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u 1. RESEARCH OBJECTIVES

. The overall objective of the research is to develop and verify

¢ mathematical models of delamination and transverse fracture which account

f: for local (crack tip) and global damage distributions. One specific

] objective is to demonstrate theoretically and experimentally that "work

i; potentials" (which are analogous to strain energy) exist for composites

) with constant and changing damage and with viscoelastic behavior. The
second objective is to develop and verify methods of analysis for

{. predicting crack growth in elastic and viscoelastic composites with

distributed damage; whenever they are justified, work potentials will be
iy used to characterize material behavior in order to simplify fracture

analysis.

2, STATUS OF THE RESEARCH

2.1 Introduction

g! Methods of deformation and fracture characterization and prediction

are simplified when strain energy-like potentials based on mechanical work
;; can be used, as described in the publications in the Appendix. With these

so-called work potentials, important theoretical and experimental methods

using the J integral and energy release rate (originally developed for
;; fracture of elastic media and fracture initiation in metals with plastic
‘ deformations) may be extended to fracture initiation and crack propagation
:S: in monolithic and composite materials. In Section 2.2, graduate student
- Randy Weatherby describes a new finite element model for analyzing crack
-~ growth in materials which are characterized by work potentials. It is
ﬁ} believed that both the use of the "failure zone" in a finite element model
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and the study of path independence of the J integral with crack propagation
are new. Graduate student Richard Tonda describes in Section 2.3 his work
on determining work potentials for a graphite/epoxy composite using
unidirectional bars and circular tubes. The computer, computer programs,
and reduced data were all lost in a fire on December 31, 1984, This study
has been discontinued for now; but it probably will be restarted early this
coming Fall. In place of this work, we have begun a study of flat angle-
ply laminated bars under combined axial and torsional loading, as described
in Section 2.4. A third graduate student, Mark Lamborn, recently joined
the project, and he has contributed to the study described in Section 2.4.
Preliminary data confirm the existence of a work potential. Also, early
results indicate that the tests of flat bars with axial and torsional

loading will be useful for Mode III delamination investigations.
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2.2 BAnalysis of Crack Growth in Damaged Media
Using a Generalized J-Integral

The purpose of this research is to develop and study analytical
methods for use in nonlinear fracture problems with distributed damage. We
feel that these methods can be applied to a wide variety of materials
including metals, polymers, and fibrous composites. Our current approach
is to deal with crack advance purely from a mechanics viewpoint, given
certain characteristics of the zone of failing material at the crack tip.

A central idea in the theory of fracture which we follow is that the
stresses and strains in the continuum are bounded rather than singular at
the crack tip. This condition is met by the introduction of a "failure
zone" at the end of an advancing crack. The failure zone is a thin layer
of highly strained and damaged material which is usually surrounded by
inelastic material (see Figure 1l). The failure zone can be represented in
a finite element model as a nonlinear foundation which extends ahead of the
crack. This foundation is divided into discrete elements, which we call
failure zone elements, and a relationship between the tractions acting on
the crack surface and the opening displacement is specified. The traction-
displacement function is defined so that after a certain amount of
separation between the crack faces the surface tractions vanish and the
crack increases in length. Similar techniques have been used previously in
modeling fracture of concrete, adhesive joints, and composites [1,2]. 1In
these cases, however, the continuum surrounding the failure zone is assumed
to be linearly elastic, whereas we are presently considering problems in

which the surrounding continuum is a rate independent, inelastic material.
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Under certain conditions (which will be stated shortly) it can be
shown that there is a path independent J-integral [3], and it is equal to
the total work input per unit area to a ligament at the trailing edge of

the failure zone. First consider a line integral defined by:

JB = é (on; - Ti :xi';‘) ds (1)
where,

B = the contour of integration

¢ = potential function analogous to strain energy density.

T; = traction vector acting on B.

uy = displacement vector.

Ny = x)-component of the unit vector normal to B.
As an example, using 2 to denote the value of (1) for the closed contour in
Figure 2, and expressing it as the sum of contributions from each segment

of the total path, we have, using clockwise integration,

¥

I *IpctIp tIpp tIgp t Ipg t Iy t dur t
Jig * Jaa (2)

For an opening mode crack, symmetry can be used to give:

L%

2 (JAB + JBC +Jop *+ JDE + JJA) (3)

For the material model we use, #Fwill be zero when evaluated around any

closed contour, B, provided that inside of B, T, .(X,y) = {y) for

E max

points where t>1 if 1t Here, T (x,y) is the octahedral shear

>1
max max "o°

stress, 1, 1is the value of 1 at which appreciable plastic deformation
occurs, and 1., is the maximum value of T seen by a material point over

the entire history of loading. 1t is assumed that the regions which
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violate theg=0 condition have been excluded from the interior of B; r}?_}

sl Equation (3) becomes, after setting &= 0, ]

A\ :

o Further, we note that m =0 and T; = O on segments AB and CD., When

tractions in the failure zone are given as a function of displacements, it

can be shown that [4],

where 2T is the work per unit area done to a ligament at the left end of

q' ’1. S

the failure zone. These observations allow (4) to be rewritten as:

ot

2 (Jpo + Jpg) = 2T (6)

In the remainder of this report, when we give a value for the J- ig,-

integral, we are referring to the value of the line integral in Eq. (1),

:f: but integrated only over an open contour with end points at the left end of
_- the failure zone (in the case of a right moving crack tip). For example,
) in Fig. 2 the value of J to which we refer is 2 (Jpe + JIpg).
\7‘ In order to verify by an example that the necessary conditions for
- path independence of J are satisfied after crack advance, we analyzed the
small scale yielding problem in an isotropic material using the finite ':'
element method. This problam also serves to demonstrate the usefulness of : .
) the failure zone element in determining crar® growth. By definition, in L 3
the small scale yielding problem, the plastic zone size is small when ﬁj:j :
. compared to the crack length and the distance to the nearest boundary. The N
;__ displacement field far away from the crack tip is specified to be of the ‘ -

form found for a crack in a linearly elastic body ie., '_:"j::'.‘

- et a et ot s L.t ST e Y e e T e
Ve e e e R L N N R -
B A A R A e h A N BB A PP e VLT AT RV TSI ST W




L 22 T 8 oW N A e Al Bl I B ale o QI e il AR LR R A P N

uj = KI\/E fi(e) (7)

Figure 3 shows the dimensions and boundary conditions used in the
finite element model, and Figs. 4 and 5 give the continuum and failure zone
constitutive functions, respectively. Substructuring is used to condense
out the degrees of freedom in the linearly elastic region, leaving only the
nodes associated with the elements appearing in Figure 6. All continuum
elements have eight nodes, and displacement continuity between incompatible
elements (i.e., where 3 elements share a common boundary as shown in Fig.
6) is enforced approximately by a penalty method. A J, deformation theory
of plasticity with elastic unloading is taken as the material model for the
continuum. Figs. 4 and 5 show the various material constants which are
required; these include parameters describing the uniaxial stress-strain
curve for the continuum and the traction-displacement relationship for the
failure zone, For simplicity, it is assumed that the traction-displacement
curve is independent of the amount of crack advance (i.e., the work of
fracture, 2r', and crack tip opening displacement are held constant).
Loading is accomplished by increasing the stress intensity factor. This is
not done directly; rather, a modified Riks' algorithm (5] is used in order
to get past limit points due to the finite element approximation which
sometimes appear. As the stress intensity factor increases, a plastic zone
forms around the crack tip, and the failure zone elements separate to give
crack advance. Figure 6 shows the area where significant plastic
deformation has taken place after the crack has grown some distance. The
term "active plastic zone" refers to the material points currently at
yield, and "plastic wake" refers to the points which have yielded and then
unloaded as the crack tip passed by.

A plot of the dimensionless zlastic "energy release rate'"as a function
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of the dimensionless crack advance is shown in Fig. 7. This curve is often
called a resistance curve., The energy release zate,‘g, is defined here by

the eguation:

g- 1= &’ ®

The crack advance mentioned here is the increase in length, referred to the
right end of the failure zone; this end is where the displacement 60 in
Fig. 5 is reached. Results are shown for different meshes, one containing
15 elements in the active plastic zone and the other containing 7 elements
in the active plastic zone. It should be noted that while ‘gincreases
as the crack advances, the work required to completely separate a ligament
of material in the failure zone is constant. The increase in (g is due to
the formation of the plastic wake which tends to reduce deformations ahead
of the crack below what would be present if the material were truly
nonlinearly elastic.

Figure 3 is a plot of = /T as a function of x for three values of

max
the i(—coordinate. This plot shows a region near the initial crack tip
(>Z=O) where 1t ... is above yield and also is a function of the x-coordinate,
Since this violates the requirements for path independence of J, this
region must lie outside of the contour path in order to get J values that
are path independent and equal to 2r. The area of path dependence is
shaded in Fig. 6.

When the J-integral is evaluated on a contour that surrounds the crack

tip and lies in the linearly elastic region, the relationship [4]

. 1=v? 2
g= g Ky (9)

should hold before and during crack qgrowth. This relationship is found to
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be essentially satisfied for contour 1 in Fig. 6 which surrounds the
plastic zone and wake (cf. Table 1). The values of J coming from contours
2 and 3 listed in Table 1 are not equal to@?; however, they both have
approximately the same value and are equal to the area under the traction-
displacement curve given for the failure zone. As expected from theory,
contour 4 also gives approximately the same value for J as contours 2 and
3. Figure 9 shows the relationship between contour 4 and contour 1. These
results confirm the path independence of J as discussed in [3].

Future work: We plan to study how parameters related to the failure
zone (eq. oy, S and m in Fig. 5) affect the resistance curve (Fig. 7) for
small scale yielding, Also to be studied is a split beam problem with
plastic deformation in which the plastic zone is large compared to the beam
height. When generalized to an orthotropic media with damage, the results
for the split beam should help us to interpret data from delamination tests

on composite materials.

Table 1. J-Integral Calculations

Contour J/a2r
1 1.30
2 .991
3 .994
4 1.04
1-y2

2
K. =1.32x2r

Eq. (9): J = T 1

Contour 1: J 1.30 x 2T

1
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2.3 Studies of Unidirectional Bar and Angle-Ply Tube Specimens

4y
e

Ve T 4
‘

"%

The initial, preliminary phase involved testing of standard uniaxial,
30° of f-axis, tensile coupons of Hercules AS4/3502 material in a dry, room-
o temperature state under load histories which included periods of constant
- rate loading and unloading as well as constant load, as illustrated on page

5 of publication No. 3 in the Appendix. The load history was designed to

(i) obtain the type of information needed to determine mathera*ical

representation of the "strain-energy-like" potentials for loading and
y

o unloading up to the stresses causing laminate fracture, and (ii) determine
the extent of any viscoelastic behavior which may exist with constant and T
changing damage, and also characterize it mathematically if it is found to

be significant.

These preliminary tests indicated that the viscoelastic effects (apart
ﬁ from damage growth) are measurable. The relative magnitude of these
.. effects were not influenced by ply-thickness variations from 6 to 12 plys,

N nor by the off-axis angle of the specimen, varying from 1 to 90°. The

. periods of constant load in the test histories used allowed for
A determination of the significance of the viscoelastic effects in examining
the differences between loading and unloading stress~strain curves. The
following observations were consistent across the sample spectrum involving

different thickness and fiber angles, 9 >10.
(i) At 50% of ultimate levels, between 50% and 80% of the observed
deviation between loading and unloading stress-strain curves was
attributable to normal viscoelastic effects. The percentage of

viscoelastic effects tended to increase as the off-axis cuagle

increased.
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(i1) At 75% of ultimate stress level, between 30% and 50% of the
observed deviation between loading amd unloading stress-strain
curves was attributable to the viscoelastic effects, and again

this effect tended to increase as the off-axis angle increased.

