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THE AXIAL INJECTION
TEM ORBITRON MASER

1. INTRODUCTION

The development of the electron cyclotron maser (ECM) has made possible the efficient genera-
tion of high power millimeter wavelength electromagnetic waves. One drawback of these devices with
respect to size and cost, however, is that they require large magnetic fields. Thus there is current
interest in developing a high efficiency millimeter wave source that does not require the use of a large
magnetic field. In this paper we propose and analyze a device configuration which appears to hold great
promise in fulfilling this goal. This proposed device is essentially a modification of the basic orbitron
maser concept (Alexeff and Dyer, 1980 a). The orbitron maser employs coaxial cylindrical geometry
with the center conductor held at a positive potential with respect to the outer conductor, as shown in
Fig. 1. Electrons are radially confined by the positive potential of the center conductor and orbit

around it.

In the earliest orbitron experiments, electrons were introduced into the cavity by creating a glow
discharge between the center and outer conductor (Alexeff and Dyer, 1980 a,b). The electrons were
axially confined by the fringing fields provided by conducting end caps held at the potential of the outer
conductor. Broadband microwave emission was observed in a series of 25 ns bursts of radiation which
occurred about 50 us after the center conductor was pulsed to a high positive potential. Later experi-
ments were able to achieve higher frequency operation by using an open cylindrical outer conductor and
a center conductor with sharp periodic radial steps to provide an axial restoring force to confine the
electrons (Alexeff and Dyer, 1983, 1984).

The theoretical explanation that was given to describe the operation of the orbitron experiments
was that electrons executing circular orbits around the center conductor are negative mass unstable and
would therefore exhibit a maser interaction (Alexeff and Dver, 1980 a; Lau and Chernin, 1984 a,b:
Alexeff, 1985). Using the notation of Fig. 1, the frequency of a nonrelativistic electron orbiting the

center conductor in a circular orbit of radius r is
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5:'
, ;;; A voltage much larger than that used in the experiments is required for an electron in a circular orbit to
;.l,.. ) interact with a TE mode because the azimuthal electric field component of any TE mode is large only at
‘ 9 distances far from the center conductor. Indeed, the boundary condition on the electric fields in any
_Ef coaxial waveguide is that the azimuthal electric field be zero at the conducting surfaces. Also, there is
ff’_-) no interaction of the TEM cavity mode with an electron in a circular orbit. The assumption that elec-
- \ trons with circular orbits are even injected into the device seems unlikely. There is no mechanism for .
; the electrons to gain a sufficient amount of angular momentum to achieve a circular orbit using the
z-'('ﬁ-: glow discharge radial electron injection scheme. Thus, if the emission process is indeed a maser )
i}‘; interaction due to the negative mass nature of the electron’s orbit, it is probable that it comes about
: through electrons with highly eccentric low angular momentum orbits interacting with TE or TEM
s waveguide modes at high harmonics of their radial oscillation frequency. An axial view of a low angu-
:: 3 lar momentum electron orbit in an orbitron is shown in Fig. 2. Another difficuity complicating an
";:;;; understanding of the emission process of Alexeff and Dyer (1980a) and Alexeff (1985) is that there is
g: no clear means for electrons to be removed from the cavity once they have transferred their energy to
\.-§ the radiation fields. Low energy electrons that are confined in the cavity may reabsorb energy from the
_i,.:: _ radiation fields producing a relaxation oscillation. Indeed, it appears that it is some type of a relaxation
K,\';)\ oscillation that is observed experimentally (Alexeff and Dyer, 1980 b). Alternatively, it has been pro-
{ posed that the microwave emission process in the glow discharge radial injection orbitron maser is due
‘::;_'.' 1o the nonlinear wave-wave coupling of counterstreaming plasma waves (Schumacher and Harvey,
o 1984).
e o
"& We will demonstrate that a high frequency, high efficiency orbitron maser that operates at high
:) power levels can be realized by using an axial electron injection scheme. Electrons would be injected
;_\‘ with a large value of axial momentum in a region with a low radial electric field. They would then be
k_: adiabatically compressed into the interaction region where the radial electric field is large. The adiabatic
i’;\!: compression process has the advantage that it increases the electron density as well as the ratio of their

perpendicular to parallel energy. The electrons would not be axially trapped in the interaction region as
in the early orbitron experiments but would rapidly transit the interaction region where they would .
resonantly transfer their energy to the radiation fields. This injection scheme is very similar to the one
used in most ECM devices which have been demonstrated to operate at high powers with high efficien-
cies (Hirshfield, 1979). The proposed axial injection orbitron maser would also operate in high
vacuum, as is the case with most ECM devices. Most importantly, axial injection allows one to maxi-
mize the efficiency of the maser interaction by providing a means to produce an electron beam whose
distribution function is optimized for the power level requirements of the device. It also provides a

means to optimally position the electron beam to interact with a given waveguide or cavity mode.
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Figure 1. The orbitron configuration.
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Figure 2. An axial view of an electron orbit.
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Since for high harmonic operation we wish to take advantage of the structure of an electron orbit

with a small minimum radius, the natural inclination is to examine modes with the largest fields near

the center conductor. For this reason, we restrict our attention to TEM modes. In these, £, and B,
are both proportional to 1/r between the center and outer conductor. We have succeeded in analyzing
the interaction of a TEM waveguide or cavity mode with low angular momentum electrons transiting
the interaction region of an orbitron. This allows us to quantify the spacial growth rate for an infinite
length traveling wave amplifier, as well as the threshold values of the cavity Q multiplied by the elec-
tron beam power required for self-oscillation in a finite length oscillator configuration. We have also

developed the basic design equations necessary for the axial electron injection scheme.

The chapter is organized as follows. Section II presents the linear theory of the TEM orbitron
maser. The dispersion relation for the axiaily uniform orbitron is derived by solving the linearized
Vlasov equation by the method of characteristics. The integration over unperturbed orbits is performed
by expressing the radial velocity of the electron multiplied by the radial part of the electric field’s eigen-
function in a Fourier series. The radial part of the eigenfunction for the TEM mode has a particularly
simple form, 1/r. It will be shown that the interaction strength at a given harmonic of the radial oscil-
lation frequency is proportional to the square of the Fourier coefficient for that frequency in the
Fourier series expansion of the electron’s radial velocity divided by its radius. The radial oscillation
period for a nonrelativistic electron and other quantities having to do with the electron orbits in an orbi-
tron which are necessary to evaluate the linear theory of the orbitron interaction are calculated in Sec-
tion III. It will be shown that o, which is defined as the ratio of the maximum to the minimum radius
of the electron's orbit, is an important parameter. Specifically, the maximum harmonic number for
which there can be a strong interaction is roughly /2. In Section IV we use the technique developed
in Section II to calculate the power transferred from the electron beam to the radiation ficlds as the
beam traverses a finite length cavity. The results of this calculation are combined with the definition of
the cavity Q and an expression for the energy stored in the cavity in terms of the radiation electric field
amplitude to find the beam power required to make the cavity self-oscillate. A cold beam distribution
function in which each electron is assumed to have a single value of energy, angular momentum and
axial momentum is presented in Section V. This distribution function allows the results of Sections II
and [V, which are given in terms of a general distribution function, to be easily evaluated. Section VI
presents the results for the infinite length traveling wave amplifier and the finite length osciilator con-
figurations. The spacial growth rate is given versus frequency and beam parameters for the traveling
wave amplifier. For the finite length oscillator, we piot the cavity Q multiplied by the threshold beam

power required for self-oscillation versus the voltage between the center and outer conductor and beam

parameters. Finally, in Section VII we discuss the consistency of the approximations used in the
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theory, some mode selection schemes, and present a conceptual design of the beam injection system.
We also use the constancy of the angular momentum of an electron in a TEM orbitron maser with an

azimuthally symmetric electron beam to calculate the maximum possible efficiency of the device.

