
RD-A164 164 DAMAGE MODELS FOR DELAMINATION AND TRANSVERSE FRACTURE VIN FIBROUS COMPOSI.. (U) TEXAS A AND N UNIV COLLEGE
I STATION MECHANICS AND MATERIALS RE..

SI FE A SCHAPERY ET AL. MAY 95 MM-5034-B5-8 F/G 11/5 N

ESOMMmmhh
mhEE~hh~hEMl



12.2'

*L 6

"!.[25 111
.14

irr

* U
'2.

% "L l-b



Mechanics and Materials Center -
TEXAS A&M UNIVERSITY

College Station, Texas

(.0 DAMAGE MODELS FOR DELAMINATION

AND TRANSVERSE FRACTURE

_- ANNUAL TECHNICAL REPORT DTIC
R.A. Schapery LECTE

J.R. Weatherby FEB .3 .6

R.D. Tonda

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE

GRANT NO. AFOSR-84-0
0 68

* MM 5034-85-8 MAY 1985

*z Approved to? jPUbui2*-1..m
dtstrbut 100 U 2 1tOd, :.

..... .... .... .. . .. ................... 
. ..........



runclassified
SECUOIITV CLASSIFICATION OF THI0S PAGE

REPORT DOCUMENTATION PAGE
APOT SECURITY CLASSIFICATION In. RESTRICTIVE MARKINGS

nclassified__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

286 SECURITY CLASSIFICATION AUTHORITY 3. OISTRISUTION/AVAILABILITY OF REPORT

2Wk DECLASSIFICATION/OOWNGRAOING SCHEDULE unlimited Approvad for '1 c re else;t distributiola L 11iznitjd.

* .. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MM504-5- AFOSR -TR . rl2
NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

* iMechanics and Materials Center EapcueIAFOSR/NA
Texas A&M University_______ ____________ _________

Be. ADDRESS (City. State and ZIP Code) 7b. ADORES$ (City. State and ZIP Codu)

Building 410
Cliege Station, TX 77843 Balling AFB, DC 20332-6448

. 4& AME OF FUNOINGISPONSORING 8Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

RGANIZ~O 7I 

pU~AFOSR W -I NA 0076I$~? Grant No. AFOSR-4-0068
S DDRESS (City. State and ZIP Code) *10. SOURCE OF FUNDING NOS.

Bilding 410 PROGRAM PROJECT TASK WORK UNIT

qBolling AFB, DC 20332-6448 ELEMENT NO. NO. NO.No

% 11. TITLE (Include Security Classification) Damage Models f or 6 a iz 232B
Delamination and Transverse Fracture in Fibrou____________

I .1WN1&tkCUTHORS)

RR.A. Schapery, J.R. Weatherby. R.D. Tonda .DAEORPRTY MDa)AGCUN
-13. TYPE OF REPORT 13~b. TIM~E COVERED 14 AEOIRPR Y. Mo. Day I. PG ON

Annual /1/8 TO 2/481 May 1985 I29 + Appendix
10. SUPPLEMENTARY NOTATION

COSATI COOES I. SUBJE CT TER14MS lCon tinue on reverse if necesbary and identify by block number)

FELD GROUP sun. GR. Composites Fracture of Composites
Damage Fiber-Reinforced Plastic

* ~~Delamination ~..-
15. ABSTRACT (Continue an nrverue if neceapary and identify by block number)' Theoretical and experimental work on the deformation and fracture of fibrous composites
with distributed damage is described. Emphasis is on establishing the existence of poten-
tials analogous to strain energy andI on using these so-called work potentials in fracture

-studies. The difference between loading and unloading behavior is accounted for by using one
3work potential for changing damage (loading) and another for constant damage (unloading).
lFirst, using work potentials in a finite element representation, a new method for predicting
crack growth is described which is believed to be applicable to many different materials.

iThe results confirm the previously predicted path independence of the J integral 
for a crack

lin a continuum with distributed damage; the damage is modelled in this initial study using
deformation plasticity theory f or loading and elasticity theory f or unloading. Described

.next are investigations of flat rectangular bar specimens and thin-walled tubes under axial
land torsional loading. The limited amount of experimental data presently available on angle-

.i 1ply laminates confirms the existence of a potential even when there are large increases in

mircAcISUIN/g.IAIL OF ABSTRACT 21. ABSTRACT SECURITY CLASSIF ICATION

.UNCLASSIFIEO/UNLIMITED SAME AS APT. C3OTIC USERS 03 unclassified

22& NAME OF RELSPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER4 2cFFC1MOI Major David A. GlEspow IIcld nlnCde 2FPC-

r ____________________________ (202) 767-4987 NA

3D FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. unclassified
SECURITY CLASSIFICATION OF THIS PAGE



TABLE OF CNT.....

1.:,,.,. .a.

.RESEARCH OBJECTIVES ........................................... 1

2. STAUS OF HE RESEA . ...................... 1

2.1 Introduction 1 "' "'"

2.2 Analysis of Crack Growth in Damaged
Media Using a Generalized J-Integral ...................... 3

2.3 Studies of Unidirectional Bar and
Angle-Ply Tube Specimens .............................. 15

2.4 Studies of Angle-Ply Bars Under
Axial and Torsional loading .............................. 19

3. LIST OF AFOSR SPONSORED PUBLICATIONS .......................... 26

3.1 Published during project year ............................. 26

3.2 To be published (in press) ............................... 26

3.3 To be submitted for publication .......................... 26

4. PROFESSIONAL PERSONNEL INFORMATION ............................. 26

* 4.1 List of Professional Personnel ............................ 26

4.2 Spoken Papers (Principal Investigator 's
Activities) ............... ............................. 27

5. REFERENCES .................................................. 28

APPENDIX ................................................... 29

AIRYD,,1 0-?- ,,.r 77-TThi
8PI-o- t, .:3

des
hV : a*d/or

. . .. - ... . . .

... t .S , cal........4



,~~~~~~-.~~~~ 41 s v - w . - y .r ~ -

5 1. RESEARCH OBJECTIVES

The overall objective of the research is to develop and verify

mathematical models of delamination and transverse fracture which account

for local (crack tip) and global damage distributions. one specific

objective is to demonstrate theoretically and experimentally that "work

- potentials" (which are analogous to strain energy) exist for composites

with constant and changing damage and with viscoelastic behavior. The

- second objective is to develop and verify methods of analysis for

* predicting crack growth in elastic and viscoelastic composites with

* distributed damage; whenever they are justified, work potentials will be

- used to characterize material behavior in order to simplify fracture

* analysis.

2. STATUS OF THE RESEARC2H

2.1 Introduction

*Methods of deformation and fracture characterization and prediction

are simplified when strain energy-like potentials based on mechanical work

can be used, as described in the publications in the Appendix. With these

- so-called work potentials, important theoretical and experimental methods

* using the J integral and energy release rate (originally developed for

* fracture of elastic media and fracture initiation in metals with plastic

deformations) may be extended to fracture initiation and crack propagation

in monolithic and composite materials. In Section 2.2, graduate student -

Randy Weatherby describes a new finite element model for analyzing crack

growth in materials which are characterized by work potentials. It is

* believed that both the use of the "failure zone"' in a finite element model
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4 and the study of path independence of the J integral with crack propagation

are new. Graduate student Richard Tonda describes in Section 2.3 his work

on determining work potentials for a graphite/epoxy composite using

unidirectional bars and circular tubes. The computer, computer programs,

and reduced data were all lost in a fire on December 31, 1984. This study

has been discontinued for now; but it probably will be restarted early this

coming Fall. In place of this work, we have begun a study of flat angle- ,,-.. .

- ply laminated bars under combined axial and torsional loading, as described

.. in Section 2.4. A third graduate student, Mark Lamborn, recently joined

* the project, and he has contributed to the study described in Section 2.4.

Preliminary data confirm the existence of a work potential. Also, early

results indicate that the tests of flat bars with axial and torsional

*' loading will be useful for Mode III delamination investigations.
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2.2 Analysis of Crack Growth in Damaged Media
Using a Generalized J-Integral

The purpose of this research is to develop and study analytical

methods for use in nonlinear fracture problems with distributed damage. We

feel that these methods can be applied to a wide variety of materials
I.'

including metals, polymers, and fibrous composites. Our current approach

is to deal with crack advance purely from a mechanics viewpoint, given

certain characteristics of the zone of failing material at the crack tip.

A central idea in the theory of fracture which we follow is that the

-: stresses and strains in the continuum are bounded rather than singular at

r the crack tip. This condition is met by the introduction of a "failure

zone" at the end of an advancing crack. The failure zone is a thin layer

S:"of highly strained and damaged material which is usually surrounded by

inelastic material (see Figure 1). The failure zone can be represented in

a finite element model as a nonlinear foundation which extends ahead of the

* ;crack. This foundation is divided into discrete elements, which we call

failure zone elements, and a relationship between the tractions acting on

the crack surface and the opening displacement is specified. The traction-

displacement function is defined so that after a certain amount of

separation between the crack faces the surface tractions vanish and the

crack increases in length. Similar techniques have been used previously in

modeling fracture of concrete, adhesive joints, and composites [1,21. In

_ - these cases, however, the continuum surrounding the failure zone is assumed 2"

to be linearly elastic, whereas we are presently considering problems in

which the surrounding continuum is a rate independent, inelastic material.

I-i
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A', Under certain conditions (which will be stated shortly) it can be

shown that there is a path independent J-integral [3], and it is equal to

the total work input per unit area to a ligament at the trailing edge of

the failure zone. First consider a line integral defined by:
% . "2.

au.
J = f (DnI - T. 1.) ds (1)

where,

B = the contour of integration

= potential function analogous to strain energy density.

Ti = traction vector acting on B.

ui = displacement vector.

nI = xl-component of the unit vector normal to B.

As an example, using Yto denote the value of (1) for the closed contour in

Figure 2, and expressing it as the sum of contributions from each segment

of the total path, we have, using clockwise integration,

2' Y= JAB + JBC + JCD + JDE + JEF + JFG + JGH + JHI +  "

J +IJ JJA (2)

For an opening mode crack, symmetry can be used to give:

, 9. 2 (JAB + JBC + JCD + JDE + JJA)  (3) .

For the material model we use, Y2 will be zero when evaluated around any
0- closed contour, B, provided that inside of B, Tmax(xgy) = Tmax(Y) for

. points where T>T max if -max >t o. Here, T (x,y) is the octahedral shear

stress, To is the value of T at which appreciable plastic deformation

occurs, and Tmax is the maximum value of T seen by a material point over

the entire history of loading. It is assumed that the regions which

C'

* . . . . . . .
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violate theY'=0 condition have been excluded from the interior of B;

Equation (3) becomes, after setting 0, 0P

2 (JAB + Ji BC+C + JDE) = -1(4)

to Further, we note that n, = 0 and Ti =0 on segments AB and CD. When II

tractions in the failure zone are given as a function of displacements, it

can be shown that [41,

2JJA =-2r' (5)

where 2r' is the work per unit area done to a ligament at the left end of

r the failure zone. These observations allow (4) to be rewritten as:

2 (JBC + i DE) 2r' (6)

U In the remainder of this report, when we give a value for the --

integral, we are referring to the value of the line integral in Eq. (1),

but integrated only over an open contour with end points at the left end of

* the failure zone (in the case of a right moving crack tip). For example,

in Fig. 2 the value of J to which we refer is 2 (JB +

In order to verify by an example that the necessary conditions for

path independence of J are satisfied after crack advance, we analyzed the

small scale yielding problem in an isotropic material using the finite

element method. This problem also serves to demonstrate the usefulness of.

the failure zone element in determining crar' growth. By definition, in

the small scale yielding problem, the plastic zone size is small when

compared to the crack length and the distance to the nearest boundary. The

displacement field far away from the crack tip is specified to be of the

form found for a crack in a linearly elastic body ie.,
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ui K, KVr f i (6) (7) "--

Figure 3 shows the dimensions and boundary conditions used in the

finite element model, and Figs. 4 and 5 give the continuum and failure zone

constitutive functions, respectively. Substructuring is used to condense

*out the degrees of freedom in the linearly elastic region, leaving only the

"' nodes associated with the elements appearing in Figure 6. All continuum

elements have eight nodes, and displacement continuity between incompatible

elements (i.e., where 3 elements share a common boundary as shown in Fig.

6) is enforced approximately by a penalty method. A J2 deformation theory

of plasticity with elastic unloading is taken as the material model for the

- continuum. Figs. 4 and 5 show the various material constants which are

required; these include parameters describing the uniaxial stress-strain

curve for the continuum and the traction-displacement relationship for the

failure zone. For simplicity, it is assumed that the traction-displacement

curve is independent of the amount of crack advance (i.e., the work of

-'° fracture, 2F, and crack tip opening displacement are held constant).

m Loading is accomplished by increasing the stress intensity factor. This is

not done directly; rather, a modified Riks' algorithm [51 is used in order

to get past limit points due to the finite element approximation which

sometimes appear. As the stress intensity factor increases, a plastic zone

-. forms around the crack tip, and the failure zone elements separate to give

. crack advance. Figure 6 shows the area where significant plastic

deformation has taken place after the crack has grown some distance. The

term "active plastic zone" refers to the material points currently at

yield, and "plastic wake" refers to the points which have yielded and then

runloaded as the crack tip passed by.

A plot of the dimensionless elastic "energy release rate" -s a function

-L..i

.-'--.-'.-.',:_.-__.- ..- _- __--,- ___... ._.__ ._.__-_. .____. . . . .._._. . . . . . . . ..__"-_"_'"-
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of the dimensionless crack advance is shown in Fig. 7. This curve is often

called a resistance curve. The energy release rate,§, is defined here by

the equation:

1-v2 K,2 (8)

The crack advance mentioned here is the increase in length, referred to the

right end of the failure zone; this end is where the displacement 0 in

Fig. 5 is reached. Results are shown for different meshes, one containing -.

15 elements in the active plastic zone and the other containing 7 elements

in the active plastic zone. It should be noted that while W increases

as the crack advances, the work required to completely separate a ligament

of material in the failure zone is constant. The increase in f is due to

the formation of the plastic wake which tends to reduce deformations ahead

3 of the crack below what would be present if the material were truly

nonl inearly elastic.

Figure 8 is a plot of T max/To as a function of x for three values of

* the y-coordinate. This plot shows a region near the initial crack tip

(x=O) where tmax is above yield and also is a function of the x-coordinate.

* Since this violates the requirements for path independence of J, this

region must lie outside of the contour path in order to get J values that

are path independent and equal to 2r. The area of path dependence is

*: shaded in Fig. 6.

When the J-integral is evaluated on a contour that surrounds the crack

'. tip and lies in the linearly elastic region, the relationship [4]

1-ov 2 
2°

E K1 (9)

should hold before and during crack growth. This relationship is found to

- - • - .. . . . . ..,. .• : .... . . . . . . .. . . . . . .- " •°• . -
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CIO be essentially satisfied for contour 1 in Fig. 6 which surrounds the

plastic zone and wake (cf. Table 1). The values of J coming from contours

2 and 3 listed in Table 1 are not equal tot; however, they both have "*""

approximately the same value and are equal to the area under the traction-

displacement curve given for the failure zone. As expected from theory,

contour 4 also gives approximately the same value for J as contours 2 and

3. Figure 9 shows the relationship between contour 4 and contour 1. These

results confirm the path independence of J as discussed in (3].