The amount of viscoelastic behavior relative to damage effects made it

necessary to develop a rather elaborate computer-based data reduction and

analysis scheme to quantitatively characterize the deformation response.

This scheme uses so-called "pseudo-variables" (in this case, axial pseudo-
strain sR) which is computed using a convolution integral of the form (3], :j;f-j:f-
t

R__-~1 -, de - b

€ =E [ Elt-t) zp dt (10)

.‘.'. »

il
". .‘v

N

P
et

where E(t) is the uniaxial relaxation modulus and Ep is a constant,

el

‘: .'-'.'- &

arbitrarily selected reference modulus. With this approach, the material

1
h

was then characterized precisely like an elastic material with damage, by
examining the relationship between stress (o) and pseudo-strain (ER). The

technique is believed to essentially “filter out" the viscoelasticity at

fixed damage levels. The necessary software has been developed and was
used during this period to begin analysis of the data from off-axis
specimens using fiber angles of 10, 15, 30, 45, 60, and 90 degrees. :j._-::_
Around November of 1984, we began consideration of the second phase of
data collection, It was considered necessary to conduct an experimental E'l_'-_-:
and analytical study of angle-ply laminates under multiaxial loading in
order to verify the existence and use of a work potential ¢ for modelling
realistically large amounts of distributed damage. This type of laminate
undergoes significantly more damage prior to global fracture than
unidirectional samples, and therefore provides data that enable a more

critical evaluation of the work potential theory. The unidirectional nly
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" studies provide baseline elastic and viscoelastic property data in the
’ absence of the significant residual stresses which exist in angle-ply
g laminates, and thus can be used to predict baseline angle-ply response with
“ no significant damage. Hercules, Inc. of Magna, Utah, has provided four

(4) tube specimens of angle-ply laminates. These were to be tested under
axial load and torsion using the MTS hydraulic axial-torsion machine at
Texas A&M. If Eq. (12) in [6] was found to be true using data from the
tubes, then a potential was to be constructed and expressed as a function
of laminate thickness-averaged strains and the extent of damage using
suitably defined damage parameters [3]. Physical inspection for damage
using x-rays and ultrasound were to be carried out when possible, in order
to correlate physical damage stress with characteristics of the stress-
strain behavior,

The first set of tubes to be studied consists of two [+30] 55 and two
[#60] 55 tubes, all 2 inch dia x 17 inch long. They were to be tested and
the findings analyzed. As the initial task in this study, it was decided
to acquire and validate a finite-element routine which would allow for
careful and optimized usage of the four tubes available, since the very
high cost and long lead times typically required to obtain additional tubes
made the tubes quite valuable structures. Analysis of the uniaxial data
proceeded, but was secondary to preparing for tube testing which was to
begin in January of 1985.

On the morning of December 31, 1984, during an ice storm, the building
at the Texas A&M University Research and Extension Center (which housed our
HP 1000 computer being used to analyze all the data and to run the finite-
element model previously mentioned) burned to the ground in less than one

hour. For all practical purposes, all of the data, computer code,

'''''''''
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';\ intermediate results and back ups (which were stored in another room of the
” same building) were reduced to ashes and were totally irretrievable,
g Needless to say, this tragedy dealt a severe blow to project progress. The
i~ code developer was unique to the particular advantages of the HP 1000

vector processing system as was the finite-element code. Subsequent to the
~ fire, attempts have been made to regroup, and some tube testing of

isotropic (aluminum) tubes was carried out to verify the test

E_ configurations, data acquisition and data analysis techniques. Tube
' . testing could then proceed if a suitable simulation and finite-element code
':.“‘ could be developed. Since, however, it would take considerable time to
. transfer all the code and existing data and techniques to another machine
! e and since Texas A&M University intends tc relace the HP 1000 no later than
iﬁ:- September of 1985, the proposed plan is to place this portion of the
. project on hold until the new processor is available,
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2.4 Studies of Angle-Ply Bars under Axial and Torsional Loading

b} ‘..
o
»

4
5

Preliminary studies of narrow rectangular plates under axial and

S ]
EARAY. |

RN
f’.f‘:.

”
LAY
’
i

- torsional loading have indicated that they may be very useful for

investigations of work potentials with microcracking and delamination

v
7

Ry
W

K fracture behavior. Specimens with different fiber angles and dimensions
< ' are under study. Figures 10 and 11 give some data from plates with nominal
. dimensions of 2.5" long x 0.25" wide x 0.13" thick; the “nominal" stresses
I_ i’ and strains shown on the axes are defined below., Plates which are wider
| and longer and have other fiber angles are also under study. It should be
| c emphasized that even though there are stress gradients and consequent
nonuniform damage distributions, the proposed theory based on work
potentials may be experimentally verified and then employed to obtain basic
‘ . fracture properties from such tests without having to make a detailed
: stress analysis of the specimens, However, some stress analysis will be
done to aid the determination of deformation properties, optimize

a specimen dimensions and select fiber angles.
An important part of the initial study is to demonstrate
.-_'._‘ experimentally that work potentials exist. A theoretical basis for such
potentials is given in [6]; but it is based on certain idealizations, and
therefore it is important to provide also a good experimental basis for the
existence of potentials. Considering here only the problem of elastic
laminates with damage under increasing axial force F and torque T, a
L . necessary and sufficient condition for a work potential $ = ¢{u,8) to exist
(where u is the axial displacement and 9 is the rotation about the axis

.
r between the grips) is

w
1
@
-]

= (11)
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if F=F(u,9 and T = T(u,6) have continuous first partial derivatives in
their arquments [7, p. 170). It is assumed there are at least limited sets
of histories, u(t) and 6(t), (such as proportional deformations wherein u/€
is independent of time) for which F and T are essentially independent of
history.

Before using Eq. (11) with experimental data, it is helpful to replace
the variables by measures of stress and strain. This normalization process
eliminates first-order effects of specimen-to-specimen dimension

variations. Specifically, we use "nominal" stresses and strains defined as

= 3T/bc? (12a)

Q
m

F/bc
€ = U/L ’ Y

-
~
"

co/L (12b)

where b = width, ¢ = thickness, and L. = length (between grips). For the
special case of long, thin, homogeneous specimens (L>>b>>) ¢ ard ¢ are the
axial stress and strain respectively, and t and v are the in-plane shear
stress and strain respectively at the surface; this is shown in [8] for
linear isotropic materials, and it can be shown co apply also to
orthotropic materials whose material axes are parallel to the specimen
edges. The variables in Eg. (12) are useful for normalizing data, whether

or not the stated conditions apply. ©Cquation (11) becomes

“

50/0y = 3(1/3)/ ¢ (13)

This equation has been used to analyze the data in Figs. 10 and 11 by first

writing

/3 = ro/3+f {14)
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where To = ro(y) is the shear stress for €=0; also f=f(,y) in which f(o,¥)

=0. Next, integration of Eq. (13) with respect to vy yields

3 Y
=2 7 - - 15
o= ! £(e,y")dy" +o (15)
where 0, = 0,(¢) is the axial stress when y=0. Thus, the quantity
53 Y
Lo = — [ f(e,y*)dvy” (16)
dE O

is the change in axial stress due to the torque-induced shear strain.

The procedure used to check for the existence of a work potential is
to cross-plot the data in Fig, 10 so as to obtain f (which is the change in
shear stress due to axial strain) as a function of v, for fixed values of
€, and then predict the modification to axial stress, Eq. (16).
Considering the limited amount of data presently available, it is desirable
to curve fit the data to analytical expressions to aid the needed

interpolations and extrapolations. It was found that

Y2.55€(B+Cy)

v
é f(e,y)dy” = A (17)

where A,B, and C are constants. Using this expression in Eq. (16) yields
the change in axial stress due to torsion. Only for €/y=0.92 is there a
significant effect of torsion prior to fracture; the prediction is drawn in
Fig. 11. The agreement between theory and experiment is relatively good,
In the series of tests shown in Figs. 10 and 11 there is only one

specimen for each deformation history, and thus the small differences

between most curves in Fig. 1l could be as large as specimen-to-specimen

differences. Nevetheless, it is encouraging that all of the predictions :%_3

from Eq. (16) turn out to be of the same order as the observed differences e
in normal stress. Although not needed to check for the existence of a

potential, it is of interest to note that when there is little or no
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;:: coupling between torque and axial load, the stress-strain curves obey power .ﬁ-:\' A
W laws over a wide range of strains, as shown in Fig. 12. "\-‘:'
n Future Work: It is planned to continue the axial-torsion testing of --‘:.."n.
i IO
'l‘ angle-ply bar specimens to study both deformation history effects and :'J‘_‘
E'E; determine the range of histories for which work potentials exist. Mode III :
- delamination will be investigated also using specimens with and without
- embedded edge delaminations. 1In most tests conducted so far, fracture
::‘. occurs away from the grips, and therefore it is believed this study will
- lead to basic results on the effect of globally distributed microcracks in
, a multiaxial stress state on macrocrack growth (e.g., the edge
delamination). The J integral will be used with the data to characterize

the mode III fracture initiation and propagation behavior.

A_' '..-
[N oy
q." -
‘-
: -~
a
e * . l.'
‘,_ ‘.
h..
l. .
[
"
A8
A
.

v
’

. - . " - P PRL IR B .t ST et PIRIEERCI S i e e e e e e Lo e e e e e e e .
I O S R T T A S VR A 4 e LT



2

L4

r v 3
PREAE
...ﬁ\f

A‘- L Il

b

25

~ %
XA
Ll

o

LS

=< H
L,

Ly

Oy R
war_

e

aamod Fuimoys 1 pue

010

. AN o
o

. A N
XA AN PO N, Y

.
v s LT
PRI .

o« T
DDA AT

10TARYDQ mE|

0T s3aandry wWolj EBIBP UTRIIS-SSI13S Jo s307d srwyjzyaedo -z

[ oandy |

uTe131S TRUTWON

010°0 1000

L N v L ] T A 0001
B uieals °sa ssaiis ieays - \/ .
ureils °sa ssaais Jeixy -~ O
R 4
W. =] 00001
R 0= 4
[ : ]
. BL'T = 3 . :
. - " - P S — . n 00n0o1
T — T T I PRSI  SENEUSVRNY LN | -
- WIS G W ORI Tttt s S L POV 8 Y Y KA AN . . .

[PUTwoON

S80a38




E‘.‘.T R NS VR SANA AL S LORAL L ARG RAE L PG (AL L gL g i g g g o auit Sy i p/ e s e i st s el e S et e s St IO P R g

E 26 T
~ 3. LIST OF AFOSR SPONSORED PUBLICATIONS J
‘e 3.1 Published during project year: f{:{:
&3 schapery, R.A.,, "Correspondence Principles and a Generalized J .PL“?
- Integral for Large Deformation and Fracture Analysis of
ﬁ Viscoelastic Media," Int. J. Fracture, 25 (1984) pp. 195-223. ET;T;T;
3.2 To be published (in press);
Schapery, R.A., 'Continuum Aspects of Crack Growth in Time-Dependent i_-t
-' Materials", Encyclopedia of Materials Science and Engineering, :.':I'-ﬁ:

Pergamon Press.