II. PHYSICAL MODEL: THE AXIALLY UNIFORM ORBITRON

The configuration of the orbitron maser that we will describe is shown in Figures 1 and 2. It con-
sists of an electron beam propagating axially through a coaxial waveguide of circular cross section with
inner radius 2 and outer radius . The axis of the electron beam coincides with that of the waveguide.
The electrons are radially confined by the electric field between the center and outer conductors of the

waveguide, and move in axis encircling orbits with a substantial fraction of their kinetic energy
transverse to the axis.

The following simplifying assumptions are made:

i} The electron beam distribution function and the cavity fieids are both independent of the
azimuthal angle 4.

ii) The electron beam is of low enough density so that its self-electrostatic field can be
neglected compared to the static confining electric field due to the applied voltage difference
between the inner and outer surfaces of the waveguide.

iii) The cavity fields are a first order perturbation of the static confining electric field.

iv) The perturbed distribution function f! is of first order with respect to the initial distribution
function f9.

The TEM mode is the lowest order mode for a coaxial waveguide and we shall restrict the analysis of
the maser action in the orbitron to this mode. The TEM mode has a particularly simple structure which

greatly simplifies the analysis compared with that of the TE mode which also should give rise to a
maser interaction.

In this section, we examine the orbitron interaction by calculating the dispersion relation for an
axially uniform system. This will set the stage for the calculations in Section IV of start osciilation con-

ditions for a finite length cavity, as well as show how to handle the effect of the complex orbit.

If we use the convention shown in Figure 1 for the potentials on the conductors, the electrostatic
potential energy of an electron is

qd(r) = Py In lﬁ] )
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. eVO
Po - (3)
F\
f\:‘l [n [g
Y a
5
SN
o .
) The Hamiltonian can then be written .
]
hoS 2 2
‘ P} Py b:
i H=— + + —+Pyin|—
" ""-!. 2m zmrz 2 0 al’ (4) :
*\
o
%y )
. where
:':' p=my, (5)
s
\"‘ . . . . . . . . . .
“~' and the electron is assumed to be nonrelativistic. Now, since the Hamiltonian is independent of time,
5'{ # and z we have three constants of the motion H, P, and p,, where
o«
.‘_::
':," P9=rp9=-mr29. (6)
b
L ]
-y To find the motion of an electron we first determine the radius as a function of time by combining
-:j: Equations (4) and (5),
e
" r
<2 dt = d . (7)
®) 2H _ PP bl 2P0 |
e m o T T e T
~ m m*r m m a
s
S
: :.j-; Once r (1) is known, @ as a function of time can be computed by integrating Equation (6) in time.
‘7 s .
[ The angular momentum term in Equation (7) provides an outward radial force which dominates at
.Y
:}* small r, the electrostatic potential provides an inward force which dominates at large . Thus the orbit
Ny has an inner and outer radial turning point, r; and r,. At each turning point, the radial velocity is, of
At 0
~
A course, zero.
K »
5 . .
::_.:- The orbit is characterized by a shape, which is invariant given the constants of motion, and an ini-
. . . . . .
.:::__; tial value. For the more conventional case of a sinusoidal or circular orbit, the former corresponds to
'.,-*_.j. the amplitude and frequency, while the latter corresponds to the phase. To specify the shape of the
oty orbit. we will consider an orbit such that ¢ = 0 is the time at which r = r, and define this orbit as
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r=R(t) and v, = V(¢). It is important to note that R (z) is an even function of ¢ while ¥V (¢) is an
odd function of ¢. Schematics of R(¢) and ¥V (¢) are shown in Figure 3. The orbit has a full period
T(H, P,, p.) which depends only on the constants of the motion.

To calculate the dispersion relation for the orbitron interaction in an axially uniform system we
use Maxwell’s equations to find an equation that relates the perturbed electric field in the waveguide to
the perturbed current. We then find the perturbed current in terms of the perturbed electric field by

integrating Vlasov’'s equation over unperturbed orbits. Combining the two relations yields the disper-
sion relation.

Now, starting with Maxwell’s equations

V E= £, (8)
€0
vV -B=0, 9)
vxE+3B oo (10)
at
1 dE
VXB—?‘EI—’“OJ’ (11)

we combine Equations (10) and (11) with an assumed time dependence of e~'‘ 1o get an equation for
the electric field

2
VxVxE—%Eaiwqu. (12)

To proceed, we expand E as a linear superposition of orthogonal vacuum waveguide modes. In this
paper we focus specifically on the TEM mode, because this mode has maximum electric field near the

center conductor, where, as we will see, the orbit has the most harmonic structure. The waveguide
fields of the TEM mode are given by

a e -
E'(r,6,z,0) = E, = eille=wl (13)
r
a - -
B! (r.8.z2,0) = £, — e'lke-wi) g, (14)
cr
7
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Figure 3. The radius and radial velocity of an electron orbiting the center conductor versus time.
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and we assume that the beam current is small so that the mode is nearly a vacuum mode. This is
analogous to assumptions made in calculating the linear theory of the ECM. Then, as discussed by Ott
and Manheimer (1975), once we determine the form of J,'(r, 9, =, 1) driven by the waveguide fields
given by Equations (13) and (14), we take the dot product of Equation (12)- with the complex conju-

gate of Equation (13) and integrate over the waveguide cross section to find the dispersion relation,

{kZ_ .m_z.
2
c

S IE? rdrd6 = iwpg [ E* - 3! rdrde. (15)

Finding the perturbed current means integrating over the unperturbed orbits which are unspecified as
yet, and quite complicated. However, the effect of this complex orbit can be characterized by a single

parameter as we will see shortly.

The perturbed current density, in terms of the perturbed distribution function, is given by

JNr, 8.z, 1) = —e f v, fl(r.p, 1) d&p. (16)

We use the Vlasov equation,

af e, p.t) iy, af(r. p. 1) +qE G ) +vxBE o) - of(r.p. 0) _ 0. 17
at ar ap
to find the perturbed distribution function, where
f,p.t)=f%,p)+ flir,p, t). (18)
Then, to first order
fir,p,t)=e f_; dt’[ Elr, ) +v (r,t) x B, ¢) w—-g—)— (19)

op

The quaritities r and v, implicit in Equation (19) are evaluated along the unperturbed orbit, where the
orbit is initialized by specifying that the velocity ¥ (¢) is v, and the position R(¢) is r at time r = ¢ If
t(r,v,) is the time between 0 and T(H, Py, p.) such that V() =v, and R (1) = r. the unperturbed
orbit is specified by R (y) and V{(y) where

o y=t—+ iy, (20)

[» Inserting Equations (13) and (14) into Equation (19) and using the fact that

P

e 3/°H. P, p.)  8f°(H, P, p) .
- T am ‘20
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we find an expression for the perturbed distribution function,

S, p, ) = e a E, [1—-\;—:

Qﬂ.,._l_ﬁ.ﬁ] " gt el —wn) V("'H'E(" v,) (22)
OH ¢ ap. f-" ¢ R('-t+1t(r,v,))

Since ¥ (y)/R (y) is an odd function of y, it can be expanded as a sine series

Yo

) a,(H, Py, p.) sin (sQ(H, P,, p.) y), (23)

MS

where Q (H, Py, p,;) = 2m/T(H, Py, p.) and a,(H, P,, p,) is the Fourier coefficient, which is a func-
tion of the constants of the motion.

