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THE AXIAL INJECTION
TEM ORBITRON MASER

1. INTRODUCTION

The development of the electron cyclotron maser (ECM) has made possible the efficient genera-
tion of high power millimeter wavelength electromagnetic waves. One drawback of these devices with

respect to size and cost, however, is that they require large magnetic fields. Thus there is current

interest in developing a high efficiency millimeter wave source that does not require the use of a large

magnetic field. In this paper we propose and analyze a device configuration which appears to hold great

promise in fulfilling this goal. This proposed device is essentially a modification of the basic orbitron
maser concept (Alexeff and Dyer, 1980 a). The orbitron maser employs coaxial cylindrical geometry

with the center conductor held at a positive potential with respect to the outer conductor, as shown in
0Fig. 1. Electrons are radially confined by the positive potential of the center conductor and orbit

around it.

In the earliest orbitron experiments, electrons were introduced into the cavity by creating a glow

*- discharge between the center and outer conductor (Alexeff and Dyer, 1980 a,b). The electrons were

axially confined by the fringing fields provided by conducting end caps held at the potential of the outer

conductor. Broadband microwave emission was observed in a series of 25 ns bursts of radiation which

occurred about 50 lss after the center conductor was pulsed to a high positive potential. Later experi-

ments were able to achieve higher frequency operation by using an open cylindrical outer conductor and

a center conductor with sharp periodic radial steps to provide an axial restoring force to confine the

electrons (Alexeff and Dyer, 1983, 1984).

* The theoretical explanation that was given to describe the operation of the orbitron experiments

was that electrons executing circular orbits around the center conductor are negative mass unstable and

would therefore exhibit a maser interaction (Alexeff and Dyer, 1980 a; Lau and Chernin, 1984 a,b:

Alexeff, 1985). Using the notation of Fig. 1, the frequency of a nonrelativistic electron orbiting the

center conductor in a circular orbit of radius r is

2.111"" Hz (1)
r(mm) In{b

Manuscript approved November 21, 1985.
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A voltage much larger than that used in the experiments is required for an electron in a circular orbit to

interact with a TE mode because the azimuthal electric field component of any TE mode is large only at

distances far from the center conductor. Indeed, the boundary condition on the electric fields in any

coaxial waveguide is that the azimuthal electric field be zero at the conducting surfaces. Also, there is

no interaction of the TEM cavity mode with an electron in a circular orbit. The assumption that elec-

trons with circular orbits are even injected into the device seems unlikely. There is no mechanism for

the electrons to gain a sufficient amount of angular momentum to achieve a circular orbit using the

glow discharge radial electron injection scheme. Thus, if the emission process is indeed a maser

interaction due to the negative mass nature of the electron's orbit, it is probable that it comes about

through electrons with highly eccentric low angular momentum orbits interacting with TE or TEM

waveguide modes at high harmonics of their radial oscillation frequency. An axial view of a low angu-

lar momentum electron orbit in an orbitron is shown in Fig. 2. Another difficulty complicating an

understanding of the emission process of Alexeff and Dyer (1980a) and Alexeff (1985) is that there is

no clear means for electrons to be removed from the cavity once they have transferred their energy to
0

the radiation fields. Low energy electrons that are confined in the cavity may reabsorb energy from the

radiation fields producing a relaxation oscillation. Indeed, it appears that it is some type of a relaxation

oscillation that is observed experimentally (Alexeff and Dyer, 1980 b). Alternatively, it has been pro-

posed that the microwave emission process in the glow discharge radial injection orbitron maser is due

to the nonlinear wave-wave coupling of counterstreaming plasma waves (Schumacher and Harvey,

1984).

We will demonstrate that a high frequency, high efficiency orbitron maser that operates at high

power levels can be realized by using an axial electron injection scheme. Electrons would be injected

with a large value of axial momentum in a region with a low radial electric field. They would then be

adiabatically compressed into the interaction region where the radial electric field is large. The adiabatic

compression process has the advantage that it increases the electron density as well as the ratio of their

perpendicular to parallel energy. The electrons would not be axially trapped in the interaction region as

in the early orbitron experiments but would rapidly transit the interaction region where they would

,''. .resonantly transfer their energy to the radiation fields. This injection scheme is very similar to the one

used in most ECM devices which have been demonstrated to operate at high powers with high efficien-

cies (Hirshfield, 1979). The proposed axial injection orbitron maser would also operate in high

vacuum, as is the case with most ECM devices. Most importantly, axial injection allows one to maxi-

mize the efficiency of the maser interaction by providing a means to produce an electron beam whose

distribution function is optimized for the power level requirements of the device. It also provides a

means to optimally position the electron beam to interact with a given waveguide or cavity mode.

2
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Figure 1. The orbitron configuration.

OUTER CONDUCTOR

Figure 2. An axial view of an electron orbit.
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Since for high harmonic operation we wish to take advantage of the structure of an electron orbit

with a small minimum radius, the natural inclination is to examine modes with the largest fields near

the center conductor. For this reason, we restrict our attention to TEM modes. In these, E, and Be

are both proportional to 1r between the center and outer conductor. We have succeeded in analyzing

the interaction of a TEM waveguide or cavity mode with low angular momentum electrons transiting

the interaction region of an orbitron. This allows us to quantify the spacial growth rate for an infinite

length traveling wave amplifier, as well as the threshold values of the cavity Q multiplied by the elec-

tron beam power required for self-oscillation in a finite length oscillator configuration. We have also

developed the basic design equations necessary for the axial electron injection scheme.

The chapter is organized as follows. Section II presents the linear theory of the TEM orbitron

maser. The dispersion relation for the axially uniform orbitron is derived by solving the linearized

Vlasov equation by the method of characteristics. The integration over unperturbed orbits is performed

by expressing the radial velocity of the electron multiplied by the radial part of the electric field's eigen-

* function in a Fourier series. The radial part of the eigenfunction for the TEM mode has a particularly

simple form, 1/r. It will be shown that the interaction strength at a given harmonic of the radial oscil-

lation frequency is proportional to the square of the Fourier coefficient for that frequency in the

Fourier series expansion of the electron's radial velocity divided by its radius. The radial oscillation

period for a nonrelativistic electron and other quantities having to do with the electron orbits in an orbi-

tron which are necessary to evaluate the linear theory of the orbitron interaction are calculated in Sec-

tion III. It will be shown that ar, which is defined as the ratio of the maximum to the minimum radius

of the electron's orbit, is an important parameter. Specifically, the maximum harmonic number for

which there can be a strong interaction is roughly o-/2. In Section IV we use the technique developed

in Section II to calculate the power transferred from the electron beam to the radiation fields as the

beam traverses a finite length cavity. The results of this calculation are combined with the definition of

the cavity Q and an expression for the energy stored in the cavity in terms of the radiation electric field

0amplitude to find the beam power required to make the cavity self-oscillate. A cold beam distribution

function in which each electron is assumed to have a single value of energy, angular momentum and

axial momentum is presented in Section V. This distribution function allows the results of Sections II

and IV, which are given in terms of a general distribution function, to be easily evaluated. Section VI

presents the results for the infinite length traveling wave amplifier and the finite length oscillator con-

figurations. The spacial growth rate is given versus frequency and beam parameters for the traveling

wave amplifier. For the finite length oscillator, we plot the cavity Q multiplied by the threshold beam

power required for self-oscillation versus the voltage between the center and outer conductor and beam
parameters. Finally, in Section VII we discuss the consistency of the approximations used in the
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theory, some mode selection schemes, and present a conceptual design of the beam injection system.

