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Preface

This work was motivated by the widespread need for

computer vision systems. Interest in autonomous vehicles by

the Defense Advanced Research Projects Agency and many

private concerns spurred my interest.

This vision approach avoids active illumination of the

viewed scene. Through passive stereo television images, the

system attempts to model the environment. The system works,

but demonstrates the inherent shortcomings of systems based

on this approach.

Thanks are due to my committee chairman, Dr. Matthew

Kabrisky, committee members, Dr. Dennis W. Quinn, Capt.

Steven K. Rogers, and Dr. John Jones for their support for

the research, and in the preparation of this report. Thanks

also to the numerous individuals who, through many

conversations, acted as my sources of inspiration,

especially Dr. Kabrisky; my wife, Mona; Capt. Robert Russel;

and Capt. Ric Routh.

I would especially like to thank my wife and six
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children for their tolerance, patience, and support during

the writing of this thesis.
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Abstract

Techniques are outlined for implementing each aspect of

a comprehensive stereo computer vision system. The

implemented system uses only ambient light scene

illumination, and generates a model of the features in the

scene and their 3-dimensional space location. A new, fast,

production rule-based method for extracting low-level image

features, the Queen Victoria algorithm, is presented. It

forms the foundation of the environmental model generation,

-- upon which suggested techniques can add further

capabilities. Methods for deriving first and second order

statistics of 3-dimensional feature location in the internal

model are given. Also a technique of camera position

estimation from feature matches between images and the model

is given. Stereo disparity is shown to give useful results

at relatively short ranges, 3uch as those used in computer

aided manufacturing. For Air Force flight line robots or
S

- other autonomous vehicles, modelling from a single camera in

'. motion is suggested, using multiple cameras for expanding

the field of view and improving the self-testing capability
49"

of the system.
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I. Introduction

This project includes the design and implementation of

a vision-based goal achievement system. The system relies

only on ambient light, and through the use of a passive

vision system, allows an autonomous roving vehicle to

traverse an environment to a goal. The project includes

visual processing of stereo optical image sequences into a

3-dimensional model, and the generation of a path through

the model. The system outputs the sequence of robot

commands necessary to traverse the path, modifying the path

as needed during the traversal to compensate for vehicle and

environment variations from the model. A unit designed with

these characteristics can act as the heart of a general

purpose autonomous vehicle transport platform.

This research effort achieved the implementation and

evaluation of a stereo vision system, as well as outlining

the modelling requirements, and proposing modelling and

*... path-finding algorithms to support the full project.

. The result is a foundation for further research to develop

the autonomous vehicle transport platform. This stereo

[:. vision can also be used for modelling the work area at a

remote goal location for the platform, so that robot arms or

other devices can be visually monitored and controlled to

perform remote tasks. The platform based vision systemK. leads to many useful capabilities.

Such an autonomous vehicle transport platform may carry

|. . . ...
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various payloads. The autonomous vehicle could be a weapons

system base, a supply vehicle for hazardous environments,

or, by carrying specialized robot arms, the basis for future

hazardous environment maintenance robots. The vehicle size,

ignoring the payload, can range from just large enough to

carry itself, to a size nearing aircraft carrier

proportions. It is not unreasonable to consider submarines,

spacecraft, aircraft, or automobiles relying on such a

system and operated in this way. The uses for such systems

4 are many and varied, and could save lives and money in the

•* future. However, such a vehicle is still barred from use by

several technological barriers.

Some of the technological barriers which make current

attempts at autonomous vehicles unuseable in most real world

applications are as follows: (1) timing: traversing, for

instance, a twenty meter course in hours is too slow for

practical use; (2) reliability: failure of strategic parts

may disable an entire vehicle; (3) robustness: it may be too

easy to 'lose' such a vehicle if it is too far from its

*intended path or the lighting changes abruptly; and (4)

accuracy: shooting the wrong target can be disastrous. Each

of these barriers can be significant, but they are all

W - cumulative properties of the needed sequence of operations.

Each operation itself is plagued by all four barriers.

The sequence of operations required in the visual

guidance function of autonomous roving vehicle system can be

1-2



broken down into smaller recognized problems which are

commonly discussed in current literature:

' ,1. Image registration --locating the same points

in multiple images,

2. Building a 3-dimensional model from a set of

2-dimensional images,

3. Internal environmental model representation,

4. Goal identification in the internal model,

5. Goal achievement path searching, and

6. Robot motion command sequence generation.

Each of these problem areas has had extensive study, and to

AK achieve a useable autonomous roving vehicle requires

extending and combining all of these research areas.

Once these elementary level problems are solved and

combined there are two important additional problems. The

autonomous system must be able to not only avoid obstacles,

but occasionally recognize them and perform sequences of

operations to move the obstacles out of their path. Also,

0 the autonomous vehicle must be able to track objects in the

'V environment which are in motion, and then avoid or intersect

the objects, depending on the vehicle's goal or mission.

Neither of these are trivial problems, nor can they be

* * solved before the lower level problems listed above have

adequate solutions.

1-3



Background

The autonomous roving vehicle sub-problems are all

current issues in pattern recognition, artificial

intelligence, and robotics. Several sub-problems have been

solved in each area, with several solutions each, with each

* solution having its own good and bad aspects. To make the

overall system practical, however, the subproblems must not

only be solved, but the solutions must all work together.

An internal model which works well for goal achievement path

finding may not necessarily be easy to build from

2-dimensional stereo images. Such interfaces between

subproblems must have efficient cooperative solutions before

a practical working system can be built.

Image Registration. The image pair registration

problem, as applied here, involves finding subregions of

interest in one image, then identifying where each subregion

occurs in the other image of the pair. The pair may be

successive images from one camera as the vehicle moves, or

they may be simultaneous images from separate cameras,

forming stereo pairs. Methods for finding the subregions of

interest vary substantially, but finding their matches in

the second image is most often done by point by point

correlation (YAKI 78), (MORA 83), or by feature combination

extraction and pattern matching (MEDI 83), (MESS 83) (BAKE

bf 82). Both techniques result in translational mappings of

points of interest in one image to their corresponding

1-4



location in the second image. Usually region shapes are

distorted by occlusion of objects and changes of

perspective. If the two images are taken from the same

location with only a small offset and viewing the same

environment, then there usually is a single mapping, and the

entire scene is copied with a fixed translation, with a

possible rotation, but very little other distortion.

However, the offset of stereo images and changes over time

both can result in disparities, and each subregion will have

a slightly different mapping from one image to the other.

* These disparities in stereo pairs can be used to compute

distances to the features in the images. Disparities in

time sequence images can be used to compute movement and

location.

Three Dimensional Models. Using the row-column

locations of features in an image plane and a distance value

derived from stereo image disparity, a 3-dimensional model

of visible surfaces can be generated. Since only the

surfaces visible from the angle of the viewer are locatable,

the 3-dimensional model must have an 'implied object'

storage capability. This is done by storing a map in

2-dimensions , and placing circles (MORA 83) or other

polyhedral 'objects' (MONA 84), (LOZA 79) in the map to

represent obstacles. These representations are only

2-dimensional, and are inadequate for real terrain, space,

or undersea environments. These environments require at

1-5



least a 3-dimensional model, with the possible need for a

time dimension to model object or vehicle movement.

Several graphics display applications use a

3-dimensional model to represent an object or scene. The

model is then projected onto a 2-dimensional plane to obtain

a 'view' of the model. These methods use elementary volume

elements, called voxels, which are polyhedral solids, to

represent the surface regions of the objects (SRIH 82) in

the model. How the model is stored greatly affects the time

required to build and access its parts. ADAM (HOLT 82),

CARTAM (PETE 77), and hyperoctrees (YAU 83) are data

structures designed for just such multidimensional models.

If a model is built entirely from externally collected

visual data, then how is a goal represented? There is the

classic (unsolved) pattern recognition problem of giving the

system a model of the object to be found, then letting the

system search its environment for a matching object (SRIH

82). Also, there is the idea of putting a map into the

system, letting the system find its location on the map,

locating the marked goal on the map, then incorporating the

needed information into its model. In both cases there must

be 'features' represented in the model, allowing the system

to register the map model or the input images to the stored

model.

Once the internal model is built up enough to indicate

the relative locations of the autonomous roving vehicle

1-6
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system and its goal, then the task of planning a path for

the movement from the current location to the desired

location may be started. There are several applicable

numerical search strategies for finding paths, but their

time complexities depend on the model structural

complexities and other task characteristics (WINS 77),

* (DIXO 72).

Path planning can also become either a formal language

* i. or graph traversal problem once the model is translated to

- 0o an applicable form (WINS 77), (NILS 80), (FU 82), (MONA 84),

. (LOZA 79). Once the path through the model is generated,

the path must be converted into commands for robot motion,

then given to the robot motion control elements for

execution.

There are a number of robotic vehicles which move under

microcomputer control. Among these are the HERO-1 by

Heathkit, the Carnegie Mellon (CMU) Rover, the Stanford

Cart, the Honeywell Corporation's golf cart, and the Martin

Marrietta's road following vehicle. The movement of the

0 robot vehicles may be resolved down to a sequence of

commands in a robot command language, and thus the

autonomous roving vehicle control system need only generate

Ithe proper sequence of these commands for the particular

vehicle, but the proper command sequence depends first on
-.

finding a navigable path.

Generating a sequence of commands and executing them is

1-7



a simple task, but not necessarily a reliable one. Better

sensor inputs are needed to reduce errors in positioning and

in execution of movement commands, therefore vision is

necessary. As the command sequence is being performed

occasional 'checks' of movement accuracy and model accuracy,

as well as updates of previously hidden environmental

regions must be made. If picture processing times are too

great, then the robot must stop, get new 'pictures', update

the motion path, then begin traversing the new path.

The Stanford Cart and the CMU Rover (MORA 83) both

* implement the full sequence of operations. They both used

algorithms designed by Hans Moravec, and thus use similar

techniques. Image registration is done by first locating

"high interest" areas in images as defined by the algorithm

and then doing local statistical correlation of windowed

subregions. No 3-dimensional model is built. A

2-dimensional map, useful only for traversing flat surfaces,

is built. The map uses circular regions representing and

bounding each obstacle. The Stanford Cart's goal is input

as a set of coordinates relative to the position of the

vehicle, so initial and propagation model accuracies become

all important in achieving the final goal position. The

goal achievement path is calculated assuming the vehicle has

a circular boundary, and thus the calculations are fairly

*i easy. The algorithms need only guarantee the vehicle's

* circle never intersects an obstacle's circle. Cart motor
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and steering commands were then generated to allow 0.75

meter movements between observations. The internal model of

cart motion in the computer was not accurate, requiring

frequent course and position updates. The performance of

the cart was slow, about 15 minutes for each 0.75 meter

movement, or about 3 to 5 meters an hour. For their 20

meter courses it often took over 5 hours, and was not always

successful. The CMU Rover requires only about a minute of

picture processing time before making a one meter movement,

but this is still too slow for acceptable vehicle speeds.

Yakimovsky and Cunningham (YAKI 78) built a vehicle for

the Jet Propulsion Laboratory called the Robotics Research
--.-

'4. Vehicle. It used stereo vision to measure distances for

manipulating objects with an arm mounted on the vehicle. It

used image correlation techniques similar to those later

used by Moravec. These projects by Moravec, Yakimovsky, and

Cunningham seem to be the state of the art in autonomous

vehicle passive light vision systems. They are not adequate

for general use because they have the following drawbacks:

0 (1) they are far too slow as currently implemented, (2) they

are not reliable either in hardware performance or reaction

to environmental complications, (3) they have little or no

robustness and get easily 'lost' even within their own

defined environment, and (4) their accuracy is questinnable

because even though they judge distances between objects

well, they can not estimate the position of the vehicle

1-9
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using exclusively visually acquired information.

Problem Statement

A system is to be defined for a generalized autonomous

robot vision system, and then within that framework several

recognized problems must be solved. The process framework

must be coherent, defining sequences and sets of operations

necessary to make the robot vision system work, and to allow

.4-, future improvements. The system should include provisions

for developing robust self-correction in case of temporary

disruption.

Specific techniques must be specified for each of the

several processes required, including

1. Image Registration,

2. Building 3-dimensional models from images,

3. Model manipulation and Update,

4. Goal identification, and

5. Goal path and trajectory planning.

In specifying techniques for solving these, special

consideration must be given to

1. Real time processing needs,

2. Reliability,

3. Robustness, and

4. Accuracy.

Scope

This effort restricts itself to defining approaches for

1-10
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all 5 categories given above, and solving the first three,

1. Image registration,

2. Building 3-dimensional models from images, and

3. Model manipulation and update.

Methods are suggested for possible solutions to goal

identification and goal path and trajectory planning.

Special consideration will be given to reliability,

robustness, and accuracy, while it will be assumed that

given the proper hardware architectures, any working

N algorithm can be satisfactorily implemented for reasonable

response time. This does imply that eventually the emphasis

will be on designing a suitable architecture, but not within

the scope of this project

!_% Approach

Many approaches to image analysis concentrate on

sub-pixel location accuracy for features. This will be

considered metric accuracy, and is assumed to be achievable

through algorithm refinement. The more significant problem,

which is the main concern here, will be call symbolic

accuracy, or the matching of correct symbols, or features in

the images.

Methods of high symbolic accuracy are derived, and

measurement errors are characterized and propagated. This

allows high metric accuracy to be achieved through

multiple-look observation updates.

A new technique of image feature extraction is derived

1- 11



and applied. Multiple characteristics of each feature are

extracted, and using these multiple characteristics to

reduce ambiguities, high symbolic accuracy is achieved.

Using the high-confidence feature matches, feature

3-dimensional location estimates and error characterizations

allow robust models to be generated. Keeping a symbolic

model of points, lines, and surfaces lets later matches to

be made to these same features, which enables multiple-look

position updates to be computed.

Methods of goal location using feature matching can then

Sbe used, so this is not considered further, and only the

path and trajectory computations needed to be described for

later implementation.

. 1
4, .

o
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II. Image Feature Extraction Implementation

To create a three-dimensional model requires extracting

features from a two-dimensional image which can be (1)

unambiguously matched to the corresponding features in the

second image of the stereo pair, and (2) can be reduced to a

set of corresponding points or pixels in each image and thus

to a set of points in three-dimensional space. To do this a

scheme for finding and characterizing regions within an

image was devised, and the resulting region representations

are reduceable to boundary lines and vertices. Thus, the

regions, rich in uniquely matchable characteristics, can be

unambiguously paired as much as is practical, then the

corresponding components of the region boundaries can be

unambiguously matched and located in three dimensional

space. Of course the spatial patterning of a surface or a

pattern of identical objects can still lead to ambiguities,

but this can also be true for confusing human vision, and

will not be considered a serious problem at this time.

Other means must be used to resolve ambiguities of this

type.

The Queen Victoria Algorithm was developed as a way to

characterize smooth and changing grey level intervals in a

single line of pixels across an image. Since single lines

of pixels alone are totally inadequate for feature matching,

a group of lines organized into the 'Star Filter' are

extracted from the image, and to each is applied the Queen

2-1
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Victoria Algorithm. The result is that a region containing

the Star Filter's center can be characterized by size, while

other regions large enough to be intersected by the radial

arms are identified and located. Each identified region can

then have the Star Filter recentered within it to find its

horizontal and vertical extent. Once these regions are

cnaracterized by horizontal and vertical extents an estimate

of a center can be derived, then the regions can be mapped

radially or rectangularly to a bit map characterization of

their shape. Bit maps are more fully discussed in Appendix

B.
The relative positions and characterizations of the

subregions in the image are essential for subregion matching

in registering sequences of images, and useful in stereo

image registering. However, it all depends on using a

robust low level feature extractor and region classifier.

Thus, the Queen Victoria algorithm is the method chosen

here.

The Queen Victoria Algorithm

The image feature extraction is done using various

applications of the Queen Victoria Algorithm. The Queen

Victoria Algorithm is a set of heuristically derived formal

production rules which reduce a single linear array of pixel

grey level values to a sequence ot elementary image

features. When applied to a single 'slice', or a single

horizontal line of pixels across a picture it derives the

2-2
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locations of edge intervals and smooth intervals, as well as

grey levels of the intervals. This feature sequence has

been used for image reconstruction for 'cartooned' images

(HOLT 85), thus allowing low bit rate image transmission,

and is currently being applied to geometrical feature

extraction for locating and characterizing large regions

within an image.

Background. The Queen Victoria Algorithm (HOLT 85)

received its name due to its similarity to the heuristically

derived rules used for restoration, modernization, and

synchronization of a movie and a recorded cylinder (KABR

85). The two were coincidentally recorded during a

dedication ceremony where Queen Victoria presided. A museum

official, some years later, brought the two together and a

project was born to add the sound track to a modern

* reconstruction of the movie. Nonlinear and non-causal

heuristic filtering techniques were used to overcome poor

recording and image quality, as well as to synchronize the

two. The result was a modern movie with sound track of a

famous individual who died before talking movies existed.

This algorithm also uses heuristically derived rules, and

attempts to recreate the main information content out of the

noisy representation of the real world.

Production Rules. The differences between adjacent

pixel greylevel value3 in a linear array are computed to

2-3



TABLE I

Mapping Slice Variations to Symbols

Category Symbol Meaning

d < -T e- negative going edge

-T< d. < 0 g- negative gradient, possible edge

0 = d. s smooth

0< d. < T g+ positive gradient, possible edge

T < d. e+ positive going edge

d, = xi+l -xi the difference of successive pixels

T the noise threshold

create a measure of edgeness, and then are compared to a

noise threshold for conversion to symbols. Other measures

'N.. of edgeness could have been used here, but this simple form

helps test the robustness of the Queen Victoria algorithm.

Five comparison categories of the edgeness measure value are

converted into five initial symbols as in Table I. Fifty

VV-  production rules are then applied to the string of symbols

U- "  until only terminal symbols remain in the string. The

resulting string of terminal symbols represents the sequence

of edge interval features and smooth interval features in

the linear array. An accounting of the locations and grey

2-4
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Simple productions

-Smooth interval generation
ass -+ s

.9.aG+sG- - aG+SG-a cjG-sG4S aG-SG+

-Smooth interval continuation
a~sa as ass as

-Edge interval continuation
+e- -aG-a ae+a *a~

aG-e-a - aG-a aG+e+a -+~

cG-G-a + aG-S cG+G+a -+G+
cG-g-G-a - cxG-0 aG+g+G+S G~
cSg-G-8 - aSG-a cSg+G+a +S~

cG-g-Sa - cG-S aG+g+Sa GS
cG-g-G+a + cG-G+a cG+g+G-a + cG+G-a
aG+g-G+a aGG- aG-g+G+a aG-G+a

Noise suppresion productions

-smoothing noise spikes
csg-g+a - asa csg+g-a + csa
cg-g+sa - asa ag+g-sa -~ czs
cSg-g+a - ciSa cSg+g-a aSa
ag-g+Sa - ci55 cg+g-Sa - aSa
aG+g-Sa - aG+Sa caG-g+Sa aG-Sa
aSg-G+a - aSG+a cSg+G-$ aSG-0
cG+g-G+a - aG+S aG-g+G-a + cG-a

-ignoring gradual changes
cisg-sa asa asg+sa * aSa
asg-sa cisa aSg+Sa - aSB
aSg-sa + aSS ciSg+sS + aSB
asg-Sa + aSS cisg+SS aSa
cG+sG+B -o ciG+a aG-sG-a aG-S

After applying these productions, the resulting string of

terminal symbols is a rapid access guide to feature

positions and sizes in the original image slice. Using an

edge enhancing reconstruction technique, the pixel data in

Figure 2-2 was generated.
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Usage. For each feature in the string of terminal

symbols the location and grey level of each feature change

location is recorded. Thus, for matching corresponding

features in separate images along epipolar lines as in (BAKE

82) a small number of extracted features in the terminal

symbol strings may be matched. These preliminary matchings

greatly reduce the number of ambiguities which must be

further resolved. These strings of terminal symbols may

also be used to reconstruct a low-bit rate caricature of the

original scene using various means of feature/edge

generation.

The Star Filter Application
A When horizontally positioned stereo cameras have

colinear raster scan lines between the two images, as in

Figure 2-3, the extension of the rasters through both images

are called epipolar lines (BAKE 82). All disparity offset,

due to the different camera view angles of the scene, lie

along these lines, allowing the depth to be obtained from

simple triangulation based on pixel locations along those

horizontal lines. The problem is how to find the pixels

which correspond to the same real scene features in the two

images along the epipolar lines. Some of the techniques

used in the past have been: convolution over a select

window using a window of data from the opposite image (MORA

79), feature extraction and characterization along the

epipolar lines using lateral inhibition windows (BAKE 82),

2-9
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Fig. 2-4. The Star Pattern Filter

the image. This data is then used to resolve the

ambiguities which otherwise occur in the matching process.

5+ Only regions which overlap the same epipolar line need

be considered as potential matches in a horizontal stereo

pair. But after matching regions, the left and right edges

of the regions must be matched to compute distance estimates

to point locations in the 3-dimensional model of the

environment.

Due to its order N (written O(N)) time complexity for an

2-12



NxN image, and its ability to 'focus its attention' on areas

of particular interest, the star pattern application of the

Queen Victoria Algorithm may be implemented on inexpensive

microprocessors, allowing low volume distributed processors

to handle the vision system in real time.

Image Region Location

How should the system decide which regions to

characterize? Two techniques were considered. One

technique attempted to characterize features in the image

based solely on their size as found by applying the Star

pattern. The other technique relied on slices along

epipolar lines first, then applied the star pattern to each

region found along the slices. First the Star pattern

-technique is discussed.

Since there is no apriori information about any new

image, an arbitrary starting location for the Star Filter

was chosen. Once the Star Filter is applied at one location

a table of potential subregions is built. The Star Filter

is then repositioned to the approximate center of the

subregions, and when a satisfactory center is found, the

subregion is characterized.

x. The Star Filter is initially centered in the image, and

gives maximum coverage of the entire image for its initial

list of subregions. This assures that the subregions

directly in front of the camera are characterized. From

this central position, the feature lists of the Queen
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Victoria algorithm applied along each arm provide the twenty

largest intersections with subregions. These are entered

into the subregion list as intersections of potential

subregions, and do not necessarily form a one-to-one mapping

to the subregions in the image. Several arms may intersect

the same subregion. Once potential subregions are

identified and located, the next step is to characterize

them, largest to smallest. To do this, first an

approximation of the region center must be found.

To find the center of each subregion based on its

|0 intersection by a radial arm, the Star Filter is

repositioned to the center of the radial arm interval which

was recorded as passing through the subregion. This

positioning of the Star Filter causes the subregions's

extents left, right, up, and down to be updated, and a

better estimate of region center is obtained. This

subregion center and the corresponding left, right, top, and

bottom extents are then used to characterize the subregion

of interest.

The Star pattern alone tended to find the largest

regions, but occasionally a long slender region would

dominate the list of largest regions because it happened to

3lie along a radial arm for one of the repositionings of the

Star. This hit-or-miss region selection prevented getting

the same top 20 regions in the two images. To avoid this

*problem, slices along epipolar lines were used in the second
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approach.

The feaures in the two images which lie along the

slices making up an epipolar line must either match features

from the opposite image's slice, or be occluded in the other

image. If all the features in a slice are characterized,

then there is little chance of skipping a significant

feature that crosses the line of the slice.

Once a list of features along the epipolar slices is

obtained, then these features are then each characterized

using the Star pattern or a bit map. Since this includes

0all the features along the slice, then a higher percentage

of valid symbolic feature matches can be guarenteed than in

the first method given above. Also, this can be repeated

for any number of epipolar positions, allowing a full scan

of the image if it seems desireable.