Now, if we let

x=t'—t, (24)
v, = v, (25)
then
kz'(t) = kz + kv,x, (26)
t'=x+1, (27)

Inserting Equations (23), (26) and (27) into Equation (22) yields the perturbed distribution function,

| - _Y: 1300 18/
S, p, o) eaE.[[l A 6H+c6p,

oo 0 - Vv, ~wlX . N
3 a,(H, P,, p.) f_m dx o' T T ke g (sQ(H, Py, p.)(x+1t(r, v,))

s=

__eab | _vlaf 1A (28)
2 c|] aH ¢ ap.
o g amattsQUH. Py, Pt v,)) e sQH. Py, p)itr, v,)),
+ .
X a(H. Pop) [ (SO(H Prp) et kv T GOH, Py p)Ta—kv,
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and combining Equations (16) and (28) we find that

ela E, =
iwpel, = ing @ — LS [ @ a,(H, Py p) v,
s=]
(- l—’_ ﬁ . l afo ei(kz—wl+sﬂ(”, Py, )1, v,)) l(/c —wr~sQ(H. P, ptr v, (29)
c]dH ¢ 9 (sQ(H, Py, p.) = @ + kv.) (sQ(H Py, p.) +w = kv,)

Equations (13), (15) and (29) then yield the dispersion relation

22
=mow—-2—

2
k- w_Z] a*in [2
c a

3 V.1 9 1 8
3 - = _ﬁ L 30
S-Elfdrfdpv,a,(H,Pg,p,)[ . 8H+c 3. (30)
:(sQ(H Py, p)i(r. v))) e—l(sﬂ(H Py, p)ilr v,))
[ (sQ(H Pg,p.)—w+kv) T GQH, Py, p.) + @ — kv.)

Notice that at this point there is still a fairly complex dependence on r and v, through the
exponential of Q (H, P,, p:); (r, v,). Utilizing the Jacobian to transform the integration over d’p 10 an

integration over dHdP,dp.,

2
[kz - -‘;Lz-] in

et 2

. b 1 v,
=1,u.0a;75_21fa ar [ dH dPydp. P>

Iy

AI—‘J
it

-
Ky
i
-~
.
3
~
\

) 8% . 1 as°
. - + —
as(H, Py, p.) [ 1 3H c 3p. (31)
isQH, Py p )iy (r,v,)) ~i(sQUH. Py, p,)l 4 (r. v,))
e s
(sQ(H, Py, p)—w+kv,) (sQ(H, Py, p.)+tw—kv.)

where the summation over + is a summation over ¢.(r, v,) and ¢_(r, v,). Here ¢.(r, v,) is the time

for the particle to reach r with positive v,. Using the time origin of Figure 3, we see that

%(H, Py, p,) < t.(r,v,) < T(H, P,, p.). Similarly, t_(r,v,) is the time required for the particle to
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reach r with negative radial velocity and 0 < ?_(r, v,) < %(H , Py, p.). We now bring the integration

over radius inside the integration over momentum space and perform the integration over radius by

changing the variable of integration to 7(r, v,). Then

ar _ v

dr, 32)
r o RGQ) (
and Equation (31) becomes
2 2 o v
L I 7 B , NIA E. Y.
02] n inow < :-1f dHdP,dp, a,(H, P,, p‘)[ e v
fT(H, Pep) V(D) Al o/ SO, Py p)D) i SQUH. Py, p)D
= + -
TT(H, Pg 0y R(1) (sQ(H, Py, P.)~w+kv.)) (sQ(H, Py, p.) +w—kv,) (33)
0 i(SQUH. Py, p,)1) —isQ(H. Py, p,)0)
_f_ AQR, [ + d - ]
+H. Ppp) R(1) (sQ(H, Py, p)—w+kv.) (sQ(H, Py, p.) +w—kv,)
Now, we have
V(;) - . / ~ j
——=-= ¥ a, (H, Py, p.) sin (s'Q(H, Py, p,)1). (34)

R{(1) sml

Inserting Equation (34) into Equation (33) and integrating over ¢ we obtain the dispersion relation for a

forward traveling wave in an axially uniform orbitron in its final form

1_ Wl 5 __”'Oew - = Laf
[k | a] ,-1f dHdP,dp, [Hl C] = .
TUH. Py, p.) o] (H. Py, ”’)[ GOQH, Py p)—w+kv,)  GQUH. Py p) *wkv,) ” (33

Equation (35) is written in terms of a general unperturbed distribution function fX(H, Py, p.). We will
present a specific distribution function in Section V which allows us to calculate, in Section VI, the spa-
cial growth rate of the forward traveling wave as a function of frequency and the electron beam parame-

ters.

12
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III. ELECTRON ORBITS

We are interested in the details of the radial motion of an electron confined in the logarithmic
potential well provided by the configuration shown in Figures 1 and 2. To calculate the radial oscilla-
tion period of the orbit, T(H, P,, p.), in terms of the constants of the motion, we take Equation (7)

and integrate from r; to r,

T m " dr
2 (H, Py, p:) = \/;f'.- P2 T r ‘ e

where ry and r; are the roots of the equation

—=|=0. (37

To put Equation (36) into a simpler form we transform variables as follows. Let

Py
- — (38)
T 2mb, €
and
2
H D Py
H P,p)=—— - n|—]. (39)
B( ¢ P PO ZMPQ " l\/ZmPOa
Equation (36) can then be written
Py
T(H, Py, p.) = — y(3), (40)
Py
where
£ dé
(B) = - , (41)
vie ff E2NVB+ In £ — ¢?
and ¢, and £, are the two roots of the equation
B(H, Py, p,) + In(§) — 2= 0. (42)

13
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We can use the particularly simple form of Equation (40) to compute the derivatives %}—; and gpr
t4

which are necessary to evaluate the general result given in Equation (35) for the specific distribution

function that will be described in Section V. Indeed,

| 8T(H, Py, p,) 1 d
T 3H - By 4B In ((8))
~Ly@ (43)
Py
and similarly
1 9T(H, py, p.) v, 1
T a7, c P xB) . (44)

Now, when we evaluate the theory given in Section II, we choose to specify the constants of the
motion P, and p. in terms of the more physically interpretable parameters o and a where o is the ratio
of the maximum to the minimum radius of the electron’s orbit and « is the square root of the ratio of

the electron’s perpendicular energy to the parallel energy, that is

o= — = (45)

and

/ H,
- —_ (46)
* Hy

We will now show that 3(H, P,, p.) is uniquely specified by the single quantity o. Equating the left
hand side of Equation (42) for the root £, to the left hand side of Equation (42) for the root £, and
using Equation (45) we find the relation

g2 = Inlo) (47)
o-—1

Inserting Equation (47) into Equation (42) then yields an equation for 3(H, P,, p.) in terms of o

In(a) 1 in{g)
()= () _ L, |ln(g) | 4
Bla) e 2!n - — (48)
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The parameter y (8) is therefore completely determined by the parameter o and we define the function

n{o) in terms of x(8)

nlo) = x(B()) . 49)

A graph of n(o) versus o is shown in Figure 4.

