
-164 203 THE SIPIULT1N AND ANALYSIS OF A RTL MODEL OF THE 1,02
MOTOROLA MC6S0SS MICROP.. CU) AIR FORCE INST OF TECH
HRIGHT-PATTERSON RFD OH SCHOOL OF ENGI.. C A BAXLEY

UNLSIIDDEC 84 RFIT/OCS/ENO/84D-2-YOL-L F/0 9/2 ML

W-W-

4

.. 2

MICROCOPY RESOLUTION TEST CHART _.-

,a''

P"P ' F' -r) ,-n 1,l

III,.*
mI.-7

L..L-1211-11

-.,> -. , - . " . "-,,. ...". , , - - "-., . ',. ., . .-:-''*.- •.',.11,1'111.-...-,'''-,-1''''.-.' L" ,- -'''

DI

(0)F

.2!!IBUION STATEMP.NT

LA4 Approved for Public islea..
Ditibution Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

I -~WW - .W . -- ps- ..w J**~'

DTIC
L.LECTE
FEB 1 3 1986L1

-. D

* THIE SIMULATION AN'D ANALYS1.S OP A RTI
MODEL OF THE MOTOROLA 14IC68000

MICROIPhOCESSOR WI1TH N.MPC .1

(I of 3)

Charles A-. Baxley Jr.
Captain, USAF'

AFAIT/GCS/ENG/84D-2 tV>4 - L'

A. .

"pro frpu icr:eic'; i:ti btio niiitc

S . ,

AFIT/GCS/ENG/84D-2 /

THE SIMULATION AND ANALYSIS OF A RTL MODEL OF THE4

MOTOROLA MC68000 MICROPROCESSOR WITH N.MPC

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Accesion For

NIS CAt
LjTIC TAo

NI AIitCoe

Dist Av0 L~do

.........

Preface

With the increasing complexity of today's

microprocessors, gate level analysis and testing is no

longer practical. In addition, since the Air Force is now

using off-the-shelf microprocessors, manufacturing details

are not always available. In an earlier thesis, Captain

James Hamby and Lt Galen Guillory presented a method for

analyzing and modeling these new microprocessors at the

functional level without using manufacturing information.

In this follow-on thesis, I document the simulation of those
LI

microprocessor models developed by Hamby and Guillory and

present an evaluation of their modeling approach based on

the results.. I selected this topic because it provided an

opportunity to apply much of the course material taken while

at AFIT, it introduced me to new areas in the field of

computer architecture, and it enabled me to examine a valid

problem facing today's Air Force.

I would like to extend my sincere appreciation to my

Thesis Advisor, Major Fred Zapka, who provided me with d

first-rate guidance whenever the direction of my work became

clouded with technical and administrative problems. Without

his expert instruction and consistent enthusiasm, I would

certainly have fallen short of the major objectives of this

work and the quality of this report would have diminished

substantially. I would also like to thank my Thesis Reader,

Lt Col Hal Carter, for his support; particularly for

ii
-.- i!iK4

- -~~ *~ -..-...-.--. *.. . -.-..

acquiring the simulation package that made this work

possible and assisting in its installation. I also thank

Major Ken Melendez of the Foreign Technology Division (FTD)

for his support as the sponsor of this project and hope that

my work has been beneficial to FTD. Finallv, I would like to

thank my wife, Lois, and my son, Allen, for their endless

patience, understanding, and support during those many hours

we were separated by this work.

I.-

.

Contents

(Volume I)

page

I. Introduction I-1

NBackground.. I-1
Problem 1-
Scope.......................1-4
Assumptions1-5

Summary of Curn9nweg............-
Approach 1-6

overview of Presentation.......................... 1-8

I. Requirements....................................... 11-1

Introduction II-1

N.mPc Installation........................ I-
Model Transformation.............................. 11-2
Simulation Strategy 11-3
Simulation Analysis............................... 11-4
Detailed Time Log......................... 1-

III. Intro to the Motorola MC68000 Microprocessor111-1

Introduction III-l
MC68000 Introduction............................. III-1
Signal Description 111-2

r.Register Organization........................... 111-5
System Architecture 111-8
Data Types and Organization111-11
Addressing Modes111-13
Instruction Set 111-16

IV. Introduction to N.mPc IV-l

Introduc tion............................ IV-l
ISPI I-

Metamicro IV-8
Linking/Loader......... * IV-13
Ecologist 0............IV-17
Simulated Memory Processor (SMP) IV-20

Local System Access V2

V. CDL-to-ISP' Model Transformation *.V-i

i v

* -CDL/ISP' Comparison............................ V-2
Effects of Language Differences V-ll
Registers V-12 -
Subregisters V-13
Buses V-13
Decoders V-13
Clock V-15
Clock & Clock-Cycle Counter Representation ..V-18 -
Switch V-21

Model Changes V-21
Memory Responses V-21
EXABUF Size V-24
ABUS Utilization V-24
Memory Declaration V-25
High Impedance Representation V-25
Power-On Sequence V-26

Additional Simulation Components V-26
Program Loader V-27
MC68000 Assembler V-27

VI. Simulation Analysis VI-I

Introduction.................................. \I-l
Analysis Results VI-2
High Impedance State VI-3

Data Bus v VI-4
Address Bus VI-8

Individual Instruction Simulation ResultsVI-10
MOVE.W Dl,D2 VI-12
MOVE.W Dl ,(Al) VI-13
MOVE.L Dl,AI VI-15

MOVE.W7 D,04 (Al) VI-19
MOVE.W Dl,04 (AI) ...D7) VI-21
MOVE.W Dl, $2004 VI-23
MOVE.W Al,D3 VI-25
MOVE. W (Al) ,D2 VI-26
MOVE.W (Al)-+,D6 % VI-27
MOVE.W -(Al) ,D4 VI-28
MOVE.W 04(Al),Dl VI-30
MOVE.W 04(Al ,D7) ,D2 .V.I. VI-32
MOVE.W $2004,D5 e.-VI-34
MOVE.W $2004,$2008 VI-35
MOVE.W #$5555,Dl VI-38
JMP (AO) I...... I-39
ADD.W D3,D5 VI-40
BEQ START VI-41
BTST D1 (AI)VI-45

Illegal Instruction Exception VI-46 ,
Address Error Exception VI-50

VII. Conclusions and Recommendations VII-.

v

.-..-- ...-....-.-.-.- . . .

:retroductionTii-1
Conclusions \TII-l
Recommendations vlr

VIII. Analysis of Time Spent on Project............... VIII-l

Introduction................................... VIII-l

Summary of Time................................ VI 11-1

Bibliography... BIB-l

(Volume II)

Appendix A: Local N.mPc Supplement....................... A-1

Appendix B: CDL/ISPI Declaration Sections................ B-1

App~endix C: IS?' Models of M~C68000 Instructions..........C-1

Appendix D: MC68000 Metamicro Description................ D-1

Appendix E: MC68000 Linking/Loader Description...........E-1

Appendix F: Test Routines (Metamicro) F-

~..Appendix G: Simulation Control Files..................... G-l

(Volume III)

Appendix H: Simulation Output............................ H-1

AppendixI: MC68000 CDL Models...........................1I-1

Appendix J: Logic Analyzer Data.............. J-l

Appendix K: ISP' Model of the RISC 1 K-1

Appendix L: Metamicro Description of the RISC 1 L-1

Vita............................. VITA-l

vi

List of Figures

Figure Page

III-! MC68000 Pin-Out Diagram 111-3

111-2 Input and Output Signals 111-4

111-3 Register Orc .ization 111-6

111-4 Instruction Cache 111-8

111-5 MC68000 Architecture III-10

111-6 Data Organization In Memory III-l1

111-7 Memory Word Organization III-13

111-8 Addressing Modes 111-14

111-9 Instruction Format 111-16

III-10 MC68000 Instruction Set 111-18

IV-I N.mPc Block Diagram IV-4

IV-2 Example Metamicro Description IV-9

IV-3 Linking/Loader Command Program IV-14

IV-4 Motorola MC68000 Topology File IV-20

VI-1 Logic Analyzer Sampling Points VI-5

VI-2 Data Bus High Impedance Timing VI-6

VI-3 High Impedance on Address Bus VI-9

VI-4 Memory Access Type VI-56

vii:

7

? - - - - - - - - --..

Abstract

In a prior thesis project, a functional level model of

portions of the Motorola MC68000 microprocessor was

developed using signal analysis supported by limited

technical data. Representative parts of the instruction set

and exception processing structure were modeled with the
A-

Computer Design Language (CDL). In this follow-on el o-t-t,

those CDL models are transformed into equivalent models

using ISP', an enhanced version of the Instruction Set

Processor (ISP) hardware design language. This language

transformation enabled the models to be simulated using

N.mPc, a VAX 11/780-hosted software package developed

specifically to support the design *of digital systems. To -

evaluate the correctness of the models, the simulation

results are analyzed against signal data gathered with the

aid of a logic analyzer during the actual operation of the

MC68000 when processing the modeled instructions. The

accuracy and completeness of the models suggest that this

functional approach to microprocessor modeling is a valid

one.

1viii

. *[2

THE SIMULATION AND ANALYSIS OF A RTL MODEL OF THE

MOTOROLA MC68000 WITH N.MPC

I. Introduction

Back o ound

The number of off-the-shelf commercial microprocessors

used in Air Force weapons systems is increasing at a "",

dramatic rate. In contrast to specially-developed

microprocessors designed for specific applications,

off-the-shelf devices are readily available, less costly,

and usually shorten system development time. However, they

have one significant disadvantage - detailed technical data

important to systems development is often unavailable.

Technical data of interest include the schematic and logic

diagrams, microcode descriptions, and production masks that

are normally provided with specially-developed devices.

Because functional models of microprocessors are

invaluable to their successful integration into modern

weapons sytems, the Air Force has a strong interest in

uncovering a method to develop functional microprocessor

models without the benefit of the detailed technical data -

the situation common to off-the-shelf device utilization.

In an effort to assist the Air Force in obtaining a

solution to this important problem, Captain James R. Hamby

and iLt Galen J. Guillory directed their thesis research to "

developing a functional model of the Motorola MC68000

:.-.:;;.: .. .-:;::-; ... ,:,-;: ._ - , ,............................,..... ,..........

microprocessor within the "data-poor" environment just

described. Documented in their joint thesis entitled

"Architectural Analysis and Modelinc of A Motorola MC68000

Microprocessor," a functional model of the MC68000 was

developed without the aid of any manufacturer's schematics

or other technical data not readily available to a retail

purchaser of the system (8:T-6). By successfully modeling

the MC68000, Captain Hamby and ILt Guillory hoped tc

demonstrate that not only could a model be developed within

the information constraints, but that such a model could

also be constructed in an efficient and structured manner,

within a reasonable period of time, and without encountering

overwhelming technical difficulties.

A functional level model describes the register

transfer operations within a device. It enables sytems

developers to observe the internal timing and control of

logic and register transfer operations long before the

microprocessor is included in production systems. Because

the detailed gate circuitry is not modeled, functional

models are relatively easy to implement, understand, and

maintain.

There were two basic approaches that Hamby and Guillory

could have taken to analyze and develop a model of the

MC68000. One commonly used method requires that the

microprocessor be disassembled. During states of

disassembly, electron microscope photographs are taken so

that the actual circuitry of the chip can be reconstructed

1-2

- . - .". -. *. . - .-. ')

L -: -. , . - . w---- -- u-.--.;- - ..- f . -. , , Jr i-. - - -.- -l.- - -" --- .-- - -o -- -. - ".

[-,1

from the photographs. A model can easily be constructed

from the resulting logic diagrams and microcode. Although 4
this method produces a very accurate model, it is a very

time-consuming and complex process (8:1-8).

An untried, alternative approach required that the -

timing and voltage levels of the MC68000's pin signals be

analyzed while the processor was in operation. The

functions performed by the processor could then be modeled - -

using a computer hardware design language. This approach

promised faster and more efficient model development, but

the accuracy of the resulting model was uncertain. Captain

Hamby and iLt Guillory used this second, unchartered

modeling approach to build their functional model.

Now that a functional model of the MC68000 has been

developed within the imposed constraints, some basic

questions naturally arise. Is this "blackbox" approach to

microprocessor modeling a sound one? Can an accurate and

complete functional model of a microprocessor that expresses

the timing, control, parallelism, microprogramming, and

other internal operations of today's complex microprocessors

be developed by examining input and output signals only? If

deficiencies are inherent in this modeling approach, can

they be corrected, neglected, or compensated for? Or, are

they numerous and significant enough to eliminate this

approach as a viable modeling technique in favor of the

first, more complex approach? Answers to these questions

are essential before this approach can gain acceptance as

1-3

the solution to the modeling dilemma confronting the Air

Force and other DoD agencies.

Proble"

This research objective was to evaluate the approach to

microprocessor modeling chosen by Captain Hamby and iLt

Guillory by simulating their model and then analyzing the

simulation results against the data they observed during the

operation of an actual processor under equivalent

conditions. The adequacy of the model will mirror the

viability of their approach.

Sco- o

Due to time constraints, Captain Hamby and ILt Guillory

did not model the entire microprocessor. Portions of the

MC68000 modeled include the read and write bus cycles,

representative instruction types, and exception processing

sequences (8:II-l). The current model was not extended or

optimized, nor were other microprocessors modeled so that

broader inferences regarding the effectiveness of this

approach to microprocessor modeling could be made. All

effort was focused on examining and drawing conclusions from

the existing partial model. Because this research yielded

positive results, additional research aimed at completing

the existing model as well as modeling other architectures

will more conclusively demonstrate the practicality and

applicability of this modeling approach.

1-4

Assumptions

N.mPc (network of microprocessors) is a register

transfer level (RTL) simulation system that has been

successfully used by government and industrial engineering

shops in designing VLSI and multiple microprocessor systems

(5:76). The validity of this research was heavily dependent

upon a simulation package that is efficient, reliable, and

most important, comprehensive and accurate. Because N.mPc

was the only RTL simulation package available for this

research, and its performance had not been personally

observed, texts, periodicals, and the developer's

documentation were used to vouch for its worthiness.

Subsequently, an up-front assumption was that N.mPc would

perform well, and it did.

Summary of Current Knowledoe "

Most (if not all) microprocessors have been modeled

with computer hardware design languages, and many have been

simulated with N.mPc. As a result, MC68000 simulations are

available from which comparisons can be made to help

determine the accuracy of the model constructed by Captain

Hamby and lLt Guillory. However, the significance of this

research is not centered around the simulation of their

model, but rather their approach to model development. Up

to now, attempts to develop functional microprocessor models

using their "blackbox" approach have been negligible. If

their approach can be validated, then this technique will

become a great boon to governmental agencies and commercial

I-5

businesses employing microprocessor technology.

Aonr oa ch

The approach to evaluating their modeling technique was

basically sequential in nature. The simulation, and the

subsequent evaluation and documentation of its results

fcllowed periods during which the Motorola MC68000

microprocessor, the N.mPc simulation package, both the CDL

and ISP' computer hardware design languages, and the MC68000

Educational Computer Board (ECB) were learned. The solution

steps to this research problem were:

1) Before the N.mPc software could be used to simulate

the "Hamby and Guillory" model, it was first brought

"on-line". The package had been delivered to AFIT via tape,

but was not yet operational. Using the system documentation

provided (i.e., installation and user's manuals), the system

was successfully installed on our SSC VAX 11/780 for this

thesis effort.

2) Captain Hamby and lLt Guillory selected the Computer

Design Language (CDL) to describe their model because it was

relatively simple to use and understand, and they were

familiar with its structure. However, to simulate a

microprocessor using N.mPc, it had to be described with a

variation of the Instruction Set Processor (ISP) hardware

design language. Therefore, both the ISP' and CDL hardware

design languages had to be mastered before the necessary

conversion could be accomplished.

3) Once an ISP' model was constructed, the operational

1-6

. ..

N.mPc simulator was used to exercise the model to generate

an operational scenerio of the MC68000 as it executed the

same instruction sequences selected by Hamby and Guillory.

Chapter VI of their thesis outlines these instructions.

4) The simulation results were then compared with the

documented logic analyzer signals that described the ECB's

MC68000 when executing equivalent instruction sequences. A

functionally correct model would accurately project all

event occurrences on the system bus. The simulated results

should have coincided with that of the physical hardware at

each clock cycle (7:459). Any differences required that the

model be carefully examined for errors. If the model's

microinstruction sequences were not at fault, then the

microprocessor's actual operation was again monitored to

determine if the logic analyzer data was incorrect. The

68000's ability to prefetch instructions and generate

vectors were expected to be likely causes of model errors.

Since the prefetch occurs in parallel with instruction

execution, it was difficult for Hamby and Guillory to

simultaneously monitor both events. The actual generation

of vectors was difficult to analyze because this event is

totally internally-accomplished (8:V-I,V-2). The time

required to complete this portion of the research depended IF~

upon the adequacy of the model. Each difference triggered

its own "trouble-shooting" session. Once all of the

differences had been reconciled, the corrected model was

simulated to produce a valid operational scenerio. The

1-7

A

final product of this step was a model that accurately

reflected the MC68000's actual operation, a detailed log of

any deficiencies detected, the source of these deficiencies,

the corrections made, and an assessment of each deficiency's

overall impact on the model. 4

5) Finally, the overall effectiveness of the model was

assessed and documented based on the types and numbers of

errors encountered, especially those that had a significant

bearing on the feasibility of the modeling approach under

study. Although this thesis played the "devil's advocate"

and concentrated fully on reporting obstacles that may

hinder or prohibit this approach from being used, the

positive attributes of this model and approach are also

fully documented.

Overview of Presentation

Chapter II next outlines the requirements of this

thesis in detail. To familiarize the reader with both the

Motorola MC68000 and the N.mPc simulation package, Chapters

III and IV provide brief descriptions of each. Chapter V

details the CDL-to-ISP' model transformation process. The

N.mPc simulation of the MC68000 model and the analysis of

its results are presented in Chapter VI. Finally, Chapter

VII contains several conclusions and recommendations and is

followed by a short chapter that documents the time spent on

each phase of this thesis project.

.° [I-.

°.A

--

II. Requirements

Introduction

This chapter elaborates further on the research

approach by outlining the requirements of this project in

detail. As mentioned, this effort required that the

following five objectives be achieved;

1) install the N.mPc simulation package;

2) transform the existing CDL models into equivalent,

simulatable ISP' models;

3) develop a simulation strategy that enables the

observation of those same signals as monitored and

documented by Hamby and Guillory;

4) simulate the models and then analyze and report the

results, and finally;

5) prepare a detailed time log of all work associated

with this effort.

N.mPc Installation

Release II of N.mPc was on-loaded onto AFIT's SSC VAX

11/780 from its delivered magnetic tape medium. After being

on-loaded, the necessary directory structuring and file

relocation was accomplished before the system could be

brought on-line and operationally certified. Once

operational, all unneccessary software such as

documentation, superfluous ISP' library models, and test

programs were removed to minimize N.mPc's demands on the

VAX's limited storage space. N.mPc's system protection

mechanisms were also then reconfigured to enable access from

this and other interested user's login directories.

Model Transformation

Because the scope of Hamby and Guillory's research did

not include consolidating or generalizing their numerous

instruction descriptions, they in effect developed a single

model of the MC68000 hardware elements that was accompanied

by multiple, independent models of the following

instructions and exceptions: MOVE, JMP, ADD, BEQ, BTST,

Illegal Instruction, and Address Error. These models could

be individually appended to the lone hardware description to

form individually simulatable instructions and exception

conditions.

To simplify the model transformation process, this same

level of development was preserved. A single ISP'

description of the hardware elements was developed to

support multiple instruction or exception processing

models. This "multiple model" approach simplified model

development, made the size of the model manageable, aided in

the debugging process, and helped approximate a one-to-one

correspondence between CDL and ISP' statements so that model

equivalency could more readily be established.
7

In order to execute the assembly language test routines

on the MC68000 ISP' model, the 68000's instruction set had

to be described via N.mPc's assembler component, Metamicro.

Metamicro allows its users to define the structure and

semantics of the target processor's instruction set so that

11-2.-

source programs designed to run on that processor can be

written and assembled. A second N.mPc component, the

Linking/Loader, then allows the user to load programs

assembled by Metamicro into the microprocessor's simulated

memory for execution. Rather than develop auxillary

!ietamicrc and Linking/Loader routines to construct a

workable simulation, these routines were extracted from

N.mPc's microprocessor library. With minor modifications, - -

they supported the assembling and loading of the test

routines into the MC68000 model.

Simulation Strateav

To develop their models, Hamby and Guillory used a

logic analyzer to monitor numerous MC68000 signals that

provided information pertinent to instruction processing,

These signals varied slightly, depending on which

instruction or exception sequence was modeled, but at most

included the following 20 signals:

1 - FCO
2 - FCl
3 - FC2
4 - DTACK'
5 - R/W
6 - LDS'
7 - UDS'
8- AS'
9 - DO

10 - Dl
11 - D2
12 - D3
13- D4
14 - D5
15 - D6
16 - D7
17 - Al

11-3 I.

. ." .

18 - A2
19 - A3
20 - A4

These signals were examined on both the positive and

negative transitions of each clock signal to emulate a

two-phase clock and therefore increase the operational

resolution of their model's timing. To accurately compare

and contrast the simulation results with the observed data, -1

it was essential that a simulation strategy be developed for

each instruction or exception sequence that enabled the

observation of these same signals at the positive and

negative transitions of each simulated clock cycle.

Simulation Analysis

The methodology of the simulation analysis phase has
p,. -

been carefully documented in steps 4 and 5 of the research

approach (pages I-7 and 1-8) and will not be heavily

expanded here. However, it should be noted that existing

models of the MC68000 that are resident in N.mPc's

microprocessor library were used in conjunction with the

documented logic analyzer results and ECB operation to

assist in the identification of any model discrepancies and

their corresponding remedies.

Detailed Time Log

As done during Hamby's and Guillory's thesis effort, a

detailed time log was maintained and then analyzed at the

conclusion of this project. It too includes information on _

the time spent during each phase of this project such as

11-4

researching, writing, modeling, analyzing, and so on.

IO

11-5

- *.**:*~.**.**.*-* -'-.
.' * .. * *. ,.* . .- - * * ** .

III. Introduction to the Motorola MC68000 Microprocessor

Introduction

A basic understanding of the M68000's architectural

features and its capabilities will prepare the reader for

the material of later chapters that describe the development

and simulation of the M68000 model. This chapter introduces

the M68000 with descriptions of its signals, register

organization, instruction set, system architecture, data

types, and addressing modes.

M68000 Introduction

The MC68000 is a 16-bit microprogrammed microprocessor

with a 32-bit internal architecture. First introduced by

Motorola in late 1979, this VLSI microprocessor combines

state-of-the art technogy (HMOS) and advanced design

techniques to achieve very fast processing speeds and high

circuit densities (11:1). The chip contains approximately

68000 transistors (hence it's name) and is available in

several different operating frequency versions. The 4, 6,

8, and 10-MHz versions have respective clock cycles of 250,

167, 125, and 100 ns.

The 68000's microprogrammed architecture makes future

enchancements easy to accomplish. The first version, the

MC68000, implements only that subset of the complete 68000

architecture that is allowed by current technology

constraints. The 68000's design specifies several features,

such as floating-point and string operations, that are not

.

implemented in the first version but have now been

specified. Unused space has been left in the architecture

to accomodate new features that future advances in

technology will make possible (21:44).

SiQnal Description

The 68000 is packaged in a 64-pin DIP (dual in-line

package) as illustrated in Figure III-1. The 64-pin count is

significantly greater than the conventional 40-pin

microprocessors. To achieve greater data transfer rates,

the 68000 does not multiplex its address and data lines as

is commonly done. The 64 pins can be functionally broken

down into the following groups: 23 for the address bus, 16

for the data bus, five for asynchronous bus control, three

for bus arbitration, three for interrupt control, three to

indicate the processor state, three for system control, and

three for MC6800 peripheral control. The remaining five are

used to provide power supply, ground, and the system clock

(Figure 111-2). Although the internal data paths are 32 bits

wide, packaging limitations constrain the number of data

pins to 16 and additional operations are required to

transfer more than a 16-bit word. The 23 address lines

(Al-A23) enable the 68000 to directly address eight

megawords of memory space. Individual bytes are addressed

via two control lines: the upper and lower data strobes

(UDS' and LDS') (signals followed by a "'" are active low). i'

When UDS' is low, .'.

.. . .- . .

P IN A S; 3NM zN'T

C)~

UD~

s q

54 D 15

CLKMI5 50 A2 I

GNr, 'I 49 cz

VMA - A1

42 A14

F3~ A 10

Figure IIl-I. 1468000 Pin Out Diagram (1:1)

111-3

INPUT AND OJTPUT SIGNALS

Vc, 2s

Sjw 2F": 0 A 1 3 Co-nt.'

AA6800 E
* FCO M cr D~oc 'P.of

us rit bo

RES" U" te.

Figure 111-2. Input and Output Signals (11:33)
,
I

data is transferred on lines D8-D15 of the data bus. If

LDS' is low, then data is transferred on lines DO-D7.

Finally, if both UDS' and LDS' are low, data is transferred

on all 16 data lines.

The 68000 can be interfaced with either asynchronous or

synchronous devices and has a separate set of control lines

for each. It has three control lines to interface with

synchronous peripheral devices in the MC6800 family. They

are: enable (E), valid peripheral address (VPA'), and valid

memory address (VMA'). The address strobe (AS'), read/write

control (R/W), data transfer acknowledge (DTACK'), as well

as UDS' and LDS' are used to communicate with asynchronous 4

devices.

