., data is 55 hex, =
$data being moved. A

SWrite cycle terminated T
Sbecause of address error, T
$bata bus (8-15) goes NG
Shigh. IR




K(18)

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
1111

1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1111

1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

0110
0110

0000
0000

0000
0000

0000
0000

0000
1110

1111
1111

0110
0110

0000
0000

0000
0000

0000
0000

0000
1110

1111

Ry

1001
1001

1001
1001

1001
1001

1001
1001

1001
1001

1001
1101

1101
1101

1101
1101

1101
1101

0101
0101

0101
1101

1101
1101

1101
1101

1101
1101

1101
1101

0101
0101

0101
1101

1101

SBegin write cycle
SFunction codes (0-2)
Schange to supervisor
$data mode.

S$Shata put on data bus
$(8-15). Data is low
sword of PC.

SEnd write cycle,

$Begin write cycle,

Sbata put on data bus
$(8-15). Data is SR
Scontents.

SEnd write cycle,

$Begin write cycle,
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K(33)
K(33)

K(34)
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1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
1111

1111
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1111

1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
1111

1111

1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
1111

1111
0001

0001
0001

0001
0001

0001
0001

0001
0001

0001
1111

1111
0001

0001
0001

0001
0001

0001
0001

0001
0001

0001
1111

1111

0110
0110

0000
0000

0000
0000

0000
0000

0000
1110

1111
1111

0110
0110

0000
0000

0000
0000

0000
0000

0000
1110

1111
1111

0110
0110

0000
0000

0000
0000

0000
0000

0000
1110

1111
1111

0110

1101
1101

1101
1101

1101
1101

0101
0101

0101
1101

1101
1101

1101
1101

1101
1101

1101
1101

0101
0101

0101
1101

1010
1101

1101
1101

1101
1101

1101
1101

0101
0101

0101
1101

1101
1101

1101

Shata put on data bus
$(8~15). Data is high
Sword of PC.

SEnd write cycle,

$Begin write cycle

$Data put on data bus
$(8-15), Data is code
Sfor instruction being
Sexecuted when interrupt
Soccurred,

SEnd write cycle,

$Begin a write cycle.

Shata put on data bus
$(8-15). Data is low
Sword of memory being *
Sused when interrupt
Soccurred.

SEnd Write Cycle,

$Begin write cycle.
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K(48)
K(48)

K(49)
K(49)

K(50)
K(50)
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N

N = N =
e it

0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
i1l

1111
0000

0000
0000

0000
0000

0000
0000

0000
0000

0000
1111

1111
1111

1111
1111

0000
0000

0000
0000

1111
1111

1111
1111

1111
1111

. e e

0110

0000
0000

0000
c000

0000
0000

0000
1110

1111
1111

0110
0110

0000
0000

0000
0000

0000
0000

0000
1110

1111
1111

0001
0001

0001
0001

0001
0001

0001
1111

1111
1111

0001
0001

0001
0001

1101

1101
1101

1101
1101

0101
0101

0101
1101

1101
1101

1101
1101

1101
1101

1101
1101

0101
0101

0101
1101

1101

1101

1101
1101

1101
1101

0101
0101

0101
1101

1101 $Begin read cycle,

1101

1101
1101

1101
1101

VI-54
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SData put on data bus
$(8~15). Data is cycle
(R/W) and function
$codes when interrupt
Soccurred.

SEnd write cycle.

S$SBegin write cycle,

Shata put on data bus
$(8~15)., Data is high
$word of memory being
Sused when interrupt
Soccurred.

SEnd write cycle.

S$Begin read cycle.

Shata applied to data bus
$(8~15). Data is high

Sword of address of
Sexception handler routine.
SEnd read cycle.
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K(51) P(1) 0100 0000 0001 0101 SData applied to data bus
K(51) P(2) 0100 0000 0001 0101 $(8-15), Data is low

Sword of address of -
K(52) P(1) 0100 0000 0001 Cl01 Sexception handler routine. S
K(52) P(2) 0100 0000 1111 1101 $End read cycle.