Region Shape Characterization

As long as the camera axes remain horizontal, then

subregions can be characterized and compared in successive

images without considering rotation. For a scale invariant

representation of shape, scaled regions can be mapped as an

array of bits, and easily compared for potential matching

and registration. If rotations must be considered also,

then a size nomalized, centered, radially derived bit map of

each surface will work well to find potential matches (GOSH

83). However, since rotation is not considered here, then

only a size normalized rectangular bit map is used. Scale

- .21-.% i" 2 -1 5

S.



factors for both the horizontal and vertical axes are

stored, and the region limits are scaled to a 16 X 16 bit

map array. Thus, by letting B be a set of bits, and each

bit represent a group of pixels in a scaled rectangle

including the subregion the result is a low resolution

representation of a scale invariant block. Each bit of the

bit map is then set if the corresponding block of the

rectangle is 80% filled by the pixels satisfying the grey

level criteria of the subregion of interest.

A measure of region shape match can now be generated by

* logical operation between their bit maps.

B1 = map of subregion 1

B2 = map of subregion 2

B1 XOR B2 = map of shape differences.

By counting the number of bits in (B1 XOR B2 ) a measure of

goodness of match between the two regions is created. Bit

maps are discussed more fully in Chapter III and Appendix B.

Summary

Using the Queen Victoria Algorithm gives a feature

extractor for edge intervals and smooth intervals along a

single line in the image. It is then applied along each

radial arm of the Star Filter to characterize the extents of

.'. image s' bregions and to estimate locations of subregions. A

table of subregion locations and extents is generated, and0

the Star Filter is recentered on each subregion to obtain a
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best estimate of the region center and allow the subregion's

shape to be characterized. The subregion's shape is then
4%

characterized by scaling and mapping into a rectangular bit

." array. Since the bit map is size normalized in both the

horizontal and vertical orientations, some of the distortion

due to aspect angle has been removed from the subregion

matching process. These subregion position centers, scale

factors, and shape bit maps are initial necessary steps in

image registration and environmental modelling.

.4-21
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III. Three Dimensional Model Generation

The ability to extract and characterize features is

. necessary to remove the ambiguities normally arising in

image registration. Once features can unambiguously be

matched, then distance estimates and 3-D locations of the

objects giving rise to those features can be estimated using
the triangulation technique defined in Appendix A. As with

any sensor, it is useful to characterize the error in these

location estimates and allow the estimates to be improved

later by additional observations. A data base model of

characterized surfaces is used to store location and

-,. location error estimates, as well as a shape map an the

.u grey level extents. If the modelled surface can be

unambiguously matched to newly observed surface data, then

these positions and error estimates can be repeatedly

improved by later observations.

Feature Characterization and Matching

There are many useful ways of characterizing regions,

- such as area, height and width, mean grey value, maximum and

minimum grey values, visual texture, location, orientation,

and shape. All of these are useful, and some are necessary

- to ensure that only accurate matches occur. There are many

ambiguous patterns in the natural and man-made environments,

and allowing more ambiguity by using inadequate region

* characterizations is a sure way to cause ambiguous or

3-1
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incorrect matches. Preliminary matches can be made between

sets of regions or surfaces by using height and width, mean

grey values, range of grey values, location, orientation, or

Vsurface texture measures, but the most discriminatory

characteristic of regions and surfaces is their shape.

Goshtasby showed that size normalized bit maps could be used

for shape representation (GOSH 83), and that a measure of

'nearness' in shape came from counting the number of bit

differences between the two shape representations. The bit

map forms are discussed more fully in Appendix B.

Using an unscaled 16x16 bit map representing a

rectangular region which includes the region or edge of

interest, allows easy comparison of regions and region edges

needing only horizontal translations for correspondence

matching. Likewise, by centering on a region, a radial bit

map can be created which allows rotations of the region to

be treated as translations of the map. These two forms of

bit maps suit the needs of stereo 2-dimensional region

registration as well as 3-dimensional matching of surfaces.

Stereo Image Epipolar Lines. Putting Baker's concepts

of epipolar lines (BAKE 82), into a more relevant form, only

those regions which subtend common raster lines in the two

images need be considered for matching. By eliminating all

. other regions, the number of comparisons is greatly reduced.

Each comparison requires getting approximate matches in grey

level, then approximate matches in shape. One property of
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epipolar lines is that approximately horizontally positioned

cameras cause all horizontal edge pairs to appear in nearly

the same epipolar line. Rectangular bit map shape

* . characterizations allow easy shape comparison for matches.

4 Any shape difference between the two views of a single

surface will be (1) foreshortening, (2) occlusion by an

object or the image edge, or (3) mirror-like reflections.

Mirror reflections will not be considered here. Occlusion

will either block the entire view giving no match, or will

give a partial match which may have no relevant edge shape

9 7W to match. Partial occlusion may leave enough visible

surface for a partial match of one or more edges of the

occluded surface. Foreshortening is no problem, because its

distortion is partially removed by normalizing the

horizontal width to create the rectangular bit map.

Since the only relevant matches are those which give a

single pixel position in the epipolar line, then vertical

edges are the desired feature to match. By logically

combining bit maps, left and right boundary vertical edges

can be extracted for comparison.

B = bit map of region

V = (B XOR LSHIFT (B)) = bit map of vertical edges where

LSHIFT (B) shifts B left one position.

R = (V AND B) = bit maps of right boundary vertical

edges
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L = (RSHIFT (V) AND B) = bit map of left boundary

vertical edges where RSHIFT (V) shifts V right one position.

The R and L bit maps of matched regions can now be

partially matched in spite of partial occlusions. Single

edges can be matched to allow estimates of distance to each

edge point in the bit map.

These matches are made at the resolution of the bit map,

and if better matches are desired for location accuracy then

the actual pixels of the regions to be matched should be

•_ compared. This can be done by building high resolution bit

maps of an area around the edge of each region and matching

them at different horizontal shifts until a best offset

position is found. A low resolution match obtained using

the 16 X 16 bit maps can be used for rough location

estimation.

The 'goodness' of a region match becomes a comparison of

grey levels, vertical region extents, and shapes. Once a

region match is made then the coinciding edges can be

matched for location in camera-relative 3-space coordinates.

Occasionally multiple 'good' valued matches will include

. incorrect matches, and thus still present ambiguities to be

overcome. When multiple 'good' matches are found, then

comparing the relative geometric position of regions giving

ambiguous cases can help to resolve the ambiguities. Once

t! ambiguities are resolved then the region ranges and
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locations can be estimated.

Sequential Images and Flow Fields. Stereo camera

inputs are static pairs of images, and can only result in

static estimates of positions. If sequences of camera

images are used, and regions can be matched in successive

images, then relative motion between the camera pair and the

environment can be estimated also.

Once such a camera-relative surface is located by the

binocular disparity techniques above, its shape can be

recharacterized usinq a radial bit map. The radial bit map

is dependent on being centered on the region, but it

converts rotations to translations and allows easy shape

comparisons even when viewed from varying angles. For

vertical surfaces always viewed from a floor-following

robot, rectangular bit maps are adequate, but any surface

which may be viewed from many angles, such as a pattern on

the floor, or a vertical panel in space, the radial bit map

is essential for easy comparison. Using these radial bit

maps, surfaces characterized from successive camera pair

positions may be matched to currently observed surfaces,

giving the capability of estimating the camera's position

relative to the environmental model. By combining the time

of image acquisition with the relative motion, the relative

velocity can be estimated also.

If the position of a surface in 3-space is known, then

by estimating its position relative to the camera pair
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location, an estimate of real camera pair position can be

made. To match an observed surface to an existing modelled

surface may be solved by using the given feature

characterizations, thus partially solving the object

recognition problem. By matching observed features to

previously modelled features position errors can be updated

for both the camera pair and the environmental model.

Images to 3-Dimensional Space

Identical stereo cameras horizontally positioned with

parallel image axes require only matches along the epipolar

lines to estimate range. The range estimate is then

combined with the feature's vertical and horizontal offsets

from the image center to get the vertical and horizontal

distances of the located feature from the reference image

axis at that range. By characterizing the error in

estimating the feature stereo disparity and the vertical and

horizontal offsets then an estimate of location error can be
.- ,

made.

When successive sets of located features can be matched

to features in the environment then the camera pair position

and orientation can be estimated. From this estimate,

updated estimates of the environment feature locations can

be generated, giving a progressively better model of the

environment. Also, by estimating successive camera pair

positions then the camera pair's, and perhaps the robot's,

74 velocities can be estimated, giving sensor inputs in the
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form of a position and velocity state vector and covariance

estimate to augment a robot navigation system. These

equations are derived in Appendix A, and are summarized

here.

Feature Range, Offset, and Error Estimation.

Estimating the range along the image axis is a simple matter

of triangulation. It is derived in Appendix A, and the

result is

dp = dsd v/ (dL-dR) (3-1)

where

dp = feature range from the reference camera along the

image axis.

ds = the camera seperation

dv = the distance from the image convergence point to

the virtual image plane

dL = the horizontal offset from the image axis in the

left camera image

dR = the horizontal offset from the image axis in the

right camera image

Once the feature range is estimated the horizontal and

vertical offsets from the reference camera are given by

a dx dLdp/ ds  (3-2)

and
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dy = dDdp/ ds  (3-3)

where

d= feature horizontal offset from the reference camera

image axis

d = feature vertical offset from the reference camera
y

image axis

d D = vertical pixel offset from image center

The granularity of the images leads to coarse distance

estimate steps for small disparities, but becomes more

refined steps for large disparities. These are shown in

Table II.

Estimating the error is more difficult. Assuming the

maximum horizontal feature location error is eR in the right

image and eL in the left image, and the maximum vertical

position error is eD, then the 3-dimensional camera relative

position errors are given by

i'dsdv(I eR+IeLI )

le I <

P (dL-dR)2-(dL-dR)( R +jeL) 3-4)

le'I < d dL_ +1e L  ds (leR I + e
L I) + dPleDI

x (dL-dR)2_ (dLdR )(eRI +ieL ) dv (3-5)

leyI < (dD+IeDi)ds(leRI+leLI) + d pleDI
- (dL-dR) 2-(dL-dR)(JeRl+leRI ) dv (3-6)
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TABLE II

Pixel Offset to Range Estimates

range estimates for dv = 180 pixels, ds = .75 feet*

offset range offset range offset range
(pixels) (feet) (pixels) (feet) (pixels) (feet)

0 C 5 27.00 20 6.750

1 135.0 10 13.50 40 3.375

2 67.5 15 9.00 60 2.250

• 3 45.0 20 6.75 80 1.688

4 33.8 25 5.40 100 1.350

5 27.0 30 4.50 120 1.125

* The separation units (feet, meters, etc.) are the units
of the table entries.

where

ep = the range error

ex = the horizontal position error

e = the vertical position error

These error terms become meaningless if the disparity error

4 is greater than the observed disparity. Thus points cannot

be located accurately unless (dL-dR)<IeR+IeLI holds.

Since the estimated error bounds in the image are all

one or greater due to picture granularity, then the

*multiplicative error terms grow rapidly for large image
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TABLE III

Range Errors at Different Ranges

disparity for dv = 180 pixels, ds = .75 feet*

actual error = leLI+IeR1

(dL - dR) 1 2 3 4 5 6 7

2 67.5 ---

3 22.5 90.0

4 11.3 33.7 101.3 ... ...

5 6.8 18.0 40.5 108.0 ---

6 4.5 11.2 22.5 45.0 112.5 .. .

7 3.2 7.7 14.5 25.7 48.2 115.7

8 2.4 5.6 10.1 16.9 28.1 50.6 118.1

* The separation units (feet, meters, etc.) are the units

of the table entries.

errors as in Table III. Once these error bounds are

converted to error volumes in space then they may be used

for position updates only by assuming the location error is

characterized by a Gaussian distribution. This may be a

reasonable assumption due to the variations in the location

qualities due to camera jitter, poor feature location

estimates, and varying errors due to image location

quantization.
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Camera Position Estimation. By matching several

features in an observed model whose coordinates are fixed

relative the camera, to features in a 3-dimensional

environmental model, a one-to-one correspondence can be set

up. Obtaining a weighted least-squares best fit of the

camera-relative model to the environmental model gives an

estimate of the camera's position in the environmental

model. Each feature's importance in the least-squares fit

is weighted by the reciprocal of its covariance estimates.

Low confidence gets less weight, high confidence gets more

0 weight. This is given more fully in Appendix A.

The Symbolic Model

Two dimensional feature matching can be done only by

extracting those features which lead to the least ambiguity.

These features are the descriptions of the subregions found

in the image. Each subregion can be approximated by a

planar surface and its boundaries in 3-space, and

recharacterized according to its actual shape rather than

the perceived shape in the image. Once the actual shape is

found its boundaries can be approximated by piecewise linear

bounds. If the linear segments are chosen in a manner which

prevents ambiguities and allows the corresponding segments

to be chosen for similar surfaces, then the vertices can

also be unambiguously matched. Once vertex matching is

achieved then error volumes can be generated about the
~vertices, projected along the boundary lines, and extended
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over the entire surface. By using a set of symbolic models

for these surfaces, lines, and points, this type of

-+ envirznmental model can be created and updated.

The component features of the symbolic model, points,

lines, and surfaces, are essential to storing and matching

feature characteristics. And once the symbolic model parts

are stored and characterized, the estimation of the camera

position can be performed. Once the camera position is

estimated, feature location estimated means can be improved

via a static Kalman filter.

Stochastic Updates

.0 -Storing the feature characteristics is essential to

matching the features unambiguously. Only after features

are matched unambiguously, and the camera position

determined, can concepts of position updates be used. An

exisiting characterized feature must correspond exactly to a

- .~recently observed feature before the old and new can be

merged for a better estimate of the feature's location.

Ignoring the error in camera position, which was

minimized as given in Appendix A, a static Kalman filter

estimator can be applied (MAYB 79) to stochastically improve

the location estimate and error estimate for each feature

which is matched. The symbolic accuracy of the matches must

be exact for those features used in locating the camera, and

for the feature location updates. However, as long as the

position error can be approximated by a Gaussian
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distribution noise function, and a set of covariances can be

derived, the positions can be estimated from noisy data.

The perfect symbolic match relies on keeping a table of

symbolic features, and their descriptive characterizations.

To apply the stochastic update requires storing each

feature's mean 3-dimensional location and its covariance

,. matrix.

The symbolic table, though necessary for feature

matching and updating, is not easy to use for path finding.

Since features are not readily accessed by location, then

* path finding in a symbolic model of surfaces is a

combinatorial problem. To avoid this complexity a local

volumetric model can be generated from the symbolic surface

models for path finding.

Summary

Being able to characterize features so they can be

unambiguously matched in the 2-D images is essential to

building 3-D models and finding paths through the

environment. If these same features can be characterized to

the extent that they can be unambiguously matched in 3-D

space then the additional capability of model retention and

update is possible. To prepare for such future updates two

model forms are used, the symbolic model and the volumetric

model.

The symbolic model stores each extracted feature and the

characteristics which allow it to be unambiguously matched
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to new features. It also stores feature mean locations and

error estimates. Those symbolic features which occupy the

volumes of interest can be represented in a volumetric model

as needed for path and tra3ectory finding.

5l4
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IV. Path and Trajectory Generation

Using a symbolic model of point, line, and surface, or

volume features and searching for paths through three

dimensional space is essentially a combinatorial problem

(MONA 84). Therefore it is of exponential order (AHO 74).

Using a volumetric model can reduce the order of the search,

even making it independent of the number of features stored.

However, the conversion from symbolic features to the

volumetric model is of linear order, because each of the

features must be stored into the volume. This means the

conversion and the path search, taken as a single path

search algorithm starting with a symbolic feature set, is of

linear order relative to the number of features stored.

This is a far more tractable problem for a real-time system

with no apriori knowledge of the number or types of features

in the environment.

The volumetric model is regenerated each time the

symbolic features are updated or the volume of interest

changes. Those symbolic features which occupy the volumes

r of interest are represented in the volumetric model. The

volumetric model is used only for path finding through the

modelled environmental volumes.

From the volumetric model comes the set of potentialK paths, then by applying the models of vehicle motion and

cross-section, paths can be eliminated until a workable path

trajectory is found. The sequence of vehicle motions
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necessary for traversing that trajectory is then stored as

the motion command string for the vehicle.

The Volumetric Model

Using the octree, Ruff and Ahuja (Ruff 84) defined a

method for finding paths through three dimensional space.

The Associative Data Access Method (ADAM) (HOLT 82) is a

variation on the octree and can be used similarly. In

either there is a hierarchical representation of a space of

interest. This space of interest is a cube, and each

successively lower level in the octree represents

subdivisions of the volume. The number of levels in the

hierarchy is determined by the accuracy of representation

desired in the model. ELch level represents one binary

digit of representation. The model need only represent

those volumes in the space that are of current interest, and

all other volumes are merely left out of the model.

The volumetric model is of interest here because it

allows easy searching for connected empty volumes, and the

complexity of the search can be adjusted as needed,

depending on the accuracy needed to insure a large enough

passage cross-section along the path.

Path and Trajectory Generation

The path finding technique of Ruff and Ahuja creates a

S-volumetric model of the empty space, then finds a path

through it. To find a path they apply the medial axis
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transform to the model of space, obtaining a set of empty

region axes, then they perform a connectedness search.

Another approach would be to use the hierarchical volume

structure to extend region growth to three dimensions. The

*search starts at the vehicle position and 'grows' empty

space areas, giving priority to those voxels at the higher

levels which (1) are nearer the goal, and (2) allow the

vehicle cross section to pass freely along the volume toward

the goal. Once a path is found which joins the current

position and the goal, it is tested for minimum cross

section to ensure the path can be traversed. Path

optimization can then be used to round corners and skim near

walls for a reduced-energy trajectory.

In such path optimizing, the system must use models of

physically possible vehicle movements. These movements must

then be strung together to give a physical vehicle

trajectory. Once the movement string is known, then the

s.. commands for each of those movements can be generated and

stored.

The path planner must retain the ability to eliminate

potential paths any time the vehicle motion prevents the

trajectory from following the path, or the path cross

section does not allow vehicle passage. The restrictions on

vehicle motion can be a significant block in developing a

robust system. Things which are especially critical are

vehicle turning radius, vehicle sharp turn footprints,
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vehicle movement directions relative to its shape, and

surface-following constraints. The vehicle's modes of

movement can dictate the path, and accurate models are

needed for useable vhicles in space, underwater, in rough

terrain, or on flightlines.

Summary

The volumetric model is regenerated each time the

symbolic features are updated or the volume of interest

changes. It is used only for path finding through the

modelled environmental volumes.

From the volumetric model come the potential paths, then

by applying the models of vehicle motion and cross-section,

'' paths are eliminated until a workable path trajectory is

found. The sequence of vehicle motions necessary for

traversing that trajectory is then stored as the motion

command string for the vehicle.

.

or
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V. Results

A new technique for combining low level features into

symbolic forms was created, allowing simple production rules

to extract feature characterizations. In addition to this,

the groundwork for future development of a robot visual

system was laid, with sufficient depth that the effort could

be continued by others with a minimal background in many of

the disciplines combined herein. Methods were reviewed, and

a potential workable combination was presented and tested as

much as time allowed. The mathematical derivation of one of

the more difficult problems in robot vision is given in

Appendix A. The camera location estimation, also known as

the camera calibration problem, is converted to a simple

equation for ease of implementation.

The use of the camera location equations depends

entirely on having perfect symbolic accuracy for some

identifiable set of features in the feature extraction and

matching algorithms. Thus the major portion of the work was

spent on continually improving the quality and variety of

independent characterizations which could be applied to

surfaces and used for matching them in both 2-dimensional

images, and in the 3-dimensional model.

Image Feature Characterization and Registration

The Queen Victoria algorithm, a new technique for

combining the low level image features symbolically into
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higher level features, is presented. It is then applied to

epipolar slices in two images, giving a region cross section

N ., for each region intersected by the line. The region cross

': 9' sections are then used to center the Star Filter for region

feature characterization, and to characterize the region

edgesusing edge bit maps for accurate edge matching and

location in 3-dimensional space. The combination then

allows the easy application of either rectangular or radial

bit map shape characterization. Taken together these

procedures extract a hierarchy of feature characteristics.

Image Geometry. At the top of the hierarchy is the

geometric relationship of regions in the images or surfaces

in 3-dimensional space. By themselves, these relative

positions of symbolic representations apply nicely to the

graph representations of web grammars. The complexity of

matching algorithms based on geometric position

relationships alone is of exponential complexity, so to

reduce this complexity the hierarchy of the region's

appearance characteristics are matched first to reduce the

number of potential matches for each web node.

Region Edge Shape and Grey Level. Since the Queen

Victoria Algorithm separates smooth-appearing regions from

grey level gradient interval regions, the smooth regions are

then matched. However, using such a texture measure as the

fractal texture approximation (PENT 84), regions of other
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than smooth texture can be represented. Either way, once

region extents can be defined, then the region shape can be

size normalized and bit mapped for comparison. Using the

rectangular bit map and grey level maximum and minimum only

for matching criteria, the shape difference and grey level

difference between camera views can cause the same region

from different views to be mismatched. The cases of shape

difference are

1. Occlusion by a foreground obstacle,

2. Occlusion by the image window,

3. Drastic angle of view change, and

4. The appearance of different shape due to

reflections.

Also, the cases of grey level difference between cameras can

be caused by

1. Different lens f-stop setting, and

2. Reflections on the surfaces.

Reflections are a special case which are not considered

here. This greatly simplifies the algorithms, but must be

considered in a later refinement of the algorithms. Shadows

are not a problem in stereo views, because they actually add

high contrast edges on surfaces and help to locate the

surface. However, in sequences of images, or later views of

previously modelled surfaces, moved shadows and other

5-3
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lighting changes can make the task of surface matching more

difficult.

Partial matches of partial edge shape can be adequate

for feature location, and using bit maps the vertical edges

of regions are matched. Thus, the next level of the

hierarchy of characteristics is boundary shape and position.

Boundaries Into Lines and Points. By matching regions

by grey level and partial edge shape, only the boundary

lines which correspond in the region matches need be

compared for more precise feature matching. These

boundaries are easily extracted as horizontal top or bottom,

and vertical left or right edges, using bit map shifts and

logical operations. These extracted lines can then be

matched for their shapes and offsets, giving precise

location of the lines in 3-dimensional space, the desired

goal of the hierarchy of matches.

Location Errors. Using the hierarchy of feature

characteristics, the results progress from potential

symbolic accuracy errors, the wrong features matched, to

successively better metric accuracy. Once the correct

regions are matched, a gross estimate of feature

3-dimensional location can be made, but by more accurately

matching particular parts of the regions, such as lines and

vertices, more accurate locations of those features may be

found. Using edges extracted from non-scaled bit maps, a
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high-accuracy estimate of edge and vertex location is

computed, as well as its estimated accuracy. The feature

point characterizations, locations, and location error

estimates are then stored in the 3-dimensional symbolic

model.

Three Dimensional Models and Model Updates

The features extracted and characterized should be

surfaces, lines, and points. These are to be stored in

tables, with a characteristic description of each including

mean location estimate and location error estimate. For the

surfaces the location should be the surface center for easy

matching in the environmental model, and a unit normal

vector estimate should be stored as well as a radial shape

bit map, the radial scale factor, a list of boundary edge

pointers, and a set of grey level extremes. These allow

global matching of surfaces, then local matching of boundary

lines.

For the boundaries a set of straight line

approximations should be stored. Each straight line should

be characterized by center point for location, a pointer to

the surface it bounds, a pointer to the next line in the

boundary, and a pointer to each end point. These allow

local matching of the lines relative to the surface, then

*" the even more local matching of the points relative to the

lines.