Future work: We plan to study how parameters related to the failure

zone (eg. am, 6m, and m in Fig. 5) affect the resistance curve (Fig. 7) for

small scale yielding. Also to be studied is a split beam problem with

plastic deformation in which the plastic zone is large compared to the beam

height. When generalized to an orthotropic media with damage, the results

for the split beam should help us to interpret data from delamination tests

on composite materials.

STable 1. J-Integral Calculations

Contour J/2F

1 1.30

2 .991 1,.
3 .994

4 1.04

1-\ 2  2
Eq. (9): J= . KI  -1.32 x 2r

Contour 1: J 1.30 x 2r

(2J
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2.3 Studies of Unidirectional Bar and Angle-Ply Tube Specimens

The initial, preliminary phase involved testing of standard uniaxial, -

30 off-axis, tensile coupons of Hercules AS4/3502 material in a dry, room-

ut temperature state under load histories which included periods of constant

rate loading and unloading as well as constant load, as illustrated on page p .

5 of publication No. 3 in the Appendix. The load history was designed to

* (i) obtain the type of information needed to determine mathematical.

representation of the "strain-energy-like" potentials for loading and

unloading up to the stresses causing laminate fracture, and (ii) determine

the extent of any viscoelastic behavior which may exist with constant and

changing damage, and also characterize it mathematically if it is found to

be significant.

These preliminary tests indicated that the viscoelastic effects (apart

from damage growth) are measurable. The relative magnitude of these

effects were not influenced by ply-thickness variations from 6 to 12 plys,

nor by the off-axis angle of the specimen, varying from iO° to 900. The

* periods of constant load in the test histories used allowed for

determination of the significance of the viscoelastic effects in examining

.- the differences between loading and unloading stress-strain curves. The

following observations were consistent across the sample spectrum involving

different thickness and fiber angles, 6>10f

(i) At 50% of ultimate levels, between 50% and 80% of the observed

deviation between loading and unloading stress-strain curves was

attributable to normal viscoelastic effects. The percentage of

viscoelastic effects tended to increase as the off-axis cigle

increased.

. .. * .* . . p

*.. . . . A - . o . . . .. . -
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(ii) At 75% of ultimate stress level, between 30% and 50% of the

observed deviation between loading and unloading stress-strain

curves was attributable to the viscoelastic effects, and again

this effect tended to increase as the off-axis angle increased.

.. The amount of viscoelastic behavior relative to damage effects made it

necessary to develop a rather elaborate computer-based data reduction and

analysis scheme to quantitatively characterize the deformation response.

This scheme uses so-called "pseudo-variables" (in this case, axial pseudo-

strainER) which is computed using a convolution integral of the form (31,

= f E(t-t de (10)

where Et) is the uniaxial relaxation modulus and ER is a constant,

arbitrarily selected reference modulus. With this approach, the material

was then characterized precisely like an elastic material with damage, by

examining the relationship between stress (a) and pseudo-strain (FR). The

technique is believed to essentially "filter out" the viscoelasticity at

* fixed damage levels. The necessary software has been developed and was

used during this period to begin analysis of the data from off-axis

- .specimens using fiber angles of 10, 15, 30, 45, 60, and 90 degrees.

Around November of 1984, we began consideration of the second phase of

• data collection. it was considered necessary to conduct an experimental

and analytical study of angle-ply laminates under multiaxial loading in

order to verify the existence and use of a work potential 4 for modelling

realistically large amounts of distributed damage. This type of laminate

undergoes significantly more damage prior to global fracture than

, unidirectional samples, and therefore provides data that enable a more

critical evaluation of the work potential theory. The unidirectional ply

- I- LLJ """"*"" . ' - , . ".".".".".",".".".", . . ." • " -. ' -. " *" " . " . . """""""""""" .".".".".".
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studies provide baseline elastic and viscoelastic property data in the .

absence of the significant residual stresses which exist in angle-ply

laminates, and thus can be used to predict baseline angle-ply response with -

(4) tube spcmn fagepylaminates. These were to be tested under

axial load and torsion using the MTS hydraulic axial-torsion machine at

Texas A&M. If Eq. (12) in [6] was found to be true using data from the

tubes, then a potential was to be constructed and] expressed as a function

of laminate thickness-averaged strains and the extent of damage using

suitably defined damage parameters [3]. Physical inspection for damage

using x-rays and ultrasound were to be carried out when nossible, in order

to correlate physical damage stress with characteristics of the stress-

strain behavior.

The first set of tubes to be studied consists of two [±30] 2S and two

[±60 12S tubes, all 2 inch dia x 17 inch long. They were to be tested and

* the findings analyzed. As the initial task in this study, it was decided

to acquire and validate a finite-element routine which would allow for

careful and optimized usage of the four tubes available, since the very

high cost and long lead times typically required to obtain additional tubes

* made the tubes quite valuable structures. Analysis of the uniaxial data

* proceeded, but was secondary to preparing for tube testing which was to

* begin in January of 1985.

* . On the morning of December 31, 1984, during an ice storm, the buildina

at the Texas A&M University Research and Extension Center (which housed our

HP 1000 computer being used to analyze all the data and to run the finite-

element model previously mentioned) burned to the ground in less than one

*hour. For all practical purposes, all of the data, computer code,
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intermediate results and back ups (which were stored in another room of the

same building) were reduced to ashes and were totally irretrievable.

Needless to say, this tragedy dealt a severe blow to project progress. The S

code developer was unique to the particular advantages of the HP 1000

vector processing system as was the finite-element code. Subsequent to the

fire, attempts have been made to regroup, and some tube testing of

isotropic (aluminum) tubes was carried out to verify the test

configurations, data acquisition and data analysis techniques. Tube

testing could then proceed if a suitable simulation and finite-element code

could be developed. Since, however, it would take considerable time to

* transfer all the code and existing data and techniques to another machine

and since Texas A&M University intends to relace the HP 1000 no later than

September of 1985, the proposed plan is to place this portion of the

project on hold until the new processor is available.
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2.4 Studies of Angle-Ply Bars under Axial and Torsional Loading

Preliminary studies of narrow rectangular plates under axial and

. torsional loading have indicated that they may be very useful for

investigations of work potentials with microcracking and delamination

fracture behavior. Specimens with different fiber angles and dimensions

. are under study. Figures 10 and 11 give some data from plates with nominal

dimensions of 2.5" long x 0.25" wide x 0.13" thick; the "nominal" stresses

"-. and strains shown on the axes are defined below. Plates which are wider

and longer and have other fiber angles are also under study. It should be

emphasized that even though there are stress gradients and consequent

nonuniform damage distributions, the proposed theory based on work

potentials may be experimentally verified and then employed to obtain basic

fracture properties from such tests without having to make a detailed

stress analysis of the specimens. However, some stress analysis will be

done to aid the determination of deformation properties, optimize

*specimen dimensions and select fiber angles.

An important part of the initial study is to demonstrate

- experimentally that work potentials exist. A theoretical basis for such

potentials is given in [6]; but it is based on certain idealizations, and

therefore it is important to provide also a good experimental basis for the

existence of potentials. Considering here only the problem of elastic

laminates with damage under increasing axial force F and torque T, a

- necessary and sufficient condition for a work potential I = ((u,e) to exist

(where u is the axial displacement and - is the rotation about the axis

between the grips) is
F _ 2T (11) "

.......................................... ..-.

