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ABSTRACT

An empirical orthogonal function (EOF) analysis is used

to represent environmental wind fields associated with

selected western North Pacific tropical cyclones from

1979-1983. Composite synoptic patterns within five past-

motion categories of cyclones are studied using 5, 10, 20

and 35 EOF modes. Significant differences in the composite

fields are found between categories, which suggests that the

wind EOFs are capable of representing synoptic patterns

associated with tropical cyclone motion. Regression equa-

tions are developed to post-process the forecast track of

the One-way Tropical Cyclone Model (OTCM). The predictors

for the regression analysis include the EOF coefficients,

past motion, storm position, date, intensity, backward

extrapolation and forward track displacements. For the

dependent sample, the mean 72-h track forecast error for the

modified OTCM is 383 km, which represents a 210 km improve-

ment relative to the unmodified OTCM. Thus, the regression

scheme has great potential for operational application.
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I. INTRODUCTION

A. BACKGROUND

One of the most difficult problems in tropical

meteorology is to forecast the movement of tropical

cyclones. Although operational tropical cyclone track

forecasting remains rather subjective, a number of objective

forecast aids provide guidance as to the future storm track.

No one forecast aid has yet provided consistent guidance in

the wide variety of observed weather situations. Each aid

has strengths and weaknesses. Better tropical cyclone

forecasts hinge on a better utilization of existing forecast

aids (Neumann and Pelissier, 1981; Tsui, 1984).

* In this study, synoptic information is used to develop a

statistical-synoptic forecast technique which will be used

to modify an existing forecast aid used by the Joint Typhoon

Warning Center (JTWC) in Guam. The modification scheme (see

Chapter 4) should enable the JTWC forecaster to better

utilize the existing aid. It is appropriate to give a brief

overview of the forecast aids that use synoptic information

to make cyclone track forecasts. The original

statistical-synoptic techniques (e.g., Riehl et al., 1956)

used latitudinal and longitudinal differences of

geopotential values to estimate the steering components of

the storm. Two examples in use today by the National

Hurricane Center (NHC) are the NHC67 and NHC72 models.

These models use the current and 24-h old 1000, 700 and 500

mb geopotential height data to modify a preliminary forecast

based on climatology and presistence (Neumann and Pelissier,

1981). In these models, the most significant geopotential

"'A heights, which are positioned across the storm, act as

steering predictors.

Statistical-synoptic techniques typically use a grid

that is relocated each forecast period so that the storm is
I. P-.

7

16



always at the same gridpoint. Synoptic data, such as

geopotential height values, are subjectively or objectively

interpolated onto the grid. The gridpoint values are then

used to develop regression equations to predict zonal and

meridional displacements of the storm. The regression

ai.alysis typically chooses only a few key gridpoint values.

Therefore, this approach incorporates only a small portion

of the original synoptic field.

The synoptic-scale data used in statistical-synoptic

models have not been limited only to analyses at the

forecast time. The NHC73 model uses numerically predicted
values (from a global model) as potential predictors

(Neumann and Lawrence, 1975). The NHC73 model has proven to

be one of the most consistent methods in the Atlantic region

(Neumann and Pelissier, 1981).

Synoptic-scale information is also used in some

analogue-type prediction schemes. Analogue techniques are

based on the assumption that a tropical cyclone will move

similar to previous storms that occurred within some spatial

region and temporal interval of the current storm. A

computer algorithm searches numerous cases until a family of

storms is found with the same general characteristics as the

current storm. The storm is then forecast to move along the

weighted mean track of the family of storms. An example of

an analogue routine that uses synoptic information was

described by Jarrell and Somervell (1970). They included

the location of the subtropical ridge and midlatitude trough

in their routine. A weakness in these analogue techniques

is the failure to give a forecast under anomalous

conditions.

In all of the statistical techniques discussed above,

the synoptic field has been represented by gridpoint values.

Only selected points from the field, or a characterization

of the field such as the latitude of the trough line, have

V8

.-



been used. Adjacent gridpoints in the field may be highly

correlated, and thus not provide independent information.

An alternate approach to a gridpoint representation of a

synoptic field has been described by Shaffer (1982). He

used empirical orthogonal function (EOF) analysis to

represent the 500 mb geopotential height fields on a grid

centered on the tropical cyclone. Shaffer and Elsberry

(1982) demonstrated that the coefficients from the EOF

analysis could be used as synoptic forcing predictors in a

statistical-synoptic track prediction scheme.

In a similar study, Wilson (1984) used EOF analysis to

represent the 700, 400 and 250 mb wind component fields on a

grid centered on the tropical cyclone. Wind fields may have

greater utility than geopotential height fields in the

tropics because the geopotential height gradients are weak

and the flow is far from geostrophic. This is especially

'* true for smaller scale motions such as tropical cyclones.

Wilson demonstrated that the coefficients from the wind EOF

-analysis could be used as synoptic forcing predictors in a

statistical track prediction scheme.

The numerical model is another type of track forecast

scheme that uses synoptic information. One of the first

numerical models was the SANBAR barotropic model, which was

based on the assumption that momentum advection is the

primary physical mechanism for motion of intense tropical

* cyclones (Sanders and Burpee, 1968). This simple

single-level model steers the storm based on the

large-scale, vertically-integrated current in which it is

embedded.

Recently, several meteorological agencies have

successfully applied fine-resolution or nested numerical

models to the problem of predicting tropical cyclone

movement. The National Meteorological Center (NMC) uses a

Moveable Fine Mesh (MFM) model. The fine mesh grid is

9
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relocated relative to the storm center during a forecast.

The MFM has 10 vertical layers and includes physical

processes similar to the primitive equation models used in

mid-latitudes. The U. S. Navy's Fleet Numerical

Oceanography Center (FNOC) has two numerical models for

predicting tropical cyclone movement. The One-way Tropical

Cyclone Model (OTCM) is discussed in detail in Chapter 4.

Although the OTCM is a three-layer, primitive equation model

(Hodur and Burk, 1978), it has proven to be one of the best

forecast aids used by the JTWC (Tsui, 1984; Peak and

Elsberry, 1986). The other dynamical tropical cyclone model

used by the Navy is the two-way interactive Nested Tropical

Cyclone Model (NTCM). The model uses a fine resolution grid

(41 km) near the tropical cyclone and a coarse grid (205 km)

away from the cyclone. The initial results of the NTCM were

described by Harrison (1981).

Numerical weather prediction in the tropics has not been

as successful as mid-latitude numerical prediction for a

number of reasons. Tropical regions have very poor data

coverage compared to the mid-latitude regions. This results"

in a poorly defined initial field for the tropical model.

Another problem is that the physical processes involved in

tropical circulations are not fully understood.

In ;ummary, several forecast schemes use synoptic

information to forecast the movement of tropical cyclones.

These forecast models range from statistical to numerically

based schemes. The major weakness of statistical schemes is

_ forecasting for anomalous conditions, while dynamical

forecasting tends to exhibit systematic errors. Since the
systematic errors are repetitive, a statistical

* post-processing scheme (see Chapter 4) may be used to reduce

these errors.

100.



B. OBJECTIVES

The current tropical cyclone forecast requirements for

JTWC are summarized by Sandgathe (1985). Accurate 48-hour

forecasts are normally required for air and naval base

evacuation and preparation. Accurate 72-hour forecasts are

required for ship routing and major operational exercises.

Better accuracy in the forecasts is desirable to avoid

costly multiple evacuations of aicraft or overloading of

strategic bases. Guided by the current requirements at

JTWC, this study will concentrate on improving the accuracy

of forecasting the cyclone position at the 72-h interval.

One of the primary forecast aids at JTWC is the One-way

Tropical Cyclone Model (OTCM). A method that can help the

JTWC forecaster better utilize the OTCM would be beneficial.

*e Therefore, a goal of this study is develop a modification

scheme for the OTCM. Any improvement in the OTCM forecasts

*-.. should be beneficial, since it has proven to be one of the

best forecast aids used by JTWC (Tsui, 1984; Peak and

Elsberry, 1986).

The same data set used by Wilson (1984) is used in this

study. It consists of EOF coefficients based on synoptic

wind information, along with the appropriate tropical

cyclone information. A detailed description of the data set

is found in Chapter 2. The first step in this research is

to demonstrate that the wind-based EOF coefficients can be

used to define synoptic effects acting on tropical cyclones.

One advantage of EOF analysis (see Chapter 2) is a

considerable reduction in the storage required to represent

S,' the synoptic forcing, as the entire wind field surrounding

the tropical cyclone can be defined by a small set of EOF

coefficients. A compositing technique using the EOFs to

define the synoptic forcing of the tropical cyclone track is

presented in Chapter 3. The second step in this study is to

utilize the synoptic description in terms of the wind EOFs

r%
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to adjust the OTCM (see Chapter 4). A successful

post-processing scheme should provide the JTWC forecaster

with guidance as to when and how the OTCM forecast should be

modified. Finally, Chapter 5 addresses the implementation

of the OTCM post-processing technique and suggests future

research related to this study.

To summarize, there are two objectives for this study.

First, demonstrate that the EOF coefficients can be used to

differentiate between synoptic situations affecting tropical

cyclone motion. The second objective is to derive a

statistical post-processing scheme for modifying the OTCM.

12
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II. DATA AND METHODS OF STUDY

A. DATA ACQUISITION AND FIELD DEFINITION

This study employs the same data set used by Wilson

(1984). Western North Pacific tropical cyclone information

from 1979-1983 is obtained from the annual tropical cyclone

reports published by the Joint Typhoon Warning Center (JTWC)

in Guam. The data set includes warning and best-track

positions at six-hour intervals, as well as the estimated

intensity of the storm (maximum sustained winds).

'1 The U. S. Navy's Fleet Numerical Oceanography Center

provided operational wind fields from the Global Band

Analyses (GBA). The GBA wind fields are produced every 12 h

on a Mercator projection true at 22.5 0 N. The grid

resolution is 2.50 longitude by approximately 2.50 latitude.

The GBA provide complete longitudinal coverage between 410S

and 59.8 0 N. When a tropical cyclone is present, eight bogus

winds at the surface are inserted at 80 km from the center

of the cyclone, and vertical coupling is achieved via the

,. thermal wind relation using temperature analyses at

intermediate levels. Upper-air observations include

rawinsondes, pibals, aircraft and cloud motion vectors. In

regions with no observations, the analysis will be a blend

of the 12 h old analysis and 5% climatology. The interested

reader can refer to the U.S. Naval Weather Service (1975)

for a detailed description of the GBA. The GBA fields are

available for the zonal and meridional wind components at 00

and 12 GMT since 1975. For this study, only data between

1979-1983 at 700, 400 and 250 mb are used.