The radial oscillation period in terms of H, o, and « is given by

/2 a’H in(a) -
- — . 0
T=aqa ) exp T+ o) - 71— 1 ¢(a) (50)
where

[(x) = flx d¢ . (51)

)2 A=)+ e

The function

a’H _  in(g) To 5
l+adPy oi-1 ] C( r ] (52)

is the time it takes the electron to go from ry to r. To compute the radial osciilation period in the two
limiting cases of a nearly circular orbit, ¢ — 1, and in the zero angular momentum case where ¢ — o

we note that

() =nx (53)
and
{(00) = /7 . (54)
The function T(¢), where
T(o) = LA : (55)
a /_Z_m exp |—2H
Py (a® + P,

is displayed in Figure 5.
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n{o) versus o
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S Figure 4. The parameter (o) versus o
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t\- To evaluate the expression given in Equation (35) for the dispersion relation for a forward travel-
Y
) ing wave amplifier and the result of the oscillator caiculation in the section that follows, we must also
R calculate the coefficient a,(H, Py, p.) in the Fourier series for RG ; given in Equation (23) and its
AWy
0 e
Z:: derivatives with respect to A and p.. That is
{j:’ ()
Y V(e ot . 2w s
—_— , D- —_—— ], 5
‘ S0 Sg a,(H, P,, p.) sin TH P 7D tl (56)
N
o and therefore
L, P, p)
- 4 o 40 i 2w s
e a(H, Py p) = w0053 i R ° [ TH, Py o) | ] a. (57)
f;::
D r..‘
"
K Now, if we define
L J
& T(H, Py, p,)
“» s L gy Mz
. = ——— q.(H, P, p.), 58
'tk' Ks 2 as( [ p..) ( )
\ "-",'
e
¥ :- -
e and change variables to rq/r(¢), we find that
- 2 7 {(x) <
;::: K - fl sin |sm 5k (59)
.-:j
L g

{9}

We see that «, is a function of only o and x2(c) is plotted versus s/o for various values of o and s in

"‘ y . . . -
f_ Figure 6. To compute the vaiue of s where «,(c’) begins to decrease in amplitude, we combine Equa-
':'; tions (57) and (58) and integrate by parts, to obtain
o
- k(o) = == f ] cos (sQ1¢) dr. (60)
o
1
-
“
_:_-.: The harmonic content of the radial oscillation period is principally determined by the motion of the
- r
., electron near the minimum radius turning point, so we expand the In [r(”[) term in the integrand
\Q
-.\-(
! :}' around r(t) = r; and examine its form. Using Equation (52). we find
o 2
Yo i’ Ha)a? | 2a2in(a) T
In|——|=in (@) |1~ -1l]e- = 61)
‘:.' [r(t)] 7 [ In(e)T? | o?-1 2
o
3
o . - - T
. = In(a) cos (m(r - 7))
Y
o 17
®
K
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for ¢t = TT where

o= Z {(c) 20¢in{a) _ 1 (62)
#a2lnic) \/ o%-1

The radial oscillation contains frequencies up to ~@ and therefore (o) should begin to decrease in
amplitude for

sQ > a, (63)

or

S = {(o) 2gtin(e) _
o > w 2in(a) at-1 L. (64

Evaluating the expression on the right hand side of Equation (64), we find that «, (o) decreases for
s 1
2 L 65
o 3 (65)
more or less independent of o, as can be seen from Figure 6.

Last, to compute

9 2 19
aHas(H,Po,pz) and c apz G(H‘Po,p;)v
we have
a,(H, P,, p.) = ‘rﬁﬁ)‘ k (o), (66)
SO
:—H aX(H. Py, p.) = 2 a,(H. Py, p.) 2m 6‘9—” T-'(H. Py, p.) K, (o)
9« (o)
+2a,(H, P, p.) T(Hz’;g — ';‘H (67)
= =2 0N2xia) L [n(o-) -« (o) |,
Py
19
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e
35 £l GK,(O')
o k(g) = —32_ 9o (68)
':"’;f k(@) 98
L
o8
o Similarly,
1
gy 1 8 2 -202ie) = L ) = ki) | . (69)
.j'_::_ ? ap: ag (H» P99 p:) 20 Ky (0') c PO n(cr Ks
-
IV. FINITE LENGTH CAVITY
i
:;;':; We will now calculate the power transferred from an electron beam injected axially through the
fi"i;: cavity that is shown schematically in Figure 7 to the fields of a TEM cavity mode. The assumptions (i)
SR8
'." - (iv) used in Section II will again be applied here. The result of the transferred power calculation will
“‘ then be used in Section VI to compute the threshold beam power required to make the cavity self-
e >
XN oscillate.
TN The cavity fields for a TEM mode in the cavity of Figure 7 are given by
v E'(r, 8, 2. 1) = £; < sin (k2) sin ?) 7, (70)
-:‘J
oy
;C-:; and
B(r. 9, z, 1) = E; <= cos (kz) cos (wr) 8, (71)
,._1\" cr
o
| ._-. .-
;‘_.r:: where
A I
- - — 7
‘-"'~ k L ( 2)
~‘} 3
"_:::‘_'.' and
..—' w = ck = | CT" (73)

Using Equations (17), (18), (70) and (71) to find the perturbed distribution function by integrat-
ing over unperturbed orbits we find that
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flia, p, t) = eak, f dr’| sin (kz (¢t)) sin (wt) _L_8r

t=2z/v, r'(¢) dp;
- cos (kz'(¢)) cos (wt) 1 + 1 cos (kz(¢)) coslwe) l’(;) L (74)
c rt) dp, c rt) ap. |’ '

The integration is taken from the time the electron enters the cavity to time ¢. Proceeding in the same

manner as we did between Equations (19) and (28) of Section II, we find the perturbed distribution

function,

eak, =
Flap, o) = a4 1 ) gf; a,(H, Py, p.) (Li(w, k) =L, (w, —k) ~L,(~w, k) + L,(~w, —k))

L AL Y A8 By p) (Ll KD+ Ly, k) + Ly(—a, k) + L=, k) |, (79)

where
L {w.k)
cos(sQ (H Py.p.)t(rv,)~wt=(sQ (H Py p.)~w)z/v,)=cos(sQ (H,Ps,p.) 1 (r,v,)—wt+kz)

- ) (7
(sQ(H,Py, p.)—w+kv.) 6

We are interested in calculating the power transferred from the electron beam to the cavity fields.
Equation (70) for the TEM mode cavity electric field shows that the electric field has no azimuthal or
axial components. so we only have to compute the radial component of the perturbed current in order

to calculate the transferred power. Then

Jir. 8.z, 1) = ~e f &pv, firp. o) 7, (77)

and the time averaged power loss of all of the electrons in the cavity, P, is therefore

2w L b JYr. 6. 2. 1) sin (kz) sin (w?)
Pa-awE,fo dtfo d:fardr ' ndddy (78)

r
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Combining Equations (75), (77) and (78) we have

P=

232F} s 2riw L b
ea4 L w zlfO "™ d sin (wt)fo dz sin (kz) fa drf dpv,
P

af%NH. P, p.)

Y7 a,(H Py, p.) (Ly(w, k) = Ly(w, =k) = L,(~w, k) + L (~w, —k)) (79)

1 8%H, Py, p.)
+|—-——
c 9p.

8/2H, P,, p.)
oH

\£
4

a,(H,Pg.p.)(Lifw,k)+L(w,~k)+ L, (~w,k)+L,(~w,—k)) ]

We now transform the integration over 4&°p 0 an integration over dH dP, dp. and perform the

integration over r by the technique used between Equations (31) and (35) of Section II. This yields

P = e_"z_sEii :1 fz"/‘" dr sin (1) fOL dz sin (k) [ dH dP, dp.
é%fﬂ_) T(H. Py, p.)al(H, Py, p.) (G lw, k) — G (w,~k) = G (~w, k) + G (~w.—k)) (80)
(182 H, Py ) v 3S%H, Py p)
e 8p. c aH
T(H.P,p.)ai (H.Pyp) (G, (w,k)+G; (0.~ k)+G; (~w.k)+G, (—w.—k))],
where
G (o, k) = sin lwt + fs((ls(g(.::,,é_.‘)p:—)w—);/:_.;(;)sin (wt — k=) . 81)
23
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Integrating over ¢ and z we find the general expression for the power transferred from the electron
beam to the cavity fields.

e?a’ElL =
—— X [ aH Py o,

s=1

P=

[ M T(H, Py, p,) al(H, Py, p.) (F,(w, k) = F,(0,~k) + F,(~w, k) = F,(~w, —k)) (82)

aH

+ _1_aj°(H, Py p.) XLBJO(H, Py, p.)
¢ ap, c 0H

T(H,P,,,p,)a,z(H.Pg,pz)(l'}(w,k)+F5(w,—k)-—l"s(—w,k)—l"s(—w,—k))}.

where

272 (1 = B
Fy(w, k) = kL2 (1 = cos (kL) cos ((sQ (H, Py, p,) = w) L/v.))