111-4

.. - .
" - "- " : " " -'- " ' -', -' - - :-. '- ' "- - - -' - - - '. . ."1 a . . "- " . " " . . A • " " ." " " • "-&' ", " 2. % . . " ' ' " -

Three function code lines (FCO, FC1, and FC2) inform

external devices whether the 68000 is in a user or

supervisor state. They also indicate the type of cycle

currently being executed. An external device such as a

memory management unit (MMU) can use these signals to ensure

that its operations are conducted when the 68000 is in the

proper state. These function control lines can also be

decoded to extend the 68000's memory space from 16 megabytes

up to 64 megabytes (22:260).

The system control lines are used to halt or reset the

processor as well as inform the 68000 of bus errors. The

three interrupt control pins carry the priority level of a

device requesting interrupt service. ..-

Register Organization (22:229-232)

The MC60000 provides 17 32-bit general-purpose

registers, a 32-bit program counter, and a 16-bit status

register as illustrated in Figure 111-3. Eight of the

general-purpose registers are data registers, seven are

address registers, and two are system stack pointers (user

and supervisor). The eight data registers can be used to

perform byte, 16-bit word, or 32-bit longword operations.

When a data register is used as either a source or

destination operand, only the appropriate low-order portion

is changed, the remaining high-order portion is left

unchanged. All data registers can also function as index

.* registers under programmer control.

II1-5 _

* I"

" 16 1 t 7 0i

' .c ,

"-+' 3" '1E 1'

ADDRESSVk, RE :SI ERSt:

w 1, 7 7 A7

-"TFAE M T .-.

SUPERVISORY

INTERRUPT I

EX7TiND
NF.3Z _2CAS Y I -ZESD. .:

r-rEA;F L OW• -

Figure 111-3. Register Organization (21:45)

The seven address registers are normally used for word or

longword address operations. However, all can also function

either as base registers, index registers, or software stack

pointers. The address registers do not support byte

operations. When an address register is a source of an

operand, either the entire low-order word or the entire

longword is used depending on the operation size. When used

as the destination of an operand, the entire register is

affected, regardless of the operation size. If the

111-6

I . . .V .

operation size is a word, the information destined for the

register will automatically be sign extended.

Although the program counter is 32 bits long, only the

low-order 24 bits are currently being used. The high-order

byte is ignored. Bits 1-23 of the PC are routed to chip's

23 address lines. Bit 0 of the PC is internally encoded

with the operand length in the instruction being executed to

generate the two data strobe signals UDS' and LDS' described

earlier.

The two independent system stack pointers share address

A7. The A7 address register acts as a user stack pointer

when the 68000 is in a user state, and as a sytem stack

pointer when the 68000 is in a supervisor state.

* The status register is divided into a system byte and a -"

user byte. The user byte contains five condition code bits -

(0-4) to record the status of completed operations. They

are: carry (C), overflow (V), zero (Z), negative (N), and

extend (X). The extend bit acts as a carry for

multiprecision arithmetic operations. The status register's

system byte has three fields. The interrupt mask is

contained in bits 8-10 and provides eight levels of

interrupts. With the exception of level seven, all

interrupt levels less than or equal to the mask are

ignored. Critical interrupts such as system power failures

are assigned level seven. The supervisor (S) bit is used to

determine whether the 68000 is in a user or supervisor

state. The trace mode (T) bit will allow the 68000 to

111-7

single step through a program. After each instruction is

executed, the 68000 will vector to a special user-written

.- routine that examines the contents of a memory location,

register, or performs other debug operations.

INSTRUTI--rlO CACHE

• I "adds I rtu lO -
I Instrucions

Data

FC1

FCD

Figure 111-4. Instruction Cache (12:3)

System Architecture

The 68000 employs a pipelined architecture in which the

instruction fetch, decode, and execute cycles are fully

Soverlapped. An attempt has also been made to minimize

delays in branching by prefetching instructions associated

111-8 S

.. . ".'.% '_'

W '.- ,_W T % ,Z 1 7 7W . W " 7

with the most likely branch condition (23:29) . Additionally,

the MC68020 contains an on-board instruction cache that

allows repeated instruction streams to execute significantly

faster while freeing the external bus for other processors

(Figure 111-4).

Pipelined processing is accomplished via the

three-sectioned Execution Unit (Fiuure 111-5). Each section

contains in its register file some of the 17 general-purpose

registers described earlier, as well as others transparent

to the user. Each section also contains its own 16-bit ALU.

These three sections are dynamically configured by the "

microcode (they can be isolated or concatenated as

necessary) to provide simultaneous address and data

processing (15:37).

Instructions are brought in through the 16 data lines

into the Instruction Register and Instruction Decode Unit.

The Instruction Decode Unit generates an address for the 4

microinstruction in the Micro Control Store.

Timing-independent information is sent directly to the

Execution Unit.

The Control Store is a two-level structure containing a

vertically-microcoded Micro Control Store and a horizontally

microcoded Nano Control Store. The Micro Control Store

generates a 9-bit address for the nanoinstruction in the

Nano Control Store, as well as issues branching signals to

the Instruction Decode Unit to cause its next address to be

incremented or altered based on conditions received from

111-9

J-j

l-c~
- ..-

I

_____ I
* F

I -

I -

A I
.~.

K:1
______________________ Si

* --. I-

* ~- I
- - -- I

~ ~- (-!

-. - F

LU

* . Figure 111-5. MC68000 Architecture (23:9)

111-10

. . * . . - .
...

* . - - - .:.-vr r r -.
o

or * - r . j - r 2 w o -

the Execution Unit. The Nano Control Store houses 280 68-bit

control words that directly control the Execution Unit.

Approximately 2880 bytes of control store is used, about

half that of an equivalent single level implementation

(23:29).

The 68000 does not include an on-board memory

management unit (MMU). It can be operated with or without

one. However, the MC68451 MMU can be interfaced with the

68000 to provide for vertical addressing, segmentation, and

memory protection for multiprocessing environments.

Data Types and Organization

The 68000 can operate on five basic data types: bits,

bytes, BCD digits, 16-bit words, and 32-bit longwords.

These data types are stored in memory as depicted in Figure

111-6. Bytes are individually accessible. The high-order

byte is assigned its word's even address (Figure 111-7)

while the low-order byte has an odd address that is one more -

than its word's. Instructions and data are accessed only on

1s 14 13 12 1I 1 C)c 7 e

1CD 4 Dat b.cns a BCD

Figre 11-. DtaOrganization In Memory (10:2-2,2-3)

-° .1.

...... *-. -I ~ ~ k~Ii-~. ~ ,.*.

7 6 A 2 2 0

Integer 0a~a

IE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VS6 Byte0 LSEI Byte I

5vie 2 Byte 3

I Wowa I6 ea.u,

1 14 13 1? 11 10 S 8 7 6 5 A 3 2 1 0

MSB Word 0 LSS

Word 2

Word 2

I Long Word -32 Sits

15 14 13 12 11 10 9 a 7 a 5 4 3 2 1 0

High Order
-- Long Word 0-

Low Order LS5

.
- -Long Word I "------------

-Long Word 2----'-.--"

Addra. .'..3

1 Aooress =32 beas

15 JA 13 1? 11 10 9 8 7 6 5 4 3 2 1 0
MSEI MSB H~~Mgr Oroer "-

Low Otoer LSB

--

---- A 2 "'"--------------------------------'
h SB

Figure 111-6. Data Organization In Memory (continued)

111-12. .%:.-.* '. --

even byte boundaries. Longword data occupies two

consecutive addresses in memory (1:2).

WOR: h iN t;? Y

1h 1 ~ : i 10 9 E 7 6 3 T

b yt e OXdX Ldie wo3X.,

vieXJ0=2 BIe0= 3

S~et FFFFFE IBvie FFFFFF

Figure !11-7. Memory Word organization (11:14)

Addressing Modes (20:232-257)

The 68000 offers 14 operand addressing modes giving it

a very flexible addressing capability. As Figure 111-8

illustrates, these modes fall into six basic groups:

register direct, address register indirect, absolute,

program counter relative, immediate, and implied.

The register direct mode indicates that the instruction

operand is one of the 68000's 17 general-purpose registers.

Data or address register direct specifies that the operand

is in one of the eight data registers or eight address

registers (including the stack pointer) respectively.

The memory address mode indicates that the instruction

operand is located in one of the 68000's memory locations.

With address register indirect addressing, the contents of

k•

an address register points to an operand. There are five

i111-13

Datz Addiye-sing L/odas

__ fGenrirtion
D~iRe- :ir [r~ A D n

EAl

L s ..:& 'cI EA I Vr C ".c 1 Cr

~ '..~ C~etEA =.(PC)
1,n;. ar,- 0 f t EA r(PCj 'Yr!

Fegist1cr Inaircc Aarsbinq.
i 2 hLr I ri r&C EA =(An) I-

~ ~~c ~nirztE.A An) An- Anr
Prtdte-rtmerit Rt-gl.Slr inairt3t An~ Ar, - I , L A An
Re&:ter lnlirecl Mitn O1iw EA =(Ar) -t01
lnclJexrc'j I~re noire-: W 'ir, OCtel EA. = (An" ,_t ro~) 16 .

i nin ,e :iae DATA =Ne±xt Worc(s) .J

QuiJ- Irnmeo'-ze Inhere~ril Da*:;
Implied Acioressing
Implied Re-,ster EA = SR. USP, SP, PC

NOTES:
[A = Etiect'se Adloress d6= Eight-bit Offset tdtsplazement)
Anr Aooresc PRE4,ier dif, = Sixteen-tit st (cisplacem ant,
Lin = Dazza Rei~isier N = 1 for Byte, 2 for Words and 4 fo~r
X n =Acc:ec or Data Re;Lte useo a , Inoex Reiir Long Wordis
SR =StLLu4 RE:Ziter ()=Conten~ts co)
PC = r& j~irn Counte~r -=Replac~es

Figure 111-8. Addressing modes (10:1-5)

variations of this mode. In thg simplest mode, register

indirect, the address register itself holds the effective

address. The postincrement and predecrement modes

automatically update an address register so that the

programmer does not have to use a separate instruction.

These modes are useful for moving blocks of data from one

section of memory to another. They also permit any address 1
* register to be used as a stack pointer so that the

programmer is able to maintain eight stacks at once.

111-14

- -- - . - ---..- - ---A .. . -.' .

Register indirect with offset and indexed register indirect

with offset support data table manipulation by permitting

offsets and indexes to be applied to an indirect address

pointer. Address register indirect with offset adds a

16-bit signed displacement to the contents of an address

register as the effective address of an operand. Indexed

address register indirect with offset adds an eight-bit

signed displacement and the contents of an index register i

(any one of the address or data registers) to the contents

of an address register to produce the effective address of

an operand. This mode is useful for accessing

two-dimensional arrays.

In absolute addressing, the effective address is

9contained in the instruction rather than a register. An

instruction employing absolute short addressing will contain

a 16-bit address whereas an instruction using absolute long

addressing will contain a 32-bit address.

Program counter relative addressing modes are useful

for developing relocatable programs. In relative with

offset, the effective address is the sum of the address in

the program counter and a 16-bit displacement. The

effective address in relative with index and offset is the

sum of the address in the PC, the contents of an index

register, and an eight-bit displacement. These two relative

modes are useful for manipulating lists, tables, and

arrays.

Immediate data addressing is used to specify a constant

-. '1511I-15 -

data operand as opposed to the contents of a register or

memory location. Implicit addressing instructions

implicitly refer to the program counter, systeir stack

pointer, user stack pointer, or the status register.

Instruction Set (22:241-257)

Instructions vary from one to five words in length

(Figure 111-9) . All instructions consist of an operationI

word (op word) containing the instruction type and effective

address (addressing mode and register). Additional

information may be required to fully specify the operand(s),

and this effective address extention is contained in the

instruction words that follow the op word. If there are any

operands, they vary from a single 16-bit operand to two

INSTRUCTION FORMAT

15 14 13 12 11 10 9 8 7 0 5 4 3 2 1 0
Operation. wor

(First Word S~tcth" Ccoeraison andi Mooesl

lrmfoedale~ Operand
(it Any, One or Two VWrs

Suurce Etlecini ACdress Exten's.on
III Any, One or Two Wcrds)

~Desunatior, Etiec~.ve Address Exte.sion
(if An'y. One or Two Worm) 4

SINGLE- EFF ECTIVE-ADDR ESS
tNSTkUCTION OPERiATION' WCJHD GENERAL FORMAT

1s 14 13 121it10 9 8 7 6 E 3 2 1 0

Eflective Acdressi

x x x x IxlxI x 1xIxI w 0ti

Figure 111-9. Instruction Format (10:2-4)

111-16

32-bit operands. Because the 68000 was designed by

programmers to support programmers, special emphasis has

been given to instructions that support high-level

languages. The instruction set contains 56 basic

instructions, but by combining these with variations of each

and tne 14 addressing modes, over 1000 distinct instructions

become available.

The instruction set provides for the following

operation types: data movement, integer arithmetic, logical,

shift and rotate, bit manipulation, Binary Coded Decimal,

program control, and system control. Figure III-10 lists

the 56 basic instructions. Most instructions can operate on

byte, word, or longword data depending on whether the

programmer includes a ".B", ".W", or " suffix to the

instruction mnemonic.

Data movement instructions are used to transfer

information between memory and the general-purpose

registers. The principle instruction in this group is the

MOVE instruction which can be used to transfer data between

memory locations, between a memory location and a data

register, or between data registers. EXG will exchange the

contents of any two general-purpose registers, and the

high-order and low-order 16 bits of a 32-bit register can be

exchanged via the SWAP instruction. The 68000's LINK and

UNLK instructions are used to allocate and deallocate data

areas in the system stack for nested subroutines, linked

lists, and other procedures.

111 -17 -:

"..,°

Mnemonic Description
A&CD Add Decimal wiih Extend
ADD Add
AND Logical And
ASL Aritrirnetic Shift, Let

*ASR Arithmetic Shift Right

5CC Brancr. Conditionally
BCHG Bit Test and Change
BCLR Bit Test and Clear

* BRA Branch Alwa~ys
BSET Bit Test and Set
BSR Branch Lo Suoroutine
BTST Bit Test

CHK Chieck~ Register Against Bounds
CLR Clear Operand
CMP Compare

DBcc Test Cond., Decrement and Branch
DIVS Signed Divide
DIVU Unsigned Divide

EOR Exclusive Or
EXG Exchange Registers
EXT Sign Extend

imp Jump
JSR Jump to Subroutine

LEA Load Effective Address
LINK Link Stack
LSL Logical Shift Left
LSR Logical Shift Right

MOVE Move
MOVEM Move Multiple Registers
MOVEP Mlove Peripheral Data
MULS Signed Multiply
MULU Unsigned Multiply

NBCCJ Negate Decimal with Extend
NEG Negate
NOP No Operation
NOT Oine's Complement

OR Logical Or

PEA Push Efiective Address

Figure I11-10. MC68000 Instruction Set (10:1-6)

111-18 ~

Mnemonic Desciption

SBCD Su'r.rc3 , Dec;ima: w l Extenc
SCC Set Con-itional
STOP Stop
SUB Subtract
SWAP Swap Data Register Halves

-TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
]ST Test

UNLK Urlink

RESET Reset External Devices -

ROL Rotate Left without Extend
ROR Rotate Right without Extend
ROXL Rotate Left with Extend
ROXR Rotate Right with Extend
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine

Figure III-10. MC68000 Instruction Set (continued)

Using its integer arithmetic instructions, the 68000
can add, subtract, multiply, divide, and compare two

operands. it can also clear, test, sign extend, and negate

(two's complement) a single operand. The 68000 also has
special instructions to add, subtract, or negate

multiprecision numbers (ADDX, SUBX, and NEGX). It is also

possible to operate on mixed size data using the sign extend

(EXT) instruction. This instruction extends the sign bit as

necessary from a byte to a word, or from a word to a .

longword. Thus, a byte can be added to a word, or a word

can be multiplied by a byte.

.- Multiprecision arithmetic operations on Binary Coded

Decimal numbers can be accomplished with the add decimal

111-19

L - - -- " - " -" , u L ,L .: ., : . ': ' . - . -: ' - ' ' . . ' .. . - . .' . . . - . - - , - -. : - -: . - . . : .- -. . -' .- , -' . - .. : . - . , ., ' . " ' , - . - .. -. , . .- . . .4 : .- ' :

with extend (ABCD), subtract decimal with extend (SBCD), and

negate decimal with extend (NBCD) instructions.

The 68000 has a capable set of bit-manipulating

instructions. It uses four special instructions to test the

state of a bit in a memory location or register, record the

state of that bit in the zero (Z) condition code flag, and

then perform some operation based on the test result. They

are: bit test (BTST), bit test and set (BSET), bit test and

clear (BCLR), and bit test and change (BCHG).

Program control instructions transfer program control

from one portion of a program to another. Of these, the

test condition, decrement, and branch (DBcc) is a unique

high-level type instruction designed to act as a terminator

for repetitive loops. When a DBcc instruction is executed,

the 68000 examines the status register condition codes. If

a condition is met, program execution falls through to the

next instruction. If the condition is not met, the 68000

decrements the specified register. If the register is

decremented to -1, program execution falls through to the

next instruction; else the 68000 branches to the specified

label.

The system control instructions include a

trap-generating instruction that initiates a trap operation

unconditionally (TRAP), and two instructions that initiate

trap instructions based on some condition, trap on overflow

(TRAPV) and check register against bounds (CHK). The TRAP

instruction can be used for emulating instructions that will

111-20

. ... , . .-.... .. ,,_.., ,.

eventually be microcoded in future versions of the 68000.

All instructions can be executed while the 68000 is in

the supervisor state. When in the user state, instructions

that can have an adverse effect on the system cannot be

executed. These include the STOP and RESET instructions,

instructions to modify the entire status register, and the

move to and from user stack pointer instructions (MOVE USP

and MOVE from USP).

The fastest instruction, a register-to-register

transfer, executes in four clock cycles, or 400 ns at 10

MHz. The slowest instruction, a signed divide, requires 170

clock cycles or 17 us at 10 MHz.

Because the 68000 uses memory-mapped I/O, there are no

Lseparate I/O instructions. Each device is assigned

locations in the 68000's memory space and I/O operations are

accomplished via the MOVE instructions.

Additionally, floating point and string manipulation

instructions are not available in the 68000's instruction

set. They have been specified in the design but not

implemented in current versions. However, each is presently

being implemented either by software or hardware. Two 68000

instruction op codes (1010 and 1111) have been reserved for

unimplemented instructions and are assigned Trap vectors for

emulation. A user-written routine can accomplish the

desired instruction. When newer versions of the 68000 are

produced containing the desired instruction, it can be

installed and the user-written routines discarded (3:98).

111-21

Motorola has also produced support chips that provide

floating point operations. The MC68341 ROM and the MC68881

Floating Point Co-processor perform normal arithmetic

operations as well as some other related operations (square

root, compare, absolute value, etc.) using a floating point

format.

111-22

* - .. - -* . .

.- I *-~* I * .A -. **.~.1*I~ ~-. I * -- * *

IV. Introduction to N.mPc

Introduction

N.mPc is a register transfer level (RTL) simulation

system used to assist in the architectural design of digital

systems. N.mPc enables system architects, digital

engineers, and programmers to test and evaluate their

designs prior to system implementation.

N.mPc (PMS notation for "network of microprocessors")

was designed and implemented by the Department of Computer

Engineering and Science at Case Western Reserve University

between 1975 and 1979. Its objectives were to:

1) allow specification of heterogeneous multiprocessor

systems;

2) allow modeling at multiple levels of abtraction;

3) allow changes to topologies and microprocessor

descriptions with a minimum of work and expense;

4) not impose any particular design style;

5) include facilities for monitoring and controlling

simulations of the target achitectures;

6) be useable by non-hardware specialists; and

7) perform well when simulating and evaluating large

architectures (18:1) . -

The resulting system was written in the programming

language C and runs on DEC PDP-11 and VAX computers under

the VMS and UNIX (V6,V7, and 4.1 BSD) operating systems.

N.mPc consists of six major components: the ISP' compiler,

IV-1

........ 7

the Metamicro assembler, the Linking/Loader, the Ecologist,

the Simulated Memory Processor (SMP), and the Runtime

system. They combine to create and control target .

architecture simula-ons. The system hardware to be

simulated is described by these three components:

1) ISP'. ISP' (ISP' is an extention of the Instruction

Set Processor language developed by Bell and Newell) is a

RTL compiler that includes many features of high level

languages to allow the user to model system hardware

components. The ISP' compiler translates ISP' hardware

descriptions into executable object modules for the host

computer.

2) Ecologist. The Ecologist defines the structure of

the target system. It uses a system topology file

describing the ISP' object modules to be combined to form

the simulation program.

3) SMP. The SMP initializes the target machine's memory

components with the programs developed by the user to be

hosted on the simulated system.

The two components used to develop software for the

simulation model are:

1) Metamicro. Metamicro is a generalized assembler that

allows the user to develop an assembler for any target

processor by describing it through a macro-based language

(19:3). It allows the user to specify the format, mnemonics,

and associated bit patterns of the target instruction set

* (18:3) so that an assembly language program developed by the

IV-2 -

..... .-.-. :-~-:- *

_C I .

user can execute on an ISP' hardware engine (5:77).

2) Linking/Loader. The Linking/Loader enables the user

to develop a linker and loader for any target processor by

describing its addressing modes. It links modules assembled

separately by Metamicro and loads the resulting object code

into the simulated memory in accordance with strategies

developed by the user.

The system designer interacts with the simulation

program created by the Ecologist through the Runtime

system. The Runtime system allows the user to control and

monitor the simulation, as well as create the

performance-evaluation and simulation libraries (5:77). With

the Runtime system, the user is able to gather the same

performance information that would ordinarily require the

use of logic analyzers, oscilloscopes, and program

debuggers.

Figure IV-I on the following page presents a detailed

block diagram of the N.mPc system and enhances the narrative

that follows. To simulate a system design with N.mPc, the

individual hardware components are first described using

ISP'. The Ecologist then uses a description of the

interconnection topology to bind these compiled hardware

descriptions into a network of communicating processors.

Assemblers for the processors comprising the system and

their associated application programs are then developed

using Metamicro. Linking/Loader is used to link the various

modules assembled by Metamicro and then load the resulting

IV- 3

A.

bC

L C

.3 1

Figure LV3 ~~ BokDara 1:7

C-3 0.- .~~~~~ e**~~*3**3~* C3. 3. .3.*.*...* .

object code into the memory components of the simulation

model. Finally, using the Runtime package, the user can

simulate and observe the operation of the hardware and

software components to test and evaluate the system.

ZSP'E (20:1-5)

As mentioned earlier, ISP' is a programming language

for describing processors and other hardware elements at the

register transfer level. Systems designers use ISP' to

model many types of hardware elements such as ALU's,

memories, or CPU's. An ISP' source program consists of

structure, procedure, and process declarations. The

processor's structure is first described through three

declaration types:

1) states - the microprocessor's registers are

represented by states. Instruction registers, program

counters, flags, etc. are declared as states. The

following example declares an array of eight registers, each

containing 8 bits:

state D(0:7]<7:0>;

2) memories- random access memories are declared to host the

simulated microprocessor's instructions and data. A memory

with 64K 16-bit words can be declared with the following L

declaration:

p memory M[0:65537]<15:0>;

3) ports- a microprocessor's address bus, data bus, and

IV- 5

.

control signals are declared as ports. Ports correspond to

the pins on an IC chip. The ports of system hardware

elements may be later connected by the Ecologist to enable

communications between microprocessors or between a

microprocessor and its peripherals. Here is an example of

an 8-bit data bus declaration:

port databus<l:8>;

The hardware structure declarations are followed by

procedure and process declarations. A process is loop whose

instructions are repeated for the duration of the

simulation. The following example from the ISP' user's

manual illustrates a process:

state counter<16>;

main
delay (1);
counter <= counter + 1

Main is a keyword which identifies a process. The process

"main" and its instructions (enclosed in parenthesis) are

separated by the delimiter ":=". In this process, a 16-bit

counter is continually incremented with one simulation unit

of time delay between incrementations. The actual

simulation time units are defined in the system topology

description processed by the Ecologist. This counter would

operate at eight MHZ if a simulation time unit was defined

.'.. to be 125 nanoseconds (ns) in the topology file. Note from

IV-6
* - . --.-- . - - - - - . ..- .- - ., . T," ,'

.. " .,.

the 'Preceding example that ISP' statements are separated by

a ""and assignments are made with a "<"symbol. Consider

the slightly more complex example from the same manual:

state counter <16>, save <16>;
port ck, switch;

when (ck:lead) :

if switch
(counter <= save;
save <= counter;

next

counter <= counter + 1

In addition to "counter", there exists another 16-bit

register "save", and two single-line ports "ck" and

"switch". When the leading edge of "Ick" occurs, the

±processor accomplishes one of two possible actions; if

switch is true, the registers "counter" and "save" are

exchanged and then "counter" is incremented, else "counter"

is incremented without a prior register swap. Because ISP'

is a register transfer language, assignments are performed

concurrently. If not, in the above example the register

save" would receive its old value. The "next" statement

enables sequential assignments by causing the preceding

assignments to be made. Without it, all three of the

example assignments would be made concurrently (if switch

were true) and the result in "counter" would be

indeterminate. Because the statement "next" is implied at
k

the end of each process, the assignment to "counter" is made

at the end of the "when" process. The "delay" and "wait"

IV-7

I.