"o
R
e
L

(1) 1111 1111 1111 1101 S$Begin read cycle. N
2) 1111 1111 1111 1110 SFunction codes (0-2) A
Schange to supervisor N

X
2

K(54) P(1) 1111 1111 0001 1110 Sprogram mode,
K(54) P(2) 1111 1111 0001 1110
K(55) P(1) 1111 1111 0001 1110
K(55) P(2) 1111 1111 0001 1110
RK(56) P(1) 1000 1111 0001 0110 SDhata applied to data bus .- o-
K(56) P(2) 1000 1111 0001 0110 S$(8-15). Data is code for :
Sfirst instruction of
K(57) P(1) 1000 1111 0001 0110 Sexception handler routine.
K(57) P(2) 1000 1111 1111 1110 SEnd read cycle.
K(58) P(1) 1111 1111 1111 1110 $Data bus goes high. =
K(58) P(2) 1111 1111 1111 1110 ERR
K(59) P(1) 1111 1111 1111 1110
K(59) P(2) 1111 1111 1111 1110 SEnd exception
Sprocessing
The initial difference between the simulation and logic
analyzer results begins at phase two of the second clock igf
cvcle 15 (wait state) and continues through phase two of ?V
clock cycle 17. During this time period, the logic analyzer ﬁ;_
data shows the data bus at state "0001 0000" while the o
simulation indicates state "0000 0000". This is the write 20
cycle that saves the contents of the status register at the :
time the illegal address reference was made. The state .
represented by the logic analyzer data is inaccurate, €
The state of the status register at the time of the Iﬁ”ﬁ
address error was zero because only the supervisor mode bit Ifi:
G
- {bit 13) -was addressed during the test routine, and it was ::;
:'_-\.
set to zero by the "AND.W #SDFFF,SR" instruction to place fﬁi
a,

SR

.
l'./lJ
RPN

’
hY
PN
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the 68000 in the user mode. The four condition code bits,
interrupt mask, or trace bit were not altered from their
original low states. The SR is placed on the data bus at .

phase two of clock cycle 14 and should remain there for the Lﬁ{ﬁ

duration of the write cycle (phase two .0of clock cycle 17).

This information, along with the fact that the logic o
analyzer result could not be duplicated, suggests that this .
; is a consistent typing error.

bﬁ Another difference begins at phase two of clock cycle
34 and continues through phase 2 of clock cycle 37. Here the
& logic analyzer data depicts the data bus at state "1000

: 0001" while the simulation indicates "0000 0001", This data %;;

represents the type of memory access that was attempted at o

the time of the exception: information such as whether it
was a read or write, whether the processor was processing an Ce
instruction or not, and the state of the function code

outputs when the address error occured (11:67). The format

ot

of the access type is depicted in Figure VI-4, e
1514 13 1211109 & 7 6 5 4 3 2 1 0 S
= /W1 /HFCZRC RO ARRS
Figure VI-4, Memory Access Type (11:68) T
Neither Figure VI-4 nor any of the other available _;32
OO

documentation indicate that bit seven is used by the 68000, i
Because this analyzer output was duplicated, it appears this ﬁ;“
VI-56 ::‘t:'
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portion of the address error exeception cannot be accurately

modeled without additional documentation,

The format of the memory access type also revealed an _
error in the CDL model for this instruction. At phase one ;ﬁ;
of clock cycle eight, the microstatement "ACTYPE(3) <- Egé
EXCEPT" was changed to "ACTYPE<3> = lo" in the ISP' e

version., This bit indicates whether the 68000 was ;?
processing an instruction at the time of the exception or r~
not (instruction = 0, not = 1) (11:68). Because EXCEPT was AR
in a high state, assigning it to ACTYPE(3) would incorrectly ;iA

indicate that the 68000 was not processing an instruction at ;i

the time of the exception. : 

At phase two of clock cycle 23, this instruction's CDL
model contains the microstatement "IDBUS <- IR", The =
@ objective is to save the instruction causing the address |
exception (11:67). Bowever, since the instruction that erred

was placed in a temporary instruction register at phase two iife
[ of clock cycle seven with the microstatement "IRTEMP <- IR", %ﬁz
- and then IR was reused at phase two of clock cycle eight, gi&
the saving microstatement will not achieve the desired iﬁa
results. It was instead replaced with the microstatement 55?
"IDBUS = IRTEMP" in the ISP' version,
The simulation's data bus also differs from the logic g&;
analyzer's results at phase two of clock cycles 45 and 55, %ﬁj
The simulation indicates a high impedance state (illl 1111) EE;
and logic analyzer data shows "1011 1111", Similar to the Siﬁ
simulation of the MOVE.W D1, 04(Al) instruction, the logic %ﬁf
VI-57
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analyzer appears to have caught the data bus in transition
because the differences occur when the memory is placing
data on the bus during read cycles. The ISP' model for this
instruction also anticipated the delay in showing the data

bus at the high impedance state following write cycles.
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VII. Conclusions and Recommendations