Several criteria are imposed in selecting a storm for

inclusion in the data set. A tropical cyclone must have

matured to at least tropical storm intensity (maximum

sustained winds of 18 m/s or greater) and must have been

13
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Fig. 2.1. The relocatable 527-point grid with a fixed zonal
and meridional separation of 277.8 km. The vortex center(0,0) is located at gridpoint (16,9) from the lower left
corner, and is indicated by the large dot.

west of the dateline. The GBA must have been available for

the zonal and meridional wind components at 700, 400 and 250
mb. Finally, the JTWC warning position at 00 or 12 GMT
must have been at a latitude south of 34.6'N. This latter

restriction is necessary to ensure that the GBA winds are
available for a sufficient latitudinal extent north of the
cyclone center. A total of 1357 cases meet these criteria.

The grid in this study is the same as Wilson's (1984)

relocatable grid (Fig. 2.1). It consists of 527 dat , points

with a fixed zonal and meridional separation of 277.8 km
(150 n.mi.). There are 31 zonal and 17 meridionai

gridpoints. For each case, the grid is pusitioned so that

14
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the tropical cyclone center is always located at the grid

point (16,9). The warning position from JTWC is used to

indicate the center of the tropical cyclone. For each case

that meets the above criteria, the zonal and meridional wind

components at 700, 400 and 250 mb are interpolated onto this

equidistant grid from the GBA using a bilinear interpolation

method (Wilson, 1984).

Recently, statistical studies on tropical cyclone motion

have shown an improvement in 24-h forecast errors using a

grid system oriented with respect to the initial storm

heading (Shapiro and Neumann, 1984). However, the

advantages for such a grid system are substantially

diminished at the 48 to 72-h forecast times. For this

reason, this study uses a geographically-oriented grid.

* However, five past-motion categories will be used to group

similar storm tracks based on the prior 12-h motion.

B. THE EOF METHOD

The method of principal component or empirical

orthogonal function (EOF) analysis was first applied to

atmospheric sciences by Lorenz (1956). In the past, the EOF

analysis has been used as a map typing tool or as a
technique for reducing the dimensionality and explaining the

variance structure of a field (Wilson, 1984). For example,
Stidd (1967) used EOF analysis to describe the variation in

average monthly rainfall in Nevada. Brown (1981) divided a
large sample into smaller discrete subsets by map typing

based on the coefficients derived from the EOF analysis.

Other examples include studies by Kutzbach (1967), Hardy and

Walton (1978), Legler (1983) and many others.
A one-dimensional data field can be generally

or represented by simple orthogonal functions such as sines and

cosines. Similarly, the eigenvectors derived from EOF

analysis can be used to reconstruct a two-dimensional data

-.*"field. A major advantage in the EOF analysis is that the

15



eigenvectors are ranked in decreasing order according to the

percent of the variance accounted for (Morrison, 1967). For

example, the first eigenvector explains the largest variance

in the field. The variance unexplained by the first

eigenvector would be the residual. The second eigenvector

would then explain the maximum variation remaining in the

residual field and so on. Since the first few eigenvectors

describe a large portion of the total variance in a sample,

one may approximate the total field by retaining only these

few eigenvectors. As a result, the dimensionality of the

data set can be reduced considerably, which makes the EOF

method a cost-effective means of representing large data

sets.

The procedures for the EOF analysis used in this study

follow the treatment outlined by Wilson (1984). A scalar

EOF analysis is performed using the zonal (u) and meridional

(v) components at 700, 400 250 mb and a sample size of 682

cases. From the 1357 cases that meet the desired criteria,

* alternate cases within a storm are chosen to make up the 682

cases. At each pressure level and for each wind component,

a 527 X 682 matrix A is formed such that the interpolated

wind field for a case would appear as a column. The A

matrix is normalized by subtracting the sample mean at each

gridpoint, and then dividing by the sample standard

deviation at that grid point. The normalized matrix Z is

then defined with elements z(ij) given by

z(ij) =(a(ij)-b(i))/s(i), (2.1)

where a(ij) are the elements in matrix A and b(i) and s(i)

are the mean and standard deviation of the elements in row i

of matrix A. In other words, b(i) and s(i) are the mean and

standard deviation of the wind component for all the cases

at a particular gridpoint i. The normalization of the wind

16



components in this way ensures that the extratropical

regions of the grid, where the variability is generally

large, will not dominate the less variable tropical regions

in the EOF analysis. A disadvantage in using a standardized

matrix is that a small amount of smoothing may occur in the

resultant eigenvectors (Kutzbach, 1967).

The symmetric correlation matrix (R) can then be defined

by

R = ZZ'/n, (2.2)

where Z' is the. transpose of Z and n is the number of cases.

A scalar y can be defined by:

7 y = e'Re, (2.3)

where y is the correlation between an arbitrary vector e and

the normalized data matrix Z. The vector e has the

constraint that it must be normalized to length one (i.e.,

e e 1= ). It was shown by Morrison (1967) that (2.3) can be

written in matrix form as

EY = RE. (2.4)

In this study, E is a 527 X 527 matrix, and the elements of

Y are eigenvalues found by solving IR - YIj = 0 (where I is

the identity matrix). Each column in E is an eigenvector e
associated with a single eigenvalue y. In fact, the

first eigenvector explains

m
y /N y
1 I

of the total variance. The second eigenvector explains the

largest amount of variance unexplained by the first and so

on.

17



The normalized data matrix Z may be reconstructed 'by

calculating the EOF coefficients or multipliers (Stidd,

1967; and others). These coefficients are found by solving
.

C= E'Z, (2.5)

where C is a m by n matrix (527 X 682 for this study). The

first column of C is the orthogonal coefficient vector

corresponding to the first case, and so on. The normalized

matrix Z can now be retrieved by

Z = EC. (2.6)

The jth case, stored in the jth column of the Z matrix, can

. be represented by

AM

Z(i,j) = e(i,k)c(k,j), i=1,2, ..., 527 (2.7)

k: 1

where z(i,j) are the normalized gridpoints values for the

jth case, e(i,k) are the elements of eigenvector k, c(k,j)

are the coefficients for the jth case and m is the number of

modes (eigenvectors) retained.

Since the eigenvectors in E are ranked according to he

amount of variance they represent, a large portion of a

particular field signal can be represented by a few

eigenvectors. Wilson (1984) used the Monte Carlo approach

(Preisendorfer and Barnett, 1977) to determine the number of

eigenvectors needed to represent the signal of a field and

eliminate unnecessary noise. The number of EOF modes that

represents signal varies from 19 to 35 depending on the

pressure level and wind component field (his Table VI).

Wilson demonstrated that retaining only 35 of the 527 EOF

modes (eigenvectors) explained between 81.7 to 93.2 percent

of the u or v signal at the various pressure levels (his

18



Tab-le VI). Therefore, only the first 35 EOF modes are used

Vin this study.

Wilson pointed out that the eigenvectors computed with

the dependent sample of 682 cases could be used with

independent data. However, when a new case is added, the

eigenvectors no longer exactly represent the maximum

variation of the new plus the old observations. Wilson
demonstrated that this does not introduce a significant

error as long as the original correlation matrix R is large.

The procedure for adding independent data is very similar to

that outlined above. The A matrix is formed using the new

cases. Each element in A is normalized by the gridpoint

mean and standard deviation found from the original cases.

The EOF coefficients are then calculated using (2.5), where

*- the E matrix contains the eigenvectors found from the

:7 original cases. This procedure is used to determine the EOF

coefficients for the remaining 675 cases not used in the

original EOF analysis.

C. CT/AT COMPONENTS

Numerous studies have been performed to determine the

accuracy of tropical cyclone track forecasts (e.g., Jarrell

et al., 1978; Neumann and Pelissier, 1981; Tsui, 1984; and

Elsberry and Peak, 1986). Tsui studied the accuracy of

various forecast aids used by the JTWC. He considered

timing, track, speed and forecast errors. The forecast

error was defined as the great circle distance between the

forecast and the verifying position. The latter is based on

the subjectively smoothed best track, which is produced in a

post-storm analysis. Track error is defined as the

right-angle distance from the forecast position to the best

track. The other error definitions can be found in Tsui

(1984). Neumann and Pelissier (1981) introduced another

error measurement which involved cross-track (CT) and

along-track (AT) components. Elsberry and Peak (1986) used
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a similar method to calculate CT/AT components relative to

an extrapolated track based on the present and past 12-h

warning positions.

In this study, CT and AT components are calculated with

respect to a CLImatology and PERsistence (CLIPER) forecast

track (Fig. 2.2). A western North Pacific version (called

WPCLPR), provided by C. Neumann of the National Hurricane

Center, is used (Xu and Neumann, 1985). The CLIPER track

forecast is considered as a no-skill forecast, since the

scheme does not use any synoptic information (Neumann and

Pelissier, 1981). For each case, the CLIPER forecast is

made using the -12 and -24 h warning positions, intensity

and date of the storm. Warning positions are used because

the best-track positions are not available in an operational

environment. The CT/AT components are then calculated each
24 h using the best-track positions relative to the CLIPER

forecast track. By normalizing the forecast track with

CLIPER, the contribution due to climatology and persistence

is removed from the forecast.

There are advantages in using a CT/AT component method

to measure track forecast errors. The CT component can be

thought of as turning motion relative to a CLIPER forecast.

A positive (negative) CT component is defined as a

best-track position to the right (left) of the CLIPER

position at the same forecast time. Thus, the CT component
. provides a directionality aspect that is not available in

the forecast error. Similarly, the AT component can be

thought of as an acceleration/deceleration with respect to

CLIPER, although a change in direction will produce a

. , negative AT component even when the translation speed

remains constant (Neumann and Pelissier, 1981). It is

important to note that the CT/AT components are calculated

relative to a CLIPER reference at a particular forecast

time. That is, the CLIPER reference is different at 24, 48
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OTCM or Best Iracki ~ ~~72 h Position "--a,

.,

~~72 h CLIPER..4
&=]forecast C ross-Track

' Error Component

60 h CLIPER
; Forecast

Fig. 2.2. Definition of cross-track and along-track
components at 72 h relative to the forecast track based on
CLI PER po itions at 60 and 72 h. L this example, CT is
ositive (right) and AT is negative (slow) with respect to
She CLIPER track.

and 72 h. The importance of this point will become evident

later.

D. PAST-MOTION CATEGORIES

Elsberry and Peak (1986) found from discriminant

analysis that the direction and sp.ed of the past 12-h

movement were significant predictors of future storm motion.

They divided their data set into five "past-motion"

categories based on past 12-h track direction and speed

(Fig. 2.3). These five categories are used in this study.

The basic assumption of the 5-category specification is that

the differences in the prior 12-h motion reflect different

synoptic forcings. For example, there should be a different

environmental forcing between slow- and fast-moving storms.
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Likewise, storms moving toward the northeast during the past
12 h should experience a synoptic forcing different from
that of a storm moving toward the southwest or south.

,,, -' ==---,, Cat. 2

Cat 4 Ct.

2.5mss

, "Southward

/".Fig.. 2o3"t Schematic of the five past-motion categories.... based o he past 12-h )speed (Categories 1 and 2) andir cti n Categories 3-5) of the tropcal cyclone.