**~ *. **~ *. ..
. **. .% *.*. ~* S. * *]

statements also cause assignments to be made. For

additional detail on these and other constructs, refer to

the ISP' User's Manual. To further the reader's "feel" for

the language, Appendix K contains an ISP' description of the

Reduced Instruction Set Computer (RISC 1) developed at the

University of California at Berkeley. This model was

developed as a part of a local computer architecture course

to advance the understanding of RISC's innovative

architectural concepts (e.g., register windowing, constant

width instructions, and consistent instruction execution

times) . .
I

M (16)

Metamicro is a generalized micro assembler which uses a

(description of a processor's instruction set to assemble

programs. Rogers and Ordy characterize an assembler as a

translator which takes a computer instruction in a form

understandable by its writer, and then creates an V

instruction with the same meaning, and in a form understood

by the digital hardware (16:17). Metamicro satisfies this

description by allowing the user to specify the input form,

output form, and translation rules for a given

microprocessor's assembly language. The user first

describes the construction of the target processor's

instruction set using Metamicro constructs. This

description is then used to assemble applications programs

written in the target processor's instruction set. Figure .

IV-2 contains a partial Metamicro description of the Intel

IV-8

................................----.

8080 instruction set. Even though only two instructions are

modeled (Add Register to A (add) and Add Register to A with

Carry (adc)), it will serve as an adequate introduction to

-Metami cro.

instr inst[3,1] <8> $ three words of eight bits each
* default instruction length one

format op = inst[0]<7:6>, ! op code
dst = inst[0]<5:3>, ! destruction
scr = inst[0]<2:0>$! source

macro b = 0 &,
c = 1 &,

d =2 &,
e =3 &,
h =4 &,
1 =5 &,
m =6 &,
a =7 &,

sreg(x) = src = x $ &,

add(x) =op =2;
dst =0;

sreg(x) & , ' add reg or mem
adc(x) = op = 2;

dst = 0;

sreg(x) & $! adc reg or mem

Figure IV-2. Metamicro Description (19:Chap 2:7)

The instruction declaration is used to inform the assembler

of the instruction's size and format. It allows the user to

specify both the maximum and mimimum number of words in an

instruction, as well as its word width. In the example

program above, the instruction declaration is:

instr inst[3,1] <8> $

. ..IV-9

The name "inst" is used to symbolically reference the

instruction. To enable variable length instructions, the

maximum instruction word size has been set at three while

the minimum is declared to be one ([3,1]). Since the basic

word size has been declared to be eight bits (<8>), we can

create one, two, or three byte instructions. The $

character terminates all Metamicro statements. The "' is

used for commenting by causing Metamicro to ignore the

remainder of the current line.

The fcrmat declaration specifies the subfields of. each

instruction word signficant to the model that we wish to - --.

symbolically reference (19:Chap 2:8). In the example format

declaration:

format op = inst[O] <7:6>, ! op code
dst = inst[0] <5:3>, ! destination
src = inst[O] <2:0>$! source

the instruction bit fields that contain the op code and the

source and destination registers are identified.

Specifically, the src registef is identified by bits 0-2 in

the first byte of the instruction and the dst register is

identified by bits 3-5. Finally, the op code is contained in

bits 6-7.

A macro is used to translate the instruction mnemonics

developed by the user to correspond with a microprocessor's

assembler into statements compatible with Metamicro. A macro

... element has the following structure:

IV-,10

macroname = macrobody &

Macroname is the identifier by which the macro will be

referenced. A parenthesized parameter list may be appended

to macroname. The character & is used to delineate

multiple macros within the macro declaration section.

Macrobody may contain statements, macro calls, etc.

In the example of Figure IV-2, the macro declaration

section begins with the keyword "macro" and forms the bulk

of the instruction set description.

macro b = 0 &,c = 1 &, . -

d = 2 &,
e = 3 &,
h = 4 &,
1=5 &,m= 6 &

a = 7 &,

sreg(x) = src = x $ &,

add(x) = op 2;
dst =0;
sreg(x) &, ! add reg or mem

adc(x) = op = 2;
dst = 0;
sreg(x) &$! adc reg or mem

The macros b,c,d,e,h,l,m, and a provide values for the

respective register names which are assigned to the src

subfield by another macro "sreg". The macro sreg is a

utility macro that simplifies the coding of statements which

appear in several macros. It makes assignments to the src

field of an instruction. '

Before continuing, it is necessary to introduce an

IV-ll

.

applications program that can be assembled by the above

Metamicro description (19:Chap 2:8). "

include 8080.m$
begin

add(b)
adc (m)

end

The characteristics of the processor are defined in the

declaration section. This file comprises the corresponding

instruction section of the example Metamicro program of

Figure IV-2. It contains the applications program

instructions that are assembled according to the translation

rules established in the declaration section.

The instruction section is separated from the

-0 .. declaration section by the keyword "begin" and terminated by

the keyword "end". In this example, the declaration section

has been put in a file of its own (8080.m) and the user

begins the source code with an "include" statement to

prepend it to the instruction section.

Whenever one of the two instruction mnemonics (add or

adc) is encountered by Metamicro, its corresponding macro in

the declaration section is expanded in line during the

assembly process so that the correct assignments are made to

instruction subfields. For example, when the add(b) r
instruction is encountered, the add(x) macro assigns 2 (10b)

to the op code subfield, 0 (000b) as the destination

register, and, through the invocation of macros b and

sreg(x), also assigns 0 (000b) to the source register. The

IV-12

"'"'"'"" """"""" '" '"'-'J"""' " "'"" "" "" "" " ..".."."....."'..".'".".."." ".

adc(m) instruction differs only in that register six

identifies the memory location to be added to register

zero. The macro sreg(x) is common to both instructions.

A Metamicro description of the RISC l's instruction set

is contained in Appendix L to give the reader an opportunity

to amplify this brief introduction to Metamicro. This

assembler will transform programs written in RISC's assembly

language into machine code that can be executed by the RISC

1 processor modeled in Appendix K.

Linking/Loader (17)

The user can develop a linker and loader for any target

processor by describing its addressing modes with the

Linking/Loader. The Linking/Loader links the various files

assembled by Metamicro and loads the resulting object code

into the simulated memory. Options are available to specify

different loading algorithms that may be more suitable for a

given simulation.

To generate the actual executable instructions, the

user builds a command program to describe to Linking/Loader

how instructions are modified to resolve label references

made in Metamicro. A Linking/Loader command program is

constructed from five declaration types:

1) instr - informs the Linking/Loader of an

instruction's size and format;

2) format - specifies the instruction subfields that

will be symbolically referenced;

3) mode - describes how referenced labels are resolved

IV-13

into address operands;

4) space - declares available memory space; and

5) transfer - provides the Linking/Loader with

information pertinent to the relocation of instruction

segments.

Figure IV-3 is a generalized Linking/Loader command

program for the Intel 8080 microprocessor.

instr inst [3,1) <8>$

format op =inst [0] <7:6>,
dst = inst[O0]<5:3>,
src = instl0]<2:0>,
rx = inst[0 <5: 4>,
wdl = insto0<0: O>,
wd2 = inst[lI<7:0>,
wd3 = inst[2II(7:0>$

space <0:4095>$

mode case length eqi 3:
wd2 = address$
wd3 = address^-8$

break$
* esac,

default:
wdl = address$

wd2 = address^-8$
break$
esac$

transfer { new
* wdl =0303$

* Iwd2 = address$
*wd3 = address^-8$

length =3$

Figure IV-3. Linking/loader Command Program (19:Chap 2:10)

The Linking/Loader "instr" and "format" declarations are

IV-14

equivalent to those of Metamicro that were presented earlier

and will not be discussed again here.

The "mode" declaration details how addresses are

resolved for a particular microprocessor. The mode

declaration section processes only those instructions that

reference labels. When Metamicro builds an instruction it

tracks the number of labels referenced by that instruction

and places an associated address for each reference into an

address array for that instruction.

The mode declaration is similar to the case statement

of several high level programming languages. The algorithm

of the mode declaration of Figure IV-3 first determines the

addressing mode of the instruction by examining its length.

The 8080 has a single addressing mode, direct address, and

it occurs when the instruction is three bytes long

(19:Chap2:10). Each instruction generated by Metamirco has a

length associated with it and is stored in the variable

"length". If this initial expression is true, the second

word of the instruction (wd2) receives the lower eight bits

of the label's address and the instruction's third word

(wd3) receives the upper eight bits. The "=" means to

logically "or" the expression value on the right into the

identifier on the left. If the expression on the right

exceeds the bit length of the identifier on the left, then

only the least significant bits are or'ed. Because

"address" is a 32-bit field and wd2 is eight, wd2 receives

the eight least significant bits of address. Note that

* IV-15

"address" is the first element in the address array created

by Metamic-o for an instruction referencing a label. The

is the shift operator and the value to its right is the

shift value. A positive shift value signifies a left

logical shift by abs(value) bits whereas a negative value
4

indicates a right arithmetic shift by abs(value) bits. In

the example of Figure IV-3, wd3 receives bits 8-15 of

"address" as a result of the "shift and or" operation. This

technique is frequently used to break large addresses into

smaller instruction words.

The break statement causes the current case statement

to be exited without executing any more statements in the

mode declaration. The current instruction is thus resolved

and placed in the output file. Case statements are

terminated by the keyword "esac".

If the initial case entrance expression evaluated to

false, then the default case is entered and words one and

two of the instruction (wdl and wd2) would receive the

address. This is the case when the label referred to is a

data constant (19:Chap2:ll). L d
The space declaration describes the target processor's

memory space. Linking/Loader allocates applications program

instructions assembled by Metamicro into this space. The

space declaration of Figure IV-3 defines a 4k memory.

During the loading process, the Linking/Loader may

break a group of logically contiguous instructions into

segments and place them into disjoint areas of the target

IV- 16

........................

machine's defined memory space. To ensure that target

machine instructions appear logically contiguous to the

user, when this occurs the Linking/Loader adds a new

statement to unconditionally transfer the program flow to

the disjoint seqments. The Linking/Loader builds this new

instruction in accordance with the format specified in the

transfer declaration.

Linking/Loader places the transfer destination address

into the variable "address" and the user must use this

variable to include the transfer address into the

unconditional transfer instruction. In the example of

Figure IV-3, the Unconditional Jump instruction is used to -

provide logical continuity if memory allocation is not

physically contiguous (19:Chap2:ll).

E-o o i t (13)' ii'

The Ecologist uses the files representing the

descriptions of the system's hardware and software L
components to build the N.mPc simulations. The Ecologist

builds the simulation from a topology file constructed by

the user to describe the interconnections between the system k

components. The topology file describes the total system to

be modeled. Each hardware component of the sytem described

by ISP' models must be compiled before the Ecologist can .

build the simulation. If the simulation includes memories,

the applications programs must also have been assembled by .

Metamicro and then linked and loaded by the Linking/Loader.

The topology file is comprised of five declaration

IV-17

-.- . .- - .- .. . -.-.. . . . -. . .Z . - - ." . - - .- -- '.- - .- '. . .- . . '.? ;c -:,_ .,.-

-- T-' z i- < - '- " -- W 7- r - * -... _ _ . . . , T- .. - -.- -a- - - - . n- v- r- -. ww - - -

sections which may or may not be included depending on the

nature of the ISP' model.

1) Signal - A signal is the name of the connection that

exists between ISP' ports. The value of a signal is the

logical "or" of all the ports tied to it. An example of a

signal declaration is:

signal ADDRESS(23) , DATA(16) , RW;

Iq
This declaration begins with the keyword "signal" and

describes a 23-bit address bus, 16-bit data bus, and a

read/write control line.

2) Processor - For each ISP' output file comprising the

simulation, a processor declaration must exist. The

co(following example depicts a processor declaration.

processor cpu = "M68000.sim";

The keyword "processor" begins the process declaration. At

simulation time, the ISP' hardware model will be refered to

by the name "cpu". M68000.sim is the UNIX file containing

the ISP' compiled output.

3) Time Delay - If an ISP' model has used a timed delay

call, the Ecologist will expect a time delay declaration for

that module. The time delay declaration is used to give the

relative delay times a real time analogy. The basic unit of

simulation time is one ns. An example of the time delay

declaration is:

time delay 60 ns;

IV-18

.. .';'." .- :'." .-.. .'..-,'.' .,' . ' '.' ' . - ~ ~ - '-.. -v .-.-,-,-

.bb.'.-W -

This declaration will cause each unit of delay in the lSP'

model to correspond to 60 ns.

4) Connection - The user connects ISP' module ports to

the declared signals via the connection declaration. All

ports in an ISP' module must be connected to a signal. For

example,

connection abus = ADDRESS,
dbus = DATA,

rw = R_W;

would connect the ports abus, dbus, and rw to the signals

declared earlier. Note that ports and signals must be the

same width to enable connection.

5) Initial - The initial contents of ISP' memories are

specified by the initial declaration. Each memory image

produced by Metamicro, Linking/Loader, and SMP action is

associated with an ISP' model of the supporting memory via

the "initial" declaration. In the following example, the

memory image "sortimage" (sort algorithm) is bound to a

memory named "mem":

initial mer = sortimage;

Figure IV-4 illustrates a topology file that describes a

simulation comprised of a Motorola 68000 with an external

memory that will be loaded with the sorting algorithm

"sortimage" introduced above.

IV- 19

• • °..-

~.......
0 4 J* ~ C. . . . -- -* * * *

signal
ADDRESS(23), ! Address Bus
AS, ! Address Strobe
DATA(16) , ! Data Bus
UDS, ! Upper Data Strobe
LDS, ! Lower Data Strobe
DTACK, ! Data Transfer Acknowledge
R_W, ! Read/Write
FC(3); ! Function Code

processor cpu = "m68000b.sim";
time delay 60 ns;
connections ADDRESS = ADDRESS,

AS = AS,
DATA = DATA,
UDS = UDS,
LDS = LDS,
DTACK = DTACK,
RW = RW,.i
FC = FC;

processor mem = "m68000bm.sim";
time delay 100 ns;
connections ADDRESS = ADDRESS,

AS = AS,
DATA = DATA,
UDS = UDS,
LDS = LDS,
DTACK = DTACK,

FC = FC
initial mem = sortimage;

Figure IV-4. Motorola MC68000 Topology File

Simulated memory Processor (13:10,11)

The Simulated Memory Processor (SMP) is responsible for -- -

preparing memories for simulation. If the simulation uses

memories, the Ecologist collects a list of the memory files

specified in the "initial" declaration of the topology file

and passes it to the SMP for processing. The SMP's two

major functions are memory image processing and global label

collection.

The Linking/Loader produces a memory image file

IV- 20

"---.--"" - - - -"--" - "-- - -" -.-. ...-.--. ." ."-' ' -" •' -'.'." ." .*.'"
•

*-
'

. . -. ---. '": .''- -' '""

representing the linked output of up to ten Metamicro

assembled input programs. SMP takes this file and reformats

it into fixed size pages and at the same time produces a

page table. The user can specify the page size. Depending

on the memory locations addressed, pages are swapped between

the simulation program and the Simulated Memory Managers

over UNIX pipes.

All labels that are declared as global in Metamicro

source programs are placed into a common file by the SMP for

use during the simulation. At runtime, these global labels

may be used to reference addresses in the memory being

simulated.

Runtm (14)

The user executes the simulation through the Runtime

package. The Runtime's Command Interpreter(CI) provides the

interface between the simulation and the user. This process

accepts commands from the user to examine or modify the

simulation states, to control the execution of the

simulation, to set execution breakpoints, or to establish

mechanisms that allow the automatic collection of data from

a running simulation (9:4).

The user begins a simulation by entering the simulation

program name produced by the Ecologist. After an

introductory message, the CI issues a "1" prompt enabling *.

the user to enter a command. Several of these Runtime
I4

commands are introduced below. For a complete and more

detailed list, refer to the N.mPc Runtime User's Manual.

IV-21

..

-- -' - '.3 .LL -L' .,_.L _.'_,"'. _. -.L "-,t . ..
' _ ,

.. .-. '.. " " ,' . ". . . """, . . "-"-- . " " --. • . .. ' .-.. . " .. . -. . ,--

1) examine - the examine command is used to display the

contents of a single state, port, or memory location. For

example,

examine cpu:abus

will display the current value of the abus port from

the ISP' process cpu. Note that the ISP' process name will be one

specified in the topology file.

2) deposit - deposit allows the user to write a value

into a state, port, or memory location. For example,

deposit 0b00011011 cpu:ir

will place the binary value 00011011 into cpu's ir

O ±register. Note that 0b specifies that the value that follows will

be binary.

3) states - while "examine" operates on a single state,

the states command allows all states for a given ISP'

process to be examined. Example:

states cpu

This command will display the contents of all

registers on board the processor "cpu".

4) ports - performs the same function for ports as

states does for registers.

5) memory - memory is used to examine multiple memory

locations. For example,

IV-22

vy W. IF wl.- - .

memory cpu:mem 100 110

will display locations 100-110 of a memory named "mem"

that has been declared in the ISP' process cpu. Note that numbers

beginning with 1-9 are assumed to be decimal.

6) display - the display command is used to display the

contents of a state, port, or memory location when it is

written to during a running simulation. For example,

display cpu:ir

will cause the contents of the register ir to be

displayed each time it is written to. Also included in the

display will be the current simulation time.

7) bkpt - the bkpt (breakpoint) command causes the

simulation to stop when a particular time or condition

exists. For example,

bkpt 1250

will cause the simulation to stop in 1250 ns so that

the user can monitor the simulation.

8) repeat - if the repeat command prepends bkpt then

the breakpoint will be continually repeated. For example, -i

repeat bkpt 1250

will cause the simulation to stop every 1250 ns.

IV- 23
.-. --..,

9) run - the run command starts a simulation executing

S".or restarts a stopped simulation.

10) quit - the command quit terminates a simulation.

Local System Access

Appendix A provides the interested reader with

information to supplement departmental N.mPc documentation

packages to allow access and use of the system as locally

installed. Included is:

1) a functional description of each of N.mPc's major

components and simulation files,

2) an organizational representation of each N.mPc

component along with their input and output files,

3) instructions for accessing the system,

4) a listing of N.mPc's directory structure that

includes its microprocessor library, and

5) an example of a N.mPc simulation output product.

-- a

IV-24
IV-24L

.I

model the MC68000 for simulation.

ISP' could be used to construct an equivalent model of

the 68000 basically by ignoring some of its advanced -1

features and instead using its rudimentary operations to

create the necessary mechanisms to emulate CDL's control,

timing, and parallelism capabilities. Prior to outlining

the adjustments necessary to create an equivalent ISP' model

from the CDL model provided, these two CHDL's will be

compared and contrasted.

CDL/ISP' Comparison

Although both ISP' and CDL are languages capable of

describing computer components and hardware operations at

the RTL (computer organization and design), there is a

fundamental difference between the two. CDL is a.

"nonprocedural" language. Nonprocedural languages attach no

meaning to the lexicographical ordering of the statements

describing the operation of the system (2:138).

Microstatements are associated with a label that describes

the conditions in which they are executed. As an example,

consider the following CDL execution statements extracted

from the MC68000 model (8:VI-17):

/ctrl*K(4)*P(1)/ PFR <- EXDBUF
/ctrl*K(4)*P(2)/ ASN <- 1, LDSN <- 1, UDSN <- 1, T <- 0,

IR <- PFR, PC <- PCadd2

The label /ctrl*K (4)*P(1)/ specifies the conditions in which

the microstatement PFR <- EXDBUF is performed. Reordering

V-2

these two execution statements would have no effect on the

timing of the microoperations. Whenever the conditions of

the label are satisfied, its microstatements are executed.

In contrast, here is the ISP' equivalent:

if ctrl and K eql 4

wait (Pl:lead);
PFR = EXDBUF;
next;
wait (P2:lead); .
ASN = 1;
LDSN = 1;
UDSN = 1;
T= 0;
IR = PFR;
PC = PC + 2;
next

(Being a "procedural" language, the sequential ordering

of ISP' statements implies an explicit ordering of its

activities, and the activation of activities is conditioned

by the completion of the preceding ones (2:138). If the

conditions of the "if" statement are satisfied, then the

microstatements enclosed in parenthesis are executed. Also,

should the order of the two "wait" statements be changed,

then the execution of their following microstatements will

be reversed. This is an undesirable result since we want

PFR (prefetch register) to receive EXDBUF (external data

buffer) before it is loaded into IR (instruction register).

In CDL, there is no provision for the partitioning of a

hardware description into blocks of related execution

,. statements to reflect a particular organization or hierarchy

V-3

of activities (2:144). Execution statements have a

sequential appearance with two columns formed by their

labels and microstatements (2:138). ISP' descriptions follow

the structure of C programs and possesses many of its

high-level programming constructs (e.g., case, do-until,

while). As such, it does not impose a rigid repetitive

design style upon the user. The above example also

highlights several other major differences between CDL and

ISP'.

Because CDL labels identify the conditions under which

their associated microstatements are performed, there is a

clear delineation between data and control. Special control

variables separated by slashes specify the conditions

necessary to execute the microstatements. Sequencing

through microstatements is accomplished by modifying the

control variables in the label. If the label's control

expression evaluates to true, then its accompanying

microstatements are executed, otherwise they are ignored.

In contrast, ISP's conditional statements form the

equivalent of labels. Delinear ambiguity exists between the

conditional expressions representing control, and their

dependent microstatements. The conditional test is

performed and the following microstatements are either

executed or skipped depending on the outcome. Additionally, - -

in CDL, timing is provided by including in the label a

specialized control component, the clock. The following

example from Hamby and Guillory's model declaration section

V-4

illustrates clock usage:

Clock, P(1-2) $ two phase clock

This clock statement declares a two-phase clock to provide a

two-phase clock cycle for their MC68000 model (4:6). As a

result, clock pulses P(l) and P(2) alternate values between

one and zero in accordance with a frequency specified by the

host simulation package. Action by this independent

activity automatically modifies label control expression to

direct the timing of microstatement executions. ISP' has no

such clock structure. As with control, the timing of its

microstatements are provided by conditional statements in

conjunction with several specialized monitoring facilities

such as the "when" process and "wait" statement. Below is

an example of a wait statement taken from the previous ISP'

example.

wait (Pl:lead);
PFR =EXDBUF;

In this example, the wait statement will cause the process

to halt execution until the port signal "PI" transitions

high. The microstatements following it will not be executed

until this occurs. Similarly,

when(ck:lead)

address = adr-reg;
read = lo

V-5

will cause the series of statements associated with the

"when" process to be executed when "ck" transitions high.

However, these two monitoring facilities can only be

used in conjunction with external signals (port signals) and

cannot be triggered by local state change (change in the

state of an internal register). This requirement prohibits

their use when a single hardware component is modeled.

ISP' also provides a "delay" statement to cause a

process to wait a specified number of time units before

resuming. The time specified is independent of real time,

rather it is a simulated time that corresponds to the real

time in the system being simulated. The delay statement is

not used to direct the execution of microstatements but is

used to specify the simulation time in which a

microstatement is executed. Whether a microstatement is

executed or not is dependent upon the outcome of prior

conditional statements.

Another of the specialized structures available in CDL

but not found in ISP' is the "decoder". As does its real

word counterpart, CDL's decoder translates the binary value

of its inputs into a single output signal (4:6). For

example, the MC68000 decoder statement

Decoder, K(O-255) = T(O-7) F

specifies a 8 x 256 decoder, K. Its eight inputs are

attached to register T (which had been previously declared);

thus, the binary value of T will determine which of K's 256

V-6

- .

output lines becomes high. Decoder output is often used in

a label's control expression to direct the sequencing of CDL

microstatement execution. Another example taken from the

MC68000 CDL model depicts this process.

/ctrl*K(1)*P(2)/ T <- CountupT
/ctrl*K(2)*P(1)/ IF (DTACKN = 0) THEN

(T <- CountupT)

From this example, it is easy to see that the output of

decoder K controls the seqencing of these two

microstatements. Since the decoder K is attached to

register T, when the operator "Countup" in the first

microstatement increments register T, K(2) will become high

and provide the potential for the next microstatement to be

executed. While such a combinatorial circuit is not

provided by ISP', it can be duplicated by the following

microstatement:

K [T]'

if registers T and K have previously-been declared as

follows:

state T<8:0>,
K[0:255] ;

In this example, T has nine bits because the most

significant bit is interpreted by ISP' as the sign bit.

A statement found in ISP' but not CDL is the "next"

statement. As mentioned in the previous chapter, the next

v-7 Li
*-**~-----*..CA

statement forces sequentiality. All assignments preceding

it are performed concurrently. In a CDL execution

statement, all microstatements associated with the statement

label are executed concurrently. Sequentiality is achieved

via decoders and clock pulses in the label's control

expression. Similarly, ISP' uses its next statement to

support both sequential and concurrent operations. By

following a group of assignment statements with a "next"

statement, sequential execution of concurrent statement

groups can be achieved.

Another special CDL statement not provided by ISP' is

the "switch" statement. It is used to represent the manual

switches of a computer's control panel used by the operator

LO (4:4). The declaration

Switch, POWER(ON,OFF)

models a power switch that can either be on or off to

control power-up/power-down microoperations. If in this

example,

/POWER(ON)/ R <- 0, A <- 1

the simulated power switch is set on, then the accompanying

microstatements will be performed. -

Finally, there are several structure declarations that

are basically the same in both ISP' and CDL, but they

possess minor differences worth identifying. First, a

memory is declared in ISP' by specifying the keyword

V-8 L"'

........ d...~~c.. --. ..-].-......

"memory" followed by its identification and size

specification. For example,

memory Mem[0:4095]<7:0>;

describes a 4 kbyte memory identified as "Mem". An

equivalent CDL memory statement would be

Register, MAR(O-12)
Memory, Mem(MAR) = Mem(O-4095,0-7)

Note that the CDL declaration specifies a memory address

register (MAR) via subscript. This is because each memory

is associated with a specific address register and it must

be used to address a given location (4:4). In contrast, ISP'

memories are not bound to a specific register. It enables

its users to arbitrarily select any of its available

registers to index into memory at any given time.