Schapery, R.A., "Deformation and Fracture Characterization of [.t_’_“‘

: Inelastic Nonlinear Materials Using Potentials," Polymer Preprints.

i 3.3 To be submitted for publication: ‘\
) Allen, D.H., Groves, S.E., Harris, C.E. (Part II), and Schapery, R.A.,

_,-‘ "A Damage Model for Continuous Fiber Composites", Parts I and II ';\

(essentially complete) - to be submitted to Mechanics of Materials. ::

5
2

4, PROFESSIONAL PERSONNEL INFORMATION

- S
- 4.1 List of Professional Personnel ‘E:::Z:f
T
1. Richard Schapery, Principal Investigator L"‘
2. Mark Lamborn, Graduate Research Assistant
3. Richard Tonda, Graduate Research Assistant ‘_
4. Randy Weatherby, Graduate Research Assistant L"
- 5. Bob Harbert, Assistant Research Engineer, (Laboratory Staff Member) :'
pe 6. Carl Fredericksen, Electronics Technician, (laboratory Staff Member) ‘:\‘
- ,
fi

PSR A N




P.'?-'l R N T o o W R R o T Ty Oy Y TN T Py Ty T

")
C
N - . . :
=2 4.2 Spoken Papers (Principal Investigator's Activities) o
" 1. "A J Integral for Viscoelastic Fracture Analysis," ASME/AMD 53;3
P~ Conference, San Antonio, June 1984. gﬁg?
E E: 2. "“Research Directions for the Mechanics of Composites,"ASME/AMD ES?:
= Conference, San Antonio, June 1984. §§§E
f ?. 3. '"Deformation Properties of Composites", Progress in Paper %ffj
E N Physics: A Seminar, Stockholm, June 1984. Also chairman of ;.'
X workshop on deformation properties. ;;LL
fj_ 4. "“Behavior of Composites with Distributed Damage", Owens-Corning L.,
Fiberglas Corp., Granville OH, Oct. 1984. ;;f;i
is 5. ™Matrix Controlled Deformation and Fracture Analysis of Fibrous ﬁkéﬁ
t i Composites” Tenth Annual Mechanics of Composites Review, Dayton 5%??
Lo OH, Oct. 1984. :
! i. 6. "Mechanics of Deformation and Fracture of Polymeric Materials",

(three lectures), National Taiwan Univ., Taipei, Jan. 1985.

> _-'-.."l.'..’- P T "'.".".".'.'_.' R

A v et et e e e T e T e e T e e e e
PRI, WA, L PR WP I PR Tl GGl Ul WO W Y




..............

(BmC e dasr dare P St aait et R S vt DA T AN T TS S I S

P A

T
o

X
s

n.-‘.\

[1}] Hillerborg, A. and Peterson, P.E., "Fracture Mechanical Calculations, :.-:'\.:',';

- - ~‘ .‘
e Test Methods, and Results for Concrete and Similar Materials", Y N

X

- Advances in Fracture Research (Fracture 81), Vol, 4, Pergamon Press,
e 1982, pp. 1515-1522,
[2] Aronsson, C., "Tensile Fracture of Composite Laminates with Holes and

Cracks", PhD. dissertation, The Royal Institute of Technology,

- Stockholm, Sweden, 1984. L
K
*(3] Schapery, R.A., "Correspondence Principles and a Generalized J- P

Integral for Large Deformation and Fracture Analysis of Viscoelastic

'.T!v
) TRy
N B

n‘-—

Media", International Journal of Fracture, Vol. 25, 1984, pp. 195-223. '.'-::f‘::

‘_s:;.

[4] Rice, J.R., "A Path Independent Integral and the Approximate Analysis e
. A

. of Strain Concentration by Notches and Cracks," J. Applied Mechanics,

Vol. 35, 1968, pp. 379-386.

[5] Crisfield, M.A., "A Fast Incremental/Iterative Solution Procedure that

! Handles 'Snap-Through'", Computers and Structures, Vol. 13, 1981, p.
) 55-62.
::: *[6] Schapery, R.A., "Deformation and Fracture Characterization of
- Inelastic Nonlinear Materials using Potentials," Polymer Preprints, -
1985. el
‘ [7] Greenberg, M.D., Foundations of Applied Mathematics, Prentice-Hall, :7'_:::;;
) Inc., 1978. L__
:?jf (8] Timoshenko, S.p. and Goodier, J.N., Theory of Elasticity, McGraw-Hill :'.:_':'.::
. Book Co., 3rd Ed., 1970. _;Z:;:i:j
:-\ e
- b
NS *Paper is in the Appendix.
W ,~.:'_-.:
“.-‘i.-
'..4“..1
F 13

.........................




¥ (h;.!..-.-
NOC A
E 29 el
IO
o R
& RIS
AN
» v
~ . APPENDIX A
LA 43
& Lg» ¥
Publications on AFOSR project: ’:z
i
P‘- . . S .71 “
o 1. "Correspondence Principles and a Generalized J Integral for Large Deformation PR
e ~
i and Fracture Analysis of Viscoelastic Media." R A
-~ e
= 2. "Deformation and Fracture Characterization of Inelastic Nonlinear Materials O
o Using Potentials."”
3. "Matrix Controlled Deformation and Fracture Analysis of Fibrous Composites."
t! (Set of viewgraphs used at Tenth Anmual Mechanics of Composites
F Review)
%
e
.. '.-

reo
..l
Py

-

. :.'\:, =y

-
o®

LN '-('- -;-':;.'.. \.' ‘rﬁl



International Journal of Fracture 25 (1984) 195 223
1o84 Martinus Nghoff Publishers, The Hague. Printed in The Netherlands

Correspondence principles and a generalized J integral for large
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Abstract

Methods of quasi-static deformation and fracture analysis are developed for a class of nonlinear viscoclastic
media and sample applications are given. Selection of the class of media is guided by actual rheologicat behavior
of monolithic and compasite materials as well as the need for simplicity to be able to understand the effect of
primary material and continuum parameters on crack growth behavior. First. pertinent aspects of J integral and
energy release rate theory for nonlinear clastic media are discussed. Nonlinear viscoelastic constitutive equations
are then given. and correspondence principles which establish a simple relationship between mechanical states of
clastic and viscoelastic media are developed. These principles provide the basis for the subsequent extension of J
integral theory to crack growth in viscoelastic materials. Emphasis is on predicting mechanical work available at
the crack tip for initiation and continuation of growth; some examples show how viscaclastic properties and the J
integral affect growth behavior. Included is the problem of a crack in a thin layer having different viscoclastic
properties than the surrounding continuum. The Appendix gives an apparently new constitutive theory for elastic
and viscoclastic materials with changing microstructure (eg. distributed damage) and indicates the conditions
under which the fracture theory i the body of the paper is applicable.

1. Introduction

Methods for characterizing and predicting crack growth in materials which are elaste
(except for the small-scale inclastic zone at crack tips) are well-cstablished theoretically.
and considerable experimental confirmation exists [1.2]. The methods for linear media
now commonly use criteria for initiation and centinuation of crack growth which are
expressed in terms of stress intensity factors or energy release rate. For nonlincar media,
especially rubber [2], energy release rate is often emploved.

Fracture theory for materials exhibiting large scale inelastic behavior is considerably
more limited. The J integral theory [1.3] has been successfully applied to inmtiation of
crack growth in time-independent (elastoplastic) isotropic, homogeneous media undet
small strains. An analogous parameter. the C* integral [4]. has served in a similar manner
to define crack speed in nonlinear viscous bodies. Analytical methods and their verifica-
tion for crack growth in viscoclastic media are mainly limited to linear isotropic.
homogencous materials, although some theoretical results exist for linear orthotropic and
nonhomogeneous materials [e.g.. 5 9] stress intensity factor i the primary charactenzing
parameter for fracture initiation time and crack speed.

The objective of much of the work on elastic and inelastic materials has been to identufy
a basic crack-growth controlling parameter. such as stress intensity factor or the J mtegral.
which accounts entirely for the geometry of a bodyv (including crack geometry) and the
applied loads. Values of the parameter which produce crack initintion and various crack
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speeds are then found for a given material, usually experimentally. This informaton mun
be used to predict crack growth in different geometries and aid in the selection and design
of fracture-resistant materials and structures. It is, of course, verv important that the
characterizing parameter account fully for the effect of geometry and loading conditions
on crack growth if empirical corrections for each application are to be avoided.

In this paper we show that parameters analogous to the J integral and energy relcase
rate may be used for quasi-static crack growth in a class of nonlinear viscoelastie materials o
under finite strain. In Section 2, results on the J integral and energy refease rate for

[
e NN

three-dimensional deformation of nonlinear elastic media are collected. Included i~ a -
simple (and apparently new) derivation of the relationship between the J integral and e
energy release rate. The J integral formulation is guided by Chen and Shield’s work -
[10.11). and interpretations are given which are used for subscquent application of - A

theory to viscoelastic fracture.

Viscoelastic constitutive equations and methods of quasi-static deformation analvsis
using elastic solutions (correspondence principles) are discussed in Sections 3 and 4,
respectively. Correspondence principles are given for a broader class of probiems than
considered in the fracture analysis; for example, they represent a new approach to
analyzing crack closing and healing phenomena and ablation effects.

Sections 3 and 4 provide the basis for using the J integral and energy release rate in
nonlinear viscoelasticity problems. This generalization, along with results in Section § for
mechanical work input to the crack tip, is applied in Section 6 to relate fracture initiation
time and crack speed to the J integral and viscoelastic properties of the continuum and
failing material at the crack tip: these relationships represent extensions of the author's
other work [12] based on a two-dimensional J integral and small strains. Then. as another
application of the theory, in Section 6 we also predict the effect on crack speed of the
rheological properties of a zone of damaged or otherwise special material surrounding the
crack tip. In practice, viscoelastic behavior of this zone is often significantly different from
that of the far field as a result of high local stresses, dissipative heating, or the particular
physical situation; the craze zone near crack tips in glassy poly.uers {13} and an adhesive
interlayer are important examples. Surface or path-independence of the J integral exists
for materials with certain types of distributed damage as shown in the Appendix; we use
this important property here in accounting for behavior of the material surrounding the
crack tip.

The deformation and crack growth theory in this paper is not much more involved than
that of nonlinear elasticity or special cases of linear viscoclasticity. This simplicity.
compared to what one would expect for nonlinear viscoelasticity. 1s 2 direct result of the
] particular constitutive equations and mechanical variables selected to characterize rheo-
s logical behavior. We bhelieve the theory provides a practical approach to the development
of realistic damage and global fracture models for nonlinear elastic, viscous. and viscoclas-
tic media, as illustrated by the author for a particulate composite material and polycrvstal-
line metal {14.15).

2. The reference elastic problem

RN Certain basic equations for elastic materials undcr large strains are summarized in lhi\

section. They are expressed in terms of stresses o (1,7 =1, 2, 3) and displacements uf

referred to an orthogonal set of Cartesian wordm.ncs », which define the location of

material points in thc undeformed state of the bodv, B,. (Although B, is called the i
*undeformed state™, it could be any fixed reference configuration, such as that existing at |
one time during the actua) deformation history, without necessitating a change in the hasic

theory.) The instantaneous Cartesian coordinates v* of material points in the deformed |
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body BX are referred to the same fixed axes as used for B,. and therefore y® = u® + x,. In
some cases n,',z or u® will be equal to the stresses or displacements in a viscoelastic body:
but in general they are different, and therefore the superscript R is used to make this
distinction. Section 4 is concerned with the correspondence between states of elastic and
viscoelastic bodies. For now we shall just list and discuss relevant equations for elastic
media.