, The entire sample of 1357 cases is sorted according to
r .*:,the past 12-h motion categories de f inud in Fig. 2.3.
.. Categories I (slow) and 2 (fast) are tLhe speed cat _gorits,

r~$,where speed is defined as the translationa speed from -12 11
i
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to 00 h warning positions. The storms with weak and strong

: steering currents should be isolated in these two

categories. Categories 3, 4 and 5 are the directional

categories. For example, storms translating northwestward

between 2.5 and 8 m/s will be in Category 4. A summary of

sample sizes in each of the past-motion categories is found

in Table 1. The largest sample size is found in Category 4.

The remaining categories have considerably fewer cases.

*' Notice that 155 cases are not classified into any of five

past-motion categories because these cases in the original

Wilson (1984) were missing a past 12-h warning position.

Table 1. Sample sizes of the five past-motion categories
defined by the past 12 h motion of the cyclone.

Category Sample Size

1 (<2.5 m/s) 169

2 (>8.0 m/s) 174

3 (B0-2700 ) 125

4 (270-3400) 497

5 (340-800) 237

Total 1202

The mean characteristics of the storms within these

past-motion categories are summarized in Table 2. The mean

*and standard deviation for the speeds of the storms in

Categories 3, 4 and 5 are approximately the same. Because

of the large variance in track direction for the Slow and

Fast categories, their mean directions are not calculated.

The mean intensities of cyclones in Categories 1, 4 and 5

appear to be higher. However, the standard deviations in

these categories are also larger. Therefore, it is unlikely

that the mean intensities between categories are
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significantly different. There is also a slight tendency

for storms in Categories 2 and 5 to be initially farther

north and west than the other categories, but again the

V.- standard deviations are large.

Table 2. Mean (X) and standard deviations (c) within each
of the five past-motion categories.

Parameter Cat a
Speeds total) 1 1.6 0.6

m/s 2 10.9 3.5
_ 4.9 1.6

5.0 1.4
5 4.7 1.4

Speed (K-dir) 1 -0.5 1.1
(m/s) 2 -3.2 9.4

* 3 -3.4 3.4
4 -4.1 1.5

. 5 1.4 2.0

.? -; Speed (5-dir) 1 0.5 1.1
(m/s 2 4.4 3.6

3 -1.3 1.5
4 2.4 1.4
5 4.0 1.5

, Direction 233 53

(degrees 301 18
5 20 27

Intensity 1 62 26
(kt) 2 58 24

3 56 27
4 69 31

'.- 5 64 26

Initial 1 131 14Longitude 2 136 12
E) 3 131 15

4 132 13
" 5 136 14

Initial 1 17 6
Latitude 2 20 8

(N) 3 16 5
4 17 5
5 20 7

The firtst 50 storm tracks within each of the five

categories are illustrated in Figs. 2.4 and 2.5. Composite

.% .. .24



~*%......

wind fields for each of the categories will be presented

later. Most of the storms in the fast category (Category 2)

initially moved either toward the northeast or the

northwest. Therefore, the synoptic flow patterns in this

- fast category might be smoothed when adding wind fields

associated with the northeast- and northwest- moving storms.

Notie the general rotation of the past 12-h tracks for the

storms in Categories 3, 4 and 5 (Fig. 2.5). However, there

are a variety of future tracks within each category.

Many of these forecast situations will not have a

verifiable 72-h position. Within this sample, only about

25% of the storms have a -72-h position (Table 3). More

than 30% of the storms in the fast (Category 2) and

* '. northeast (Category 5) categories do not even have a +24-h

position. These differences in storm lifetimes need to be

considered when interpreting the composites in the following

section.

Statistical properties of the CT/AT components within

each past-motion category are summarized in Table 4. The

largest sample size is in Category 4 (northwestward) and the

smallest is in Category 3 southward). In general, the

overall means and standard deviations of CT components for

each time period are smaller than those found by Elsberry

and Peak (1986), who calculated the CT/AT components

relative to an extrapolation track. As shown in Table 4,

the mean CT components are near zero and do not increase

markedly with time when the CLIPER track is used as a

reference. The CLIPER normalization also reduces the means

and standard deviations for the AT components within each

category and time period compared to those in the Elsberry

and Peak (1986) study. Therefore, normalization with

respect to the CLIPER track maybe superior to the use of a

extrapolation track. Notice that the largest standard

deviations occur in Category 2 (fast), which is consistent

0
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Table 3. Number of the 50 storms within each category in
Figs. 2.4 and 2.5 that have verified positions at 24, 48 and
72 h.

Time (h)

Category 24 48 72

1 (<2.5 m/s) 42 33 30

2 (>8.0 m/s) 32 23 16

3 (80-270') 39 35 29

4 (270-340-) 45 39 34

5 (340-80-) 34 22 12

with the wide variety of track positions at 72 h (Fig. 2.4).
%Z Some of these storms continued to move rapidly, while others

slowed down and began to recurve.

Histograms of CT and AT provide a graphic representation

of the data presented in Table 4. For example, the Category

4 frequency distributions are shown in Fig. 2.6. It will be

shown later that it is useful to subdivide the CT/AT

components into three equal subcategories (terciles) within

a category. The CT component terciles are to the left,

center and right of the CLIPER track. For example, one

third of the Category 4 CT72 sample is located in the

central tercile category bounded by CT72 values of -155 and

108 n mi. The storm characteristics within each of these

tercile subcategories will be studied later. A similar
.division into slow, center and fast terciles relative to
.". .CLIPER is made for the AT72 components. Since the tercile

sample sizes become very small in all categories except

Category 4, conclusions regarding the other tercile

categories should be viewed as tentative until larger

samples can be tested. Therefore, only tercile

subcategories within Category 4 will be examined in this

- study.
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Table 4. Statistical properties of 24, 48 and 72 h CT andAT components (n mi) for the past- motion categories definedin Fig. 2.3. The central one third of the tercile samplelies between the cutpoints. (N, sample size; x mean;standard deviation). Overall summary is for all five past-
motion categories of storms during 1979-1983.

Tercile Cutpoints

CT AT CT AT
Time Cat N a 7 a Left Right Slow Fast
24 1 135 -19 86 -20 89 -56 14 -50 142 84 5 119 -80 171 -26 46 -116 -474 7 88 1 112 -31 40 -30 59367 -4 90 -22 80 -41 35 -54 6

5 150 1 102 -46 117 -20 44 -81 -3
overall 810 -2 97 -31 114
48 1 112 -21 159 -91 204 -75 48 -154 13

2 66 -22 251 -22 292 -85 101 -120 363 64 1 224 45 208 -90 92 -45 1184 304 -12 181 -60 171 -88 57 -120 05 90 17 201 -140 201 -29 115 -201 -60

overall 636 -7 203 -54 215
72 1 95 -17 249 -198 319 -90 70 -283 -342 54 -20 380 -287 585 -166 184 -293 -82

. 57 -41 361 3 236 -169 140 -102 109
4 235 -15 300 -114 250 -155 108 -184 -75 58 -14 292 -160 265 -109 87 -281 -115

overall 499 -21 316 -151 331

The mean characteristics of the storms in the CT72 and
AT72 tercile subcategories of Category 4 are shown in Table
5. No significant differences in the past-motion

characteristics can be identified to explain the tercile
subcategories. That is, the mean differences are small and
the standard deviations are large compared to the mean.
Thus, the storm characteristics at the observation time and
-12 h do not give a. clear indication of the deviations of
the 72 h position with respect to a CLIPER track. It will
be demonstrated below that the composite synoptic wind

. fields do provide a discriminator of future motion.
When using an extrapolated track based on past 12-h

motion, Elsberry and Peak (1986) found that a majority of
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Table 5. Means (X) and standard eviations (.o) of the past
12-h characteristics of Category storms within each of the
CT or AT terciles at 72 h.

CT72 AT72Parameter Cat CT7 Cat 0

Speed C total) Left 5.2 1.4 Slow 4.7 1.4
(m/s) Center 8 1.4 Center 5.0 1.3

Right 4.8 1.3 Fast 5.0 1.4

Speed (x-dir) Left -4.3 1.6 Slow -3.9 1.5
(m/s) Center -4.0 1.5 Center -4.2 1.4

Right -4.0 1. Fast -4.2 1.6

Speed Cy-dir) Left 2.3 1.5 Slow 2.2 1.4(m/s) Center 2.3 1.3 Center 2.4 1.4
Right 2.4 1.3 Fast 2.3 1.3

Dtrection Left 299 19 Slow 301 18
(degrees) Center 300 17 Center 299 17

Right 301 16 Fast 300 18
Inten ity Left 73 31 Slow 77 33

* (kt) Center 81 31 Center 77 31
Right 73 33 Fast 73 32

Initial Left 13t 11 Slow 139 14
Longitude Center 13 11 Center 133 9

( E) Right 135 10 Fast 134 7

Initial Left 14 4 Slow 14 4
Latitude Center 16 4 Center 16 4(N) Right 15 3 Fast 15 5

Table 6. Distribution of 235 Category 4 cyclones within
cross-track and along-track (AT72) terciles.

AT72

Slow Center Fast
Left 25 22 30

CT72 Center 28 31 20

Right 24 26 29
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the cases in the AT72 fast tercile category were also in the

CT72 right category. Such a correlation would be expected

for recurving storms in the extrapolation coordinate system.

4 '. The AT and CT distributions of cases at 72 h, using a CLIPER

coordinate system, are given in Table 6. The fast AT72

cases are fairly well distributed in all three CT72 and AT72

terciles. In fact, a bias within the CT72 and AT72 terciles

cannot be demonstrated. This indicates that the tercile

subcategories, formed using a CLIPER coordinate system,

provides a better normalization of the 72-h storm positions

than does the extrapolation coordinate system used by

Elsberry and Peak (1986).

t32

0 M



III. DATA ANALYSIS

An objective of this study is to demonstrate the

usefulness of the wind-based EOFs for defining the synoptic

flow associated with tropical cyclone motion. Shaffer and

Elsberry (1982) suggested that the environmental flow around

the tropical cyclone could be described by a small set of

EOF coefficients based on geopotential height fields. They

demonstrated that certain eigenvectors were correlated with

zonal motion of the tropical cyclone, whereas others were

related to meridional motion. For example, if the EOF

coefficient I is large and positive, the storm initially

moves northwestward (their Fig. 6). On the other hand, a

storm tends to move towards the northeast when the EOF

coefficient 1 is small or negative. Peak and Elsberry

(1986) applied a regression analysis to predict the future

motion of the cyclone in cross-track and along-track tercile

categories using EOF coefficients derived from geopotential

fields as predictors. A second regression scheme was

developed to predict CT and AT components within past-motion

categories defined in Fig. 2.3. These sets of regression

equations provided better track forecasts than those from

the first set which did not use the past-motion

categorization. Based on these studies, it seems reasonable

to examine the synoptic effects in terms of wind-based EOF

coefficients for cases within categories defined by the past

12-h motion of the storm.

To demonstrate that the eigenvectors represent a

synoptic effect on cyclone motion, composite wind fields are

calculated using the EOF coefficients. Although compositing

smooths features particular to individual cyclones, the

features common to all the cyclones in a synoptic category

should be evident. By comparing composite fields for each

33



of the five synoptic categories, it should be possible to

demonstrate that a small set of the EOF eigenvectors can be

used to represent differences in synoptic forcing between

categories.