Introduction

This thesis was a follow-on effort to another project
whose objective was to develop a functional model of the
Motorola MC68000 that was capable of being simulated. The
model was to be constructed through signal analysis
supported only by technical data normally provided to a
retail purchaser of the system (8:I-€,7). The natural
objective of this succeeding project was to simulate the
models that were developed using that approach, analyze the
results, and then draw conclusions regarding its viability
based on the accuracy and completeness of the models. This
chapter will present the conclusions resulting from this
study, as well as suggest further areas of research that may
broaden the conclusions reached regarding this innovative

method of microprocessor modeling and simulation,

Conclusions

The completeness and accuracy of the models developed
by Hamby and Guillory demonstrate that the MC68000 can be
modeled at the functional level through signal analysis
supported by technical literature available to the public.
The state of the MC68000 was accurately depicted at each
clock cycle when executing a variety of instructions and
exception sequences. Only the dynamics of the address and

data buses during transitional periods prevent the state of

VIii-l
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each of the MC68000's signals from being totally iffa
deterministic for every clock cycle. Even when the state of :;;3
the bus is otherwise deterministic, the lack of

sophistication of the monitoring equipment sometimes

prevented it from being accurately captured. But because

these indeterminate states occur at cycles which are of no
functional consequence to correct processor operation, they
can be ignored in terms of their impact on the accuracy of
the model. ‘{;yﬂ
Based on the mix of instructions, exceptions, and L
addressing modes modeled, it appears that there would be no
difficulty in modeling the complete set of MC68000
instructions and exception processing states. This

conclusion can reasonably be extended to include other

processors whose architectural complexity does not exceed

L P

[ )

the MC68000's. However, no definite conclusions can be

- A'..l
PP SN

.

) ¥,

.« o a
LN}
v

l.‘.'-1.
relelere

I}I,'I
)

reached regarding the effectiveness of this modeling

r‘
b

approach on other processors with more complex architectures
or sophisticated implementation techniques. Even some
architectures less sophisticated than the MC68000 may prove
more troublesome to model with this approach., For example,
the 16-bit Intel 8088 multiplexes a subset of its 20 address
lines to support eight-bit data transfers. This may hamper
this modeling approach by making the process of capturing,
distinguishing, and interpreting the address and data
signals much more difficult,

Some of the more sophisticated 32-bit architectures
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' employing extensive parallelism and pipelining may prove to
- be even much more challenging. A good example is the latest
!' version of the MC68000 family of microprocessors, the
- MC68020. The MC68020 maintains a 256-byte-on-chip
:; instruction cache. This capability removes the instruction
'l stream from the data bus making instruction identification
more difficult as they are executing. This cache

- implementation also aliows simultaneous instruction and data
*I accesses to occur hiding the execution of some

< microinstructions from the observer. The technical data

necessary to accurately model the processor's management of

the instruction cache may also be difficult to obtain. The

algorithms employed to initialize the cache, update both it

and main memory during writes, and reload the cache during

0

misses would be difficult to discern from signal analysis
alone. Further increasing the difficulty of employing this

modeling approach on the MC68020 is the fact that the

instruction pipeline has been increased from two to three
words thereby allowing three instructions to concurrently
undergo the process of decoding and execution.

Another processor with an imposing architecture that

may be extremely difficult to model with this approach is

Intel's iAPX 432, The iAPX 432 is actually a three-chip set L

with each packaged in a 64-pin quad in-line package (QUIP). Y
RNy

Two of the chips combine to form the General Data Processor AN
[N

(GDP): the iAPX 43201 (instruction decode unit) and the iAPX

43202 (instruction execution unit). These two chips
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communicate across a microinstruction bus to fetch, decode,

and execute program instructions. A third chip, the iAPX
43203 interface processor coordinates all I/0 between
peripherals and memory. An attached processor such as the
Intel 8086 is used in conjunction with the iAPX 43203 to
form an 1/0 processor unit for the iAPX 432 system. The
iAPX 43203 communicates with the attached processor via a
subsystem bus and with the GDP using a "packet" bus., The
packet bus uses data packets that vary from one to sixteen
bytes in length to provide communications between the GDP,
memory, and interface processor. The number of chips,
buses, and signals comprising the iAPX 432 system, coupled

with the packeting of bus information would certainly make

_the task of modeling the iAPX using the approach under study

very difficult, if not impossible,

The complexity of ihe instruction set also becomes an
issue when considering a high-level-language architecture
such as the iAPX 432, The iAPX 432 has 230 instructions with
lengths that vary from six to 344 bits, Each of the
instruction fields are also bit-variable and can encase up
to six operands. Instructions such as "CREATE-DATA-SEGMENT"
may consist of hundreds of microoperations requiring a
significant number of clock cycles to execute. The
identification of both macro and microinstructions embedded
in packets transmitted over multiple buses for an extended

number of clock cycles will require extensive and detailed

technical data supported by several sophisticated monitoring
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devices.