The stresses o,'} are taken to be the components of the so-called Pinla stress field [16].
The components of the Lagrangian stress tensor T,® {17] are given by the transpose of 6%;
viz., TX =o,‘f. Although o! is not in general symmetric, these components are very
convenient for our purposes because the equilibrium equations,

d08/0x, + FR = (1)

and the relation between surface tractions TR and stresses.

'
R _ R
T, =an, (2)

are identical in form to those in the lincar theory. (Throughout this paper the summation
convention is followed wherein repeated indices imply summation over their range unless
stated otherwise.) All quantities are referred to B,. in which x, are the independent
variables. Namely. F® is body force per unit undeformed volume, TR is the surface force
per unit undeformed area. and n, is the outer unit normal of an area element defined in
the undeformed state; force quantities are defined as the vectors existing at the current
time 7. but referred to the undeformed geometry. B,
A potential ® is assumed to exist with the property that

oR =30/3(1¥, (3) g
where, by definition, ::\::
ul = ul/0x,. (4) et

For an elastic material @ is the strain energy per unit undeformed volume [17]. H we
invoke the physical requirement that @ is unaffected by rigid body rotation (and recall
that we are using the coordinates x, as the independent spacial variables) the dependence
of ® on the displacement derivatives can enter only through the symmetric Green's strain
tensor [26].

.~
R R R R R Bt
ES= (1/2)[11,_,+u,_,+u,‘.,u,‘,., {5) . Sacn
However. considering the association between the present elastic problem and the actual O
(viscoelastic) problem introduced later, we shall not restrict & by this usuval physical o
condition. Instead. unless stated otherwise, we suppose only that N
a%
d)’—"(b(ll?f,..\‘:..xl‘.l) (6) P
implving possible dependence on the nine displacement derivatives, spacial variables v, }:
X, (allowing for nonhomogeneity with respect to x; and x,) and time ¢ (allowing for PN
“aging” changes). The body is assumed to be homogeneous with respect to v, for now to :::
achieve surface-independence of an integral that is useful in fracture analysis. With the RS
same objective in mind, we assume a body force potential @, = @ (uf, x,. x.. 1) exists, I-}‘~
in which :
R . R
ER = —ad, /a4 (7

Consider a generic volume V throughout which @ and @ exist with properties defined
by Eqns. (3) and (7). Denote the bounding surface of this genenic volume by § and let TR
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be the surface tractions and n, the components of the outer unit normal. Multipls (1) by
—dul/dx,, integrate over the volume V. and then use the divergence theorem [18] to
convert the integral to an integral over the surface S. The result is

a/zfs[(xb»r%)n, — TRouR/ox,)ds =0 (%) v
F. .'l
where ds is an area element in the undeformed body. When @ =0 and the bod\ s e
homogeneous, the integral & becomes identical to the x, component of the integral vector ::‘-:::
derived by Knowles and Sternberg [16]; however, we have followed Chen and Shield [10] \_-:
and not limited ¢ to dependence on strains. By considering onlv the x, component. ===
material nonhomogeneity with respect to x, and x, may be taken into account while
retaining the propertv that &= 0. Only this component is needed in the fracture analysis to
follow.
The J integral and crack tip model
Suppose the body contains one or more cracks. Figure 1 shows as an idealization the
intersection of a crack tip region and local crack faces with the plane of the page. The
dashed line is the intersection of a representative surface § with the same plane. In order
to meet the conditions which lead to &= 0, no crack can exist inside or on §.
The region designated as the failure zone in Fig. 1 is where material separation occurs:
' it may contain a high density of microcracks or microvoids. The material comprising this
' zone in the undeformed state is of length a (not necessarily small) and is assumed to exist
- in a layer which is thin (in the x, direction) relative to a. Outside of the failure zone it is
. . assumed there exists at [east a small neighborhood around the crack tip for which &= 0. A
T useful definition of the crack tip P, and one that we employ, is that it is the leading edge
of the material for which the conditions used in deriving &= 0 are nor met.
It should be noted that tractions may exist along the crack faces to the left of the fuilure
zone; for example, these may be due to a pressurized fluid. interfacial friction and contact
pressure, or damaged material connecting the faces of the intact continuum (as in a craze
::— zone in some plastics). In these cases, especially the last one, location of the left end of the
"L ! failure zone (points 1 and 2) is somewhat arbitrary and its selection may depend on the
= - SURFACE T
R ———
:: : e \\\TRACTIONS { FAILURE ZONE\\
:_'11 S e X2 \\ \\ 2 ‘
15 \ =p |
3 R /
2 / 1 dL_/ _ /
ot \ le—a—| & ~—-"1 /
» NG / /
g \\___’// ‘\ //
-
f’ a I \\\__,/ -
- {a) Undeformed body. () Deformed hody -:.::j
‘:" Figure 1. Cross-section of crack in neighborhood of the tup P. The region of itense damage and materia! NS
‘e separation processes is designated the failure zone, whose length is ain the undeformed body ,:::_:;
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particular application of interest. However, normally one would choose it so that a
cxtends at least over the part of the surface x, = 0 for which crack tip material behavior is
too complex to be able to predict the detailed traction distribution,

Next. we introduce the integral J:

a o dAuR
= R——-l

where 7% is the normal stress and 7} and 7} are the shearing stresses in the x, and x,
directions, respectively, along the interface between the failure zone and continuum: these
are Piola stresses, as defined previously. It is assumed that the failure zone is sufficientlv
thin that the stresses in Eqn. (9) are the same along both top and bottom portions of the
interface. The Au} are the components of the relative displacement vector between
initially adjacent interface points across the local crack plane x, = 0. The viscoelastic
normal stresses, 7, and 0,,, and displacement. Au,/2. along the upper surface of the
continuum are indicated in Fig. 2. By definition, for the elastic or viscoelastic problem, the
“relative displacement vector™ is the displacement vector at the failure zone-continuum
interface above the local crack plane minus that below this plane.

For later use we shall suppose that the crack tip or edge P is essentially straight and
parallel to the x, axis over at least a short distance /, from the plane of the page (x, = 0).
Over this same distance it is assumed the failure zone integral J; does not vary. Since
n, = 0 along the top and bottom interfaces it is readily shown that the contribution to <.
(R), from the portion of S along the top and bottom boundaries of the failure zone over
the crack edge of length /5 is equal to —Ji/;. assuming the integral over the small curved
surface at the tip P can be neglected: this latter assumption is reasonable as long as the
undeformed failure zone laver is thin relative to a and we impose the physical requirement
of finite stresses (including those at P). Thus, from the condition &= 0,

J =1, (10)
where

o O
J‘:‘.(I/A‘)/;.‘I:(‘b+¢,)n|‘—I,Ra—;l‘ ds (1)
and S, is the portion of § not included in the integration along the failure zone over the
length /..
Notice that J, is a surface-independent integral in that its value is the same (i.c. J;)

NONLINEAR CONTINUUM

Frgure 2 Normal steesses and openeng displacement along contipuum above local crack plane
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. regardless of the choice of S, except for the conditions stated above. It can be reduced to :::_-;
. Rice’s path-independent J integral [3] by omitting the body force and assuming two-! :":f
. mensional deformations. Specifically, let S be a cylinder (having the cross-section in | ".::'.
]

1) with generators and with normals to the end areas which are parallel to x,. At the ends
n, =0, and therefore the contribution to J, from the cylinder ends vanishes if 7.%auR /9x,
=0; this condition exists on the ends when T,® =0 (e.g. plane stress) or TR = TR =
du¥/3x, =0 (e.g. plane strain) or T.® = dul/dx, = dul /3x, = 0 (eg. antiplane strain).

A 4. i, RN
AR )
0

- With the integrand in (11) further assumed to be independent of «x,. C';_:f: ‘
.. i \.—'.
- R A
J=| (&+d.)dx,- TR=—dL (12) =
| [ i oans-

where the integration path C, starts at point 1 in Fig. 1 and proceeds counterclockwise 1o
point 2. Assuming ®,. = 0, crack faces parallel to x, and traction-free. small strains and X
rotations, and further that ® is a function of u,'_‘, through the strains, (12) reduces to the R
original form of Rice's J integral. o

e
r e

o

' L Suppose S, in the three-dimensional version of J,, (11), is chosen so as to not include -
ey — any portion of the failure zone-continuum interface (outside of /;). We may then consider

K o (10) to give a basic relationship between the mechanical state of the continuum through J,

- and the characteristics of the failing material along a segment of the crack edge. In some

cases one may want to use a failure zone integral in which /, includes the entire crack edge

> (or a large segment of it). If the integral (9) is not constant or the edge is not straight along

. the length of interest, one would return to (8) to derive the desired form. accounting as 4

.. necessary for curvature of the edge. DA
: Finally, it should be noted that (10) and (11) do nor depend on crack faces being v::E-:
-':f - . parallel to the x, — x; planc. Rather, this condition s imposed only on the laver of o
. ‘ material comprising the undeformed failure zone. ::-::_'
‘. ’":
_l : En-rgy release rate

A Up to now we have not considered crack growth. By introducing a virtual crack extension,

JRRET S the value of J, can be related to a global change in energy. This relationship may be useful

for the experimental or theoretical determination of J_ for elastic and viscoelastic materi-
2 als, as an alternative to evaluating it directly from the integral. (11). The desired equation
!_ may be derived by first multiplying (1) by a change in displacement §uR, integrating over
the volume V of B,. and using (2), (3). (4), and (7) along with the divergence theorem.
There results, finally, the familiar cquation for virtual work,

- fT,Ré'u,Rds=6/(d>+d>r)dn (13)
[ . e Ay v

.—'—_ Both S and V have been assumed constant in deriving this result: e.g., there is no explicit
- change in crack tip‘ location or phenomena such as material removal through melting.
:. Crack growth will be simulated through a suitable choice of 8u,. as in [14]. thus permitting
* the use of (13). An edge segment of length /, (in the x, direction) of only one of possibly
'-'.: many cracks in the body is to be advanced an amount 8a, as illustrated in Fig. 3: this

S IR

advancement is assumed independent of x;. The interface between the failure zone
material and continuum of undeformed planar dimensions (a + 8a) by /, is denoted as S,
and considered to be a portion of S in (13). As before, we denote by Au) the current
relative displacement components between originally adjacent material points across the
local crack plane (which are specifically the displacements between the portions of 5,
e above and below the crack plane). Self-similar crack grow th is now imposed: AVARIR LTS
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Recall that (10) is dependent on the assumption that the material is physically homoge-
neous in the v, direction for the portion of the continuum bounded by the failure zone
and the surface §, used in (11). In contrast, this assumption is not needed to derive (17). in
that &, ¢, and &, in (18) may depend explicitly on all coordmates x, (as well as on
displacement derivatives or displacements, as previously indicated).

Finally, it is to be observed that when surface tractions on S, or body forees are
specified functions of x,, or treated as such, the potentials are

d, = -rfult 0, = -TRUR (21

Equation (18) then takes the familiar form,

- R Ry R Ry .
P, j;((b FRul)de /;7: u,ds. (22}

R

For elastic materials, the quantity P, is the potential energy. [ts phvsical significance is

v

somewhat different for the class of viscoelastic materials discussed in the next section.
3. Viscoelastic constitutive equations

The constitutive equations which will be used are based on (). but the displacements uf
and stresses o are not necessarily physical quantities in the viscoelastic bodv. Instead.
they are related to the physical displacements « (x,. r) and stresses o, (x;. 1) through
hereditary integrals.