. .'. . . . . .

~~~W T A *-. t..
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if F = F(u,e) and T= T(u,e) have continuous first partial derivatives in

~ S their arguments (7, p. 1701. It is assumed there are at least limited sets

of histories, u(t) and 8(t), (such as proportional deformations wherein u/6

is independent of time) for which F and T are essentially independent of

a; history.

Before using Eq. (11) with experimental data, it is helpful to replace

the variables by measures of stress and strain. This normalization process

eliminates first-order effects of specimen-to-specimen dimension

variations. Specifically, we use "nominal" stresses and strains defined as

a F/bc , T 3T/bc 2  (12a)

Ec/L (12b)

where b = width, c = thickness, and L = length (between grips). For the

P special case of long, thin, homogeneous specimens (L>>b>>c) a and E are the L

axial stress and strain respectively, and T and y are the in-plane shear

stress and strain respectively at the surface; this is shown in [8] forIlinear isotropic materials, and it can be shown co apply also to

orthotropic materials whose material axes are parallel to the specimen

edges. The variables in Eq. (12) are useful for normalizing data, whether

or not the stated conditions apply. Equation (11) becomes

dGy= (T/3)/ (13)

This equation has been used to analyze the data in Figs. 10 and 11 by first

writing

T/3 /3 + f (14)

0/

Ni
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, where To = To(y) is the shear stress for E=O; also f=f(e,y) in which f(o,y)

=0. Next, integration of Eq. (13) with respect to y yields

E
"a = - f f(ey')dy' +a (15)

0 0

where ao =0 o(E) is the axial stress when y=O. Thus, the quantity
0L

Aa E - f f(e_,y')d-y (16)
9.' 0

" is the change in axial stress due to the torque-induced shear strain.

The procedure used to check for the existence of a work potential is

to cross-plot the data in Fig. 10 so as to obtain f (which is the change in

-. shear stress due to axial strain) as a function of Y, for fixed values of

-, and then predict the modification to axial stress, Eq. (16).

Considering the limited amount of data presently available, it is desirable

to curve fit the data to analytical expressions to aid the needed

interpolations and extrapolations. It was found that

Y 2.55 (B+Cy)
f f(oY'dy')  Ay (17)
0

PL. where A,B, and C are constants. Using this expression in Eq. (16) yields

the change in axial stress due to torsion. Only for Ely= 0.92 is there a

significant effect of torsion prior to fracture; the prediction is drawn in

S--Fig. 11. The agreement between theory and experiment is relatively good.

In the series of tests shown in Figs. 10 and 11 there is only one

- -specimen for each deformation history, and thus the small differences

between most curves in Fig. 11 could be as large as specimen-to-specimen

differences. Nevetheless, it is encouraging that all of the predictions

. .. from Eq. (16) turn out to be of the same order as the observed differences

in normal stress. Although not needed to check for the existence of a

. * potential, it is of interest to note that when there is little or no

. . . . . . . . . . . . . . . . . . . . .
. . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .
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coupling between torque and axial load, the stress-strain curves obey power

laws over a wide range of strains, as shown in Fig. 12.

Future Work: It is planned to continue the axial-torsion testing of

angle-ply bar specimens to study both deformation history effects and

determine the range of histories for which work potentials exist. Mode III _

* delamination will be investigated also using specimens with and without

embedded edge delaminations. In most tests conducted so far, fracture

occurs away from the grips, and therefore it is believed this study will

lead to basic results on the effect of globally distributed microcracks in

a multiaxial stress state on macrocrack growth (e.g., the edge

delamination). The J integral will be used with the data to characterize

the mode III fracture initiation and propagation behavior.

.. :... .: :-
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APPENDIX

Publications on AFOSR project:

1. "Correspondence Principles and a Generalized J Integral for Large Deformation

and Fracture Analysis of Viscoelastic Media."

2. "Deformation and Fracture Characterization of Inelastic Nonlinear Materials

Using Potentials."

3. "Matrix Controlled Deformation and Fracture Analysis of Fibrous Canposites."

(Set of viewgraphs used at Tenth Annual Mechanics of Composites

Review)
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speeds are then found for a given material, usually experimentally. This information ma',
be used to predict crack growth in different geometries and aid in the selection and design

of fracture-resistant materials and structures. It is, of course, very important that the
characterizing parameter account fully for the effect of geometry and lading condition,
on crack growth if empirical corrections for each application are to bc avoided.

In this paper we show that parameters analogous to the J integral and energ, relcase
rate may be used for quasi-static crack growth in a class of nonlinear viscoelastic %nirial,

under finite strain. In Section 2. results on the J integral and ener.\ release rate for
three-dimensional deformation of nonlinear elastic media are collected. Included iP a
simple (and apparently new) derivation of the relationship between the J integrl and
energy release rate. The J integral formulation is guided by ('hen and Shizl-d'\s %,ork
[10,11), and interpretations are given which are used for subsequent application of
theory to viscoelastic fracture.

Viscoelastic constitutive equations and methods of quasi-static deformation anal ,N,
using elastic solutions (correspondence principles) are discussed in Sections 3 and 4.
respectively. Correspondence principles are given for a broader class of problems than
considered in the fracture analysis; for example, they represent a new approach to
analyzing crack closing and healing phenomena and ablation effects.

Sections 3 and 4 provide the basis for using the J integral and energy release rate in
nonlinear viscoelasticity problems. This generalization, along with results in Section 5 for
mechanical work input to the crack tip, is applied in Section 6 to relate fracture initiation
time and crack speed to the J integral and viscoelastic properties of the continuum and
failing material at the crack tip; these relationships represent extensions of the author's

other work 1121 based on a two-dimensional J integral and small strains. Then, as another
application of the theory, in Section 6 we also predict the effect on crack speed of the
rheological properties of a zone of damaged or otherwise special material surraundrng the
crack tip. In practice, viscoelastic behavior of this zone is often significantl% different from

=-,'. that of the far field as a result of high local stresses, dissipative heating, or the particular
physical situation; the craze zone near crack tips in glassy pol,:,ers [13] and an adhesive
interlayer are important examples. Surface or path-independence of the J integral exists
for materials with certain types of distributed damage as shown in the Appendix- we ue
this important property here in accounting for behavior of the material surrounding the
crack tip.

The deformation and crack growth theory in this paper is not much more involved than
that of nonlinear elasticity or special cases of linear viscoelasticity. This simplicity.
compared to what one would expect for nonlinear \,iscoelasticity. is a direct result of the
particular constitutive equations and mechanical variables selected to characteriie rheo-r.. .logical behavior. We believe the theory provides a practical approach to the development

of realistic damage and global fracture models for nonlinear elastic, viscous, and viscoclas-
A-- tic media, as illustrated bv the author for a particulate composite material and pol.,crvstal-
. ,. line metal [14.151.

2. The reference elastic problem

Certain basic equations for elastic materials under large strains are sunmarized in this
section. They are expressed in terms of stresses , (,j = 1, 2, 3) and displacements uk
referred to an orthogonal set of Cartesian coordinates x, which define the location of
material points in the undeformed state of the body, B,,. (Although B, is called the

undeformed state", it could be any fixed reference configuration, such as that existing at
one time during the actual deformation history, without necessitating a change in tie basic
theory.) The instantaneous Cartesian coordinates ; of material points in the deft,rmed
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body BR are referred to the same fixed axes as used for B0, and therefore ),R -i + x, In
some cases a,, or ut will be equal to the stresses or displacements in a viscoelastic body:
but in general they are different, and therefore the superscript R is used to make this
distinction. Section 4 is concerned with the correspondence between states of elastic and
viscoelastic bodies. For now we shall just list and discuss relevant equations for elastic
media.

The stresses aR are taken to be the components of the so-called Piola stress field 116].
The components of the Lagrangian stress tensor T [171 are given by the transpose of &,"
viz., T, ,  Although o,R is not in general symmetric, these components are very
convenient for our purposes because the equilibrium equations, a

aR + F R = 0 ()

111nd the relation between surface tractions T R and stresses.

= 0111, (2)

are identical in form to those in the linear theory. (Throughout this paper the summation
convention is followed wherein repeated indices imply summation over their range unless
stated otherwise.) All quantities are referred to Be, in which x, are the independent
variables. Namely. F R is body force per unit undeformed volume, T,' is the surface force

per unit undeformed area. and n, is the outer unit normal of an area element defined in
the undeformed state; force quantities are defined as the vectors existing at the current
time t, but referred to the undeformed geometry. B.

A potential I is assumed to exist with the property that
R,,= aj,/ (,,, R -:-

l(3)

where, by definition.

U , - ,(4)

For an elastic material b is the strain energy per unit undeformed volume [171. If 'e

invoke the physical requirement that 4 is unaffected by rigid body rotation (and re( ill
that we are using the coordinates x, as the independent spacial variables) the dependciice
of b on the displacement derivatives can enter only through the symmetric Green's strain
tensor [261.

RR R R
,, (1/2)u, i ,,+ u,, 15)

However, considering the association between the present elastic problem and the actual
(viscoelastic) problem introduced later, we shall not restrict 4 by this usual physical
condition. Instead. unless stated othervise, we suppose only that

1R, , .,. , t) (6)

implying possible dependence on the nine displacement derivati,.es, spacial ,,,riahlcs ,
X (allowing for nonhomogeneitv with respect to x., and x,) and time t (allowing for

aging" changes). The body is assumed to be homogeneous with respect to . for now to

achieve surface-independence of an integral that is useful in fracture analysis. With the

same objective in mind, we assume a body force potential 4, - Oi u,. x,, x," t) exists.

in which

pFR <d _ / ,ljR (7)

Consider a generic volume V throughout %%hich D and (, exist with properties defined
by Eqns. (3) and (7). Denote the hounding surface of this geneic volume bh S and let T,'

..7 .
. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .
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be the surface tractions and n, the components of the outer unit normal. Nfultipli 1) by
- u /ax 1 , integrate over the volume V. and then use the divergence theorem 11,1 to
convert the integral to an integral over the surface S. The result is

=- (. + 'F)n - T,%u /ax]ds = 0 K8)
where ds is an area element in the undeformed body. When (Dr = 0 and the bod\ is
homogeneous, the integral dbecomes identical to the x1 component of the integral vector
derived by Knowles and Sternberg [16]; however, we have followed Chen and Shield 1101
and not limited 4) to dependence on strains. By considering only the x, component.
material nonhomogeneity with respect to xz and x, may be taken into account while
retaining the property that W= 0. Only this component is needed in the fracture analysis to
follow.

The J integral and crack tip model

Suppose the body contains one or more cracks. Figure 1 shows as an idealization the
intersection of a crack tip region and local crack faces with the plane of the page. T'he

dashed line is the intersection of a representative surface S with the same plane. In order
to meet the conditions which lead to /' = 0, no crack can exist inside or on S.

The region designated as the failure zone in Fig. I is where material separation occurs"-
it may contain a high density of microcracks or microvoids. The material comprising this
zone in the undeformed state is of length a (not necessarily small) and is assumed to exist
in a layer which is thin (in the x, direction) relative to a. Outside of the failure zone it is
assumed there exists at least a small neighborhood around the crack tip for which W/-4 0. A
useful definition of the crack tip P, and one that we employ, is that it is the leading edge
of the material for which the conditions used in deriving d= 0 are not met.

It should be noted that tractions may exist along the crack faces to the left of the failure
zone: for example. these may be due to a pressurized fluid. interfacial friction and contact
pressure, or damaged material connecting the faces of the intact continuum (as in a craze
zone in some plastics). In these cases, especially the last one, location of the left end of the

failure zone (points 1 and 2) is somewhat arbitrary and its selection may depend oni the

SURFACE "

6S TRACTIONS /"K N"--- FAILURE ZONE' '

1W 22  N\

___ P

e /-

a -- ''._ _ _ - -:

(a) Undeformcd body. (b lM.'rined hoid%

Figure 1. Cros.,-scction of crack in neighborhood of the tip P. l he region of intense d.1n1,ig o itnt ,,cr,,

separation processes is designated the failure zone. whose length is i in ihe undef. inied hod\
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particular application of interest. However. normally one would choose it so that a
extends at least over the part of the surface x. = 0 for which crack tip material behavior is
too complex to be able to predict the detailed traction distribution.

Next. we introduce the integral Jr:

J frR di (91

where . is the normal stress and T' and rR ann

directions, respectively, along the interface between the failure zone and continuum: these
are Piola stresses, as defined previously. It is assumed that the failure zone is sufficiently
thin that the stresses in Eqn. (9) are the same along both top and bottom portions of the
interface. The Au, are the components of the relative displacement vector between
initially adjacent interface points across the local crack plane x 2 = 0. The viscoelastic
normal stresses, r2 and a2,. and displacement, Au,/2, along the upper surface of the
continuum are indicated in Fig. 2. By definition, for the elastic or viscoelastic problem, the
-relative displacement vector" is the displacement vector at the failure zone-continuum
interface above the local crack plane minus that below this plane.

For later use we shall suppose that the crack tip or edge P is essentially straight and
parallel to the x, axis over at least a short distance 1, from the plane of the page (x, = 0).
Over this same distance it is assumed the failure zone integral J, does not vary. Since
n 0 along the top and bottom interfaces it is readily shown that the contribution to W.
(g). from the portion of S along the top and bottom boundaries of the failure zone overthe crack edge of length 1, is equal to -Jl,. assuming the integral over the small curved

surface at the tip P can be neglected: this latter assumption is reasonable as long as the
undefornied failure zone laver is thin relative to a and we impose the physical requirement
of finite stre,ses (including those at P). Thus, from the condition d= 0.

if (10)

.here

"% J,-=(I/ ) ( + q )' - I; .x d 1 )., .

and St is the portion of S not included in the integration along the failure zone over the
length .

Notice that J, is a surface-independent integral in that its value is the same (i.e. Jf)

4.,.%
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regardless of the choice of S, except for the conditions ,tated aboc. It can be reduced to
Rice's path-independent J integral [3] by omitting the body force and assuming two-,

" mensional deformations. Specifically, let S be a cylinder (having the cross-section in I
1) with generators and with normals to the end areas which are parallel to Y. At the ends
n, = 0, and therefore the contribution to J, from the cylinder ends vanishes if T;OU,R/d -
= 0: this condition exists on the ends when T

R = 0 (e.g. plane stress) or TR T=R =

u = 0 (e.g. plane strain) or TaR= = au/ax, = 0 (e.g. antiplane Strain).
With the integrand in (11) further assumed to be independent of x'.

j,= ", (D) dx,- T-.dL 
(12)..

where the integration path C, starts at point 1 in Fig. I and proceeds counterclockwise to
point 2. Assuming (D, = 0, crack faces parallel to -x, and traction-free, small strains and
rotations, and further that 4) is a function of ui,R through the strains, (12) reduces to the
original form of Rice's J integral. '

Suppose S, in the three-dimensional version of J,, (11), is chosen so as to not include
any portion of the failure zone-continuum interface (outside of I). We may then consider
(10) to give a basic relationship between the mechanical state of the continuum through J,
and the characteristics of the failing material along a segment of the crack edge. In some
cases one may want to use a failure zone integral in which 1, includes the entire crack edge
(or a large segment of it). If the integral (9) is not constant or the edge is not straight along
the length of interest, one would return to (8) to derive the desired form. accounting as
necessary for curvature of the edge.

-S Finally, it should he noted that (10) and (11) do not depend on crack face, being "-''-
parallel to the-xt- x, plane. Rather, this condition is imposed only on the laver of
material comprising the undeformed failure zone.

En'gv release rate

Up to now we have not considered crack growth. By introducing a virtual crack extension.

.- the value of J, can be related to a global change in energy. This relationship nia he useful
for the experimental or theoretical determination of J, for elastic and viscoelastic materi-
als, as an alternative to evaluating it directly from the integral. (11). The desired equation
may be derived by first multiplying (1) by a change in displacement Su, , integrating over
the volume V of Bo, and using (2), (3). (4), and (7) along with thc divergence theorem.
There results, finally, the familiar equation for virtual work,

JTRW& ( + -)dt, (13)

Both S and V have been assumed constant in deriving this result: e.g.. there is no explicit

change in crack tip location or phenomena such as material removal through melting.
Crack growth will be simulated through a suitable choice of Su,. as in [14], thus permitting

0 the use of (13). An edge segment of length l (in the x, direction) of only one of possibly ""-

many cracks in the body is to be advanced an amotmt 6a, as illustrated in Fig. 1: this
advancement is assumed independent of x. The interface between the failure 7onc
material and continuum of undeformed planar dimensions (a + Sa) by 1, is denoted as S,
and considered to be a portion of S in (13). As before, we denote by Au," thc current
relative displacement components between originally adjacent material points aLros thc
local crack plane (which are specifically the displacements between the portions of S.
above and below the crack plane). Self-similar crack gro% th is now imposed: Ai R A A,. ( -

-. :.'L -:,- * "... .--. .-.. , o--.-.... - ,-./.:, ,. . -. - .. -.- . -. -. -- - - ,- - -- - ----- --" . -- :- . 2 .-. -
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202al that (10) is dependent on the assumption that the material is ph~sitcall Shnpoe

neous in th ,direction for the portion of the continuum bounded bv thle falilure tn
and the surface S, used in 011). In contrast, this assumption is not needed to derive ( 1 7. in
that (D 0,. and (D, in (18) may depend explicitly on all coordinates x, (as %tell as, on L

dslcmnditibes osrvdpatwen asuprfaeiouslyinicatedd)or.

dsplcifemefntdinvsx or dispaemes assctl peis inaed)

F quation (18) then takes the familiar form,

For elastic materials, the quantity P, is the potcntial energy. Its phi sical siunificanc:e is%
somewhat different for the class of viscoelastic matcrial., discussed in the ncxt ,ection.

3. Viscoellastic con~itutive equation%

Thle constituti\ e equations %khich wkill be ulscd arc bascd on (3). bilt the displakicemczits uM

and stresscs (7 * are not necessarily ph. sical quantities in the %iscoelastic bodY. instead.
thev are related to the physical displacements t4,( A, t ) and stresses o (A.I) through
hiereditary integral.

Spccificalk, considering displacements first, and( assuming they vanish for 0.
dit

1-, RJFt - )-d T.f (

where it, =U,(X,. 7-) is the physical displacemnent in terms~ of the time \ariahle of
integration. Tr, and, as before, the coordinates v, of the undeformed bodN. I'he quanltt

E = E( i - T. t) is called a rela-vation miodulus, which imparts hereditary characteristics to
the deformation behavior. The coefficient ER is a free constant which wvill be termed t'
reference modulus; it is helpful in discussing special material behavior and introdicill.
dimensionless variables. In order to allow for the possibility of a discontinuous change inl
is, with time at r 0, the lower integration limit in (23) and succeeding hereditary integrals
should be interpreted as 0 unless indicated otherwise. Thle inverse of (23) is

* T

where D DI) t -r.t) is termed a treep coniplanec. It is readily shos. n that E~ and I)
sat isfy

f D( t~ E( r t, T )dr WI t - t, )(25)

where t,. 0 and 11(t - t, ) is the H eaviside step function- 11(t t, 0 i nd I for tr ,

and t 1,, respectively.
it will be helpful to use abbreviated notation for the hereditar\ integra~s For an\

function of time. J.

Edf }1 FL(-f.t, - dr( '.I

PRESIOUSPAGEPdfI F"1)( T, 1

12r( BLAN

..............................................................
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Also. in vicv.' of (23) and (24),

f={Ed Dd f = Dd{ Ed } (26c) '

Fquations (23) and (24) become, respectively.

F Ed i, I { Ddu } (27)

Similar hereditary integrals are assumed to relate a, and a, hut modulus and
compliance are interchanged,

,,, ( 0= E,doY (28)

where the subscript I is used to indicate that the relaxation modulus and creep compliance
(is well is another reference modulus E, ) are not necessarily the same quantities as in