We also use the constancy of the angular momentum of an electron in a TEM orbitron maser with an

azimuthally symmetric electron beam to calculate the maximum possible efficiency of the device.

II. PHYSICAL MODEL: THE AXIALLY UNIFORM ORBITRON

The configuration of the orbitron maser that we will describe is shown in Figures 1 and 2. It con-

sists of an electron beam propagating axially through a coaxial waveguide of circular cross section with

inner radius a and outer radius b. The axis of the electron beam coincides with that of the waveguide.

The electrons are radially confined by the electric field between the center and outer conductors of the

waveguide, and move in axis encircling orbits with a substantial fraction of their kinetic energy

transverse to the axis.

The following simplifying assumptions are made:

• i) The electron beam distribution function and the cavity fields are both independent of the

azimuthal angle 0.

ii) The electron beam is of low enough density so that its self-electrostatic field can be

neglected compared to the static confining electric field due to the applied voltage difference

between the inner and outer surfaces of the waveguide.

iii) The cavity fields are a first order perturbation of the static confining electric field.

iv) The perturbed distribution function f' is of first order with respect to the initial distribution

function fo.

The TEM mode is the lowest order mode for a coaxial waveguide and we shall restrict the analysis of

the maser action in the orbitron to this mode. The TEM mode has a particularly simple structure which
greatly simplifies the analysis compared with that of the TE mode which also should give rise to a

* maser interaction.

In this section, we examine the orbitron interaction by calculating the dispersion relation for an

axially uniform system. This will set the stage for the calculations in Section IV of start oscillation con-

ditions for a finite length cavity, as well as show how to handle the effect of the complex orbit.

If we use the convention shown in Figure 1 for the potentials on the conductors, the electrostatic

potential energy of an electron is

qd(r) Po In , (2)

5

. . . . . . . . . . . . . . . . . . . . . .. - . . . . . . .. .- - . . ..." . -. . . . .. , .. . . .- -. -



where

P0 e V0  (3)eo-o

The Hamiltonian can then be written

L "m+ + P+ in (4)
2m 2mr2  2m I

where

p MY, (5)

and the electron is assumed to be nonrelativistic. Now, since the Hamiltonian is independent of time,

9 and z we have three constants of the motion H, P9 and p., where
A2

P0 - r p9 = mr2 9. (6)

To find the motion of an electron we first determine the radius as a function of time by combining

Equations (4) and (5),

dt - dp (7)211 P ,o. 2P0 rn
- m 2 r_ 2  m 2 r

Once r (t) is known, 0 as a function of time can be computed by integrating Equation (6) in time.

The angular momentum term in Equation (7) provides an outward radial force which dominates at

small r, the electrostatic potential provides an inward force which dominates at large r. Thus the orbit

has an inner and outer radial turning point, r and r,. At each turning point, the radial velocity is, of

course, zero.

The orbit is characterized by a shape, which is invariant given the constants of motion, and an ini-

tial value. For the more conventional case of a sinusoidal or circular orbit, the former corresponds to

the amplitude and frequency, while the latter corresponds to the phase. To specify the shape of the

orbit, we will consider an orbit such that t -0 is the time at which r - r, and define this orbit as

6
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r - R (t) and vr- V(t). It is important to note that R (t) is an even function of t while V(t) is an

odd function of t. Schematics of R (t) and V(t) are shown in Figure 3. The orbit has a full period

T(H, Pq, p:) which depends only on the constants of the motion.

To calculate the dispersion relation for the orbitron interaction in an axially uniform system we

use Maxwell's equations to find an equation that relates the perturbed electric field in the waveguide to

the perturbed current. We then find the perturbed current in terms of the perturbed electric field by

integrating Vlasov's equation over unperturbed orbits. Combining the two relations yields the disper-

sion relation.

Now, starting with Maxwell's equations

-,-.

V E . (8)
E0

V• B =0, (9)S

- X E + 0, (10)

V x B - t /.L0 J, (11)
C2 t

we combine Equations (10) and (11) with an assumed time dependence of e -" to get an equation for

the electric field

2
V x Vx E--- E iwo 0J. (12)

SC

To proceed, we expand E as a linear superposition of orthogonal vacuum waveguide modes. In this

paper we focus specifically on the TEM mode, because this mode has maximum electric field near the

center conductor, where, as we will see, the orbit has the most harmonic structure. The waveguide

or" fields of the TEM mode are given by

E (r, G, :, t) - E, a eipkzt) (13)

" B' (r, 0, :, t) E, - e ' k - '  0, (14)
cr

7
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Figure 3. The radius and radial velocity of an electron orbiting the center conductor versus time.
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and we assume that the beam current is small so that the mode is nearly a vacuum mode. This is

analogous to assumptions made in calculating the linear theory of the ECM. Then, as discussed by Ott

and Manheimer (1975), once we determine the form of J,'(r, 9, :, t) driven by the waveguide fields

given by Equations (13) and (14), we take the dot product of Equation (12) with the complex conju-

gate of Equation (13) and integrate over the waveguide cross section to find the dispersion relation,

21_k~ f EU 2 rdrd6 - io~qlto  EI °  J1 rdrd9. (15)

Finding the perturbed current means integrating over the unperturbed orbits which are unspecified as

yet, and quite complicated. However, the effect of this complex orbit can be characterized by a single

parameter as we will see shortly.

The perturbed current density, in terms of the perturbed distribution function, is given by

J'(r, 0, z, t) - -e J v, f (r, p, t) d3p. (16)

We use the Vlasov equation,

."-f(r, p. t) af (r, p, t)(r ,t
f.rp. + v• + q(E (r, r) + v x B (r, t) • (r, p, = 0, (17)

Ot Or Op

to find the perturbed distribution function, where

f(r , t) = f°(r, p) + f'(r, p, t). (18)

Then, to first order

f (r, p, t) - e dt' E (r, t + v '(r, t) x Bi(r ', t ). (19)
Op' (19)0p

0 The quantities r and v, implicit in Equation (19) are evaluated along the unperturbed orbit, where the

orbit is initialized by specifying that the velocity V(t) is v, and the position R (W is r at time r = t' If

t(r, v,) is the time between 0 and T(H, Py, p:) such that V(t) = v and R (t) = r, the unperturbed

orbit is specified by R (y) and V(y) where

Y t t- + t (r, v,) (20)

Inserting Equations (13) and (14) into Equation (19) and using the fact that

• 5f0 (H. P, p-) OJ)(H, P, p-(" " " "V '"(21)
"p, OH

9
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we find an expression for the perturbed distribution function,

I Vp ** R(t'-t+d(r, v,))

Since V(y)/R (y) is an odd function of y, it can be expanded as a sine series

R (y) 1 a, (H, P9, P:) sin (s 2 (H, P,, p,) y), (23)

where fl (H, P0, p:) - 2v/T(H, P9, p.) and a,(H, P9, P:) is the Fourier coefficient, which is a func-
"" tion of the constants of the motion.