Speaifically, conmidenng displacements first, and assuming they vanish for 7 < 0,

R _op n (23)
u,ﬁ.kj"l,! To) 5 dr 2

where u, = u,(x,. 7) is the physical displacement in terms of the time vanable of
integration, 7. and. as before, the coordinates x, of the undeformed body. The guantity
E = E(t—1.t)1s called a relaxation modulus, which imparts hereditary characteristics to
the deformation behavior. The coefficient E i1s a free constant which will be termed ¢
reference modulus: it is helpful in discussing special material behavior and introduciig
dimensionless variables. In order to allow for the possibility of a discontinuous change in
u, with time at r = 0, the lower integration limit in (23) and succeeding hereditary integrals
should be interpreted as 0 unless indicated otherwise. The inverse of (23) is

Lot aul 5
u,—*ER_/(;D(I—-r.l) py dr (24)

where D = D(r - 7. 1) is termed a creep compliance. It is readily shown that £ and D
satisfv

f,l)(l—"r.!)il':(T—I.,.’r)d'r‘-’”(f*’!‘,) (25)
0 U ar
where t, .~ 0 and H(t - ¢,) is the Heaviside step function: /g - 1)=0 and 1 forr- 1,
and ¢ > 1,,, respectively.

It will be helpful to use abbreviated notation for the hereditary integrals. For any
function of time, f,

R . [ a_/ R
{I;df}E[:R'Ll',{lAAr.r)aTdr. (261)
A
{Ddf) - f'f,,fll)(f ST, ”5{('7 1260)
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Also,in view of (23) and (24),

S={Ed{Ddf} ) ={DA{EdS}) {26¢)
Equations (23) and (24) become, respectively,
W= (Edu, b u, = { Dduk } (27)

Similar hereditary integrals are assumed to relate o® and o,,. but modulus and
compliance are interchanged,

of={Ddo,}. o = {E,doﬁ} (28)

where the subscript 1 s used to indicate that the relaxation modutus and creep compliance
(as well as another reference modulus E,,,) are not necessarily the same quantities as in
(27). Inasmuch as a,'} and u® are not in general the physical variables, we shall call them
pseudo stresses and pseudo displacements. respectively. Similarly, the adjective pseudo will
be used when referring to the potentials @, (3), @, (7). and ®,. (19). in the context of
viscoelastic analysis.

The hereditary integrals used here are hinear functionals with relaxation and creep
functions which are independent of x,. This behavior provides the useful property that
differentiation with respect to x, and hereditary integration may be interchanged: e.g..

..

"l
l. l't
[t

~ 2
Ly
§

« e -
[N

£ a v
LA

s 5

/vy, = [ Ed(du,ox )}, dusdy, = { DA(dul /0x )] (29)

.
-

S
At

The choice of constitative equation (3). with pseudo and physical variables related in
accordance with (27) and (28), is motivated by the fact that this constitutive theory
approximates well the deformation behavior of various materials. and leads to relatuvely
simple equations for viscoelastic deformation and fracture analysis. The latter point will
be brought out in this paper. The validity of the constitutive theory has been discussed in
[12.14.15] for the case in which o® = 0,,. Observe that it reflects the commonly reported
behavior in which stress-independent relaxation or creep functions in single integrals serve
to characterize hereditary phenomena exhibited by many nonlinear maternials. Aso, some
mportant special cases may be readily recovered through an appropriate choice of the
material functions. Specificallv. if E=E, =D "= D, ' = E = Eg,.(27) and (28) reduce
to u® =u, and o == 6, consequently, (3) reduces to that for nonlinear elasticity. [If
= By and

1

. 1
D=1 FEy) (r-7) (30)
(where 716 a tme constant) we find n,'f =a,, and
u,R IRl (31)

which, together with (3), vields lincar or nonlinear viscous behavior. The general creep
compliance )= D1 -- 7, 1), together with o,'f =0,, (corresponding to £, = Fy ) and a
pseudo strain energy density which ts proportional to that for a lincar elastic. isotropic
material in terms of #f | vields the standard constitutive theory for an aging linear
viscoelastic material with constant Poisson’s ratio: nonaging behavior results if D = D(r -
7). The generalization provided by (28) in which pseudo and actual stresses are not equal
is useful for crack closing an healing analysis, as discussed later.

It should be mentioned that the notation D = D(e, 7) is emploved m [14] instead of
D = D(r - 7. 1). These forms are equivalent, but the latter is more convenient i the studv
of crack growth. The pseudo energy @ may also depend explicitly on time o account for
effects of aging in the nonlinear behavior, “Aging™ is not limited to intrinsic material
changes, but mav be due 1o direet physical causes such as transient tempetatures and
residual stresses {14].
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4. Correspondence principles

Correspondence principles in linear viscoelasticity theory usually refer to elastic-viscoelas-
tic relationships involving Laplace transformed stresses and displacements. Instead. here
we shall give three correspondence principles for time-dependent, quasi-static solutions to
nonlincar elastic and viscoelastic boundary value problems; they enable a viscoelastic
solution to be easily constructed from an elastic solution. In terms of Piola stresses and
coordinates x, of B, the equilibrium equations are

3o, /dx, + F,=0. (32)

The stress-pseudo displacement derivative equations,

o, = { Ed[ae/a(u},)]) (33)
- and body forces

- F=—{Ed(0®,./3u})) (34)
A BTSN in which

wR = {Ed(3u,/3x,)}). o = {Edu,) (35)

lead to three intergro-differential field equations for the three displacements «, when
substituted into (32). The functions ® = ®(ul . x,. 1) and . = &, (ul. x,. 1) are consid-
ered to be known; until Section 6, where the J, integral is used, we allow for explicit
dependence on all three coordinates x,.

As boundary conditions we assume the traction potential &, = &, (uF. v . 1) is speci-
2 fied on a portion §, of the surface: viz.,

on=T=-{Eddd,/3u8)} on S, (36)
1 1 l/ '

Elsewhere, displacements U, = U,(x,. 1) are given,
u=U on §.. (37)

. The total surface is § = §; + §,. Although not treated here, generalization of the analysis
- is easilv made for mixed conditions in which different traction and displacement compo-
nents are specified over the same part of the surface.

In all three correspondence principles the reference configurations B, of the elastic and
viscoelastic bodies are specified to be identical (with identical cracks, if any). The first
correspondence principle is restricted to time-independent surfaces:

- CP-1. The viscoelastic solution (i.c.. the stresses and displacements in the viscoclastic body

) which satisfy (31) (37) s
o, = { E,da,'}‘}. u, == { ndu®) (38}
i ' where 6 and 4® satisfy equations of the reference elastiv problem, (1), (3). (41 and (7).
2. together with the boundary conditions,
ofn =T*= 30, /0 on S, (392)
ul=UR={EdU} on S,. (39b)
, It is scen from (39b) that we first transform the given displacements U Of anyv) ust,
K4 the hereditary integral and obtain those needed in the elasticity problem. The governing ‘1
‘ equations of elasticity for the variables o} and u® are then solved. This solution is used in RN

(38) to obtain the viscoclastic solution. That (38) is correct is easily established by 5
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substituting it into (32)-(37). If the body forces F, or surface tractions 7, are specified in
the viscoelasticity problem. then one transforms them to obtain F*={DdF) and
TR = { D,AT;). after which the elasticity problem is solved using the potentials in (21).

When §, and S, vary with time certain difficulties arise. If dn,/91# 0 on Sy, then
(39a) does not result in the correct condition, (36). This problem may be seen by observing
that for the solution in (38),

o,,n, = {E,do,'f}n,aé {E,da,’}n,} on S, (40)

and therefore o, n, # T,. Other difficulties are due to the effect of past values of 7, and ]
on current values of T,® and UR. For example, consider dS;/dt > 0 and & in (21). (By
this shorthand notation we mean at least a portion of S,. becomes in time a surface on
which 7, is given.) Then the traction TR cannot be predicted for all ¢ > 0 from the given
boundarv conditions on the part of § where the change from a displacement to traction
condition occurs.

The next correspondence principle is for this type of boundary value problem, but we
assume £, = £,. Hence, { £,df } =/ for all functions f, and therefore the constitutive
equation and body forces are, respectively,

0,=030/3(ut)). F=-03d./3u" (41)
Also.
an=T=-3d /0u’ on S, u,=U on S.. (42)

1y
CP-i1. If dS, /dt > 0. the solution of viscoelastic equations (32), (35). (41). and (42) is
o, =0t u = {Ddu,“} (43)

(] 1

where o and u® satisfy the equations of the reference elastic problem, (1). (3). (4). and
(7). together with the boundary conditions in (39) in which 7R = T,

Verification of (43) is readily accomplished as before by substituting this solution into
the governing viscoelasticity equations. Inasmuch as the elastic and viscoelastic stresses
are the same throughout ¥ and on S at all times, no basic difficulties arise in verifying the
solution if dn,/dr # 0 on S, and in determining T,® when (21) is used for ®;. However.
the present class of problems obviously allows for crack growth, and certain physical
questions of material continuity and interference have to be addressed. Pursuing this
point. we observe that the relative displacement between crack faces, Au,. in the viscoelas-
tic body is the difference of displacements in (43) evaluated on adjacent crack faces.

Au, = { DdAu} } (44)

where Ak is the displacement difference in the reference elastic problem. Since we have
specified the instantaneous geometry of all cracks in the elastic problem to be the same as
in the actual viscoelastic body. Au, is correetly predicted to vanish until the time 7, sav,
when a crack tip reaches any particular physical location; this follows from the fact that
Au® = 0 at this same location when ¢ < 1, (assuming prior cracking and rejoining of the
crack faces has not occurred) which in turn implics the hereditary integral in (44) vanishes
when r < 1,.

The present solution, (43). does not account for contact or rejoining of crack faces.
Rather, it could predict that adjacent crack faces pass through one another if in the actual
situation they rejoin and interfacial compression exists. Following such rejoining, the
stresses in (43) are not valid, and the solution mav become much more involved. We shall
not consider the general problem here; rather, only the case in which cracks are initially
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open and then close or shorten through a healing process is discussed. The third
correspondence principle is concerned with the problem dS;/dr < 0. and it is Iimited to
the case £ = Ey: (32)-(37) still apply except u® = u, and uf, = u, , are now used.

cp-mL I dS, /dr <O and if dn, /dr = 0 on S, . the viscoelastic solution for the case 7= Fy
I8

a,,z{lf,do,'f}. u, = uk (45)

’

where a,'f and «X satisfy the equations of the reference elastic problem. (1), (2). (41, and
(7). together with the traction boundary conditions (39a) and

W=U on S.. (46)

'

Verification of (45) is made as before, Observe that elastic and viscoelastic displace-
ments are now equal, while the stresses depend on the relaxation modulus £ Aol itis of
interest to observe that if tractions 7, are specified on crack surfaces (such as in the failure
zone) the tractions T® in the elastic problem are different from the actual valves since
TR = (D,dT).

The Correspondence Principles 11 and HI are not hmted to crack problems. For
instance, they may be applied to problems involving contact between different continua or
ablation. Furthermore, even though they are based on apparently different constitutive
equations they may in some cases be used for the same matertal, at least as an
approximation. Indeed, for linear viscoelastic behavior in which the onty effect of aging is
in the relaxation moduli £ and E, (i.e. ® does not depend on time other than through the
displacement derivatives), the two constitutive equations are easily shown to be equivalent
if £,=F.

The remainder of this paper is concerned with crack growth analvsis for materials
obeying (41) and (42). The Correspondence Principle 11 (CP-11) and J, integral theory
be used in the development of criteria for predicting growth inttianon time and cracn
speed.

5. Work input to the crack tip

An important quantity in crack growth analysis is the mechanical work available from the
viscoelastic continuum for producing the separation (or at least a significant change of
state) of material in the failure zone. This work, W;. will be defined using an idealized
model of the crack tip. and subscquently expressed in terms of the parameters J, and J, of
the reference elastic problem.