(27). Inasmuch as a, R and u are not in general the physical v'ariables. wve shall call them
pseudt stresses and pseudo displacements. respectively. Similarly, the adjective pseudo will
be used when referring to the potentials D, (3), Of. (7), and (D1 . (19), in the context of
viscoelastic analysis.

The hereditary integrals used here are linear functionals with relaxation and creep
functions \which 'ire independent of x,. This behavior provides the useful property that
differentiation with respect to x, and hereditary integration may be interchanged: e.g..

= f ,Ed~to,, . _/a.', = { Id(')uR/ } (29)

'lhe choice of constitutive equation (3). with pseudo and physical variablcs related in
accordance with (27) and (28), is motivated by the fact that this constitutive theor-
approximates \\ell the deformation behavior of various materials, and leads to relativel.
simple equations for viscoelastic deformation and fracture analysis. The latter point will
be brought out in this paper. The validity of the constitutive theory has been discussed in
112.14.15] for the case in which a = a,. Observe that it reflects the commonly reported -

behavior in which stress-independent relaxation or creep functions in single integrals serve
to characteriic nereditarv phenomena exhibited by many nonlinear materials. Aiso, sonic
important special cases may be readily recovered through an appropriate choice of the
material functions. Specifically. if E = E, = 1) =1) ER F ERi. (27) and (28) reduce
to u,R = u and oaj, ao,,: consequently. (3) reduces to that for nonlinear elasticity. If
0 1E, ERI and

1D-UFM) i-r) (30,)

so.here t, is a time constant) we find a (7,. and

which, together with (3), yields linear or nonlinear viscous behaior. The general creep
compliance )- D(t - r, t). together with ak = 7,, (corresponding to E, = ER, and a
pseudo strain energy densitv which is proportional to that for a linear elastic, isolropic
material in terms of uR,, yields the standard constitutive theory for an aging linear
viscoelastic material \ith constant Poisson's ratio: nonaging behavior results if 1) = D(
T). The generalization provided Ibv (28) in which pseudo and actual stresses arc not equal
is useful for crack closing an healing analYsis, as discussed later,

It should be ncntioned that the notation ) D(t, T) is cmplo Ced in [141 instead of
I) = P( r -- T. t ). These forms are equiv. alent, but the latter is more con enient in the study
of crack gro~sth. The pseudo energy 4) may alsO depend Cxplicitly on time to accout1 fr1.
effects of aging in the nonlinear behavior. "'Aging" is not limited to intrinsi_ material
changes. but may be due to direct physica l causes such is tranicnt tcinlrtire' ;int.
residual stresses II41.

a . .• , . . . . . . . .
.% . o o • . ° o • .•= oo•, - •o• ' . . -



44-

J.

204 R.A. Sthaperv

4. Correspondence principles

Correspondence principles in linear viscoelasticity theory usually refer to elastic-viscoelas-
tic relationships involving Laplace transformed stresses and displacements. Instead. here
we shall give three correspondence principles for time-dependent, quasi-static solutions to
nonlinear elastic and viscoelastic boundary value problems; they enable a viscoelastic
solution to be easily constructed from an elastic solution. In terms of Piola stresses and"

0 coordinates x, of Bo, the equilibrium equations are
a , l ax, + F, = 0. (32) e.. ,

The stress-pseudo displacement derivative equations. *V'

and body forces

,= - {E}d(Mlu,)) (34)

in which

u1,=- Ed(au,/a.,)}. u,  { Edu,} (35)

lead to three intergro-differential field equations for the three displacements 1, when
substituted into (32). The functions D = X(u xA. t) and (b, (),:(u. x. t) are consid-
ered to be known; until Section 6, where the J. integral is used, we allow for explicit
dependence on all three coordinates x,.

As boundary conditions we assume the traction potential ) = (b, (u, .x., 1) is speci-
fied on a portion S, of the surface, viz..

a,,n,= T, E,d(aD,/u,)} on S, (36)

Elsewhere, displacements U, = U,(x,, t) are given,

u, U, on S,:. (37)

The total surface is S = S, + St,. Although not treated here, generalization of the analysis
is easily made for mixed conditions in which different traction and displacement compo-
nents are specified over the same part of the surface.

In all three correspondence principles the reference configurations B,, of the elastic and
viscoelastic bodies arc specified to be identical (with identical cracks, if any). The first
correspondence principle is restricted to time-independent surfaces:

(P-I. The viscoelastic solution (i.e.. the stresses and displacements in the viscoelati body
which satisfy (32) (37)) is

E,= { da,} ,, ( Ddu1 3S)

-where o, R and u," satisfy equations of the reference elastic problem. (1). (3). (4). and (7).
together with the boundary conditions. -'

al In, = T~k -~/ 1  on S,,(3a

u,"= U {EdU} on S,.. (39b)

It is seen from (39b) that we first transform the given displacements U; (if an',) usn-
the hereditary integral and obtain those needed in the elasticity problem. The governing
equations of elasticity for the variables a,R and u, are then solved. This solution is ued in
(38) to obtain the viscoelastic solution. That (38) is correct is easily estabishcd hv
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substituting it into (32)-(37). If the body forces F: or surface tractions T, are specified in
the viscoelasticity problem. then one transforms them to obtain F,- D~dI) and 4
T R _ { D di ). after which the elasticity problem is solved using the potentials in (21).

When S, and S, vary with time certain difficulties arise. If an,/at *= 0 on STf, then

(39a) does not result in the correct condition, (36). This problem may be seen by observing
that for the solution in (38).

, ,,, E I do,, ) n, o { E,d,,} on S, (40)

and therefore a,,n, 7'. Other difficulties are due to the effect of past values of T, and 1,;
on current values of TR and U,R. For example, consider dST/dt > 0 and D, in (21). (By
this shorthand notation we mean at least a portion of S, becomes in time a surface on
which T, is given.) Then the traction TR cannot be predicted for all t > 0 from the given
boundary conditions on the part of S where the change from a displacement to traction
condition occurs.

The next correspondence principle is for this type of boundary value problem. but we
assume E, = ERI. Hence, ( Edf } =f for all functions f, and therefore the constitutive
equation and body forces are, respectively,

0 ",, = f l/ a u R,), f , 3 : u , (4 1 )

Also.

(T,,??, n 7= -'bOlr/3U R, on S I u,= U, on SU. (42)

(P-I. If dSI/dt > 0. the solution of viscoelastic equations (32), (35). (41), and (42) is
, (. u, =Ddu,  (43)

where a, and ul' satisfy the equations of the reference elastic problem. (1). (3). (4). and
(7), together with the boundary conditions in (39) in which T = T,

Verification of (43) is readily accomplished as before by substituting this solution into
the governing viscoelasticity equations. Inasmuch as the elastic and viscoelastic stresses
are the same throughout V and on S at all times, no basic difficulties arise in verifying the
solution if an,/)t * 0 on S, and in determining T,R when (21) is used for DT• lowever.
the present class of problems obviously allows for crack growth, and certain physical
questions of material continuity and interference have to be addressed. Pursuing this
point, we observe that the relative displacement between crack faces, Au,. in the viscoelas-
tic body is the difference of displacements in (43) evaluated on adjacent crack faces.

Au, = { DdAu,' } (44)

where Au, is the displacement difference in the reference elastic problem. Since we have

specified the instantaneous geometry of all cracks in the elastic problem to be the same as ' I
in the actual viscoelastic bodv. Au, is correctly predicted to vanish until the time t, say.
when a crack tip reaches any particular physical location- this follows from the fact that
Au, = 0 at this same location when t < t, (assuming prior cracking and rejoining of the
crack faces has not occurred) which in turn implies the hereditary integral in (44) vanishes
when, < t, I"

The present solution, (43). does not account for contact or rejoining of crack faces.
Rather, it could predict that adjacent crack faces pass through one another if in the actual
situation they rejoin and interfacial compression exists. Following such rejoining, the

stresses in (43) are not valid, and the solution may become much more involved. We shall

not consider the general problem here: rathcr. only the case in %%hich cracks are inilialle

%....
.'.-..-...-.'..,..."....- ...- ..-.- ... .-.. .,.-:.-.......
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open and then close or shorten through a healing process is discuscd. I he third

correspondence principle is concerned with the problem dSr/di c 0. and it is limited to
the case E = ER: (32)-(37) still apply except u,4 R u, and uR = u,./ are no%% used.

('PIll. If dS,/di < 0 and if an,/l)t = 0 on S,. the vicoelastic solution for the case E - E,

a,, { E,do, ) u, = (4 5)

where a,R, and u, satisfy the equations of the reference elastic problem. (1). (3). (41. :tnd
(7). together with the traction boundar conditions (39 a )and

u, = U, on S,. (4,-

Verification of (45) is made is before. ()bsersc th,, elastic and %i, coeL.,tic diqlace-
ments are now equal, while the stresses depend on the relaxation modulus F,. Also, it is Of

interest to observe that if tractions T, are specified on crack surfaces (such as in the failure
zone) the tractions TR in the elastic problem are different from the actual ,alues since
T,R = {D nT,).

The Correspondence Principles I1 and Ill arc not limited to crack problems. For
instance, they may be applied to problems involving contact between different continua or
ablation. Furthermore, even though they are based on apparently different conititttis..
equations they may in some cases be used for the same material, at leaqt as an
approximation. Indeed, for linear viscoelastic behavior in which the onl,' effect of aging is
in the relaxation moduli E and E, (i.e. (D does not depend on time other than through the
displacement derivatives), the two constitutive equations are easily sho%% n to he equivalent
if E, = E. ..

The remainder of this paper is concerned with crack growth analsis for material',
obeying (41) and (42). The Correspondence Principle II ((P-Ill) and J. integral theor-
be used in the development of criteria for predicting growth init,twon time and cra .%.
speed.

5. Work input to the crack tip

An important quantity in crack growth analysis is the mechanical work available from the
viscoelastic continuum for producing the separation (or at least a significant change of
state) of material in the failure zone. This work, 1 . will be defined using an idealized
model of the crack tip. and subsequently expressed in terms of the parameters., and J, of
the reference elastic problem.

Consider as before a slender failure zone (in which a is large compared to the initial
thickness of the failure zone in the ., direction) and locally two-dimensional deformations
plus antiplane shearing. Before discussing IV', let us recall that J, for the elastic problem
was defined through a line integral taken along the instananeou.: interface between the
continuum and failure zone. Furthermore. the surrounding material was assumed to obe,
(3). while no such restriction was imposed on the zone itself. For the present purposes of
discussion, let us suppose this zone consists of the thinnest material layer for s hich 13)

provides an adequate representation of the surrounding material. Figure 4 depicts (the

deformed failure zone (in the opening mode for simplicity) using a solid line to indicate
the interface.

*." For the viscoelasticity problem, tie work per unit undefornid area (in the ., .

plane) input by the continuum to a given material element (of width d x, in the failure

zone from the time the crack tip arrives at the element. t,. to the time the lft end ofI the

.- "* '

• • o ,**** e . " °* " , • *, -" = • *** - . • • " 
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- WAKE OF DAMAGED MATERIAL
FROM GROWING CRACK

CONTINUUM-FAILURE
""- I" ZONE INTERFACES

FAILURE ZONE

Figure 4. Deformed cros-section of crack in opening mode showing cirrent nterface between the t' titiin .

and toll clement, in the fadure ,one ( -. .),and iraj eltorv ,f the inierf ie for the clement ceurreiil, Ili left

edge of this /one ( - .

failure zone arrives, t, is

=j, 'd ct. (4-7

at

The quantities r, and Au, (i 1. 2, 3) are Piola stresses and relative displacements.
respectively, along the interface, and therefore thc haive the same significance as their
counterparts in J,, (9). Notice, however, that differentiation and integration in (47) is for a
fixed value of x,, whereas that in (9) is for a fixed time, thus. J( does not in general reflect
the deformation of a given material element. As a result, quite apart from the distinction.
betwkeen elastic and viscoelastic solutions. 1'r is believed to he a more basic parameter
than J for defining material failure.

There is an additional important difference between Wl and J. as they have been
introduced. Since K4j is the work input to one material element, the continuum-fail.re
zone interface has to consist of the same continuum material points at 0 it as at a.
The dashed line in Fig. 4 is intended to represent this interface. The height of the namteriia

element at 0 () is indicated by h,,. which defines the thickness of the laver that ulinicln""
becomes part of the failure zone: depending on the material behavior, the two interface,

may essentially coincide along a partial width or entire width 0 < a ,. or may not

coincide until n a (t = t,,). Considering the analysis to follow, in which At,4 and Au, arc

to he related through (P-Il. we should use the saame material interf !ce in the -lastic and

viscoelastic problems; the outer interface (the dashed line in Fig. 4) ma' he used if 111
undeformed value of h, is snmll enough to not invalidate (10). We shall assume that this i,

indeed the case.
According to C'P-II, the relative displacements in the elastic and \iscoelasti pro. int'

satisfy (44) if the tractions acting on the elastic and viscoelastic continua arc the sa ic.

• ?-3-5-''-"-"-"-"-"- -:-.-.-/ -'- -'-,"-"-.....-.-. .-.',:'. '. -. ".;." "* "" ,..; "-"- -"".'- '.?.',',,. "-.' ,' ".''. ."...0..
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(Recall that a traction potential (Ii was used in the boundary condit'on. of ( i'-fII r J,*\.
(42)); but it is clearly sufficient to use the same traction. rcgardle. of whether r ut !h,,'

are actually known or are expressed in terms of a potential.) Noting that strc.sCs 7. And T

are tractions along the continuum surface (apart from a sign change due to fn2 ). we ,pccif\
T,
R =r in order to be able to use (44) in the next section. Criteria for the time t, at %%hich

crack growth initiates and for the speed of propagation s will be studied.

1%. 6. Analysis of crack growth

Initiation of growth"

For initiation we consider a material element which is at the left end of the failure "one
= a from t = 0 to t,. As the body is loaded (beginning at t = 0) the crack tip P moves to

the right but the element at , = a does not necessarily break immediately. Rather. it
breaks at t = t,, the so-called initiation time. We are interested in expressing the s .,rk
input to this end element in terms of the far-field parameter J,. In order to simplify the
analysis so that viscoelastic effects may be shown clearly, stresses in the material in the
failure zone will be idealized to those of a time-independent, rigid-plastic body: viz.. we
assume the r, are independent of t and ,. Thus, from (9). (44), and (47), ">

2" jf = ,AURo 4 m
Jr io~ (491

"°N"

and

Wf= ,At,,=T, DdAu',,} = {DdJf} (49',

where Au R and Au,, are the relative displacements at = a. The last result together with
J, = Jf, (10), and the notation in (26b). yields an explicit formula for work input at r r,:

4 dJ.w = -ER V,...
E 'D(t, -7 r, ,)-d (50) N.

0f dT

(See [12] for more general models of failure zone behavior.)
This result is the crack tip work per unit undeformed area in terms of t,%o.

continuum-related parameters, J, (which accounts for the geometry of i,, and applied
loads) and D, the creep compliance of the continuum. The J, integral is the same as .1 for
an elastic material when expressed in terms of the surface tractions. Also, just as for an
elastic material, if the failure zone size a is small compared to all other geometric features.
J, is essentially independent of failure zone size and properties. Recall that E, is a free
constant, and may be selected as desired. (Its value does not actuall, affect lit because .1,
turns out to be inversely proportional to ER.) Thus, if the continuum is elastic with a
constant compliance D, we may use ER = D and obtain the familiar result IV = J."

An equation for predicting t, is obtained by introducing the work 2 Y, required to fail the
clement at , = a. Thus (50) becomes

21,= {DdJ}. 1,l)

The factor of 2 is used because the "fracture initiation energy", 1,, is defined like a surface
energy, counting the cross-sectional area of each side of the failed element at n n as one r"
unit of area. This energy is not necessarily a constant, even when the stress state of the
crack tip is the same for all conditions of interest; as the failure zone displacem nt histor
may affect r,. Whether I, is a given constant or depends on Au,., (51) is an implicit
equation for predicting t, in terms of the history of J,. On the other hand, one ,:ould use"
(51) to obtain 1, from tests of laboratory specimens by detc mining the value of the light
hand side of (51) when the crack starts to grow under various test conditions, including
different modes of crack tip deformation.
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Finally, we observe that for the opening mode of crack tip deformation in a locallN
i,otropic linear viscoelastic material in plane strain.

J, = (1 - v-)KI/ER (52)

where K, is the stress intensity factor and v is the Poisson's ratio assumed constant. (This.
familiar expression f6r linear materials may be derived from (9) and (10). for bounded
stresses, by using [5, Part 1 (15) and (22)] for K, and displacement.) Substitution of (52)
into (51) to express the initiation criterion in terms of K, yields the author's earlier result
for linear viscoelasticity [5, Part 11 (64)].

("ra A speed

Predictions of It' for the next case with d > 0 is facilitated by using rather than t as the
independent variable. Thus. (47) becomes

I I f, --d (53)

%%here Ali, = Au,(x 1, ,). Equation (53) will be expressed in terms of J, for short-term
steadv state conditions. Namely. the speed i and failure zone length a are assumed to he

essentially independent of time during a generic time interval a/u for which the crack tip
moves a distance a; during this same interval it is further assumed that r, and Au, are
essentially independent of x, (although depending on ), a is small compared to the
distance to other geometric features, and that there is no significant change in D( --. t)

due to aging (through the second argument, t).
These conditions, together with the observation from (44) that Al, and Au are related

in the same waY as for a linear viscoelastic nonaging material, lead to the approximation
[5. Part Ill.

A, E, FD(i. i ) Au, (5 4

%%-here t k,/t. The factor k is a very weak function of slope n (I log D/d log i. and i,
practically 1/3 for the entire range of slopes (0 * n < 1) encountered in practice. Equation
(54) and the value of k stem from the smooth, cusp-shaped relative displacement Au ( .
predicted for a linear continuum (with hounded crack tip stresses), such as that illustrated

- in Fig. 2 for the opening displacement. Although further study of the accuracy of (54)
seems warranted for nonlinear continua, it is likely to be a good approximation in man\
cases in view of the insensitivity of Au/Au!' to the detailed behavior of Au, (.) 15. Part

-"" 11: indeed. (54) may not require a to he small or constant.
Substituting (54) into (53) and using the same type of approximation as in the lincar

theory [5. Part Ill, %%hich does not require 7, to be spacewise constant, we find
,,F !)- ,, ) a., ,"R.

where

The integration and differentiation in (55) is for Y, fixed, while that in (9) is, fort fixed

(i.e.. fixed crack tip location); however, because Art, and r, are independent x, (or ) for
short-term steady-state gros, th. these integrals are equal. Equation (55) thus reduces to

Upon equating I, to the worl required for failure of a material element, 21'. and uinr,.

**r- -* ".*',* .*~ * ." -. .. . . *......................
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(10) we obtain an implicit equation for d.
21'"= ED( i ,, t )J,,. 1g ,

It should be recalled that the crack speed has been assumed constant for onlN the generic
period a/t. Consequently, a as well as the other relevant parameters may vary over much I

longer periods without invalidating (58). Similar to the initiation problem, the linear
theory 15, Part IH] is recovered from (58) by using (52) for J,. Also, for a linear viscoelastic
material whose creep compliance obeys a power law in time, the factor k in (56) may be
expressed exactly in terms of Gamma functions if the stress in the failure 7one i,
spacewise constant [27, p. 118].

The failure zone may be viscoelastic, and therefore F could depend on t as well as other

local parameters. After allowing also for possible dependence of a on J, and ). for
proportional stressing (58) provides implicitly the functional relationship a = )( J, ). as
discussed in [121 and in the final subsection. 'The effect on 4 of the geometry of the
undeformed body B (in which crack lengths vary with time) and applied loads is entirely
accounted for by the instantaneous value of J. In principle, a detailed model of the failure
zone could provide this function; but if the effect of fundamental material paramet.rs is --

not of concern, one would normally determine a(J, ) experimentally.

, ffect of a process :one or interlayer on crack speed

Fiure 5 shows a failure zone within a "process zone" of length /t. The latter 7olne is
introduced in part to account explicitly for the fact that with some materials, especially
plastics, there is a zone around the crack tip which has different viscoelastic properties
than the surrounding continuum [e.g., 13]. Also, Fig. 5 can he interpreted as a model for
crack growth in an adhesive layer, in which the adjacent continuum represents the two
elastic or viscoelastic adherends. Besides these uses, we may consider the process zone to
be a failure zone as previously defined (but now with some limitations on its constitutive
properties), and thereby obtain detailed information on r from the subsequent analysis.

For the class of damageable materials introduced in the Appendix. a pseudo strain
energy density D exists for the response to both loading and unloading. Additionally. J, is
independent of path under many conditions. We shall assume one path-independent

P 1•
~~~~~I 1 :"::.:.:i "~POCS ZONE b:?!: '