Now, if we let

x t'- t, (24)

V: V:, (25)

then

kz'(t) - kz + kvx, (26)

t'- x + t. (27)

Inserting Equations (23), (26) and (27) into Equation (22) yields the perturbed distribution function,

f f((r, P , t) e a Es V .)( + [r ))

0 2Ac -wt +(kv- w28)
a,(H, P9, p d c sin (sfl(H P0, p) (x+ t(r, v,)

V . - HaE [f, v:1 ro A2!r_ 1 (8
2 II CJ~ 8pH c (2)

eikz -wt + sf(H, P,. pjt;(r, v,)) e I(I-,-W1- Sf1 (H. P0, P.) i(r. V'))
~a, (H, Pp,) { +~H p k) (f(,P,:+ k:J(SO -H Po.. + : (s fl(H, P9, p.) + k v.

10
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and combining Equations (16) and (28) we find that

e2a El - f dp a, ,
iCUIAOJr i/LO W HPp

V: 8.0 v + e i+ i &r 1l W'Fe'"'')0 H f d (Act - w tw- s 0 (H. P9. P.)(r.

).I.. (29)

c 1 8H c 8p. (s l (H, P9, P..) - w + kv:) (sfl (H, P9, P:) + w - kv:) (

Equations (13), (15) and (29) then yield the dispersion relation

Sk2 I a2 In iLoWt

zf dr f d~p v, a, (H, P9, p,) I - -I Af + -L- (30)
S-I H c O:,

" (sf1 (H. P' p)t (r, v,)) + -i(s fl(H P9 ; p
)

(r. v
r

))

(sfW (H, Po, p,) - c, + kv.) (s l(H,,p:) + kv.)

*Notice that at this point there is still a fairly complex dependence on r and v, through the

exponential of Q (, P9, p.)(r, v,). Utilizing the Jacobian to transform the integration over d3p to an

integration over dHdPodp.,

I~ i e' ,III 1 4o. dped IWA vU

SI c1vl l I

a, (W, P9, p-) I - + -L Jf °  (31)V:C &H c & p..

i i nsfll 8, P ..) (r, v,)) -,(sFl(H. P9, p:)t,(r. v,))

(Sl DW, P9, p,)-w + kv.) (sf (H, P9, p:) + _ kv:)

where the summation over ± is a summation over t.(r, v,) and t_(r, v,). Here r+(r, v,) is the time

for the particle to reach r with positive v,. Using the time origin of Figure 3, we see that

*T
(H, P,, P:) < i+(r, v,) < T(H, P9, p.). Similarly, t(r, v,) is the time required for the particle to

,. .. .. .. .. ..
. . . .. . . . . . . . . . . . . .-- . . . . . .



reach r with negative radial velocity and 0 < L(r, v,) < -(H, P,, P:). We now bring the integration
2'

over radius inside the integration over momentum space and perform the integration over radius by

changing the variable of integration to i(r, v,). Then

, dr V(t)
dt R , (32)

and Equation (31) becomes

In f dpa,(H,P9,pz) 
C -1C 8 c a p._

."f r(H P 9, .) v ( ; ) e s n ( , P , P )1 ( i ( . P , P ) 1

T(H,P ,,) R () [(s f (H, P9, P w + kt v) ( s i (-H, , p). + -+-- k v()

e i(sfl (H, " ,p);) -i(sfl (H. P" p.)t)
f VZ'0d + e

(, P-,p.) R') (si 0(H, P9, Pz)- W+kv).) (sfl(H, P#, p.) +-kv.)

Now, we have

V(;-) a., (H, P9, p..) sin (s[1 (H, PO, p,)t). (34)$ '1

Inserting Equation (34) into Equation (33) and integrating over t we obtain the dispersion relation for a

forward traveling wave in an axially uniform orbitron in its final form

_._______oe  A.f..1 f_k 2. -C In g,, - ( f da d O ,dP l --vf
• 2 a 4 C H c 'p,

.(sf(H, P9, P-)-w+kv.) (sfl(H, P, P.)+wTkv.) (35)

Equation (35) is written in terms of a general unperturbed distribution function f°(H, P, P-). We will

-,> present a specific distribution function in Section V which allows us to calculate, in Section VI, the spa-

cial growth rate of the forward traveling wave as a function of frequency and the electron beam parame-

ters.

12
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III. ELECTRON ORBITS

We are interested in the details of the radial motion of an electron confined in the logarithmic

potential well provided by the configuration shown in Figures I and 2. To calculate the radial oscilla-

tion period of the orbit, T(H, P,, p.), in terms of the constants of the motion, we take Equation (7)

and integrate from ri to r,

T (H dr(H, f p.)- (36)S2 
2 r i  P" P

M~r2 2 m P 0 In -

where ro and r are the roots of the equation

H--- Poln -0. (37)2 2mr2  0m

To put Equation (36) into a simpler form we transform variables as follows. Let

P 1 (38)

and

6(H, P,, p.) H A2 In P9 (39)
P0  2ntP0  /vC2 oaJ

Equation (36) can then be written

P0
:.)T(H, P8 , P-). == "' (13) , (40)

where

f_(_) dl f(41)
;'"'-2 o P#+ In f- O '

and o and , are the two roots of the equation

,, ','" B~~)9(H, P9, p,) + In()-2 .04)

13[e



8T aT
We can use the particularly simple form of Equation (40) to compute the derivatives - and

which are necessary to evaluate the general result given in Equation (35) for the specific distribution

function that will be described in Section V. Indeed,

1 a T(H, P9, p.) 1 dT H In (qj (g))
T aHP 0 d/3

= xG3)(43)P

and similarly

1 8T(H, pq, p,) v 1 X • (44)
cT Op, C Po

* Now, when we evaluate the theory given in Section II, we choose to specify the constants of the

motion P9 and p. in terms of the more physically interpretable parameters o and a where a- is the ratio

of the maximum to the minimum radius of the electron's orbit and a is the square root of the ratio of

the electron's perpendicular energy to the parallel energy, that is

r. f, (45)
r'i f.o

and

a'/ 7 r-. (46)

* We will now show that 3 (H, P9, 2:) is uniquely specified by the single quantity a-. Equating the left

hand side of Equation (42) for the root , to the left hand side of Equation (42) for the root o and

using Equation (45) we find the relation

1n((r) (47)

Inserting Equation (47) into Equation (42) then yields an equation for O(H, Pd, p.) in terms of a-

0(0-) - 2 I n(-) (48)
01a2 - 2 Ta. -I

14
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The parameter x is therefore completely determined by the parameter o- and we define the function

7(o) in terms of x(p)

-q(o-) - (o')). (49)

A graph of 7 (cr) versus a- is shown in Figure 4.