, (83)
(sQ(H. Py, p.) —w + kv,) | KL~ (sQ(H, P,, p.) — w)? —{',—;- ]

Equation (83) is a general expression for the beam power loss. In the next section we will spe-
cialize to an idealized distribution function which will allow the threshold beam power required for the

cavity to self-oscillate to be easily calculated.
V. THE DISTRIBUTION FUNCTION OF THE ELECTRON BEAM

Before Equations (35) and (82) can be evaluated we must specify an equilibrium distribution
function which is constructed from the constants of the motion, H, P, and p,. We choose the sim-

plest distribution function possible which is that of a monoenergetic beam with one vaiue of angular

and axial momentum

£ p, ) = A 5(H = Hy) 8(Py— Py) 5(p. ~ mvo) ., (84)

where A4 is determined from the condition

2T b 3
£ SO p 0 =1, 85
Lo [ rar [ dppsGp 0 =1 (85)
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and [/ is the negative of the current of electrons through the cavity. To evaluate the constant 4 in
Equation (84) we insert Equation (84) into Equation (85) and transform the integration over ¢°p into

an integration over the constants of the motion. Then

- drde fb f dH dP, dp, pZS(H"Ho) 8 (Pg— P"O) 5 (pz— MVO)

= \2m wAdevg frro dr L . (86)

2
POO m Vo

2mr? 2

Ho“ - Po [ﬂ(%)

Using Equation (36) for T(H, P,, p.), the radial oscillation period of an electron with total energy H,

angular momentum P, and axial momentum p,, we see that Equation (86) can be written as

I = 7w T(Hp, Py, mvq) evg A. 87

Therefore, for an electron beam with energy H,, current /, angular momentum Poo, and axial momen-

tum mvy, the distribution function is

/
fOH, Py, p,) = meviT (g, Frs 7170 8(H ~ Hy) 8(Py = Py) 8(p, — mvy) . (88)

The distribution function given in Equation (88) is an idealized representation of the distribution

function that would be present in an actual device. However, such a distribution function has many

advantages from an analytical point of view. The principle advantage is that it allows for simple evalua-
tion of the theory and yields results which are easily interpreted. The distribution function can also be
used as the basis for superposing many solutions together to model the situation where the beam has
arbitrarily spread in energy, angular momentum and axial momentum. The superposition principle is

valid here because of the self-fields of the beam have been neglected and the theory is otherwise linear.

VI. RESULTS

The parameters we will use to describe the results of the linear theory of the orbitron traveling

¢ wave amplifier and oscillator are similar to the parameters used to describe the ECM. Indeed, the
voltage between the center and outer conductor in an orbitron, ¥, plays the role of the magnetic field

o
,.J
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in an ECM. The parameters H,, the total electron energy, «, the square root of the ratio of the
electron’s perpendicular to parallel energy; and b, the radius of the inner surface of the waveguide or
cavity outer conductor are also used for the ECM. Two parameters, the radius of the center conductor,
a; and o, the ratio of the maximum to the minimum radius of the electron’s orbit, have no ECM anal-
ogy. The remaining eight quantities all have direct ECM counterparts. For the traveling wave amplifier
we have the harmonic number, s; the electron beam current, /; the frequency, w; and the spacial
growth rate, k,. The quality factor of the cavity, Q; the length of the cavity, L; the mode number, /;
and the threshold beam power required for the cavity to seif-oscillate, P{* are used for the oscillator.
We hope that this comparison of parameters will help to clarify the results that we are about to present
for those readers who are familiar with the ECM.

A. Traveling Wave Amplifier

1. Dispersion Relation

Combining Equation (35) for the dispersion relation with Equation (88) for the idealized beam

distribution function, we obtain an explicit expression for the dispersion relation for a forward traveling
wave in an axially uniform configuration

)

Yol @ 1
1-— T(H.P,, Py,
l c] 9H [ oy mVo) a5’ (H, % mvo){ (sQ (H,Py,mvo) —w + kvo)

#oe 20 l -
wevoT(H,, Py, mvy)

s=]

1
- (89)
(sQ (H.P,,o,mvo) +aw— kvy) ” He,
+ L 2 |7 (HoP, p) a(Hy P, p.) 1
c dp. 0 fe T s 07 (sQ(HO,P,,O,p_.)—w'i-kV:)

T Q(HyP, p) +w—kv.) ” ‘
< p.=mv,

26
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Using Equations (43), (44), (67) and (69) for the derivatives of T(H, Py, p.) and a}(H, Py, p.)
developed in Section III and expressing the answer in terms of Hy, o and a we obtain the final expres-

sion for the dispersion relation

) /u.OIwQ il = 2 2vo | x((a)—n(0))
. Tz S_IK’ 7 (sQ —w+kvy)
oo __a@se koo - (90)
(sQ—w+kvy? mvoc(sQ —w+kvy)
- 2w @@ —n6) | l_ﬂ] n(e)sQ
¢ )] (sQ+w—kvy (50 +w— kvy)?

kVoPo
+ ARE
mvoc(sQ +w— kvy)
2. Spacial Growth Rate

The model we used to find the dispersion relation for the infinite length orbitron assumed that
the electron beam interacted only with a forward traveling wave. In a real device, reflections at the
output can cause a backward wave to be present in the interaction region. If the amplitude of the
reflected signal reaches a level large enough for the loop gain of the system to exceed unity, the insta-
bility that gives rise to the maser interaction changes from convective to absolute and the amplifier
self-oscillates. Internal feedback through couplirng to the backward wave can also cause an absolute in-
stability (Briggs, 1964). It is important to know the parametric dependences of the transition from con-
vective to absolute instability when designing an actual device (Lau et al, 1981), and various schemes
can be used to avoid the onset of an absolute instability such as lining the inner surface of the cavity
with an absorbing material. Here, we choose to ignore the problem of absolute instability and simply
solve Equation (90) to find the spacial growth rate for a forward traveling wave in an infinite length
orbitron amplifier as a function of the frequency and beam parameters. It should be understood. how-
ever, that the growth rates that result may not be realized in an actual device due to the onset of an

absolute instability.

Now, to solve Equation (90) for the spacial growth rate we assume that w = s} and that only the

sth term is resonant in the infinite sum. Then Equation (90) can be written in a more tractable form,
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R 2 107k (o)

s How x;lo

3 =2l (sQ-w+khkvy)?= £ "5 70
? : [ c? ] ¢ 0 drvyV,
A

0 )

b v , v kv
o “1——£](2K,(a')—n(0'))(sﬂ—w+kv0)+ 1-—=[n(e)s0 - oP . (91)
e ¢ ¢ mvge

\
b Equation (91) is fourth order in k& and has nine free parameters, a, b, a, o, s, Vy, Hy,  and w. In

4

o the numerical results that follow we reduce the number of free parameters by normalizing the radius of
X
: y the center conductor, a, and the spacial growth rate, k;, to the waveguide outer conductor radius b.
[N
] We also normalize the frequency, w, to the frequency ¢/b. We fix the value of a, which is the square
_“ root of the ratio of the perpendicular to parallet energy, at 1.5, which is a value typical of most ECM
Jt“-

j::-f experiments (Chu, 1978). The parameter % has been chosen to be 100; the harmonic number, s, is
N
W taken to be 1; the electron energy, Hy, is fixed at 10000 eV; and o, the ratio of the maximum to the
®
A minimum radius of the electron’s orbit, is taken to be 5. The three remaining parameters, V,, the
X :’j.‘ voltage between the center and outer conductor; /, the electron beam current; and the normalized fre-
19 3
:'.{ quency, ‘"TC will be varied. Figure 8 plots the spacial growth rate versus frequency for ¥, = 13500
. volts and [/ = 100md. This is piotted over the lowest frequency interval that gives growth. The
’ voltage chosen gives a maximum electron radius of about .15. Thus the electron (with o = 5) passes