- - -. 9 ----

-:igure 5. (ros.ction of crack in undefirn'td bo;tv witl crak tip P ctihetdcd in r tdtial La\ct 1ro,,,. 10V,'11

having deform.i ii n chir',iekri ti, diffh'rcn! frorn sutrrouinding co ntinuuim Fhe 'athiur' zonc 1i not n,'c I o .
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integral exists for the process zone, and another exists for the surrounding contnuum. The
creep compliances and (P for the two regions ma,, he different, and therefore these
integrals are not necessarilx eqUal.

Local two-dimensional deformations. appropriate to (lhe use of' ( 12) for the process
/one. are assumed. Furthermore. C,. is now taken to he the dashed line in Fi.5. %%hich is
adjiacent to the continuunm-process zone interface. Subscripts -a- and -b- %%ill he used
w~hen necessary to distinguish between quantities for the failure zone and process zone.
respectively. A letter subscript %,.ill not be used with parameters of thle continuum.

The proes,, zone is assumed to be thin in the x direction (relative to P~) so that
arguments similar to thlose gi~ en previousl1y for thle failure zone may be emiplo~cd: this
slendernecss greatly simplifies the anlalysis while thle essential physical features are retained.
I'llus. ( 10) is -used.

J, =in (S9)

w~here 3, is in 01I) and (cf. Fig. 5).

Siinilairlv. for thle./ integral in the process zone.
J, 61

~here

T d (62)

It is important to recognize that in using (59) (02) we are, in effect, neglecting the
coninhution (if the vertical segmenrts at J) and Q. Fig. -5. ito the i ntegral in (8X) for each

cotor hci other simnpli fication employed is that thle Piola stresses along the top%
horizontal line oif each contour equal those along the bottom. Thle samne ,implifyimne
features are assumed ito apply, to./,, %% hen evalated onl C,: thus. (12) vields

where 1,, is thle in tegral alon' the vertical segmntt he) oV point I and above point 2 in Fiv.
5. This contribution is retained even thlioimdm thle integral along the vertical path it Q
w"it hin the process /one) is neglected ['lle di11fference is due t0 thle value Of (1), at 0,
whi0h may he verY large as a result oif damnage in the process tone (cf. Appendix). ss bile

t,,at q~ 0 will be small if' 1it, 1, .0 is 'mall: thle contribution Of tile incrlOf
TIduR 6 on the vertical lines is considered to be negligible due to. for examiple.

smallness of mOU/R I~~1 at rj0and IT, at a or the slenderness of the process tone.
Considering the fact that the vertical paths at Q in the process zone and the continuum
have been negleeted and recalling conditions for which W= 0). we are. in effect, defining Q
ito he close to or ahlead of the leading edge of nmajor softening processes and to straddle the
location whiere the creep compliance 1) and function (P (for the continm) change to 1 ,
and (D, respectively (for thle process zone) of course, if I) =D,, and (D = 1,. the latter

contrinisno ivvd. Fihe distance over wNhich the change inl functions occurs should.e
he small compared to P? or at least he such that the result of interest. (73). is not senlsitive
to the physical location selected or calculated for Q.

Approximations like that in (54) will he used to evaluate the viscoelastic displacement.
Thuis. for thle continutum just outside the process /one,

.11, E1 m) i. A qA'1 i (64)



212 R. A Schaperv Y .

the process zone just inside the continuum,

Au t Rh(h, t)A . h 7t (65) :"N

and the process zone just outside the failure zone,
_, ~Au, = -- EHDb(t,,, t)'%U, . t,, - k,,k/i. (66)-"

In view of the local steady-state assumption implicit in these approximations. t= also.-

because E, and E. are free constants, we have used Eh = ER.
Let us next relate J,, to J,.. This may be done by using the continuity of displacement%

and normal and shearing stresses across the continuum-process zone interface: A = Au,h
and 7r = r,,. The first condition together with (64) and (65) yields

-- ---(b,) A( 67)
Dh( t b , I)

Substitute this result into (63), use the same type of approximation that lead from (53) to
(55) (but now with the D-ratio in (67) entering in place of D in (54)), and then employ (59)
and (60). There results, finally.

Jh Oh(th,, . ,) J + 1. (68)

where
ft - kfliz. ,fla k~fl/d (69)

and approximately k k 1/3. Additionally (cf. Appendix),

I f -Jibdx, (70)

where the integral is taken upward along the vertical lines at a;, the basis of the
physical significance of (, we have I,, < 0, where I,, = 0 when there is no damage inl the
process zone. It should be observed that we have neglected the contribution from the hod"
force potential because of the slenderness of the process zone.

The work input to the failure zone is given by (57) after replacing D by D,. Jf by J,."
(62), and then using (61) and (68).

[ D(i,3, I)1
,= ERDt ,.t t.J, - f , d. (71)

where

k.,a/, k, 1/3. (72)

Equating It' to the work required for rupture of an element of unit area in the failure
zone. 21'. we find the implicit equation for ).

2 r, E, D.(,. tJ, "-3
where

21" 1 D',. 21 ) +f *dx, E.DIh(th?. r). (74)

The quantity 1', is the "fracture energy'" of the process zone; it is introduced in order to
write the crack speed relation, (73), in the same form as (58) for the failure zone alone: F,
consists of the failure zone energy I', the work of damage (given b,, the integrI i '74fl.

%.- 
"; 
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and the "local" creep compliance D, in terms of two local times. t'. and t'll.
As a result of damage in the process zone, the fracture energy r may be negligible (or.

equivalently, the failure zone may not exist). Equation (74) then reduces to

2 21h= ERDh(ibl,. I )flhbd 75),

which is to be substituted into (73) to obtain the equation for b( =). This result
corresponds to using J,, = 0 in (69).

If 14, in (71) is negative, i.e.,

J, < ODx thd (76)

there is insufficient mechanical work available to break material elements in the process
zone. In this case, the crack will not propagate or, at least, quasi-static steady-state
propagation cannot exist. Even if 1V > 0, steady-state propagation may not exist when
(73) predicts dJ,/da < 0. An examination of (73) indicates this situation is a physical
possibility without having to consider dependence of a, P3, ', and (, on 6. For example.
suppose f 0, = 0, DE, = I and that a. fP, and F are independent of a. Also, let
k = ka k, so that t 13 kf/3/1 and t<, = ka/iz. Equations (73) and (74) yield

2F h flt) 
( 7/7o,,(aiflp, t) (7

It is helpful to express the derivative of J, using logarithms.

S-n+ n,, d log J/d log (PS)

-- . where

3 log Dh(S, t)
a logs a. (4

and

a log D,(s, ) 
"- at s = at, 3 (,"

(I log s

are logarithmic slopes of the creep compliante curve (for a fixed age t) at a creep time of,
s = 1,, and the shorter creep time s ay/fl. For real materials (na, ni,) 0. Alo n. -z it if
s is sufficientlv small, in this case. d.,!dd < 0. For many material., na > n,, , long creep"
times s. and thus dJ, idd>0 the function .1 (07) is therefore predicted to have a

,, maximum at an intermediate crack speed.

Prediction of process and failurc, zone stuev

The lengths fl and a which appear in the argument of creep compliance in the equatiton.,
for crack speed are not necessarily constant. In fact they are related through (59) and t(61
respectively, to the J, integrals and to a measure of the stress in the two iones. In [12] it
was noted that for the failure zone alone the condition J, = J, leads to such a relationship,
which in turn reduces to that derived earlier for a small-scale failure ,one in linea.r
viscoelastic media using Barenblatt's condition for finite crack tip stresses [S. Part "
Equations (59) and (61) are for slender zones, but 1 and a may be lige and the naterial
may be nonlinear, viscoelastic, and anisotropic.

Mechanical state solutions, including zone siue, were derived in [12] for a failure ,one n

". . .. . .. ................................" .. "" , .,' " ." . ."".' . ', ' "'' - - '. , + - ,."' '" " ", " '" " " - "..'" "-. . ." " .' -"' ' - " ,"". " ." -" "'' - ".'"----" '"""-." ,' -"." , ,," ," "- ."-
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at po-wer la% nmaterial. Here, we use tile same approach to derive ftand a. (nsdrfor
A ~examliple. the Use of (09) and tile power law potential (at so-called homiogeneous Cu net n of

degree M +1).

(P( a,", c "P 181

to obtain an expression for /3. [hei result is (cf. derivation (of (39) in 121).

% S2)

%%here a.h and (7, laxe dimensions of stress and are independent of x-. hut ila\ ar\, %% itli i.I a . etc.: they are introduced to express the interface stresses 7-, and potential (1 in1 terms ot
di mension less functions f, and 4),.

Also, ! denotes absolute value and

1, f i)fd,6

%%here iq/fl. and g, are dimensionless Interface dlisplacemelnts.

As in 112]. it can be shown that under certain conditions 1, is a constant (apartI from

parameters which appear in (D, ,such as 11 and aging time t): although linear strain-I displacement relations were used previously the form of the mechaniical StaIte soIlutions
and the conditions are unaffected bv the magnitude of the strains if the power law. (81 ), is

applicable. These conditions are: ( I) the "shape factor"' for interface tractions is Pi'.en ii,
f=f,( z. i, ) where q /fl: (ii) the continuum is locally homogeneous (i.e. (1)~, is

independent of .\,,. other than through du,"/4v ): (iii) the process zone si/i' Pt is smiall
compared to thle distance to geometric features ou1tside Of thle 7one: (iv) the crack faces arc

locally traction free. apart from the interface tractions -,.With-Ut further analsas One
cannot quantify "local" andl say how small 13 must be. I lowever. it may he nc.cssarv% for
there to be a neighborhood of thle crack tip onl thle order of 101 100/1f in ss\Ihicll conditions
60i)-0vi) are mect. The process zone must he small enough1 that the remt stesfcdi

essentially thle singular soIlution ry, - .where r is, thle distance (in the %~-
plane) to the crack tip. Conditlion (i\) miaY be relaxed to alloss for spacess ise uni formi

iLtractions on a li near continuum and space'.'.ise u nifornm normal tfractions ofl an i corn
pressible. nonlinear con6111Ltinuu: the ex tension is, ac:hieved through !superposition of a

uniform stress field. Also, if f, - f, ( :. t, J, . (0) in condition (i ). then 1, = 1, -1 .1,.

[he analysis in [12] is for thle opening modie of crack tip deformiation. I losse'. r. the

form of thle results is thle same for other modes. incluldinoi mixed-m1odeC kdfOrnil-tIOn. ( )e -

maI.\ then argue hv analog.\ that /, is constant tinder the same conditions as statk~d iII I 11if
proportional st ress ing exists: i.e.. if tie ratio of stresses in thle remote sinMLuh st rcs, fihId

is i ndeptideiit of ti mc.it N,

[or uniavala stress a -strain ul: neiia\ior. XI ) impiies it,- . n h'

If- . c,, ma\ he interpreted ;is a \Ield stress: if .11 1. (7, , is aiTodihi1s. lFItUI10imi 82) InI

tu~rn pros des the relation between (7. a mecasure of thle intrinsic strengh1 of' th1C 110

ione (7, and a mecasure of the externlal loading, .1, . If thle process Zone i'. Aso a p. ~ks c I'm'

material (in the neighborhood oif thle failure loud) \\.ith nionlinearl exponent al siir

analysis telds

0i
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ss herc the parameters are analogous to those in (82). If. however. there is considerable ,4:.
nonuniformlvn distributed damage surrounding the failure zone. it is not likely that a %

poxer law nonlinearity with a single exponent ff will be a good representation.
r

J., as a iharctlcrizng, paralit'rcr am.