The vertices are to be stored as a location, a
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covariance matrix, and a pointer to each of the two boundary

lines which meet there. This allows complete links of

association between the levels of features associated with a

surface. Vertices are the only features which can be

located and characterized giving location and error updates

using camera relative data, but surfaces are the features

which can most easily be symbolically matched unambiguously.

Thus the multilevel feature symbolic model is needed at both

extremes, and the line models are useful for working between

the two.

*- Continued work is needed to obtain symbolic matches

which can be completely reliable to within a useable

accuracy. Without the reliability of quality symbolic

matching the robot will not be able to find landmarks,

estimate its own position, or create a model of any useable

quality. Without it the robot will work as if each view

were independent of all that has gone before, and the visual

A sensors will not be much more useful than sonar. The robot

would be able to detect and avoid obstacles as long as they

were in its field of immediate view, but it would lose track

of any obstacles which passed beyond its view.

The Final Implemented Process

In the final implementation two images were taken using

the same camera from two different positions. This emulated

the two views of a stereo pair and guaranteed identical

camera parameters for the two images. The two images were
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5,. the static views of the laboratory environment given in

Figure 5-1. These two views were both shrunk to half their

normal size in each dimension so both could be resident in

the OCTEK memory at one time, allowing rapid interaction

with both images during the entire processing period.

A slice was taken across each image, and the feature

intervals were extracted using the Queen Victoria algorithm.

The feature intervals in the two slices were then matched by

grey levels, then the resulting ambiguities were resolved

using bit map characterizations of the edges of the feature

*O intervals. A sample of two feature interval edge

characterizations being compared is given in Figure 5-2.

Using these image feature edge locations the range,

horizontal offset, and vertical offset and their errors were

computed using equations 3-1 through 3-6.

Matches. The matches obtained using grey levels and

edge shape were in two categories, those which were the

correct features, and those which had no correct match and

so were left with the best match available. Another

category which undoubtedly will show up eventually, but was

not in this data comes from the "picket fence" problem.

Many identical features will be matched, and no proper

position correspondence can be made without further

information.
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The match categories found indicate a need for a method

for automatically determining whether each is a good match,

and which matches are the result of a feature which has no

match. The "picket fence" problem can only be solved for

identical components by matching the first or the last in

the sequence, then using a 1-1 matching along the sequences.

Even this is not possible if neither both of the first

elements nor both of the last elements are visible in the

two images.

The matches obtained were high quality symbolic matches

and gave a good base for feature edge location estimation.

Several sample outputs are listed in Appendix D.

Location Estimation. The pixel location error for

feature edges was assumed to be half a pixel width. This

gave a disparity error bound of one pixel. For these

assumptions the range estimates were fairly accurate for

ranges of 15 feet or less. However, from Tables II and III

in Chapter 3 any location beyond 15 feet will be given an

error bound which can bean the computed location is far from

the actual location. This is due to the hardware

limitations of pixel granularity and the separation between

the camera positions.

As the granularity becomes more coarse the range volume

corresponding to a pixel offset and its corresponding range

and error becomes larger. Reducing the images by half in

each dimension to save processing time caused the location
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range error to be doubled at each range increment.

Camera separation can be increased, but increased

J separation increases the minimum viewing range, and causes

greater viewing angle variation between the two cameras.

The result is more distortion in the observed features,

which can make the matching problem even more difficult.

The maximum abservable range with tolerable error

limits can be extended by

1. Using a higher density pixel array (requires

A/D converters and more image memory),

2. Using a higher power lens to put less image

area into the same pixel array (requires new

camera calibration at a different lens power), or

* 3. Increasing the camera separation.

Several examples of slice features located in

3-dimensional camera relative coordinates are given in

Appendix D.

Processing Time. The processing time to get range

estimates for the features along a single slice pair was

about 10 minutes. This is not a measure of algorithm

quality because the major delays were in communications

between systems shown in Figure 5-3. The images resided in

the memory of the OCTEK image processer, which was a

peripheral device on the Data General NOVA minicomputer.

Due to lack of memory space on the NOVA the major processing
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Fig. 5-3 Hardware Communications
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was done on a Data General Eclipse, with the system passing

all data via files on common disk drives. The major delays

were in Eclipse/NOVA communications and NOVA/OCTEK

communications.

The processes were all done serially, with the Eclipse

commanding the NOVA, then waiting for a response, and the

NOVA commanding the OCTEK, then waiting for a response. By

using the multiple task priority lists in the NOVA many of

the delays in the Eclipse/NOVA communications could be

reduced to communications delays, rather than communications

and process delays. The NOVA could be working ahead on

characterizing the edges into bit maps while the Eclipse is

attempting to match feature edges, thus giving parallel

oprations in the two systems.

Techniques for getting a major system speed-up fall

into two main categories. First, existing improved hardware

could be purchased and the software converted, giving quick

results. The second choice is to develop a specialized

architecture around the algorithms, allowing maximum

parallelism and pipelining the processes. Through

pipelining the processes and maximizing parallelism, the

processing time for a single image may be reduced to a delay

* of just seconds, and the results for the image frames could
T

be available at the frame rate of 30 images per second. The

result would quality processing of each image with all

images processed. The processing delay could then be

5-13
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compensated in the process models interval to the robot

control system. If more memory were available the

algorithms could be speeded up substantially for either of

these choices.
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VI. Conclusions and Recommendations

Robot Vision Systems

A robust robot vision system must be derived

heuristically using combinations of currently available

techniques until a coherent mathematical model of vision and

sight can be developed from it. No such complete model

exists today, but the simplistic models put forth by many

researchers have fallen far short of the desired goals. No

system today can travel an arbitrary terrain, avoiding

obstacles and picking a path based on visual data and

seeking a visually located landmark. A solution which

appears to be achieving these goals is to derive a way to

recognize some basic parts of the visual scene, then be able

to geometrically combine these parts to recognize objects

and configurations of objects. Although this is one of the

goals of this project, the project has not gotten that far

yet. The approach taken here seems reasonable, but the goal

is elusive. The vision system foundation is built using old

equipment with greatly reduced computing capability, as well

as restricted visual processing capability, however the

results are promising and useful. This project has fairly

overextended the limits of the equipment on hand, and modernU.

replacement equipment was delayed by procurement delays.

The Queen Victoria Algorithm performed remarkably well

compared to other techniques of feature extraction, due to

its low time complexity and its simplicity of
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implementation. It also avoided floating point arithmetic,

lending itself to easy implementation on the NOVA, which has

no floating point hardware. It also is well suited for

future microprocessor implementations in cheap processors

making up highly parallel architectures dedicated to the

robot vision tasks.

Some aspects of the overall vision system and the

particular robot vision tasks do need further research and

testing in this environment. These are listed more fully in

the next section.

Extensions to Consider

Certain of the task categories have a number of

improvement steps. Not all of these steps are necessary,

but each of the steps can either enhance the performance of

the overall system, or expand its realm of operation. The

task categories are the building blocks of the software and

-, hardware organization. They are image preprocessing,

feature extraction, modelling, and path planning.

0 Image Preprocessing. The quality of image obtained

using the Dage camera and the OCTEK image digitizer is not

K good. Sixteen levels of grey gives little dynamic range for

automatic brightness or contrast compensation within the

digitized range of values. Also the assumption of anI undistorted rectangular image limits the processing to a

small view angle. Ways to improve these are:

H6-2
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1. Use a wide-angle lens on each camera and a

mapping from lens image space to a rectangular

-planar image.

2. Allow the image processing program to control

brightness and contrast

a. Control iris or image digitizer dc bias

for brightness control.

b. Control video signal amplification around

brightness range center for contrast control.

Other techniques of improving image quality and

focussing attention on specific local image properties may

be useful also. Many of these problems would be less severe

if the camera could be panned and tilted under robot control

easily, and the succesive image frames could be registered

to form an environmental look panorama. Also 256 grey

levels of digitized video would be helpful. Colors could be

useful too, but they would add a few more dimensions of

complication to the algorithms.

Feature Extraction. A number of improvements could be

made to the feature extraction process, most of which are

concerned with higher level operations. These include

separated intervals of matching region parts taken as one

region with an occlusion, more symbolic details of shape,

greater resolutions, and additional surface characteristics.

_ These are each handled by:
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1. Allowing skipping an occluding small central

region to scan further out for larger parts of the

--' - occluded region to be characterized.

2. Allowing multiple star pattern placements to

find moderately straight edges, curves, regions

connected via a bottleneck, etc.

3. Allowing masking out larger areas already

processed and seeing only more detailed features

giving levels of processing for greater detail in

the model.

4. Use more levels of grey to allow more

threshold changes in the Queen Victoria Algorithm

for lower resolution and higher resolution

comparisons.

5. Add in code to handle surface texture

descriptions.

6. Add in surface curvature estimation

techniques.

The resulting characterizations would make the system

even more robust, but would greatly increase the amount of

processing power required. Extracting these features is

useless, however, if improved modelling is not considered.

Modelling. Symbolic models must be greatly improved

for reliability of visual judgement by a robot. Even dogs

and cats can recognize objects, but to do this some changes
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are needed. Accuracy of edge descriptions are necessary and

object modelling is needed. These can be handled by:

1. Generate a graph structure of the region

boundaries for more accurate updates of edge

locations.

2. Build a hierarchical symbolic database to be

used for possible 3-D object recognition. The top

level is of objects, the next of surfaces, the

next of edges, and the bottom of vertices. Parts

of objects can be broken out as objects also,

giving the capability to describe complex objects

in terms of 3-D configurations of vertices, lines,

surfaces, and their object components.

This addition would partially solve the object

recognition problem.

Path Planning. Planning a path can be done in many

different ways, but the three ways suggested here cover the

main categories of interest for the basic robot unit. These

categories are:

1. Implement a 2-D map for route planning on

surfaces, such as the a floor, or the earth's

surface.

2. Implement a 3-D map for route planning in 3-D

environments such as underwater, in the air, in
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space, or in multilevel structures such as mine

shafts, caves, or buildings.

3. Build a map registration algorithm to allow a

3-D map of an environment to be projected into a

2-D map, then be registered onto a reference map

of the goal location and landmarks.

Building and using a 2-dimensional map directly can be

easier, but not necessarily as accurate or robust as

building the 3-dimensional model, then getting the

2-dimensional projection over the interval volume through
0

which the robot must pass. Each of these techniques solves

a specific problem, but neither solves all the problems

encountered in path finding. Each must be modified as

needed to solve the problems, and then evaluated for its

corresponding worth to each of the applications at hand.

These categories of recommended further investigation

all would lead to improved performance over the current

system, and most are absolutely necessary to guarantee a

system which satisfies the criteria given in chapter I.

Follow-on researchers will be able to build on this robot

vision system design base.

Final Conclusions

Stereo vision is useless beyond about 15 feet for the

camera separation of .75 feet, a picture granularity of 128

pixels width at a virtual image plane distance of 180. The
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errors become very large and positions unreliable due to the

granularity of the pixels in the image. This can be

compensated by either:

a) more pixels per line in the image, or

b) greater camera separation

With the present systems in the signal processing lab

the number of pixels per line could be doubled. The images

used were shrunk by half in each dimension to allow faster

access to both images throughout the process.

* Greater camera separation could also be achieved, but

the matching process would become less reliable as the

differences between what the cameras saw became more

extreme. Greater camera separation is only useful for

longer range looks, close-up obstacles may be seen in only

one image for widespread cameras.

An alternative to stereo cameras and stereo disparity

for image processing is a moving single camera. If images

are input and processed at the frame rate of 30 per second

then the differences between succesive frames would be

minimal, and those differences would become the clues to 3-D

vision modelling. An estimate of camera motion is needed,

as well as a tabulation of sets of differences in successive

V frames. Some differences will be caused by sets of pixels

4 moving together relative to the reference portions of the

image. These sets of differences become views of objects
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which are either closer than or further than the reference

portion of the image. Set descriptions of shade, shape, and

relative location can allow these sets to be matched in

various views of a 3-D environment, giving matches and

updates for a 3-D model.

Such monocular vision and modelling, duplicated for two

cameras, would give a second source of model data for

resolving ambiguities, and redundancy for graceful

degradation of the system in case of camera failure.

The current system is useful only for observing object

*15 feet or less from the cameras. The close range accuracy

may make stereo vision as implemented here more useful for

the control of robot arm positioning than for environmental

path finding and traversal of paths.

i'.- .d
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Location Estimation

Estimating the location of features in three dimensional

space, based on finding their relative positions in images

* is basic to modelling the environment based on camera views.

Certain assumptions greatly simplify the calculations, yet

by modelling measurement errors the simple model can be made

robust. Since exactness is beyond the cabability of the

sensors, then techniques of estimating locations and their

errors are needed, as well as methods of updating those

locations and errors through multiple looks and sensor

measurement combination.

This derivation assumes that the images are generated by

a stereo pair of cameras with parallel image axes. The

cameras are horizontally positioned at a fixed separation

such that raster scan lines approximately correspond between

images, allowing the simplification associated with epipolar

.lines. Also the cameras are assumed to have less image

pixel location distortion than the resolution caused by the

*sampling of the digitizer. This will not work for wide

*angle lenses due to the extreme distortion, but is adequate

for this application. The cameras are considered to be

identical.

To get distance estimates to objects in the images

certain properties of the camera pair must be derived or

measured. This is the characterization ot the cameras.
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a. Terminology

VP.

b. Calibration Points

Fig. A-i Single Camera Characterization
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Camera Characterization

The only characteristics needed for the cameras are the

distance between their visual axes in applicable units of

distance measure, ds, and a derived distance from the image

convergence point to the image plane in pixel widths, dv

In Figure A-la a single camera is shown with its image

convergence point, image plane, and image axis. In Figure

A-lb the same illustration has the calibration measurement

points needed to derive dv .

Two points, P1 and P2 1 on the image axis can be found by

causing P2 to appear in the center pixel in the image, then

moving P1 to occlude the view of P2. The distance between

P1 and P2  is then measured as CI. A horizontal line is

then erected perpendicular to the image axis through each of

P and P These are L and L as in Figure A-lb. On L a

point P4 is selected such that it appears within the image

observed from the camera and the distance C3 is measured

from the image axis to P4  P3 is then moved along L1 until

it occludes P4 ' then its distance from the image axis, C2 ,

is measured. The horizontal pixel offset from the image

center of the appearance of P3 and P4 in the image is then

counted and is d1 .

pBy the properties of similar right triangles the

relationship

d/ dv (C3 - C2 ) C1

A-4
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holds. Solving for dv gives

d d I C1  (C3 - C2 ) (A-2)

as long as C2 <C3 , C/0, and dl/0.

A separate dv could be computed for each camera, and dv

changes with variations in lens power. However, for these

derivations it is assumed that the cameras are identical,

and the lenses are fixed power. Thus, the camera pair is

characterized by d , their separation, and dv, the virtual

distance to the image plane.

Camera Relative Coordinates

In camera relative coordinates both image feature point

location in 3 dimensions and estimation of the error is

straightforward. The mean location is estimated by

triangulation, and the error is bounded in the image, then

linearly transformed to bounds on the 3 dimensional location

estimate.

Location Computation. Assuming the stereo camera pair

is positioned so that the raster lines form epipolar lines,

then ds and dv are used in conjunction with the horizontal

pixel offsets to estimate the distance along the reference

camera image axis to the perpendicular plane including the

feature point. Once the plane distance, d, is known then

the horizontal offset, dx, and vertical offset, dy, can be

derived, giving the camera image axis relative feature point

A-5
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p

Fig. A-2 Distance and offset Calculation

position as (dp, dx, d y. If the aspect ratio for the

orcamera is not unity, then a vertical calibration value
corresponding to d vmust be derived. This derivation

i assumes the aspect ratio is one.

6 -  Figure A-2 shows the image convergence points for a
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stereo pair of cameras, and shows the important

measurements. Given the horizontal pixel offsets from the

image axes in each of the two images, dL in the left image,
1 and dR in the right, then the distance to the orthogonal

plane including the feature point is given by properties of

similar triangles as

dL dv dx dp(A3

and

d / d = (d x-d) / d (A-4)

These can be combined as

(dL-dR) / dv = ds / dp (A-5)

giving the distance to the plane as

d = ds d / (dL-d R )  (A-6)

This holds for dL>dR, dv/0 and dsXO, keeping O<d <O.L} R , p

Using Figure A-2 again, or considering equation (A-3)

gives

d d d /d (A-7)
x L p v

and likewise, for digitized images of unity aspect ratic

d =dd / d (A-8)
y D p V

where d is the number of vertical pixel widths offset in
D

A- 7
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the image plane, from the image axis to the feature point

pixel.

Error Estimates. These derivations assume that the

calibration error is minimal, and not significant relative

to feature point position estimation errors. Here the

*V.- propagation of pixel position errors to physical location

error estimates only are considered. The error in position

in locating a feature point to a pixel position can be

represented by the right image pixel offset error e theeR '

left, eL, and the vertical eD. From these and equation

(A-6) the distance error to the feature point plane, ep, is

given by

(d p+e p) = d dv / (dL+eL-dR- eR) (A-9)

,-', or, subtracting equation (A-6)

ds dv  dsd v

p L R - eR dL -dR (A-10)

dd(d -d )-dd(d+e -d -es v L Rsv L L R R

(dL+eL-dR-eR ) (dL-dR) (A-11)

dsdv (eR- eL )

(dL-dR)2 +(dL-dR)(eR-eL) (A-12)

Putting bounds on e by assuming worst case values of e and

A-8
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eL gives

lep I< 2dd v ( leR+eLI)

- (dL-dR)2 _(dL-dR )(e R+e LI) (A-13)

which only holds for leRI+IeL1<(dL-dR). However for cases

where the offset error would be greater than or equal to the

disparity the position would not be useable, so this is an

acceptable assumption.

These results can then be used to derive an offset error

estimation using equation (A-7) to get

(d +e ) = (d L+eL )(d +e )/ d (A-14)
x x Lx p p v

Subtracting equation (A-7) leaves

ex (d Le +d pe L+epeL )/dv (A-15)

which can be bounded by

le_ I < (IdLI le I+dp leLI+IepeL)/ dv  (A-16)

However, using the limits on ep from equation (A-13) gives

lex I - (IdLI+IeLLI)ds (leRI+IeLI) + d _leL

- dL-dR)2-kdL-dR )(le R +jeL) d (A-17)

Likewise, for the vertical offset, and using equations (A-8)

and (A-13) gives

A-9



l e I < (dD+1eD )ds(IeRI+IeLI) + dPleDI

- (dL-dR))2 _(dL-dR)(leR1+eLI) dv (A-18)

By propagating these errors to camera-relative position

errors, error bounds on the location have been derived.

However, the actual errors in camera relative location are

more Gaussian in nature, so letting Ep=maxiep 1, Ex=maxIexI,

and E =maxle I represent the 2a multiples of the standardY Y

deviations for each dimension for the location, and assuming

they are independent gives the point covariance matrix as

F 21

ap 0 0

C0 a 2 0X 2 (A-19)

0 0 2L Y

where op=Ep/2, ux=Ex/2, and ay=Ey/2, giving

(Ep/2) 0 0 1

• C = 0 (Ex/2)2 01 0 0 ( Ey/2) 2

L

I/ Environmental Model Relative Coordinates

The position and orientation of the camera at any time

may be represented by four vectors, as shown in Figure A-3.

The first is the camera position relative to the

environmental model coordinate system, Pc' and the other

three represent the camera relative coordinate axes. The
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y

Coordinat R
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-- PcRx X

Environmental
Model
Coordinates

y

Fig. A-3 Alternate Coordinate Systems

camera relative coordinate axes are each unit vectors, and

consist of direction cosines for the camera relative image

axis, right horizontal axis, and the upward vertical axis,

relative to the environmental coordinate system. These are

represented, respectively by Rp, Rx, and Ry. The state

*vector for the camera is then given by Y, where

yT T  RT RT RT
Y Pc Rp R T R T (A-21)

Each feature position can then be represented by a

transformation from the camera state vector to a position in

the environmental model. For the ith feature point this is

given by

A-11
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1 0 0 Pi 0 0 xi 0 0 Yi 0 0

Pi = 0 1 0 0 Pi 0 0 xi 0 0 Yi 0 (A-22)

0 0 1 0 0 Pi 0 0 x i  0 0 Yij

where

p1 = dp for the ith reature point,
Pi=

x. = d for the ith feature point, and

= dy for the ith feature point.

The transformation is given by

P x X. (A-23)1 1

where

P. = the transformation matrix from camera location to1

feature point location in the environmental coordinates

X i = the location of feature point i in the environment

By generating a single coordinate transformation from N

camera relative feature locations' estimates, letting

p (pT T T.. PN)T (A-24)

and expecting their environmental model relative locations

to be

XT IT 2T ... XNT)T (A-25)

then the entire transformation of points from camera

relative to environmental relative can be written

A-12



PY = X (A-26)

For the purpose of error propagation an augmented form

of the covariance matrix in equation (A-19) is generated for

* each feature point, i=l,2, ... ,N as

A, F1
0 0 0 0

0 2I 0 0
p p 0 (A-27)Ci=0 0 a 2I1 0

0 0 0 ay21

where each of the elements shown is a 3x3 matrix.

Including error in camera position leaves the problem

with a set of points with possible position error, being

transformed to a coordinate system using a transformation

which itself includes error. Thus a model of the conversion

from camera relative coordinates to environmental mode]

location coordinates for point i is

Xi = (Pi + Npi) (Y + NY) (A-28)

where Ny is the random noise error in camera position, and

N is the random noise error in the feature point location

in camera relative coordinates. This can be rewitten as

Xi = P Y + PNy + NpY + NpNY (A-29)

Thus, the contributions of the error terms are

multiplicative and may make a substantial contribution to

A-13



the final location estimate for each point. A way is needed

to bring one of those error terms as near to zero as

possible to eliminate the error product. However, N

depends on the quantized pixel indices of the feature

locations, which cannot be any more accurate. By combining

multiple sensor inputs, system updates to a vehicle and

camera position state model can be made stochastically.

These combined inputs and linear model predictions of

* vehicle motion can give high quality estimates of position.

Assuming the camera position and orientation error is

* identically zero reduces equation (A-29) to

X.i = P iY + N PiY (A-30)

and the real-world feature mean locations are given by

equation (A-26), while the environmental model-relative

point location covariance for point i is given by

Cpi= yTciY (A-31)

F 2
I rxxO x  r xyaxay r xzax z

rxyaxOy ryyay2  ryzay a z (A-32)

L r xo r yz yO z zzz

These are idealized results, and the only sensor with high

enough angular resolution to virtually eliminate camera

orientation error is the camera pair. However, getting

camera position and orientation from the camera pair is not
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a trivial task. It is known as the camera calibration

problem.

Camera Location Estimation

Before visual data can be used for camera location

estimation some problems must be solved. These are

1. Modelled feature points must be matched

reliably to 'seen' feature points,

2. A method of mapping 'seen' feature point

locations via camera location and orientation to

environmetal model location coordinates must be

derived, and

3. The modelled quality of a feature location

estimate in the environmental model as well as the

camera relative location quality must be taken

into account in any 'best fit' strategy.

It is assumed that a technique which has solved the feature

matching is used to satisfy item number 1. The other steps

* depend entirely on this symbolic error being zero. Item

number 2 is derived and given as equation (A-26). Only a

method of weighing the error contributions of near misses in

the several feature points must still be derived.