Consider as before a slender failure zone (in which a is large compared to the initial
thickness of the failure zone in the x, direction) and locally two-dimensional deformations
plus antiplane shearing. Befare discussing W, let us recall that J; for the elastic problem
was defined through a line integral taken along the instantaneous interface between the
continuum and failure zone. Furthermore, the surrounding material was assumed to ohey
(2). while no such restriction was imposed on the zone itself. For the present purposes of
discussion, let us suppose this zone consists of the thinnest material laver for which (%)
provides an adequate representation of the surrounding material. Figure 4 deprets the
deformed failure zone (in the opening mode for simplicity) using a sohd line to indicate
the interface.

For the viscoelasticity problem, the work per unit undeformed area (in the vy v,
plane) input by the continuum to a given material element (of width day) in the failure
zone from the time the crack tip arrives at the clement, 7. to the time the feft end of the
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- Figure 4. Deformed cross-section of crack in opening mode showing current mterface hetween the contiauum "
and all clements in the falure zone ( ——-=), and trajectory of the imerface for the element currentdy at the left 5
- edge of this zone (- -« - - - ). el
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- . . . . . .
.. The quantities 7 and Au, (i =1.2,3) are Piola stresses and relative displacements.
‘. respectively, along the interface, and therefore they have the same significance as their
e counterparts in J;, (9). Notice, however, that differentiation and integration in (47) is for a
fixed value of x,, whercas that in (9) is for a fixed time; thus. J, does not in general reflect
" the deformation of a given material element. As a result, quite apart from the distinction -
E between elastic and viscoelastic solutions, W} is believed to be a more basic parameter o
K than J, for defining material failure. e
- There is an additional important difference between M and J; as they have been o
introduced. Since ¥} is the work input to one material element, the continuum-failure
- 2

zone interface has to consist of the same continuum material points at £+ 0 as at £ = a.
The dashed line in Fig. 4 is intended to represent this interface. The height of the material ;
element at £ = 0 is indicated by &,.. which defines the thickness of the laver that ultimateh
becomes part of the failure zone: depending on the material behavior, the two interfaces R
may essentially coincide along a partial width or entire width 0 < £ < a, or may not .
coincide until £ = « (£ = 1,). Considering the analysis to follow, in which Aul and Ay, are .

t

-
_ to be related through CP-11, we should use the same material interface in the clastic and

™ viscoelastic problems; the outer interface (the dashed line in Fig. 4) may be used if the s
- undeformed value of A, is small enough to not invalidate (10). We shall assume that thivis ;"'_‘_
',-: indeud the case. . .
According to CP-11, the relative displacements in the clastic and viscoclastic problams i .::

satisfy (44) if the tractions acting on the elastic and viscoclastic continua are the same.
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(Recall that a traction potential @ was used in the boundary condittons of € P01 1of
(42)); but it is clearly sufficient to use the same tractions, regardless of whether ¢r not thes
are actually known or are expressed in terms of a potential.) Noting that stresses 7 and 7.#
are tractions along the continuum surface (apart from a sign change due to n,). we speaiiy
'r,“ =7, in order to be able 1o use (44) in the next section. Criteria for the time ¢, at which

crack growth initiates and for the speed of propagation a will be studied.
6. Analysis of crack growth
Initiation of growth

For initiation we consider a material element which is at the left end of the failure zone
§=a fromr= 0101, As the body is loaded (beginning at 1 = 0) the crack tip P moves 10
the right but the element at £ = a does not necessarily break immediately. Rather, it
breaks at r =1, the so-called initiation time. We are interested in expressing the w.rk
input to this end element in terms of the far-ficld parameter J,. In order to simplify the
analysis so that viscoelastic effects may be shown clearly, stresses in the material in the
failure zone will be idealized to those of a time-independent, rigid-plastic body: viz., we
assume the 7, are independent of ¢ and £. Thus, from (9). (44). and (47).

Jo=7AuR {48)
and
Wy=18u,=1{DdAu}} = {DdJ;) (491

where AuR and Aw,, are the relative displacements at £ = «. The last result together with
J, = Ji, (10), and the notation in (26b), yields an explicit formula for work input at ¢ = 1

dJ,
W,=ER£)"D(1,—7, I')d;d‘r. {30)

(See [12] for more general models of failure zone behavior.)

e This result is the crack tip work per unit undeformed area in terms of (wo
'.;'- continuum-related parameters, J, (which accounts for the geometry of B, and applicd
& loads) and D, the creep compliance of the continuum. The J_ integral is the same as J for
;:: an elastic material when expressed in terms of the surface tractions. Also. just as for an

ir

elastic material, if the failure zone size a is small compared to all other geometric features,
J, is essentially independent of failurc zone size and properties. Recall that F is a free
constant, and may be selected as desired. (Its value does not actually affect B because J,
turns out to be inversely proportional to Ep.) Thus, if the continuum is elastic with a
constant compliance D, we may use £, = D ' and obtain the familiar result W, =J .

An equation for predicting ¢, is obtained by introducing the work 2T, requured to fail the
clement at £ = a. Thus (50) becomes

2T = ( DdJ,). (51)

The factor of 2 is used because the “fracture initiation energy”, I, is defined like a surface
energy, counting the cross-sectional area of each side of the failed element at £ = a as one
unit of area. This energy is not necessarily a constant, even when the stress state of the
crack tip is the same for all conditions of interest; as the failure zone displacement history
may affect I'. Whether I is a given constant or depends on Aw,, (S1) 15 an implicit
equation for predicting ¢, in terms of the history of /. On the other hand. one vould use
(51) to obtain T, from tests of laboratory specimens by detemining the value of the nght
hand side of (51) when the crack starts to grow under various test conditions. including
different modes of crack tip deformation.
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Correspondence principles and a J integral for viscoelastic media 209

Finally, we observe that for the opening mode of crack tip deformation in a locally
isotropic, linear viscoelastic material in plane strain,

Jo=(1 = )K{/Eg (52)
where K is the stress intensity factor and v is the Poisson’s ratio. assumed constant. (This
familiar expression for linear materials may be derived from (9) and (10). for bounded
stresses, by using [5. Part I (15) and (22)] for K, and displacement.) Substitution of (52)

into (51) to express the initiation criterion in terms of K, vields the author's earlier result
for linear viscoelasticity {5, Part 11 (64)).

Cruch speed

Predictions of W, for the next case with @ > 0 is facilitated by using ¢ rather than 7 as the
independent variable. Thus, (47) becomes

. a Jdu,
"I=AT: (')g dg (53)

where du, = A, (x,. §). Equation (53) will be expressed in terms of J, for short-term
steady state conditions. Namely, the speed ¢ and failure zone length « are assumed to be
essentially independent of time during a generic time interval a /a for which the crack tip
moves a distance a; during this same interval it is further assumed that 7, and Auw, are
essentially independent of x, (aithough depending on &), a is small compared to the
distance to other geometric features, and that there is no significant change in D(r - 7. 1)
due to aging (through the second argument. ¢).

These conditions, together with the observation from (44) that Au, and du® are related
in the same way as for a linecar viscoelastic nonaging matenal, lead to the approximation
{5. Part I].

Su, = EoD(1. ) AuR (54,

where 7= k&/a. The factor k is a very weak function of slope n =2 3 log D /3 log 1. and is
practically 1/3 for the entire range of slopes (0 < 7 < 1) encountered in practice. Equation
(54) and the value of k stem from the smooth, cusp-shaped relative displacement duR(¢)
predicted for a lincar continuum (with bounded crack tip stresses). such as that tlustrated
in Fig. 2 for the opening displacement. Although further study of the accuracy of (54)
seems warranted for nonlinear continua, it is likely to be a good approximation in many
cases in view of the insensitivity of Aw, /&u® to the detailed behavior of AuR(£) [5. Pan
I}: indeed. (54) may not require a to be small or constant.

Substituting (54) into (53) and using the same type of approximation as in the lincar
theory [5. Part H), which does not require 7, to be spacewise constant, we find

. a Ak ‘ )
W= By DI, /)/ T,‘—ag"dg (55)
0

where

1, =kata. (56)
The integration and differentiation in (55) is for x; fixed. while that in (9) is for 7 fixed
(i.c.. fixed erack tip location): however, because An® and 7, are independent x, (or 1) for

short-term steady-state growth, these integrals are equal. Equation (55) thus reduces o

W, - E D(1,. 1)J,. (A
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210 R.A. Schapery

(10) we obtain an implicit equation for q.
20 = Eo.D(1,.1)J,. (58)

It should be recalled that the crack speed has been assumed constant for onls the generic
period a/q. Consequently, @ as well as the other relevant parameters may vary over much
longer periods without invalidating (58). Similar to the initiation problem. the linear
theory [5. Part I1] is recovered from (58) by using (52) for J, . Also. for a linear viscoelastic
material whose creep compliance obeys a power law in time. the factor & in (56) may be
expressed exactly in terms of Gamma functions if the stress in the failure zone is
spacewise constant [27, p. 118].

The failure zone may be viscoelastic, and therefore I could depend on a as well as other
local parameters. After allowing also for possible dependence of « on J, and a. for
proportional stressing (58) provides implicitly the functional relationship g = a(J, ). as
discussed in [12] and in the final subsection. The effect on @ of the geometry of the
undceformed body B, (in which crack lengths vary with time) and applied loads is entirely
accounted for by the instantaneous value of J,. In principle, a detailed model of the failure
zone could provide this function; but if the effect of fundamental material parameters is
not of concern, one would normally determine a(J, ) experimentally.

Effect of a process zone or interlayver on crack speed
Figure S shows a failure zone within a “process zone™ of length B, The latter zone is
introduced in part to account explicitly for the fact that with some materials, especially
plastics, there is a zone around the crack tip which has different viscoelastic properties
than the surrounding continuum [e.g.. 13]. Also, Fig. 5 can be interpreted as a model for
crack growth in an adhesive layer, in which the adjacent continuum represents the two
elastic or viscoelastic adherends. Besides these uses, we may consider the process zone to
be a failure zone as previously defined (but now with some limitations on its constitutive
properties), and thereby obtain detailed information on I" from the subsequent analysis,

For the class of damageable materials introduced in the Appendix. a pseudo strain
energy density @ exists for the response to both loading and unloading. Additionally. J, is
independent of path under many conditions. We shall assume one path-independent

PROCESS ZONE, b

) 5**/FA|LURE ZONE, a n-—%
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Figure §. Cross-section of crack in undeformed bady with crack tip P embedded in material Lavet (peoacess zoney
having deformation characten-tics different from surrounding continnum The fwlure zone s not necessindy
ventered

< .

LD
IRNEARAS w.s—i; \
A AR Y ¥

AL LS
]

[ S
LR "l‘

3 ""}
~
9

AT
AR
AN

=

e,

B 2
f
s %oty




.

g e
e e A e e e T O, ERrRA AN
AWV TR T WA T W % S VAL VT U AT I r_.-r)"uﬂ'}

Corvespondence principles and a J integral for viscoelustic meda 211

integral exists for the process zone, and another exists for the surrounding continuum. The
creep comphiances and @ for the two regions may be different, and therefore these
integrals are not necessarily equal.

Local two-dimensional deformations. appropriate to the use of (12) for lhc process
sone, are assumed. Furthermore, €. is now taken to be the dashed line in Fig. S, which is
adjacent 0 the continuum-process zone interface. Subscripts “a™ and “b"™ will be used
when necessary to distinguish between guantities for the failure zone and process zone.
respectively. A letter subscript will not be used with parameters of the continuum.