Consider again a power law nonlinear material with a small scale process zone, in which
the damage and failure behavior of material elements is unaffected by stresses anti
deformations prior to the arrival of the tip Q. Fig. 5. Further, assume J, and h ( ) are
essentiall, constant during the time fl/i required for the process zone to propagate its
length. Ih.: state of stress in the remote continuunm where the aforementioned singular
solution applies is determined solely by the current value of .J, for proportional stressing.
ilst a, for an elastic material. This dependence implies .!, is the only rcmove field
parameter which affects Au> the process zone characteristics of Course affeCt AuR. I rom.
(64) we see that the same conclusion applies to the viscoelatic displacement, Au,. except
crack speed now appears. The damage and failure parameters a. f. F", and f(D, in (73) and
(74) may not be constant, but any variation will be due to J, and ii (e.g. (82)), apart from
aging or environmental parameters such as the external temperature. (Local temperature
changes due to mechanical deformation are determined similarly by .1, and 0.) Equation
(73) therefore serves to define the function i = t)(J,.), indicating that J, is the "characteriz-
ing parameter" for crack speed. In principle, this function could be obtained experimen-
tally through measurements of speed. However, by introducing specific models for r-
behavior of the process and failure zones, one could use (73) to relate crack speed to
material parameters as well as J,. Elementary examples are given in [12] for a failure zone
in a continuum obeying a power law with respect to both time (through the creep
compliance) and strain: the relation a - J" is derived, where k is a simple function of
both exponents which depends on characteristics of the failure -one. The assumption of an
"elastic-like" failure zone for opening mode propagation (I' and r. independent of speed)
was shown in 15, Part 111] to provide a function t = 6(J, ) which agreed well with
experimental data on a crosslinked rubber: in this study there was no process zone and the
continuum was lincarly viscoelastic (cf. (52)). See al.so [7.20.211 for linear behavior.

The J, integral may serve as the characterizing parameter for initiation time or crack
speed when some of the previously stated conditions (e.g. small-scale crack-tip zone) are
not met. depending on characteristics of the process and failure zones. An example '%as
given earlier for initiation time, (51). in which a was not restricted in size. Ilowe,'ver.
further experimental and theoretical studies are needed to establish the necessars condi-
lions.

7. Concluding remarks

7- Methods of quasi-static deformation and fracture analysi, have been developed for
nonlinear viscoelastic media. The correspondence piinciples which provide the bisis fo-
the anal'.sis arc not limited to crack growth: they apply to crack cloing and healing as
well as to other types of problems inv',,Iving ablation and interLcial 'ontact and
separation. Ilowever. only crack growth e samples are pivcn.

Nonlinear effects in iEqn. 41) ftor ,trvs.es arc characterized b\ a potential 1( fsihch I'
,tnalogous to ,train cnerg% dena t\. I his pscudo einerg is epressed in term, of thle hisltv
of displacement deri\atives through Fqn. (23). rather th.un the history of (ircen's ,tratli.

- .• • .
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and therefore material objectivity may not be satisfied when large deformations exist: ie.. r
depending on the deformation history and material type, 'F could be affected h% rigid
rotations. Material objectivity can always be satisfied when linear strain-displacement
equations are applicable. In this case, one would express 'D as a function of displao-ement
derivative history through the strain history [121.

A single hereditary integral, (23), is used in (41) to account for viscoelastic effects, and
therefore some details of the complex stress-deformation behavior of many materials may.-
not be followed. However, the theory does contain general material-objective representa-
tions of the important cases of nonlinear elastic and viscous media under small or large
deformations and the common type of linear viscoelastic material which is characterized
by one independent relaxation or creep function. In certain problems of crack growth in
linear viscoelastic orthotropic materials, the several independent creep functions combine
into just one function for predicting load-displacement response of the crack plane [81.
This feature enables us to generalize (58) and (73) for crack tip work by simply replacing
D with this group of creep compliances.

For large deformations of viscous materials, the current geometry \Nould be considered
the -undeformed" state B, in order to recover the classical constitutive equations [17]: the
basic expression for relating crack tip and far-field behavior, (10), is not invalidated in this
case if the opening displacement Au, along the failure zone, Fig. 1, or process zone, Fig. 5.
is small compared to the length a or P3, respectively. On the other hand, this condition of a"
slender crack-tip zone in the current geometry is not needed for an elastic material.

As discussed in other work [12.141, the nonlinear viscoelastic constitutive equations
used here in the fracture theory may be written in the form of a special type of a so-called
modified superposition principle employed successfully with polymers and metals [e.g. 15,
19). We have introduced effects of aging and microstructural changes (e.g. damage) in the
standard modified superposition principle. This "aging" is not limited to independent ,
physical or chemical processes, and may be used to account for differences in nonlinear
behavior at short and long times and, as shown in the Appendix. to account for damage
characterized by Lebesgue norms of deformation-related parameters.

In view of these extensions of the standard single-integral representation for hereditary
behavior, and the important limiting cases contained in the theory (including specific
microcracking models and deformation theory of plasticity with elastic unloading), it is
believed the constitutive equations are sufficiently general to account for the primary
features, if not all details of actual deformation behavior, of a wide variety of materials.
Nevertheless, considerable additional study is needed to establish the range of validity of
the equations for different materials and conditions. For example, it would be interesting
to determine for rubber the accuracy of the stress-deformation relation in (41). " hich s

similar to the theory developed and successfully applied to rubber by ischoegl and
coworkers 1221.

The "pseudo displacements". u1. which appear in (41) and (43), are related to the
physical displacements u, through the hereditary integral. (23). If the constitutive theors is
valid for global response. the material behaves overall as an elastic body when loads or
stresses are expressed in terms of pseudo displacements: as illustrated in 1151. this type of
behavior for nonaging materials with constant damage may be easily checked by con%ert-
ing experimentally measured displacements to pseudo displacements through (23) and
then examining measured load-pseudo displacement diagrams.

Crack growth

Considering the complex states of deformation and damage around real crack tip,

indirect determination of specific constitutive equations using specimens \vith stationar,

i..- . ." . ,"- -" -• - , .-.. ..-.-. --' --- "-". . -."- - '.-' "- '"-' .- --- ."-57 : -'- .'"-,:-- - -.- --:-, "" .,'.>21
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* . and propagating cracks may be an important complement to studies of specimens under

*homogeneous deformation histories. This determination would be aided by the simple
relation between elastic and viscoelastic displacements. (43). and the fact that (41) for
stresses, including the generalization in the Appendix, leads to relatively simple equations
for crack growth, (51), (58), and (73).

The quantity J, in these equations has a very simple meaning in certain cases. If
hereditary behavior of the entire continuum outside of the process and failure zones can
be represented by the one creep compliance D (or relaxation modulus E), the J, is the
same as the familiar J integral for nonlinear elastic materials and C* for viscous materials
when expressed in terms of externally applied loads (rather than displacements). The
pseudo potential energy P,, (18). is related similarly to the potential energy for elastic L -
media. If u, = u , except possibly for a small neighborhood or crack tips, J, and - aP/AaA
are essentially the elastic J integral and energy release rate, respectively. The ratio
2I'/ERD from (58). or 2 F',/ERD, (73), then appears as the fracture energy for an elastic
material if J, = -aP,/8A; this "apparent fracture energy" may depend on crack speed
through D F, or Fb. For the rubber studied in [5, Part fill, all effects of speed come -

through the nonaging form of compliance, D = D(t,). For a viscous body, C* is
approximately three times the length-averaged power input per unit area to the failure
zone during short-term steady state propagation if we use rv = 1 in (30) [121; it can be
shown that the factor is exactly three for a linear viscous material if the stress in the failure
zone is spacewise constant.

Direction of crack growth

Prediction of the direction of crack growth has not yet been discussed in this paper. Many
of the relationships hold whether or not the direction changes. but the problem is too
complex to treat here in any detail. We would only suggest a possible approach. Referring r..-
to Fig. 3, suppose for purposes of discussion the local coordinate axis is fixed and various
relative orientations 0 for the continuum are considered. The actual O's for initttion and
continuation of growth may correspond to the predicted directions for which t, is a
minimum and a is a maximum, respectively. These criteria automatically account for local
and global material anisotropy through the variation of values of the material and loading
parameters (such as r. a, and J, in (58)) with respect to 0. Also, these proposed criteria
reduce to the well-established one of maximum energy release rate for crack growth in an
elastic isotropic body. The equations for crack speed have been derived under the
s.implifying condition of short-term steady state behavior; with crack tip reorientation it is
likely that the equations will remain valid if 0 is small in magnitude and essentially
constant for an amount of growth equal to the length a or of the crack tip zone.

Crack tip models '.

Emphasis of the fracture analysis in this paper has been on predicting the mechanical --

work available at the crack tip for initiation and continuation of growth. The right-hand

side of (58) and (73) is this work at the failure zone (without a process zone) and process

zone edges, respectively. By assuming the theory in the Appendix is valid for the process

zone, we have obtained some information on how the creep compliance Dh and pseudo

energy 4P, of the process zone affect the required work 21',. (74). Viscoelastic behavior of

the embedded failure zone in Fig. 5 is reflected in the value of 1. and it may be different

from that of the process zone and continuum. Because the process zone is slender, we were

able to obtain a relatively simple relationship, (68). between its J,, integral, J,,. and .1, for

the surrounding continuum (or the adhcrcnds, in the casc the process zone is actually a

% L
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thin adhesive interlayer). Also, it should be observed that (71) for available work allh)"s
5. for distributed damage outside the process zone as long as the theory in the Appendix

applies. This feature is important for many materials, especially composites.
With the dual crack tip zones, Fig. 5, one can account for a distinct, complex material

separation zone (a) within a relatively well-defined layer of damaged material (3). This
geometry may be a realistic model of the delamination tip region in fibrous composites
with rubber-toughened matrices 123. Fig. 3] and a cracked craze laver in plastic.. As a
special case the failure zone could be omitted; one may interpret this situation as the
original one in which only a failure zone exists. (58). but with an explicit viscoelastic
representation for the fracture energy. As shown in 15. i'art Ill] this energy for rubber ,nay
be independent of crack speed. When this is true, the molecular theory for fracture ener,,
of rubber in its elastic range 121 serves to relate 1', to molecular parameters, and (73)
brings in the only viscoelastic effects through 1); the notch-tip diameter ( 50 A) used in
121 is to be associated with the process zone height in the undeformed state.

It is believed the theory in this paper will be helpful in developing detailed crack tip
= models which relate growth behavior directly to local physical, chemical. and mechanical

processes, a possible general approach would consist of using the available crack tip sork.
(71). in a local nonequilibrium thermodynamic formulation for the process and f.ailure
zone,. Much of the published work on crack tip models employs the classical singular

solutions for the local mechanical slate. I lowever, whether propagation is continuous or
occurs in steps [e.g. 24, 25], use of continuum mechanics and thermodynanlic,, with
bounded stresses should lead to more direct relationships between basic material parame-
ters and crack growth, as illustrated here.
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Appivildix

1. lfc'i t it fbi - iarinc, oni rcistrui tural craniti.s

Certain important inelastic effects. besides those represented bY the creep compliance, can he taken Inuo account
in the I, integral lhears. These additional effects are associated % ib "distrihuted damnage' or. what mna) be at
better term. "microstructural changes '. Special cases arc microcracking. dislocation motion and generatioin. hrole

-gross th. and breaking of entanglement points. along pol\ " mer chatins. Here. %he propose a theory of inelastic
hehavioir. alloissing for largze deformation%. The formllion is in termis of the referime probleim, which is the
reference elastic prohlemi with damage: thie visci'elastic sariables are still related to those for the reference
probhlemi t hrough (27) and (28). For lack of a he)tter short namei. s.. are using "cdimage" %%hen referring to
li .i nge, in the mnicros) ruc) nrc or fabric of a material. I loweser. thle specific "damnaging process' dtoes not has e to

he ideiit ified here. it coul d i ncliide healing (decrease in daimage)a it, %ell a, otheir changes sibich are beneficial ,,

si ruc inri performance.

%P..
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mil-0m siiit reloadmingii ii It, I.Ii
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A potential 4'u exists during a damaging process, where

.- .= a.)/3( Ult') (A.3)

because

,/a =.) _ ao ,/a(UR,). (A.4)

Equation (A.4) is easily verified for the stresses in (A.2)" in evaluating the derivatives of stress, one mut ftr..t set,,-.
F- = F, and then differentiate both arguments of each 4',. It can also be shown that if at least one of the

functions li,, were to depend on more than one damage parameter, (A.4) would not necessarily hold. In order to P.
fully define the stresses by (3) in Section 2, we write 0 - 4ic when the damage is constant, ' = 4'° for a r

damaging process, and 4) - 4)-D at the transition between the two types of processes.
As an aid in constructing (VD from (A.2) and (A.3) and the transition continuity condition, and in providing a

physical interpretation of this damage theory, let us rewrite it' in a different but equally general form.
Specifically, eliminate 4P. (n - I. N) from (A.) in favor of new functions P. and h., %here

,= ,(l h),.( r,)dJ (A 5 )

and

.( F. F)=. )

Notice that (A.6) implies P,(F,, -,)= 0, and thus the integral in (A.5) is equal to 0, at the transition point.
F, = F,. The potential for the constant damage process may be written in the form,

01'= 0i + E P,,(F- F.,,) (A.7)

where

* = o foh.(F,)d.. (A,8)
0

The stresses for constant damage are

R= (A19)R ao U' , 3P. aF ..,R,

Requirements of stress and potential continuity at the transition point, F. = F,,, together with (A.3), yield for the
damaging process,

""' (, + E h( F.) dF,' (A.10) , :

and

OR ( o a.. (A.1

where ,.-.

h (F,)= aP.(F..,F,,)/aF, when F- =F,. (A.12)

Observe that 4D'c -4 at F,, = F,. Equations (A 6)-(A.12) constitute the damage theory which will be used in

the remainder of the Appendix. In using (3) in Section 2 with the damage theory, it should be kept in mind that
( =0 " for constant damage, 4D - 4P for a damaging process, and that stresses are given explicitly 1 ()) and

(A.ll).
Let us next consider the relationship of 01D and 4)" to mechanical work and dissipation. Without hods forces,

the mechanical work input per unit initial volume ior the reference problem in any given time inters ,l , .t h  -to,
is (A.13)

which may be readily established by means of the divergence theorem. Take t -0 and assime the material is

initially in its undeformed state (ut, - 0) and that it does not age during the period 0 to i, (i.e. 4) depends on

time only through up,). Without loss in physical generality, we may set 40 - -, o at , - 0 Consider next an

arbitrary number of'intervals of damaging and constant damage process",s starting with a damaging prive~s

-. :, .:.. ................................................................................................................
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- ""Substituting (3) into (A.1 3) and using continuity in 4) at the transition point between each process.
" ', " H,. 0. t) = °(t,) (A.14)

when t, falls within a damaging process, and

when r, falls within a constant damage process. Thus, for nonaging elastic materials with damage, Vo and 1c
have a very simple physical meaning. Notice that if o,(1t) = 0 for a period of time during a constant damage
process, (A.9) gives implicitly the residual values of u,. During this period one can think of 0 as the mechanical
work "dissipated" due to damage (in the sense that it is the net work input for one or more cycles of loading and
unloading). If healing occurs during "damaging processes". the work input could be negative. For uniaxial
stress-strain behavior, one may view D(ft,) as the area under a tensile stress-strain curve for loading, and

as this area less :hat under the curve for unloading.
Pursuing further the physical significance of the damage theory, we find that a special microcracking case in

[14, (1541) may be obtained from the present theory by settirg

o, ,,N = 1, F, = Fm 0", = FI,

P, g( F.)(,-F ). g(O)=0. (A.16)

The damage parameter Fm is the maximum value of F,, considering the entire deformation history up to the
current time. Equation (A.12) yields hj(F )= - g(F). Also, we find

4(" 1 - g( F_)][ F, - "m f'[
I 
-- g( F,)]dF, (A.17)

and

40) )n'"I- g( dF'. (A 18)

The stresses for a constant damage process are

ii, - .g ( )](IF , l a ( u , ,) .A .