Since the measure of quality of point location is given

by the covariance matrix of each point, then weighing their

contributions to a cost function by the inverse of their

environmental model relative covariance matrix, given in

4A



equation (A-32), will be used. Let the weighted term for

each point be given by

- D. = C (A-33)

and, since the points are independent, the weighted term for

N points is

D1  0 ... 01I

D 0 D ... 0 (A-34)

I 0 0 ... DN

The cost of each point is then given as the square of the

difference between the observed location Xi, and the

modelled location X.', weighted by Di as

J = (xi - X ')T D. (Xi - X. ' )  (A-35)

and the total cost as

. = (x - xI) D (x - x') (A-36)

Since the search is for the position Y which gives the

minimum cost, then

VJ (PY - XI) D (PY - X') (A-37)

or

J T P TDPY - yT P TDX' - x'TDPY + x'TDX'  (A-38)

- . A- 16
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But, since D is positive semidefinite, to minimize the cost

the value of Y must be found such that aJ/3Y = 0. To simplify

these calculations equation (A-38) is iewritten in terms of

the quadratic cost term, B, and the other cost terms, Z,

giving

aj/3Y aB/aY + a/Y(A-39)

where

B Y YT PTDPY (A-40)

D i p PD Lpxi Di Yi

L i LPiDi D y 2 D

giving

aB/aY 2(=P)(-2

and 
(-2

z~- P YPDX, - ,DPY + IDXI (A-3

A-1 7
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T ' (xi'TDixi') (1 + p. + x. + yi) (A-44

~giving

XDXi

Z2 p D- (A-45)

'K ,i Xx iDiX i '

Thus, the minimum is given by the Y value solution to

(pTDp) Y = (pTDx') (A-47)

iT

a 12 X 12 system of equations in 12 unknowns. If pTDp is

invertible then the solution is given by

and to insure that the solution exists the following

"V. criteria must be met

1) at least 3 points are used,

i, /
aZ/a - 1845

x i D i X1
0i

'aL



2) at least 3 of the points used must not be

colinear, and

3) the points must be perfect symbolic matches.

The error in camera position can then be derived from the

covariances of the environmental model feature point

location estimates by considering equation (A-48)

reorganized to

Y = ((pT DP)- (P TD)) X' (A-49)

as a linear transformation with multiple sensor inputs, and

combining these multiple sensor inputs to get the mean

camera location. Likewise, the covariance estimate for the

camera location estimate is given by

C = (pT DP) (A-50)

The greater the number of points and the more accurately

positioned the points the better the estimate of camera

location, as long as the three criteria given above are

satisfied.
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Bit Maps

A bit map is a low resolution binary image representing

image areas within the region of interest as l's and those

outside the region as 0's. The result is an approximation

of shape for the given region. These shape approximations

can be rectangular bit maps or radial bit maps.

The different forms of the bit map have different

properties, and the two discussed here have specific

properties of interest. The rectangular bit map may be

scaled so the region of interest extends from its top to

bottom and left to right. This means that horizontal and

vertical scaling are independent. The radial bit map is

also scaled, but first a center of its extents is found,

then the bit map is scaled so the region's greatest extents

just reach the edges of the circle of radial arms. Thus

both types of bit maps are independent of apparent region

size.

Using a fixed, rather than scaled, rectangular bit map

41 allows edges of regions to be easily characterized for

matching and locating in 3-dimensional space.

Map Generation

Each of the map types used here map the region of

4" interest into a 16 X 16 array of bits. The bits represent

small parts of the total area covered by the map, and if

* that part contains a higher percentage of pixels within the
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region than some threshold, the bit is set to 1. Here the

threshold used is 80%. This allows up to 20% "noise" pixels

within the region. All the bit areas which contain less

than the threshold number of pixels within the region are

left at 0. Figure B-1 shows a sample region and its

rectangular and radial bit maps.

The rectangular bit map is stored as one column in one

word, starting on the left. This allows shifting and

comparing by just changing indices for horizontal

displacements along the image epipolar lines. The

horizontal and vertical scale factors are stored also.

The radial bit map is stored one radial pie shape per

word, storing the word with the most ones as the first word,

and continuing clockwise around the radial arms. This

allows a simple change of index to represent a rotation.

" The 16 radial arms used in practice are assumed to give

great enough resolution that interpolated orientations will

not be needed. The scale factor and orientation are stored

for the radial bit map.

Both maps have their locations stored also, thus as

S-• characteristic features are matched, their relative

locations in the image are easily computed.

Map Usage

N The purpose of bit maps is to make shape comparison

easy, and to give a metric which is relevant to closeness of

shapes. Goshtasby (GOSH 83) suggested that using bit maps

B-3
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Fig. B-i Bit Maps
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allowed counting the number of bit differences for a metric

of shape closeness. This is one use for bit maps of shape,

but another is finding edge shapes and their positions

relative to the region.

Shape Matching. Since the shapes are stored as arrays

of bits, the easiest way to find the number of differences

between two is to "exclusive or" their bits. This takes

just applying

D = A1 XOR A2  (B-l)

where A1 and A2 are bit maps, and D is a bit map of their

differences. Doing this for each word in the map gives only

16 XOR's for an entire map comparison. By counting the

number of bits set in B the measure of "closeness of fit"

can be obtained.

Rectangular Maps. Using rectangular maps, edges can be

found by using a shift of one position before XOR'ing the

map to itself.

V = A XOR LSHIFT(A) (B-2)

where

I

A is a rectangular bit map of a region

LSHIFT(A) is A shifted left one bit (both maps are

extended left and right with 0's)

V is the resulting bit map of vertical edges.
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These edges can then be identified as left or right edges

by

L = A AND RSHIFT(V) (B-3)

R = A AND V (B-4)

where

L contains l's for left edges,

R contains l's for right edges, and

RSHIFT(V) shifts V right one bit.

Likewise, top and bottom edges can be found by

H = A XOR DSHIFT(A) (B-5)

T =A AND DSHIFT(H) (B-6)

B A AND H (B-7)

where

H is a map of horizontal edges,

* USHIFT(A) is A shifted up one bit,

T is a map of top or upper edges of A, and

B is a map of bottom or lower edges of B.'I

Another useful comparison is given by

- P = (L AND T) OR (L AND B) OR (R AND T) OR (R AND B)
(B-8)
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where P is a map of all vertex points between horizontal and

vertical edges, or points occupying edges which have both

horizontal and vertical components.

Using rectangular bit maps of regions allows the

following:

1. Shape matching of regions,

2. Shape matching of left, right, top, or bottom

edges, and

3. Vertex point location.

The number of bits in the map determines the resolution and

quality of the matches of represented regions.

Edge maps. In stereo image pairs both cameras see the

same features at approximately the same size, if at all. If

a feature appears taller to one camera than to the other,

then the effect is caused by either occlusion of the

feature, or less often, by reflection off the feature. In

all the possible cases, if feature edges are to match there

will be little or no scale change.

-- To characterize a feature edge with a vertical

component, its shape can be stored as a derived bit map. By

placing a 16 X 16 pixel window centered where the edge
U

crosses the epipolar line, the region contents can be bit

mapped as in Figure B-2. After mapping the region shape

within the window, the edge can be found (left or right)

ausing logical bit map operations defined above. Once the

B-7
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edge is characterized in this manner it can be used to match

edge shapes, and to accurately locate the feature edge in

the images for minimizing 3-D location errors.

The edge maps may be compared for multiple horizontal

offsets to achieve a "best fit" shape match. This gives a

robust technique for compensating for noise errors in

feature location.

Radial Maps. Once a radial map is generated, the same

operations as performed on rectangular maps may be used to

..1 extract characteristics. The main differences are that left
0

and right shifts are now rotations, and as such must wrap

around from the last column to the first, and edges are now

circumferential or radial straight line allowing curve

characterization.

When comparing radial maps, often the observers are at

different angles when characterizing the regions, thus

rotations may be needed. Thus radial maps may have to be

compared in each of the 16 possible orientations, much like

a logical convolution, then the "best" shape match may be

chosen.

Summary

" Rectangular shape bit maps are useful for finding

horizontal and vertical lines, as well as matching region

edges even under translation. Edge maps can give improved

feature edge matching and 3-D location estimation. Radial

B-9
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maps are useful when rotations may be involved, changing

them to bit map translations left or right. Both give a

useable metric of shape "closeness" for imperfect fits. Bit

maps are versatile, easy to compute, and robust.

.1
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Program Use

Overall Organization

Figure C-1 shows the interaction between the major

software modules of the robot vision system. PRE is a video

inputter and preprocessor. It reduces a 256 X 240 image to

a 128 X 120 image, by shrinking it, as well as allowing disk

saves and retrievals of both size images. The reduced size

images allow the robot vision system to retain its field of

view, but still use the OCTEK to interact with both images

of a stereo pair interchangeably without an appreciable

wait. NSTAR is the NOVA half of the runtime robot vision

system. It interacts directly with the images, loading

images into the OCTEK, and performing various operations on

the image as required by ESTAR. ESTAR is the Eclipse half

-. of the runtime robot vision system. ESTAR causes the higher

level vision processes to be performed to achieve modelling

of the robot environment.

PRE. Through this package the user interactively loads

images, preprocesses them, shrinks them, and stores them on

disk for further processing by NSTAR. When PRE is initiated

it initializes the OCTEK, then displays a menu of user

Scommands. These commands are

1. Load the image from the camera to the OCTEK,

2. Shrink a 256 X 240 image to 128 X 120,

3. Apply the Q-V cartooning algorithm to a

C-2
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(SLICE. DT)

Edge Bit Map Files
ESTAR (WBMAP.DT)

Feature Position Files
* (POSIT.DT)

Fig. C-1 Software Communications
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128 X 120 image,

4. Load a 128 X 120 image from disk,

5. Store a 128 X 120 image to disk,

6. Load a 256 X 240 image from disk, and

7. Store a 256 X 240 image to disk.

Using commands #1, 6, and 7 PRE allows the user to

input and save the normal sized images. This is especially

4 ,useful in acquiring stereo views and storing them to disk.

They can then also be reloaded from the disk files and

displayed.

Command #2 shrinks the 256 X 240 image to 128 X 120,

clearing the rest of the screen. This image can then be

saved using command #5 and reloaded using command #4. The

shrunken image is saved in an unpacked format so it can be

loaded quickly. The small size is required to retain the

full field of view, but allows NSTAR to store both views of

the stereo pair in the OCTEK memory for fast interaction

with the images on command from ESTAR.

NSTAR. All direct interaction with the image and its

pixels is done using NSTAR. It makes calls to the OCTEK

library of image manipulation subroutines to perform these

* o  low level operations. In support of ESTAR the operations

performed by NSTAR are

4.€ - Extract horizontal (epipolar) lines of pixel

data from both images,

C-4

'C ~ ~ ~ Z '. * .Z4' .. a' '' >> *44.44.



- Extract radial lines around a point in a single

image,

- Process linear arrays of pixel data using the

Queen Victoria algorithm to get lists of features,

- Find region extents using radial lines and the

Queen Victoria algorithm,

- Characterize an arbitrary size region using a 16

X 16 bit map representation, and

-Characterize a region edge by generating a 16 X

16 unscaled bit map of the region along the edge.

These operations are combined to allow ESTAR to command

the following

- Obtain a new image pair,

- Get the features along epipolar slices,

- Characterize a region by size, shape bit map,

and grey levels,

- Characterize one side of an edge as a bit map,

- and

* - Terminate processing

To get any intermediate printouts of data generated by

NSTAR the corresponding DEBUG flags must be turned on. A

selection of "-l" turns on all the flags and enables all the

printouts. The NSTAR activities commanded by ESTAR are

displayed on the terminal as NSTAR performs the process.

.7 The modules included in NSTAR, and their hierarchy of
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control are given in Figure C-2a.

ESTAR. The sequence of operations required to locate

features in a single slice across an image is controlled by

ESTAR. It causes a single epipolar slice of features to be

extracted from the images, then matches the corresponding

features from the two images, then generates camera relative
location estimates for each of the image features matched.

The subroutine LCLN controls the entire sequence, and its

input is the vertical location of the slice in the images to

be processed. Its output is a file of feature locations and

estimated error bounds.

Many of the intermediate results may be printed out by

giving ESTAR a set of DEBUG flags. However, some messages

are continually displayed during the process to allow the

user to follow the progress. The modules included in ES'£ R

and their hierarchy of control are given in Figure C-2b.

The Collection. Though each of these programs runs

separately, as in PRE, or on separate machines, as for NSTAR

*_ and ESTAR, all three are necessary to perform the vision

tasks. The need for three separate program modules was

dictated by the hardware configuration and small available

user memory. The combination allows inputting stereo pairs

and processing them to feature location lists, but not

without some extensive user interaction. The input

technique was dictated by the hardware incompatibility

Ic c-
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between the OCTEK and the lab's existing stereo pair of

cameras.

A discussion of hardware and software usage and

requirements follows.

Usage

In preparation, the user must obtain a stereo pair of

images, shrink them for use, then save them to their

intermediate files using PRE. The user must assure that the

camera separation is accurately measured, and that the image

axes are parallel. Also special care must be taken to

assure the camera characterization is accurate, as described

in Appendix A.

Once the shrunk stereo pair is stored in an unpacked

form, then NSTAR and ESTAR may be initiated. Since they

communicate using "-.DT" named files under the directory

"JHDATA" it is good practice to delete all files by such

names under the directory before starting.

NSTAR may be initiated by answering with the desired

debug flags, often "0"; a code for not saving the current

screen, also "0"; and "I" to indicate that the stereo images

must be loaded. When the images must be loaded, the system

then prompts for the left, then the right image file names.
IF

These are commonly stored using the ".BI" extension to

distinguish them from the ".VD" packed video files. The

differences between these file types are more fully
atn

explained in Appendix E. NSTAR then responds that it is

c-8
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ready for a command file from the Eclipse.

ESTAR may be initiated either before or after NSTAR, as

NSTAR merely waits for ESTAR to generate the command file,

" ....jand ESTAR generates a command file, then waits for NSTAR to

generate its response file. Initiating ESTAR requires

inputting the camera separation, in whatever units are

desired (feet, meters, inches, etc.). These will also be

the units of the results. The user must then enter the

,, camera characterization, or the virtual image distance (in

pixels). This distance can be calculated using the method

*O  in Appendix A, but the Dage camera, with minimal

magnification on the zoom lens, the shrunk image gives a

distance of about 180 pixels. For an unshrunk image portion

it is about 360 pixels. The third entry is the desired

combination of DEBUG printout flags. Usually "13" is used

as the sum giving the feature list ("l"), the match list

("4"), and the position list ("8"). Also "0" could be used

if only the position file is desired, or "-l" could be used

if all intermediates including bit maps were desired. The

final desired input is the vertical location index. This

can be in the range 8 to 112, with 60 as the horizontal

center of the images.

S- ESTAR then writes out the command file initiating

processing in NSTAR, and the two programs communicate as

,', .~..necessary until the slices are done. ESTAR then prompts for

another slice index after the result file "POSIT.DT" is

C-9
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written to the directory "JHDATA".

Support Requirements

Support needs for this software can be broken down into

several categories. These are hardware configuration,

-. system runtime support software, and system generation and

maintenance support software. Each of these categories is

discussed separately.

Hardware Configuration. The software is designed to

run using a Data General Eclipse, a Data General NOVA, an

0 OCTEK image processor board in the NOVA, and a video camera.

A monitor is also useful for viewing the images being

processed. The Eclipse and NOVA must have a shared disk

drive containing the partition/directory "JHDATA". All

communication between the processes on the Eclipse and the

NOVA are passed via files under this directory. The NOVA

communicates directly with the OCTEK, and controls all

dirjct interaction with the image. This configuration is

shown in Figure C-3a.

In Figure C-3b the necessary hardware configuration for

software development and maintenance is shown. All the

subroutine sources are stored in the shared disk directories

- "ESTAR", "EPRE", "NSTAR", and "NPRE". These are

subdirectories under the partition/directories "EHOLTEN" and

"NHOLTEN". The beginning "E" refers to an Eclipse useable

* directory with links to system routines which run only on

C- 10
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Fig. C-3 Hardware Configuration
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the Eclipse, while the beginning "N" refers to NOVA system

routine links.

Run-Time Software. From the Eclipse side no runtime

support software is needed beyond ESTAR, however the

*directories "EHOLTEN", "ESTAR", and "JHDATA" must be

initialized. From the NOVA, however, not only must

"NHOLTEN", "NSTAR", and "JHDATA" be initialized, but NSTAR

must have a file or link to the OCTEK directory for access

to the file "IACMON.XB" where the binary program modules for

the OCTEK processor board resides. The initialization

routine of each program which uses the OCTEK copies this

file into the OCTEK, then starts its processor executing

that code.

Development Software. All source code is stored in

both an Eclipse directory and a NOVA directory. As changes

are made the source files are backed up to the other system

using (from the Eclipse subdirectory "ESTAR")

MOVE/V/R NSTAR -. FR

which moves only the updated source files, and displays a

list of those moved.

*" All the system program links are kept under the

partitions "EHOLTEN" and "NHOLTEN", and do not need

duplicated under the subdirectories as long as all editing,

compiling, and linking is done from those directories.
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Suppose LCLN and MASL were to be altered, then the following

commands would be used under directory EHOLTEN:

EDIT ESTAR:LCLN.FR
Edit the text, then quit, saving the file.

EDIT ESTAR:MASL. FR
Edit the text, then quiL, saving the file.

FORT ESTAR:(LCLN, MASL)
DIR ESTAR
MOVE/V/R NSTAR -. FR
DIR EHOLTEN
ESTAR: LESTAR
ESTAR: ESTAR

The next to last command activates a macro procedure

which causes a load module to be built using every

relocatable binary module in the directory. The programmer

must ensure that no undesired modules have been compiled,

and that all the desired ones have been compiled. The

procedure assumes that ESTAR is the main module.

Similarly, modules intended to be run on the NOVA may

be edited on the Eclipse (since the editor there is much

easier to use) then compiled, linked, and run on the NOVA.

Suppose EXQVFL and RADSP were to be altered, then the

command sequence on the Eclipse under directory EHOLTEN

would be

EDIT ESTAR: EXQVFL. FR
Edit the text, then quit, saving the file.

EDIT ESTAR:RADSP.FR
Edit the text, then quit, saving the tile.

DIR ESTAR
MOVE/V/R NSTAR -. FR

* "On the NOVA the programmer would then continue under

C-13
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directory NHOLTEN with

FORT NSTAR:(EXQVFL, RADSP)
NSTAR: LNSTAR
NSTAR: NSTAR

Note that the references are now to the subdirectory

NSTAR rather than ESTAR. Once again the next to last line

activates a macro procedure which builds a load module

including every relocatable binary in the directory NSTAR.

This time, however, the main module is assumed to be NSTAR.

This load module is also built allowing external references

* to be satisfied from the OCTEK library of support routines.

Again, the programmer must insure that an undesired

relocatable binary is not present, and that all the desired

modules have their relocatable binary present.
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Sample Results

A sample output is given here. The sample shows the

-" feature list, some bit maps to be compared, the resulting

match list, and the resulting position list.

1-Dimensional Slice Feature List
There are 12 features in the slice.

INDEX START STOP GRYL GRYR
1 4 5 15 9
2 13 14 7 10

* 3 14 16 10 7
4 17 19 7 15
5 19 25 15 1
6 29 32 1 2
7 34 36 2 5
8 39 42 5 1
9 42 45 1 4

10 46 49 4 4
11 55 61 3 15
12 73 77 15 7

1-Dimensional Slice Feature List
There are 11 features in the slice.

INDEX START STOP GRYL GRYR
1 6 8 9 7
2 12 14 7 15
3 15 17 15 5
4 21 23 5 1
5 30 33 1 5
6 36 38 5 2
7 39 42 2 4
8 52 56 3 15
9 67 70 15 7

10 110 112 7 4
11 113 115 4 6
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Comparing left sides of 1 and 3
Comparing bit maps.

... *** ***, .*

**** ***** . • **
**** ** . **.

•e **h* **** a ** 3
•**** ***** **
*i[". *** *. **

• **** • .**•

* ****

• **** **

• **** . **** **•

Best match is at shift = 0 Quality =1

S." Comparing left sides of 1 and 9
"*' Comparing bit maps.

**** **** * *

**** *********

**** ******

• **** *** ..****

T] ~**** **** . .***

D-

.**** **

at::' . ** *. .* * * *.

0,,* * * * *

................................................

' ''Best match is at shift = 0 Quality =93

... Match lists generated.
INDX= 1 INUML= 0

,- KNDX= 51 IN UMR- 0

0w
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Comparing left sides of 2 and 2
Comparing bit maps.

... .. ... .. .. . ... . . . . . . .

Be--s ** ***11*y*5

.. . .. . .. . . . ... . . . . . . .

•* * ******* * *

• * * ******* * *

*' • * ** * * ******* * •

" **** ** ** ******* *

******* ** *o ******* * .

* ****** ** * *****

******* * * ****** *

•******* ** *

•****** * * *

Best match is at shift = 0 Quality = 256

Comparing left sides of 2 and 10
.- ."Comparing bit maps.

• .. .... .... ..

*** - ,******* *******

4- *** . ****************

• * *• ******* ** **

• * * **** **
, .. * ** *. ******* * **.

".-**** ** **. ******* * **

•******* ** * o .

.* *** ***

Best match is at shift =0 Quality = 256

I" ,[./ "Match listL generated.

INDX= 2 INUML= 1
DKNDX= 52 INUMR= 0

'D-4
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Comparing left sides of 3 and 1
Comparing bit maps.

..... ............ ...................
* *** * *

Betmthisa 'hf . .. Qui4--7

•D*** * *
.- **** * *

4. **** , . . * , .

*** * * **

*** * * * *

*..-****** , * .* **

* ******* * *** *

' * * * • * ** * * •

• ** ** ** * * * *

q" **** * *

~~........................ ...... '-;
•Best match is at shift = 0 Qualt =13

-4D-
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.9

v.'. Comparing right sides of 53 and 59
~Comparing bit maps.

• **** *• •*** ***
V. . ** *. . ** * ** * *

." **** * *****
• .. *** * **** ** *

•4. **** * .* ******

• *** * * ******
• **** * .* ******* * **** * •****

'4- .* **** * ******

• * '**** ***** ** *

•** **** *****

•*** *** * ** **

*' * * * * *

"5- . *** * . •* **.

. -*** . ** * ** *

*Best'match is at'shift = 0 "Quality = 115

Comparing right sides of 53 and 61
. Comparing bit maps.

• **** * . . ** **

4. **** * . .* *** * * .

• **** * .*******

• **** * * . • ************ .

• **** * . .**** ***********.
•**** * 4 .**** *** ** *****

• ~~*** **** * . ** ** ****

" . * **** * . ************ *.

4, •* * **** * . **** *********.

%,** **** *** * 4***** ***** *
** *** ** **. *

•**** *** * ** ****** **

• *** * * *

p **** .