The radial oscillation period in terms of H, o-, and a is given by

m2 f i a2H In n(a-) 1(T -a - exp (0 (50)
Po ( + C,2) po 0 -Q2..1

where

4 f2 (51)
0 el)l in

The function

IL- I exp [ - " J J (52)

is the time it takes the electron to go from r0 to r. To compute the radial oscillation period in the two

limiting cases of a nearly circular orbit, o- - 1, and in the zero angular momentum case where o- -

. we note that

4 (1) - 7r (53)

and

( ( 1. (54)

The function T(o-), where

T~a) -T(55)
a exp
N-1.e (a2z+1I) P0

is displayed in Figure 5.
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Figure 4. The parameter q(o) versus a-.
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Figure 5. The normalized radial oscillation period versus o-.
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To evaluate the expression given in Equation (35) for the dispersion relation for a forward travel-

ing wave amplifier and the result of the oscillator calculation in the section that follows, we must also

calculate the coefficient a, (H, P9, p.) in the Fourier series for - t) given in Equation (23) and its

derivatives with respect to H and p.. That is

V(t) a,(H, Pe, p.:) sin 7 s t , (56)R] (t) -(H P,), p

and therefore

4 2(HPp.) V(t) s 2 7rs
as(H, P9, p,) T(H, P9, p:) o" 7--sin T(H, P9, p.) J d. (57)

Now, if we define

s =- 21? a.(H, P, p.) , (58)

and change variables to ro/r (t), we find that

KS - - sin sir ( (59)

We see that Ks is a function of only o- and K,(o) is plotted versus s/o- for various values of a- and s in

Figure 6. To compute the value of s where K, (o-) begins to decrease in amplitude, we combine Equa-

tions (57) and (58) and integrate by parts, to obtain

K 3(or) = - f 2 In r(t) cos (s0t) dt. (60)

The harmonic content of the radial oscillation period is principally determined by the motion of the

electron near the minimum radius turning point, so we expand the In - term in the integrand
N~ r(t)

around r(t) - r, and examine its form. Using Equation (52), we find

In() 1 - n(cr) 2  2n(() 1 I (61)

r((t) In(')T'2  a- - 1"

-In(Cr) cos ((5(t - ))
% 2
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fort t where
2

(a-) fl (r 1 (62)

The radial oscillation contains frequencies up to -6 and therefore K, (r) should begin to decrease in

amplitude for

sf 0> ', (63)

or

s. (r) 2 o In(o) 1 (64)
r ir V121n (r 0 2 _- I

Evaluating the expression on the right hand side of Equation (64), we find that K, (or) decreases for

, 2(65)
c2

-' more or less independent of ar, as can be seen from Figure 6.

Last, to compute

a a5 (H, P9, P:) and a. a-(H, Pe, p.)

we have

as a(H P2 P:) K (r) (66)
T(H, P9 , P.)

so

. a2(H, P,, p.) - 2 a,(H. P,, p.) 21r T-'(H. P"' p' ) K,(0-)
[O-H

27.. a K, (0)

,.'.- + 2 a,(H, PO, p.) (H,_P__ ) (H (67)
T(H, P9. p 6H

- fl2 K(0-) (0 f~i-) Ks(o-)
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where

SA

Ks (a-) = ao" o" (68)

Similarly,

1 a(, . 1 [ p()-) -2(- .'1 (69)

IV. FINITE LENGTH CAVITY

We will now calculate the power transferred from an electron beam injected axially through the

cavity that is shown schematically in Figure 7 to the fields of a TEM cavity mode. The assumptions (i)

- (iv) used in Section II will again be applied here. The result of the transferred power calculation will

then be used in Section VI to compute the threshold beam power required to make the cavity self-

-. ,oscillate.

The cavity fields for a TEM mode in the cavity of Figure 7 are given by

E'(r, 0, z, t) - E -a sin (kz) sin (wt) , (70)
r

and

Ba(r. 0, Z, 0 - E cos (kz) cos (oit) 0, (71)

where

17rk -. L , (72)

and

-. .:.. .,._ o =ck - L rcu "kI--7 (73)

Using Equations (17), (18), (70) and (71) to find the perturbed distribution function by integrat-

*ing over unperturbed orbits we find that

20
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f'(r, p, t) eaE, f dt' sin (kz(t)) sin ( '

- - cos (kCz'(t)) cos (Oat) + - cos (kz'(t)) cos(cut) - (74)c r'(t 9p; c r'(t) ap"

The integration is taken from the time the electron enters the cavity to time t. Proceeding in the same

manner as we did between Equations (19) and (28) of Section II, we find the perturbed distribution

function,

f._r, p, t aE1  { a,(H, P9, P-) U, 6, k)-L (6, -k)-L(-w, k) + Ls(-w, -k))

I.: , + . a,(H, P9, p) (L(u, k) + L,( 6, -k) + L,(-w, k) + L,(-o, -k) (75)
C Cp. OH "

:.

where

L, (co,k)

cos(sfl (HPo,p)(r,v,)-wt-(sf (H,P,p)-w)z/v:)-cos(sfl (H,Po,p)t(r,v)-ut+kz)
(sfl (H,P., p:)-w+kv)

We are interested in calculating the power transferred from the electron beam to the cavity fields.

Equation (70) for the TEM mode cavity electric field shows that the electric field has no azimuthal or

axial components. so we only have to compute the radial component of the perturbed current in order

*to calculate the transferred power. Then

0 -, J , z, t) = -e d'p v, f(r, p, t) (77)

* and the time averaged power loss of all of the electrons in the cavity, P, is therefore

P ".: -Fi /W 4L d . (r. 0 z, t) sin (kz) sin (cut)" ,-.P = -a ow E ,J dt f dz f " r dr (78)
r
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Combining Equations (75), (77) and (78) we have

: =e J dt sin (at) dz sin (kz) dr f d3p v,
•"4 0 Jo

Of( H. Po, p.)
afO, OH p a,(H,PO. pz) (L,(u, k) - L,(wu, -k) - L,(-w, k) + L(-j, -k)) (79)

c OH

+ 0f0 (H, P9, p.) v: a0f 0 (H, P9, p.)_

"-'"- as~Q ( H,P o,p. ) ( L5 (o, k)'+ -L (oa ,-k)+L3 (-co ,k ) + L (-co,- k) ).

We now transform the integration over d3p to an integration over dH dP9 dp: and perform the

integration over r by the technique used between Equations (31) and (35) of Section II. This yields

p aE8 f-Iu w dt sin (wJt) dz sin (kz) f dH dPO dp.