To represent register subfields, CDL uses the

"subregister" statement while ISP provides a "format"

statement. For example, here are statements in both CDL and

ISP' to identify the subfields of a instruction register:

ISP' '-'

state IR<0:15>; r
format OPCODE = IR<12:15>,

OPERI = IR<6:II>,
OPER2 = IR<0:5>;

CDL

Register, IR(O-15)
Subregister, IR(OPCODE) = IR(12-15),

IR(OPERl) = IR(6-11),

V- 9

L W Wv -':-

IR(OPER2) = IR(0-5)

The major difference is that CDL does not allow independent

naming of its subregisters. The parent register must

precede the subscripted subregister name (4:3).

One final item worth mentioning is the difference

between ISP' and CDL bus structures. A bus declaration in

CDL such as:

Bus, IABUS(0-31)
EXDBUS(0-15)

specifies a 32-bit internal address bus and a 16-bit

external data bus. However, this declaration differs from

the "register" statement only by their keywords. The

declaration

Register, IABUS(0-31),
EXDBU S (0-15)

would provide functionally equivalent model components. The

capabilities of the "register" and "bus" statements are the
." .-

same; each provides a storage element capable of being -

modified by an assignment operation.

ISP' has no special statement to model internal data

buses. Therefore, as in the example above, registers would '

be used in their place. But ISP' does have a declaration to -"-

represent an e)-ternal data bus; the "port" statement. The

"port" statement does have special significance, however.

Example:

V-10

.-. d •-* .- *. -. *.. *.** *

" '- - * -°r r " - ' " "r - - - ' - r"r' m V y l - " - -". • . . .v . , - w'" 4 . =r 4- -- . r w -- i-- . - .- -. . --

port EXDBUS<0:15>;

declares a 16-bit external data bus named EXDBUS. The port

EXDBUS provides a means of communicating with external ISP'

processes that comprise the system being modeled. Ports are

"connected" to the ports of other ISP' components to model a

system's communication and control links.

Effects Of Language Differences

Having described the basic inherent differences that

exist between ISP' and CDL, it now becomes necessary to

point out the effects of these differences on the

CDL-to-ISP' model transformation process. As mentioned in

Chapter II, the foremost objective of the transformation

* * process is to produce an ISP' model that is functionally

equivalent to its CDL counterpart. An additional

self-imposed constraint was to attempt to create as much

one-to-one correspondence between CDL and ISP' statements as

possible to make model equivalency more readily apparent and

aid in the model development and debugging process.

Similarities in the declaration statements of both CDL

and ISP' made transformation of hardware component

statements relatively easy and straightforward. However,

the transformation of the microstatements was not as direct:

the principal reason being the significant differences that

exist in the way timing and control information are

represented. In this section, differences in the model

declaration sections, as well as those major differences in

V-11

- w-. - -

S7

the representation of timing and control information that

had a broad impact on the way in which all instructions were

transformed are identified.

Registers. The declaration sections from both the

MC68000 CDL model and the resulting ISP' equivalent are

presented in Appendix B. The first minor change made during

the transformation was that the address and data registers

were declared as an array of registers in the ISP' model

rather than by individual statements. Both have equivalent

results; the ISP' declaration only reduced the number of

register statements (CDL has an equivalent capability but

was not used). One additional difference is that CDL uses

the convention that the most significant bit is determined

by the size of its numerical bit designators. In ISP' the

most significant bit always occupies the leftmost position

regardless of its numerical designator. For example,

CDL ISP'

PC(O-31), PC<:31>,

in the above declarations the most significant bit of the

CDL register declaration would be PC(31), while it would be

PC<O> for the ISP' declaration. To compensate for these

differing conventions, ISP' registers are declared with its

register bounds reversed so that microstatements referencing

register bit positions would not have to be changed (i.e.,

PC<31:0>). In this way, a reference to bit 31 of PC would

specify the most significant bit in either language model.

V- 12

,..-.%'. .. n2%

Subrecisters. The next major difference occurs in the

subregister statements. Since ISP' format statements allow

the independent naming of register subfields, the

parentheses enclosing subregister subscripts have not been

included in its subregister declarations. For example, the

CDL declaration

PC(LOW) = PC(O-15),

becomes

PCLOW = PC<I5:0>,

in ISP'.

Buses. As mentioned earlier, the ISP' port is provided

I lip to allow communications with other external components of

the system being modeled. The CDL external bus declarations

(DBUS and ABUS) do not have a special simulation function,

but only serve to represent a bus structure. Even though

these external buses are declared as ports in the ISP'

description, they are unconnected and nonfunctional since

there are no external system components. And since there

are no ISP' structures representing internal buses,

equivalent register statements are used to describe internal

buses in the manner of the earlier example (page V-10).

Decoders. Hamby and Guillory used CDL decoder

statements to decode the instruction register to provide the

control information to trigger the microstatements necessary

to execute the instruction (8:VI-8). They are:

V-13

Decoders, A (0-3) =IR(14-15),
B(0-3) =IR(12-13)
C (0-7) =IR (9-11)
D (o-7)=IR (6-8),
E (0-7) =IR(3-5) ,
F (o-7) =IR (o-2) ,
G- (-15) =IR(8-l) ,
H (0-3) =IR(6-7)

The.Motorola's MOVE.W DI,D2 instruction can be used to

demonstrate their use. Since this instruction's binary

representation is 0nllln0100 n00l_1, the instruction

register's portion of the label's control expression becomes

": ~~~/A(0) *B (3) *C (2) *D (0)*E (0)* (I) * ... -

Since decoder structures do not exist in ISP, those above

were eliminated from the ISP' model. Instead, the

Lm instruction register decoding process was described by an

ISP' "case" statement that used the instruction register as

the evaluated expression. As an example, the ISP' case

statement

case IR
ObOO11010000000001: MOVEWD1D2
ObO100111011010000: JMPAO

esac

would execute the procedure MOVEWDID2 or JMPA0 depending on

the binary value in the instruction register IR. The

procedures MOVEWDID2 and JMPAO would contain the

microstatements necessary to accomplish their respective

instructions. This example is the initial instance where

the differences in the handling of control information in

V-14

. . . .° ..-. .

nonprocedural CDL requires significant changes during the

development of its ISP' equivalent.

Clock. ISP' does not support CDL's explicit two-phase

clock declaration used in Hamby and Guillory's 68000 model.

Because of its clock capability, CDL is best suited for

synchronous systems while ISP' is oriented towards

asynchronous systems (2:148). Timing signals necessary for

processor operation in ISP' are normally provided by an

externally-modeled clock forming part of a system. The

absence of this independent, specialized timing component

was also a major cause of model differences.

There were basically two approaches that could be used

to circumvent this difference. First, an external clock

could be modeled that provided alternating phase-one and

phase-two signals. These signals would be received via

ports to support the activation of "wait" statements. As an

example, listed below are several execution statements

extracted from the CDL model of one of the 68000's MOVE

instructions.

/ctrl*K(2)*P(1)/ IF (DTACKN=0) THEN
(T<-CountupT)

/ctrl*K(2)*P(2)/ T<-CountupT
/ctrl*K(3)*P(1)/ IF (DTACKN=l) THEN

(T<-CountdnT)
/ctrl*K (3) *P (2) / EXDBUF<-DBUS,

T<-CountupT

Each label's control expression contains three elements of

timing and control. "Ctrl" represents the decoded contents .

of the instruction register used to select the execution

V-15

.- - . . -- -

* - - - - - - - - - -- -- -.. - .,

statements for a particular instruction. The timing and

sequencing of the execution statements for that instruction

are governed by the "K" and "P" elements. The K elements

are timing signals from a clock-cycle counter. These

signals are created by declaring a 8 X 256 decoder per the

earlier CDL example:

Decoder, K(O-256)=T(O-7)

The binary value of T will translate into one and only one

of K's 256 output signals that can be used to count clock

cycles and sequence through CDL execution statements.

Decrementing the value of the control register T via

the "CountdnT" operator also changes the corresponding state

of K's control signal output. In this way, one is able to

recover a clock cycle. The above CDL routine represents a

loop that allows the processor to wait for DTACKN to become

low. CDL's ability to segregate control and data, while at

the same time enabling control to be modified via its

microoperations, is a major stumbling block in the efficient

transformation from CDL to ISP'. With ISP', the control

provided by K must be handled by conditional statements that

become part of the ISP' microstatements themselves.

Efficient transformation is also exacerbated by the fact

that alternating phase-one and phase-two timing signals are

'< automatically provided by an external clock to provide an

additional level of sequencing within each clock cycle.

Assuming an externally modified two-phase clock, the ISP'

V-16

.t)x i

7.'.-.

model that follows is equivalent to the previous CDL

routine.

case ctrl

decoded instruction 1: 1st instruction's routinej
decoded instruction 2: 2nd instruction's routine

decoded instruction n: last instruction's routine
esac;

instruction n's routine :

while K<2>

wait (phil:lead);
if not DTACKN

T = T + 1;
delay(l)

while K<2>

wait (phi2:lead);

T = T + 1;
delay(l);
while K<3>

wait (phil:lead);
if DTACKN

T =T -1;
delay(l)

until not DTACKN;
while K<3>

wait (phi2:lead);
EXDBUF = DBUS;
T = T + 1;
delay(1)

....... ~.* -.V -17.*

Clock and Clock-Cycle Counter Representation. From the above

CDL and ISP' examples, a couple of facts emanating from the

differences between procedural ISP' and nonprocedural CDL

become clear:

1) the models become dissimilar in appearance, and the

equivalency of the models becomes obscured by differences in

the method in which timing and control signals are

represented.

2) the flow of execution of the ISP' model is more

difficult to follow because of the infusion of the

conditional constructs (i.e., while, wait, do...until) into

the microstatements in order to represent the timing and

control.

These elements have an adverse impact on the process of

establishing model equivalency that is essential to

validation of the models developed by Hamby and Guillory.

Such diversity would also hamper attempts to locate causes

of differences between the simulation results and the

documented logic analyzer output.

One fact not made clear by the above examples is that -

the ISP' simulation will be much more complex because of the

additional modeling of the clock-cycle counter and two-phase

clock components. Modeling these devices, and the

synchronization that must be achieved between the resulting

system components, significantly increases the complexity of

the simulation's construction.

An alternate ISP' representation of the above sequence

V-18

: -A

that includes an internal two-phase clock and control
register is depicted below.

T 2; next
Phil = hi;
phi2 = 1o;
while DTACKN eql hi

next;
Phil = 1o;
phi2 = hi; next
T = 3; next
Phil = hi;
phi2 = 1o; next
T = 2

.b ..

next;
T = 3; next
Phil = 1o;
phi2 = hi;
EXDBUF = DBUS; next

LoL

One first notes that the clock-cycle counter K is not

present. Although it better depicts the actual operations

taking place within the microprocessor, it has been removed

because it is nonessential to the model's accuracy. The

condition K<2> is equivalent to the condition T eql 2. Thus

the elimination of decoder K resulted in a simpler model by

removing an unnecessary level of indirection.

The wait and while statements associated with the

control signals have also been eliminated. This was

achieved by modeling an internal two-phase clock and

clock-cycle counter. The processor no longer relies on

V-"19

because it-i noeseta to th.odlsacuac.Te-:'

condi . nu. ~e rtionK<2 i eqialn to,* the* .* conito Te . Ths,.'S'

*x - ". - -- "-J "" ~J. . .--- - n- -"'v .=r ,
-- ' * C---. -. - ,,,*-. - ' --'

external components to provide these signals. It provides

them itself by including statements that represent the

required clock states at appropriate points in an

instruction's microstatement sequence. Thus, rather testing

for K<3> and then waiting for phil, it directly sets T = 3

and phil = hi and then executes the microstatements

associated with phase one of clock cycle three.

By internally modeling these components, the speed of

the simulation increases because the process representing

the microprocessor is not idled by the delay and wait

statements. These statements transfer simulation execution

to the other system components by placing the 68000 model in -

the "wait" state and then "running" the process representing

either the external clock or clock-cycle counter as

appropriate (6:3). This continual process-swapping severely

slows the simulation. Also, because the frequency of the

68000's host clock was not reflected in the original CDL

model, the delay statements become unnecessary. The models

are functionally equivalent, only the later does not reflect

independent timing and control signals. The ISP' example

also assumes a correctly functioning clock and control

register, which is acceptable when not modeling hardware

failure.

This representation brings the CDL and ISP' models more

in-line with one another. In the ISP' model, separate

timing and control signal statements now lead their

corresponding microinstructions. This representation makes

V-20

equivalency easier to establish and greatly simplifies

development of the simulation system. An external clock and

clock-cycle counter no longer has to be modeled and

interfaced with the MC68000. For these reasons, the second

ISP' modeling approach was selected. Rather than strive for

the segregation of control and timing information from the

microstatements as is done in the real world and handled so

nicely by CDL, these elements are internally modeled to
4

enhance model semblance and reduce simulation complexity,

while at the same time preserving the functional accuracy of

the MC68000 model.

Switch. Because ISP' does not support a "switch"

statement, it was modeled with a single bit register named

"SWITCH" that is either set to high to simulate system power

on, or low to simulate power off.

Model Changes

Now, modifications made to the model that are not the .

result of the inherent differences that exist between CDL

and ISP' are presented. These changes or additions were

made to enable a functioning simulation, initialize the

model's storage components, or to modify component

declarations. Changes peculiar to a particular instruction

are discussed in the next chapter which analyzes the results r

of the model's simulation.

Memory Responses. Upon reexamining the earlier CDL

example,

V-21

•,,-. .,, -. ... -. .,.,, ". '. . " " " "" "" "' " " "" ' " " " " " " " " " " " d, Jk'

/ctrl*K(2)*P(1)/ IF (DTACKN=0) THEN
*(T<-CountupT)

/ctrl*K (2) *P (2) / T<-CountupT
/ctrl*K(3)*P(1)/ IF (DTACKN=l) THEN

(T<-CountdnT)
/ctrl *K (3) *P (2) / EXDBUF<-DBUS,

T <-CountupT

one notices that during the simulation the value of DTACKN

must be low for these execution statements to complete, else

the routine would be caught in an infinite loop executing

the second and third CDL execution statements. Because

Hamby and Guillory did not intend to externally model the

ECB's memory, the activities associated with that memory's

processing of the data and control signals that exist

between it and the 68000 (i.e., RW, ASN, LDSN, UDSN, ABUS,

DBUS) do not appear in their CDL model of the 68000.

However, in order to produce a functioning simulation, the

memory's responses to actions initiated by the 68000 must be

represented. Again, one becomes faced with the decision to

either externally model the ECB's memory to represent the

real-word environment, or as was done with the timing and

control Iignals, place the memory responses in-line with the

68000's microinstructions at points that coincide with the

results observed by Hamby and Guillory on the logic analyzer

and documented in Chapter VI of their thesis.

For example, according to the logic analyzer output for

the MOVE.W Dl,D2 instruction, the ECB's memory placed the

instruction requested during its prefetch cycle on the data

* bus during phase one of clock cycle three. It also took

DTACKN low at that time indicating that valid data was on

V.-__________________ V-2*,"

.- - -.- y- - -T 0 7 - , " ",- 7. W.W . W .-

the bus. Although the CDL model does not reflect the

memory's responses, they must be modeled somewhere to

provide a working simulation. To simplify the construction

of the simulation, memory responses were inserted in-line

with the code in accordance with the logic analyzer

results. This does not detract from the model's accuracy.

Accordingly, the ISP' model becomes

T = 2; next
phil = hi;
phi2 = 10; -
while DTACKN eql hi

next;
phil = 1o;
phi2 = hi; next

(.T = 3; next
phil = hi;
Phi2 = 1o;
DBUS<15:8> = M[ABUS];
DBUS<7:0> = M[ABUS + 1];
DTACKN = 1o; next

T - 2

next;
T = 3; next
phil = 1o;
phi2 = hi;
EXDBUF = DBUS; next

Now the memory location's contents specified by the address

bus (ABUS) is placed on the data bus (DBUS) and DTACKN is

taken low. This will enable the MOVE instruction to

prefetch the next instriction and proceed with its

execution. Memory reads or writes requiring wait states

V-23

W:- e -_ I?_l - .° .

.* * * ... - - - - - - - - -------_ . -.- . w _ . ~ ?. . w E w ~ ~ . . _. m . ._r w .* ----.----.- ---u- --

were modeled by including a "wait-cycle" counter in the loop

to accomplish the data transfer on the correct clock cycle.

EXABUF Size. Hamby and Guillory declared a 16-bit

external address buffer with the "EXABUF(O-15)" statement.

Because the MC68000 has a 23-bit address bus, the buffer

size was enlarged to 23 bits with the following ISP' port

declaration:

EXABUF<23:i>,

ABUS Utilization. In none of the instruction sequences

did Hamby and Guillory explicitly move the contents of the

external address buffer (EXABUF) to the address bus (ABUS).

In practice, when the data is loaded into EXABUF, its

contents would automatically appear on the address bus (if

ABUS had been enabled). Subsequently, there is an implied

transfer of an address to the address bus when EXABUF is

loaded. However, since the CDL bus declaration does not

provide any physical relationship between any of its

declared buses and system registers, such a transfer must be

accomplished explicitly by the statement "ABUS = EXABUF".

This additional address transfer allowed a more accurate

representation of the memory addressing mechanism. Now,

rather than identifying a memory location with the ISP' r
statement

DBUS<15:8> = M[EXABUF];

the statement

V-24

..

DBUS<15:8> = M[ABUS];

can be used and more accurately describes the memory

addressing process.

Memory Declaration. Hamby and Guillory also specified

an eight-megaword memory with the declaration "Memory M() =

M(0-8388607,0-15)" (8:VI-8). This corresponds to the

MC68000's maximum physical addressing range. However, to

more accurately represent the ECB environment, the memory

size was reduced to 32 kbytes with the declaration "memory

M[0:32767]<7:0>" without affecting the model's functional

accuracy.

Hiah Impedance Representation. The entire data and

address buses were placed in a high state to simulate their

high impedance states whenever not being used by the 68000

or its memory. Although not modeled by Hamby and Guillory,

this matches the logic analyzer's output. The ISP'

statements

DBUS =Oxffff;

ABUS = Oxffffff; I

were added to the ISP' microstatements as needed to place

the data or address bus in a high impedance state whenever

appropriate (i.e., DBENABLE, ABENABLE = lo). Likewise, the

ECB's empty memory locations are also in a high state.

Therefore, simulated memory locations immediately following

the JMP (AO) instruction of all test routines are L

initialized to the high state to meet the observed results

V-25

...................... -"."V*- .

,' . • .' ' . . "'° ,e . °. . .°°. . °o.
°
° " •o• ° -.-. ° - •°-.

-
,- •

°
. "°

•
• .' •

"
•

(unused memory locations are set to a low state by N.mPc).

Power-On Sequence. A power-on and initialization

routine (poweroninitialize) was added to the model to:

1) accomplish the 68000's power-on sequence as

described by Heamby and Guillory (8:VI-9),

2) initialize appropriate registers prior to each test

routine as specified by Hamby and Guillory in Appendix A of

their thesis,

3) initialize the data and address buses to the high

impedance state,

4) initialize the 68000's active low memory control

signals to the high state, and

5) initialize memory to the high state.

Additional Simulation Components

Not relevant to the MC68000 microprocessor model's

accuracy, but important to the development of the simulation

package, is the development of Metamicro and Linking/Loader L

programs. In addition to the model of the 68000 processor,

a description of the 68000's instruction set had to be

developed to transform the MC68000 assembly language test

routines into executable code for the processor model. A

loader is needed to initialize the 68000's internal memory

with this code. Because N.mPc's library included programs

that could be modified to accomplish these functions, they

were used rather than undertake an extensive and redundant

development effort. The Metamicro and Linking/Loader

descriptions used were developed by Samir Shah while a

V-26

graduate student at Case Western Reserve University and are

included in appendices D and E respectively with the

modifications described below.

Program Loader. One of the changes made to Shah's

Linking/Loader description was an alteration of the "space

statement. To reflect the fact that all instruction test -

routines were loaded into the ECB's 32-kbyte memory

beginning at address location 1000 hex, the space

declaration for them was changed from nspace<0:4095>$" to

"space <4096:32767>$". Because the exception processing

routines required use of lower memory to support the vector

table and system stack area, their Linking/Loader

description's space declaration became "space <0:32767>$".

- Program location was then accomplished within Metamicro. To

- support the use of labels within a program, the "mode"

declaration was enhanced with the following statements:

case Opcode eql 6:
Ii = address-. -2$
break$

esac,

And finally, the assignment "I0 = Ox4d $" within the

"transfer" statement was changed to "I0 Ox4e $" to

accurately represent the JMP instruction's format.

MC68000 Assembler. Hamby and Guillory initialized bit

13 of the status register (mode selection bit) to zero with

the priviledged instruction "AND.W #$DFFF,SR" to indicate

the user mode. Because Shah did not model priviledged

V-27

instructions in his Metamicro description of the 68000, this

instruction was not included in the early simulation test

routines. Instead bit 13 of the status register was set to

zero in the power-on and initialization routine without

model degradation because the 68000's output signals were

only examined when the instruction of interest was executing

and not during the execution of the AND.W instruction.

Since this instruction was omitted from the test routines,

address register A[O] was loaded with 1000 hex instead of

1004 hex to enable the JMP (AO) to function correctly. Once

PMetamicro was mastered, Shah's Metamicro description of the

68000's instruction set was modified so it could assemble

the "AND.W #$1000,SR" instruction. As a result, some later

routines include this instruction. In those that do, the PC

and A[0] are initialized to 1004 hex in the instruction's

ISP' description. These routines also use the later version

of the modified Linking/Loader program.

From the test routines in Appendix D, one notes that

basic differences exist between them and the standard

MC68000 assembly code. They are:

1) the operand's size specification is segregated from

the instruction mnemonic,

2) prefixes are incuded to specify each operanc's

addressing mode (special symbols such as "#" and "$" are not

recognized by Metamicro),

3) all operands are separated by commas, and

-. 4) parenthesis surround an instruction's operands.

V-28

7 D-ft64 293 THE SINULTION NO ALYSIS OF R RTL OUE OF THE V2
MOTOROLA "C6S009 NICROP..(U) AIR FORCE INST OF TECH

~~U S RIGHT-PATTERSON AFS OH SCHOOL OF ENOI. C A BAXLEY

UNCLASSIFIED DEC 84 AFIT/GCS/ENO/04D-2-VOL-1 F/O 9/2 M

U. 281.

k - n o -= I .- . .

U-p1.
-36

111111-25

MICROOPY ESOLTIONTESTCHA.

- -\.N

These changes are mandated by Metainicro macro-oriented

structure.

V-29

VI. Simulation Analysis

Introduction

An ISP' model was constructed and then simulated for

each CDL instruction or exception model developed by Hamby

and Guillory. In addition to the MOVE (16 variations), JMP,

ADD, BEQ, and BTST instructions, they also included the

Illegal Instruction and Address Error exceptions. The

results of each simulation were carefully compared with the

logic analyzer data tabulated by Hamby and Guillory in

Chapter VI of their thesis. Differences were analyzed for

their causes and they in turn were evaluated for their

severity. A difference's impact on the validity of this

approach to microprocessor modeling could be gauged in terms

of the answer to the following question: could the noted

difference be explained?

Regardless of their numbers and type, abnormalities '

whose causes could be isolated, could also be eliminated by

correcting either the model or logic analyzer output data as

appropriate. Although it is possible to model unexplained

(but predictable) behavior, many differences (especially

those that are repetitive) that cannot be satisfactorily

F interpreted would strongly suggest that this particular

approach is not practical when a highly accurate model is

the objective.

Because there were no differences that were

unexplanable, the results of the simulations' analyses

VI-l

indicate that the models developed by Hamby and Guillory

accurately describe the MC68000's behavior when processing

the above instructions and exceptions. Differences that

were considered major (primarily because of their

repetitiveness), centered around the state of the address -4

and data buses (ABUS and DBUS) during transitional periods

and had little effect on the functional accuracy of the

model. The consistent accuracy of Hamby and Guillory's

models strongly supports this approach as a microprocessor

modeling technique.

In this chapter the overall results of the analyses are L -

first presented. Here the results of the individual model

analyses have been consolidated and evaluated to identify

(AO the major or consistent differences that reflect on the

viability of this modeling approach. These differences are

identified, interpreted, and then individually and

collectively assessed for their impact on this approach. .-

This discussion is followed by sections that detail the

simulation results for the individually modeled instructions

or exceptions from which the assessment of this approach was L d

formed.

Analysis Results

Based on the analysis of the simulation results, there

is little doubt that microprocessors can be accurately

modeled through signal analysis with minimal supporting

-. -technical data. Except on those rare occasions when

microstatements were incorrect or omitted, the simulation

VI-2

results deviated little from the analyzer output,

particularly with the 68000's memory control signals (i.e.,

DTACKN, AS, UDS, LDS, and R/W). However, as mentioned there

were some deviations from the data and address bus states

reported by the logic analyzer whenever these buses would

transition to the high impedance state at the beginning of a

read or write cycle. The differences were consistent and

predictable throughout the instruction models and result

from the 68000's inability to complete its activities well

within the logic analyzer's sampling intervals. These bus

differences do not have a major impact on the accuracy of 6

the models because they are of short duration (half clock

cycle) and they occur at points where the ABUS or DBUS are

(O not being monitored by either the processor or its memory.

The problem of accurately modeling the high impedance

state is really inconsequential to the functional

correctness of the model; however, a major section is L
devoted to discussing this problem, even at the risk of

overstating its significance. With so few global

inconsistencies in the models, considerable attention can be

given to this anomaly. The accuracy and completeness of the

models developed by Hamby and Guillory is a tribute to their

hard work and thorough understanding of microprocessor

structure and operation.