The cases in the data set are identified by the

date-time group and category of past storm motion, so that

the selection of all the cases in a particular storm motion

category is easily accomplished. Each case in the sample

-4 also has a set of (the first) 35 u and v EOF coefficients

for each of the three pressure levels (i.e., 700, 400 and

250 mb). For example, the 700 mb EOF coefficients 1 through

35 may be used to reconstruct the u-component wind field

(Wilson, 1984) for a given case.

Since the wind-based EOF coefficients (modes) are
* linear, two composite methods are possible. Summation of

NK the magnitude of individual EOF coefficients for the cases

in a category, then divided by the number of cases, would

yield the mean EOF coefficients. The composite field could

then be reconstructed by multiplying these mean coefficients

by the eigenvectors. The alternative method would be to

reconstruct the fields for each of the cases in a category,

sum and divide by the number of cases. Both methods will

yield the same result. The latter method is chosen because

it is the traditional method of compositing for
meteorological fields. This method will be discussed in

more detail.

The composite technique follows the EOF reconstruction

procedures outlined in Chapter 2. In particular, the wind

component field is reconstructed gridpoint by gridpoint.

The normalized wind component for a particular case (j) at

V- the gridpoints z(i,j) can be reconstructed from the EOF

eigenvectors by

m

z(i,j) = e(i,k) c(k,j) i=1,2, . .. , 527 (3.1)

k=l
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where c(k,j) are the EOF coefficients for the jth wind

component field and e(i,k) are the appropriate eigenvectors.

Conversion to a dimensional wind component is accomplished

by

a(i,j) = z(i,j)s(i) + b(i) i=1,2, ... , 527, (3.2)

where b(i) and s(i) are the mean and standard deviation of

the elements in row i of matrix A. As will be shown later,

it is possible to make composite fields using any number of

coefficients (e.g. 5, 10, 20, 35, ... , 527). All of the

variance in the original field would be described by

including all 527 coefficients. The procedure outlined

above is repeated for each case in the data set. Composite

fields are then formed by adding each field and dividing by

the number of cases in the composite.

A. PAST-MOTION CATEGORY COMPOSITES

The composite 700 mb u and v fields for Categories 4 and

5 are shown in Figs. 3.1 and 3.2. The mean u field (Fig.

3.1) for the northwest-moving (Category 4) storms has a

strong easterly component throughout the center of the grid,

whereas the northeast movers (Category 5) have weaker

easterly components. The most striking feature in the v

field (Fig. 3.2) is that the southerly component east of the

vortex is stronger in the Category 5 composite even though

the mean intensities of the storms are approximately the

same in these categories (see Table 2). Tropical cyclones

moving with a northward bias (Category 5) should have a

stronger southerly component and a weaker easterly component

than those moving with a westward bias (Category 4).

Therefore, the observations in the mean u and v composites

are physically consistent with the mean directions of

Category 4 (301') and Category 5 (200). Thus, the 35

wind-based EOFs represent differing synoptic environments

of the tropical cyclone.
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The composite vector wind fields (Fig. 3.3) also provide

insight into the synoptic differences between the

* past-motion categories. The subtropical ridge is east of

the vortex in Category 5, but farther to the northeast for

Category 4. Both composites show a convergence area to the

southeast of the vortex. The composites tend to smooth any

midlatitude trough and ridge patterns in the northern part

of the grid, along with other circulation features that are

not found consistently in the same location relative to the

tropical cyclone. However, the mean wind field for Category

5 gives a stronger indication of a trough to the north of

the vortex. The cyclonic circulation around the vortex also

extends over a larger area in the Category 5 composite.

Thus, the radial extent of the average vortex in Category 5

may be greater than that found in Category 4. A similar

result appears in Chan (1985), who found that the cyclones

in his northward motion stratification were on the average

larger than those with a westward motion.

Subtraction of the composite wind fields from the two

categories indicates regions with differences in synoptic

forcing (Fig. 3.4). For example, the largest differences (5

to 5.5 m/s) are found to the northeast of the vortex. If

the wind distribution at each gridpoint is assumed to be

normal, it is possible to determine statistically if the u

or v component is significantly different at a gridpoint

using a Student's t-test. The null hypothesis is that there

is no significant difference in the mean wind components

between the two categories. If the mean and standard

deviation at a particular gridpo.int yields a t-value of
greater than 1.96 (95% confidence limit for the sample sizes

in Table I), the wind component at that gridpoint would be

statistically different between the two samples. At least

one of the two components is significantly different between

Categories 4 and 5 at 433 of the 527 gridpoints in Fig. 3.4.
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This strongly suggests that the synoptic forcing differs

between the two categories.

The composite 400 mb u component fields (Fig. 3.5)

, - reveal additional differences between the categories. In

Category 5, the westerly components extend southward to the

latitude of the vortex center, whereas a strong easterly

component is found north of the vortex at 700mb. This

- indicates that the average cyclone found in this category

experiences a vertical wind shear between 700 and 400 mb.

Notice that the mean u component at 400 mb in Category 4 is

again negative to the north of the vortex.

The 400 mb vector wind fields for Category 4 (Fig. 3.6)

show the tropical cyclone as an open wave in the easterlies.

Chan (1985) found a similar result from composites of the

GBA winds for westward-moving cyclones. He pointed out that

this could be partially explained by the lack of upper-air

data in the vicinity of the tropical cyclone. Another

reason may be the inadequacy of the grid resolution of the

GBA to describe the smaller radial extent of the tropical

cyclone at upper levels. Notice that the Category 5 wind

field reveals a open wave in the westerlies. These

contrasting features indicate that the vortex in each

category is experiencing different synoptic forcing.

Many of the same features discussed above are also found

at 250 mb. The zonal composites (not shown) have the vortex

embedded in a belt of easterlies for Category 4 and

westerlies for Category 5. As at the lower levels, the

. meridional wind composite (not shown) for Category 5 east of

the vortex has a stronger southerly component than that

found in Category 4. The total wind fields (not shown) have

a closed anticyclone east of the vortex for both categories.

Composite fields for each of the five past-motion

* ."categories are made using 5, 10, 20 and 35 EOF modes.

Category 4 (northwestward) will be used as a standard for
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comparison with the other categories because it contains the

largest number of cases, and the overall mean movement of

tropical cyclones in the western North Pacific is very

similar to the mean movement in Category 4 (Chan, 1985).

The past-motion categories 1, 2, 3 and 5 are each subtracted

from Category 4 and the Student's t-test is performed at

each gridpoint. Table 7 summarizes the total number of

gridpoints for which the u or the v component is

significantly different between the two categories being

compared. The number of significant gridpoints varies from

96 to 491 out of a possible 527 points. The smallest number

of significant points is generally found in the 4-1

category, while the largest number of significant points is

generally found in the 4-5 category. Using 35 EOF

coefficients for compositing, the differences in the 700 mb

u component field between Categories 4 and 5 are significant

at 355 of the 527 gridpoints. Similar results can be found

in the other difference categories, although the number of

gridpoints with significant differences is not as large.

Based on the results of Table 7, a statistical basis exists
for stating that the wind component fields for Categories 1,

2, 3 and 5 are different from those in Category 4.

Notice that the number of significant points generally

decreases as the number of EOF modes in the composite

increases. For example, the category 4-5 difference u

composite fields at 700 mb decreases from 285 significant

points for five modes to 229 significant points for 35

modes. The Student's t-test value is inversely proportional

4. to the sum of the sample variances. Since more of the

variance in the wind field is associated with 35 modes than
or with only five modes (Wilson, 1984), smaller t-values will

be found. Thus, the chance of the wind components between

the two categories being significantly different decreases

with the inclusion of more EOF modes.
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Table 7. Number of gridpoints for which the u or the v
component for Categories 1, 2, 3 or 5 are significantly
dif erent from Categor.y 4. The number of EOF modes used in
the compositing is indicated inside the parentheses.

Lumber of EOF modes

Level Field Cat (5 (0) (20) 35)

700 u 4-1 285 279 236 229
4-2 378 36t 33 302
4-3 249 24 265 258
4-5 427 391 364 355

v 4-1 297 257 248 231
4-2 358 299 239 226
4-3 324 305 275 2424-5 342 290 280 281

400 u 4-1 220 191 169 168
4-2 377 312 297 297
4-3 299 260 291 267
4-5 455 418 420 405

v 4-1 327 278 265 247
4-2 345 312 249 224

* 4-3 341 283 234 213
4-5 335 280 262 240

250 u 4-1 2 136 101 96
4-2 381 351 350
4-3 305 285 284 285
4-5 491 466 455 458

v 4-1 241 202 212 190
4-2 356 315 288 269
4-3 357 351 322 293
4-5 347 276 284 252

For all the categories, the mean u and v component

fields at all three levels (not shown) constructed using 5,

10, 20 or 35 EOF modes reveal only minor differences. The

magnitude of the wind vectors in the five-mode EOF wind

composites are slightly smaller than those in the 35-mode

EOF composites. This is because more of the variance in theF signal is defined when using 35 EOF modes (Wilson, 1984).

Another minor difference is in the wind direction for light

winds (less than 5 m/s). This does not indicate that

reconstruction of a u field for a particular case can be

done with only five Fr" eigenvectors. Wilson (1984) shows
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that the first 35 eigenvectors contain signal. However, the

patterns produced in a component field by the 6-35

eigenvectors are not consistently in the same position

relative to the vortex. Therefore, these features are

smoothed during compositing.

B. TERCILE PATTERN COMPOSITES

As mentioned in Chapter 2, each of the five past-motion

categories can be divided into tercile subcategories based

on either the AT or CT component with respect to CLIPER at

each forecast interval (24, 48 and 72 h). By comparing the

composite wind fields of these tercile subcategories, it is

possible to evaluate further the suitablility of using

wind-based EOF analysis to define "synopticity" (i.e., basic

synoptic patterns affecting cyclone motion). Examples of

the Category 4 storm tracks in the Left, Center and Right

subcategories are plotted in Fig. 3.7. Category 4 is chosen

because it has the largest sample size. The track plots

show a reduction in the scatter of the 72-h positions

compared with the overall Category 4 tracks in Fig. 2.5. As

might be expected, storms in the Left subcategory show a

strong westward zonal displacement. In contrast, the Right

subcategory has the majority of recurving cases.

Composite u and v fields are calculated separately for

storms within the tercile subcategories defined by the CT72

components. Pairs of tercile subcategory fields are

subtracted and at each grid point a Student's t-test is used

to determine if the tercile composite fields are
significantly different at the 95% confidence level. A

summary of the test results is found in Table 8. The

smallest number of significant points is generally found in

the Left minus Center category. The 400 and 250 mb fields

are very similar based on these comparisons. Notice that in

the Left minus Center category the number of significant

points decreases with elevation, whereas this number
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increases with elevation in the Center minus Right category.