" O(H P4'P:) T(H. P, p:) a.2(H, P9,p) (G (c, k) - G, (, -k) - G, (-w", k) + G,(-,-k)) (80)

+l Of°(H, P,4 p-) -v f°(H, P, ) 1

"'-'-'- T(H,P,,p.)a-( H,,Pg,p,) ( G, (w,k )+G, (co,-k)+G, (-ow,k )+G, (-w,-k) ),

where

sin (wut 4 (sf (H. P, p:) - w) z/v:) - sin (cwt - kz)
G5(cu, k = (sl (H, P,, P:) -o kv.) (81)
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Integrating over t and z we find the general expression for the power transferred from the electron

beam to the cavity fields.

P.' e2a2E2L""~~ ~ f', P dH dPo dpz
81 S-

8Of(HP,p.) T(H, P#, p)a.2(H, Pq, p.) (F (w, k) - F, (o-k) + F(-w, k) - (-wF -k)) (82)oHa H

+1 1 f(H, P9 , P:) _ v. af(H, P9 , P:)

c p5  c 8H

T(H,P9,p)a,(H.P0,p,) (s (o,k)+F (o,-k)-F, (-w,k)-F (-w,-k))

where

Fs (o, k) k2L 2 (1 - cos (kL) cos ((s (H, P9, p.) - w) L/v:)) (83)

I I(sl (IH,P., pz) - co + kv, )  k 2L 2 - (s 0 (H, P9, pz) - Lo2

Equation (83) is a general expression for the beam power loss. In the next section we will spe-
cialize to an idealized distribution function which will allow the threshold beam power required for the

cavity to self-oscillate to be easily calculated.

V. THE DISTRIBUTION FUNCTION OF THE ELECTRON BEAM

Before Equations (35) and (82) can be evaluated we must specify an equilibrium distribution

function which is constructed from the constants of the motion, H, P, and p:. We choose the sim-
plest distribution function possible which is that of a monoenergetic beam with one value of angular
and axial momentum

tI(r, p, t) - A 8(H- Ho) S(Po - Poo) S(P: - mvo), (84)

where A is determined from the condition

2 f rdr d p p-f°(r, p, t) 1, (85)

M
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and I is the negative of the current of electrons through the cavity. To evaluate the constant A in

Equation (84) we insert Equation (84) into Equation (85) and transform the integration over d3p into

an integration over the constants of the motion. Then

I 2IrAe fa f dH dP9 dp, p.8(H - H o) 8 (P- P90) 8 (p, - mVo)

H_ r - - ' Po in (L)

2mr2  2m a

12" .Pro ,,'m rAevo fdr (86)
So mr2 2  r

5,-" Using Equation (36) for T(H, P9, P:), the radial oscillation period of an electron with total energy H,

N .angular momentum P9 and axial momentum p., we see that Equation (86) can be written as

I - r T(HO, P%, my 0) ev 0 A. (87)

Therefore, for an electron beam with energy Ho, current I, angular momentum Po0, and axial momen-

tum mvo, the distribution function is

f°(H, P9, p.) -8(H - H) 8(P, - P'60) a(p: - mlY0) (88)r arevoT(Ho, p9o, mVo)

The distribution function given in Equation (88) is an idealized representation of the distribution

function that would be present in an actual device. However, such a distribution function has many

advantages from an analytical point of view. The principle advantage is that it allows for simple evalua-

- tion of the theory and yields results which are easily interpreted. The distribution function can also be

used as the basis for superposing many solutions together to model the situation where the beam has

arbitrarily spread in energy, angular momentum and axial momentum. The superposition principle is

5 valid here because of the self-fields of the beam have been neglected and the theory is otherwise linear.

VT. RESULTS

The parameters we will use to describe the results of the linear theory of the orbitron traveling

* wave amplifier and oscillator are similar to the parameters used to describe the ECM. Indeed, the

voltage between the center and outer conductor in an orbitron, V0, plays the role of the magnetic field
A2
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in an ECM. The parameters H0, the total electron energy; a,, the square root of the ratio of the

electron's perpendicular to parallel energy; and b, the radius of the inner surface of the waveguide or

cavity outer conductor are also used for the ECM. Two parameters, the radius of the center conductor,

a; and o, the ratio of the maximum to the minimum radius of the electron's orbit, have no ECM anal-

ogy. The remaining eight quantities all have direct ECM counterparts. For the traveling wave amplifier

we have the harmonic number, s; the electron beam current, 1; the frequency, (u; and the spacial

growth rate, k,. The quality factor of the cavity, Q; the length of the cavity, L; the mode number, I;

and the threshold beam power required for the cavity to self-oscillate, Pbh are used for the oscillator.
We hope that this comparison of parameters will help to clarify the results that we are about to present

for those readers who are familiar with the ECM.

A. Traveling Wave Amplifier

1. Dispersion Relation

Combining Equation (35) for the dispersion relation with Equation (88) for the idealized beam
distribution function, we obtain an explicit expression for the dispersion relation for a forward traveling
wave in an axially uniform configuration

k,. k2-.2!1 In II -~ eo
k 2 a 4 irevoT(Ho, Pe 0 mv0) S

To (H P,, m v0) as'(,P 0 myH) P90 + kvoI
CH,P9,mVo)-w+k vH)

(sfD (HP%,mv) +6J (89)

+ .H.. H- rT( 0)a 2(H 0 p p.
l~~~c T(°PP)a(°P 'p )" (sf1(Ho,P9,,p.)-o +kv_)

¢ (sfl (Ho,POO,p.) + w- kv-) p.-mv
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Using Equations (43), (44), (67) and (69) for the derivatives of T(H, P#, p.) and a,(H, P9, p.)

developed in Section III and expressing the answer in terms of H0, c- and a we obtain the final expres-

sion for the dispersion relation

.. 2 (2Kr)- c 7r(o'))
• c J 41rv0 V0 S ( . W1 -( W + ks 0)

,7(o) sfl kv0P0  (90)

SW (sw + kv) 2  mvoc(sfl-oj+kvo)2

[,,2vol (sf") -k v W) + 2vo (c. W)i +,,,-kv0) +  W1 "w- Vq

kv:P0

+ vOc(sfl +w - kvO) 2

2. Spacial Growth Rate

-The model we used to find the dispersion relation for the infinite length orbitron assumed that

the electron beam interacted only with a forward traveling wave. In a real device, reflections at the

output can cause a backward wave to be present in the interaction region. If the amplitude of the

reflected signal reaches a level large enough for the loop gain of the system to exceed unity, the insta-

bility that gives rise to the maser interaction changes from convective to absolute and the amplifier

self-oscillates. Internal feedback through couplirg to the backward wave can also cause an absolute in-

stability (Briggs, 1964). It is important to know the parametric dependences of the transition from con-

vective to absolute instability when designing an actual device (Lau et al, 1981), and various schemes

can be used to avoid the onset of an absolute instability such as lining the inner surface of the cavity

with an absorbing material. Here, we choose to ignore the problem of absolute instability and simply

solve Equation (90) to find the spacial growth rate for a forward traveling wave in an infinite length

orbitron amplifier as a function of the frequency and beam parameters. It should be understood, how-

ever, that the growth rates that result may not be realized in an actual device due to the onset of an

. absolute instability.