' Best match is at shift = 0" Quality ='121

Match lists generated.
ENDX= 3 IN LJML= 1
KNDX= 53 IN UMR= 1
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Feature matches, left and right edges. Number of features= 12
IM# 1
INDX
#OF
FEATS ID 1 2 3 4 5 6 7 8 9 10

1 INDX NO MAICHES *
QUAL --

LOC2 ---

51 INDX -_ * NO MATCHES
QUAL

0 LoCi ---
I.OC2 -

2 INDX 2
QUAL 256

1 .)C 13
* LOC2 12

52 INDX -- * NO MATCHES *
QUAL --

0 LOCi ---
LCC2 --

3INDX 1
QUAL 133

1 LOCI 14
.y LOC2 6

53 INDX 51
QUAL 76

1 LOCI 16
OC2 8

4 INDX 2
* QUAL 127

1LLOUi 17
LOC2 12

54 INDX 52
QUAL 106

W- 1 LOCi 19
LOC2 14

5 INDX 3
QUAL 137

SLOCi 19
LOC2 15

4~
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9"55 INDX 54
QUAL 93

1 LOCI 25
LOC2 22

6 INDX -- NO MATCHES**
QUAL -i'-o =i --
I C2 --

56 INDX 54
QUAL 154

1 LOCI 32
LOC2 23

7 INDX 5
QUAL 70

1 LOC 34
LOC2 29

* 57 INDX 55 53
QUAfL 68 128

2 LOCI 36 36
LC2 33 17

8INDX 6 4
QUAL 58 122

2 LOC 39 39
LOC2 36 22

58 INDX 56 54
QUAL 117 134

2LOC 42 42
LOC2 38 23

9 INDX 7 5
QUAL 103 164

2 LOCI 42 42
* LOC2 39 30

59 INDX 57 55 53
QUAL 127 133 144

3 LOC1 45 45 45
rSLC2 42 33 17

10 INDX 4 6
QUAL 130 140

2 LOC1 46 46
L*OC2 21 36

60 INDX 57 55 53
QUAL 155 159 173
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3LOC 49 49 49
WOC2 42 34 17

11 INDX 8 7
QUAL 27 182

2 LOCI 55 55
LOC2 52 39

61 INDX 58 52
QUAL 1 256

2 LOC 61 61
LOC2 56 14

12 INDX 9 3
QUAL 13 112

2 LOC 73 73
-LCC2 67 15

62 INDX 59 51
QUAL 19 82

2 LOC 77 77
LLC2 71 9
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Feature 3-D positions. NP= 12 dv=180.00 ds= 0.750
INDX dp dx dy ep ex ey
1 No data point.
51 No data point.

2 No data point.
52 No data point.

3 16.875 -4.312 0.000 2.411 0.670 0.054
*,- 53 16.875 -4.125 0.000 2.411 0.643 0.054

4 27.000 -6.450 0.000 6.750 1.706 0.094
54 27.000 -6.150 0.000 6.750 1.631 0.094

5 33.750 -7.687 0.000 11.250 2.687 0.125
55 45.000 -8.750 0.000 22.500 4.562 0.187

6 No data point.
56 15.000 -2.333 0.000 1.875 0.339 0.047

---------------------------

7 27.000 -3.900 0.000 6.750 1.069 0.094
57 45.000 -6.000 0.000 22.500 3.187 0.187

8 45.000 -5.250 0.000 22.500 2.812 0.187
58 33.750 -3.375 0.000 11.250 1.250 0.125

9 45.000 -4.500 0.000 22.500 2.437 0.187
59 45.000 -3.750 0.000 22.500 2.062 0.187

10 5.400 -0.420 0.000 0.225 0.033 0.016
60 19.286 -1.179 0.000 3.214 0.259 0.062

11 45.000 -1.250 0.000 22.500 0.812 0.187
61 27.000 0.150 0.000 6.750 0.131 0.094
12 22.500 1.625 0.000 4.500 0.400 0.075
62 22.500 2.125 0.000 4.500 0.500 0.075

-------------------------------
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Data Structures

There are two types of data structures which are

*important here. The first are data structures for each of

the files, used in passing commands or data. The second are

the arrays used for conveniently passing blocks of useful

information to subroutines. These are both defined here.

File Data Structures

There are seven file types manipulated by these

programs. These are each described below.

File Name: "-. VD"

Module Usage: PRE reads these files from the disk to be

displayed on the OCTEK, and writes them to the disk from the

OCTEK. They are Signal Processing Lab standard video files.

Data Form: They contain a 256 X 240 array of pixel values,

* 4 bits each, packed four to a word.

.4W

E-2
S.*



File Name: "-.BI"

Module Usage: PRE reads these to the OCTEK, and writes them

from the OCTEK. The images are generally created by using

the PRE option to shrink larger images. This is the form

required to input images to NSTAR.

Data Form: These are 128 X 120 arrays of pixels, 4 bits

each, one per integer word.

-E-3
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File Name: "NCONT.DT"

Module Usage: This is a command file written by ESTAR and

read by NSTAR. It carries the command and data necessary of

the next operation required of NSTAR by ESTAR. It is

deleted by NSTAR after it is read.

Data Form: Binary, 12 bytes.

(CODE
IMAGE

Command X-center
Y-center
Max number
IDN

where

CODE= -1 Terminate
1 Characterize current region
2 Get a slice of features
3 Get a new image set
4 Get edge bit map

IMAGE= 1 Left image
2 Right image

IDN= -1 Left side of edge
1 Right side of edge

E-4
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File Name: "SLICE.DT"

Module Usage: This is a data file written by NSTAR and read

by ESTAR. After it is read, ESTAR deletes it. It contains

the list of features from the horizontal slice NSTAR was

directed to process.

Data Form: Binary, 512 bytes.

*' r Dummy (7 times)
I Number of features

Feature Buffer f Dummy (2 times)
Edge feature description (50 times)

4 Dummy (46 times)

i" Starting pixel index
Edge feature Ending pixel index

description Start grey level
End grey level

4E

I
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File Name: "WBMAP.DT"

Module Usage: This is a data file written by NSTAR and read

by ESTAR. After it is read, ESTAR deletes it. It contains

an edge bit map characterization requested by ESTAR and

generated by NSTAR.

Data Form: Binary, 34 bytes.

(1 (constant)
Edge bit map fColumn bit map (16 times)

Column bit map Pixel map value (bit) (16 times)

-E-6
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File Name: "BLOCK.DT"

Module Usage: This is a data file written by NSTAR and read

by ESTAR. After it is read ESTAR deletes it. It contains a

region characterization, including size, location, shape,

and grey level extremes. It is generated by NSTAR in

response to a command. However, at this time ESTAR

generates no such command.

Data Form: Binary, 54 bytes.

C ID number
Region X scale factor (real)

Characterization Y scale factor (real)
Center Characterization
Scaled bit map column (16-times)

X-start index
X-end index

Center Characterization Y-start index
Y-end index
Minimum grey level
Maximum grey level

Scaled bit map
column {Scaled row entry map (bit) (16 times)

E- 7
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File Name: "POSIT.DT"

Module Usage: This is a data file written by ESTAR. It

contains the position and position error estimates for each

of the matched features in the current slices. At this time

no modules reads this file.

Data Form: Binary, 2560 bytes.

Number of points
Position File Position Entry (100 times)

( Range estimate (real)JHorizontal offset estimate (real)
Position Entry Vertical offset estimate (real)

Range error estimate (real)
I Horizontal offset error estimate (real)

Vertical offset error estimate (real)

E-.5
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Internal Data Structures

The internal data structures are used to pass several

related data items into and out of subroutines. There are

no other uses of data structuring in these programs. The

file data structures are in this category, but have already

been defined, so only strictly internal structures will be

ocnsidered here.

NSTAR Structures--

Variable Name: CA1, CA2
.7

Module Usage: These are direction cosines generated in

NSTAR and used to compute radial line locations for various

line slopes in RADSP. Each entry is the cosine of the

corresponding direction for a single quadrant. Different

combinations of the two arrays with different signs

determine the quadrant of the star pattern and actual line

direction.

Variable Name: ICT

Module Usage: This is the OCTEK device control table.

* NSTAR must pass it to each OCTEK routine called, but

otherwise must not alter it.

E-9
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97

iS 'Variable Name: IDEBF (NSTAR)

Module Usage: Each bit in this is an activation flag for a

corresponding printout of intermediate results.

Variable Name: IDIR

Module Usage: This is used to pass radial line information

from NSTAR to RADSP and on to RADLN.

Data Form:

0 IDIR(I) I=1 Index of last direction processed
=2 X-center index
=3 Y-center index
=4 X-end of line index
=5 Y-end of line index
=6 Number of points in line
=7 Image ID flag, l=left, 2=right

-"
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ESTAR Structures--

Variable Name: IDEBF (ESTAR)

NModule Usage: Each bit in this is an activation flag for a

corresponding printout of intermediate results.

Variable Name: IMATCH

Module Usage: This is the array of match alternatives

listed for each feature in image #1, the reference image.

It is used by LCLN, MASL, PMAL, and LCSL to pass the

information around.

"- Data Form:

Match Array [ Match list (100 times)

-' Match List Match entry (10 times)

r Image #2 feature index
Match Entry Match Quality measure

Actual pixel location in image #1
Actual pixel location in image #2

'V.
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-4 Variable Name: LMATCH

Module Usage: This is an array of data pertaining to the

current edge feature side to be compared.

Data Form:

LMATCH(I
1= 1 Match list index for current feature

2 Best quality value found for match
3 X-location index in image #1
4 X-location index in image #2
5 Maximum allowable map shift in image #1
6 Maximum allowable map shift in image #2

, 7 Edge side flag, -l=left, +l=right
8 The vertical location index.

This list is not all-inclusive, but most data

structures of any complexity are used in file structures

also. These cover all the significant structures of the

system.
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Program Listings

The Program listings are arranged according to program

modules they support. First is PRE, then NSTAR and its

support, then ESTAR and its support. The sequence of

listings is as follows:

PRE routines--
PRE. FR

NSTAR routines--
NSTAR. FR
EXQVFL.FR, the Queen Victoria algorithm
RADLN.FR, extracts radial lines
RADSP.FR, extracts the star pattern from the
image
IGCD.FR, computes the greatest common divisor
of two integers
PRQVFL.FR, prints out the feature lists
PRBM.FR, prints out a bit map

ESTAR routines--
ESTAR. FR
LCLN.FR, locates the features on an epipolar
line in 3-space
CFEAT.FR, creates lists of features along the
epipolar line
PRQVFL.FR, listed under NSTAR
MASL.FR, creates lists of matches for each
feature
MARF.FR, generates a measure of match quality
between two features
BMCP.FR, compares to edge bit maps

I ICBIT.FR, counts the number of bits set in an
integer word
PMAL.FR, prints the match lists
PRBM.FR, listed under NSTAR
LCSL.FR, locates feature match pairs in
3-space
PRFPOS.FR, prints the list of feature

$ locations

PNPL.FR, saves the position list on a disk
file

F-2
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C
C Preprocessor for NSTAR.
C Uses the OCTEK 2000 IMAGE ANALYZER CARD (IAC)
C
C Written 10 Oct 85 by JAMES R. HOLTEN III
C Uses original code from OCTEK demo program
C with substantial revisions for the specific application.
C

INTEGER ICT(120)
INTEGER IBLF(1026),IBUFI(513) ,IBUF2(513)
INTEGER NFILE( 20),VFILE(256)
COMMON /BUFFER/IBUF

. .... 9H UIVALENCE (IBUF(1), IBUFI (i)), (IBUF(514) ,IBUF2 (i))

ICMAX=ll

TYPE "<33>E"
TYPE
TYPE "Robot Vision Inage Preprocessor"
TYPE "<33>j"

CALL SINTRO (ICT,63K,IER)
IF(IER.EQ.I) GO TO 1
TYPE 'INTRO ECODE: ',IER
STOP "UNABLE TO INITIALIZE"

1 CONTINUE
CALL OPEN (3,"IACM1)N.XB",2,IER)
IF(IER.NE.1) TYPE "WARNING: Unable to access IACMON.XB"

: IF(IER.F .I) CALL LXB (ICT,3)

CALL MPRUN (ICT,0,l)
CALL GREYSCALE (ICT,l)
CALL GREYSCALE (ICT,2)

C CCC 'CCCCCCCCOCCCCCCOCCCCCCCCCCCCCoCCCCCCCCCCCCC
C Menu of Cammands
C C -.... .

* 5 CONTINUE
'YPE "<33>k<33>J"
TYPE "Image Preprocessor Command List"
TYPE
TYPE "Choose a function:"
TYPE " 1 Video input (Camera) control"
T YPE " 2 Create condensed image for NSTAR"
TYPE " 3 Cartoon the image using horizontal and verical QV"
IYPE " 4 Output the 128x120 condensed image to disk file"
TYPE " 5 Input a 128x120 condensed image fram disk file"
TYPE 6 Dummied out"
TYPE " 7 Dummied out"

* TYPE " 8 Duniied out"
TYPE " 9 Dumied out"

F-3
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TYPE "10 Input image from disk file to OCTEK"
TYPE "11 Output image from OCTEK to disk file"
TYPE "-1 To exit the program"

C
C THIS IS THE TOP OF THE MAIN INTERACTIVE LOOP
C

7 ACCEPT "Enter function number (0 for help): ",IC
IF (IC.LT.0) GO TO 999
IF (IC. EQ. 0) GO '10 5
IF (IC.GT.ICMAX) Go TO 5
TYPE "<33>k<33>J"

-' GOTO (i0,20,30,40,50,60,70,80,90,i00,ii0),IC

C CCCrcXcXCCCCQXXcoccccXCCC(OCCCCOccccCCCCCCCCCCCoCCCCCCCCCCCCCCCoCCXCCCCC
C Camiand 1 - Video Input (Camera) Port Control
C CC -C

10 ONTINUE
*i TYPE

TYPE "Video Input Control"
TYPE "Camera on (1), Camera off (2)"

11 CONTINUE
ACCEPT "Video Input command (-I to exit): ",IC
IF (IC.EQ.2) GOTO 14
IF (IC .LT. 0) GOTO 7
IF (IC .NE. 1) GO(O 10

C
C Camera on performs the following sequence:
C 1) Select interlace display (required for any camera input)
C 2) Select external clock
C 3) Turn on camera
C

CALL INTLACE (ICT,1)
CALL SYNC (ICT,l,IOCK)
IF (ILOCK.BQ.0) GO TO 19
CALL VON (ICT,0)
GOTO 11

C
C After the camera is turned off, the internal clock is
C selected and the display is made non-interlaced
C
14 CONTINUE

CALL VOFF (ICT)
15 CONTINUE

CALL SYNC (ICT,0,ILOCK)
CALL INTIACE (ICT,0)
GOTO 7
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19 CONTINUE
TYPE 11* Camrera Input is missing (unable to find video sync)"

~G O 1OJ5

*~ c ccccccccccccccccccccccaxccccccccccccccccccccccccccccccccccccccc
C Command 2 Condense the 256x240 image to 128x120
c ccccOccccccOccxcccccxxccccccccccccccccccccc
20 CONTINUE

TEYPE
TYPE "Condense the current image to 128x120"
MN=96
1NXL=128
INYLl12O
INYLl=( INYL/2 )-l
Ix=32
DIXL=256

C
C Loop through the image lines.

DO~ 25 INY=0,INYLl
* IY=INY+INY

IYB=12 0+IY

C
C Input two sets of two lines each, then blank them.

CALL RVBLK (ICT, IBUFl ,IX, DCL, IYB, 2)
CALL RVBLK (ICT, IBUF2, IX, IXL, IYT, 2)
CALL PXFILL(ICT,15,0,320,IYB,2)
CALL PXFILL(ICT,15,0,320,IYT,2)

C
C Process the pixels to reduce the image size.

DO) 21 ILC20,127
IU'J4LOC+2
mL=ILLX+=~x+2
ILlP=I~L+l
IL2=IL1+256
IL21=ItL2+l

C
C Compute the average of four neighboring points.

IVAL=IEBUFl (ILl )+IBUFl (I111)+IBUFl (1L2 )+IBUFl (1L21 )+2
IB[JF1 (ILN )=IVAL/4

IVAL=IBUF2 (ILl )+IBUF2 (1111)+IBUF2 (112)+IBUF2 (1L21 )+2

IBUF2 (iLN )=IVAL/4

21 CONTINUE

C
C Write out the two lines.

INYB=120+INY
* ENYT=-119-INY

CALL WVBLK(ICT, IBUJFl,INX, IN(L,INYB,l)
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CALL WVBLK(ICT, IBUF2,INX, IN(L,INYT,l)
25 CONTINUE

C
C Put a black box around it.

1X2=INX+IDxL
INY=60
IYl=INY-l
IY2=INY+INYL
CALL GVEXIT(ICT,I1lIYl,IXl,IY2,0)
CALL GV1EET(ICT,IXl,IYL,D(2,Iyl,0)
CALL GVEMTICT, M, IY2, IX2, i;2,0)
CALL GVBT(ICT,IX2,IY1,X2,1Y2,O)

GX'IO 7

C Command 3 Cartoon the 128x120 condensed image
C CCCC CCC)CCCXQCcX)CXxO2(2CCCcYCOZ(XDOxOCx2QxY

S30 CONTINUE
TIYPE "Cartoon the current imfage"
TYPE "using passes of horizontal and vertical QV processing."

GYEU 7

C Carinand 4 Output the current 128x120 image to disk file.
C CCCO2XccCCZ2CQCCCCCCCCCCoCCICoCoCCCCoCCCCCCCCCCCCCCCCCCCCCCCCrCoCCC
40 CONTINUE

TIYPE "Saving the current 128x120 image to disk."
TIYPE "1 Input the desired file name."
READ(ll,1000) NFILEMl
CALL OPEN(l,NFILE,3,IER)
IF (IER BQX. 1) GOJX) 41

TIYPE "Open error on file. EER=",IER
Gc)1049

41 CONTINUE
DC=96
IXL=-12 8
IY=60
IYL=-120
IYBN=14

"0. IYI=8

DO~ 45 T.YP-=0,IYBN
IYB=IYP*4
IYPOS=-8*IYP+IY
CALL RVBLK(ICT,IBLJF,IX, IXL,IYPOS,IYI)
CA.LL WRBUK((,IYB,IBUF(2),4,IER)
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45 CONTINUE

49 CONTINUE
CALL CLOSE(l,IER)

GYO 7

c cccccccccccccocccccccccccococ'ceccoccc
C Camnand 5 Input a 128x120 image frarn disk file.

50 CONTINUE
IYPE "Loading a 128x120 image f ran disk."
TJYPE " input the desired file name."
READ(11,l000) NFI.LEMl
CALL OPEN (1,NFILE, 3,IER)
IF (IER .BQ. 1) GO'IO 51

TYiPE " Open error on file. IER=",IER
GO]X) 59

51 CONTINUE
IX=96
JXLi=128
IY=60
IYL=-120
IYBN=-14

-4 P11=8

DO 55 IYP=-O,IYBN
IYBP1YP*4
CALL RDBLK(,IYB,IBUF(2),4,IER)
IYPOS-8 *Iyp+IY
CALL WVBLK (ICT, IBUF, IX, IXL, tYPOS, IYI)

55 CONTINUE

59 CONTINUE
CALL CLOSE(l,IER)

cxDrO 7

C Camrand 6 DUL4vIED OLur
C CcCCGQXXXC 2XX2nnnnmr
60 CONTINUE

GDTO 7

C Cannand 7 DUD'tIED OUT

70 CONTINUE
GXYTO 7

C Canand 8 DU?4vIED O~
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i c ccc -co-ccc

80 CONTINUE
GOTO 7

, C C . .. .

C Camand 9 DUMMIED OUT
c C
90 CONTINUE

GO To0 7

ococ xcccccccccccccccccccccccccccc :cccc c
C Camiand 10 Input fran disk to OCTEK
oOcCccc
100 CONTINUE

TYPE
TYPE " INPUT FROM DISK"
TYPE
TYPE " What file name?"
READ(11,1000) NFILE(1)
CALL OPEN(I,NFILE,1,IER)

* IF (IER .EQ. 1) GOTO 101
TYPE " File open error-" ,IER
GOlX 106

101 CONTINUE
CALL PXFILL(ICT,15,0,320,0,240)

-,/ IXP=-32
IKL=256
IYP=-0
IYL--4

C
C Read the 64 blocks of the picture, unpacking and saving each
C The last four blocks are ignored.
C

DO 104 I=0,59
CALL RDBLK(1,I,VFILE,1,IER)
IF (IER .EQ. 1) GOTO 102

TYPE "Read error-" ,IFR
GUO 106

* 102 CONTINUE
C
C Repack for output: fran (xxxx) to (000x:000x:000x:000x)
C

Do 103 J=1,256
K=4*(J-i)+2

* -" IBUF(K)=ISHbT(VFILE(J),-12) .AND. 15
IBUF(K+)=ISHFT(VFILE(J),-8) .AND. 15
IBUF(K+2)=ISHT(VFLE(J),-4) .AND. 15
IBUF(K+3)=VFILE(J) .AND. 15

103 CONTINUE
C

* C Output to OCTEK 2000
C
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* CALL WVBLK ( ICT, IBUF, UXP, IXL, IYP, I YL)
IYP=-IYP+IYL

104 CxNrINLE
TYPE "FILE DISPLAYED"

106 CONTINUE
CALL CLOSE(l,IER)
IF (IER .EQ. 1) GOIIO 108

TYPE "Error closing file-"1,IE
108 C0NrIN~U

oxxxxoccccccccocococcc - occccxcccccccccccccoccoccc
110 CONTINUE

TYPE "OUTPUrTO 1 DISK"
TYPE
TYPE "What file name?"

ALAREAD(ll,l000) NFILEMl
0 CALL OPEN(2,NFILE,3,IER)

IF (IER .BQ. 1) GO'I0 111
TYPE "Open error on output file-",IER

I-..- GcaO 116
11 CONTINUE

IXP=32
DaCL=256
IYP:=0
IYL--4

C For the 64 blocks of packed video
C. C

C The OCTEK has only 240 lines, so the last four blocks
C will be zeroed out.
C

DO 115 I=0,63
C

* -C Input fran the OCTEK 2000
C

0 CALL RVBLK (ICT, IBUF, IXP, IXL, IYP, IYL)
IYP=IYP+IYL

C
C Repack the data fran (OO0x:0O0x:000x:000x) to (xxxx)
C

Do 113 J=1,256
IF (I .LE. 59) GOTIO 112

VFILE(J)=0
GDTO 113

112 CONTINUE
K=4*(J-1)+2
ITEMPl=ISHFT(IBUF(K) .AND. 15,12)
ITEMP2=ISHET(IBUF(K+l) .AND. 15,8)
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ITEt4P3=ISHET(IBUF(K+2) .AND. 15,4)
ITEKP4=IBUF(K+3) .AND. 15
VFILE(J)=ITMP1 .OR. ITEMP2 .OR. ITEMP3 .OR. ITEMP4

113 CONTINUE
C
C Output to the disk file
C

CALL WRBLK(2,I,VFILE,1,IR)
IF (IER .EQ. 1) GOTO 115

TYPE "Write error-",IER
OCxTO 116

15 CONTINUE
'TYPE "THE FILE IS SAVED."

116 CONTINUE
CALL CLOSE(2,IER)
IF (IER .BQ. 1) GOlD 118

'T TYPE "Error closing file--",IER
.7118 CONTINUE

GDTO 7

999 CONTINUE
CALL OREMOVE (ICT)

1000 FORMAT(S40)
END

5-
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C
C NSTAR.FR
C
C This is the NOVA main program to control the placement of
C star patterns on the image, and to retrieve the data along
C the radial lines for later processing on the ECLIPSE.c
C DATA STRUCTURES USED
C INOVAC Array of NOVA cormand parameters.