This latter feature would indicate that differences in the

environmental flow between storms moving along a CLIPER

track and those moving to the right of a CLIPER track are

more significant at the upper levels than at the lower

levels. Over half of the grid points (282 points) have

signif'cantly different 700 mb u components for the Left

minus Right comparison. Since the largest differences

appear in the Left minus Right comparison, these composite

fields are chosen for further study. The composite fields

will be examined to determine if the synoptic patterns

differ between the subcategories. That is, can the current

synoptic patterns be related to the 72-h cyclone position

relative to a CLIPER reference?
e

Table 8. As in Table 7, except the number of gridpoints at
which the wind components are significantly aifferent is
computed between two CT72 terciles of Category 4 storms.

CT72 Tercile Difference Fields
Level Field Left-Center Left-Right Center-Right

700 u 178 282 123
v 126 150 44

400 u 94 259 107
v 33 120 48

250 u 72 256 149
v 36 121 56

The 700 mb mean u fields for the CT72 Left and Right

tercile subcategories (Fig. 3.8) appear to be very similar

to that for the overall Category 4 sample (Fig. 3.1).

However, the extent and magnitude of the easterlies north of

the vortex in the Left subcategory are larger than those in

. . the Right subcategory. This is consistent with the Left

subcategory storms having a stronger westward component of
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motion. The mean v component fields have a stronger

southerly component to the east of the vortex in the Right

tercile category (Fig. 3.9). This feature appears in the

composite total wind fields as a strong confluence band to

the southeast of the vortex in the Right category (Fig.

3.10). When the two mean wind fields are subtracted (Fig.

3.11), areas with significantly different forcing become

apparent. The largest differences are found to the east of

the vortex, which indicates that the convergence band and

the anticyclone to the northeast of the vortex play an

important role in the motion of the cyclones within these

two subcategories. The composite wind fields at 400 and 250

mb (Figs. 3.12 and 3.13) show a more intense anticyclone to

the northeast of the vortex in the Right subcategory than in

the Left subcategory. The anticyclone to the west of the

vortex for the Right subcategory is well defined at 400 mb,

which suggests a break in the ridge, and hence possible

recurvature.

Another demonstration that the EOF analysis can be used

to define synopticity can be made by studying the composite

wind fields defined within terciles of the AT72 component.

The AT72 tercile divisions are defined as Slow, Center and

Fast with respect to the CLIPER forecast. Fifty storm

tracks for the AT72 subcategories are shown in Fig. 3.14.

Notice that the Fast subcategory isolates most of the storm

tracks that translated the greatest distances in the 48-h to

72-h interval. The Slow subcategory appears to have a large

number of storms that continued to move northwestward at

slow speeds. However, there are a few storms that moved

left or right of a northwest track. These large deviations

arise because the CLIPER forecast positions at 60 and 72 h

vary with each individual storm based on persistence and

initial storm parameters.
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As before, composite u and v fields are calculated for

each of the tercile subcategories (Slow, Center and Fast)

defined by the AT72 components. The u or the v composite

fields are subtracted and at each gridpoint a Student's

t-test is used to determine if-the tercile composite fields

are significantly different (Table 9). The smallest number

of significant points is found in the Center minus Fast

subcategory. The number of significant points decreases

from 700 to 400 mb in the mean u fields and increases from

700 to 400 mb in the mean v fields. This indicates that the

zonal EOF modes at 700 mb should better define the

differences within these categories and the meridional EOF

modes at 400 mb should better-define the differences within

these categories. In general, the number of significant

points is smaller for the AT72 tercile comparisons than is

found in the CT72 comparisons (Table 8). This suggests that

less information content exists in the EOF wind components

regarding the AT72 track components than for the CT72 track

components. Because the largest differences in composite

fields are in the Slow minus Fast comparisons, these two

subcategories are chosen for further study.

Table 9. As in Table 7, except the number of gridpoints at
which the wind components are significantly different are
for the AT72 tercile difference comparisons.

AT72 Tercile Difference Fields

Level Field Slow-Center Slow-Fast Center-Fast
700 u 140 137 55

v 94 112 6

400 u 77 87 14
v 115 122 49

250 u 169 169 35
v 107 123 65
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The composite zonal fields at 700 mb have a stronger

meridional gradient in the vortex region for the Fast

subcategory (Fig. 3.15) than for the Slow subcategory. The

zonal gradient of the meridional wind composite fields

across the vortex is also larger in the Fast subcategory
(Fig. 3.16). Notice the stronger southerly component east

of the vortex in the Fast subcategory. These trends

indicate that the total winds are stronger within the vortex

region in the Fast subcategory. These synoptic features at

700 mb are well defined in the composite wind fields (Fig.

3.17). The extent of the cyclonic circulation is larger in

the Fast subcategory. Notice also that the anticyclone to

the northeast is more organized and much closer to the

t vortex in the Fast subcategory. When the wind fields at 700

mb are subtracted (not shown), the largest differences (3

m/s) are found west of the vortex.

* Even larger synoptic differences are found at the upper

levels. The total 400 mb wind composites (Fig. 3.18)

indicate a more pronounced wave in the easterlies near the

vortex for the Fast subcategory. The wind difference plots

at 400 and 250 mb are shown in Fig. 3.19. As expected from

Table 9, the meridional component accounts for the majority

of the significant points plotted at 400 mb. That is, those

wind barbs with significant differences show a more

north-south orientation. However, the zonal and meridional

component differences at 250 mb are important in different

areas. The meridional component tends to be more

significant in the northern portion of the grid, while the

zonal component is significant southwest and east of the

vortex.

In summary, the composite analysis has demonstrated that

the EOF modes can be used to describe statistically

significant differences in the mean wind fields. The

synoptic forcing is clearly different between Categories 4
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and 5, and this forcing is consistent with the mean motion

of these categories. The same synoptic features are evident

in the mean wind composites using five and 35 EOF modes.

Storms in the Left and Right CT72 terciles within Category 4

are also associated with different synoptic patterns.

Although the composite patterns in the terciles resemble

those derived for Category 4, there are noticeable

differences. Similarly, storms in the Slow and Fast AT72

terciles within Category 4 are found to be embedded in

different synoptic flow patterns. Therefore, the truncated

EOF coefficients contain synoptic information necessary to

explain a large part of the future motion of the cyclones.
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IV. POST-PROCESSING THE OTCM FORECAST TRACKS

A. MOTIVATION

In prior studies on the performance characteristics of

the JTWC objective forecast aids, the One-Way Tropical

Cyclone Model (OTCM) has proven to be one of the best

objective aids. Tsui (1984) evaluated the performance of 11

objective aids for western North Pacific tropical cyclones

during 1979-1982. The OTCM had the lowest mean speed and

forecast errors, and was second best in track error (see

Chapter 1, section C for definitions). Elsberry and Peak

(1986) evaluated the performance of nine forecast aids in

terms of the CT/AT components relative to a persistence

* track defined by past 12-h movement. Both the CT and AT

component samples were divided into tercile subcategories.

The nine forecast aids were evaluated on how well they

predicted the observed tercile subcategory at each forecast

interval. In their study, the OTCM was classified as one of

the top performing aids used by JTWC.

The forecast philosophy that has developed at JTWC is

consistent with the results of these studies. Since the

OTCM has demonstrated consistent skill in identifying track

and speed changes, the OTCM forecast is used as the primary

guidance for determining the future track of a tropical

cyclone (Sandgathe, 1985). The OTCM forecast position at 72

h is modified in certain forecast scenarios based on other

objective techniques and known model weaknesses. Two

examples of modification to the OTCM include adjusting for a

slow bias on post-recurvature tropical cyclones, and

S. anticipating a more rapid response by the cyclone to

midlatitude forcing than is indicated by the OTCM during

recurvature situations.
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An objective of this study is to develop and test a

post-processing scheme for correcting the OTCM forecast

track positions based on the synoptic forcing represented by

the wind-based EOFs. The technique, to be discussed later,

should help the JTWC forecaster recognize when the OTCM

forecast positions need modification. The emphasis here is

on the OTCM since it has already proven to be a valuable

forecast aid.

B. MODEL DESCRIPTION AND DATA AQUISITION

The current version of OTCM is basically the model

described by Hodur and Burk (1978). It is a single-grid,

three-layer, primitive equation model. The coarse grid

resolution is 205 km. The lateral boundaries have a one-way

influence from the FNOC global model (Fiorino, 1985). The

tropical cyclone is initially defined in the model as a

Kvorticity bogus. Since the model is dry, the vortex

circulation is maintained by a specified analytical heating

function. Since no frictional or other physical processes

are included, this model is mainly an advective model.
ri Modifications to the 1978 version of the model include a new

method for locating the model grid relative to the initial

storm position and a stronger storm bogus. A pre-processing

technique developed by Shewchuk and Elsberry (1978) has also

been added. The technique (to be discussed later) adds a

persistence component of motion in the model forecast track.

The OTCM forecasts from 1979-1983 were provided by T.

_ Tsui of the Naval Environmental Prediction Research

Facility. The 24, 48 and 72-h OTCM forecast positions are

available at 00, 06, 12 and 18 GMT. The official forecasts

from JTWC are also available, although not for every time

the OTCM is run.
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C. OTCM CT AND AT COMPONENTS

The CT and AT components of the OTCM forecasts are

'= 1'ulated relative to a CLIPER forecast track as described

* in Chapter 2 (Fig. 2.2). A statistical summary of the CT/AT

components for the OTCM is shown in Table 10. Notice that

the mean CT components at 48 and 72 h are negative. That

is, the average OTCM forecast is to the left of the CLIPER

forecast positions at these times. The negative mean AT

components indicate that the average OTCM forecast positions

are behind those of CLIPER.

4' Table 10. Mean (X) and standard deviations (a) of CT and

,T components (km) for the OTCM forecasts during 1979-1983
N = sample size). The CT and AT components are calculated

wLth respect to a CLIPER track.

* CT AT

Time N X 0 X 0

24 1136 13 154 -126 189

48 1101 -24 341 -167 543

72 984 -108 522 -152 596

The frequency distribution of cases defined by the CT

and AT components at 72 h is displayed in Fig. 4.1. Notice

that the CT72 distribution is slightly skewed to the left,

which indicates that the OTCM has a slight tendency to be

- left of a CLIPER forecast at 72 h. It is somewhat

surprising to find AT components as negative as -3000 km.

This situation could occur when the OTCM predicts

recurvature and the CLIPER forecast is for a continuation

toward the north. As before, the sample at each forecast

interval can be divided into CT and AT tercile

subcategories. For example, the Left subcategory at 72 h

includes all storms with CT components that are smaller than

-307 km.
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D. CORRECTION VARIABLES FOR THE OTCM FORECASTS

Over the years, it has become apparent that dynamical

models exhibit systematic errors in the forecast track

relative to the actual tropical cyclone track (Elsberry and

Frill, 1980). There are a number of causes for such errors.