The process zone is assumed to be thin in the x, direction (relative to ) so that
arguments similar to those given previously for the failure zone may be emploved: this
slenderness greatly simplifies the analvsis while the essential physical features are retained.
Thus, (10) s used.

J o =Jg, {59)
where 3 is in (11) and (cf. Fig, 5).
I :f”f ﬁd"fidn (60)
o 0
Similarly. for the J integral in the process zone,
Jo =, (61)
where
g - {",}hﬁ‘!r_hdc (62)
Y

It is important to recognize that in using (59) (62) we are. in effect. neglecting the
contribution of the vertical segments at P and Q. Fig. 5. to the integral in (8) for cach
contour. The other simplification emploved is that the Piola stresses along the top
horizontal line of cach contour equal those along the bottom. The same simplifving
features are assumed to apply to J, when evaluated on Cp2 thus, (12) vields

g [ 2R I, (63)
- - + N
b ‘/:) T:h an dn

where [ is the integral along the vertical segment below point 1 and above peoint 2 in Fig.

This contribution is retatned even thoush the integral along the vertical path at Q
(within the process zoned s neglected The difference i< due to the value of @ at £ = ¢,
which may be very large as a result of damage in the process sone (ef. Appendiv). while
b, at =0 will be small if @u® dx s wmalls the contribution of the integral of
T, 0ul 7dx, on the vertical lines is considered to be negligible due to. for example.
smallness of FuR /3x | at g =0 and (T} at £ - a or the slenderness of the process cone.
Considering the fact that the vertical paths at Q in the process zone and the continuum
have been neglected and recalling conditions for which &= 0. we are. in effect, defining Q
to be close to or ahead of the leading edge of major softening processes and to straddle the
location where the creep compliance D and function @ (for the continuum) change to D,
and @, respectively (for the process zone). of course, if D= D, and ® = & the latter
constraint is not involved. The distance over which the change in functiens occurs should
be small compared to B or at least be such that the result of interest. (731 is not sensitive
1o the physical location selected or caleulated for Q.

Approximations like that in (534) will be used to evaluate the viscoelastic dl\pl wement.
Thus. for the continuum just outside the process zone,
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e'e’s’
L

the process zone just inside the continuum,

‘e ‘s
'

Au, = ExD (1, 0)AuR. 1, =km/a (65)

® v v

and the process zone just outside the failure zone,

B SELLARY AL AAMNS|
[and LN N NN
P

Au,, = ExD (1, )AuR. 1, =k t/a4. (66)
L

. In view of the local steady-state assumption implicit in these approximations. & = h: also,
b because Ey, and E are free constants, we have used £y, = Ej;.

Let us next relate J,,, to J,. This may be done by using the continuity of displacements
and normal and shearing stresses across the continuum-process zone interface: du = Au,,
and 7, =7,,. The first condition together with (64) and (65) yields

..'1 - .-.'. ..
e D(1,1 R
o Auf = —(—.—l—Auf{. (67) T
0 Dy(t,.1)
“:j. Substitute this result into (63), use the same type of approximation that lead from (53) to e

(55) (but now with the D-ratio in (67) entering in place of D in (54)), and then employ (39)
and (60). There results, finally. ;

S
D(; M l) o;"_-::
Jn= ko, (68) RO
Dh(’h/}* 1) ?‘.1-.
where ;.l_
;/fEkﬂ/a't-h[]EkhB/d (69) o8
p
and approximately & = k, = 1/3. Additionally (cf. Appendix), st
I =~ fa @ dy, (70) f‘-t
where the integral is taken upward along the vertical lines at £ = a; 1 the basis of the -
physical significance of ®, we have I, <0, where /, =0 when there is no damage in the _‘
process zone. It should be observed that we have neglected the contribution from the body £
force potential because of the slenderness of the process zone.
The work input to the failure zone is given by (57) after replacing D by D,. J; by J, c
(62), and then using (61) and (68), B
*
. D(1,. 1) -
W,=E.D(t . 1) ——J ~ | Ddx, (71) G
' Dy(tep 1) " -/ N
e
where AR
’-u":'k.na/d‘ kaz 1/3 (72) I‘:e“'
Equating W to the work required for rupture of an element of unit area in the fmlure -
zone, 21" we find the implicit equation for 4, L
2T, = EoD(i,.1)J, (73) Y
N
where e
P\J
- ar v

The quantity I‘h is the “fracture encrgy™ of the process zone; it is introduced v order to
write the crack speed relation, (73), in the same form as (58) for the failure zone alone: I,
consists of the failure zone energy I'. the work of damage (given by the integral in (74)),
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Correspondence principles and a J integral for viscoelastic media

and the “local” creep compliance D, in terms of two local times, 7, and 1-,1,,,.
As a result of damage in the process zone, the fracture energy I may be negligible (or.
equivalently, the failure zone may not exist). Equation (74) then reduces to

Zl‘h:ERDh(;hﬁ")/q)hdx: (75)

which is to be substituted into (73) to obtain the equation for b(=a). This result
corresponds to using J,,, = 0 in (68).
If W, in (71) is negative. i.e..

Dh(ih/!"‘)
J <———— | b, dx 7
D(14.1) f., ht2 t70)

there is insufficient mechanical work available to break material elements in the process
zone. In this case, the crack will not propagate or, at least. quasi-static steady-state
propagation cannot exist. Even if W, > 0. steady-state propagation may not exist when
(73) predicts dJ, /da <0. An examination of (73) indicates this situation is a physical
possibility without having to consider dependence of a, 8. I', and ®,, on 4. For exanmple.
suppose [®, =0, DE;=1 and that a. 8. and T arc independent of a. Also. lct
k =k, =k, so that f,, = fh,, = kB/a and 1, = ka/a. Equations (73) and (74) yield

2D, (1. 1)

—=J. (77)
Dh(“’/}/B- t)
It is helpful to express the derivative of J, using logarithms,
—ny+n,=dlogJ /dloga (78)
where
dlog D, (s.t .
and
dlog Dy(s.t -
n, = ;E-—L(j——l at s=at,/f (R0}

dlogs

are logarithmic stopes of the creep compliance curve (for a fixed age t) at a creep time of
s =ty and the shorter creep time s = af,/B. Por real matenials (n,. 1) 2 0. Also n < n of
s is sufficiently small: in this case, dJ/, /da < 0. For many materials #, > n,, 2 long cree
times s, and thus dJ /da > 0; the function J (&) is therefore predicted to have a
maximum at an intermediate crack speed.

Prediction of process and fuilure zone sizes

The lengths B and a which appear in the argument of creep compliance i the equations
for crack speed are not necessarily constant. In fact they are related through (59) and (61
respectively, to the J, integrals and to a measure of the stress in the two zones. In {12} it
was noted that for the failure zone alone the condition J, = J; leads to such a relationship,
which in turn reduces to that derived earlier for a small-scale fatlure sone in lincar
viscoelastic media using Barenblatt's condition for finite crack tip stresses [S. Part 1]
Equations (59) and (61) arc for slender zones, but B and a may be large and the material
may be nonlinear, viscoclastic, and anisotropic.

Mechanical state solutions. including zone size, were derived in [12] for o failure zone in
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a power law material. Here, we use the same approach to derive 8 and a. Consider. for
example, the use of (539) and the power faw potential (a so-called homogeneous funcuon of
degree M + 1),

Ar

l'D(zlff,) (81)

to obtain an expression for . The result is (¢f. derivation of (39) in {12]).

d)( ('uIR‘, ) =

S (82)

where oy, and o, have dimensions of stress and are independent of x,, but may vary with s,
a. ete they are introduced to express the interface stresses 7, and potential ¢ in terms of
dimensionless functions £ and &,

b =a,bd,,. (83)

Tz nh» I

Also. | |denotes absolute value and
1
1= [ (dg,/0:)(,d= (84)
()
where = = 5/8. and g, are dimensionless interface displacements.

. 1ML g R
g = sign(a,)]o, /0,0 Auk/B. (53

As in [12]. it can be shown that under certain conditions 7, is a constant (apart from
parameters which appear in @, such as M and aging time t). although lincar strain-
displacement relations were used previouslv, the form of the mechanical state solutions
and the conditions are unaffected by the magnitude of the strains if the power law, (81), 15
applicable. These conditions are: (i) the “shape factor™ for interface tractions is given as

Jfo=1(z0g) where z=g/B: (i) the continuum is locally homogeneous (e, @y, is

independent of «,. other than through di® /0y ): (it} the process zone size B is small
compared to the distance to geometric features outside of the zone: (iv) the crack faces are
locally traction free. apart from the interface tractions 7. Without further analvsis one
cannot quantify “local™ and sav how small 8 must he. However, it may be necessary for
there to be a neighborhood of the crack tip on the order of 10 100 1in which conditions
(i1)- (iv) are met. The process zone must be small enough that the remote stress field s
essentially the singular solution o ~ p Y'YV where ris the distance (in the vy - v,
plane) to the crack tip. Condition (iv) mayv be relaxed to allow for spacewise uniform
tractions on a lincar continuum and spacewise uniform normal tractions on an incony
pressible. nonlinear continuum: the extension is achieved through superposttion of «
uniform stress field. Also, if f, = f(z. ¢,  a.J.. a) in condition (1), then [y = [ (a.J

The analvsis in [12] is for the opening mode of crack tip deformation. However. the
form of the results is the same for other modes, including mixed-mode deformation. One
mas then argue by analogy that /, is constant under the same conditions as stated in {121f
proportional \trc.\\'ing existsy ke if the ratio of stresses in the remote singufar stress field
is independent of time, .

For uniaval stress oRostrain of, hehavior, (81) implies ¥~ 0l 0, B Y
V<o 1oa, muay be interpreted as a vield stresstif A Loa, s aomodulus, Fguation (82yin
trn provides the relation between o,. a measure of the intrinsic strengih of the process
sone o, and a measure of the external loading J, . If the process zone is also i power Law
material (in the neighborhood of the failure zone) with ponlimear exponent Mo sinnlar
analvsis vields
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Correspondence principles and a J integral for viscoclastic media 215
where the parameters are analogous to those in (82). . however. there is considerable
nonuniformly distributed damage surrounding the failure zone, it is not likely that a
power law nonlinearity with a single exponent Af will be a good representation.

J. as a characterizig parameter

Consider again a power law nonlinear material with a small scale process zone, in which
the damage and failure behavior of material elements is unaffected by stresses and
deformations prior to the arrival of the tip Q. Fig. 5. Further. assume J, and (= a) are
essentially constant during the time /4 required for the process zone to propagate its
length. The state of stress in the remote continuum whete the aforementioned singular
solution applies is determined solely by the current value of J, for propuortional stressing,
st as for an elastic material. This dependence implies J, is the only remove field
parameter which affects Au®: the process zone characterisues of coarse affect Au®. From
{64) we see that the same conclusion applies to the viscoelustic displacement, Au,. except
crack speed now appears. The damage and failure parameters a. 8. 1", and [®,, in (73) and
(74) may not be constant, but any variation will be due to J, and a (c.g. (82)). apart from
aging or environmental parameters such as the external temperature. (Local temperature
changes due to mechanical deformation are determined similarly by J, and 4.) Equation
(73) therefore serves to define the function @ = a(J, ), indicating that J_ is the “charactenz-
ing parameter” for crack speed. In principle. this function could be obtained experimen-
tallv through measurements of speed. However, by introducing specific models for
behavior of the process and failure zones, one could use (73) to relate crack speed to
material parameters as well as J,. Elementary examples are given in [12] for a failure zone
in a continuum obeying a power law with respect to both time (through the creep
compliance) and strain: the relation g ~ J* is derived. where &’ is a simple function of
both exponents which depends on characteristics of the failure zone. The assumption of an
“elastic-like™ failure zone for opening mode propagation (I" and 7, independent of speed)
was shown in [5, Part 111] to provide a function & =a(J,) which agreced well with
experimental data on a crosstinked rubber: in this study there was no process zone and the
continuum was linearly viscoelastic (¢f. (52)). See also {7.20.21] for linear behavior.