,C 1 Ccmmand code as follows:
SC -1 Terminate

C 1 Apply Star to current location and

C bit map the current Block
C 2 Get slice feature list
C 3 Get new image pair
C 2 Image selection flag
C 1 Left image
C 2 Right image
C 3 X center index
C 4 Y center index

* C 5 Max ray index
C 6 Blob ID number
C IDIR Array of pixel slice header data
C 1 direction index (-1 for epipolar slice)
C 2 X-start coordinate
C 3 Y-start coordinate
C 4 X-end coordinate
C 5 Y-end coordinate
C 6 Number of points actually stored
C 7 Image ID (1-left, 2-right)
C ICNTR Star center blob characterization
C 1 leftmost X location
C 2 rightmost X location
C 3 uppermost Y location
C 4 lowermost Y location
C 5 minimum grey value
C 6 maximum grey value
C
C
C ROUTINES USED:
C System calls (from FORT.LB)
C STAT, OPEN, READ BINARY, WRITE BINARY,CLOSE,
C RENAM, DELETE
C OCTEK library calls (from IACF4.LB)

* C SINTRO, HCTAB, XHAIR, INTLPCE, SYNC, VON, VOFF,
C WVBLK, ORENOVE
C RADSP Retrieves and stores to a file one quadrant of
the
C pattern of radial lines.
C
C HIERARCHY OF CONTROL:
C NSTAR
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C IGCD (function)
C RADSP
C RADLN
C EXQVFL
C ISGN
C PRQVFL
C
C

Xl1WN /FBUFF'/ IFBUF, IDAT
CUML~KN /IMPGW IXOFF, D(M, IYOFF, IYMAX, IMF
CxxMON /DEBUG/ IDEBF
COMMO)N /BLOB/ IBLOB
DIMENSION IBLOB(27)
DIMENSION IFE.AT(50, 4) ,IEBJF(256) ,ICN'IR(6)
DIMENSION ISTAT(20 ),ICT( 120)
DIMENSION IDIR(7),IBMAP(16),ICNT(16),ISUM(16)
DIMENSION CA.1(4),CA2(4)
DIMENSION IMFIL(40),IDAT(1025)
EQUIVALENCE (IFBu2F(),IDIR()),(IFBUF(8),NFEAT),

A (IFBUF(9),IFIRST),(IFBUF(l0),ILAST),(IFBUF(11),IFEAT(l,1))
* EQUIVALENCE (IBLOB(l),IDN),(IBLCB(2),SFX),(IBLCOB(4),SFY),

A (IBLCB (6), ICNTR(1))(IBLCB (12), IBMAP (1))

C
A:C This is the Least Carmnn Multiple irrplicit function

C definition, using the greatest conumn divisor function.
IIEM (IX, IY) =(IX*IY) /IGCD (IX, IY)

j. C
C Set a few constants.

ITHRB=80
PI=3.1415926
PID8--PI/8. 0

SQRT2SQRT( 2.0)

IHMIN=0
RiMAX=127
IVMIN=O
IVMAX=ll 9

C
C Initialize the radial angles to be used in each quadrant.

* CA(l)=l
CA1 (2)=COS (PID8)

* ~C~l(3)=COS(PID8*2.0)
CA.l(4)=GOS(PID8*3.0)
CA2 (1 )=0
CA2(2)=CA-(4)
CA2(3)=CA1(3)
CA2(4)=CPA(2)

TYPE 11<33>E"
TYPE " NOVA half of stereo vision system"
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- - - - - - -

V

TYPE
TYPE "<33>j"
TYPE " The debug print options are:"
TYPE " l-RADSP direction line values."
TYPE " 2-Feature lists."
TYPE " 4--Center blob characteristics."
TYPE " 8-BLOB bit map."
TYPE " 16-BIge bit map."
TYPE
TYPE "Add up the desired flag values and enter the number."
ACCEPT " Input the debug flags. (=0 for no flags.) ",IDEBF

C
C Initialize the OCTEK as a system device.

CALL SINTRO( ICT, 63K, IER)
IF (IER .EQ. 1) GOTO 90
TYPE " <7> Unable to init the OCTEK. IER=",IER

• STOP

90 CONTINUE
CALL GREYSCALE (ICT, 1)

* CALL GREYSCALE(ICT,2)
GOTO 800

100 CONTINUE
VT: CALL HCTAB(ICT,128,255)

TYPE " Ready for the BCLIPSE command file."

101 CONTINUE
CALL STAT( "JHDATA: NCONT. DT", ISTAT, IERR)

IF (IERR .NE. 1) GOUO 101

TYPE "<33>k<33>J"
TYPE " Cammand file found."
CALL OPEN (I,"JHDATA:NCONT.DT ",1,IERR)
READ BINARY (1) ICODE, IMF, IXCTR, IYCTR, IRAD,IDN

CALL CLOSE(l,IER)
CALL DELETE( "JHDATA:N2ONT.DT ")

IDIR( 7)=IMF
IXOFF=26
IF (IMF .NE. 1) IXOFF=IXOFF+140
]XMIN=IHMIN+IXOFF
IXMAX=IHMAX+IXOFF

IYOFF=0O
IYMIN=IVMIN+IYOFF
IYMAX=IVMAX+IYOFF

C
C Limit the center to the screen.

IF (IXCTR . LT. EKMIN) IXCTR-IHMIN
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IF (IXCTR GT. IHMAX) IXCTR=-IHMAX
IXC=IXCTR+IXOFF
IF (IYCLR .LT. IVMIN) IYCTR=-IVMIN
IF (IYCTR .Gr. IVMAX) IYCTR=IVMAX
IYC=IYCIR+IYOFF

C
C Use the code to select the process.

IF ((ICODE .LT. -1) .OR. (ICODE .GT. 4)) GOTO 100
C
C Legal comand code received.

IF (ICODE .BQ. -1) GOTO 900
GOIO (200,600,800,500),ICODE
GO 100

200 CONTINUE
TYPE "COMMAND= Process star. IXC=", IXCTR," IYC=", IYC'IR,

A " Max RAD=",IRAD
CALL XHAIR(ICT)
CALL HCTAB (ICT, IXC, IYC)

C
* C Process the star with the current center and radius.

NP=-IRAD
C
C Initialize the center characterization.

ICNTR(1)=IHMAX
ICNTR (2 )=IHMIN
ICNTR( 3 )=IVMAX
ICNTR(4)=IVMIN

-.\ ICNTR(5)=15

ICNTR(6)=O
C
C Process quadrant #1
C
C Pack the quadrant data and process it to file.

IDIR(1)=0
IDIR( 2 )=IXCTR
IDIR( 3 )=IYCTR
IDIR(6)=NP
CALL RADSP(ICT,+i,+I,CA1,CA2, ICNTR )

C

C Process quadrant #2.
C
C Pack the quadrant data and process it to file.

IDIR(1)=4
IDIR( 2 )=IXCTR

" *" IDIR( 3 )=IYC!R
• .. IDIR( 6 )=NP

CALL RADSP ( ICT, -i,+i ,CA2 ,CA1, ICNTR)

C
C Process quadrant #3.
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C
C Pack the quadrant data and process it to file.

IDIR(l)=8
JDIR( 2)=IXCTR
IDIR(3)=IYCER
IDIR(6)=NP
CALL RADSP(ICT,-l,-l,CA,CA2,INIR)

C
C Process quadrant #4.

N C
C Pack the quadrant data and process it to file.

IDIR(l)=12
IDIR(2)=IXCTR
IDIR( 3)=IYCIR
IDIR( 6)=NP
CALL RADSP(ICT,+l,-l,CA2,CA1,ICNIR)

TYiPE " STAR Processed."
CALL HCTAB (ICT, D(C,25 5)

IXS-ICNTR(2)+IXOFF

IYS=ICNTR( 3)+IYOFF
IYEBICNR( 4 )+IYOFF

TIYPE "Characterize block. IX-" ,IXS, IXE," IY=11,
A IYS, IYE

IF (IDEBF .AND. 4) WRITE(12,1001) (ICNTR(I),I=l,6)
1001 FORMAT(" ---ICN IR =",615)

C
C Process block with current center and size.
C
C Get size and auto-scale to the screen.

IF (IXS . LT. IXMIN) IXS=IXMIN
- ~ IF (IXE .GT. IXMAX) IXE:=DUMAX

DCL=iXED-IXS+l

IF (IYS . LT. IYMIN) IYS=IYMIN
IF (lYE .Gr. IYMAX) IYE=IYMAX
IYL-IYE-IYS+l

IF (IYL .GT. 1) GOLD 290
Do) 270 I=1,16

"4 IBMAP(I)0O
270 ODNTINUIE

GUMO 400

290 CO)NTINUE

CALL BOCUR(ICT, IXL, IYL)
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CALL HCTAB (ICT, IXS, IYS)

C
C Get the block fran the screen to a disk file as a bit map.
C (l6Xl6) bits

IGMN=ICN1R(5)
IGMX=ICN'IR(6)

SEX= D1/6.0
SFY=IYL/16.0

C
* C Get the number of indices horizontally in the large grid.

IXDV=II0 (IXL, 16)
C
C Get the number of large grid indices per image index.

IXD=IDV/IXL
C
C Get the number of large grid indices per bit map index.

* IXB=IXDV/16
C
C Set up to index through the image positions horizontally.

DUXIP=IXS-i
C
C Get the number of indices vertically in the large grid.

IYDV=-IL@(IYL, 16)
* C

C Get the number of large grid indices per image index.
IYD=IYDV/IYL

C
C Get the number of large grid indices per bit map index.

IYB=IYDV/l 6
C
C Initialize the bit ma index.

SXBI=O

IF (IDEBF AND. 4) WRITE(12,1002) IXL,IXDV,IYL,IYDV
1002 FORMAT(" --- ",2(" LQM( 16,",13,") = ",15,3X))

C
C Cycle through the large grid columns.

DO 390 DVI=l, IXDV
IF ((MOD(IXUJI,CB) •NE. 1) •AND. (IXB .NE. 1)) GOTO 310

C
C Initiate a new bit map column.

IXBI=IXBI+l
TYPE "<33>k<33>J"
IYPE " New bit column, IXBI=" ,IXBI

C
C Reset the counters.

DO 305 IYBI=I,16
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ISUM(IYBI)=0

ICNT(IYBI)=O
305 CONTINUE
310 CONTINUE

IF ((MOD(IXDVI,IXD) .NE. 1) .AND. (IXD .NE. 1)) GOTO 320
C
C Initiate new imge column.

IXIP=-IXIP+l
CALL RVBLK(ICT,IDAT,IXIP,1,IYS,IYL)

320 CONTINUE
C
C Reset row counters.

IYBI=0
IYII=0

C
C Cycle through the large grid rows.

DO 350 IYDVI=1,IYDV
IF ((MOD(IYDVI,IYB) .NE. 1) .AND. (IYB .NE. 1)) GOTO 330

C
C Initiate new bit map row.

IYBI=IYBI+I
330 CONTINUE

IF ((MOXD(IYDVI,IYD) .NE. 1) .AND. (IYD .NE. 1)) GOTO 340
C
C Initiate new image row.

IYII=IYII+I
IPIX=IDAT( IYII)

340 CONTINUE
C
C Update the counts for this bit, using this image pixel.

ISL?4(IYBI )=ISUM(IYBI )+l
IF ((IGMN .LE. IPIX) .AND. (IPIX .LE. IGMX))

A ICNT(IYBI)=ICNT(IYBI)+l
350 CONTINUE

IF (MOD(IXDVI,IXB) .NE. 0) GOIO 370
C

" C This bit map column is done, get the results for each bit.
IMASK=I

* IBMAP(IXBI)=0
TYPE "<33>k"
TYPE
TYPE "<33>J Bit values."
DO 360 IYBI=I,16
IPER=(ICNT(IYBI )*i00)/ISUM(IYBI)
TYPE " SUM=",ISUM (IYBI)," CNT=",ICNT(IYBI)," Percent=",IPER
IF (IPER .GT. ITHRB) IBMAP(IXBI)=IBMAP(IXBI) .OR. IMASK
IASK=ISHFT( IMASK, 1)

360 CONTINUE
370 CONTINUE
390 CONTINUE

IF (IDEBF .AND. 8) CALL PRaM(IBMAP)
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400 OTINUE

C Write out the blcb characterization.
C

- C Each word is a colum.
CALL OPEN(1,"JHDATA:NDAT.DT ",3,IERR)
WRITE BINARY (1) IDN,SFX,SFY
WRITE BINARY (1) (ICNTR(J),J=1,6)
WRITE BINARY (1) (IBMAP(I),I=1,16)

'.4- CALL CLOSE(1,IER)
CALL RENAM("JHDATA:NDAT.DT ","JHDATA:BLOCK.DT ",IER)

GOlD 100

500 CONTINUE

TYPE " Bit map region edge. IYC=",IYC," IXC=",IXC
4.4' C

C Bit map a 16x16 window.
C
C Get the region limits for the bit map window.

IXLFr-IXC-7
DxRGT=-DLFT+15
IYTOP-IYC-7
IYBOT=IYTOP+15

C
C Put a box cursor around it.

CALL BOXCUR(ICT,18,18)
CALL HCTAB ( ICT, IXLFr-1,IYTOP-1)

C Get region grey levels near the edge.
C IDN=-1 for left side of edge
C +1 for right side of edge

IXM=MIN 0 (IXC, IXC+IDN+IDN)
IYMIYC-l

." CALL RVBLK (ICT, IDAT, IXM, 2, IYC, 3)

C
C Get the grey level range of values near the edge.

IGMN15
IC'4X=0
Do 505 I=2,7
IGMN=MINO (IGMN,IDAT( I))

505 CONTINUE
C
C Initialize the index, and cycle through the columns.

.-. IBPOS=I1
Do 540 DCO XL T, CIXRGT

C
C Initially no bits set for this column.

IWORD=0
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IF ((IXLOC .LT. EXMIN) .OR. (IXMAX .LT. IXLOC)) GOTO 530

C Input the next column.
CALL RVBLK (ICT, IDAT, IXLOC, 1, IYTOP, 16)

C
C Initialize the indices, and scan the column entries.

IDPOS=2
IMASK=I
DO 520 IYLXOC-IYOP,IYBOT

?: IF((IYLOC .LT. YMIN) .OR. (IYMAX .LT. IYLOC)) GOTO 510
C
C Check the grey value for in or out.

IPIX=IlDAT (IDPOS)
IF ((IPIX .LT. IGMN) .OR. (IGMX .LT. IPIX)) GOTO 510
IW(RD=IWJORD .OR. IMASK

510 CONTINUE
-DPOS=IDPOS+I
IMASK=ISHFT( IMASK, 1)

520 CONTINUE
530 CONTINUE

* 'TYPE "<33>k"
TYPE
TYPE
IYPE " Map column =" ,IBPOS

IBMAP( IBPOS )=IWORD
IBPOS=IBPOS+1

540 CONTINUE
C
C Write out the bit map.

IF (IDEBF AND. 16) CALL PRBM(IBMAP)
IFIG=1
CALL OPEN( 1, "JHDATA:NDAT. DT", 3, IER)
WRITE BINARY (1) IFLG,(IBMAP(I),I=I,16)
CALL CLOSE(l,IER)
CALL RENAM( "JHDATA: NDAT. DT", "JHDATA:WBW.P. DT",IER)

CALL HCTAB(ICT, IXLFT, 255)

GOTO 100

', 600 CONTINUE

C Process line slice.
IY=IYCTR-IYOFF

4., 'YPE "COMMAND = Get image slice. Image #=",IMF," Line #=",IY
C
C Set up IDIR parts common to both images.

IDIR(1)=-l
* IDIR(2)=0

IDIR(3)=IY
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IXL=IXMAX-IXMIN+l
IXLI=IXL+I
IDIR( 4)=IXL-I
IDIR(5)=IY
IDIR(6)=DCL

C
C Output one slice fran selected image.

IX=26
IF (IMF .EQ. 2) IX=IX+140
IDIR(7)=IMF
CALL RVBLK (ICT, IDAT, IX, IL, IY, 1)
IFIRST=IDAT( 2)
ILAST=IDAT(IXLI)
CALL EKQVFL(IXL,IDAT(2) ,NFEAT,IFEAT,2)

CALL OPENi(l, "JHDATA:NDAT. DT", 3, IER)
CALL WRBLK(i,i,IFBUF,i,IER)
CALL CLOSE(lIR)
CALL RENAM( "JHDATA: NDAT. DT","JHDATA: SLICE. DT", IER)

0GOIO 100

C
C Set up the image.

" "800 CONTINUE
TYPE "<33>k<33>J"

C
C Check for the desired input mode.

ACCEPT "Save the current image? (0=NO) ",IRP
IF (IRP .NE. 0) GOTO 860

805 CONTINUE
ACCEPT "Input new images? (0=NO) ",IRP
IF (IRP .BQ. 0) GOIO 100

C
C Clear the screen.

CALL PXFILL(ICT,15,0,320,0,240)

C
C Repeat for left and right halves of the pair.

DO 856 fIGN=I,2
IX=26
IF (IMGN .NE. 1) X=IX+140

iC

C Input from dJ sk file.
850 CONTINUE
C
C Prompt user for file name.

IF (IMGN .EQ. 2) GOTO 8051
TYPE " Loading the LEFT image fra disk."
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TYPE " Input the LEFT image file name."
GOTO 8052

8051 CONTINUE
TYPE " Loading the RIGHT image fran disk.

85 TYPE " Input the RIGHT image file name."
8052 CONTINUE

READ(II,1050) IMFIL(1)
1050 FORMAT( S40)

TIYPE
CALL OPEN(i,IMFIL,i,IERR)
IF (IERR .Q. 1) GCUI 851
TYPE " Open error on input file - IERR=-",IERR
GOTO 850

851 CONTINUE
IYP=0
DO 855 I=0,14
IB=I*4
CALL RDBLK(I,IB,IDAT(2),4,IERR)
IF (IERR EQ. 1) G(YI1O 852
TYPE " Read error - IERR=-",IERR

* GOTO 850
852 CONTINUE
C
C Output LEFT image to the OCTEK.

CALL WVBLK(ICT,IDAT, IX, 128,IYP, 8)
IYP=-IYP+8

855 CONTINUE
TYPE " Image loaded."
CALL CLOSE(l,IER)

, 856 CONTINUE

GOTO 100

860 CONTIUE
C
C Repeat for left and right images.

' IDO 870 IMN=I,2
-X=26

* IF (IMGN .NE. 1) IX=IX+140
, ..

C
C Save the current image.

TYPE " Saving the current image to disk."
IF (IMGN . E. 1) TYPE " Input the LEFT image filenare."

*I- IF (UMGN .EQ. 2) TYPE " Input the RIGHT image filename."
READ(11,1050) IMFIL(1)
TYPE
CALL OPEZ'.(1,IMFIL,3,IERR)
IF (IERR .E. 1) GOI 861
TYPE " Open error on output file - IERR=",IERR

GOTO 860
861 CONTINUE
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IYP,=O
DO) 865 I=0,14
IB=I*4
CALL RVBLK(ICT, IDAT, IX, 128, IYP,8)
CALL WRBLK(,IB,IDAT(2),4,IERR)
IF (IERR, EQ. 1) GOTO 864

TYPE " Write error -IERR=",IJERR,

GOYIO 860
864 CONTINUE

IYP=-IYP+8
865 CDI'IINUIE

TYPE " Saved."
870 CONTINUE

CALL CIOSE(1,IERR)
GNrO 805

900 CDNTINUE
TYPE "CtC4MAND= Terminate processing."

C
C Terminate processing.

CALL OPEN (1,"JHDATA:TRM.D " ,3, IERR)
WRITE( 1,1000)

1000 FORMAT(" tNJVA processing terminated.")
CALL CLOSE(1,IER)
CALL RENAM( "JHDATA:ERM.EDr ","JHDATA:TERM.D[Y ", ER)

CALL OREMOVE(ICT)

END
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C
SUBROUTINE EXQVFL ( ILAST, IPIX,NFEAT, IFEAT, ITHR)

C
C This is the Queen Victoria algorithm. It is used on one.
C slice of pixel data to extract a list of edge feature regions.
C
C Written by James R. Holten III, 9 Mar 85

.5. C
C Finds edges of significant slope.
C ON ENTRY:
C ILAST The highest index for pixels in the buffer
C IPIX The buffer of pixels
C ITHR The desired noise limiting threshhold
C ON EXIT:
C NFEAT The number of edge features found.
C IFEAT A table of features and their characteristics.
C IFEAT(I,l)= The starting pixel index for the feature
C IFEAT(I,2)= The ending pixel index for the feature
C IFEAT(I,3)= The starting edge grey level
C IFEAT(I,4)= The ending edge grey level

• C

DIMENSION IPIX(l),IFEAT(50,4)

IPRE=l
NFEAT=-0
D&MMA=50
ISF=0

C
C Start new slope search.
100 CONTINUE

C
C Start where the last left off, and set up left end.

ILOC=-IPRE
IVLE=IPIX(ILOC)

C
C Get the first pixel to the right, if any left.

*IPRE=ILOC+l
IF (IPRE .Gr. ILAST) GOTO 300
IVRE=IPIX(IPRE)

C
C Is this the start of a new interval of slope?

ICHG--IVRE-IVLE
* ISLP=ISGN (ICHG)

IF oSLP BQ. 0) GOTO 100
INEXT=IPRE
IF (IABS(ICHG) .GT. ITHR) GOTO 120

C
C Change of less than threshhold, alow up to one flat interval.

IPASS=0
IVPRE=IVRE
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110 CONTINUE
INEXT=INEKT+l
IF (INEXT .GT. ILAST) GOTO 300

C
C Get the next pixel.

IVRE=IPIX (NEXT)
C
C Does the slope continue?

IDIFF=-IVRE-IVPRE
INSLP=ISGN (IDIFF)
IF (INSLP EQX. ISLP) GCYIO 120
IF (IDIFF .NE. 0) GOTO 100
IF (IPASS .EQ. 1) GOTO 100

* IPASS=l
GOTO 110

C
C Valid slope. How far does it go?
120 CONTINUE
C

* C Lpdte the total change over the feature interval.
ICHG-=IVRE-IVLE

C
C Save the previous value and location before getting the next.

IVPRE=IVRE
IPRE=INEXT
INEXT=-INEXT+I
IF (INEXT .GT. ILAST) GOTO 200

C
C Check the next pixel for continued slope.

IVRE=IPIX(INEXT)
IDIFF=IVRE-IVPRE
INSLP=ISGN (IDIFF)
IF (INSLP .BQ. ISLP) GOTO 120

C
C Not the same slope, is it a significant change?

IF (IABS(IDIFF) .Gr. ITHR) GOTO 200
C
C No, see if the old slope continues beyond it.

S.. INEXT=INEXT+l
IF (INEXT .GT. ILAST) GOTO 200

C
C Get the next pixel, ana check the new interval slope.

IVRE=IPIX (INEXT)
IDIFF=-IVRE-IVPRE
INSLP=ISGN (IDIFF)
IF (INSLP .EXQ. ISLP) GOTO 120

C
C It does not continue, store the current feature and scan on.

G.TO 200
C

-: C The end of a slope feature was found, store it.
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200 ONT~INUE

IF (INUM GTr. 3) GO'rO 220
C
C Both averages are the same.

ISUM40
~- ~ DO 210 KLOC-cJLOC,ILOC

ISUM=-ISUM+IPIX (KLOC)
210 OOirINLE

SIJM=ISUM4
IVAVE=(SUM/INtl4)+. 5
IVl=IVAVE
GYIO 240

220 WDNTINLE
151=0
IS2=0
DO 230 K7-0,2
IS1=IS1+IPIX(JLOC+K)

0 230 1S2=IS2+IPIX (ILOC-K)
230 COMINLE

S'=ISl
S2=152
IVAVE(Sl/3. 0)+. 5

* . IV1=(S2/3.0)+.5

240 CO~7IINUE
IF MNEAT .GE. NFMAX) GCYIO 500

NFEM'=-NFEAT+l
C Liocation of left end.

IFEAT( NFEIT, 1)=ILOC
C Loication of right end.

IFEAT( NFEAT, 2)=IPRE
C Grey value of left end.

IFEP.T(NFEAT, 3)=IVl
C Grey value of right end.

IEFEAT( NFEAT, 4)=IVPRE
C
C Store the grey value in the previous feature also.

IF (NFEAT .Gr. 1) IFEAT(NFEP.T-l,4)=IVAVE

C
C Check for termination. If not yet, then continue scan.