**-V Now, to solve Equation (90) for the spacial growth rate we assume that (a - s fl and that only the

*'" sth term is resonant in the infinite sum. Then Equation (90) can be written in a more tractable form,

, .: 27
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k- 21 (sfl - w kvo) 2 - 4 (-)
1 C2 41rvo Vo

2Vo ,(2K'(a) ())(sf1kvoPo (9

Equation (91) is fourth order in k and has nine free parameters, a, b, a, o', s, V0 , H 0, I and w. In

the numerical results that follow we reduce the number of free parameters by normalizing the radius of

the center conductor, a, and the spacial growth rate, ki, to the waveguide outer conductor radius b.

We also normalize the frequency, w, to the frequency c/b. We fix the value of a, which is the square

root of the ratio of the perpendicular to parallel energy, at 1.5, which is a value typical of most ECM

experiments (Chu, 1978). The parameter - has been chosen to be 100; the harmonic number, s, isa

taken to be 1; the electron energy, H 0, is fixed at 10000 eV; and o, the ratio of the maximum to the

minimum radius of the electron's orbit, is taken to be 5. The three remaining parameters, V0, the

voltage between the center and outer conductor; 1, the electron beam current; and the normalized fre-

CIJC
quency, -- , will be varied. Figure 8 plots the spacial growth rate versus frequency for V0 - 13500

volts and I - IOOmA. This is plotted over the lowest frequency interval that gives growth. The

. voltage chosen gives a maximum electron radius of about .1b. Thus the electron (with a, - 5) passes

close to the center conductor yielding a large growth rate. Figure 9 plots the spacial growth rate versus

the beam current for the value of V0 used in Figure 8. The growth rate is seen to scale as - 111 3.

Last, the spacial growth rate is plotted versus V0 in Figure 10 for the voltages that are consistent with

radial confinement of the electrons. The beam current is taken to be 100 mA and the frequency was

*- varied here and in Figure 9 to maximize the spacial growth rate.

B. Oscillator

1. Beam Power Transfer to the Cavity Fields

Combining Equations (82) and (88), we obtain an explicit expression for the power transferred
5-

from the electron beam to the cavity fields

-- e2 a E2L 2
1 e - JT(H.P,mvo) as(H,P9 0 ,mvo)" '" P " - 8 1r e v oT (H ,P 0 , m V )

•F,(c,k)-F,(,-k)+F S(-,.k)-F,(-c,-k)1 H-Ho
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Figure 8. The spacial growth rate and wave number versus frequency for an
orbitron traveling wave amplifier
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+ . [ T(Ho, Po, pz) a.'(Ho, Poo, p,) (92)

c Op

cV OH [T(H ' Pg, m v) a3 (H, P90,mvo)

where F,(w, k) is given by Equation (83). Using Equations (43), (44), (67) and (69) for the deriva-
tives of T(H, Pg, p.) and a.(H, Pg, P:) developed in Section III and expressing the answer in terms of
H0, o, a, we obtain the final expression for the beam power loss,

, zrla2ln E? 1 fl2 2

'P K 2(a-) {PI + P + P3 + P' (93)

where

P.' I  (- ( -()-2x())F(A) +(o) I l- s7 G(A)- PO H(A). (94)

P2 - (7(a)-2K(o))L(A)-7j(T) 1+- I sflr M(A) - VN(A), (95):c j jcJmvoc "

P3 - )2 )sflrG(A)+-H(A (96)

p4 -o-() - 2K,'(Or)) L (A) -71 l - M (A ) + --. V(Ao), (97)

sin2[=

F(A) - (98)
A2(A- 217)

32



LV

(3A - 417r) sin 2  - (A - 21ir) Lsin(A)
2 2

a(A) - (99)

(A2 3A 1f + 212 r2) sin (A) - (2A 2 5lrA+ 41210i2) sin2{2

H(A) - &(A-21r) (100)

sin2[j-J

L (A) - (101)

(3A - 2 17r) sin 2  - (A - 21r) -sin(A)

* sin 2  2
M(A) - (102)

(A -(A 21r) - sin(A) - (2A 2- 3l1era + 2m12r) sin 2

N(A) - 42(a - 21) 3  (103)

A - (s0 (H o, P#,, mvo) - w + k vo) r, (104)

A '- (sf1 (Ho, P0 , mvo) + (a + kvo) r, (105)

and

1.= -

L'' (106)
V0

2. Threshold Beam Power Requiredjbr Self-Oscillation

The model which we used to calculate the beam energy loss to the cavity fields assumed an ideal-

ized cavity with discrete eigenfrequencies. The cavity has a finite Q. however, and this implies that the

cavity resonates in a narrow band of eigenfrequencies with a bandwidth of approximately 2w/Q. It will

33



be shown in Section VII that the frequency width for beam energy loss to the cavity fields is approxi-

mately 21r/,r and the finite Q cavity can therefore be treated as idealized if

> > -2L (107)
: r Q"

This condition is usually easily satisfied for any reasonable value of Q.

From the definition of Q,

Q E, (108)

where E, is the electromagnetic energy stored in the cavity and PL is the electromagnetic power lost,

we see that the threshold condition for oscillation occurs when the power lost from the cavity in the

*form of electromagnetic radiation is just balanced by the power input from the electron beam or

>2 P > PL, (109)

which implies that

>o E, (110)
Q.

Now, the beam power, P6, is related to the beam current through the relation

-:-: -i Pb - HoIle, (111)
,4"-

*and the stored energy for a TEM mode in the cavity is given by

E-M-e0 a2 E1- L In LJ.(112)
2 a.

Combining Equations (73), (93), (110), (111), and (112) yields the relation

611 2r E c Vo (HWe)
'.'p .iC1

2o) (P1  ~(+113P).?.KS Ofr . (o-) (pl+ pl+p3 + p'4)

S-I
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Equation (113) is a function of nine free parameters, V0, H0, ,-, o-, b, a, L, I and Q. In the

numerical examples that follow, we reduce the number of free parameters by normalizing the cavity

length, L, and the radius of the center conductor, a, to the cavity outer conductor radius b. We take

a to be 1.5 as we did in the numerical examples for the traveling wave amplifier. The parameter b/a

has been chosen to be 100, and - is taken to be 10. Finally, from Equation (Q13) we see that Q and
b

Pbh can be combined to form a single quantity, QPh, The four remaining parameters V0, the voltage

between the center and outer conductors; H0, the electron energy; a-, the ratio of the maximum to the

*! minimum radius of the electron's orbit; and I, the mode number, will be varied. Figure I1 plots QP[h

versus V0 for I - 1, 2 and 5, H0 = 10000 eV and a- - 5. This is plotted in the voltage range where

the s - I interaction of the I - I mode occurs. The I = 1 interaction has the widest voltage tuning

range and the largest QPblh for a given harmonic number, s. Figure 12 shows QPbh versus H0 for

s - I - 1, 2 and 5 and a, = 5. V0 is varied here and in Figure 13, to minimize QPb1. The start power

requirements for the lowest order mode are seen to increase rapidly as a function of the injection