A point that should be made is that even though it may

be extremely difficult to gather the data necessary to model

a system such as the iAPX 432 using this approach, there

certainly would be no difficulty in coding and simulating

I the model using N.mPc. One of N.mPc's strong suits is its
ability to describe and simulate networked multiple
microprocessor systems such as the iAPX 432, Each of the

I iAPX 432's three processors, its supporting memory, and the

attached processor could be independently modeled and linked

through a description of their multiple connecting bus

structures to form a simulatable sYstem from which

operational performance data could be gathered.

i (e Recommendations

. 1. Model other microprocessors.using this approach to
determine which architectural implementations lend

i themselves to this modeling method. Architectural designs

. or implementation techniques forming barriers to this
approach could then be identified and documented. An upper

; bound in terms of architectural complexity that can be
modeled with confidence using this approach could be

established. Some candidates in order of their increasing

) complexity are the aforementioned microprocessors; the Intel

8088, the MC68020, and the Intel iAPX 432.
2. Develop a generalized and optimized model of the
) MC68000 with N.mPc. By conforming with the CDL originals,

the current ISP' models became too primitive and
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specialized. Each instruction was independently modeled to
process specific operands for a particular addressing mode.

' Each contained its own internal memory and timing signals.
Not only does such an arrangement not represent the real
world environment, but to model the MC68000's complete set

‘ of instructions in all of their addressing modes would have
required over 1000 models averaging 50 kbytes in length
each. This number would escalate greatly if each

! instruction were not assumed to receive a generalized

| operand set. A complete model of the MC68000 that

consolidates instructicn models of this type is .obviously

out of the question. A more practical approach is to

discard the previous model structure and adopt a more

general composition that will enable the researcher to take
T

advantage of the capabilities of a nonprecedural language
such as ISP' and its host system, N.mPc,

Generalized routines to model multiple instructions in
each of their addressing modes and accept any of their
legitimate operands could easily be developed to minimize
- the model size while maximizing its ability to completely -
describe the MC68000. For example, the fourteen models
developed during this project to represent variations of the

. "MOVE" instruction could be consolidated into a single

procedure that received its operands, the data size, and its

LU

addressing modes as parameters., It would itself make calls

to general lower-level routines as necessary to accomplish

RERt X LAY

the microinstructions associated with a particular
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variation. The memory and two-phase clocking signals could
be modeled as independent system entities that communicate
with the MC68000 over a system bus. Such a representation
would afford an opportunity to model, simulate, and analyze

the MC68000 at a level of detail not heretcfore achieved,
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- VIII, Analysis of Time Spent on Project

Introduction

One of the regquirements of this thesis was to maintain

TR Y

il o O o

a detailed log of all time spent on the project. This

i .""
.

chapter presents an analysis of that time log.

Summary of Time

Project time was spent as follows:

1. Background Research and Project Preparation 18 hrs

- Identifying Research Objectives

Performing Literature Search

Reviewing Texts and Articles

Studying Predecessor Thesis

T

Formulating Research Approach

2. N.mPc Installation and Familiarization 91 hrs

Installing, Configuring, and Testing System

Generating System Documentation

N.mPc¢ Familiarization

3. MC68000, ECB, and Logic Analyzer Familiarization 25 hrs
- Reviewing Texts, Articles, and Technical
Documentation
- Programming ECB
- Operating Logic Analyzer
4. CDL-to-ISP' Model Transformations 58 hrs

- CDL and 1ISP' Familiarization

l' Pid
’

- Formulating Transformation Methodology

LN
.l. l. "
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- Coding ISP' Models D

5. Simulate Models 60 hrs S
.=' Tt e

- Develop Simulation Strategy A

- Building Individual Instruction Simulations

- Running Simulations

- Testing and Debugging Simulations e

- Generating Simulation Hardcopies

6. Simulation Analysis 42 hrs
- Reviewing Simulation Data
- Reviewing Logic Analyzer Data

- Re-examining MC68000 Operation

P

Correcting Model Discrepancies_

7. Thesis Preparation 418 hrs
- Writing
- Typing
- Editing

- Printing

Bamby and Guillory speculated in their thesis that it

would require a team of two people approximately six months

to test and model the entire MC68000 processor using this
approach (8:VII-2,3)., I further recommend that one of the
team members be "software-oriented"™ to facilitate the

development of a generalized model as recommended in Chapter Ef“;]
VII. Such a model will reguire someone experienced in the
areas of software engineering, modular programming, etc. %iff‘
Accepting their estimate, this team configuration will allow {?y,

the development and simulation of a generalized and R
\
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