First, the models contain an incomplete representation of

the physical processes in the tropical cyclone. Second, the

poor resolution of the inner region of the cyclone can cause

a systematic phase speed error due to numerical

considerations. Third, the introduction of a bogus vortex

can cause systematic directional errors. An overly intense

vortex may result in excessive poleward components of

motion. Finally, an important cause for systematic errors

may be inadequate observations. When observations are

absent, the wind analysis reverts toward the first-guess

field. In the case of the OTCM, this could introduce a

zonal wind bias since the meridional components due to

transient features are absent in the first-guess field, 5%

of which is the monthly climatology.

In the past, pre- and post-processing techniques have

been used to minimize the systematic bias in a dynamical

model. Shewchuk and Elsberry (1978) demorstrated a

pre-processing technique for the OTCM. Adjust, ent of the

initial wind fields are used to re-direct the predicted

track toward a known direction of movement. A

post-processing technique developed by Elsberry and Frill

(1980) integrated the OTCM backward in time to compare with

the known past positions of the cyclone. This backward

integration of the model can be rather costly. Peak and

Elsberry (1983) proposed a backward extrapolation as a

cost-effective alternative. In this post-processingIr
technique, the backward extrapolated positions are compared

to warning positions. The basic premise is that errors that

occur in the backward portion of the track may be used to

help define the expected errors in the forward positions.
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A goal of this study is to develop a post-processing

method that adjusts the OTCM forecast positions to reduce

the systematic errors of the model. The correction method

is illustrated in Fig. 4.2. An OTCM forecast position is

corrected by subtracting the post-processed cross-track

(CTP) and along-track (ATP) components. A regression

analysis will be used to develop equations to predict the

required CTP and ATP adjustments to the OTCM forecast

positions at 24, 48 and 72 h.
The CTP and ATP components are defined as

CTP = OCT - BCT (4.1)

and

ATP = OAT - BAT, (4.2)

where the best-track and CT/AT OTCM components are defined

as BCT/BAT and OCT/OAT respectively. Thus, the CTP and ATP

adjusts the OTCM position to the observed (best-track)

position. A statistical summary of the CTP and ATP

corrections is given in Table 11. A physical significance

can be applied to the values found in this table. For

example, a mean negative CTP implies the average forecast

position for the OTCM is to the left of the verified

position. A mean negative ATP for the early forecast times

indicates the OTCM forecast is generally slow, although the

OTCM is fast by 72 h (i.e., positive mean). At 72 h, the

combination of a mean negative CTP (left) and a mean

positive ATP (ahead) indicates that the OTCM may not be

9- forecasting recurvature situations very well on the average.
The distributions of the desired CTP and ATP corrections

',. at 72 h are illustrated in Fig. 4.3. Although the

distributions are rather concentrated between -700 and 700

,- .
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Fig. 4.2. Schematic of the OTCM modification) sclierne. Post-
processed cross-track (CTP) and along-track (ATP) cornponents
adjust the OTCB forecast position to the best-track
positio.
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Table 11. Mean (7) and standard deviations ( of the
post-processing components CTP and ATP (km) or OTCM
forecasts during 1979-1983 (N = sample size).

CTP ATP

Time N X y X

24 1083 18 172 -70 186

48 860 -35 324 -12 365

72 642 -118 508 103 509

km, there are a number of cases on the tails of the

distribution where the OTCM errors (CTP and ATP) become very

large. Hopefully, the errors in these cases should be

improved in the statistical correction scheme to be

* developed.

E. REGRESSION ANALYSIS

Regression analysis is one of the most widely used

statistical tools. Neter and Wasserman (1974) give an

excellent presentation of the theory and method of

V regression analysis. Briefly, it involves using a linear

-i combination of predictors to estimate the value of an

unknown quantity, the predictand. A primary goal of the

analysis is to choose a set of predictors that minimizes the

sum of squares of residuals without overfitting.

1. Predictors

A set of predictors is sought to assess five factors

affecting an OTCM forecast: (1) external (to the cyclone)

physical forcing; (2) previous cyclone movement; (3) current

cyclone intensity; (4) date; and (5) initial (warning)

position. In addition, a set of post-processing predictors

will be used to assess possible errors via a backward

extrapolation of the track (Peak and Elsberry, 1983). A
total of 187 possible predictors are generated (Table 12).
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Four potential predictors are related to the

observations of the tropical cyclone at the base time.

These include the Julian date, the JTWC warning latitude and

longitude, and the maximum sustained wind speed (predictors

1 to 4 in Table 12).

- The recent motion of the cyclone is an important

predictor of most statistical forecast schemes. The OTCM

forecasts are adjusted for a persistence component via the

Shewchuk and Elsberry (1978) pre-processing scheme.

However, nine potential predictors representing past motion

are still included to evaluate OTCM's persistence component

of motion (predictors 5 to 13 in Table 12). These

past-motion predictors are based on JTWC warning positions

to simulate operational conditions.

* The EOF coefficients derived in Chapter 2 are used

to represent quantitatively the environmental wind field.

Wilson (1984) developed a promising regression track scheme

using these EOF coefficients. In the present OTCM

post-processing study, the predictor set includes only the

' first 25 zonal and meridional modes at each pressure level

(predictors 14 to 163 in Table 12). Notice that the EOF

\ ~coefficients are identified as Clwnn, where C identifies the

predictor as a coefficient, 1 is the level (7 for 700, 4 for

400 and 2 for 250 mb), w is the wind component (u or v) and

nn is the EOF mode number. It is anticipated that the

synoptic wind forcing represented by the EOF coefficients

will be key predictors in this regression scheme.

This study uses the backward extrapolation method of

Peak and Elsberry (1983) to define a set of six additional

predictors (Fig. 4.4). The +24 h OTCM position is

extrapolated backwards to define a -24 h position. This

position is compared to the -24 h warning position. The

total, meridional and zonal distances (E24, EY24 and EX24)

from the backward OTCM positions to the warning positions

74
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Table 12. Potential predictors provided in the regression
analysis.

Predictor
Number Name Description

I JULDATE Julian date
2 LAT Warning position latitude

LON Warning position longitude
SPD Maximum sustained wind speed [kts)

5 VX0012 Zonal cyclone movement from 06 to
-12 h (km/hr)

6 VY0012 Meridional cyclone movement from 00
to -12 h (km/hr)

7 V0012 Total cyclone movement from 00 to
12 c km)

T VX1224 Zonal cyclone movement from -12 to24 K fkm/hr)
9 VY1224 Meridional cyclone movement from -12~to -24 h ( m/hr) _
1' 0 V1224 Total cyclone movement from -12 to

(24 h (km).Ii VX0024 Zonal cyclone movement from 00 to
24 m~hr).

12 VY0024 Meridional cyclone movement from 00
to -24 h ( m/hr).

13 V0024 Total cyclone movement from 00 to-24 h (km .
14-38 C7UI-25 700 mb coefficients derived for zonal

modes I to 25.
39-63 C7VI-25 700 mb coefficients derived for

meridional modes I to 25.
64-88 C4UI-25 400 mb coefficients derived for zonal

modes I to 25.
189-163 C4VI-25 400 mb coefficients derived for

meridional modes I to 25.
114-138 C2UI-25 250 mb coefficients derived for zonal

modes I to 25.139-163 C2VI-25 250 mb coefficients derived for

meridional modes to 25.
164-166 E12 Dist. from 12 h backward extrapolation

EY2, t. to -12 h warning position.EXI2 Aeridional and zona dist. included.167-169 E24 Dist. from 24 h backward extrapolation
EY24, t. to -24 h warninT position.,

EX24 Aeridional and zona dist. included.
170-172 D2400 Dist. from 24 h OTCM position to 00 h

DY2400, warning position. Meridional and
DX2400 zonal dist. included.

173-175 D4800 Dist. from 48 h OTCM position to 00 h
DY48009 warning position. Meridional and
DX4800 zonal dist. included.

176-178 D4824 Dist. from 48 h OTCM position to 24 h
DY4824, OTCM position. Meridional and
DX4824 zonal dist. included.

179-181 D7200 Dist. from 72 h OTCM position to 00 h
DY7206, warning position. Meridional and
DX7200 zonal dist. included.

181-184 D7248 Dist. from 72 h OTCM position to 48 h
DY72249 OTCM position. Meridional and
DX7224 zonal dist. included.

184-187 D7224 Dist. from 72 h OTCM position to 24 h
DY7224, OTCM position. Meridional and
DX7224 zonal dist. included.
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are used as potential predictors. The same procedure is

used to define E12, EX12 and EY12. However, since the 12 h

OTCM position is not available, the bac' :ard 12 h OTCM

position is calculated by taking one half of the distance of

the 24 h position, and projecting this value backward.

\V . An additional set of predictors (170 to 187 in Table

12) is used to characterize the forward portion of the OTCM

forecast track (Fig. 4.4). It is hypothesized that these

forward track predictors may explain a portion of the

variance in CTP and ATP by distinguishing beteen different

forecast track orientations. For example, the magnitude of

the zonal track distance between 72 and 24 h (DX7224) may

* explain some of the variance in CTP at 72 due to recurving

storms.

2. Dependent Sample

It is very important that the regression scheme

simulate operational conditions. An OTCM forecast to

provide guidance at 00 and 12 GMT must be initiated from the

12-h old prediction fields (Fig. 4.5) because the rawinsonde

reports are not received at FNOC until several hours past

the synoptic times. An OTCM prediction at 06 and 18 GMT

(actually integrated at about 0730 and 1930) is initiated

with the 00 and 12 GMT analysis fields. This situation is

chosen to develop a dependent sample for the regression

N analysis. That is, the GBA wind fields from 00 and 12 GMT

are matched with the 06 and 18 GMT OTCM predictions. The

development of a dependent sample in this way ensures that

the regression analysis scheme will be consistent with the

current operational version of the OTCM. The 00 and 12 GMT

OTCM forecasts can not be used because the 12-h predicted

wind fields are not available for this study.

Unfortunately, the OTCM was either not requested at 06 and

18 GMT or the forecasts were not archived from 1979-1981,

because only four 06 and 18 GMT OTCM forecasts are available
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+48 \D7224

D4 82LW 4

+24

D2400 ___________

2

SFig 4 4 Schematic illustration of OTCM forecast Positions
(4-14, -- 8 +72) and backward extrapolation positions (M12
and M24). Other identifiers are defined in Table 12. The

4displacements identified by dashed lines, along with the
corresponding zonal and meridional compIJonent displacements
(not shiown) , are Used as potential predictors in the
regression analysis.
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from 1979-1981. Therefore, the dependent sample consists

almost entirely of OTCM forecasts from 1982-1983. After the

OTCM forecasts are matched with the wind-based EOF cases,

the sample size was reduced to 161 cases at 72 h. Since the

sample size is small, withholding cases for an independent

sample is not possible.

Pred Anal (00) Pred Anal (12) Pred

00 06 12 18 24

OTCM OTCM OTCM

Fig. 4.5. Schematic showing execution times for the One-way
Tropical Cyclone Model during a 24-h period. The initial
fie ds for the dynamical model are either 12 11 prediction
fields or the 7 h old analysis fields.