IF (INEXT .Gr. ILAST) GOMI 300
INE-IPRE
JL<O=IPRE
cXYI' 100

-~ C
C Finished with slice, return feature list.
300 GM~INuE
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IF MNEAT .LE. 0) RETURN
IF (IN14 .GE. 1) GCYIO 400
IFEAT( NFEAT, 4)=IPIX (ILAST)

GOW 410

400 CONTINUE

ISULw40

DO~ 405 K--0,2
IF (JLOC+K .GT. ILCC) GOIO 405

ISUM=-ISUMR+IPIX (JLOC+K)
405 CONTINUE

S114=ISUM
IFEAT(NFEAT, 4)=(SU/INL!f4) +. 5

410 CONTINUE
C

*C Suppress overlapping edge features.
IFLOC=-1
DO~ 490 I-LOC=-2,NFEAT
IF (IFEAT(IFLC,2) .LT. IFEAT(ILOC,1)) GOO 430
IwD1=IFEAT( ILOC, 2)-IFEAT(ILJC, 1)
1WD2=IFEPAT( IFLC, 2 )-IFEAT( IFLCX, 1)
IFU(IWD1 .Gr. 1) .OR. (I1WD2 .GT. 1)) GOM 430

C
C Canibine the features.

IFEP1T( IFLOC, 2)=IFEA N ILC,2)
IFEP.T(IFLOC, 4)=IFEAT(ILOC, 4)
GOO 490

430 CONTINUE
C
C Ccpy the features as needed.

IFLOJC-IFLOCX+1
DO 450 INDX=1,4

* I~TFEAT( IFLOC, INDX )=IFEAT( IL(C, INDX)
450 CONTINUE

490 CONTINUE

NFFAT E]IFL=X
RETIURN

500 CONTINUE
* TYPE "-- EXiDEG -TOO MANY FEATURES."

TIYPE
* REIU[RN

F-26



2c
4 C

SUBROUTINE RADN ( ICT, IRAD,IDIR, NP, CAX,CAY)
C
C This routine retrieves one radial line of data fran the
C current image on the OCTEK. The line direction, start location,
C and max allowable length are given. It returns the array of
C pixels, the actual number of pixels retrieved, and the line
C ending location.
C
C ON ENTRY:
C ICT The device control table for the OCTEK
C IDIR Array of directional line data
C 1 Direction index
C 2 X-start coordinate
C 3 Y-start coordinate
C 7 Image ID number
C NP Max number of points desired
C CAX X-index coefficient
C CAY Y-index coefficient
C
C ON EXIT:
C IRAD The array of pi.'] values
C IDIR As above except for the following:
C 4 X-end coordinate
C 5 Y-end coordinate
C 6 Number of points actually stored
C
C ROUTINES USED:
C IRDPIX Reads pixels fran the OCTEK (from IACF4.LB)
C

COMMON /IMAGE/ IXMIN, IXMAX, IYMIN, IYMAX, IMF
DIMENSION ICT(l),IDIR(7),IRAD(l)

C
C Only compute this constant once.

SQRT2=SQRT(2.0)
C
C Get the desired radial line start location.

IXCTR=IDIR( 2 )+IXMIN
IYCTR=IDIR( 3 )+IYMIN
NDP=0

C
C Get the initial data point location as default end point.

IX=IXCTR
IY=IYC'IR

C
C Limit the number of allowable points to desired range.

IF (NP .LT. 1) NP=l
IF (NP .GT. 60) NP=60

C
,
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C Loop through the points in the radial line.
DO 100 I=I,NP

C
C Convert from diagonal distance to horizontal.

HYP=- (I-i ) *SQRT2
C
C Get the projection onto the X and Y axes.

IXLOC=- (HYP*CAX) +IXCTR
IYLOC- (HYP*CAY) +IYCTR

C
C Is the next pixel location on the screen.

IF ((IXLOC .LT. IXMIN) .OR. (IXLOC .GT. IXMAX)) GOTO 200
IF ((IYLOC .LT. IYMIN) .OR. (IYL0C .GT. IYMAX)) GOTO 200

C
C Get the current location and the index.~IX--IXLOC

IY=IYLOC
NDP=-NDP+l

C
C Get the pixel value at this location.

* IRAD( NDP)=IRDPIX (ICT, IX, IY)
100 CONTINUE

200 CONTINUE
C
C Save the end points and the length.

IDIR( 4)=IX-XMIN
IDIR( 5 )=IY-IYMIN
IIR(6)=NDP

RETURN

END

-
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C
SUBROUTINE RADSP( ICT, ISX, ISY ,CAX,CAY, ICNTR)

C
C Retrieves the ray data from the current quadrant in IDIR.
C It stores the results out to IFILE.
C
C ON E TRY:
C ICT Device control table for the OCTEK
C IDIR Array of image-relative location data.
C 1 Index of last direction processed.
C 2 X-center
C 3 Y-center
C 6 Number of points in the desired radial line.
C 7 Image ID flag, 1=left, 2=right
C ISX sign for the x coefficients.
C ISY sign for the y coefficients.
C CAX X coefficients for 4 directions
C CAY Y coefficients for 4 directions
C ICNTR Characterization of the center blob.
C

* C ON EXIT:
C IDIR Same as above, except as follows:
C 1 New last direction index
C 4 X-location of last line end
C 5 Y-location of last line end
C 6 Actual number of points in last line.
C
C DEBUG FLAGS USED-(printouts enabled)
C 1 Radial arm information and number of features
C 2 Feature lists
C
C ROUTINES USED:
C RADLN Retrieves a single radial line of
C pixels.
C EXQVFL Extracts features from a slice.
C PRQVFL Prints the feature list
C

CCMMON /FBUFF/ IFBUF,1DAT
COMMON /DEBUG/ IDEBF
DIMENSION IFEAT( 50,4), IFBUF ( 256)
DIMENSION ICT(l),IDIR(7),CAX(4),CAY(4)
DIMENSION ICNTR( 6)
DIMENSION IDAT(1025)
E UIVALENCE (IFBUF(l),IDIR(l)),(IFBUF(8),NFEAT),

A (IFBUF(9),IFIRST),(IFBUF(i0),IIAST),(IFBUF (ii),IFEAT(l,l))

TYPE " RADSP called, quadrant=", IDIR(l)," IMAGE ",IDIR(7)

IQOFF=IDIR(l)
NP=IDIR(6)

IXMN LDIR(2)
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IXMX=XM
V IYMN=DIR(3)

IYMX=IYMN
IGMN=15
IGMX=O

DO 100 ID=1, 4
IDl=ID-1

CY=ISY*CAY (ID)
IDIR( 1)=IQOFFIID
CALL RADLN(ICT,IDAT, IDIR,NPCX,CY)

CALL EXR(6) (IL, IDAT, NFEP.T, IFEAT, 1)

'-'S IF (IDEBF .AND. 1) WRITE(12,1000) (IDIR(I),I=1,7),NFEAT

1000 FORMAT(" -- RADSP - ID18 = ",M1," NFEAT-= ",13)
IF (IDEBF .AND. 2) CALL PBQVFL (NFEAT, IFEAT)

C
C Get the line characteristics relative to the imiage.

IFIRST=-IDAT(l)
ILAST=-IDAT( IXL)

-~ IX1=IDIR(2)
1X2=IDIR(4)
IY1=IDIR(3)
IY2=IDIR(5)
IG1=IFIRST
IG2=ILAST
IF MNEAT .LT. 1) GOYIO 20
INDX=IFEAT(l,l)-l
RP=-IDIR(6)
XRAT(IDIR( 4)-JXl )/RP

4 ~ ]X2=DX1+XRAT*INDX
YRAT(IDIR(5)-IY1)/RP
IY2=IY1+YRAT*INDX
IG2=IFEAT(l 13)

20 ONTINUE
4 C

C Update the slice extremies.
]XM=t.INO (DCM, IX1, IX2)
XM=MAX0 (IXMX, IXi, 1X2)

IYMX=MAXO(IYMX,IY1,IY2)
IGMN#1N0 ( IGMN, IG1, 1G2)
IGMvXMAXO (IGMX, EGi, G2)

- -100 CONTINUE

C Update for other quadrants.
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ICNTR(1)=bINO (ICN ER(1),DM)
ICNTR( 2)=MAXO (ICNTh( 2), IXMX)
ICN' l( 3)=tMINO (ICNIR( 3), IYM)
ICNTR( 4)=M4AO(ICNTR( 4) ,IYMX)
ICNTR(5)=-MINO(ICNTR(5) ,IGM4N)
ICNTR( 6)=MAXO (ICNTR( 6), I~tIX)

RERN
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9-c

w FUNCTION IGCD(IX, IY)

C
C Computes the greatest cornnn divisor of the two
C given integers using the Cinese remainder theorem.
c
C By James R. Holten III, 21 Oct 1985

mI  IXI=MAX0 (IX, IY)

IY1=MIN0(IX, IY)

100 OONTINUE
-' IREM=VOD (IXI, IYI )

IF (IREM .LE. 0) GOTO 200

IX1=MAXO (IREM, IYI)
SIY1I=MINO(IREM,IY1)

G 100
.

200 CONTINUE

IGCD=IY1
RETURN
END
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C

SUBROUTINE PRQVFL (NFEAT, IFEAT)
C
C Print out the Queen Victoria algorithm feature list.
C
C

DIMENSION IFEAT( 50,4)

C
C Printout the headers.

WRITE(12,1000) NFEAT
1000 FORMAT(" 1-Dimensional Slice Feature List"/

A There are ",13," features in the slice.",/
C " INDEX START STOP GRYL GRYR")

C
C Loop through the list.

DO 100 INDX=1,NFEAT

WRITE(12,1001) INDX, (IFEAT(INDX, I) ,I=l, 4)
1001 FORMAT(4X,I3,6X,2(I3,5X),2(I2,5X))

100 CONTINUE

RETURN
END

I

4.
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C
SUBROUJTINE PRBM (IBMAP)

C
C Prints out a single bit mnp.

.2 C

DIMENSION IBMAP(16),ICJT(16)

-~ IASK=1

WRITE(12,1001)
1001 FORMvAT(//," Bit map.")

103 WRITE(12,1003)
1003 1URAT(X," ................. 1

DO) 200 IYBI=1,16
DO 100 IXBI=1,16
IOUT(IXBI)=" 1
IF (IBMAP(IXBI) .AND. IMASK) IOUT(IXBI)="**"

100 QJNTINUE
WR.ITE(12,l000) IYBI,(IourT(I),I=1,16)

1000 FORMAT(" ",13,11 ."1,16A1,".")
* IMASK=ISH-FT( IMASK, 1)

7- 200 0ONTrINUE
WRITE(12,1003)
WRITE( 12,1002)

1002 FoRmA(," 11

RETURN
END

-F-3



C
C ESTAR.FR
C
C This is the BCLIPSE main program to run the analysis on
C epipolar lines, and get 3-D positions of the features in the
C line.
C
C Written 30 July 1985
C by James R. Holten III
C
C VARIABLES USED:
C IDEBF Debug flags, each bit is a flag.
C 1 print feature lists.
C 2 print blob characterizations.
C 3 print match lists.
C 4 print position lists.
C 5 print bit maps of blobs.

, . C
%i C CALLED ROUTINES:

C ICLN Locates the regions along a single epipolar
' C line.

C

COMMON /CALIB/ DSEP, DVIRT
COMMON /POSIT/ NP,POS
COMMON /DEBUG/ IDEBF
COMMON /FBUFF/ IFBI,IFB2
COMMON /BLOBS/ NBI,IBLBI,NB2,IBLB2
COMMON /MATCH/ N1ATCH, IMATCH
DIMENSION NMATCH(i00),IMATCH(i00,I0,4)
DIMENSION POS(640)
DIMENSION IFBI(256),IFB2(256),IFEATI(50,4),IFEAT2(50,4)
DIMENSION Ij3LBI(17,l00),IBLB2(17,l00)

,,, , ]UIVALENCE (IFBI(8),NFEATI), (IFBI(II),IFEATI(I,I))

EQUIVALENCE (IFB2(8),NFEAT2),(IFB2(lI),IFEAT2(l,l))

TYPE
TYPE "ROBOT VISION SYSTEM"

* TYPE
'TYPE " By James R. Holten III"
TYPE
ACCEPT " Camera seperation = ",DSEP
ACCEPT " Virtual image distance = ",DVIRT

- IDEBF=0
'TYPE
'YPE "The debugger options are:"
TYPE " 1-Print feature lists."
TYPE " 2-Print blob characterizations."

4 TYPE " 4-Print match lists."
* "TYPE " 8-Print position lists."

TYPE " 16--Print bit maps."
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TYPE " 32-Print canpared bit maps."
TYPE
TYPE " Add together the options desired."
TYPE
ACCEPT " Desired debug flags (0 for none) = ",IDEBF

100 CONTINUE
TYPE
?CCEPT " Which horizontal line? (0 to 119) IY=",IYLOC
IF ((IYLOC .LT. 0) .OR. (119 .LT. IYLOC)) GOTO 200
CALL WCLN (IYLOC)
GOTO 100

200 CONTINUE

STOP

END
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C
SUBROUTINE CLN (IYCX2, IL13)

C
C Processes single epipolar line fran the images, and
C generates a camera-relative model.

-C
C by James R. Holten III, 19 Oct 1985
C
C ON ENTRY:
C IYLOC The Y-index location for the slices across
C the images.
C
C ON EXIT:
C All results are passed in the conmn areas.
C
C ROUTINES USED:
C CFEAT Gets the feature lists for the epipolar line.
C NBLOB Characterizes a single blob
C MASL Matches the features
C ICSL Locates the positions of the feature edges.

* C PNPL Passes the camera-relative positions on for
C display or use.
C

COMMON /DEBUG/ IDEBF
OMMON /POSIT/ NP,POS
COMMON /FBUFF/ IFBl,IFB2
OMMON /BLOBS/ NBI,IBLBI,NB2,IBLB2
OOMMON /MATCH/ NMATCH, IMATCH
DIMENSION IFBI(256),IFB2(256),IFEATI(50,4),IFEAT2(50,4)
DIMENSION IBLBI (17,i00),IBLB2(17,100)
DIMENSION NMATCH(100),IMATCH(100,10,4),POS(640)

.A ~BUIVALENCE (IFBI (8) ,NFEATI), (IFBI (ii),IFEATI (i,i) )
BJUIVALEE (IFB2(8),NFEAT2),(IFB2(ii),IFEAT2(l,i))

C
C Clearing the files.

CALL DELETE( "JHDATA: SLICE. FR")
* • CALL DELETE( "JHDATA:WHMAP.DT")
i CALL DELETE( "JHDATA:BILXX.DT")

C
C Get the features for the epipolar slices.

'TYPE " Getting slices from IY = ",IYLOC
CALL CFEAT(IYLOC)

.II IF ((IDEBF .AND. 1) .EQ. 0) GOTO 110
CALL PIQVFL (NFEATI, IFEATI)

110"CALL PRQVFL(NFEAT2,IFEAT2)
11i0 CONTINUE
C
C Set all the blob flags to "no bit map saved".

DO 120 INDX=I,100
C
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C First location is the flag, 0 for no map, 1 for yes.
I-BLB1(1,INDX)=0
IBLB2(l,INDX)=0

120 CONT'INUE

C
C Attempt to match the features and their blcbs.

TIYPE " Matching feature lists. Nl = ",NFEATl," N2 =",NFEAT2
CALL MASL (IYLOX, NFEAT1, IFEAT1l,NFEAT2, IFEAT2, IBLBl, IBLB2,

A WATCH, IMA B2H)
IF ((DEBF .AND. 2) BQX. 0) GOTO 230
DO) 210 ILC-l,NFEAT1
WRITE(12,1000) ILC

1000 FORM4AT(" MAP #",13)
IF (IBLBl(l,ILOC) EQX. 1) CALL PRBM(I.BLBl(2,ILOC))
IF (IBLBl(l,ILOC) .NE. 1) WRITE(12,100l)

1001 FORMAT(" There is no map stored.")
WRITE(12,1002)
IF (IBLBl(l,ILC+50) .E)Q. 1) CALL PRBM(IBLBl(2,ILOC+50))
IF (IBLBl(l,ILOC+50) .NE. 1) WRITE(12,l00i)

* 210 CONTPINUE
DO 220 ILOC--l,NFEAT2
WRITE(12,l000) ILOC

* IF (IBLB2(l,ILOC) BQY. 1) CALL PRBM(IBLB2(2,ILOCx))
IF (IBLB2(l,ILOC) .NE. 1) WRITE(12,l00l)
WRITE(12,1002)

1002 FDRMAT( 1")
IF (IBLB 2(l,ILOC+50) .EQ. 1) CALL PRBM(IBLB2(2,ILOC+50))
IF (IBLB2(l,IOC+50) .NE. 1) WRITE(12,100l)

220 ONINLE
230 CX)NTINUIE

IF (IDEBF .AND. 4) CALL R4AL (NFEAT , NMACH ,IMA'ICH)

C
C Locate them in 3-D relative to the came~ra coordinates.

TIYPE " Canputing locations."
CALL LCSL (IYLCX, NFEAT1, NMAICH, IMAWCH, P05)
NP-NFEATl
IF (IDEBF .ANND. 8) CALL PRFPOS(NP,POS)

C
C Pass the descriptions out to a file for further processing.

TIYPE " Storing positions."
* CALL PNPL(IER)

REITURN
END
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C
SUBROTINE CFEAT(IYLOC)

C
C Requests and receives fature lists for epipolar slices

.. C fram the NOVA.
C
C by James R. Holten III, 19 Oct 1985
C
C ON ENTRY:

. C IYLOC The y-location for the two slices.

C
C ON EXIT:
C All values are passed in the camon area.
C
C ROUTINES USED:
C CNOVA Sends the command file to the NOVA.
-C NWAIT Waits until the file is present.
C RENAM, OPEN, RDBLK, CLOSE, DELETE System I/O.
C

cXv4cMON /FBUFF/ IFBI,IFB2
* DIMENSION IFB1(256),IFB2(256)

DIMENSION INOVAC(6)

C
C Put out the image 1 slice command.

INOVAC(1)=2
INOVAC(2)=i
INOVAC(3)=0

."'"INOVAC(4)=IYLOC

-"OVAC (5)=128
INOVAC(6)=O
CALL DELETE( "JHDATA: SLICE. DT" )
CALL CNOVA ( INOVAC)

."
V. C

C Put out the image 2 slice comnand.
INOVAC(2)=2
CALL CNOVA (INOVAC)

C
C Wait for the first results, then input the features.

CALL NWAIT( "JHDATA: SLICE. Dr ",l)
CALL RENAM( "JHDATA: SLICE. DT ","JHDATA: SL. Dr ",IER)
CALL OPEN(l,"JHDATA:SL.Dr ",l,IER)
CALL RDBLK(i,i,IFBI,i,IER)
CALL CLOSE(1,IER)

".'- . CALL DELETE( "JHDATA:SL. DT ")

C

C Wait for the second, then input it.
CALL NWAIT("JHDATA: SLICE. DT ",l)
CALL OPEN(l,"JHDATA:SLICE.DT ",l,IER)
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CALL RDBLK(1,1,IFB2,1,IER)
CALL CWOSE(1,IER)
CALL DELETE ("JHDATA: SLICE.DTI~"

4 END
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C
SUBROUTINE P1QVFL (NFEAT, IFEAT)

C
C Print out the Queen Victoria algorithm feature list.

- " C

DIMENSION IFEAT(50,4)

C
C Printout the headers.

WRITE(12,1000) NFEAT
1000 FORMAT(" 1-Dimensional Slice Feature List"/

A " There are ",13," features in the slice.",/
C " INDEX START STOP GRYL GRYR")

C
C Loop through the list.

DO 100 INDX=1,NFEAT

WRITE(12,1001) INDX, (IFEAT(INDX, I) ,I=i,4)

* 1001 FORMAT(4X,I3,6X,2(I3,5X),2(I2,5X))

100 CONTINUE

RETIURN

END

4

Ve
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C
SUBROWTINE MASL (IYLOC, NFEAT1, IFEATI, NFEAT2, IFEAT2, IBLBI, IBLB2,

A NMATCH, IMATCH)
C
C Matches slice features using lists of feature match guesses.
C
C Written by James R. Holten III, 2 May 1985
C
C ON ENTRY:
C IYLOC vertical position within the two images.
C NFEAT1,NFEAT2 max feature indices for both slices.
C IFEATI,IFEAT2 feature description lists.
C IBLBI,IBLB2 lists of bit maps for the features.
C
C ON EXIT:
C NMATCH(INDX) number of possible matches in the match
C list for feature #INDX
C IMA'CH(INDXI,l) slice 2 feature which matches
C feature #INDX of slice 1.
C IMATCH(INDX, I,2) measure of match mismatch.
C IMATCH( INDX, I,3) adjusted "best" match location
C in slice 1.
C IMATCH(INDX, I,4) adjusted "best" match location
C in slice 2.
C
C

CDMON /DEBUG/ IDEBF
DIMENSION IBLBl(17,l00),IBLB2(17,100)
DIMENSION IFEATI(50,4),IFEAT2(50,4)
DIMENSION M4ATCH(100),IMATai(100,10,4)

C
C Left and right edges of each feature are matched seperately.
C The left edges are in IMATCH indices (O<INDX<50), and the
C right edges are at indices (50<INDX<I00)
C
C This is a local match table for passing the entries.

DIMENSION U[MATCH(8)

IPOSL=Il
C
C Scan features fram slice #1.

DO 999 INDX=I,NFEATI
C
C Set the index for the right edge matches.

* KNDX=INDX+50
C
C Initialize the number of left and right matches for this
C feature.

INL)KI=0
INUMR=0

C
C Get the left and right edge positions for this feature.
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ILcEL=IFEAT1 (INDX, 1)
ILOCR=-IFE.Tl(INDX, 2)

C
C Get the maximum allowved deviation for match searches.

* :9: ]LOD= ( ILcCR-ILOMI) /2

IRGDL=nOCxL
IF (INDX .Gr. 1) IRGDL=(ILOCX-IFEAT1 (INDX-l,2) )/2
IWL--IRcIDL
IF (IRGDL .Gr. ILOZD) IRGDL=ThLOCD

* IF (IRGDL .LE. 0) IRGDL=0O

IRGDR-NPixl-ILOCR+1
IF (INDX .LT. NFEP.Tl) IRGDR-( IFEATi (INDX+l ,1 )-ILOCR)/2
lIWR=IRGDR
IF (IRGDR .Gr. ILOX2) IRGDR--ILOcD
IF (IRG)R .LE. 0) IRGDR=0

C
*C Get the left and right grey levels.

IGRYL=-IFEATl (INDX, 3)

IGRYR=-IFEATl (INDX, 4)

C Scan the feature list for slice #2.
D900 JNDX=1,NFEAT2

LNDX=JNDX+50
C
C Get the left and right edge locations.

JLOML=IFEAT2 (JNDX, 1)
JLOCR=-IFE 1T2 (JNDX, 2)

C
C Get the maximum allowed deviation for the matches.

JRGLJLOCXL
IF (JNDX .Gr. 1) JRGDL=(JIJX-IFEA2(JNDX-,2))/2
JWL--JRGDL
IF (JRGDL .GT. JLOCD) JRGDL=-JLOCD
IF (JRGDL .LE. 0) JRGDL=O

JRGDR=NPIX2-JLOCXR+l
IF (JNDX .LT. NFEAT2) JRGDR=-( IFEAT2 (JNDX-I 1)-JLx2R/2
JWIRt-JRGDR
IF (JRGDR XG1. JLOCD) JRGDR=iJLAXD

* IF (JRGDR .LE. 0) JRGDR=0

C
C Get the left and right grey levels.

A6JRY;IEA2JNX3

JGRYL=-IFEAT2 (JNDX, 3)

C
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C Campare the left levels for a near match.
IF (IABS(IGRYL-JGRYL) .GT. 1) GOO 500

C
C Near match case for left edge.
C
C Get the max window size for the left edge.