Hiah Impedance State

The differing times in which the 68000 and its

supporting memory release the data and address buses during

VI-3.P ." ...

read and write cycles made their state difficult to

accurately model during the transition to a new cycle. The

specific problem areas are addressed in detail in the

sections that follow.

flat.B~a.The available technical data specifies that

during a read cycle the memory must remove its data and data

transfer acknowledge (DTACK) signal within one clock period

of recognizing the 68000's negation of the address strobe

(AS) that occurs during phase two of the last read clock

cycle (11:38) . On the other hand, during a write cycle the

-. - "- n

technical data (1:4) specifies that the 68000 will release

the data bus no earlier than 60 ns from AS negation (no

maximum figure is provided). AS is also negated during

phase two of a write's last clock cycle. Based on the logic

analyzer results, it appears that the ECB's memory releases

the data bus much sooner after the completion of a read

cycle than the 68000 does when completing a write cycle.

For a read or write cycle, the logic analyzer finds the

data bus in the high impedance state during phase one of

their initial clock cycle - provided they do not follow T

another write cycle. Should they happen to follow another

write cycle, then the logic analyzer does not see the data

bus returned to the high state until phase two of their

initial cycle. While the specific point in which the bus is

"high-impedanced" cannot be determined for either the read

.- . .

or write cycle, time intervals for each can be estimated

using available timing information.

VI-4

-j -v5

The logic analyzer samples data at the low and high

transitions of the system clock in accordance with Figure

VI-l. The figure shows that for any clock period, the phase

one sample will reflect changes that occur with the clock

signal high and phase two will catch state changes that

occur during the low clock signal.

se 1' 2 2 2 1 2

Figure VI-I. Logic Analyzer Sampling Points

Performance specifications for the Hewlett PackardS 1600A Logic State Analyzer indicate that data must be

present at least 20 ns prior to clock transition for it to

be captured during the current phase (24:1-1). Figure

VI-2(a) presents the maximum time (120 ns) in which the

68000 will place the data bus in the high impedance state

upon entering a read or write cycle (1:4). In order for the

logic analyzer to capture the high impedance state during

phase one, then the bus must be in this state within 95 ns

of the beginning of the read or write cycle. It appears

that the 68000 disables the bus somewhere between 86 and 110

ns after the start of the first clock cycle. Because the

signals have a 10 ns rise/fall time (1:4), the bus will

reach the high impedance state in 96 to 120 ns (Figure

VI-2(b)). These figures indicate that the logic analyzer

VI-5 .

"-° 5[5 . 5 -- .S -X . .

* ~ ~ ~ ~~~~~~ V -. - - - - - - - - - .-- - - .- .Cr

should not show the data bus returning to the high impedance

state until phase two of the first clock cycle for both read

and write cycles. This is not the case.

h-C)

Ci(C)

j_ j

->-

Figure VI-2. Data Bus High Impedance Timing (1:5,6)

Since the 68000 does not place the data bus in a high

impedance state in sufficient time to be captured by the

logic analyzer on phase one of clock cycle zero for either a

read or write cycle, then the only explanation for the logic "

analyzer results is that a previous cycle is sometimes able

to return DBUS to high impedance so that it is captured by

the logic analyzer during phase one, even though the current

cycle fails to do so itself.

During a read cycle it is the memory's responsibility

to return the data bus to the high impedance state once the

VI-6 2

II

68000 has received the requested data. As mentioned

earlier, it has up to a full clock cycle from phase two of

the last read clock cycle to do this. The change could take

place as late as phase two of the following clock cycle.

However, it appears that the ECE memory responds much faster

than necessary. Referring to Figure VI-2(c), the ECB memory

must disable DBUS no later than 85 ns into the following

clock cycle because it is being captured by the logic

analyzer during phase one. In the case where the 68000 is

responsible for returning the bus to the high impedance

state (end of a write cycle), it fails to do so in time to

compensate for the initial clock cycle's failure. In fact,

it is possible that the 68000 relies on the following read

or write cycle to accomplish this.

Hamby and Guillory's model specifies that the data bus

is disabled during phase one of both the read and write

clock cycles and is reflected in the initial simulation

results. However, because the 68000 does not accomplish

this action in time during a write cycle to be captured by

the logic analyzer until the next phase, it appears as

though the model is inaccurate. The technical data supports

their model even though the timing resolution of the logic

analyzer disguises its accuracy.

In terms of accurately modeling any instruction, one

must then be aware of the types of cycles and their ordering

so that the state of the data bus can be accurately

portrayed at any given time. That is, one must know whether . -. '-

VI-7

the previous cycle was a read or write so that the correct

variation of the current cycle can be determined and modeled

to place the data bus in the high impedance state at the

correct moment. This adjustment was made during the model

transfcrmations once the problem was recognized. It is --

important to note that even though this was easily

accomplished, it is not necessary in terms of a correctly

functioning model. The state of the data bus is of no

consequence during the initial phase of a read or write

clock cycle because no device is monitoring it at that

point. During either a read or write cycle, the 68000 can

receive or issue valid data no sooner than a full clock

cycle later.

A dc6re Rus. A similar situation exists whenever the

address bus (ABUS) is transitioning to the high impedance

state. As with the data bus, the 68000 places ABUS in the

high impedance state no later than 120 ns from the beginning

of a read or write cycle. The logic analyzer results

indicate that ABUS is in an indeterminate state during phase

one of the initial period in a read or write cycle. In some

instances the address bus was found in a high impedance

state during phase one; however, there were just as many

other cases where it contained the address from the previous

read or write cycle, or it was in a state somewhere between

the two (previous address and high impedance). This

strongly indicates that the logic analyzer was sampling the

data at approximately the same instant in which the 68000

VI-8

-- - TM-.,; -.. 7W

i"

Figure VI-3. High Impedance On Address Bus

Looking at Figure VI-3, it appears that this is occurring at

approximately 85 ns into the initial clock cycle. If the

68000 disables the bus at 85 ns into its cycle, then with a

10 ns rise/fall time the bus will return to high impedance

at 95 ns (the cutoff time for the logic analyzer to capture

it). Timing is critical and a delay of as little as a

single nanosecond will mean the difference between the logic

analyzer catching the address bus in the high impedance

state during phase one or not.

As with data bus modeling, even though the simulation

results will not always agree with the results of the logic

analyzer (the simulation will always reach the high

impedance state) , this indeterminate state lasts but a half

clock cycle and occurs at a point where the bus is of no

consequence to system devices. For both read and write ~

cycles, the 68000 does not take AS low to indicate a valid

address until a full clock cycle later.

VI-9

individual instruction Simulation Results

The simulation results for each modeled instruction

will be individually compared and contrasted with logic

analyzer's reflection of the 68000's actual operation. Each

section contains a brief description of the instruction or

exception, lists the simulation data, and then explains

their differences and corrections. The individual ISP'

models of each instruction or exception sequence, the files

that controlled the simulations, and the simulation output

from which the tabulated signal data was prepared appear in

Appendices C, G, and H respectively. Appendix F lists the

instruction test routines that were executed on the models

during the simulations. The CDL models and logic analyzer

data from which the comparisons were made are contained in

Appendices I and J respectively. All addresses and data

values used in the discussion are given in hexadecimal.

Excluding wait cycles, read cycles require four clock

cycles to execute. The ECB memory required one and a half

clock cycles to provide the requested data causing the 68000

to run a full wait cycle during its reads. Subsequently,

all read cycles require five clock cycles to complete.

During writes to memory, the 68000 must also wait one and a

half cycles before the ECB memory formally acknowledges data

receipt. With the wait cycle included, a normal four-cycle

write will also require five clock cycles to execute. As a

matter of convention, all instruction cycle lengths given in

this chapter will include wait cycles.

VI-10

F-7- - .-". %1

When running the simulations, 16 of the MC68000's 64

pins were monitored to provide sufficient information to

identify the internal processing taking place. These

signals along with the columns in which their states appear

in the simulation data are identified below.

Column Signal

0 FCO (Function Code 0 output)
1 FCI (Function Code 1 output)
2 FC2 (Function Code 2 output)
3 DTACK' (Data Transfer Acknowledge

input from memory)
4 R/W' (Read/Write signal)
5 LDS' (Lower Data Strobe)
6 UDS' (Upper Data Strobe)
7 AS' (Address Strobe)
8 DO (Data line 0)
9 Dl (Data line 1)

10 D2 (Data line 2)
11 D3 (Data line 3)
12 D4 (Data line 4)
13 D5 (Data line 5)
14 D6 (Data line 6)
15 D7 (Data line 7)

For several of the instructions, it was necessary to

monitor the address bus as well. Whenever this was done,

only the first four data lines (DO-D3) were monitored.

D4-D7 were replaced with Al-A4 and the results entered in 4

columns 12-15 of the simulation data. The only exception to

this convention occurs while simulating the Illegal

Instruction exception sequence. In this lone case, address

lines Al-A4 were monitored in addition to the eight data

lines DO-D7 to provide greater data range when also

observing addresses. For this instruction, Al-A4 appear in

columns 16-19.

VI-ll

MOVE.W DI.D2

The MOVE.W DI,D2 instruction was the first to be

modeled and simulated. This single-word instruction uses

the data register direct addressing mode to move the

contents of data register D1 to data register D2. Because

this instruction is executed in a single read cycle

(prefetch), it required only five clock cycles to execute.

Only the function code, peripheral control, and data lines

were monitored during the simulation. The simulation

results were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(l) 1111 1111 1111 1010 $Data bus (8-15) in high
K(0) P(2) 1111 1111 1111 1010 $impedance state, R/W'

$signal (4) indicates a
$read cycle, function codes
$(0-2) identify user
$program mode.

K(1) P(1) 1111 1111 0001 1010 $AS' (7) indicates a
K(l) P(2) 1111 1111 0001 1010 $valid address on address

$bus; UDS', LDS (5-6) for
$a word size operation.

K(2) P(1) 1111 1111 0001 1010 $DTACK' (3) not asserted
K(2) P(2) 1111 1111 0001 1010 $by peripheral device (data

$not ready) so processor
$runs a wait cycle. ""

K(3) P(1) 0000 0001 0001 0010 $Data applied to data bus
K(3) P(2) 0000 0001 0001 0010 $(8-15), DTACK' (3) asserted

$indicating to processor
$that data is on the bus.
$The data on the bus is
$code for MOVE.W D1,D2
$instruction indicating -"

$that this is a prefetch. .
K(4) P(1) 0000 0001 0001 0010
K(4) P(2) 0000 0001 1111 1010 $AS', UDS', LDS' (5-7)

VI-12

•I.

$change to notify
Speripheral device that

.,Stransfer is complete.

Because the simulation results echoed the results

observed through the logic analyzer during the actual

operation of the MC68000, Hamby and Guillory appeared to

have little difficulty modeling this version of the MOVE

instruction. There were, however, two changes made to their

model during its transformation to ISP'. At phase two of - -

clock cycles zero and three, decoder K was directly

incremented with the CDL statement "K <- CountupK".

Incrementing K directly would not achieve the desired
I

results. The decoder's successive output line can be

activated by incrementing its input clock cycle register, T,

with the CDL statement "T <- CountupT" (T = T + 1 in ISP').

MOVE.W D1.(A""

The MOVE.W Dl,(Al) instruction uses both the data

register direct and address register indirect addressing

modes to move the contents of data register Dl into the

memory locations identified by the contents of address

register Al. This version of the MOVE instruction consisted -.-.

of single read and write cycles requiring 10 clock cycles to

execute. During the simulation, no address lines were

monitored and the results did not differ from the logic

analyzer data. They were:

VI-1

**-

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(1) 1111 1111 1111 1010 $Data bus (8-15) in high
K(0) P(2) 1111 1111 1111 1010 $impedance state, R/W'

$signal (4) indicates a
$read cycle, function codes
$(0-2) identify user
$program mode.

K(1) P(1) 1111 1111 0001 1010 $AS' (7) indicates a
K(l) P(2) 1111 1111 0001 1010 $valid address on address

$bus; UDS', LDS' (5-6) for
$a word size operation.

K(2) P(1) 1111 1111 0001 1010 $DTACK' (3) not asserted
K(2) P(2) 1111 1111 0001 1010 $by peripheral device (data

$not ready) so processor
$runs a wait cycle.

K(3) P(1) 1000 0001 0001 0010 $Data applied to data bus
K(3) P(2) 1000 0001 0001 0010 $(8-15), DTACK' (3) asserted

$indicating to processor
$that data is on the bus.
$The data on the bus is
$code for MOVE.W DI,(A1)
$instruction indicating
$that this is a prefetch.

K(4) P(1) 1000 0001 0001 0010
K(4) P(2) 1000 0001 1111 1010 $AS', UDS', LDS' (5-7)

$change to notify
$peripheral device that -
$transfer is complete.

K(5) P(1) 1111 1111 1111 1010 $Begin write cycle.
$Data bus (8-15) in
$high impedance state.

K(5) P(2) 1111 1111 1111 1001 $Function code (0-2)
Sis user data mode. .

K(6) P(1) 1111 1111 0110 1001 $AS' (7) asserted to
$indicate valid address on
$ bus, R/W' (4) changes
$to write cycle.

K(6) P(2) 0101 0101 0110 1001 $Data put on data bus
$(8-15). Data is 55 hex
$which is same as data
$stored in Dl.

K(7) P(1) 0101 0101 0000 1001 $UDS', LDS' (5-6) identify
K(7) P(2) 0101 0101 0000 1001 $word size, DTACK' (3) not

$asserted by peripheral
$so wait rycle run by
$processor.

K(8) P(1) 0101 0101 0000 1001 $DTACK' (3) not asserted

VI-14

K(7) P(2) 0101 0101 0000 1001 $so T is decremented and
$another wait cycle run.

K(8) P(1) 0101 0101 0000 0001 $DTACK' (3) is asserted
K(8) P(2) 0101 0101 0000 0001 $indicating peripheral has

$successfully stored data.
K(9) P(l) 0101 0101 0000 0001
K(9) P(2) 0101 0101 1110 1001 SAS', UDS', LDS' (5-7)

$change to signal
$peripheral that write
$cycle is complete.

MOVE.L DI.AI

The single-word instruction MOVE.L DI,AI uses both the

data register and address register direct addressing modes

to move the 32-bit contents of data register Dl to address

register Al. This instruction consists of a single read

cycle that required five clock cycles to execute. No ,

address lines were monitored. The results were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(1) 1111 1111 1111 1010 $Data bus (8-15) in high

K(0) P(2) 1111 1111 1111 1010 $impedance state, R/W'
$signal (4) indicates a
$read cycle, function codes
$(0-2) identify user
$program mode.

K(1) P(1) 1111 1111 0001 1010 $AS' (7) indicates a
K(1) P(2) 1111 1111 0001 1010 $valid address on address

$bus; UDS', LDS' (5-6) for
$a word size operation.

K(2) P(l) 1111 1111 0001 1010 $DTACK' (3) not asserted
K(2) P(2) 1111 1111 0001 1010 $by peripheral device (data

$not ready) so processor
$runs a wait cycle.

K(3) P(1) 0100 0001 0001 0010 $Data applied to data bus
K(3) P(2) 0100 0001 0001 0010 $(8-15), DTACK' (3) asserted

$indicating to processor
$that data is on the bus.
$The data on the bus is
$code for MOVE.L DI,A1

VI-15 .

$instruction indicating
$that this is a prefetch.

K(4) P(1) 0100 0001 0001 0010
K(4) P(2) 0100 0001 1111 1010 $AS', UDS', LDS' (5-7)

$change to notify
$peripheral device that
$transfer is complete.

The only difference between the simulation results and

the data from the logic analyzer occurs at phase two of

clock cycle two. The logic analyzer shows the data bus

changed from its high impedance state of the previous cycle

to "1011 1111" on its way to the valid data state "0100

0001" at phase one of clock cycle three. Because this

occurs at a point in the read cycle where the memory is

placing data onto the bus, it appears that the logic

analyzer has caught the data bus in transition to its valid

data state. The simulation differs by maintaining the high

impedance state during this phase.

MOVE. W DI , (Al) +

MOVE.W Dl,(Al)+ is a single word instruction that uses

the data register direct and postincrement register indirect

addressing modes to move the contents of data register Dl to

the memory location pointed to by the contents of address

register Al. After Al is used to address the memory

location, it is incremented by two. It is comprised of

single read and write cycles that require ten clock periods

to execute.

Instead of monitoring eight data lines, only the first

four were examined during the execution of this

instruction. Hamby and Guillory replaced data lines D4-D7

VI-16

7i

with the four least significant address lines (Al-A4) to

view the postincrement process. The reader should be aware

that these lines do not include bit zero of the program

counter; they only represent PC<4:1>. PC<0> does not appear

on the address bus. Rather, it is internally encoded along

with the instruction's operand length to activate the upper -

and lower data strobes (UDS and LDS) (11:38).

The 68000 uses PC<0> to determine which byte to read or

write and then activates either UDS, LDS, or both depending

on the operand size. Whenever the instruction specifies a

byte operand, UDS is activated if PC<0> is zero. If it is a

one, then LDS is activated. For word size operands, both

UDS and LDS are activated and PC<0> must be zero to avoid an

address error exception. Therefore, for the word or

longword size instructions that dominate the models, an

extra zero should be appended to the address bus data to

arrive at the correct memory address accessed by the

processor. In terms of an accurate representation of this

process in the instruction models, the sequence of CDL

microstatements that transfer the program counter to the

address bus (i.e., IABUS <- PC, EXABUF <- IABUS, and ABUS <-

EXABUF) should be changed at both of the first two stages to

support this fact (i.e., IABUS<31:I> <- PC<31:1> and EXABUF r

<- IABUS<31:I>). The simulation results were:

VI-17 r

h' "" -

15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(O) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(l) P(l) 0011 1111 0001 1010 $instruction being
K(1) P(2) 0011 1111 0001 1010 $prefetched

K(2) P(l) 0011 1111 0001 1010

K(2) P(2) 0011 1111 0001 1010

K(3) P(1) 0011 0001 0001 0010 $Data applied to data bus
K(3) P(2) 0011 0001 0001 0010 $(8-11). Data is code

$for MOVE.W Dl,(Al)+.

K(4) P(1) 0011 0001 0001 0010
K(4) P(2) 0011 0001 1111 1010 $End read cycle

K(5) P(l) 1111 1111 1111 1010 $Begin write cycle.
K(5) P(2) 0000 1111 1111 1001 $Address lines (12-15)

$are 2000.
K(6) P(1) 0000 1111 0110 1001
K(6) P(2) 0000 0101 0110 1001 $Data put on dat; bus

$(8-11). Data is hex
K(7) P(l) 0000 0101 0000 1001 $data being moved.
K(7) P(2) 0000 0101 0000 1001
K(8) P(1) 0000 0101 0000 001I.
K(7) P(2) 0000 0101 0000 1001

K(8) P(l) 0000 0101 0000 0001
K(8) P(2) 0000 0101 0000 0001 Le

K(9) P(l) 0000 0101 0000 0001
K(9) P(2) 0000 0101 1110 1001 $End write cycle.

In their CDL model, Hamby and Guillory neglected to

increment the program counter or place the contents of the

prefetch register into the instruction register during phase

two of clock cycle nine. These microstatements were added

to the ISP' version. The only difference that occurred

between the simulation and the logic analyzer data is the

VI-18

data that appears on the address bus at phase one of clock

cycle zero. The simulation reflects the high impedance

state while the logic analyzer depicts a partial return to

the high impedance state from the address that last appeared

on the bus (1004 - the address of the current instruction). "4

The reasons for this difference have been explained and will

not be further elaborated upon here.

MOVE.W D1,04 (Al)

MOVE.W D1,04(Al) is a two-word instruction that uses

the data register direct and register indirect with offset

addressing modes to move the contents of data register D1 to

the memory location pointed to by the sum of both address

register Al and the value of the instruction's extention

word. The instruction consisted of
two read cycles

(displacement fetch and instruction prefetch) and one write

cycle (move data). It required 15 clock cycles to execute.

The four least significant address and data lines were

monitored during the simulation. The results were:

15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(l) P(1) 0011 1111 0001 1010 $instruction being
K(l) P(2) 0011 1111 0001 1010 $prefetched