3. Prediction Equations

predict the CTP and ATP adjustmenfts to the OTCM forecast

positions. The UCLA Biomedical computer program BMDP2R

(Dixon and Brown, 1979) is used for the analysis. The

stepwise regression analysis ensures that a potential

predictor is not included in the equation if it is highly
correlated with any predictor chosen in earlier steps. A
minimum F-to-enter value of 4.0 is imposed to ensure that

the predictor is significantly correlated with the

predictand (Dixon and Brown, 1979).

Two separate regression schemes are developed. The

first scheme uses only the EOF coefficients as potential
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Table 13. Explained variance (R 2 ) for the CTP and ATP for
regression scheme COE in which only EOF coefficients are
included as predictors and ALL in which all potential
predictors are permitted. Separate entries are given for
sets limited to a maximum of 5 or 10 predictors (* indicates
only nine predictors selected).

Number of Re ression R

Time N Predictors Scheme CTP ATP

24 267 5 COE 0.24 0.19
10 COE 0.34 0.29
5 ALL 0.33 0.33
10 ALL 0.44 0.44

48 212 5 COE 0.27 0.27
10 COE 0.36 0.40
5 ALL 0.37 0.35
10 ALL *0.44 0.47

72 161 5 COE 0.35 0.29
10 COE 0.48 0.44
5 ALL 0.42 0.33
10 ALL 0.55 0.53

O predictors (referred to as COE in later tables). It was

demonstrated in Chapter 3 that the wind-based EOF

coefficients can be used to represent synoptic forcing of

tropical cyclone motion. It is hypothesized that these

coefficients will also explain a significant portion of the

variance in the CTP and ATP components. The second set of

regression equations uses all of the potential predictors.

found in Table 12 (referred to as ALL in later tables).

Comparison of the predictors selected in the two sets and

the additional skill produced by the ALL set will indicate

the relative importance of the EOF coefficients.

The amount of variance explained by the predictors

is indicated by the R', which is defined as

R' = SSR/SSTO = 1(SSE/SSTO) (4.3)
4S/.-.

where SSTO is the total sum of squares, SSR is the

- regression sum of squares and SSE is the residual sum of

squares. An R' value of 1.00 would indicate that the

regression equation explains all the variance in the
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predictand (i.e., CTP or ATP). The RI values for both the

CTP and ATP regression sets are summarized in Table 13. The

amount of variance explained by the equations ranges from

19% to 55%. As expected, the regression set that uses all

of the potential predictors explains the largest amount of

variance (Table 13). For example, 55% of the variance in

CTP at 72 h is explained by ten predictors in the ALL

scheme. It is extremely encouraging that the largest amount

* of variance is explained by the regression equations at the

72-h forecast interval.

The regression equation for CTP at 72 h (CTP72) is

shown in Table 14. The CTP72 ajustment is obtained by

summing the product of the regression coefficients (column

2) and the values of the associated predictors. The first

predictor explains 18% of the variance in CTP72 (i.e., RI

* 0.18). The second predictor explains an additional 11%, and

so on. Although 3% of the variance in CTP72 is explained by

the 10th predictor, the equation is arbitrarily limited to

this number of variables. Addition of a large number of

variables may artificially inflate the explained variance

and yet produce unstable equations when used with an

independent sample.

The regression equations for CTP and ATP developed

using all potential predictors are shown in Tables 15 and 16

respectively. Corresponding regression equations for the

'9' coefficients-only (COE) scheme are found in the Appendix,

Tables 20 and 21. Notice that the EY12 predictor is

*selected early at all three forecast intervals in Table 15.

The backward extrapolation variable EY12 is a measure of how

closely the initial forecast track of the OTCM agrees with a

meridional component of motion based on persistence. That

* is, future errors in the OTCM forecast track are highly

correlated with the departure of the OTCM from a persistence

component of motion early in the forecast period.
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Table 14. Regression equation for CTP (km) at 72 h using
all potential predictors (see Table 12) in the regression
analysis. R2  is the amount of variance explained by the
predictor. Mean ( ) and standard deviation (ca) for the
predictors are included.

Intercept -11.8

2
Predictor Coefficient R X a

C7117 48.4 0.18 -0.5 4.0
C2MI 24.7 0.11 1.1 4.8
EY12 1.3 0.06 33.0 105
C4V3 -26.0 0.04 -1.3 4.5
C4U20 -77.6 0.03 -0.2 1.7
C7U21 46.7 0.03 0.4 1.9
C2V21 46.2 0.02 0.2 2.2
C7U2 17.0 0.02 3.3 7.5
C7V16 -30.7 0.03 0.1 2.7
D7224 -0.3 0.03 839 298

* Total 0.55

The most frequently chosen predictors are the

wind-based EOF coefficients (Table 17). In the ALL scheme,
*the EOF coefficients comprise between six and eight of the

ten predictors picked in the regression analysis. The u

coefficients at 700 mb are most often picked (15 times),

while the u coefficients at 250 mb are the least often

picked (one time). It is interesting that the 400 mb u

coefficients are selected to correct the relative speed

(ATP) of the OTCM, whereas the 700 mb u coefficients are

selected most frequently to adjust the directional (CTP)

aspect of the track.

Several potential predictors are not included in any

* of the equations. The only purely persistence predictor

selected is the -12 to -24 meridional motion (VY1224) in the

CTP24 regression equation. This does not necessarily

indicate that the pre-processing aspect of the OTCM accounts

perfectly for departures from a persistence track. The

early selection of EY12 predictor, which is also related to

a departure from persistence, probably explains why the

other persistence-related predictors are not selected.
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Table 15. Regression equat ons for CTP (km) at the 24, 48
and 72 h forecast intervals (the ALL scheme). The order in
which the predictors are selected in the equations is
indicated within the parentheses.

Forecast Interval (h) 72

24 48 7

Intercept -3.766 -60.312 -11.844

Predictor
C7U7 6.713 (8) 29.602 (2) 48.398 1
C;2Vl - 13.107 3 24.715 2
EY12 0.332 (1) 0.754 1 1.262 3

2> C4V3 - -26.023 4
C4U20 -- -7764 1 5
C7U20 - 32.112 (5) 46.682 6
C2V21 - - 46.211 7
C7U2 - - 17.049 8
C7V16 - - -30.744 9
D7224 - -0.286 1
C7V9 7.400 (5) 12.021 (41 -
C7V23 - 20.412 6)
C4U13 -18.895 7)
C4V19 14.063 8)
C4V1O 11.032 9)
EX24 0.332 2)
C4U6 -12.095 3 -
C7U9 8.449 4)
C4V2 4.632 6)
C7U17 -9.539 7)
C4Vll 6.393
C7U16 9.086 )

4. Verification

The potential performance of these regression

equations is tested on the dependent sample. The

regression-predicted CTP and ATP components are used to

modify the OTCM position (r~ferred to as OTCMP in later

* tables). The forecast error is computed by determining the

great circle distance from the modified OTCM position to the

best-track position.. The forecast errors for the modified

and unmodified OTCM forecasts are summarized in Tables 18

and 19. The official (JTWC) forecast errors for theo
corresponding cases (when available) are also included in

the tables. The (unmodified) OTCM forecast errors are

smaller than the official JTWC forecasts (Tables 18 and 19).

82

..



Table 16 As in Table 15, except for regression equations
for ATP tkm).

Forecast Interval (h)
24 48 72

Intercept 184.124 141.880 292.125

Predictor
C7U14 - 49.924
C4U5 l1 .565 2
C4V24 - 3 19 3
DX7248 1:344 (4
C7V7 - - 31.895 5
C7U12 - -33.034 -53.297 6
EY12 - -1.423 (2) -1.350 7
XLAT -12.802 (2) -15.218 8 -31.400 8

= C2U23 - - -59.994 9
C4UI2 -8.819 (8) -39.319 1) -30.182 1
C4U5 - -21.200 3
C7U2 30.980 4 4

NA. DX72 24 - 0.292 *6)
*C41J16 -10.949 (5) -25.067 '7)

C2V24 13.105 (7) 24.426 193)
C7lb - -1.878 '1)
E12 -0.545 (1) -
C2U5 -6.673 (3) -

*C7U7 -11.055 (4) -
VY1224 4.933 6)

" C4UIO 10.836 9)
C4V15 -8.008 10)

Table 17. The number of EOF coefficients selected in the
repression scheme ALL for the 24, 48 and 72 h equations for
CTP and ATP.

CU2 ATP
Level Field 24 72 24 48 72 Total

700 u 4 2 3 1 3 2 15
v 1 2 1 0 0 1 5

400 u I 1 1 3 3 2 11
v 2 2 1 1 0 1 7

250 u 0 0 0 0 0 1
v 0 0 2 1 1 0

Total 8 7 8 6 7 7 43
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As expected, the mean forecast error increases as the

forecast interval increases. Notice that the mean and

standard deviations of the forecast errors at all times are

smaller for the regression schemes (OTCMP) with either five

or ten predictors than for the unmodified OTCM. A small

improvement is found in the means and standard deviations

when ten versus five predictors are used in the regression

* equations. As expected, the errors for the EOF coefficient

only-scheme (Table 18) are larger than the errors for the

other regression scheme, which includes all the predictors

(Table 19). It is very encouraging that the regression

schemes developed to modify the OTCM have reduced the mean

forecast error at 72 h by over 210 km (Table 19). It is

again emphasized that these results are obtained using the

dependent sample. Independent testing is required to

determine if the equations are stable.

Table 18. Mean (K) and standard deviation (a) of the
forecast errors (km) for the regression scheme which uses
EOF coefficients only (OTCMP) with either 5 or 10
predictors. Also included are forecast errors for a
homogeneous set of unmodified OTCM forecasts and ' a nearly
homogeneous set of JTWC forecasts.

Forecast Errors
Number of

Time N Predictors Method X a
24 2J5 JTWC 206 127

- OTCM 203 121
5-,, 5 OTCMP 162 102
10 OTCMP 158 95

* 48 190 - JTWC 443 285
200 - OTCM 386 202it5 OTCMP 329 192

10 OTCMP 311 163

72 151 -JTWC 631 400
1~1 -OTCM 59.4 357

5 OTCMP 48 313
" 0 OTCMP 427 279

A desirable feature in any forecast scheme is

consistency, which is indicated by small standard deviations
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Table 19. As in Table 18 except for regression scheme
which uses all potential preAictors (OTCMP) with either 5 or
10 predictors.

Forecast Errors
Number of

Time N Predictors Method X 0
24 2f15 JTWC 206 127

OTCM 203 121
5 OTCMP 157 95
10 OTCMP 143 88

48 190 - JTWC 443 285
2R0 OTCM 386 202

5 OTCMP 302 177
10 OTCMP 286 148

72 151 - JTWC 631 400
1,6, 5 OTCM 593 357

5 OTCMP 452 286
10 OTCMP 383 256

* in the forecast errors. Thus, it is significant that the

standard deviations for the ALL regression scheme are about

100 km smaller than those of the unmodified OTCM (Table 19).

This result, along with lower mean forecast errors,

indicates the regression equations are extremely successful
in modifying the OTCM in this dependent sample.