For a damaging process set F. = F, in (A.19). The function g( F,) reflects the softening effect of microcracks: for
no damage g = 0. and for complete damage (uniform failure) g = 1. Observe from (A.19) that F, is the pseudo
strain energy density for an undamaged material. It should also be added that g may vanish over an F, range.
0 5 F, F0 . say. In this case, the "damaging process" would not actually produce damage until tl.-" ,ergy i,, i%
exceeded. According to (A.17) and (A.18), 4( = $t) = F1 for 0 < F, < F.. as expected.

A damage parameter which is more general than F. appears in [14,15). It is derived from viscoelastic crack
growth theory, and may be written in the form of a so-called Lebesgue norm.

If p = o. (A.20) reduces to L,,- F.; this case leads to the previous theory, (A.17)-(A.191. On the other hand, if
p is not infinite but is at least moderately large ( p z 4) and if the deformation history over a period 0 t < r,_ is
one in which F, = F,, then [151.

L, = AF' I' (A 21)

where A is essentially constant. If (A.21) applies tip tot = t,,, and F, < Fm for "- r,, then

I - A .-2 r A -.2)

at least for a limited period of time beyond tm .The damage model for ishich (A.21) and (A.22) applv ma he

used to generalize (A.17)-(A.19): vi7., replace g(Fm) with g(Frm,'P) and g( " 0 with gR(F't e). Hience, ..
microcracking for which p is finite leads to an "aging" elastic material with damage

The J, integral P

Ry dividing the continuum into region. of varying damage (i.e. %here a damaging process exists) and onstant
damage. we may easily, extend the theory in the body of the paper to allow for damage if the displacement field is

sufficiently smooth. In effect, the material may he treated as nonhomogeneous %hether the nonhomogenet, is
intrinsic or is due to damage. As justification for this extension, consider first the integral a. 18). We ivill allow-

for explicit dependence on ir,. x,. anti in the potentials 4, and P, in (A.7) and (A 8) (besidcs dependence on

u1
,
:) but dependence on x. either explicitlv or in f'.. i ctcluded.
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At any given time. let S 1-S enclose a region (if the h-1, tindcrgoing a1 Lontani di.anite prwe's (leans r
I=0 if o' is used fir 0. if. for example. %xe sserv it) use 0' fii in the %petia mit rocratking mn del i-% 17i. it

% %%oto~ld he neocessarv for the maximum energy I to he independent oif %,, although f_,,jld .irs silh i

% (distance from the local crack plane) and pr,. Niss., let .S - S1, enilose in adjaceni region undergoing a daimagiing
process. Here. F ,= F, and thusa= - 0 if Oil is used fir 0. eseri though /_ map, %art vith %,, this dependence is E
through F, F,, Iu,) and therefore it causes nil problemn. Nest. tike tiS SoX,. andi cousider the interfiare
where ! and Sol arc adjoining surfaces. The contrihution to /along the interface from hoth .1, and S,, saiohc if

i1,/dx.0. and (Iii are continuous across the itcirfate: this foilli%%% from th, fact that Pi, and 1,t are
continuous in magnitude at the interface hut have o)posite signs on k, and So, (onsequentls. if the transition
hetween a damaging process and a constant damage process is suifficientill smooith i9) and ii]Op hold. and
storface-independence oif J_. 0 1). and path independence oft J_. 2., exist, axt an ohviou.. gener.tl/aion. S ma%
suirround an arbitrary numiber of connected zones "ith hioth tspcs of riwes~es

It is important tol recall that ~ ds =0 is required in each constant damage procss ione For esaniple.
suppose the hodv is loaded and a damaging process ,line with nonuniform damage is proditcid Ipon partial
unloatding. this /one may hecome a constant (with respect to time) damage process lime, hut dit,, ot, aiid
therefore a'for this zone would not in general vanish

As an illustration of the use of this theorv, consider the crack gross th problemin f Fig '; treited in the hods% of

the paper. Locally steadv-state crack propagation is assumed. We suppose that a given oriterial element in the
process zone h undergoes a damaging process% as the tcrack tip 1) appniiachcs it, sshich changes to a con'tatnt
damage process hy the time the left end of the failure ione. t a. arrives. Nosy. hs definition, the steaids -state
condition is one in which each element in the constant damage part of the process /.one has damage parameter%

% ~which are independent oft vi: e.g.. for the simple inicroscracking model (IF,,, /il = 0. Path independerpe in the
rprocess zone b then permits us to evaluate Jf. fromt J,, (cf. 16111 using the contour Cl in Fig. 5. Thle resulIt for J,,

is in (681, where 1. is the line integral of - 0,, at 4 - a. (7). the potential 0. is actuallY 41 if a onstant
damage process exists at = p ahove and helow the failure tone. In %-iew of IA 15). the integral. - /.,. is the net
work input to the process zone per unit voilume integrated from the bottom to the top of the process /one If
there is no damage in the process zone (I'P, = 01 and the pseudo strain energy density sanishcs at 4 it. then
1,, 0. However, dissipation would still exist for a viscoelastic material: it is reflected in the speed dependent
creep compliances which appear in (71).

EneriKv release rate

Equation (17) applies with damage. even i f the homogeneitv condi tion in x I needed for J, is not satisftied. T his
gentrailization may he shown by retracing the proof without damage. hut usjing (V and Oi for 4) isshere
appropriate. Only the virtual work (13) needs to he examined as the suhsequent steps.. (14)-(16). are unaffected.
Self-similar, virtual crack advancement is imposed through application of appropriate surface tractiins to det[se
(17), even though in an actual crack growth process this type of advancement may not occur.

The validity oft (131 may he established using the same procedure as for (8) with damage. Naimcl%, dis 51e the
hody into constant damage and damaging process regions. Inasmuch as a change in the displacement field occurs
due to 6e,. thin layers of thickness on the order of 8a have to he excluded: these are the la~ers in %% hich the tN pe
of process changes during the crack advancement. However, if 0 and iSu, are continuous in %,, the ssorks and
pseudo strain energy associated with these layers is of order (8~a -. i.e. thickness x i,. aiud thus the lasers dcn
not affect the result in the limit iSa - 0; other contributions to (13). including 6 It,,R in (16). are of order tia.

(ieniralo:ation if rthe daroage npiodel

So far we have considered only the case in which the potential for constantt damnage is giveni I% iA.7? in .t11 Ff
the damage parameters satc~fv F,, = I-, or else all are constant. The miodel may: he eastlN genieralied bs adding

one r mre smilr grupsof terms to (V ,with each group possibl), representing a differcrnt phs tial
mechanism. The regions, of constant and varying damage for one group need not he at the' .iine locations as
those for another group.

A c o n s ta n t d a m a g e p o te n tia l w h ic h h a s a d ire c t e ffe c t o n re i d u il, str s s e lde to d a m a g e i s 
''

where 0b, - V~,(u, andi the suhscrtpt c indicates tha~t t40, is ion 'i .im during a onsilaint iniagi: pio c- Is I.

stresses corresponding it, this potential are constant.

( .\ N

A~
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lor di Igng psK~s ~R ~ and a potential exists whosc value is V' * u, ): the siadstsss-
are given by (A.24). but without the subscript c. These potentials may he added to (A.7) and (A.10) to generalize
the damage theory. More than one potential 0, may be used. with each depending on different combinations of
the displacement derivatives. As one example, we obtain the I lencky deformation theory [261 with linear elastic
unloading if (A.23) is added to only tb, where 4 is taken as the strain energy density for an isotropic linear
elastic material, we use ut=u, and linear strain-displazement equations, and assume 4b, depends on displace-
ment derivatives through the so-called effective strain invariant: for loading in a plastic state. 4b -)t 40

Addition of (A.23) and (P, to potentials for the special microcracking model. (A.17) and (A.lR) respectively.
enables one to account for an effect of microcracking on residual stresses.

The results in the Appendix concerning the interpretation of V) and (V as, mechanical work. (A.14) and
(A. 15). as well as the J, integral and energy release rate, are valid with these extensions of the damage mod.. el
Iloweser. each group in the total potential 4) has to be considered separatel\ since. at any gisen timec and
location, some may he for damaging processes and others for constant damage processcs.

On dieveloppe des nii~hodes d'analvse des dformations et de rupture quasi statiqucs pour tine classe de otileux
visco-elastiques non lini~aires et on illustre des applications types de ces nicthodes. Le choix de la classe est dict
par le comportement rh~ologique r.~l de mat~riaux monolitiques ou composites. ainsi que par la ni&essitt dc
simplifier I'approche pour comprendre l'effet des param~tres de base du mat~riau et du continuum sur leur
comnportement vis-ii-vis de 1a croissance de la fissure. On diseute en premier lieu la pertinence des theorics de
l'intkgrale J et du taux de relaxation dl' nergie, dans le eas de milieux alastiques non lin~aires. On dtablit ensuite
des cquiations %isco-O~astiques non lin~aires el on d&veloppe les principes de correspondance qui permettent de
niettre en place tine relation simple entre les stat m~caniques correspondant ii des milieux 0lastiques et des
milieux visco-Oastiques.

On tire des prineipes une base pour 6tendre la th~orie de Eint~grale J i la croissance de fissures dans les
materiau . %isco-elastiques. L'accent est plac6 stir la pr~diction du travail mi~anique susceptible d'Amorcer et
d'entretenir la croissance dune fissure it Iextr~mit6 de celle-ci. Quelques esemples montrent comment le -

comportemencrt I1 a croissance est influencd par les propridt~s % isco-Olastiques et par l'inte grale J.
% Udtude couvre le eas dtine fissure dans une couche mince pr~sentant des propri~ts %isco-~lastiqucs

distinctes de celles du substrat. En annexe, on pr~sente tine thi~oric apparemnu-nt originale stir les matertauxt
elastiques et visco-Olastiqties comportant des microstructures i&olutives et on indique les conditiorns scIton
;csjuelles Ia thiorie de Ia rupture discut~e dans le rnmoirc est applicable.

Lw-
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DUORATION AND FRACTURE CHARACTERIZATION processes.
OF INLASTIC NONLINEAR NATERIALS a - as/ac (6)

USING F TUTIALS and therefore the quantity 0 is a "work potential" which be-
by comes the Usual strain energy density when the loading and

p r .A. che unloading curves are identical. Obviously, a work potetiolTeasAH bepsrsit of Civil Engsetring , can always be constructed, given the uniaxial stross-str, "n"-Teast A/d University. Collsge Station. Texas 77043cuvsEq.()ad2.

Miany Important results on the deformation and fracture For characteriation of the mltiaxial streso-straln

of linear and nomlinmr elastic materials have been obtained behavior, or for other response functions which depend on
by uslg strain energy potenttels to characterize material more than one independent Input. a work potential does nor.
response. SaIde serving as the basis fow powerful methods necessarily exist. Nowever, that it can be expected to~. of eact and approximate structural analysis, local and exist for some realistic situations will be discussed here.

-." global strain energy functions have been used in the predic- For purposes of generality, let us use a independent in-
* .ties of effective constitutive properties (or their upper puts the generaliyd d leplc nue aj (Inel2 n...). The r-

aput lowe Sonunda)e ofplcmet qtphs media2 in. term of proerieand lopr bounds) of - sltipue &d"ia in tous of properties &pone** are the generalized forces Qj. which are defined in. and geometry of the phase@; Included are studies of the the normal way by the condition tht. for each J.
effect of constant damage. in the form of mall distributed

.- cracks and voib. on the global stres-stral behavior of ON - Qj6q (7)
. monolithic and coposite mtorialo (o.. 1.2. where 6U is the virtual work input associated with the

Strain energy concepts are used widely in fracture virtual displaceent 6q,. Suppose, for example. ve let each II.
mechanics (3]. For eletic mterials, the mehanical wrk q represent an ndepen;et component of a suitably defined

3]. Forpelas rils, te mechil wtAra-diae nsional strain tensor and lot 6W be virtual work
available at a crack tip for producing crack growth Is prui nta oue hn - n 4 7 mle hequal to the decrease in potential energy (coneisting of per unit initial volume. Then, J.6 and Sq. (7) implies the

set Qj represents the components of a stress tensor (for
global trai energy and the boundary work potential)large or mll strain). In ordr to characterize the be-
this relationship has resulted in remarkably successful in- havior of laminates, one may vde to identify the setbe-

veetigations of fracture of rubber in its nonliner rangs with the middle surface curvatures and strains. In thi.
of behavior [4]. as well as linear eastic materials. case, the Qj would correspond to moments and in-plane forces

In this talk we discuss Inelastic behavior. and con- per unit length.

sider the question of whether or not potentials which are As in the untaxial example. we assume that when the
analogous to strain energy may be used to characterize d- damase is constant ha body (ematrie l element. test pe l

.. formtion and fracture. The ideas are illustrated using men. or complete structure) is elastic in the usual sense.
- data on polymeric composite materials. First, elastic i.e., a strain energy function or work potential #c exists

materials, but with timewlse constant and changing die- with the property that
tributed "microdmage". are discussed. Then viscoelastic
behavior and macrocrack growth are considered briefly. Q - 5 C/q (6) ,.. i,

(Rather than using the terms "loading" and "unloading " we
Theory. The concept of a potential tat elastic shall Instead now refer to "damaging processes" and "con-

- mtertils with damage may be introduced through the uniaxial stant damage processes". since we do not want to imply
stress-strain curve in Fig. 1. Lot us suppose that a pre- that the damage to always constant when the magnitude of

*'" viously undamaged specimen is strained monotonically until one or more loads or displacements decreases with time.)
-the strain is . The strain is than reduced, as shon in The effect of damage on Q to assumed to be fully repre-

Fig. 1. Asuming that the bar lsntd by a set of pareesrt Fen o. Following
damage during the unloading period, with stress oU . 

and that the arguments in (5] It can be shown that a work potential
the maximum strain te serves to deftne the amount and effect OD exists during, damaging processes such that
of damage, we may write

oU - f(t.cu) (1) J aae/aqj (9)
.. .. ~where 40 is &.function of only the current values of qj. if .-. '

The maximum strain at any time equals the current strain on wh s a funt s
the loading curve, and thus sc hs the form. N

OL- f(.€) (2) o + ( cn)

The mechanical work (per unit initial volune) during loading wUta e h
where 0 Is the work potentil without damag. The functin

-. ~to an arbitrary strain Is o-",Fn.Fn(qj) are to be selected such that Fcn Fn during
*L L damaging processes. (To recover the uniexial case, Eqs. (1)

L 
. () 6 /Co l de - I f(Wt )dc" (3) and (2). we sat N-1 and take F -q,-c. F -€ ). It should

where the prime denotes a dmy variable of integration. be noted that "internal variablesk are kt sd in this
' The net work Input to the sample at any time during unload- theory. Of course, one could think of the set Fcn as "in-

ing is the shaded area in Fig. 1, ternal parameters" which are constant during constant damae
processes and which vary in such a way that F - F for

.U (,%i ) 
F (9m

) + 1 de" damaging processes. For laminates. an n m Ianinvariant
U m of ply (or ply-pair) strains, where the sumation in Eq. (10)

would extend over all plies.