K(2) P(1) 0011 1111 0001 1010
K(2) P(2) 0011 1111 0001 1010

VI-19

~~~~. . .. . . . .... . . . .. "'. . . . . ." " " ,,.- .. ..- , "_-. u'. '.':'-'' "t."'v_.)'



K(3) P(1) 0011 0100 0001 0010 $Data applied to data bus
K(3) P(2) 0011 0100 0001 0010 $(8-11). Data is 04,

Sthe displacement.
K(4) P(1) 0011 0100 0001 0010
K(4) P(2) 0011 0100 1111 1010 $End read cycle.

K(5) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 0100.1111 1111 1010 $Address lines (12-15)

Sare 1008, location of
K(6) P(1) 0100 1111 0001 1010 $instruction being ,

K(6) P(2) 0100 1111 0001 1010 $prefetched.

K(7) P(l) 0100 1111 0001 1010 1
K(7) P(2) 0100 1111 0001 1010

K(8) P(l) 0100 0001 0001 0010 $Data applied to data bus
K(8) P(2) 0100 0001 0001 0010 $(8-11). Data is code

$for MOVE.W Dl,08(A1).
K(9) P(l) 0100 0001 0001 0010
K(9) P(2) 0100 0001 !I 1010 $End read cycle.

K(10) P(1) 1111 1111 1111 1010 $Begin write cycle.

K(10) P(2) 0010 1111 1111 1001 $Address lines (12-15)
$are 2004.

K(11) P(1) 0010 1111 0110 1001
K(11) P(2) 0010 0101 0110 1001 $Data put on data bus

$(8-11). Data is 5 hex,K K(12) P(l) 0010 0101 0000 1001 $data being moved.

K(12) P(2) 0010 0101 0000 1001

K(13) P(1) 0010 0101 0000 1001
K(12) P(2) 0010 0101 0000 1001

K(13) P(l) 0010 0101 0000 0001
K(13) P(2) 0010 0101 0000 0001

K(14) P(l) 0010 0101 0000 0001
K(14) P(2) 0010 0101 1110 1001 $End write cycle.

The only difference between the simulation and the

logic analyzer results occured on the address bus. At phase

one of clock cycles zero and ten the logic analyzer catches

the bus transitioning to the high impedance state whereas -

the simulation fully captures high impedance. This

difference has been discussed earlier. .

Also, for one and a half clock cycles beginning at

VI-20 L

: . . . . . .. . . . . . . . _ . .. . . .. , . . . . . .. .. .. . .. .. . ... . .. .-- - - - - - - - - - - - - - - -



phase one of clock cycle 13, the logic analyzer data

indicates that the address bus (A4-Al) is in state "0011"=
r

whereas on the previous cycle (phase two of clock cycle 12)

it held the address of the memory location to which the data

from Dl would be moved (2004). This address manifested

itself as "0010" on A4-Al (add a zero to catch PC<0>). A

change to "0011" would indicate that the address was

incremented to 2006 in the midst of a write cycle and then .-

again returned to 2004 one and a half clock cycles later.

Because this is abnormal behavior for the address bus during

a write cycle, and it could not be duplicated, it appears to

be a typing mistake.

MOVE.W Dl.04(Al.D7)

t~.MOVE.W Dl,04(Al,D7) is also a two-word instruction that

uses the data register direct and indexed register indirect

with offset addressing modes to move the contents of data

register Dl to the memory location determined by the sum of -

the index register (D7), the displacement (4), and the value

of address register Al. It required 17 clock cycles to

execute its two read and one write cycles. The same signals .

were monitored as with the previous instruction. The

simulation results were:

15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC -

SSW A210
C
K--- -------- --- -"- -

VI-21.............................................................. . - .



K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(l) P(1) 0011 1111 0001 1010 $instruction being
K(l) P(2) 0011 1111 0001 1010 $prefetched

K(2) P(1) 0011 1111 0001 1010
K (2) P(2) 0011 1111 0001 1010

K(3) P(1) 0011 0100 0001 0010 $Data applied to data bus
K(3) P(2) 0011 0100 0001 0010 $(8-11). Data is 04,

Sthe displacement.
K(4) P(l) 0011 0100 0001 0010
K(4) P(2) 0011 0100 1111 1010 $End read cycle.

K(5) P(1) 1111 1111 1111 1010 $Address and data
K(5) P(2) 1111 1111 1111 10](1 $buses (8-15) go high. l

K(6) P(1) 1111 1111 1111 1010
K(6) P(2) 1111 1111 1111 1010

K(7) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(7) P(2) 0100 1111 1111 1010 $Address lines (12-15)

$are 1008, location of
K(8) P(l) 0100 1111 0001 1010 $instruction being
K(8) P(2) 0100 1111 0001 1010 $prefetched.

K(9) P(l) 0100 1111 0001 1010
K(9) P(2) 0100 1111 0001 1010

K(10) P(1) 0100 0001 0001 0010 $Data applied to data bus
K(10) P(2) 0100 0001 0001 0010 $(8-11). Data is code

$for MOVE.W DI,08(A1,D7).
K(11) P(1) 0100 0001 0001 0010
K(11) P(2) 0100 0001 1111 1010 $End read cycle.

K(12) P(1) 1111 1111 1111 1010 $Begin write cycle.
K(12) P(2) 0101 1111 1111 1001 $Address lines (12-15)

$are 200A.
K (13) P(1) 0101 1111 0110 1001
K(13) P(2) 0101 0101 0110 1001 $Data put on data bus

$(8-11). Data is 5 hex,
K(14) P(1) 0101 0101 0000 1001 $data being moved.
K(14) P(2) 0101 0101 0000 1001

K(15) P(2) 0101 0101 0000 1001 -
K(14) P(2) 0101 0101 0000 1001

K(15) P(2) 0101 0101 0000 0001
K(15) P(2) 0101 0101 0000 0001

K(16) P(1) 0101 0101 0000 0001
K(16) P(2) 0101 0101 1110 1001 SEnd write cycle.

VI-22

.-- .- .|



The logic analyzer results indicate that the MC68000

returns both the address and data bus to the high impedance

state at phase one of clock cycle five. This phase begins a

two-cycle sequence of micro-operations that compute the

destination address by adding both the displacement and the

contents of the index register to the value contained in

address register Al. The microstatements that return the bus

to the high impedance state were not present in the CDL

model. The assignments "ADENABLE = lo" and "DBENABLE = lo"

were added to the ISP' model of this instruction to correct

this omission.

There were also the usual deviations relative to the

high impedance state on the address bus at the start of read

and write cycles. These occurred at phase one of clock

cycles zero and 12.

MOVE.W Dl.$2004

MOVE.W Dl,$2004 uses the data register direct and

absolute short addressing modes to move the contents of data

register DI to the memory locations beginning at address

2004. This two-word instruction required 15 clock cycles to

execute its two read and one write cycles. As with the

previous instruction, the four least significant address and

data lines were monitored. The simulation results were:

VI-23



15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(l) P(l) 0011 1111 0001 1010 $instruction being
K(1) P(2) 0011 1111 0001 1010 $prefetched

K(2) P(1) 0011 1112 0001 1010
K(2) P(2) 0011 1111 0001 1010

K(3) P(1) 0011 0100 0001 0010 $Data applied to data bus
K(3) P(2) 0011 0100 0001 0010 $(8-11). Data is 04,

$the displacement.
K(4) P(l) 0011 0100 0001 0010 -.

K(4) P(2) 0011 0100 1111 1010 $End read cycle.

K(5) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 0100 1111 1111 1010 $Address lines (12-15)

$are 1008, location of
K(6) P(l) 0100 1111 0001 1010 $instruction being

' K(6) P(2) 0100 1111 0001 1010 $prefetched.

K(7) P(1) 0100 1111 0001 1010
K(7) P(2) 0100 1111 0001 1010

K(8) P(1) 0100 0001 0001 0010 $Data applied to data bus
K(8) P(2) 0100 0001 0001 0010 $(8-11). Data is code

$for MOVE.W Dl,$2008.
K(9) P(l) 0100 0001 0001 0010
K(9) P(2) 0100 0001 1111 1010 $End read cycle.

K(10) P(l) 1111 1111 1111 1010 $Begin write cycle.
K(10) P(2) 0010 1111 1111 1001 $Address lines (12-15)

$are 2004.
K(l1) P(1) 0010 1111 0110 1001
K(11) P(2) 0010 0101 0110 1001 $Data put on data bus

$(8-11). Data is 5 hex,
K(12) P(1) 0010 0101 0000 1001 $data being moved.
K(12) P(2) 0010 0101 0000 1001

K(13) P(1) 0010 0101 0000 1001
K(12) P(2) 0010 0101 0000 1001

K(13) P~l) 0010 0101 0000 0001K(13) P(2) 0010 0101 0000 0001

K(14) P(1) 0010 0101 0000 0001

VI-24
• . . .



-4

I

K(14) P(2) 0010 0101 1110 1001 SEnd write cycle.

The only differences occurred at phase one of clock

cycles zero and ten where the logic analyzer again did not

let the address bus complete its return to the high.

impedance state.

MOVE.W AI.D3

MOVE.W Al,D3 is a single-word instruction that uses the

address register direct and data register direct addressing

modes to move the contents of address register Al to data

register D3. It consists of a single read cycle (instruction

prefetch) that required five clock cycles to execute. No

address lines were monitored during this simulation. The

results were:

0|

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 1111 1111 1111 1010

K(l) P(l) 111 1111 0001 1010
K(l) P(2) 1111 1111 0001 1010

K(2) P(1) 1111 1111 0001 1010
K(2) P(2) 1111 1111 0001 1010

K(3) P(1) 0000 1001 0001 0010 $Data applied to data bus
K(3) P(2) 0000 1001 0001 0010 $(8-15). Data is code

$for MOVE.W Al,D3.
K(4) P(l) 0000 1001 0001 0010 -.

K(4) P(2) 0000 1001 1111 1010 $End read cycle.

At phase one of clock cycle zero of their CDL model,

VI -25

. - " . . o i . • i - < ,. - . : . - .-



Hamby and Guillory included the microstatement "IDBUS <-

Al(LWORD)" to place the low word of address register Al onto

the internal data bus. Subregister Al(LWORD) did not appear

in the *declaration section of their CDL model but was added

to the ISP' version of this instruction. -___

At phase two of clock cycle two the logic analyzer

shows the data bus changed from the high impedance state of

the previous cycle to "1011 1111" on its way to the valid
I

data state "0000 1001" at phase one of clock cycle three.

As occurred during the MOVE.L Dl,Al simulation, the logic

analyzer caught the bus transitioning to high impedance

whereas the simulation shows the process completed.

MOVE.W (Al),D2

.*, MOVE.W (Al),D2 uses the address register indirect and

data register direct addressing modes to move the contents

of the memory locations pointed to by address register Al to

data register D2. This single-word instruction required 10 1
clock cycles to execute its two read cycles. Both the

simulation and logic analyzer results were in agreement. No

address lines were monitored during the simulation. The

results were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210 ",
C
K

i K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 1111 1111 1111 1010

VI-26
LJ

......- . .-.. . . . . - . ,-. . . - - - . . - . . ,



R(l) P(1) 1111 1111 0001 1010
K(1) P(2) 1111 1111 0001 1010

K(2) P(1) 1111 111 0001 1010
K(2) P(2) 1111 1111 0001 1010

K(3) P(1) 0001 0001 0001 0010 $Data applied to data bus
K(3) P(2) 0001 0001 0001 0010 $(8-15). Data is code

$for MOVE.W (Al),D2.
K(4) P(1) 0001 0001 0001 0010
K(4) P(2) 0001 0001 1111 1010 $End read cycle.

K(5) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 1111 1111 1111 1001 $Function codes (0-2)

$change to user data
K(6) P(1) 1111 1111 0001 1001 $mode.
K(6) P(2) 1111 1111 0001 1001

K(7) P(1) 1111 1111 0001 1001
K(7) P(2) 1111 1111 0001 1001

K(S) P(1) -0101 0101 0001 0001 $Data applied to data bus
K(8) P(2) 0101 0101 0001 0001 $(8-15). Data is 55 hex,

$data being moved.
K(9) P(1) 0101 0101 0001 0001
K(9) P(2) 0101 0101 1111 1001 $End read cycle.

MOVE.W (Al)+.•D6

MOVE.W (AI)+,D6 uses the postincrement register

indirect and data register direct addressing modes to move

the contents of the memory locations pointed to by address

register Al to data register D6. Address register Al is

incremented by two after being used as a pointer. This

single-word instruction required 10 clock cycles to execute

its two read cycles. The four least significant address and

data lines were monitored during the simulation. The ;, ..

results were:

VI-27



* .--. '-r-w.-. rr -"--r --

15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(1) P(l) 0011 1111 0001 1010 $instruction being
K(1) P(2) 0011 1111 0001 1010 $prefetched

K(2) P(1) 0011 1111 0001 1010
K(2) P(2) 0011 1111 0001 1010

K(3) P(1) 0011 1001 0001 0010 $Data applied to data bus
K(3) P(2) 0011 1001 0001 0010 $(8-11). Data is code

$for MOVE.W (Al)+,D7.
K(4) P(l) 0011 1001 0001 0010
K(4) P(2) 0011 1001 1111 1010 $End read cycle.

K(5) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 0000 1111 1111 1001 $Address lines (12-15)

$are 2000 hex, location of
K(6) P(l) 0000 1111 0001 1001 $of data. Function codes

tO K(6) P(2) 0000 1111 0001 1001 $(0-2) change to user
$data mode.

K(7) P(1) 0000 1111 0001 1001
K(7) P(2) 0000 1111 0001 1001

K(8) P(1) 0000 0101 0001 0001 $Data applied to data bus
K(8) P(2) 0000 0101 0001 0001 $(8-11). Data is 5 hex,

$data being moved.
K(9) P(l) 0000 0101 0001 0001
K(9) P(2) 0000 0101 1111 1001 $End read cycle.

The simulation results again differed from the logic

analyzer data only on the address bus where the logic

analyzer failed to capture its high impedance state at phase

one of clock cycle zero and five.

MOVE.W -(Al) D4

MOVE.W -(Al) ,D4 uses the predecrement register indirect

and data register direct addressing modes to move the

VI -28



contents of the memory locations pointed to by address

register Al to data register D4. Address register Al is

decremented by two before being used as a pointer. This

single-word instruction required 12 clock cycles to execute

its two read cycles. The four least significant address and

data lines were monitored during the simulation. The

results were:

15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

SSW A210
C

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(l) P(1) 0011 1111 0001 1010 $instruction being
K(1) P(2) 0011 1111 0001 1010 $prefetched

K(2) P(l) 0011 1111 0001 1010
K(2) P(2) 0011 1111 0001 1010

K(3) P(l) 0011 0001 0001 0010 $Data applied to data bus I."

K(3) P(2) 0011 0001 0001 0010 $(8-11). Data is code _
$for MOVE.W -(Al),D3.

K(4) P(l) 0011 0001 0001 0010
K(4) P(2) 0011 0001 1111 1010 $End read cycle.

K(5) P(1) 1111 1111 1111 1010 $Address and data
K(5) P(2) 1111 1111 1111 1010 $buses (8-15) go high.

K(6) P(l) 1111 1111 1111 1010
K(6) P(2) 1111 1111 i111 1010

K(7) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(7) P(2) 0011 1111 1111 1001 $Address lines (12-15)

$are 2006, location of
K(8) P(l) 0011 1111 0001 1001 $data. Function codes
K(8) P(2) 0011 1111 0001 1001 $(0-2) change to user

$data mode.
K(9) P(1) 0011 1111 0001 1001
K(9) P(2) 0011 1111 0001 1001

K(10) P(1) 0011 0101 0001 0001 $Data applied to data bus

VI-29



K(10) P(2) 0011 0101 0001 0001 $(8-11). Data is 5 hex,
$data being moved.

K(11) P(l) 0011 0101 0001 0001
K(I1) P(2) 0011 0101 1111 1001 $End read cycle.

The logic analyzer results indicate that the MC68000

returns both the address and data bus to the high impedance

state at phase one of clock cycle five. This phase begins a

two-cycle sequence in which address register Al is

decremented. The microstatements that return the bus to the

high impedance state were not present in the CDL model. The

assignments "ADENABLE = 1o" and "DrENABLE = lo" were added

to the ISP' model of this instruction to correct this

omission.

There were also the usual deviations relative to the

high impedance state on the address bus at the start of read

and write cycles. These occurred at phase one of clock

cycles zero and 5.

MOVE.W 04(Al) ,Dl

The MOVE.W 04(Al),Dl instruction uses the data register

direct and register indirect with offset addressing modes to

move the contents of the memory locations determined by the

sum of the displacement (4 - located in the instruction's

extention word) and the contents of address register Al.

This two-word instruction required 15 clock cycles to

execute its three read cycles. No address lines were

monitored during the simulation. The results were:

VI.30

"; V -30V;"



15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 1111 1111 1111 10104

K(1) P(1) 1111 1111 0001 1010
K(l) P(2) 1111 1111 0001 1010

K(2) P(1) 1111 1111 0001 1010
K(2) P(2) 1111 1111 0001 1010

K(3) P(1) 0000 0100 0001 0010 $Data applied to data bus
K(3) P(2) 0000 0100 0001 0010 $(8-15). Data is 4 hex,

$the displacement.
K(4) P(1) 0000 0100 0001 0010
K(4) P(2) 0000 0100 1111 1010 $End read cycle.-

K(5) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 1111 1111 1111 1010

K(6) P(1) 1111 1111 0001 1010
*K(6) P(2) 1111 1111 0001 1010

K(7) P(l) 1111 1111 0001 1010
K(7) P(2) 1111 1111 0001 1010

K(8) P(1) 0010 1001 0001 0010 $Data applied to data bus
K(8) P(2) 0010 1001 0001 0010 $(8-15) . Data is code L.

$for MOVE.W 08(A1),D2.
K(9) P(1) 0010 1001 0001 0010
K(9) P(2) 0010 1001 1111 1010 $End read cycle.

K(10) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(10) P(2) 1111 1111 1111 1001 $Function codes (0-2)

$change to user data
Kill) P(l) 1111 1111 0001 1001 $mode.
K(11) P(2) 1111 1111 0001 1001

K(12) P(1) 1111 1111 0001 1001
K(12) P(2) 1111 1111 0001 1001 I

K(13) P(1) 0101 0101 0001 0001 $Data applied to data bus
K(13) P(2) 0101 0101 0001 0001 $(8-15). Data is 55 hex,

$data being moved. ..

R(114) P(1) 0101 0101 0001 0001 -

K(114) P(2) 0101 0101 1111 1001 $End read cycle. --

VI-31



The only difference between the simulation and logic

analyzer data appeared on the data bus at phase two of clock

cycle two. Here the logic analyzer caught the bus

transitioning to a valid data state from high impedance

whereas the simulation maintained high impedance.

MOVE.W 04(Al.D7) D2

MOVE.W 04(Al,D7),D2 is a two-word instruction that uses

the indexed register indirect with offset and data register

direct addressing modes to move the contents of the memory
J

locations determined by the sum of the index register D7,

the displacement (4), and the contents of address register

Al, to data register D2. This instruction required 17 clock ..j

cycles to complete its three read cycles. The four least

significant address and data lines were monitored during the

simulation. The results were:

15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

SSW A210

K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(1) P(1) 0011 1111 0001 1010 $instruction being
K(l) P(2) 0011 1111 0001 1010 $prefetched

K(2) P(1) 0011 1111 0001 1010
K(2) P(2) 0011 1111 0001 1010

K(3) P(l) 0011 0100 0001 0010 $Data applied to data bus
K(3) P(2) 0011 0100 0001 0010 $(8-11). Data is 4 hex,

$the displacement.
K(4) P(l) 0011 0100 0001 0010 ;;1
K(4) P(2) 0011 0100 1111 1010 SEnd read cycle.

VI-32

. ..



--. - ---.-

K(5) P(1) 111 1112 122 2010 $Address and data
K(5) P(2) 1111 1112 1111 1010 $buses (8-15) go high.

K(6) P(1) 1111 i112 1111 1010
K(6) P(2) 1112 1112 1112 2010

K(7) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(7) P(2) 0100 1111 1112 1010 $Address lines (12-15)

$are 1008, location of .
K(8) P(l) 0100 1112 0001 1010 $instruction being
K(8) P(2) 0100 1112 0001 1010 $prefetched.

K(9) P(1) 0100 1112 0001 1010
K(9) P(2) 0100 1111 0001 1010

K(10) P(1) 0100 0001 0001 0010 $Data applied to data bus
K(10) P(2) 0100 0001 0001 0010 $(8-11). Data is code

$for MOVE.W 04(AI,D7),D3.
K(11) P(1) 0100 0001 0001 0010
K(11) P(2) 0100 0001 1111 1010 $End read cycle.

K(12) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(12) P(2) 0101 1111 1111 1001 $Address lines (12-15)

$are 200A, location of
K(13) P(l) 0101 1111 0001 1001 $of data. Function codes
K(13) P(2) 0101 1111 0001 1001 $ (0-2) change to user

$data mode.
K(14) P(2) 0101 1111 0001 1001
K(14) P(2) 0101 1112 0001 1001

K(15) P(l) 0101 0101 0001 0001 $Data applied to data bus
K(15) P(2) 0101 0101 0001 0001 $(8-11). Data is 5 hex,

$data being moved.
K(16) P(1) 0101 0101 0001 0001
K(16) P(2) 0101 0101 1111 1001 $End read cycle.

The logic analyzer results indicate that the MC68000

returns both the address and data bus to the high impedance

state at phase one of clock cycle five. This phase begins a

two-cycle sequence in which the index register D7 is added

to the displacement register (DISREG). The microstatements

that return the bus to the high impedance state were not

present in the CDL model. The assignments "ADENABLE = lo"

and "DBENABLE = lo" were added to the ISP' model of this

instruction to correct this omission.

VI -33
........-...



.-- . U -- - - - - . -r -W' twmr.-."W': x -, r. -" -'-" -

I 7

There were also the usual deviations relative to the

high impedance state on the address bus at the start of read

and write cycles. These occurred at phase one of clock

cycles zero and 12.

MOVE.W $2004,D5

MOVE.W $2004,D5 uses the absolute short and data

register direct addressing modes to move the data word at

memory location 2004 into data register D5. This two-word

instruction required 15 clock cycles to complete its three

read cycles. The four least significant address and data

signals were monitored during the simulation. The results

were:

t.! 15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(1) P(1) 0011 1111 0001 1010 $instruction being
K(1) P(2) 0011 1111 0001 1010 $prefetched

K(2) P(l) 0011 1111 0001 1010
K(2) P(2) 0011 1111 0001 1010

K(3) P(l) 0011 0100 0001 0010 $Data applied to data bus
K(3) P(2) 0011 0100 0001 0010 $(8-11). Data is 4 hex,

$low byte of operand

K(4) P(l) 0011 0100 0001 0010 $address.
K(4) P(2) 0011 0100 1111 1010 $End read cycle.

K(5) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 0100 1111 1111 1010 $Address lines (12-15)

$are 1008, location of
K(6) P(1) 0100 1111 0001 1010 $instruction being
K(6) P(2) 0100 1111 0001 1010 $prefetched.

VI-34 -



K(7) P(1) 0100 1111 0001 1010
K(7) P(2) 0100 1111 0001 1010

K(8) P(l) 0100 1000 0001 0010 $Data applied to data bus
K(8) P(2) 0100 1000 0001 0010 $(8-ll). Data is code

$for MOVE.W $2004,D6.
K(9) P(1) 0100 1000 0001 0010
K(9) P(2) 0100 1000 1111 1010 SEnd read cycle.

K(10) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(10) P(2) 0010 1111 1111 1001 $Address lines (12-15)

$are 2004, location of
K(11) P(1) 0010 1111 0001 1001 $of data. Function codes
K(11) P(2) 0010 1111 0001 1001 $(0-2) change to user I
K(12) P($) 0010 1111 0001 1001

K(12) P(2) 0010 1111 0001 1001

K(13) P(1) 0010 0101 0001 0001 $Data applied to data bus
K(13) P(2) 0010 0101 0001 0001 $(8-11). Data is 5 hex,

$data being moved.
K(14) P(1) 0010 0101 0001 0001
K(14) P(2) 0010 0101 1111 1001 $End read cycle.

The usual deviations relative to the high impedance

o ,state on the address bus at the start of a read cycle

occurred at phase one of clock cycles zero and 10.

MOVE.W $2004,S2008

MOVE.W $2008,$2004 uses the absolute long addressing

mode to move the data word beginning at memory location 2004

to 2008. This instruction is five words long and requires 35

clock cycles to complete its six read and one write cycles.

No address lines were monitored. The simulation results

were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

VI-35
• -. '



K(0) P(1) 1111 1111 1111 1010 SBegin read cycle.
K(O) P(2) 1111 1111 1111 1010

K(1) P(l) 1111 1111 0001 1010
K(1) P(2) 1111 1111 0001 1010

K(2) P(l) 1111 lill 0001 1010
K(2) P(2) 1111 1111 0001 1010-

K(3) P(l) 0000 0000 0001 0010 $Data applied to data bus
K(3) P(2) 0000 0000 0001 0010 $(8-15). Data is high

$word of source address.
K(4) P(1) 0000 0000 0001 0010
K(4) P(2) 0000 0000 1111 1010 $End read cycle.

K(S) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 1111 1111 1111 1010 -

K(6) P(l) 1111 1111 0001 1010
K(6) P(2) 1111 1111 0001 1010

K(7) P(l) 1111 1111 0001 1010
K(7) P(2) 1111 1111 0001 1010

K(8) P(1) 0000 0100 0001 0010 $Data applied to data bus
K(8) P(2) 0000 0100 0001 0010 $(8-15) . Data is low

$word of source address.
0K(9) P(l) 0000 0100 0001 0010

K(9) P(2) 0000 0100 1111 1010 $End read cycle.

K(10) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(10) P(2) 1111 1111 1111 1010

Kill) P(l) 1111 1111 0001 1010 -
K(11) P(2) 1111 1111 0001 1010

K(112) P(1) 1111 1111 0001 1010
K(12) P(2) 1111 1111 0001 1010

K(13) P~i) 0000 0000 0001 0010 $Data applied to data bus
K (13) P (2) 0000 0000 0001 0010 $ (8-15) . Data is high

$word of destination.
K(114) P(1) 0000 0000 0001 0010
K(114) P(2) 0000 0000 1111 1010 $End read cycle.

K(115) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(15) P(2) 1111 1111 1111 1001 $Function codes (0-2)

$change to user data
K(16) P(1) 1111 1111 0001 1001 $mode.
K(16) P(2) 1111 1111 0001 1001 *-

K(17) P(1) 1111 1111 0001 1001
K(117) P(2) 1111 1111 0001 1001

VI-36



K(18) P(1) 0101 0101 0001 0001 $Data applied to data bus
K(18) P(2) 0101 0101 0001 0001 $(8-15). Data is 55 hex,

Sdata being moved.
K(19) P(1) 0101 0101 0001 0001
K(19) P(2) 0101 0101 1111 1001 $End read cycle.

K(20) P(1) i111 1111 1111 1001 $Begin read cycle.
K(20) P(2) 1111 1111 1111 1010 $Function codes (0-2)

$change to user program
K(21) P(l) 1111 1111 0001 1010 $mode.
K(21) P(2) 1111 1111 0001 1010

K(22) P(l) 1111 1111 0001 1010
K(22) P(2) 1111 1111 0001 1010
K(23) P(l) 0000 1000 0001 0010 $Data applied to data bus
K(23) P(2) 0000 1000 0001 0010 $(8-15). Data is low word

$of destination.
K(24) P(1) 0000 1000 0001 0010
K(24) P(2) 0000 1000 1111 1010 $End read cycle.

K(25) P(l) 1111 1111 1111 1010 $Begin write cycle.
K(25) P(2) 1111 1111 1111 1001 $Function codes (0-2)

Schange to user data mode.
K(26) P(l) 1111 1111 0110 1001
K(26) P(2) 0101 0101 0110 1001 SData put on data bus