* energy. Last, Figure 13 displays QPb versus (- for H0 - 10000 eV, I - s = 1, 2, 5, and 1=- =I 1, 2.
2

QPbh is seen to decrease as a- increases with saturation occurring when a- - 5 -

VII. DISCUSSION

A. Consistency of Approximations

We wish to verify that the assumptions we made in Section II are consistent with the results of

the calculations performed in Sections II and IV. First, we consider assumption (ii), the requirement

that the electric field due to the electron beam is small compared to the confining electric field due to
the voltage between the inner and outer surfaces of the waveguide. Now, the electric field of the

azimuthally symmetric electron beam is largest compared to the confining electric field for radii greater

than the maximum radius of the electron beam, r. Therefore, we have the relation

I VO
<< (114)

For the examples presented in Section VI, v0 - .c V0  10,000 volts and b 100 for which
a

Equation (114) yields

I < < 3.6 amperes, i15

and this is easily satisfied.
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Figure 12. The cavity Q multiplied by the threshold beam power required for self -oscillation versus

* the electron beam energy for various mode numbers in an orbitron oscillator
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Next, to verify the validity of assumption (iii) of Section II, we must show that the amplitude of

the radiation electric field in the interaction region, El, is small compared to the confining electric field,

that is

a E, << V0 (116)
rIn j i r

We choose to verify that Equation (116) is valid for the oscillator configuration which has a larger radi-

ation electric field amplitude in the interaction region than the amplifier configuration for a given out-

put power. Writing Equation (116) in terms of the output power using Equations (108) and (112), we

have

. 2e 0  V2

QPL << 1 (117)• 2Inb"

- b
In the example shown in Figure 11 where QPh 17 kW for Vo 

= 8200 volts, -- 100 and I- 1 we

find from Equation (117) that

QPL << 191 kW. (118)

Therefore, the threshold value of the beam power required for self-oscillation is less that one tenth the

output power needed to violate Equation (116) and assumption (iii) is seen to be easily satisfied.

B. Frequency Bandwidth of the Interaction and Allowable Beam Spread for the

Oscillator Configuration

To investigate the frequency bandwidth of the orbitron maser interaction in the oscillator con-

figuration, we plot the beam energy transferred to the cavity radiation fields versus the parameter A for

the I - I and I - 2 modes in Figures 14 and 15. It can be seen that the range of A for beam energy

S -loss to the cavity radiation fields is roughly 2 7r. The frequency bandwidth of the interaction is there-

%.l fore 2r / r. This allows us to compute the allowable spread in the beam parameters to insure that the

cold beam distribution function given in Section V is valid. Now, we have
- (119(s~fl - w + kgv 0) < < -21r (119)
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*and this implies that

fl s1 < < - (120)

Awhere N is the number of turns the electron makes around the central conductor while transiting theAcavity. We also have a condition on the spread in v.,

Sv, < < 2 , (121)

Vz kvo'r

and, using Equations (72) and (106), we find that

8v 
(122)V. V.

We can write Equations (120) and (122) in terms of the allowable spread in the beam parameters
H, a- and a by using Equations (43), (46), and (50),

87) SH 1 (123)

.__.2a H Sa < < (124)
(1 + a2)2 P0  sN'

-, ,8a < < 2 (125)
S(1+ 2) 1

*and

a TG(T)

T(#) 8< sN

%i where a ti a9- is the derivative of the curve shown in Figure 5.

For a numerical example of the allowable spread in the beam parameters we use the 1 = 2 mode

with the lowest threshold beam power shown in Figure 11. The value of sN is about 9 in this case.

* Using Equations (123) - (126) with the parameters of Figure 11 we find that

- ' 4 2

-1o



I ;, "

8H << .02, (127)
H

,. o-< < 3.7, (128)

" ari

and

8a << .05. (129)
a

The conditions on H and o, seem to be easily achievable; however, the allowable spread in the parame-

ter a could pose a problem. Any effort to design an electron gun for a TEM orbitron oscillator should

pay close attention to the spread in the beam parameters.

C. Nonlinear Efficiency Limits

Here we consider the maximum energy that can be transferred from the electron beam to a TEM

waveguide mode in an orbitron. Since the electric field of a TEM mode has only a radial component,

-the angular momentum of an electron that interacts with this mode is conserved. Also, the electron

has given the maximum amount of energy to the TEM mode if it exits the interaction region with no

radial velocity. Therefore, to compute an upper bound on the power transfer from the electron beam

to the TEM mode, we calculate the change in energy of electrons that enter the interaction region with

energy H0 having nonzero radial velocity and exit it with energy H' having no radial velocity, con-

sistent with the axial velocity change of the electrons due to the interaction with the TEM mode.

We consider the case of a forward traveling wave amplifier. The analysis is also valid for the

oscillator configuration if the electron beam interacts primarily with the forward wave component of the

-standing wave in the cavity. (If the electron beam interacts principally with the backward wave in the

cavity, the analysis is performed with the right hand side of Equation (130) having the opposite sign.)

Now, from Equations (13) and (14) we see that the only nonzero components of the TEM waveguide

mode are E, and B9 and

E- cB9 . (130)

The equations of motion are then

__ tdH -- evE,, (131)
dt
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and

"- ev, B9 , (132)

and combining Equations (130), (131) and (132), we find that

H- d (133)
dt diP

This implies that H - cp.. is a constant of the motion for electrons that transit interaction region.

Now, the Hamiltonian of an electron entering the interaction region is given by

,.,,2 ,.2

H0 - p2 + + 1(r), (134)
2m 2m

where q1 (r) is an equivalent potential

(r) - O + P In(135)
2mr2  

•

The function '(r) is a monotonically decreasing function of r for a < r < r' and is a monotonically

increasing function of r for b >, r > r'. A schematic plot of *(r) is given in Figure 16. In this fig-

ure H1, where

2

"HI,,.H. (136)2m'

denotes the perpendicular energy of an electron entering the interaction region and r and r, are the

[ minimum and maximum radial position of an electron with perpendicular energy Hz. For the electron

to exit the interaction region with minimum perpendicular energy it must have radial position r" and no

radial velocity. To compute the value of r* we find the radial position of the minimum of AI(r), using

the relation

-0. (137)

This yields
.7

r" (138)
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Figure 16. The equivalent potential of an electron orbiting the center conductor of an orbitron.
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Now, writing the angular momentum, parallel energy, and the Hamiltonian in terms of the parameters

o, or and a defined in Section III, we have

=Pe " n 2 .. (139)

H11 (140)

HO

1+ a2

* and

HO +a PnI-- " ,  n() (141)

a a2  J . 1a 2~0+ PO

-, Then using Equations (134), (135), (138), (139) and (140), we find that the minimum energy of an

electron exiting the interaction region is given by

H*-. L Po Ijr 'o- In[ 21n(a) +H , 12
2 (142)

where Hrj is determined from using the constant of the motion in the interaction region, H - cp.., and

Equation (140).