*L(m) + f(t',m) de' (4) Generaliztions of this formulation are discussed in 11

' Or[5]. For example, at any given time some of the terms "
Observe that during loading and unloading, respectively. nE.(0 a efrcntn aaepoesswiao'hr

* - d#Lidg. OU - a4Ulat (5) are for damaging processes. Also, the potentials may depend
---. explicitly on tie, and ths provide for effects of ging or

Sdurin loedin (t, ) nde o a q ui un aln changing physical enviroments. (The theory in [5]. which
(dg loading ma) andte ding unloading allows for large deformations, uses displacenent gradients

(t. Then , wemaywrite for bth odiog a loadig and Piota stresses instead of generalized dieplace-n nd

ASponsored by the Air Force Office of Scientific Research
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% forces. However, the earlier formulation, including its ex- graphite/epoxy tube and plate specimens. In same cane.
tension to viscoelastic behavior, carry. over fully in terns there Is a very significant nonlinear effect of axial strain

- of the generalized variables used here.) Thus. as in Eq. on shear behavior, as illustrated in Fig. 2. Specimen fail-
(6). we may write ure often occurs by delamination, and this type of macro-

Q. - 3/(11) crack to being analyzed using Eq. (14). Recent findings
from this investigation will be described.

even if the damage parameters In some components tn are con- References
scant and others are varying in time. Also. Pn.- .
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ticity (with elastic unloading). We may extend the present tion for Highly Filled Elastomers," Trans. Society

model to account explicitly for stable micro- or macrocrack of Rheology 12:2 (1968) 303-314.

growth. (Certain microcrack effects are at least implicitly [7] Schapery, R.A., "Models for Damage Growth and Fracture In

contained in the 4 discussed so far.) An important extension Nonlinear Viscoelastic Particulate Composites.'

is obtained by adding a term which is equal to the mechani- Proc. Ninth U.S. National Congress of Applied
cal energy required at crack tips to extend any micro- or Mechanics, ASHE Book No. H00228 (1982) 237-245.
macrocracks not already accounted for in #. For example, if
the energy required per unit of surface area A (projected 0
onto the local crack plane) were constant, with value r. then CL
one would add the "fracture potential" rA to 4 to obtain the
total potential. Without assuming the fracture energy r is
constant or is the same for all cracks, let us suppose a
fracture potential Of - lf(Ak,t) exists, where Ak 0U
(k-1.2 .... K) represents the set of all (oriented) crack sur- -
face areas needed to define the effect of all cracks not
accounted for in 4; tine t is shown to indicate that the '
required crack-tip work may be affected by material aging,
C-tigue, transient temper-ture, etc. The total potential

4 ~is , )
:.'+f (13) U m

where 0 is chat in Eq. (11). The mechanical work available
" '"-° at the edge of the kth crack area Ak Is -84/3A. where c..

". +O-(qj A), whether or not the damage parameters Fcn vary Figure 1. Uniaxial stress-strain curve for elastic material
(3. p.222. Thus, for stable qu&si-static crack growth or with increasing damage during loading (OL) and
no growth, respectively, constant damage during unloading (oU).

)o f/;A k - -WaA/ or a#f/3Ak ' - 3 */aAk (14)

The first relationship is a set of equations for finding all
of the corresponding A as functions of qj. Using both cases 30000
in Eq. (14), it is readily shown that

at "./aqj (15) Hercules AS4/3502 Graphite/Epoxy

with constant crack areas, and with growing cracks when the 2000 24 plies, [:30]S.'
derivatives aAk/3qj exist. All Ak for microcracks which Typical - 0
are uniquely determined as functions of q4 by the first ex- " unloading ,
pression in Eq. (14) may be interpreted aI damage parameters curve
and thus included (possibly as functions of Ak) in the set ~ too-*09
Fen; the fracture energy of these Ak would not be contained
in Ol. When multiple solutions for growing Ak exist, the
displacement history is needed to be able to predict the "
actually occuring values. For this case and for m4crocrscks - 0 1.78
one could not include Ak (or functions of Ak) in the Fcn.

Experimental Studies: Farris C6] shoved, in effect, j F,
that a particle-filled rubber, with void growth, under axial 0.01 0.02 0.03
stress and confining pressure obeyed Eq. (12) (with q, - c, -10000

- "2 dilatation) for constant axial strain rates. Thus, at Nominal Shear Strain y
least in a limited study, the work potential with damage
growth wes established. Strain-history effects due to via-
coelsticity and damage have been taken into account in Figure 2. Shear stress-strain curves with changing axial
more recent work (7]. we are presently studying the valid- strain t, from axiel-torsion tests of flat rec-
ity of the elastic and viscoelastic theory with damage for tangular laminates of fiber-reinforced resin.

.o%
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MATRIX CONTROLLED DEFORMATION AND

W, FRACTURE ANALYSIS OF FIBROUS COMPOSITES*

R.A. Schapery
with Graduate Students

J.R. Weatherby
R.D. Tonda

Mechanics & Materials Center

Texas A&M University
College Station, TX 77843

I ABSTRACT

Methods of quasi-static deformation and fracture analysis have been developed for
nonlinear elastic, viscous, and viscoelastic materials with distributed damage tl]. The
crack growth theory, which uses a generalized J integral that allows for viscoelasticity
and distributed microscale damage, is not much more involved than that of nonlinear -
elasticity or special cases of linear viscoelasticity. This simplicity, compared to
what one may expect, is a direct result of the particular type of constitutive equations
and mechanical variables selected to characterize rheological behavior. Considering
elastic materials with distributed damage, for example, the constitutive theory is ex-
pressed in terms of one strain energy-like potential for loading and another for unload-
ing. The research activity is presently in the early stages of an investigation of the
applicability of the theory to deformation and fracture of fiber-reinforced plastics.
It is anticipated that additional information on its applicability will come from other
AFOSR-sponsored projects at Texas A&M under the direction of Professors Allen, Bradley,
Kinra, and Weitsman.

In this presentation we illustrate some features of the theory for elastic compos-
ite materials with damage and discuss current research activities. One important ques-
tion is concerned with whether or not strain energy-like potentials actually exist; it
has been addressed theoretically in [1] with encouraging results. Some examples of real

" nonlinear material behavior which can be characterized in this manner are given in thish presentation, and then our experimental program to study this question for nonlinear be-
havior of unidirectional laminates is described. Another portion of the work is con-
cerned with application of the theory to fracture characterization and analysis,
assuming the requisite potentials exist. In this case the finite element method is
being used to predict crack initiation and growth in materials with large-scale dis-
tributed damage, first for initially isotropic and homogeneous media and then for com-
posites (i.e., delamination initiation and growth). A few years ago we employed linear
elastic fracture mechanics in an investigation of the fracture behavior of a randomly
oriented glass fiber reinforced plastic, SMC-R50 [2]. The data on this nonlinear mate-
rial are reinterpreted here using J integral theory in order to further illustrate its
use. Application of J integral theory to delamination growth when large-scale distrib-

* uted damage exists is under study on Professor Bradley's project.
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CONSTITUTIVE THEORY USING POTENTIALS FOR MATERIALS WITH DAMAGE

U Uniaxial Loading Unloading
U, L u allL"f(c) df (c, Eax)=-

Multiaxial Loading Unloading
!,. OL L 

U  
U-" / /'' = "/ .. -.

/ max xj

FEATURES

o CONV;ENIENT FORIULATION FOR FRACTURE APPLICATIONS

0 DAMAGE PARAMETERS (E.G. Cmax) ARE EXPRESSED IN TERMS OF STRAIN HISTORY AND MAY BE

RELATED TO PHYSICS OF DAMAGE PROCESS

L
. POTENTIALS ANALOGOUS TO STRAIN ENERGY DENSITY ARE USED FOR LOADING (*L) AND UNLOADING

~U)

0 ALLOWS FOR TEMPERATURE AND MOISTURE INDUCED STRESSES

0 VISCOELASTIC EFFECTS ARE INTRODUCED BY USING "PSEUDO DISPLAC.MENTS" IN PLACE OF

. DISPLACEMENTS

- APPLICATIONS

0 EXISTENCE OF POTENTIALS SHOWN IN THE SPECIAL CASES OF PARTICLE-REINFORCED RUBBER,

ELASTO-PLASTIC BEHAVIOR OF METALS AND SECONDARY AND TERTIARY CREEP OF METALS

' USE FOR FIBER-REINFORCED PLASTICS IS UNDER STUDY

--a .

'" "- .'
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CONSTITUTIVE EQUATION EXAMPLE

A SPECIAL PARTICULATE COMPOSITE WITH MICROCRACKING

I
~L =f 1i g(w1]aW,

. - .....

D"- [ W - Wm] -g )-dW

where " = STRAIN ENERGY DENSITY WIT11OUT DAMAGE (g 0)

WM = MAXIMUM W

*NOTE THATA 0 U WHEN W WM

*STRESSES ARE

-. , [ ]g ( W ) ]- - -

U (,U-" .. = = I l- aW) I -.

L M;E j - •

1 " IVES REDUCED STIFFNESS

WHEN 0 < 9 < 1

.*, 
.,,:.:.-OF



APPROACH FOP UNIDIRECTIONAL PLY CHARACTERIZATION

CONSIDER A UNI-AXIALLY LOADED, OFF-AXIS, UNIDIRECTIONAL COMPOSITE

TENSILE SPECIMEN. THE STRESSES IN THE PRINCIPAL MATERIAL DIRECTIONS

ARE WRITTEN IN TERMS OF THE STRAINS IN THOSE DIRECTIONS AS (NEGLECT- .

a, ~ING EFFECTS OF END CONSTRAINT): ::
1 % 1, c2, 12I.  i!

02 = a2(c 1, 2  Y 1-)

T12 .'- 1z 2 (E' y '12. ..

IF A POTENTIAL 0 IS TO EXIST, SUCH THAT

1 '2 2 '12 -dja 12

IT IS NECESSARY THAT, FOR EXAMPLE,

30 2 aT1 2-'" ;" Y122 C i -CONST.--

-. 2 1,2 CONST. = , Y 2  N.

. PERFORM TESTS ON AS4/3502 MATERIAL USING OFF-AXIS SPECIMENS. %

1.

"i 0= FIBER ANGLE

= " BY VARYING 0, THE

IA .NECESSARY DATA CAN BE

DEVELOPEO TO EVALUATE

THE CROPS- DERIVATIVES

AND DETFRMINE THE EXIST-

ENCE OF

I -a.--.

; .e 
...

-- .
THESE DATA ALSO CAN BE USED TO DEVrLOP THr POTENTIAL * ITSELF. , a.'

a, .. . . .. ........ . -.' a'.'v. a 'a,:':

0.""
A7 le ....- '.a..* . . .. ,
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Figure 1. Load-time history used in 30' off-axis tests. (tr 210 sec.)

2500 ".

Material: AS4/3502 - -.-

2000 Uni-directional sample, ,<> .

fiber angle at 30- to ,"

load directoon. , 7' --/

-10
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z 1000
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Shear Stran 2 2 ) - (1,

p..K Ficaure 2. Shear stress versus shear strain from test in Fiqure 1.
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FRACTURE EXAMPLE

* FRACTURE OF EDGE-NOTCHED COUPONS OF A SHORT FIBER COMPOSITE, SMC-R50

LOAD-DISPLACEMENT RELATION:

P =Cu , n= 0.78

WEE RF

C = C~a) , a = depth of edge notch

LOADING POTENTIAL ("STRAIN ENERGY"):

= =f Pdu = Cu(n+l) /(n+l)

J INTEGRAL ("ENERGY RELEASE RATE"):

i I D u
n + l  

dC

J= BNa = - (n+)B da

SET J = Jc AND SOLVE FOR FRACTURE DISPLACEMENT Uf AND THEN FRACTURE
STRESS a f,

L.

• . . . ... . .. ... .. . ... .. . ... .. . ... ... . .. . .. .... .-....-. ..... .......- ,.. . . . . ..... .. .: ::: .,.: _- .
. '_....' '.t..' ..- _, .-.. 2_ - .:- . . .. . ' .' " 4 _A.- -.*: _. _. * _, . "-'*~ .'. _ *

2
.* *., ~ - ... . .... . . . . . .



Measured by a P

45,000 N-opocity
'Sload cell%

Clip Gage Extensometer
(notch displacement) kL ent

10.2 cm

* -P iP

Figure 3. Double edge notch specimen with measured
parameters indicated. (SMC-R50)

fiLTAB LTABj ~ -j K V
Nobminal thickness

IN of all specimens
_________a ___ was 2.54 mmn

-0.25 m

Figure 4. Double edge notch specimen geometry. (SMC-R50)

200
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00

~ 10 /Symbol Loc.d Rote (N/sec)

-- -- 965

50

00 0.5 1. .5 2.0

Strain (/,

Figure 5. Stress-strain curves based on load-displacement data
for 25.4 mm-wide unnotched tensile specimens. (SMC-P50)
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Figure 6. Critical stress intensity factor for the 50.8 mm-wide
specimens. (SNIC-R50)
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Figure 7. Critical stress intensity factor for the 25.4 mm-wide
specimens. (SMC-R50)
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N o ' ANALYSIS OF CRACK GROW'r"H IN DAMAGED ",

14 MEDIA USING A GENERALIZED J INTEGRAL

..

I . p ANALYZE THE INITIATION AND PROPAGATION OF A CRACK IN A MATERIAL WITH [
,1 DAMAGE THROUGH THE USE OF A FAILURE ZONE CRACK TIP MODEL AND THE

GENERALIZED J INTEGRAL.

INITIALLY, THE ISOTROPIC MATERIAL MODEL OF DEFORMATION THEORY OF

PLASTICITY, MODIFIED BY ELASTIC 
UNLOADING, IS BEING USED:

oi.1U
0. ~ ~fo 2G (Cifr ,-(s• "a = Gc - c!, for Ts < (1).a 

-'"

ijj ijij I

WHERE: ';j 0i IS6ij

EXTENSION TO ORTHOTROPIC COMPOSITES WITH DAMAGE TO FOLLOW

0 FAILURE ZONE MODEL FOR THE CRACK TIP:

& failure
zone

T(x)

T

Area - 2
r - fracture

energy

0 THE .1 INTEGRAL IS USED TO OBTA1INFORM'ATION ABOUT WJORK INPUT TO THE FAILURE

ZONE FROM REMOTE FIELD 9UAITITIFS:

F j . fr"n 1's (l) 
dll7 
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