ﬁ

N close to the center conductor yielding a large growth rate. Figure 9 plots the spacial growth rate versus
3 the beam current for the value of ¥, used in Figure 8. The growth rate is seen to scale as ~ /Y3,
A%
';) Last, the spacial growth rate is plotted versus ¥, in Figure 10 for the voltages that are consistent with
_‘:j.: radial confinement of the electrons. The beam current is taken to be 100 m4 and the frequency was
:‘_j:'. varied here and in Figure 9 to maximize the spacial growth rate.
e B. Oscillator
i :‘_\-
i . o

i 1. Beam Power Transfer to the Cavity Fields

e

o

15 Combining Equations (82) and (88), we obtain an explicit expression for the power transferred
L3 .
St from the electron beam to the cavity fields

-};.
SR 1,251 o
o po_ca EiL 1 9 [T(H.Pgo.mvo) al(H Py ,mvo)

Al 8! mevo T (Ho,Py,mvo) /4| 8H

W

[

.r::

o0 [rs (@, k)= Fy@,~k) + F,(~w. k)~ F <-w-—k>]] \H-Ho

v
::": 28
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Figure 8. The spacial growth rate and wave number versus frequency for an
orbitron traveling wave ampiifier

29

-\-..---

1 - 4
"(("’. ‘4*‘» n_‘-'T:"; A l>




1]

o

A
DA,

ARG AN

w0

AL RN

L
A

1Jdwe asem FUIDARI] UONIQIO UR 10§ TUSLIND WRAQ UONIII[D dY) SNSIOA 31RI Yimoid [riovds ayj ¢ 2and|

(Ww) |
00001 0001 001 0]} l L0

LILLLER AL 1 —-4-__ LIS J | UL T __:.q_ | T _--4. T T Y Po-o

-

Y
v"_ ‘\-.‘

A

alkal

Ptet et
Laanann

-
re.A

10

30

T
PR R .
YLV . VWY, W Y.

-, ‘.'
At

1

J
PR R T TR P Y - .t
B R )
. -t " - « "
PR WL &

"
« e
-

Q
X

l LA Ll
—
A
PR

SHOA 00SEL 00°S

Il
o
>
i
o}
P
Il
17p)
]
_". ': x:_x'_

o
A

[
=
I

A® 00001 061

I
S
Q
-
|
|

ol

-

SRR ] | KRR [ O, .....n.m.\m ok




T DT TR T LT T T e

v

Y

-

e

b e g el il Aal met as o Laac)

lorjdwe aaem 8uijaarl) uoniqso ue 10J 1019NpU0d J2)INO pur 91U IY) UIIM]AQ
adeoA oY) SNSIA SNIpRL V0NN urnwixew 9y pue a1es Yimold [rioeds oy g1 2inf,

(S10A) OA
00081 00091 000b L 00021 00001 0008
i T | T 1

020

GL°0

0g0

E .
oLl YwoolL=1 00'S P
N 0000L =°H og'L=» Qo=

I
o)
P
[
n

Q|wm




- A
fn-Saat A e N ke A A Mah M ol et g bt ey Sl e Mt 2a glad T TTTTT Ty TR N TR v TR TR T weey wa ey

1

9
YA [ T(Ho, Py, p.) a2(Ho, Py, p.) (92)

Fy(w, k) +F, (0, ~k) - F, (w0, k) — a(—w,-k)] ]

Py = mvy

Yo 4

Fy(, 0+ F, G, =) = F, (=0, ©) = F, (-0, ~0) | |-,

where F;(w, k) is given by Equation (83). Using Equations (43), (44), (67) and (69) for the deriva-

tives of T(H, Py, p.) and a2(H, Py, p.) developed in Section III and expressing the answer in terms of

Gt

"’.l‘,' . ¥

Hy, o, a, we obtain the final expression for the beam power loss,

1oL

el

i
13 wialin f EZ [Q?r?
vy P= 7 ZKSZ(O')[P,'+PSZ+PS3+P;‘], (93)
o 0 s=1
where
2 2 P
Pl = [1——2 (n(0) - 2 (@) F(A) +n ()| 1= 22|50 Ga) - -2 H(a), (94)
¢ ¢ mvyc
2 2 P
P} = =1+ (n(0) = 26/ () L (&) = (o) [ 1+ 22| s 27 M(A) — —2— N (a) | (95)
Cc ¢ mvyc
2 P
p3 = 1422 (n(0) = 2 (@) Fa ) + 7 1422 s Gla) + -2 H (8. (96)
c ¢ mvyc
‘ 2vo ' ( Mol car M)+ =2 Vi) (97)
Pl = — I—T (mla) =2 (a)) L(A)—n(a) I—T sQr M)+ Voo .
sin? %
N L (98)
Fa) AXA=2m) ]
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GA—-4im) sinf| 2] ~ (A= 27) %sin(A)

2
G(A) = 99)
Ad(A-2im)? (

(A2=3Alm +2/*7?) —%— sin(A) — QA%=SinA +4P7d) sinzl%l

HA) = - , (100)
) A3(A=2lm)?
sin? %]
LQ) = - —————— 101)
( AA=2(n)? (
(GA—2/m) sinzl%] —(A-2Im) -é—sin(A)
M(A) = 102
@ AN A= 2im)} (102)
QA=Im)(A=2iw) %—sin(A) — (2A2=3I7A + 21277 sin? %]
N@)= , 103)
( AN (A - 2im)? (
A=(s0 (Hg, Pgo,mVo) -—w+ kVQ)T ) (104)
A= (SQ(Ho,Pgo,mVO) +w+kV0)1‘, (105)
and
PR (106)
Vo

2. Threshold Beam Power Required for Self-Oscillation

The model which we used to calculate the beam energy loss to the cavity fields assumed an ideal-
ized cavity with discrete eigenfrequencies. The cavity has a finite Q. however, and this implies that the

cavity resonates in a narrow band of eigenfrequencies with a bandwidth of approximately 20/ Q. It will
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be shown in Section VII that the frequency width for beam energy loss to the cavity fields is approxi-

mately 2%/ and the finite Q cavity can therefore be treated as idealized if

o (]
=>> — (107)
Q’
This condition is usually easily satisfied for any reasonable value of Q.
From the definition of Q,
w E,
Q= P (108)

where E; is the electromagnetic energy stored in the cavity and P; is the electromagnetic power lost,
we see that the threshold condition for oscillation occurs when the power lost from the cavity in the

form of electromagnetic radiation is just balanced by the power input from the electron beam or

P2P, (109)
which implies that
w E
P> — (110)
Q

Now, the beam power, P,, is related to the beam current through the reiation

P, = Hylle, (111)

and the stored energy for a TEM mode in the cavity is given by

E,=leoazElen

b
3 a" (112)

Combining Equations (73), (93), (110), (111), and (112) yields the relation

2 Vo (Hye)
Pt = meoc Vo Hfe . (113)

a7t ¥ «io) (PM+ P2+ P+ Pf)

s= |
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Equation (113) is a function of nine free parameters, Vy, Hy, a, . b, a, L,/ and Q. In the
numerical examples that follow, we reduce the number of free parameters by normalizing the cavity
length, L. and the radius of the center conductor, a, to the cavity outer conductor radius b. We take

a to be 1.5 as we did in the numerical examples for the traveling wave amplifier. The parameter 5/a

has been chosen to be 100, and % is taken to be 10. Finally, from Equation (113) we see that Q and

P can be combined to form a single quantity, QPf*. The four remaining parameters V,, the voltage
between the center and outer conductors; Ay, the electron energy; o, the ratio of the maximum to the
minimum radius of the electron’s orbit; and /, the mode number, will be varied. Figure 11 plots QP
versus ¥V, for [ = 1,2 and 5. Hy, = 10000 eV and ¢ = 5. This is plotted in the voltage range where
the s = 1 interaction of the / = 1 mode occurs. The / = 1 interaction has the widest voltage tuning
range and the largest QP for a given harmonic number, s. Figure 12 shows QP§" versus H, for
s={=12and Sand o = 5. ¥, is varied here and in Figure 13, to minimize QP{". The start power

requirements for the lowest order mode are seen to increase rapidly as a function of the injection
energy. Last, Figure 13 displays QP}" versus o for Hy = 10000 eV, /= s =1,2, 5, and / = -§- =1, 2.