H' - c V - Ho - c. (143); (1 + . 2)

We combine Equations (141), (142) and (143) to find the maximum energy that an electron can

transfer to the TEM waveguide mode.

2 nc- 21n/o )
H 0- H- -2 - (144)

to lowest order in (Ho - H')/ mc2.
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If the electron beam current through the interaction region is 1, Equation (144) implies a theoret-

ical limit to the radiation power output of a TEM orbitron maser

S21n(o) - I -i 21n(o)I

2, IV [ 1 no-2 - 1" (145)

m-c-2(1 + X2)

Similarly. the theoretical limit to the radiation efficiency, ofm,", is given by21,) I 21 o-)
P0 a 2 -  T2 (146)

Kmc"2(7 + a 2)

* D. Mode Selection

The TEM mode is the lowest order mode of a coaxial cavity. It has large electric fields near the

center conductor which is an advantage for operation at high harmonics of the radial oscillation fre-

quency. However, unlike the TE modes, the TEM mode has the disadvantage that it has no cutoff fre-

quency. The cavity outer wall radius cannot be reduced below the cutoff radius to provide a strong

reflection of the forward or backward wave that makes up the standing wave in the cavity.

We can use two methods to provide reflection at the entrance or exit regions of the cavity at the

desired operation frequency. One method is to modulate the outer cavity wall with a periodicity X,.
Fortunately, we see from the results of the discussion of the maximum possible efficiency of the TEM

orbitron in Part C that the efficiency of the device is maximized when the voltage V0 is maximized.

This implies that the maximum radius of the electrons orbit, r0 , is minimized for high efficiency opera-

tion. We can therefore have large ripples in the outer wall of the cavity without intercepting the elec-

tron beam while operating in the high efficiency regime of the device. The other scheme involves

periodically placing azimuthally symmetric conducting breaks at the radius of the cavity outer conductor

with radial waveguides extending into the insulator. The radial waveguide sections would be tuned to

provide an optimal cavity Q at the desired operating frequency and minimal cavity Q at unwanted fre-

quencies. This scheme has the advantage that it will not strongly cut off TE modes producing a large

cavity Q for an unwanted mode. It also has the added feature that conducting breaks are required in

any case to increase the potential of the outer conductor from its large negative value in the interaction

region to a small negative or ground potential in the collector region. Last, we should mention that all
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TE modes produce azimuthal currents in the cavity outer conductor and TEM modes have no azimuthal

wall currents. Lossy material can therefore be incorporated into the cavity design to dissipate azimuthal

currents and therefore lower the value of Q for a TE mode while having a small effect on cavity Q for

a TEM mode.

A conceptual design of a TEM orbitron cavity is shown in Figure 17. Further analysis is required

, to find the shape and number of ripples in the cavity outer wall and the spacing and length of the radial

waveguides to provide optimal reflection at a given operating frequency.

4 h'

E. Beam Formation

We envision forming an azimuthally symmetric electron beam in accordance with assumption (i)

of Section II. The electrons would be emitted from an azimuthally symmetric tungsten dispenser

cathode through a grid into the beam injection region as shown in Figure 18. The electrons would be

* injected with a large value of axial momentum, a small value of radial momentum and, of course, no

angular momentum due to the azimuthal symmetry. The angular momentum would be created and

controlled by the presence of a weak azimuthally symmetric magnet field. As an illustration we assume

that the magnetic vector potential of the applied fLid is given by

A(r,z) - O, (147)
2

in the beam formation region. The canonical angular momentum of the injected electrons would then

be

Pe - Bo, (148)

where r, is the radius of the grid. The magnetic field would be shielded out of the beam compression

region and the interaction region by the presence of an iron shield which surrounds the downstream

portion of the device to remove the injection magnetic fields and any other stray magnetic field that are

present. The electrons then enter the beam compression region with the value of angular momentum

given by Equation (148) even though the field has been removed. To find the magnitude of the mag-

netic field required in the beam injection region, we use Equations (139) and (148)

B-- 2 r, /2M In) (149)

and for V0 O 10000 volts, b /a 100, o 5, r I1 mm and re 1 cm we find that B0 o 8 .1

gauss.
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An alternative to the above injection scheme is to use a non-azimuthally symmetric cathode and

grid structure shaped similar to a turbine to inject the beam. This scheme has the advantage that it

does not require a magnetic field to give the beam angular momentum. The beam would not be com-

pletely azimuthally symmetric, however, and the ability to independently control the two beam parame-

ters o, and a would be lost. It might be advantageous to use this type of injection scheme in a produc-

tion device, once the optimal beam parameters become known.

The beam exits the injection region and enters the compression region as shown in Figure 19.

Here the beam is adiabatically compressed so that it enters the interaction region with a small axial

momentum and a small maximum radius. If the beam is adiabatically compressed the value of the

radial action, S, where

S p, dr, (150)

* is invariant. Evaluating Equations (150) using Equation (5), (37), (38), (39) and (42), we find that

S - .O (151)

Pq is conserved since the compression region is azimuthally symmetric. Therefore the parameter /3 is

an adiabatic invariant because the integral is solely a function of /3. We see from Equation (48) that o-

is therefore also an adiabatic invariant. Now, using the fact that the parameters H0, o-, g/ and P9 are

invariant in the beam compression region, we can use Equations (3), (39), (139) and (140) to find two

equations that relate the parameters a, b, r0, V0 and a in the interaction region to their values as they

exit the injection region, a', b', r6, V6 and a'

'X-ZJ r, -o = r- \J5, (152)

.- and

P? P, 12" . 0' -\/ P a o
.% .. I" (153)

-' ____ev_
Q1 + a2) P() Ho 4 P6 a] Q + a'2 )(13

e V5where P° - . (154)
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For a numerical example of the design equations for an adiabatically compressed beam we will cal-

culate P'0 and a' for the interaction region parameters of Figure 8 and a'- a, b'- 1.5b and a

compression ratio of 10. Now, using Equations (3) and (152) we find that

V'0 - 146.9 volts, (155)

and inserting this value of V' 0 into Equation (153) yields the value of a required at the entrance to the

beam compression region, that is

a'- .. 18. (156)

Finally, a conceptual design of a TEM orbitron oscillator is shown in Figure 20.

VIII. CONCLUSIONS

In this paper we have presented the linear theory of the TEM orbitron maser, and gained an

understanding of the basic operation of the device in both the oscillator and traveling wave amplifier

configurations. There appears to be great promise in developing the concept of an axial injection TEM

orbitron maser as an inexpensive, high efficiency source of high frequency microwave radiation.

Further work is required in the area of mode selectivity in the cavity and in the details of the elec-

tron injection scheme. The linear theory of the TE mode must also be-worked out to quantify the

problem of TE mode competition with the TEM mode. Hopefully this will occur in the near future and

a prototype device will be constructed.
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