$(8-15). Data is 55 hex,
K(27) P(1) 0101 0101 0000 1001 $data being moved.
K(27) P(2) 0101 0101 0000 1001

K(28) P(1) 0101 0101 0000 1001
K(27) P(2) 0101 0101 0000 1001

K(28) P(1) 0101 0101 0000 0001
K(28) P(2) 0101 0101 0000 0001

K(129) P(1) 0101 0101 0000 0001
K(29) P(2) 0101 0101 1110 1001 $End write cycle.

K(30) P(1) 1111 1111 1111 1001 $Begin read cycle.
K(30) P(2) 1111 1111 1111 1010 $Function codes (0-2)

$change to user program
K(31) P(1) i111 1111 0001 1010 $mode.
K(31) P(2) 1111 1111 0001 1010

K(32) P(1) 1111 1111 0001 1010
K(32) P(2) 1111 1111 0001 1010

K(33) P(1) 1101 0000 0001 0010 $Data applied to data bus
K(33) P(2) 1101 0000 0001 0010 $(8-15). Data is code

$for JMP, so this is
K(34) P(l) 1101 0000 0001 0010 $a prefetch.
K(34) P(2) 1101 0000 1111 1010 $End read cycle.

VI -37



All differences between the simulation and logic

analyzer data occur on the data bus. At phase two of clock

cycles 2, 7, 12, 22, and 26 the logic analyzer catches the

data bus transitioning to a valid data state. There is also

a difference at phase one of clock cycle 30. Because this

cycle follows a write cycle, the data buses'return to the

high impedance state is hot captured until phase two.

MOVE.W #S5555.D

MOVE.W #$5555,Dl uses the immediate and data register

direct addressing modes to move the hex value 5555 into data

register DI. This is a two-word instruction that requires 10

clock cycles to complete its two read cycles. The four

least significant signals on the address and data bus were

j * monitored during the simulation. The results were:

15-12 11-8 7--4 3--0 (columns)
AAAA DDDD AULR DFFF (signals)
4321 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(O) P(2) 0011 1111 1111 1010 $Address lines (12-15)

$are 1006, location of
K(l) P(l) 0011 i111 0001 1010 $immediate data.
K(l) P(2) 0011 1111 0001 1010

K(2) P(l) 0011 1111 0001 1010
K(2) P(2 ) 0011 1111 0001 1010

K(3) P(l) 0011 0101 0001 0010 $Data applied to data bus
K(3) P(2) 0011 0101 0001 0010 $(8-11). Data is 5 hex,

$immediate data.
K(4) P(1) 0011 0101 0001 0010
K(4) P(2) 0011 0101 1111 1010 SEnd read cycle.

K(5) P(l) 1111 1111 1111 1010 $Begin read cycle.

VI-38



K(5) P(2) 0100 1111 1111 1010 $Address lines (12-15)
$are 1008, location of

K(6) P(l) 0100 1111 0001 1010 $instruction being
K(6) P(2) 0100 1111 0001 1010 $prefetched.

K(7) P(1) 0100 1111 0001 1010
K(7) P(2) 0100 1111 0001 1010

K(8) P(l) 0100 1100 0001 0010 $Data applied to data bus
K(8) P(2) 0100 1100 0001 0010 $(8-11). Data is code

$for MOVE.W #$5555,DI.
K(9) P(l) 0100 1100 0001 0010
K(9) P(2) 0100 1100 1111 1010 $End read cycle.

A difference occurs at phase one of clock cycle zero

where the logic analyzer captured the address bus

transitioning to the high impedance state whereas the

simulation fully reflects high impedance. Also, at phase

one of clock cycle nine, the logic analyzer data shows a

data bus state change where one should clearly not occur.

This is certainly a typing error.

JMP (AO)

JMP (AO) uses the register indirect addressing mode to

direct the MC68000 to next execute the instruction located

at the address pointed to by address register AO. This

instruction ended all instruction test routines creating a

loop in which the instruction of interest was continually

executed. JMP is a single-word instruction that requires 10

clock cycles to execute its two read cycles (instruction

prefetches). The simulation and logic analyzer results were

equivalent. No address lines were monitored during the

simulation. The results were:

VI-39 .. . . . .. . . . . . . . .

-: --- A N 
2



S, W.-- WT W. -_ W-..

15-12 11-8 7--4 3--0 (columns)
.. DDDD DDDD AULR DFFF (signals)

7654 3210 SDD/ TCCC -

SSW A210 4
C
K

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 1111 1111 1111 1010 4

K(1) P(1) 1111 i111 0001 1010
K(l) P(2) 1111 1111 0001 1010

K(2) P(1) 1111 i111 0001 1010
K(2) P(2) 1111 1111 0001 1010 -

K(3) P(1) 1111 1111 0001 0010 $Data applied to data bus
K(3) P(2) 1111 1111 0001 0010 $(8-15). Data is all ones

$because this a prefetch
K(4) P(1) 1111 1111 0001 0010 $and there are no instruct-

$ions following the JMP
K(4) P(2) 1111 1111 1111 1010 $(unused memory is all l's).

K(5) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 1111 1111 1111 1010

LO K(6) P~i) 1111 1111 0001 1010
K(6) P(2) 1111 1111 0001 1010 .

K(7) P(l) 1111 1111 0001 1010
K(7) P(2) 1111 1111 0001 1010

K(8) P(1) 0000 0001 0001 0010 $Data applied to data bus
K(8) P(2) 0000 0001 0001 0010 $(8-15). Data is code for

$MOVE.W Dl,D2, so this is a
K(9) P(1) 0000 0001 0001 0010 $fetch.
K(9) P(2) 0000 0001 1111 1010 $End read cycle.

ADDW D1,D5

ADD.W D3,D5 uses the data register direct addressing

mode to sum the contents of data registers D3 and D5 and

then store the result in D5. It is a single-word instruction .

requiring five clock cycles to execute its read cycle

(prefetch). No address lines were monitored during its

* .simulation. The results were:

VI-40



15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(o) P(2) 1111 1111 1111 1010

K(l) P(l) 1111 1111 0001 1010
K(1) P(2) 1111 1111 0001 1010

K(2) P(1) 1111 i111 0001 1010
K(2) P(2) 1111 i111 0001 1010

K(3) P(1) 1000 0101 0001 0010 $Data applied to data bus
K(3) P(2) 1000 0101 0001 0010 $(8-15). Data is code for

$MOVE.W D5, (A2).
K(4) P(1) 1000 0101 0001 0010
K(4) P(2) 1000 0101 1111 1010 $End read cycle.

The simulation and data logic analyzer results differed
only on the data bus at phase two of clock cycle two. Here

the logic analyzer caught the data bus transitioning to a

valid data state while the simulation maintained high

impedance.

BEO START

BEQ (Branch If Equal) is one of 14 variations of the

MC68000's unconditional branch instructions. If the status

register's zero condition code bit is set, then the

program's execution will branch and continue at the location

identified by the label "START"; otherwise, program

execution continues with the instruction immediately

following the BEQ instruction.

Hamby and Guillory tested the instruction "BEQ $1004" L

where 1004 was the address of the first substantive . ."

VI-41



instruction of the test routine (MOVE.W DI,D3). However, the

simulation uses the label "START" to identify the location

of the instruction. The location of this instruction

differed in the simulation (1000) because its test routine

did not include as its first instruction "AND.W #$DFFF,SR"

to initialize the status register. This was accomplished in

the ISP' initialization routine for this instruction model.

This difference did not appear in the data being compared

because the address lines were not monitored.

The simulation test routine examined processing in the

case where the branch was taken as well as when it was not.

The single-word instruction's execution time is dependent -

upon whether the branch is taken. If the branch condition

is true, then the instruction required 12 clock cycles to

complete its two read cycles; otherwise, it is completed in

nine (single read cycle).

The CDL model contained two discrepancies. At phase

two of clock cycle four, the program counter is incremented

by two with the microstatement "PC <- PCadd2". This should

not occur at this point because if the branch is taken the

program counter will again be adjusted by the instruction's

displacement at phase one of clock cycle nine (PC <-

PCaddIR(0-7)). This could be properly handled if the
r

compiler is aware that the program counter will be two words

beyond the BEQ instruction at the time of the branch and

computes the displacement accordingly. But to remain

.. consistent with previous micro-operations, the program

VI-42

.. .. . . . . . .



counter can best be incremented at phase two of clock cycle

eight where it will be incremented only when the branch is

not taken.

The microstatement "IR <- PFR" was added to those

occurring at phase two of clock cycle 15. At this point, the

branch has been taken and the instruction branched to has

been fetched into the prefetch register. The contents of

the prefetch register in turn must be placed in the

instruction register so that the instruction can be decoded

for execution. Alternately, since this is actually a fetch

rather than a prefetch, instead of placing the contents of

the external data buffer into the prefetch register with the L

statement "PFR <- EXDBUF" at phase one of clock cycle 15,

its contents could be placed directly into the instruction

register with the statement "IR <- EXDBUF" with equivalent

results.

The only difference between the simulation and logic

analyzer results again occurred when the logic analyzer L

caught the data bus transitioning to a valid data state at

phase two of clock cycle two and 13. The complete results

were:

Analyzer output (condition true, branch taken):

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC -.-

SSW A210

K

K(0) P(l) 1111 1111 1111 1010 $Begin read cycle.

VI-43

-. . . . . . . . . . .. .



K(0) P(2) 1111 1111 1111 1010

K(1) P(1) 1111 1111 0001 1010
K(l) P(2) 1111 1111 0001 1010

K(2) P(1) 1111 1111 0001 1010 *-f

K(2) P(2) 1111 1111 0001 1010

K(3) P(1) 1101 0000 0001 0010 $Data applied to data bus
K(3) P(2) 1101 0000 0001 0010 $(8-15). Data is code

$for JMP (AO).

K(4) P(1) 1101 0000 0001 0010
K(4) P(2) 1101 0000 1111 1010 $End read cycle.

K(9) P(1) 1111 1111 1111 1010 $Data bus (8-15)
K(9) P(2) 1111 1111 1111 1010 $goes high.

K(10) P(1) 1111 1111 1111 1010 ,
K(10) P(21) 1111 1111 1111 1010

K(Il) P(l) 1111 1111 0001 1010 $Begin read cycle.
K(!I) P(2) 1111 1111 0001 1010

K(12) P(l) 1113 1111 0001 1010
K(12) P(2) 1111 1111 0001 1010

K(13) P(1) 1111 1111 0001 1010
K(13) P(2) 1111 1111 0001 1010

K(14) P(1) 0000 0001 0001 0010 $Data applied to data bus
K(14) P(2) 0000 0001 0001 0010 $(8-15). Data is code for

$MOVE.W DI,D3, so this is a
K(15) P(1) 0000 0001 0001 0010 $fetch.
K(15) P(2) 0000 0001 1111 1010 $End read cycle.

Analyzer output (condition false, branch not taken):

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.
K(0) P(2) 1111 1111 1111 1010 -

K(l) P(1) 1111 1111 0001 1010
K(1) P(2) 1111 1111 0001 1010 . -

K(2).P(l) 1111 1111 0001 1010
K(2) P(2) 1111 1111 0001 1010

K(3) P(1) 0000 0010 0001 0010 $Data applied to data bus
K(3) P(2) 0000 0010 0001 0010 $(8-15). Data is code

VI-44



* - - . " ' -* - " * ' -" W' "V >'W ;Y , .- v ... . .. ...WVW.VrW r - W : .'--+.-, 't- ,- 
,

- -. ,,, ,- _

$for MOVE.W D2,D3.

K(4) P(l) 0000 0010 0001 0010
K(4) P(2) 0000 0010 1111 1010 $End read cycle.

K(5) P(l) 1111 1111 1111 1010 $Data bus (8-15)
K(5) P(2) 1111 i111 i111 1010 $goes high.

K(6) P(1) 1111 1111 1111 1010..--"".

K(6) P(2) 1111 1111 1111 1010

K(7) P(1) 1111 1111 1111 1010"+"-
K(7) P(2) 1111 1111 1111 1010-..4

K(8) P(l) 1111 1111 1111 1010
K(8) P(2) 1111 1111 1111 1010 $End BEQ.

BTST DI.(AI-

The BTST Dl,(Al) instruction will direct the MC68000 to

retrieve a byte from the memory location specified by

address register Al and then test the bit identified by the

contents of data register Dl. If the selected bit is zero,

then the status register's zero condition code bit (Z) is

set; it is otherwise cleared. This single-word instruction

required 10 clock cycles to execute its two read cycles. No

address signals were monitored during the simulation. The

results were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(l) 1111 1111 lll 1010 $Begin read cycle. [.
K(0) P(2) 1111 1111 1111 1010

K(l) P(l) 1111 1111 0001 1010
K(l) P(2) 1111 1111 0001 1010

K(2) P(l) 1111 1111 0001 1010 '-V
K(2) P(2) 1111 1111 0001 1010

VI-45
t,[j-

,+ , + - '. ',, tKJ, . - -. . . -'t . --2 +p,. i ..,.,. '.._+'' S ' - - + A .. P--,+'.'-'- . . ***-.-* ' .-.- ..- I,-.-,,. .. a .,+,"-J.n. .. ,



- - • - .- - - . - v r -Wr - r -- r-r_ - '. .r ,- , - -

K(3) P(1) 0000 0010 0001 0010 $Data applied to data bus
K(3) P(2) 0000 0010 0001 0010 $(8-15). Data is code

$for MOVE.W D2,D3 so this
K(4) P(l) 0000 0010 0001 0010 Sis a prefetch.
K(4) P(2) 0000 0010 1111 1010 $End read cycle.

K(5) P(l) 1111 1111 1111 1010 $Begin read cycle.
K(5) P(2) 1111 1111 1111 1001

K(6) P(l) 1111 1111 0101 1001 $UDS' (6) not asserted
K(6) P(2) 1111 1111 0101 1001 $so only the low byte

Sis read from memory.
K(7) P(l) 1111 1111 0101 1001
K(7) P(2) 1111 1111 0101 1001

K(S) P(l) 0101 0101 0101 0001 $Data applied to data bus
K(8) P(2) 0101 0101 0101 0001 $(8-15). Data is 55 hex.

K(9) P(1) 0101 0101 0101 0001
K(9) P(2) 0101 0101 1111 1001 $End read cycle.

The simulation and logic analyzer results differed on

the data bus at phase two of clock cycle two. Again, the

logic analyzer caught the bus transitioning to a valid data

.- ,state while the simulation maintained high impedance.

Illegal Instruction Exception-

The Illegal instruction (4AFC) allows the user to force

an illegal instruction exception sequence. During this

sequence, the status register is copied, the supervisor

state entered, and the trace state turned off. A vector

number is generated to refer to the illegal instruction

vector. The current program counter (address of illegal

instruction) and a copy of the status register are saved on

the supervisor stack. Processing resumes at the address

contained in the exception vector (11:66).

During the execution of a MC68000 instruction, the

program counter points to the next instruction so that it is

VI-46
[

S.*. - ....



.in position for the current instruction's prefetch cycle.

K Therefore, during the model transformation process, the CDL

microstatement "PC <- PCsub4" at phase two of clock cycle

one was changed to "PC = PC - 2" in its ISP' counterpart in

order to accurately locate the address of the illegal

instruction.

For this instruction, address lines A1-A4 were

monitored along with the lower eight data bus lines D0-D7 to

facilitate data bus analysis. The simulation results were:

19-16 15-12 11-8 7--4 3--0 (columns)
AAAA DDDD DDDD AULR DFFF (signals)
4321 7654 3210 SDD/ TCCC

SSW A210
C
K

* K(0) P(1) 1111 1111 1111 1111 1010 $K(0) thru K(4) is a
K(0) P(2) 0110 1111 1111 1111 1010 $read cycle just like

Sthe one described
K(1) P(l) 0110 1111 1111 0001 1010 $for the MOVE.W Dn,Dn
K(1) P(2) 0110 1111 1111 0001 1010 $instruction.

K(2) P(1) 0110 ill 1111 0001 1010
K(2) P(2) 0110 1111 1111 0001 1010

K(3) P(1) 0110 0000 0001 0001 0010 $Data (8-15) is
K(3) P(2) 0110 0000 0001 0001 0010 $code for

$for MOVE.W DI,D2.
K(4) P(l) 0110 0000 0001 0001 0010
K(4) P(2) 0110 0000 0001 1111 1010 $End read cycle

K(5) P(1) 0110 1111 1111 1111 1010 $Data Bus (8-15)
K(5) P(2) 1111 1111 1111 1111 1010 Sand address bus

$(16-19) go high.
K(6) P(l) 1111 1111 i111 1111 1010
K(6) P(2) 1111 1111 1111 1111 1010

K(7) P(l) 1111 1111 1111 1111 1010
K(7) P(2) 1111 1111 1111 1111 1010

K(8) P(1) 1111 1111 1111 1111 1010

K(8) P(2) 1111 1111 1111 1111 1010

VI-47



K(9) P(1) 1112 1111 1111 1111 1010 $Begin a write cycle
K(9) P(2) 0010 iii 111 liii 1101 $just like the one

$described for the
K(10) P(1) 0010 1111 1111 0110 1101 $MOVE.W Dn,(An)

$instruction, except
$for function codes
$and data. Function
$code (0-2) is
$supervisor data
$mode.

K(10) P(2) 0010 0000 1010 0110 1101 $Data (8-15) is low
$word of the PC. .. -

K(II) P(1) 0010 0000 1010 0000 1101
K(11) P(2) 0010 0000 1010 0000 1101

K(12) P(1) 0010 0000 1010 0000 1101
K(11) P(2) 0010 0000 1010 0000 1101

K(12) P(1) 0010 0000 1010 0000 0101
K(12) P(2) 0010 0000 1010 0000 0101

K(13) P(1) 0010 0000 1010 0000 0101
K(13) P(2) 0010 0000 1010 1110 1101 $End Write Cycle.

K(14) P(1) 1111 0000 1010 1111 1101 $Begin write cycle
K(14) P(2) 0000 1111 1111 1111 1101 $just like preceding

$one except for data.
K(15) P(l) 0000 1111 1111 0110 1101
K(15) P(2) 0000 0000 0100 0110 1101 $Data (8-15) is SR

$contents.
K(16) P(1) 0000 0000 0100 0000 1101
K(16) P(2) 0000 0000 0100 0000 1101

K(17) P(1) 0000 0000 0100 0000 1101
K(16) P(2) 0000 0000 0100 0000 1101

K(17) P(1) 0000 0000 0100 0000 0101
K(17) P(2) 0000 0000 0100 0000 0101

K(18) P(l) 0000 0000 0100 0000 0101
K(18) P(2) 0000 0000 0100 1110 1101 $End write cycle.

K(19) P(1) 1111 0000 0100 1111 1101 $Begin write cycle
K(19) P(2) 0001 1111 1111 1111 1101 $just like preceding

$one except for data.
K(20) P(1) 0001 1111 1111 0110 1101

V K(20) P(2) 0001 0000 0000 0110 1101 $Data (8-15) is high
$word of PC.

K(21) P(l) 0001 0000 0000 0000 1101
K(21) P(2) 0001 0000 0000 0000 1101

K(22) P(1) 0001 0000 0000 0000 1101
K(21) P(2) 0001 0000 0000 0000 1101

K(22) P(1) 0001 0000 0000 0000 0101

VI-48 r

*.,".. .-. ,.-.:y ..- .-. .. •"-.......... ..... . . . . . ..
".. . . . .-.- ". . . .."" " ""' " ' '" "' ' ""-'" '° "" '"'""--- ' -- > , , .' -,. . -- ', .. _ L-? ; .'- - _. . . . .. , . _ '_ . . , , .- , . -_. . _- . _ _ e , _, .,' _, ..__ p ',€ -, ' _



K(22) P(2) 0001 0000 0000 0000 0101

K(23) P(2) 0001 0000 0000 0000 0101
K(23) P(2) 0001 0000 0000 1110 1101 $End write cycle.

K(24) P(1) 1111 0000 0000 1111 1101 $Begin read cycle
K(24) P(2) 1000 1111 1111 1111 1101 $just like above

$except data and
K(25) P(1) 1000 1111 1111 0001 1101 $function codes.
K(25) P(2) 1000 1111 1111 0001 1101

K(26) P(l) 1000 1111 1111 0001 1101
K(26) P(2) 1000 1111 1111 0001 1101

K(27) P(1) 1000 0000 0000 0001 0101 $Data (8-15) is high J
K(27) P(2) 1000 0000 0000 0001 0101 $word of the address

$of the exception •
K(28) P(1) 1000 0000 0000 0001 0101 $handler routine.
K(28) P(2) 1000 0000 0000 1111 1101 SEnd read cycle.

K(129) P(2) 1001 1111 1111 1111 1101 $Beust liea cyl
K(29) P(1) 1111 1111 1111 1111 1101 $Begin read cycle

$preceding one
K(30) P(1) 1001 1111 1111 0001 1101 $except for data.
K(30) P(2) 1001 1111 1111 0001 1101

K(31) P(1) 1001 1111 1111 0001 1101
K(31) P(2) 1001 1111 1111 0001 1101

t K(32) P(1) 1001 0000 0010 0001 0101 $Data (8-15) is low
K(32) P(2) 1001 0000 0010 0001 0101 Sword of address of

$exception handler
K(33) P(1) 1001 0000 0010 0001 0101 $routine.
K(33) P(2) 1001 0000 0010 1111 1101 SEnd read cycle.

K(34) P(1) 1001 1111 1111 1111 1101 $K(34) thru K(38) is

K(34) P(2) 0001 1111 111 1111 1110 $a read cycle just
$like preceding one

K(35) P(1) 0001 1111 1111 0001 1110 $except data and
$function codes.

K(35) P(2) 0001 1111 1111 0001 1110 $Function code (0-2)
$supervisor program

K(36) P(1) 0001 1111 i111 0001 1110 $mode.
K(136) P(2) 0001 1111 1111 0001 1110

K(37) P(1) 0001 0111 0011 0001 0110 $Data (8-15) is
K(37) P(2) 0001 0111 0011 0001 0110 $return from

$exception used as
K(38) P(1) 0001 0111 0011 0001 0110 $exception handler

$routine
K(38) P(2) 0001 0111 0011 0001 0110 $End read cycle.

K(39) P(1) 1111 1111 1111 1111 1110 $Data bus (8-15)
K(39) P(2) 1111 1111 1111 1111 1110 $and address bus

$go high.

VI-49

I 217



I
K(40) P(1) 1111 1111 1111 1111 1110 i/'

K(40) P(2) 1111 1111 1111 1111 1110 $End exception
$processing

Per the introductory discussion regarding the high .

impedance state of the address bus, at phase one of any new

cycle, differences occur on ABUS whenever it is changing to i.
the high impedance state. These take place at phase one of

clock cycles 5, 14, 19, 24, 29, 34, and 39. Contrary to the

earlier discussion regarding the high impedance state of the

data bus, there are no differences on the data bus at phase

one of those cycles that follow a write cycle. The logic

analyzer's inability to capture its true state was

anticipated and the instruction was mod-led so that the data

bus appears to return to the high impedance state during

phase two.

Because the contents of tne system stack pointer is

repeatedly decremented and placed on the address bus during

this sequence, its initial contents should be known in order " -".- .

to accurately describe the value on the data bus at all

times. The ECB initializes the system stack pointer

(SYSTACK) with the value 0786.

Address Error Exception

An address exeception sequence is initiated whenever

the 68000 attempts to fetch a word or longword operand from

an odd address. Whenever this occurs, the current bus cycle

is aborted, the processor terminates current processing and

begins a 60-clock cycle exception sequence that includes

four read and seven write cycles.

VI-50

.................................- 7



The odd address error was generated by attempting to

move a word from data register Dl to an odd memory location

with the instruction "MOVE.W Dl,(Al) " (Al was initialized to

2001). The address bus is not monitored during the execution

of this instruction. The simulation results were:

15-12 11-8 7--4 3--0 (columns)
DDDD DDDD AULR DFFF (signals)
7654 3210 SDD/ TCCC

SSW A210
C
K

K(0) P(1) 1111 1111 1111 1010 $Begin read cycle.

K(0) P(2) 1111 1111 1111 1010

K(1) P(l) 1111 i111 0001 1010

K(1) P(2) 1111 i111 0001 1010

K(2) P(l) i111 i111 0001 1010
K(2) P(2) 1111 1111 0001 1010

K(3) P(1) 0111 0001 0001 0010 $Data applied to data bus .-
K(3) P(2) 0111 0001 0001 0010 $(8-15). Data is code for

$NOP, so this is a
K(4) P(l) 0111 0001 0001 0010 $prefetch.
K(4) P(2) 0111 0001 1111 1010 $End read cycle.

K(5) P(l) 1111 1111 1111 1010 $Begin a write cycle.
K(5) P(2) 1111 1111 1111 1001

K(6) P(l) 1111 1111 0110 1001
K(6) P(2) 0101 0101 0110 1001 $Data put on data bus

$(8-15). data is 55 hex,
K(7) P(1) 0101 0101 0000 1001 $data being moved.
K(7) P(2) 0101 0101 0000 1001

K(8) P(1) 0101 0101 0000 1001
K(8) P(2) 0101 0101 1110 1001

K(0) P(1) 0101 0101 1111 1001 $Write cycle terminated
K(0) P(2) 1111 1111 1111 1001 $because of address error.$Data bus (8-15) goes "-

K(1) P(1) 1111 1111 1111 1001 $high.
K(1) P(2) 1111 1111 1111 1001

K(2) P(1) 1111 1111 1111 1001
K(2) P(2) 1111 1111 1111 1001

VI-51



K(3) P(1) 1111 1111 1111 1001
K(3) P(2) 1111 1111 1111 1001

K(4) P(l) 1111 1111 1111 1001
K(4) P(2) 1111 1111 1111 1001

K(5) P(1) 1111 1111 1111 1001
K(5) P(2) 1111 1111 1111 1001

K(6) P(1) 111 i111 111 1001
K(6) P(2) 1111 1111 1111 1001

K(7) P(1) 1111 1111 1111 1001
K(7) P(2) 1111 1111 1111 1001

K(8) P(1) 1111 1111 1111 1001 $Begin write cycle
K(8) P(2) 1111 1111 1111 1101 $Function codes (0-2)

$change to supervisor
K(9) P(1) 1111 1111 0110 1101 $data mode.
K(9) P(2) 0000 1000 0110 1101 $Data put on data bus

$(8-15). Data is low
K(10) P(1) 0000 1000 0000 1101 $word of PC.
K(10) P(2) 0000 1000 0000 1101

K(Il) P(1) 0000 1000 0000 1101
K(10) P(2) 0000 1000 0000 1101

K(II) P(1) 0000 1000 OOJO 0101
K(Il) P(2) 0000 1000 0000 0101

K(12) P(1) 0000 1000 0000 0101
K(12) P(2) 0000 1000 1110 1101 $End write cycle.

K(13) P(1) 0000 1000 1111 1101 $Begin write cycle.
K(13) P(2) 1111 1111 1111 1101

K(14) P(1) 1111 1111 0110 1101
K(14) P(2) 0000 0000 0110 1101 $Data put on data bus

$(8-15). Data is SR
K(15) P(1) 0000 0000 0000 1101 $contents.
K(15) P(2) 0000 0000 0000 1101

K(16) P(1) 0000 0000 0000 1101
K(15) P(2) 0000 0000 0000 1101

K(16) P~-) 0000 0000 0000 0101
K(16) P(2) 0000 0000 0000 0101

K(17) P(l) 0000 0000 0000 0101
K(17) P(2) 0000 0000 1110 1101 $End write cycle.

K(18) P(1) 0000 0000 1111 1101 $Begin write cycle.
K(18) P(2) 1111 1111 1111 1101

VI-52



K(19) P(2) 0000 0000 0110 1101 $Dat pu n aa u
$(8-15). Data is high

K((20) P~l) 0000 0000 0000 1101 $word of PC.
K((20) P(2) 0000 0000 0000 1101.

K(121) P(1) 0000 0000 0000 1101
K(20) P(2) 0000 0000 0000 1101

K(21) P (1) 0000 0000 0000 0101
K(21) P(2) 0000 0000 0000 01014

K (22) P (1) 0000 0000 0000 0101
K(22) P(2) 0000 0000 1110 1101 $End write cycle.

K((23) P(1) 0000 0000 1111 1101 $Begin write cycle
R(123) P(2) 1111 1111 1111 1101

K(124) P(1) 1111 1111 0110 1101
K(24) P(2) 1000 0001 0110 1101 $Data put on data bus

$(8-15). Data is code
K(25) P(1) 1000 0001 0000 1101 $for instruction being
K(25) P(2) 1000 0001 0000 1101 $executed when interrupt

$occurred.
K(26) P(1) 1000 0O0f0l 0000 1101
K(25) P(2) 1000 0001 0000 1101

K(26) P(1) 1000 0001 0000 0101
*K(26) P(2) 1000 0001 0000 0101

K(127) P~l) 1000 0001 0000 0101
F(127) P(2) 1000 0001 1110 1101 $End write cycle.

K(128) P~i) 1000 0001 1111 1010 $Begin a write cycle.
K(28) P(2) 1111 1111 1111 1101

K(29) P~i) 1111 1111 0110 1101
K(129) P(2) 0000 0001 0110 1101 $Data put on data bus

$(8-15) . Data is low
K((30) P(1) 0000 0001 0000 1101 $word of memory being
K(130) P(2) 0000 0001 0000 1101 $used when interrupt

$occur red.K(31 P~l 000 000 000 110K((30) P(2) 0000 0001 0000 1101
K(1) P(2) 0000 0001 0000 1101
K((31) P(2) 0000 0001 0000 0101

1(131) P(2) 0000 0001 0000 0101

K(132) P(2) 0000 0001 1110 1101 $End Write Cycle.

K (33) P~i) 0000 0001 1111 1101 $Begin write cycle.
K(33) P(2) 1111 1111 1111 1101

* -. K(34) P~i) 1111 1111 0110 1101

VI-53



K(34) P(2) 0000 0001 0110 1101 $Data put on data bus
$(8-15). Data is cycle

K(35) P(1) 0000 0001 0000 1101 $type (R/W) and function
K(35) P(2) 0000 0001 0000 1101 $codes when interrupt