3

QP/* is seen to decrease as o increases with saturation occurring when ¢ ~ § 7

VII. DISCUSSION

A. Consistency of Approximations

We wish to verify that the assumptions we made in Section II are consistent with the results of
the calculations performed in Sections II and IV. First, we consider assumption (ii), the requirement
that the electric field due to the electron beam is small compared to the confining electric field due to

the voltage between the inner and outer surfaces of the waveguide. Now, the electric field of the

azimuthally symmetric electron beam is largest compared to the confining electric field for radii greater

than the maximum radius of the electron beam, r,. Therefore, we have the relation

“4e

[
ety

I 0
<< . (114)
2megvyr, | b
n

4, A, e

. e g
T

T—-
s

7o

For the examples presented in Section VI, vy = .Ic, ¥V, = 10,000 volts and gs 100 for which

rdrJr |
S
LR S N

Equation (114) yields

>
-

L4
e«
(YRS

e
a

[ << 3.6 amperes, (1

A )
ey

and this is easily satistied.
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Figure 12. The cavity Q multiplied by the threshold beam power required for seif-oscillation versus
the electron beam energy for various mode numbers in an orbitron oscillator
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Next, to verify the validity of assumption (iii) of Section 1I, we must show that the amplitude of

the radiation electric field in the interaction region, £, is small compared to the confining electric field,
that is

. (116)
_] ,

We choose to verify that Equation (116) is valid for the oscillator configuration which has a larger radi-
ation electric field amplitude in the interaction region than the amplifier configuration for a given out-

put power. Writing Equation (116) in terms of the output power using Equations (108) and (112), we
have

(117)

In the example shown in Figure 11 where QP -.17 kW for V= 8200 voits, -g = 100 and / = 1 we

find from Equation (117) that

QP, << 191 kW. (118)

Therefore, the threshold value of the beam power required for self-oscillation is less that one tenth the

output power needed to violate Equation (116) and assumption (iii) is seen to be easily satisfied.

B. Frequency Bandwidth of the Interaction and Allowable Beam Spread for the
Oscillator Configuration

To investigate the frequency bandwidth of the orbitron maser interaction in the oscillator con-
figuration, we plot the beam energy transterred to the cavity radiation fields versus the parameter A for
the / = 1 and / = 2 modes in Figures 14 and 15. It can be seen that the range of A for beam energy
loss to the cavity radiation fields is roughly 2 =. The frequency bandwidth of the interaction is there-
fore 2w/ r. This allows us to compute the allowable spread in the beam parameters to insure that the

cold beam distribution function given in Section V is valid. Now, we have

(580 - w + kbvy) << 2L (119)

.
-
[
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:“s and this implies that
¥
fﬂg
. 30 2m 1 3
= << << — ‘
s;: ) S0, < N (120) :
b
; ;‘K. where N is the number of turns the electron makes around the central conductor while transiting the
; cavity. We also have a condition on the spread in v,,
1,
N
:‘I ) 8Vz 21‘]’
g <
;s - < pramg (121)
D
a,
e
rend and, using Equations (72) and (106), we find that
g}
130 év
e el
:f.-'j v R (122)
% ;
. . .
g We can write Equations (120) and (122) in terms of the allowable spread in the beam parameters
t'. . H, o and a by using Equations (43), (46), and (50),
=
= SH 1
A S << —, 123
n(o) P, o (123)
P
o
o
I 2a H 1
—_—— = fa << —, (124)
:-\", (1+a?)? Py * sN
2
110 a da 2
o < =, (125)
2::» (1 + az) !
We
- and
o 37(a)
"-_: ao 80’ << _1__ (126)
o (o) N
LB
:.':1 where 8 T/ 9 is the derivative of the curve shown in Figure §.
\1
::": For a numerical example of the allowable spread in the beam parameters we use the / = 2 mode
- with the lowest threshold beam power shown in Figure 11. The value of sV is about 9 in this case.
j‘, Using Equations (123) - (126) with the parameters of Figure 11 we find that
e
k) ‘:".
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S 20 c<c .02 (127)
, H ’
'i
q*
KL 39 <37, (128)
LY o
N
o
[\ and
AN v
)
3 << 05. (129)
bl a
-:.:wf'
o .
ey The conditions on A and o seem to be easily achievable. however, the allowable spread in the parame-
et ter a could pose a problem. Any effort to design an electron gun for a TEM orbitron oscillator should
":'tf pay close attention to the spread in the beam parameters.
-, u"
&
}é C. Nonlinear Efficiency Limits
L
o Here we consider the maximum energy that can be transferred from the electron beam to a TEM
Lo . . . . . . -
i ‘ waveguide mode in an orbitron. Since the electric field of a TEM mode has only a radial component,
::ﬂ'i:' the angular momentum of an electron that interacts with this mode is conserved. Also, the electron
has given the maximum amount of energy to the TEM mode if it exits the interaction region with no
;;3; radial velocity. Therefore, to compute an upper bound on the power transfer from the electron beam
4
f'j to the TEM mode, we calculate the change in energy of electrons that enter the interaction region with
"'-j energy H, having nonzero radial velocity and exit it with energy A" having no radial velocity, con-
R AR
3 sistent with the axial velocity change of the electrons due to the interaction with the TEM mode.
= J
'il\:; We consider the case of a forward traveling wave amplifier. The analysis is also valid for the
,.2}“: oscillator configuration if the electron beam interacts primarily with the forward wave component of the
"6 standing wave in the cavity. (If the electron beam interacts principally with the backward wave in the
[{}; cavity, the analysis is performed with the right hand side of Equation (130) having the opposite sign.)
-
V- Now, from Equations (13) and (14) we see that the only nonzero components of the TEM waveguide
<]
TR mode are £, and B, and
..'\‘.
LI E = cB,. (130)
~-:
N The equations of motion are then
K ;:Q
dH
w o ev, E, . (131)
i.,-r
]
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and

"—-'-_ eV,Bg, (132)

and combining Equations (130), (131) and (132), we find that

dH d
o = a P (133)

This implies that A — c¢p. is a constant of the motion for electrons that transit interaction region.

Now, the Hamiltonian of an electron entering the interaction region is given by

PZ P2
- —— = 4
Ho= 2o+ 2 s, (134)

where ¥ (r) is an equivalent potentiai

2

Py
Y (r) = + Pyl
r 2mr? o'n

(135

L
mE

The function ¥(r) is a monotonically decreasing function of r for 2 £ r < r" and is a monotonically
increasing function of r for b > r > r*. A schematic plot of ¥(r) is given in Figure 16. In this fig-
ure H,, where

H = Hy—- 2, (136)

denotes the perpendicular energy of an electron entering the interaction region and r;, and r, are the
minimum and maximum radial position of an electron with perpendicular energy f,. For the electron
10 exit the interaction region with minimum perpendicular energy it must have radial position r* and no
radial velocity. To compute the vaiue of r* we find the radial position of the minimum of ¥ (r), using

the relation

CAAGIN Y (137)
ar | _,-
This yields
. Py
ro- ) (138)
v mPy
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Figure 16. The equivalent potential of an electron orbiting the center conductor of an orbitron.
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Now, writing the angular momentum, parallel energy, and the Hamiltonian in terms of the parameters
r,, o and a defined in Section III, we have

3
P,=r, e (139)
B (140)
Hy= 3=
Hy
1 +a?’

and

1 + o2 o In{g) (141)

HO- a2 [Poln";"*'POUz 1

Then using Equations (134), (135), (138), (139) and (140), we find that the minimum energy of an
electron exiting the interaction region is given by

. Py i’ .
H =T+P0ln"§' 3 3 + H|, (142)

o -

+ Py ln[ 2In(a)

where Hﬁ is determined from using the constant of the motion in the interaction region, # — ¢p,, and

Equation (140).
H = c\2mH] = Hy- ¢ o /———ZI;D;‘;. (143)
(1 +ad

We combine Equations (141), (142) and (143) to find the maximum energy that an electron can
transfer to the TEM waveguide mode,

V|
mci(l + a?)