A schematic representation of the performance of the

regression scheme using all potential predictors is

illustrated in Fig. 4.6. A perfect regression scheme would

have resulted in all of the cases lying on the y=x line.

The correlation coefficient between the observed and

predicted CTP values is 0.74. The correlation coefficient

for the ATP distribution is 0.73. When there are large

errors in the observed CTP and ATP, the regression scheme

can be very successful in adjusting the OTCM to correct for

those errors. However, there are also times when the

modification actually degrades the OTCM forecast.

In summary, two regression schemes are developed.

The first set uses only the wind-based EOF coefficients as

potential predictors and the second set uses all the
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potential predictors in Table 12. The EOF coefficients are

'0 frequently selected, although the backward extrapolation

variable EY12 is often the first predictor selected at all
forecast intervals. This suggests a high correlation exists

between the OTCM's departure from persistence and future

track errors. Testing of the regression equations on the

dependent sample shows the scheme to be very successful in

reducing the mean forecast errors and the standard

deviations. The reduction in the standard deviation

indicates that the modified OTCM forecasts are more

consistent than the unmodified ones. Independent sample

testing is not possible since all available cases have been

used to develop the regression equations.

F. CAUTIONS FOR THE USE OF THE REGRESSION MODEL

The performance of the regression model on the dependent
sample is likely to be superior to that from a new sample of

cases. Such a prediction bias may occur if the predictors

for the regression model are uniquely related to the

dependent data cases. The performance of the regression

model with independent cases depends upon whether conditions
for the independent case are similar to those used to

develop the regression model.

The forecaster should be aware of when to use or not use

the regression scheme. For example, the forecaster should

examine rare event situations, such as multiple cyclones, as

the regression scheme may not perform very well for such

events.

86



00

0 CL 0

90 0

LjX 2t,

IC

Fig 46.Scttr los f reicedverusoberedC0
(top)~~~~~~~ an T bto)cononns h reitosaefo

theO -0prdSto regrssio scheme us0' a potetia
predictors.KM

08

40



V. CONCLUSIONS AND SUGGESTED RESEARCH

Using an EOF representation of the wind fields around a

tropical cyclone, Wilson (1984) developed a successful

statistical track prediction scheme. This study has further

demonstrated that these EOF coefficients can be used to

describe synoptic effects on tropical cyclone motion.

Composite zonal and meridional wind fields have been

calculated for five tropical cyclone categories defined in

terms of the past 12-h motion of the cyclone. Different

synoptic flow patterns are found in the environments of

vortices that were moving northwestward (Category 4) and

those moving northeastward (Category 5). Statistically

significant differences in the u or v components based on a

Student's t-test are found between wind fields in Category 4

and those in the other four categories. The number of

significant points over the horizontal grid ranged from 96

to 491 out of a possible 527 points. The results of these

t-tests (Table 7) provide statistical support for the

hypothesis that the wind fields for Category 4 storms are

different from those for storms in the other four

categories.

Sets of regression equations are also developed to

post-process the One-way Tropical Cyclone Model (OTCM).

Although the backward-extrapolated predictors introduced by

Peak and Elsberry (1983) are often selected first, the

wind-based EOF coefficients are frequently selected. The

schemes are extremely successful in reducing forecast errors

based on tests with the dependent sample. For example, the

mean OTCM forecast error at 72 h is 593 km, whereas the mean

error for the best regression scheme is only 383 km. The

regression schemes also reduces the standard deviations of

the forecast errors by as much as 100 km. This reduction
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indicates that the regression-modified OTCM forecasts are

more consistent than the unmodified OTCM. Therefore, it

appears that the regression scheme has great potential for

operational applications.

A. POTENTIAL FOR USE WITH INDEPENDENT DATA

It has been demonstrated that the EOF coefficients

provide a large portion of the error reduction in the OTCM

track positions. These EOF coefficients are synoptic

predictors in that they represent the flow fields

surrounding the tropical cyclone. For a new case, the EOF

coefficients would be derived using the eigenvectors from

the dependent sample cases. It is stressed that about half
of the wind-based EOF coefficients in this study have been

derived using Wilson's dependent eigenvector matrix. Wilson

S(1984) demonstrated that the eigenvectors derived from the

dependent sample should be stable since the dependent sample

size is large (682 cases). However, testing is required to

determine that the present sample size is sufficient to

ensure stability. The reader is referred to Shaffer (1982)

for a detailed example of the appropriate methodology to

test for stability.

The regression schemes developed in this study have not

been tested with independent data. New predictors

associated with an independent case may differ significantly

from the dependent sample predictors. When this occurs, the

performance characteristics of the model are likely to be

degraded. Therefore, testing on independent data is

required before the regression scheme can be implemented

operationally.

B. OPERATIONAL IMPLEMENTATION

The regression model developed in this study applies
only to the 06 and 18 GMT OTCM predictions. No regression

model is developed for the 00 and and 12 GMT OTCM forecasts,
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which are initialized using 12-h old analysis fields that

have been slightly adjusted towards climatology in the

tropics. These adjusted wind fields are not available for

deriving the EOF coefficients required in this study.

There are operational limitations for the regression

scheme developed in this study. The 00 and 12 GMT GBA must

be available for the EOF analysis. The same storm selection

criteria described in Chapter 2 has to be used in an

operational version. Finally, the tropical cyclone must

satisfy the conditions necessary for making a CLIPER

forecast (see Chapter 2, section C).

The operational implementation of the regression scheme

would be straight-forward. Four operations are required for

implementation. First, the 25 required EOF coefficients

0 must be calculated for each new case. The GBA zonal and

meridional wind components at 700, 400 and 250 mb must be

interpolated onto the equidistant grid using the bilinear

interpolation method (Wilson, 1984). The EOF coefficients

would then be derived by multiplying the transpose of the

truncated eigenvector matrix (25 X 527) and the normalized

observational matrix (527 X 1) for the new case. No
significant error is anticipated from normalization using

the means and standard deviations from Wilson's dependent

sample. The second step for implementation would be to

activate the OTCM and CLIPER models, and calculate the OTCM

cross-track and along-track components with respect to the

CLIPER track. The third step would be to calculate the

remaining predictors included in the regression equations.
Finally, the appropriate predictors would be substituted

into the set of regression equations to predict the OTCM

modification values CTP and ATP at 24, 48 and 72 h. Both

the modified and unmodified tracks would then be transmitted

to JTWC. As all the information necessary to apply the

regression modification to the OTCM is available at FNOC,

9
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less than one minute of additional computer time would be I
required to also provide the modified OTCM track to JTWC.

C. SUGGESTED RESEARCH

Although the regression scheme developed in this study

produces very good results, it may be further improved if

other storm-related or synoptic predictors are provided for

the regression analysis. For example, the size of the

tropical cyclone (as defined by the radius of 30 kt winds)

could be used. Another example would be to use EOF

coefficients derived from predicted wind fields, such as the

24-h forecast from the global prediction model. These EOF

coefficient predictors might have great potential for

improving the regression scheme at longer forecast

intervals. If the wind fields used to initialize the 00 and

12 GMT OTCM forecasts were archived, a similar procedure as

in this study could be used to develop regression equations

for modifying these OTCM tracks.

Since the post-processing procedure proposed in this

study has shown great potential in reducing forecast errors

from the OTCM, the same technique could be used to modify

other forecast aids provided to JTWC. For example, a

modified Nested Tropical Cyclone Model track could be easily

implemented using the procedure described in Chapter 4.

The decision-tree approach introduced by Peak and

Elsberry (1985) could also be tested as an adjustment

technique for the OTCM. The algorithm developed by Breiman

et al. (1984) provides a decision tree with multiple

branches. Each branch represents a sub-division of the data

based on the best available predictor for splitting. The

result is a tree which classifies similar cases and provides

key values of the classification. The least accurate

branches are pruned by repeatedly determining the minimum

errors in the prediction using subsets of the test sample.

Each branch ultimately ends in a terminal node. A
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statistical summary of the number of successful and

unsuccessful classifications in that node from the dependent

sample provides a measure of the likely accuracy of the

classification. The probability measure for each terminal

node would suggest the confidence that the forecaster should

have in that guidance. It seems likely that the wind-based

EOF coefficients would provide useful predictors for

developing such a decision tree.

In Wilson (1984) and the present study, the wind field

is decomposed into zonal and meridional components to do a

scalar EOF analysis. However, a vector EOF analysis of the

total winds (Legler, 1983) also may be developed to

determine the possibility of improving the regression
forecast scheme. In addition, it would be useful to examine

the effect of rotation of the eigenvectors as suggested by

Richman (1981).

In conclusion, the wind-based EOF coefficients provide

an efficient and accurate representation of the synoptic

wind forcing of tropical cyclone motion. Given this

scientific basis, application to regression schemes to

improve tropical cyclone forecasts seems feasible. Further

research with the wind-based EOF fields is warranted.

U
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APPENDIX

Table 20. Regression equations for CTP (km) at the 24, 48
and 72 h forecast intervals (the COF scheme). The order in
which the variables are selected in the equations is
indicated within the parentheses.

Forecast Interval (h)

24 48 72

Intercept 6.7 -23.2 292.1

Predictor
C7U7 8.8 (2) 31.2 49.7 1
C2VI - 13.8 41.7 2
C7U6 - - 43.4 3
C7V3 - - -37.2 4
C2V21 43.5 5
C7U13 - - -38.7 6

*C7V20 - 48.5 7
C2V9 - - -27.7 8
C7UIO - - 26.8 9
C4U12 - -32.8 1 )

*C7V9 2 1.C2V17 - 21.
"' C2U 14 - -3H . -

C2U15 - -26.2 6
C4U6 - 13.4 8 -
C4U13 -24. 48
C4V23 - 19.8 9
C7V23 - 18.4 )
C2U1 5.5 1 -

C4U15 -15.4
C7U21 15.0 - -

C7U25 -18.9 5 - -

C2V16 10.9 6 - -
;;C2U12 -1ii.9 7-

C2V3 -5.6 8 - -C2U4 7.9 9 - -

C7U4 4.2 1 -
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Table 21. As in Table 20, except for regression equations
for ATP (km).

Forecast Interval (h) 7
24 48 7

Intercept -69.0 -37.3 -5.9

Predictor
C4U14 -13.6 (6) -2. -15 :.1 1
C2V13 -25. (3) -3.8 2

- 25. (6) -38.13C7V7 - - 14.5 4
C4V24 - 66.1 5
C2V20 - - -44.1 6

C 5- 15.0 (8) 29.2 7SC7U16- - 45.9 8
C7U 14 34.6 9
C2V6 -9.0 (5) -17. 5' -5.
C7U24 - 3 5-
C2V24 9.1 (10) 25 (7
C4U24 - -42. 7
C7U7 -13.0 (3) -14.9 9* C7V24 - -22.5 1) -
C2U5 -5.0 I - -
C7V3 -4.4 2 - -
C4V18 -9.6 4 - -
C7U25 -18.9 5 - -;.C4V59. 7
C4V20 -12.1 8 - -C7U19 8.7 9 - -
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