~~~$occurred. _-i

K(36) P(1) 0000 0001 0000 1101 $cre
K (35) P(2) 0000 0001 0000 1101

K(36) P(2) 0000 0001 0000 0101

K(36) P(2) 0000 0001 0000 0101

K(37) P(1) 0000 0001 0000 0101
K(37) P(2) 0000 0001 1110 1101 $End write cycle.

K(38) P(1) 0000 0001 1111 1101 $Begin write cycle.
K(38) P(2) 1111 1111 1111 1101

K(39) P(1) 1111 1111 0110 1101 4
K(39) P(2) 0000 0000 0110 1101 $Data put on data bus

$(8-15). Data is high
K(40) P(1) 0000 0000 0000 1101 $word of memory being
K(40) P(2) 0000 0000 0000 1101 $used when interrupt

$occurred.
K(41) P(1) 0000 0000 0000 1101
K(40) P(2) 0000 0000 0000 101

K(41) P(2) 0000 0000 0000 0101
K(41) P(2) 0000 0000 0000 0101

K(42) P(1) 0000 0000 0000 0101 -
K(42) P(2) 0000 0000 1110 1101 $End write cycle.

K(43) P(1) 0000 0000 i111 1101 $Begin read cycle.
K(43) P(2) 1111 1111 1111 1101

K(44) P(1) 1111 1111 0001 1101
K(44) P(2) 1111 1111 0001 1101

K(45) P(1), 1111 1111 0001 1101
K(45) P(2) 1111 1111 0001 1101

K(46) P(1) 0000 0000 0001 0101 $Data applied to data bus
K(46) P(2) 0000 0000 0001 0101 $(8-15). Data is high

$word of address of
K(47) P(1) 0000 0000 0001 0101 $exception handler routine.
K(47) P(2) 0000 0000 1111 1101 $End read cycle.

K(48) P(1) 1111 1111 1111 1101 $Begin read cycle.

K(49) P(1) 1111 1111 0001 1101
K(49) P(2) 1111 1111 0001 1101

K(50) P i) 1111 1111 0001 1101
K(50) P(2) 1111 1111 0001 1101

VI-54

.-L AJ.- -

K(51) P(1) 0100 0000 0001 0101 $Data applied to data bus
K(51) P(2) 0100 0000 0001 0101 $(8-15). Data is low

Sword of address of
K(52) P(1) 0100 0000 0001 0101 $exception handler routine.
K(52) P(2) 0100 0000 1111 1101 SEnd read cycle.

K(53) P(1) 1111 1111 1111 1101 $Begin read cycle.
K(53) P(2) 1111 1111 1111 1110 $Function codes (0-2)

$change to supervisor
K(54) P(1) 1111 1111 0001 1110 $program mode.
K(54) P(2) 1111 1111 0001 1110

K(55) P(1) 1111 1111 0001 1110
K(55) P(2) 1111 1111 0001 1110

K(56) P(l) 1000 1111 0001 0110 $Data applied to data bus
K(56) P(2) 1000 1111 0001 0110 $(8-15). Data is code for

$first instruction of
K(57) P(1) 1000 1111 0001 0110 Sexception handler routine.
K(57) P(2) 1000 1111 1111 1110 $End read cycle.

K(58) P(l) 1111 1111 1111 1110 $Data bus goes high.
K(58) P(2) 1111 1111 1111 1110

K(59) P(1) 1111 1111 i111 1110
K(59) P(2) 1111 1111 1111 1110 SEnd exception

$processing

The initial difference between the simulation and logic

analyzer results begins at phase two of the second clock

cycle 15 (wait state) and continues through phase two of

clock cycle 17. During this time period, the logic analyzer

data shows the data bus at state "0001 0000" while the

simulation indicates state "0000 0000". This is the write

cycle that saves the contents of the status register at the

time the illegal address reference was made. The state

represented by the logic analyzer data is inaccurate.

The state of the status register at the time of the

address error was zero because only the supervisor mode bit

.. (bit- 13)-was addressed during the test routine, and it was

set to zero by the "AND.W #$DFFF,SR" instruction to place

VI-55

the 68000 in the user mode. The four condition code bits,

interrupt mask, or trace bit were not altered from their

original low states. The SR is placed on the data bus at

phase two of clock cycle 14 and should remain there for the

duration of the write cycle (phase two of clock cycle 17).

This information, along with the fact that the logic

analyzer result could not be duplicated, suggests that this

is a consistent typing error.

Another difference begins at phase two of clock cycle

34 and continues through phase 2 of clock cycle 37. Here the

logic analyzer data depicts the data bus at state "1000

0001" while the simulation indicates "0000 0001". This data

represents the type of memory access that was attempted at

the time of the exception: information such as whether it

was a read or write, whether the processor was processing an

instruction or not, and the state of the function code

outputs when the address error occured (11:67). The format

of the access type is depicted in Figure VI-4.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure VI-4. Memory Access Type (11:68)

Neither Figure VI-4 nor any of the other available

documentation indicate that bit seven is used by the 68000.

Because this analyzer output was duplicated, it appears this

VI-56

portion of the address error exeception cannot be accurately

modeled without additional documentation.

The format of the memory access type also revealed an

error in the CDL model for this instruction. At phase one

of clock cycle eight, the microstatement "ACTYPE(3) <-

EXCEPT" was changed to "ACTYPE<3> = lo" in the ISP' .-

version. This bit indicates whether the 68000 was

processing an instruction at the time of the exception or

not (instruction = 0, not = 1) (11:68). Because EXCEPT was

in a high state, assigning it to ACTYPE(3) would incorrectly

indicate that the 68000 was not processing an instruction at

the time of the exception.

At phase two of clock cycle 23, this instruction's CDL

model contains the microstatement "IDBUS <- IR". The

objective is to save the instruction causing the address

exception (11:67). However, since the instruction that erred

was placed in a temporary instruction register at phase two

of clock cycle seven with the microstatement "IRTEMP <- IR",

and then IR was reused at phase two of clock cycle eight,

the saving microstatement will not achieve the desired

results. It was instead replaced with the microstatement

"IDBUS = IRTEMP" in the ISP' version.

The simulation's data bus also differs from the logic

analyzer's results at phase two of clock cycles 45 and 55.

The simulation indicates a high impedance state (1111 1111)

and logic analyzer data shows "1011 1111". Similar to the

simulation of the MOVE.W Dl, 04(Al) instruction, the logic

VI-57rD "r

analyzer appears to have caught the data bus in transition

because the differences occur when the memory is placing

data on the bus during read cycles. The ISP' model for this

instruction also anticipated the delay in showing the data

bus at the high impedance state following write cycles.

VI -58

VII. Conclusions and Recommendations

Introduction

This thesis was a follow-on effort to another project

whose objective was to develop a functional model of the

Motorola MC68000 that was capable of being simulated. The

model was to be constructed through signal analysis

supported only by technical data normally provided to a ----

retail purchaser of the system (8:1-6,7). The natural

objective of this succeeding project was to simulate the

models that were developed using that approach, analyze the --

results, and then draw conclusions regarding its viability

based on the accuracy and completeness of the models. This

chapter will present the conclusions resulting from this

study, as well as suggest further areas of research that may

broaden the conclusions reached regarding this innovative

method of microprocessor modeling and simulation. A

Conclusions

The completeness and accuracy of the models developed

by Hamby and Guillory demonstrate that the MC68000 can be

modeled at the functional level through signal analysis

supported by technical literature available to the public.

The state of the MC68000 was accurately depicted at each

clock cycle when executing a variety of instructions and

exception sequences. Only the dynamics of the address and

data buses during transitional periods prevent the state of

VII-I

each of the MC68000's signals from being totally

deterministic for every clock cycle. Even when the state of

the bus is otherwise deterministic, the lack of

sophistication of the monitoring equipment sometimes

prevented it from being accurately captured. But because

these indeterminate states occur at cycles which are of no

functional consequence to correct processor operation, they

can be ignored in terms of their impact on the accuracy of

the model. q

Based on the mix of instructions, exceptions, and

addressing modes modeled, it appears that there would be no

difficulty in modeling the complete set of MC68000

instructions and exception processing states. This

conclusion can reasonably be extended to include other

L processors whose architectural complexity does not exceed

the MC68000's. However, no definite conclusions can be I
reached regarding the effectiveness of this modeling

approach on other processors with more complex architectures [A
or sophisticated implementation techniques. Even some

architectures less sophisticated than the MC68000 may prove ,

more troublesome to model with this approach. For example,

the 16-bit Intel 8088 multiplexes a subset of its 20 address

lines to support eight-bit data transfers. This may hamper

this modeling approach by making the process of capturing,

distinguishing, and interpreting the address and data

signals much more difficult.

Some of the more sophisticated 32-bit architectures

VII-2

. ' --*' - ,- . "- '. - . ", .'- -.. '

employing extensive parallelism and pipelining may prove to 4

be even much more challenging. A good example is the latest

version of the MC68000 family of microprocessors, the

MC68020. The MC68020 maintains a 256-byte-on-chip

instruction cache. This capability removes the instruction

stream from the data bus making instruction identification

more difficult as they are executing. This cache

implementation also aliows simultaneous instruction and data

accesses to occur hiding the execution of some

microinstructions from the observer. The technical data

necessary to accurately model the processor's management of

the instruction cache may also be difficult to obtain. The A

algorithms employed to initialize the cache, update both it

and main memory during writes, and reload the cache during

misses would be difficult to discern from signal analysis

alone. Further increasing the difficulty of employing this

modeling approach on the MC68020 is the fact that the

instruction pipeline has been increased from two to three

words thereby allowing three instructions to concurrently

undergo the process of decoding and execution.

Another processor with an imposing architecture that .

may be extremely difficult to model with this approach is

Intel's iAPX 432. The iAPX 432 is actually a three-chip set r
with each packaged in a 64-pin quad in-line package (QUIP).... %. .~
Two of the chips combine to form the General Data Processor

(GDP): the iAPX 43201 (instruction decode unit) and the iAPX

43202 (instruction execution unit). These two chips

VII-3 r.

communicate across a microinstruction bus to fetch, decode,

and execute program instructions. A third chip, the iAPX

43203 interface processor coordinates all I/O between

peripherals and memory. An attached processor such as the

Intel 8086 is used in conjunction with the iAPX 43203 to

form an I/O processor unit for the iAPX 432 system. The

iAPX 43203 communicates with the attached processor via a

subsystem bus and with the GDP using a "packet" bus. The

packet bus uses data packets that vary from one to sixteen

bytes in length to provide communications between the GDP,

memory, and interface processor. The number of chips,

buses, and signals comprising the iAPX 432 system, coupled

with the packeting of bus information would certainly make

the task of modeling the iAPX using the approach under study

very difficult, if not impossible.

The complexity of the instruction set also becomes an

issue when considering a high-level-language architecture

such as the iAPX 432. The iAPX 432 has 230 instructions with

lengths that vary from six to 344 bits. Each of the

instruction fields are also bit-variable and can encase up

to six operands. Instructions such as "CREATE-DATA-SEGMENT"

may consist of hundreds of microoperations requiring a

significant number of clock cycles to execute. The

identification of both macro and microinstructions embedded

in packets transmitted over multiple buses for an extended

number of clock cycles will require extensive and detailed .

technical data supported by several sophisticated monitoring

VII-4

devices.

A point that should be made is that even though it may

be extremely difficult to gather the data necessary to model

a system such as the iAPX 432 using this approach, there

certainly would be no difficulty in coding and simulating

the model using N.mPc. One of N.mPc's strong suits is its

ability to describe and simulate networked multiple

microprocessor systems such as the iAPX 432. Each of the

iAPX 432's three processors, its supporting memory, and the

attached processor could be independently modeled and linked

through a description of their multiple connecting bus

structures to form a simulatable system from which

operational performance data could be gathered.

Recommendations

1. Model other microprocessors using this approach to

determine which architectural implementations lend

themselves to this modeling method. Architectural designs

or implementation techniques forming barriers to this

approach could then be identified and documented. An upper

bound in terms of architectural complexity that can be

modeled with confidence using this approach could be

established. Some candidates in order of their increasing :..-

complexity are the aforementioned microprocessors; the Intel

8088, the MC68020, and the Intel iAPX 432.

2. Develop a generalized and optimized model of the *
,

MC68000 with N.mPc. By conforming with the CDL originals,

the current ISP' models became too primitive and

VII-5

specialized. Each instruction was independently modeled to

process specific operands for a particular addressing mode.

Each contained its own internal memory and timing signals.

Not only does such an arrangement not represent the real

world environment, but to model the MC68000's complete set a
of instructions in all of their addressing modes would have

required over 1000 models averaging 50 kbytes in length

each. This number would escalate greatly if each

instruction were not assumed to receive a generalized

operand set. A coniplete model of the MC68000 that

consolidates instruction models of this type is obviously

out of the question. A more practical approach is to --

discard the previous model structure and adopt a more

general composition that will enable the researcher to take
K advantage of the capabilities of a nonprecedural language

such as ISP' and its host system, N.mPc.

Generalized routines to model multiple instructions in

each of their addressing modes and accept any of their

legitimate operands could easily be developed to minimize

the model size while maximizing its ability to completely

describe the MC68000. For example, the fourteen models

developed during this project to represent variations of the

"MOVE" instruction could be consolidated into a single

procedure that received its operands, the data size, and its

addressing modes as parameters. It would itself make calls

to general lower-level routines as necessary to accomplish

the microinstructions associated with a particular

, . ' -

VII-6r

I - Il

variation. The memory and two-phase clocking signals could

be modeled as independent system entities that communicate

with the MC68000 over a system bus. Such a representation

would afford an opportunity to model, simulate, and analyze

the MC68000 at a level of detail not heretofore achieved.

VII-7 %b

VI i-

-.]

-ntro.tVIII. Analysis of Time Spent on Project I
Introduction . ..

One of the requirements of this thesis was to maintain

a detailed log of all time spent on the project. This j
chapter presents an analysis of that time log.

summary of Time .1
Project time was spent as follows: .

1. Background Research and Project Preparation 18 hrs

Identifying Research Objectives

- Performing Literature Search

Reviewing Texts and Articles

- Studying Predecessor Thesis

- Formulating Research Approach

2. N.mPc Installation and Familiarization 91 hrs

- Installing, Configuring, and Testing System
- Generating System Documentation

N.mPc Familiarization

3. MC68000, ECB, and Logic Analyzer Familiarization 25 hrs

- Reviewing Texts, Articles, and Technical

Documentation

- Programming ECB

- Operating Logic Analyzer

4. CDL-to-ISP' Model Transformations 58 hrs

- CDL and ISP' Familiarization

- rormulating Transformation Methodology

VITI-l
U".o

.•..~

- Coding ISP' Models

5 5. Simulate Models 60 hrs

- Develop Simulation Strategy < ,

- Building Individual Instruction Simulations

- Running Simulations

- Testing and Debugging Simulations

- Generating Simulation Hardcopies

6. Simulation Analysis 42 hrs

- Reviewing Simulation Data

- Reviewing Logic Analyzer Data

- Re-examining MC68000 Operation

- Correcting Model Discrepancies-

7. Thesis Preparation 418 hrs

- Writing

- Typing

- Editing

- Printing

Hamby and Guillory speculated in their thesis that it

would require a team of two people approximately six months

to test and model the entire MC68000 processor using this

approach (8:VII-2,3). I further recommend that one of the

team members be "software-oriented" to facilitate the

development of a generalized model as recommended in Chapter t.
VII. Such a model will require someone experienced in the

areas of software engineering, modular programming, etc.

Accepting their estimate, this team configuration will allow

the development and simulation of a generalized and

VIII-2

..
.

q I&

optimized model within the same time frame.

I - .

bL -'
Il

..

*1

• 1

IL;];;;

b!J;-.--

77ii7:!7i

• .-.S

. '- ',

VIII-3 '""

- .3"..'. - *.. -.

Bibliography

1. ADI-814-I. MC68000 A n Informati-n. Austin, Texas:
Motorola Semiconductor Products Inc., 1982.

2. Barbacci, Mario R. "A Comparison of Register Transfer
Languages for Describing Computers and Digital Systems," IEEE
Transactions on Computers, C-2A (2): 137-148 (February 1975).

3. Bryce, Heather. "Microprogramming Makes the MC68000 a 4
Processor Ready for the Future," Electronic Design (October
25, 1979) .

4. Chu, Yaohan. Computer Organization and Microproqrammina.
Englewood Cliffs, N.J.: Prentice-Hall Inc., 1972.

5. Drongowski, Paul J. "Functional Simulation with the N.mPc
System," VLSI DESIGN: 76-77 (Jan 1984).

6. Drongowski, Paul J. et al. "A Guide for Writing N.mPc Hardware
Models." Department of Computer Engineering and Science, Case - -
Western Reserve University, Cleveland OH, January 1984.

7. Fong, James Y. 0. "Microprocessor Modeling for Logic
Simulation," icinaa oQf t IEEE 1981 International Test
Conference: 458-460 (October 1981).

8. Hamby, James R. and Galen J. Guillory. Architectural N
Anayais Modelin of a MC68000 Microprocessor. MS
Thesis, GE/EE/83D-23. School of Engineering, Air Force Institute
of Technology (AU), Wright Patterson AFB, Ohio, December 1983.

9. Hewitt, Donald C. Jr. The Runtime Environment L N.mc,
An Adaptable Software Sy tem J suprth f A (at
Microprocessor-Based Sys . MS Thesis CES-79-7. Department of
Computer Engineering and Science, Case Western Reserve
University, Cleveland OH, January 1979.

10. MC68000UM[AD2]. MC68000 16-Bit MicroProcessor User's
Manual (Second Edition). N.J.: Prentice-Hall, 1982.

11. MC68000UM[AD3]. MC68000 1-fit Microprocessor User.'.a
Manual (Third Edition). N.J.: Prentice-Hall, 1982.

12. NP-355-Rl. MC68000 Product Review. Austin, Texas:
Motorola Semiconductor Products Inc., 1982.

13. Ordy, Greg M. o.mo t User's Manual. Department
of Computer Engineering and Science, Case Western Reserve
University, Cleveland OR, March 1979.

14. Ordy, Greg M. Nl.mBc: Runtime Userl' Manual. Department
of Computer Engineering and Science, Case Western Reserve
University, Cleveland OH, March 1979.

BIB-i* .,..•, - - * . -'-*,***.-*-.*.*..~* ". ...-~ ..

*- * - ---•-" , .. . - - . -'. C

15. RADC-TR-81-343. Product Eluation Report of the M
MC68000. Griffis AFB, N.Y.: Rome Air Development Center, Nov
1981.

16. Rogers, Lawrence R. and Greg M. Ordy. 2h. M13 aicro
User's _ Veso 3.1. Department of Computer Engineering

and Science, Case Western Reserve University, Cleveland OH, March
1980.

17. Rogers, Lawrence R. The Linking/LoAder User's Manual,
Version i... Department of Computer Engineering and Science,
Case Western Reserve University, Cleveland OH, March 1980.

18. Rose, Charles W. et al. "N.mPc: A Study in
University-Industry Technology Transfer," IEEE Deign and
Test: 44-56 (Feb 1984).

19. Shah, Samir S. An A s f N.mFc fr 16-Bit j
Systems. MS Thesis CES-80-10. Department of Computer Engineering
and Science, Case Western Reserve University, Cleveland OH,
August 1980.

20. Straubs, R. V. ISP' User's Manual. MS Thesis CES-78-8.
Department of Computer Engineering and Science, Case Western
Reserve University, Cleveland OH, August 1978.

21. Stritter, Edward and Tom Gunter. "A Microprocessor
Architecture for a Changing World: rhe Motorola 68000,"
Microsystems (February 1979).

22. Titus, Christopher A. et al. 16-Bit Microprocessors.
Indianapolis: Howard W. Sams & Co., 1982.

23. Toong, Hoo-min D. and Amar Gupta. "An Architectural
Comparison of Contemporary 16-Bit Microprocessors", IEE - .
Transactions om putes, (May 1981).

BIB-2

....-. '-."

oIiNCLA SS I F [ED .A 4 1 L4~
:1L C ksT Y k I. AtS1I ICA TION Of T HIS PA GE

REPORT DOCUMENTATION PAGE
Is,1 REPORT SECURITY CLASSIFICATION lbe. RESTRICTIVE MARKINGS

UNCLASSIFIED
2& SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBiUTION/AVAILAOILITY OF REPORT

Approved for public release;
2b. OECLASSIFICATION/DOWNGRAOINOiSCHIEDULE dsrbto niitd

A. PERFORMIN4G ORGANIZATION REPORT NUMISERtSI 5. MONITORING ORGANIZATION R&PORT NUM11ER(S)M

A1IL'TIGCSIENGI84-D-.

G., AIAME OF PERFORMING ORGANIZATION eb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Si:Itool of Enginee~ring ~AFIT/ENG
Gc. ^OGRESS Wit~y. Slate and 1IP Coder) 7b. ADDRESS (City, Slate and ZJP Code)

ir Force Institute of Technology

riglt-Patterson AFB, Ohio 45433

Go. PlAME OF FUNOING/SPOP4SORING &ab. OFF ICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(if applible)

A FSC/F TD TQTA

Sc AOORESS Icily, State and ZIP code) 10. SOURCE OF FUNDING NOS.-

PROGRAM PROJECT TASK WORK UNI f
ELEMENT NO. NO. NO. NO.

I 11 ITLE finclude Security Claulificatinee

See Box 19

1 2. 1RSONAL AUTHOFI(SI
j(,tarles A. Baxley Jr. B1.S., Capt, USAF

13s. tvpE or. REPORT 13b. TIME COVERED 114. DATE OF REPORT iYr, Mo., Day) 15, PAGE COUNT

MS Thes is FROM T____ o ____ 1984 December 1200

JSSPPLEMENTARY NOTATION

* ICOSATI CODES 1B SUBJECT TERMS Wo~nlinwe on reverse if neceewarv anid Identify by block n"umbher)

01iUI D GROUP sue GR Computter Des ign Langua go(CIK) , Inst ruc tion Set
09 02 Processor (ISP'), N.UPc(Networked Microprocessor)

I Motorola MCb800(), Microprocessor Model ing,
19 AlSTRACT I Can lemma onl reuerse ifnflcghGIyan'd Idenily by be...t k Wb~

' itle: THlE S [MULAl [ON AND) ANAL.YS IS OF A RTI. MODtEL. OF 1Ii111. MOTOROLA

MC68000 MICROPROCESSOR WITH N .mPc

iliesis, Chairman: Frederick A. Zapka, Major, 1)S A

oma let Reuearch and Profosslaa eOMM
8k Yofte tatfitute of Tehnbulovy LAWC)
WdO-PW41tes A18 QM 46WI

20 ISRIUTON/VALAILTy OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCI ASSIFIEO/UNLIOMITED 0SAME AS RPT C] DIC JSI.4AS 1 UN C 1.A SS; I F I ED)

22s. I)IAMC OF RESPONSIBLE INDI1VIDUAL 22b TELEP11 ONE NUMBER 22a; OFFICE SYMBOL

-rvi r Ic k A. ZiIikit, M-i jIll , Ii ;A 'IIA F I I'/ FN NC

DD FORM 1473, 83 APR I 1TION OF JIAN 13 lb O6SO LI, T L

__ __ _ __ __ _ __ _SECURITY CLASSIF!ChrT-ON Ot- THie P~,1

U N 0,ASS[IF IED
SECO' .TY CLUSSI FICATION OF THIS PAGE

*18. Microprocessor S imuIa t io i, Mi c r o1)r oce s s or Atka Iys Cs u oip)u t er
Architecture, Microcomputers, Com1puterized Simulation, Digital 41

19. In a prior thesis project, a functional Level model of portions
of the Motorola MC68000) m c roproce.ssor was developed using s ig
nal analysis supported by limited technical data. Representative
parts of the instruction set and exception processing structure

weemodeled with the Compter Design I-inguage (CD)L) . In this
follow-on effort, those CDL models are transformed into equival-
ent models using ISP'', an enhanced vers on of the Instruction Set
Processor (ISP) hardware design languagi-. This language transfor-

* mation enabled the models to he sirnulatt-d using N.iUPC, a VAX
11/780-hosted software package developed spec if ically to support
the design of d igi Lal SYS temIs . TO evalua te Lte correctLness of Lte

of the models, the simulation results are analyzed against signal
data gathered with the aid of a logic analyzer (luring the actual
operation of the MC68000) when processing the modeled instructions.
The accuracy and completeness of the exaniined models suggests thlat
this functional approach to microproces,.)r modeling is a valid
one.

16.

*N I

W* V..M-C

FILMdED

oz

D-r TS- C