2in(r) _

! | —ip |2inte)
-1

ot-1

Hy— H = = (144)

to lowest order in (Hy— H')/ mc?.
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If the electron beam current through the interaction region is /, Equation (144) implies a theoret-

ical limit to the radiation power output of 2 TEM orbitron maser

2n(o) 1 =1 2n(o)
1V, al-1 - f o=
0 . (145)

PMax -

b 0
2n|— - /__.__2];
n[ a [ : mc2(l + a?) ]

Similarly. the theoretical limit to the radiation efficiency. &, is given by

ot—-1 al—-1

E ot ™ ] . (146)

1 - ———————.
\V mct(l + a?)

2mw)_l_mkmw)
Py

D. Mode Selection

The TEM mode is the lowest order mode of a coaxial cavity. It has large electric fields near the
center conductor which is an advantage for operation at high harmonics of the radial oscillation fre-
quency. However, unlike the TE modes, the TEM mode has the disadvantage that it has no cutoff fre-
quency. The cavity outer walil radius cannot be reduced below the cutoff radius to provide a strong

reflection of the forward or backward wave that makes up the standing wave in the cavity.

We can use two methods to provide reflection at the entrance or exit regions of the cavity at the
desired operation frequency. One method is to modulate the outer cavity wall with a periodicity A,.
Fortunately, we see from the results of the discussion of the maximum possible efficiency of the TEM
orbitron in Part C that the efficiency of the device is maximized when the voltage ¥, is maximized.
This implies that the maximum radius of the electrons orbit, 7y, is minimized for high efficiency opera-

tion. We can therefore have large ripples in the outer wall of the cavity without intercepting the elec-

tron beain while operating in the high efficiency regime of the device. The other scheme involves
periodically placing azimuthally symmetric conducting breaks at the radius of the cavity outer conductor

with radial waveguides extending into the insulator. The radial waveguide sections would be tuned to

provide an optimal cavity Q at the desired operating frequency and minimal cavity Q at unwanted fre-
quencies. This scheme has the advantage that it will not strongly cut off TE modes producing a large
0 cavity Q for an unwanted mode. It also has the added feature that conducting breaks are required in

ai' any case to increase the potential of the outer conductor from its large negative value in the interaction

region to a smail negative or ground potential in the collector region. Last, we should mention that all
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TE modes produce azimuthal currents in the cavity outer conductor and TEM modes have no azimuthal
wall currents. Lossy material can therefore be incorporated into the cavity design to dissipate azimuthal
currents and therefore lower the value of Q for a TE mode while having a small effect on cavity Q for
a TEM mode.

A conceptual design of a TEM orbitron cavity is shown in Figure 17. Further analysis is required
to find the shape and number of ripples in the cavity outer wall and the spacing and length of the radial

waveguides to provide optimal reflection at a given operating frequency.

E. Beam Formation

We envision forming an azimuthally symmetric electron beam in accordance with assumption (i)
of Section II. The electrons would be emitted from an azimuthally symmetric tungsten dispenser
cathode through a grid into the beam injection region as shown in Figure 18. The electrons would be
injected with a large value of axial momentum, a small value of radial momentum and, of course, no
angular momentum due to the azimuthal symmetry. The angular momentum would be created and
controlled by the presence of a weak azimuthally symmetric magnet field. As an illustration we assume

that the magnetic vector potential of the applied fi=id is given by
rBy -
A(r,z) = ——2—° 9, (147)
in the beam formation region. The canonical angular momentum of the injected electrons would then

be

—er?

2

P, = By, (148)
where r, is the radius of the grid. The magnetic field would be shielded out of the beam compression
region and the interaction region by the presence of an iron shield which surrounds the downstream
portion of the device to remove the injection magnetic fields and any other stray magnetic field that are
present. The electrons then enter the beam compression region with the value of angular momentum
given by Equation (148) even though the field has been removed. To find the magnitude of the mag-

netic field required in the beam injection region, we use Equations (139) and (148)

2’0 o INtlo

er?

By=— , (149)

and for ¥, = 10000 volts, b/a = 100, ¢ = 5, r, = 1 mm and r, = 1 cm we find that By = 8.1
gauss.
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An alternative to the above injection scheme is to use a non-azimuthally symmetric cathode and
grid structure shaped similar to a turbine to inject the beam. This scheme has the advantage that it
does not require a magnetic field to give the Beam angular momentum. The beam would not be com-
pletely azimuthally symmetric, however, and the ability to independently control the two beam parame-
ters o and o would be lost. It might be advantageous to use this type of injection scheme in a produc-

tion device, once the optimal beam parameters become known.

The beam exits the injection region and enters the compression region as shown in Figure 19.
Here the beam is adiabatically compressed so that it enters the interaction region with a small axial
momentum and a small maximum radius. [f the beam is adiabatically compressed the value of the

radial action, S, where

s=§p, dr, (150)

is invariant. Evaluating Equations {150) using Equation (5), (37), (38), (39) and (42), we find that

61
s=2f, i;-f—\/ﬁ-i-ln(f) > (151)

P, is conserved since the compression region is azimuthally symmetric. Therefore the parameter 8 is
an adiabatic invariant because the integral is solely a function of 8. We see from Equation (48) that o
is therefore also an adiabatic invariant. Now, using the fact that the parameters H, o, B and P, are
invariant in the beam compression region, we can use Equations (3), (39), (139) and (140) to find two
equations that relate the parameters a, b, ry, ¥; and « in the interaction region to their values as they

exit the injection region, a’, 6, ry, Viand o',

ro [Po = r; \/F5, (152)

and
o’ Py Py \/Foa a’?
- — — + —In — e (153)
1+a?) Py H,y VPya (1 +a”)
eV' ]
! (154) |

where Pj= —————
Inl

S a
P T
T
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%‘ For a numerical example of the design equations for an adiabatically compressed beam we will cal-
S culate Py and o' for the interaction region parameters of Figure 8 and a'=a, b'=1.5b6 and a
_ compression ratio of 10. Now, using Equations (3) and (152) we find that
R23)
‘ L V'y = 146.9 volts, (155)
: ‘* . and inserting this value of V' into Equation (153) vields the value of a required at the entrance to the
;::' beam compression region, that is

d a' = .18. (156)

Finally, a conceptual design of a TEM orbitron oscillator is shown in Figure 20.

VIII. CONCLUSIONS

. A

*_:: In this paper we have presented the linear theory of the TEM orbitron maser, and gained an
3'.:.: . understanding of the basic operation of the device in both the oscillator and traveling wave amplifier
X i;":f configurations. There appears to be great promise in developing the concept of an axial injection TEM
" orbitron maser as an inexpensive, high efficiency source of high frequency microwave radiation.

\1 Further work is required in the area of mode selectivity in the cavity and in the details of the elec-

tron injection scheme. The linear theory of the TE mode must also be.worked out to quantify the
problem of TE mode competition with the TEM mode. Hopefully this will occur in the near future and

- a prototype device will be constructed.
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