IWSL=IWL
IF (IWSL .GT. JWL) IWSL=JWL

C
C Left edge match refinement.

IMAWCH (1)=JNDX
IMATCH( 2 )=9999
UIATCH(3)=ILOCr
IMA'CH ( 4)=JLO(
IMATCH (5 )=IRGL
LMATCH (6 ) =JRGDL
LMACH(7)=-l
LMATCH(8)=IYLOC

C
C Get refined position and measure of quality.

* TYPE " Canparing ",INDX," and ",JNDX
10 IF (IDEBF .AND. 32) WRITE(12,1000) INDX,JNDX
1i000 FORMAT(/," Comparing left sides of ",13," and ",13)

z ,. CALL MARF(IMACH, IBLBI(I,INDX),IBLB2(I,JNDX))

IF (IDEBF .AND. 32) WRITE(12,1001)
1001 fORMAT(//," ")

IF (UMACH(3) .LE. IMATCH(4)) GOTO 500
p.. C

C If the list is empty add it at the top.
IF (INUML .GE. 1) GOTO 100

C
C Empty until now.

INUIf4r-l
ISPT=l
GOTO 200

100 ONTINUE
C
C Compare to worst (bottam) element.

IQM=UMAaH (2)
IF (IQM .LT. IMATCH(INDX,IN.ML,2)) GCYJX 120

*- C
C Worse than or equal to bottan. If there 's room, put
C it at the bottom.

IF (INUML .GE. 10) GOTO 500
INUML-INLML+I

.. ISPT=-INML
GOTO 200
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120 CONTINUE
C
C Better than the bottom element.

INL14INUML
IF (INUML . LT. 10) INL-L=INUMJL+I

C
C Scan for the insert position.

DO 150 I=1,INL
ISPT=INUM-I+l
IF (ISF .EQ. 10) GOTO 140

C
C Move current entry down.

DO 130 LINDX=1,4
IMATCH ( INDX, ISPT+I,LINDX)=IMATCH( INDX, ISPT, LINDX)

130 CONTINUE

140 CONTINUE
V .., C

C Check the next entry position.
IF (ISPT .LT. 2) GOO 150

* IF (IQM .GE. IMATCH(INDX,ISPT-1,2)) GOTO 200
150 CONTINUE

ISPT=I

200 CONTINUE

C
C Insert at ISPT.

DO 210 LINDX=1,4
IMAICH ( INDX, ISPT, LINDX )=IMATCH ( LINDX)

210 CONTINUE

C end of left edge processing.

500 CONTINUE
IF (IABS(IGRYR-JGRYR) .GT. 1) GOTO 900

C
C Near match case for right edge.

4.

C
* C Get the max window size for the right edge.

IWSR=IWR
IF (IWSR .GT. JWR) IWSR=JWR

" C
C Right edge match refinenent.

IIAT2H (1 )=LNDX
LMA1iA(2)=9999
LMAWH( 3)=ILOCR
LMATCH (4)=JLOCR

* U .IMA H (5 )=IRGDR
.MATCH (6 )=JRGDR
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UIA-ICH(7)=+1

IMALTCH( 8)=IYLOC
C
C Get the refined position and measure of quality.

TYPE " Comparing ",KNDX," and ", LNDX
IF (IDEBF .AND. 32) WRITE(12,1002) KNDX,U'NDX

1002 FORMAT(/," Camparing right sides of ",13," and ",13)

CALL MARF(IMAT'iH,IBLBI(I,KNDX),IBLB2(1,INDX))

IF (IDEBF .AND. 32) WRITE(12,1001)

IF (UMATCH(3) .LE. LMATCH(4)) GOTO 900
, C

C If the list is empty add it at the top.
IF (INUIMR .GE. 1) GOTO 600

C
C Empty until now.

_ .j ISpr--1

* GrO 700

600 CONTINUE
C
C Compare the worst (botom) element.

IQM=IMAECH (2)
IF (IQM .LT. IMATCH(KNDX,INLJM,2)) GOTO 620

C
C Worse than or equal to bottom element.
C
C Put it at the bottom if there is room.

IF (INUMR .GE. 10) GOTO 900
INUMR=INLMR+l
ISPT=-INUMR
GOTO 700

-"- 620 CONTINUE
C

* C Better than the bottom.
INLN=INLqRAV IF (INMR .LT. 10) INUMR=INUbR+l

C
C Scan for the insert position.

DO 650 I=l,INM
ISPT=-I NU- I+l

-% . IF ISPT .BQ. 10) GOTO 640
C

C Move current entry down.
DO 630 LINDX=I,4
IMATCH(KNDX, ISPT+I,LINDX )=IMAWH(KNDX, ISPT, LINDX)

* 630 CONTINUE

-. 4'
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640 CONTINUE
C
C Check for the next entry position.

IF (ISPT .LT. 2) GOTO 650
IF (IQM .GE. IMATCH(KNDX,ISPT-1,2)) GOTO 700

650 CONTINUE
ISPT=l

700 CONTINUE
C

- C Insert at ISPT.
Do 710 LINDX=1,4
IMATCH (KNDX, ISPr, LINDX )=LMATCH( LINDX)

710 CONTINUE

C end of right edge processing.
900 CONTINUE

IF (IDEBF AND. 32) WRITE(12,2000) INDX,INLML,KNDX,INUMR
2000 FORMAT(" Match lists generated.",/," INDX=",14,

A " INUML=", 14,/," KNDX=",14," INtJ4R=",I4,/)

-A'CH ( INDX )=INML
L' 14AH(CKIDX )=INUMR

999 CONTINUE

RETURN
END

i
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C
SUBROUTINE MARF (LMATCH, IBMl,IBM2)

C
C Refines the current match guess in IMATCH and stores
C inproved locations and a measure of mismatch (quality of
C match where small values are better).
C
C
C ON ENTRY:
C IMATCH(1) The match in the opposite image.
C LMATCH(3) initial slice 1 x-location guess.
C IMATCH(4) initial slice 2 x-location guess.
C IMATCH(5) max map shift for slice 1.
C IMATCH(6) max map shift for slice 2.
C IMATCH(7) edge side flag, -l=left,+l=right
C IMATCH(8) The vertical location index.
C
C ON EXIT:
C IMATCH(2) best (smallest value) quality measure
C found in the search space around the

* C guess.
C I4ACH(3) best position in slice 1.
C MATCH(4) best position in slice 2.
C

OMMON /DEBUG/ IDEBF
DIMENSION IMATCH (8)
DIMENSION IBM1(17),IBM2(17),IBLK(32)

C
C Get the location and retrieve maps fram the NOVA if necessary.

IYLOC=IMATCH (8)
IES=1IMATCH (7)

IF (IBM1(1) .NE. 1) CALL NBLCB(I,LMATCH(3),IYLOC,IES,IBl(l))
IF (IBM2(l) .NE. 1) CALL NEaLB(2,LMATCH(4),IYLOC,IES,IBM2(l))
IF ((IDEBF .AND. 32) .EQ. 0) GOTO 70

C
C Write out compared bit maps on debug flag 32.

WRITE(12,1000)
1000 FORMAT(" Canparing bit maps.")

WRITE(12,1003)
1003 FORMAT(, 2 (4X, ".................. "))

IMASK=l
DO 40 J=l,16

" Do 20 I=1, 16
IBI M(I)=" "

IBLK(I+16)="
IF (IBM1(I+I) .AND. IMASK) IBLK(I)="**"
IF (IBM2(I+l) .AND. IMASK) IBI(I+16)="**"

20 CONTINUE
* IMASK=ISHFT( IMASK, 1)

WRITE(12,1001) (IBTK(I),I=l,32)
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1001 FORMAT(" ",2(4X, ".",16A1, ". "))
40 CONTINUE

wRITE( 12,1003)

70 CONTINUE

C Get the maximum map shift for this pair.IWST-MIN0(ImAWcH(5) 
,LMATcH(6))

C Set up to get the position with the best match of
C edge shape.

MwVAL=256
MLOC-0

c
c cycle through the allowable positions.

NIWST-1IWST
DO 200 IPOS=NIWST, 1ET
IOFF=-IABS(IPOS)
INum1I6-IOFF

* IF (IPOS .LT. 0) CALL BMP(INUM,IBM(2),IBM2(IOFF+2),NI,N2,ND)
IF (IPOS .GE. 0) CALL BMXP(INM,IBM(IOFF+2),IBM2(2),NI,N2,ND)
NToT-Nl+N2
IVAL=256
IF ((NTOT .NE. 0) .AND. (ND .LT. 128) IVAL=(ND*256)/NTOr

C
C If this is better than previous ones, then update the markers.

IF (MNVAL .LT. IVAL) GOTO 200
IF (MNVAL .NE. IVAL) GOTO 100

C
C If they are equal, then take the one closest to the center.

IF (IABS(MLO) .LE. IABS(IPOS)) GOTO 200
100 CONTINUE
C
C Update the position and best value.

MVAL=IVAL
MLOC=IPOS

200 CONTINUE
*_ IF (IDEBF .AND. 32) ITE(12,1002) MLOC,MNVAL

1002 FORMAT(/," Best match is at shift = ",12," Quality ="

A 14,//)
C
C Update the "best location" on image #2 only.

UIYATCH (4)=LMATcH (4) +MLOC
LMATCH ( 2 )=MNVAL

RETIURN
EN~D
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C
SUBROUTINE BMCP(IN.M, IBMI,IBM2,NI,N2,ND)

C
C Campares bit maps and returns the number of bits in each
C and the number of bits different between them.
c
C ON ENTRY:
C IN11M Number of words to compare.
C IBMI,IBM2 Bit maps of the blobs.
C
C ON EXIT:
C Nl,N2 The number of bits in each.
C ND The number of bits in the differences map.
C
C ROUTINES USED:
C ICBIT (A function) Counts the number of bits set in
C a single word.
C

DIMENSION IBM1(16),IBM2(16)

*• NI=0
N2=0

DO~ 100 ILOCx-1,INdI4
C

* C This inplements an XOR.
IWD1=IBMI (I[,OC)
WD 2=IBM2 (LOC)
IAND=IWDI .AND. IWD2
IOR=IWDI .OR. IWD2
IXOR=(.NOT. IAND) .AND. IOR

C
C Now count the number of bits set in each, updating totals.

Nl=N+ICBIT( IWDl)
N2=N2+ICBIT(IWD2)
ND=ND+ICBIT(MIXOR)

100 CONTINUE

RE'URN
END

'-5
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C
FUNCTION ICBIT(IWORD)

C
C Counts the bits set to 1 in IWORD.
C

A. C ON ENTRY:
C IWORD The word of bits to count.
C
C ON EXIT:
C The arguerent is passed as the function value.
C

IMASK=I
_- ICNT--O

DO 100 I=1,16
IF (IMASK .AND. IWORD) ICNT=ICNT+I

100 IMASK=ISHFT ( IMASK, 1)
100 CONTINUE

ICBIT=ICNT
RETURN

EN
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C
SUIBROUITINE PMAL (NFEAT, NMATfi, IMM-CH)

C
C Prints out the match lists for right and left edges of

C each feature.
DIMENSION bN4A'CH(00),IMATCH(l00,l0,4)

WR~ITE(l2,l000) NFEAT
1000 FORMAT("11 Feature matches, left and right edges. "

A "Numrber of features=1 ,13)
WRITE(12,l001)

1001 FORMAT("IC ",, INDX",/," # OF",I," FEATIS ID "

A of 1 2 3 4 5 6 7 8 9 1011,/)

DO 100 INDX=1 ,NFEAT
* KNDX=INDX+50

WRITE( 12,1020)
Nlr1-NATXH ( INDX)

* IF (NEJLT. 1) GOT120

WRITE(12,l0l0) INDX, (IMAWCH(INDX,I,l),I=l,NL)

WRITE(12,1012) NL (MAWH(INDX,I,3),I=l,NL)
WRITE(12,1012) N,(IMATCH(RMD,I,4),I=l,NL)

xWrO 40

20 CONTINUE
IIRITE(12,2010) INDX
WRITE(12,2011)
WITE(12,2012) NL
WRITE( 12,2013)

40 ONTINUE

WRITE(12,1021)
NR--NATCH (KNDX)

IF (NR .LT. 1) GO'IO 70

WRITE(12,1010) KNDX, (IMA'CH(KNDX,I,l),I=l,NR)
WRITE(12,1011) (IMA'CH(KNDX,I,2),I=l,NR)
wRITE,(12,1012) NR, (IMA CH(KNDX,I,3),I=l,NR)
wRITE(12,1013) (IMATCF(KNDX,I,4),I=l,NR)
GOTIO 90

70 ONTINUE
WRITE(12,2010) KNDX
WRITE(12,2011)
WRITE(12,2012) NR
WRITE(12,2013)
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90 CONTINUE
1010 FORMAT(" ",13," INDX ",10(1X,13,1X))
1011 FOMAT(" QUAL ", 10 (X, 13,1X)
1012 FORMAT(" ",13," LOCI ",10(1X, 13,1X))
1013 BORMAT(" LOC2 ", 10 (1X, 13,1X))

1020 FDRMAT(- -----

1021 BORMAT(" ")

2010 FORMAT(" "l,13,"l INDX -- *** NO MATCHES ****")
2011 FDRMAT(" QUAL -- ")

2012 FORMAT(" ",13," W C1 --- ")

2013 BORMAT( " LOC2 --- " )

100 CONTINUE
WRITE(12,1020)
RETURN
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C
SUJBROUJTINE PRBM (IBMAP)

c
C Prints out a single bit mp.

V C
DIMENSION IBMAP(16),IOUT(16)

IMASK=l
WRITE(12,1001)

-- 1001 FORMAT(//," Bit map.")
WRITE(12,1003)

1003 FO1R4AT6, " ................

Do 200 IYBI=1,16
DO~ 100 IXBI=1,16
IOWMTIXBI)=""
IF (IBMAP(IXBI) .AND. IMASK) IOUT(IXBI)=0"**Il

100 ONTINUE
WRITE(12,1000) IYBI,(IOUT(I),I=1,16)

.,1000 FORMAT("1 ",13," ."1,16A1.11)
* IMASK=ISHET( IMASK, 1)

200 CONT~INUE
WRITE(12,1003)
WRITE(12,1002)

1002 EoRmAT(/,")

RErfURN
END
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C
SUBROUTINE LCSL ( IYLOC, NFEATI, NMATCH, IMATCH, POS)

C
C Generates a list of camera relative coordinates for the
C matched blobs in the match list. Uses only the best match in
C each list in IMATCH.
c
C by James R. Holten III, 21 Oct 1985

C
C ON ENTRY:
C IYLOC Vertical position index for the slice.
C NFEAT1 Number of features in the reference slicc.

-,C NWATCH Array inluding the length of each list.
C IMATCH Array of lists of potential matches.
C for each match
C 1--index of potential match
C 2-measure of "goodness" of match
C 3-position of match in refimage.
C 4-position of match in other image.
C

* C ON EXIT:
C POS Array of positions, for each
C 1--range
C 2--horixontal offset to right
C 3-vertical offset down
C 4-range error estimate
C 5-horizontal error estimate
C 6-vertical error estimate
C (see dissertation App A for errors)
C

COMMON /CALIB/ DSEP, DVIRT
COX (MMON /BLOBS/ NBI,IBLBI,NB2,IBLB2
DIMENSION IBLB(17,i00),IBLB2(17,i00)
DIMENSION NMATIXH(00),IMA'ICH(100,l0,4),POS(6,l00)

C
" C Campute a constant.

SDCONS=DSEP*DVIRT
DVI=I. 0/DVIRT
DDLIYLOD-60
ELIAX=0.5
ERMAX=0.5

4.-~ EDISP-EMAX+EF"A
EDMAX=-.5

C
C Cycle through the teatures in the reference blob list.

DO 100 INDX=I,NFEATI
JNDX=INDX+50

C

F -
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C First match the left edges.
POS(1,INDX)=-l
IF (NMA ECH(INU') .LE. 0) GOIO 15

C
C Get the best match from the match list.

* DO 10 J=1,NK1
* DL1=IMA'ICH(INDX,J,3)-60

DRl=IMAIi( INDX, J, 4)-60
C
C Get the range.

DISPP1D-DR1
IF (DISPi .LT. 1) GOTO 5

* IF (EDISP .GE. DISPl) XYIO 5
DPl=IY2ONS/DISP1
POS(1,INDX)=DP1

C x-offset
DX1=DL1*DP1*DVI
POS(2,INDX)=DX1

C y-offset
* DY1lW)*DP1*II

POS( 3,INDX)=DY1
C
C Get the range error.

DENOM4DISP1*DISPl-DISP1*EDISP
EWMA=IX2NS*EDISP/DENCM
PUS( 4,INDX)=EPMAX

C x-offset error.
EXMMX (ABS (DL1 ) *EPAX+DP1 *ELA+PMAX*ELMAX) *DI
POS(5,INDX)=EXMAX

C y-offset error.
EMM= (ABS (DD) *a*M+Dpl*E1 C+4AX*E)4AX) *DWI
POS(6, INDX )=EYMAX

5 CONTINUE
IF (POS(l,INDX) .Gr. 1.0) G(YIO 15

10 CONTINUE
15 CONTfINUE
C

* C Nowi get the right edges of the regions.
POS(1,JNDX)=-
IF (NMA ICH(JNDX) .LE. 0) GOIO 35

C
CCanpute the locations for the best match.

N~M2=MACH (JNDX)

DXO 30 J=1,NM2
DL2=JNAWH(JNDX,J, 3)-60
DR2=IMAWCH(JNDX,J, 4)-60

C
C The range.

DISP2=DL2-DR2
* IF (DISP2 .LT. 1) G(YIO 25
% IF (EDISP .GE. DISP2) GCYIO 25

4.
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DP2=DCONS/DISP2
POS(1,JNDX)=DP2

c x-offset
DX2=DL2 *DP2 *DVI
POS(2,JNDX)=DX2

VC y-offset
DY2=DD*DP2 *D1JI
POS( 3,JNDX)=DY2

C
C Get the range error.

DENOM4=DISP2 *DISP2-DISP2 *ED[5P
- E[+MXDCONS*EDISP/DENaf4

PC)S( 4,JNDX)=EP4AX
C x-offset error.

E)MAX= (ABS (DL2 ) *EPaJV+DP2 *ELA N *ELMA)() *DXJI
* ROS(5,JNDX)=EKMAK

C y-offset error.
EYMAX= (ABS (DD) *EWJM+DP2 *E 4M+EMM*E]AJ) *L)VI
POS (6 ,JNDX )=EYMAX

25 CONTINUE
* IF (POS(1,JNDX) .GT. 1.0) G(YIO 35

30 ONtTINUE

35 ONINUE

100 COlNTINUE

RETURN
END
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C
SUBROUTINE PRFPOS (NP, POS)

C
C Prints out the list of feature positions.
C

COMMON /CALIB/ DSEP,DVIRT
DIMENSION POS(6,100)

WRITE(12,1000) NP,DvIRr,DSEP
1000 FoRMAT("l Feature 3-D positions. NP=",13," dv=",F6.2,

A " ds=",F6.3,/,
B "INDX dp dx dy ep",

C " ex ey")

WRITE(12, 1004)
DO 200 INDX=I,NP

C
C i<epeat for right and left edges.

DO 150 J=l,2
JNDX= (J-i) *50+INDX
IF (POS(l,JNDX) .GT. 0) GOIO 100
WRITE(12,i001) JNDX

1001 FORMAT(" ",13,10X,"No data point.")
GOTO 150

100 CONTINUE
WRITE(12,1002) JNDX, (POS(I,JNDX),I=1,6)

1002 FORMAT(" ",13,5X,6(F7.3,3X))
150 CONTINUE

WRITE(12,1004)
1004 FORMAT(" ----------------------------------------- ")
200 CONTINUE

WRITE(12,1003)
1003 FORMAr(//, " "

RETURN
END
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c
SUBROUTINE PNPL(IER)

i c
C Saves the position list out on disk for later use or

C display.

COlMMON /POSIT/ NP,POS

DIMENSION P05(640)

C Write it out to a file.
CALL DELETE( "JHDATA:POSIT.DT")
CALL OPEN(l,"JHDATA:EDAT.DT",3,IFR)
CALL WRBLK(1,0,NP,5,IER)
CALL CLOSE(I,IER)
CALL RENAM ( "JHDATA: EDAT. DT", "JHDATA: POSIT. DT", IER)

REt URN
END

0

0

- F-59

0)?



Vita

James R. Holten III was born on 18 April, 1949, in Paso

Robles, California, to Mr. and Mrs. James R. Holten jr. He

graduated from Illinois Valley High School, Cave Junction,

Oregon, in 1967. In 1973 he graduated from Oregon State

University with a Bachelor of Science in Mathematics and a

Bachelor of Science in Computer Science. After graduation

he enlisted in the Air Force, and in 1975 was admitted into

Officer Training School. After commissioning on 16 July,

1975, he spent six years as a Missle Warning Programming

Officer on phased array warning sites at Eglin Air Force

Base, Florida; Otis Air Force Base, Massachusetts; and Beale

Air Force Base, California. During this time he maintained

computer programs for communications, radar function

control, real time operating systems, and automated fault

detection and isolation. In 1980 he entered the Air Force

Institute of Technology, graduating in December 1982 with a

Master of Science in Computer Systems. He is married to the

* "former Raymona A. Clinkingbeard of Ft. Walton Beach,

Florida, and they have six children, Erin, Donald, James,

Aghavni, Arlene, and Roger.

A Permanent Address: 5839 Westside Rd.

Cave Junction, Oregon 97523

V-1

4



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

As. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2.L SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

2b. OECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/DS/ENG/85D-1

6& NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology,

Wright-Patterson AFB, OH, 45433
S. NAME OF FUNDING/SPONSORING 18b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

0 PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Clasification)

A ROBOT VISION SYSTEM (Unclassified -

12. PERSONAL AUTHOR(S)

James R. Holten III
*' 13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

PhD Dissertation FROM TO Dec.

16. SUPPLEMENTARY 
NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. Computer Vision, Stereo Robot Vision,

..- 17 1 08 1
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Short Abstract--- Chairman: Dr. Matthew Kabrisky

Robot vision algorithms are discussed, including camera characterization

image feature extraction, image feature registration, and feature 3-space
location estimation. Some aspects of stereo camera vision allow simplifica-

tions, but accuracy can be a problem at a distance. An alternative tech-

nique is suggested for further study.

JAW Ail- .
V-'.'- LM E. V/OLAVER

Dean for Reseatn Vmd F'-iessou-d DSv"IoPlOs

Our Fares ntLittdO t -'L."'i9 pq
WZ)S~patsasa MO (A 454i&

20. OISTRI BUTION/AVAILABILITY OF AbSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEDIUNLIMITED T. SAME AS RPT. 0DTIC USERS Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
Dr. Matthew Kabrisky, Professor (5qdfeted2 76 AFIT/ENG

DO FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. Tnsl ri f'j,.r,.
0 % 4 SECURITY CLASSIFICATION OF THIS PAGE

%t, I j - , . - . ' r/ ?, -" . '" . .- .- . - .- .. '- , , .- . . . , . . ' .".. ,. " I I I ',- %" - " ", " .' " ' ". % , % "" W% N" '



wsnp ~, .r~.tc&.r.Jnrr.. .CZW . r. I 4 C .~'C4.1S C~ .MV ~ t... ~.. W,.~.j *L-~J ~ Jc~!1A wr~ '"..r

N _______________
.'

'S.,

S.

*5~

.5'

.5

5?

0

5'

FILM F
.5

4

I.

U
t5

lYrIC
S

"- .e-