The J_ integral mav serve as the characterizing parameter for initiation time or crack
speed when some of the previously stated conditions (e.g. small-scale crack-tip zone) are
not met, depending on characteristics of the process and failure zones. An example was
given carlier for initiation time, (51). in which a was not restricted in size. However,
further experimental and theoretical studies are needed to establish the necessary condi-
trons.

7. Concluding remarks

Mcthods of quasi-static deformation and fracture analysis have been developed for
nonlincar viscoclastic media. The correspondence principles which provide the basis for
the analvsis are not limited to crack growth: they apply to crack closing and healing as
well as to other types of problems involving ablation and mterfacial contact and
separation. However, only crack growth examples are given.

Constitutive cquations
Nonlincar effects in Egn. (41) for stresses are characterized by a potential @ which s

analogous to strain energy densitye. This pseudao energy is expressed in terms of the historny
of displacement dervatives through Fygn. (23, rather than the history of Green's strains,
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and therefore material objectivity may not be satisfied when large deformations exist: ic..
depending on the deformation historv and material type. @ could be affected by rizid
rotations. Material objectivity can always be satisfied when linear strain-displacement
equations are applicable. In this case, one would express @ as a function of displicement
derivative history through the strain history [12].

A single hereditary integral, (23). is used in (41) to account for viscoelastic effects, and
therefore some details of the complex stress-deformation behavior of many materials mav
not be followed. However, the theory does contain general material-objective representa-
tions of the important cases of nonlinear elastic and viscous media under small or large
F deformations and the common type of linear viscoelastic material which is characterized
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by one independent relaxation or creep function. In certain problems of crack growth in
linear viscoelastic orthotropic materials. the several independent creep functions combine
- into just one function for predicting load-displacement response of the crack plane {8].
' This feature enables us to generalize (58) and (73) for crack tip work by simply replacing
D with this group of creep compliances.

For large deformations of viscous materials, the current geometry would be considered
the * undeformed” state B, in order to recover the classical constitutive equations [17): the
basic expression for relating crack tip and far-field behavior, (10), is not invalidated in this
case if the opening displacement Au, along the failure zone, Fig. 1, or process zone, Fig. 5.
1s small compared to the length a or B, respectively. On the other hand. this condition of a
slender crack-tip zone in the current geometry is not needed for an elastic material.

Asx discussed in other work [12.14]. the nonlinear viscoelastic constitutive equations
used here in the fracture theory may be written in the form of a special tvpe of a so-called
modified superposition principle employed successfully with polymers and metatls [e.g. 15,
19]. We have introduced effects of aging and microstructural changes (e.g. damage) in the
standard modified superposition principle. This “aging™ is not limited to independent
physical or chemical processes. and may be used to account for differences in nonlinear
behavior at short and long times and, as shown in the Appendix. to account for damage
characterized by Lebesgue norms of deformation-related parameters.

In view of these extensions of the standard single-integral representation for hereditary
behavior, and the important himiting cases contained in the theory (including specific
microcracking models and deformation theorv of plasticity with elastic unloading). it is
believed the constitutive equations are sufficiently general to account for the primary
features, if not all details of actual deformation behavior. of a wide variety of maternals.
Nevertheless, considerable additional study is needed to establish the range of validity of
the equations for different materials and conditions. For example, it would be interesting

,-:'T to determine for rubber the accuracy of the stress-deformation relation in (41), which is
. similar to the theory developed and successfully applied to rubber by Tschoegl and
an coworkers [22].

3 The “pseudo displacements™. u®. which appear in (41) and (43). are related to the
'~ physical displacements u, through the hereditary integral, (23). If the constitutive theory is
- valid for global response. the material behaves overall as an clastic body when loads or

t:: stresses are expressed in terms of pseudo displacements: as illustrated in [15), this type of

Sy behavior for nonaging materials with constant damage may be casily checked by convert-
v ing experimentally measured displacements to pseudo displacements through (23) and

i then examining measured load-pscudo displacement diagrams.
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Crack growth

Considering the complex states of deformation and damage around real crack tips,
indirect determmation of specific constitutive equations using specimens with stationarn
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and propagating cracks may be an important complement to studies of specimens under
homogeneous deformation histories. This determination would be aided by the simple
relation between elastic and viscoelastic displacements, (43), and the fact that (41) for
stresses, including the generalization in the Appendix, leads to relatively simple equations
for crack growth, (51), (58), and (73).

The quantity J, in these equations has a very simple meaning in certain cases. If
hereditary behavior of the entire continuum outside of the process and failure zones can
be represented by the one creep compliance D (or relaxation modulus E), the J, is the
same as the familiar J integral for nonlinear elastic materials and C* for viscous materials
when expressed in terms of externally applied loads (rather than displacements). The
pseudo potential energy P,, (18). is related similarly to the potential energy for elastic
media. If u, = u®, except possibly for a small neighborhood or crack tips, J, and — 3P, /34
are essentially the elastic J integral and energy release rate, respectively. The ratio
2L /Ex D from (58), or 2T", /Eg D, (73), then appears as the fracture energy for an elastic
material if J,= —9P_/dA; this “apparent fracture energy” may depend on crack speed
through D, I', or T',. For the rubber studied in (S, Part III], all effects of speed come
through the nonaging form of compliance, D= D(r,). For a viscous body, C* is
approximately three times the length-averaged power input per unit area to the failure
zone during short-term steady state propagation if we use 7, =1 in (30) [12]; it can be
shown that the factor is exactly three for a linear viscous material if the stress in the failure
zone is spacewise constant.

Direction of crack growth

Prediction of the direction of crack growth has not yet been discussed in this paper. Many
of the relationships hold whether or not the direction changes. but the problem is too
complex to treat here in any detail. We would only suggest a possible approach. Referring
to Fig. 3, suppose for purposes of discussion the local coordinate axis is fixed and various
relative orientations @ for the continuum are considered. The actual 8°s for init...tion and
continuation of growth may correspond to the predicted directions for which ¢, is a
minimum and ¢ is a maximum, respectively. These criteria automatically account for local
and global material anisotropy through the variation of values of the material and loading
parameters (such as I, a, and J, in (58)) with respect to 8. Also, these proposed criteria
reduce to the well-established one of maximum energy release rate for crack growth in an
elastic isotropic body. The equations for crack speed have been derived under the
simplifying condition of short-term steady state behavior; with crack tip reorientation it is
likely that the equations will remain valid if # is small in magnitude and essentially
constant for an amount of growth equal to the length « or 8 of the crack tip zone.

Crack tip models

Emphasis of the fracturc analysis in this paper has been on predicting the mechanical
work available at the crack tip for initiation and continuation of growth. The right-hand
side of (58) and (73) is this work at the failure zone {without a process zone) and process
zone edges. respectively. By assuming the theory in the Appendix is valid for the process
zone, we have obtained some information on how the creep compliance Dy, and pseudo
energy ®,, of the process zone affect the required work 217, {74). Viscoelastic behavior of
the embedded failure zone in Fig. S is reflected in the value of I'. and it may be different
from that of the process zone and continuum. Because the process zone is slender, we were
able 1o obtain a relatively simple relationship, (68), between its J, integral. J,,.. and J_ for
the surrounding continuum (or the adherends. in the case the process zone is actually a
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thin adhesive interlayer). Also, it should be observed that (71) for available work allows
for distributed damage outside the process zone as long as the theory in the Appendix
applies. This feature is important for many materials, especially composites.

With the dual crack tip zones, Fig. 5. one can account for a distinet, complex material
separation zone («) within a relatively well-defined layer of damaged material (). This
geometry may be a realistic model of the delamination tip region in fibrous composites
with rubber-toughened matrices [23. Fig. 3] and a cracked craze laver in plastics. As a
special case the failure zone could be omitted; one may interpret this situation as the
original one in which only a failurc zone exists. (58). but with an explicit viscoelastic
representation for the fracture energy. As shown in {5, Part 1] this energy for rubber may
be independent of crack speed. When this is true, the molecular theory for fracture energy
of rubber in its elastic range [2] serves to relate Iy, to molecular parameters, and (73)
brings in the only viscoelastic effects through D; the notch-tip diameter (= 50 A) used in
[2] is to be assoctated with the process zone height in the undeformed state.

It is believed the theory in this paper will be helpful in developing detailed crach up
models which relate growth behavior directly to tocal physical, chemical, and mechanical
processes: a possible general approach would consist of using the available crack tip work,
(71), in a local nonequilibrium thermodynamic formulation for the process and fuaiture
zones. Much of the published work on crack tip models employs the classical singular
solutions for the local mechanical state. However, whether propagation is continuous or
occurs in steps [e.g. 24, 25), use of continuum mechanics and thermodynamics with
bounded stresses should lead to more direct relationships between basic material parame-
ters and crack growth, as illustrated here.
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Appendix
Effect of nme - varving mucrostrucrural changes

Certain important inclastic effects, besides those represented by the creep compliance. can be taken into account
m the ) antegral theory. These additional effects are associated with “distributed damage™ or, what mav be a
better term. " microstructural changes™. Special cases are microcracking. dislocation motion and generation, hole
growth, and breaking of entanglement points along polymer chains. Here, we propose a theory of inelastic
behavior, allowing for large deformations. The formulation is in terms of the reference problem. which (s the
reference elastic problem with damage: the viscoelastic variables are still related to those for the reference

problem through (27) and (28). For lack of a better short name. we are uvng “damage™ when referring to
changes m the mucrostructure or fabric of a material. However, the specific “damaging process” does not have to
be identified heres it could include healing tdecrease tn damage) as well as other changes which are beneficial to
structural performance.

Comntutire theory

18 assumed on physical grounds that a strain energy potential evists when the damage is constant (for instance,
during unloading without siemflicant interfacial friction following development of microcracking in a composite
or following plastic deformation in . metal). Denoting this potential by @ Cfor reasons to be given we assame it
has the form

A
b 'l'“(uk_\k.{]' 2_:4'”(/;,

|

TRYEEA R (AN

The n® enter D through the functons 7 F N,R, boas aspectal casec Foniny be aostraim v g stnarm ansarat
We furdcher assame that ol of the Tuncuons are smooth enough 1o peramt the sarnos mathematical operatens
which are performed The B°s may depend on oy, and o as indicated bot this aterial nonhomogenenty and agming
will not be exphicitly shown i subsequent work unless needed for chntv Al throushout the Appendin
summation over 2 s net mtended unless Loas used

By detrtion. ol quantnies £ eshich will be called dumage pooamerersy are ¢onstant dunng a censtant
damage process. In the case £3) and (A1) viekd the Prola stresses,

i:Y

A )
R0 B

By further definition, the only other provess which can occur s called o damagmy process and is sach tha
} £ tor all parameters £ at the end of this Appendic a simple generalization swill be made m which

r.
dlcn\.nnc»_ and theretfore £A 2y defines the stresses with constant or varsing damage

Thie termulation for constant damage may be visualized very casly by conadering a0 vl vress
Al al st e Al ) cquation watten i the form o - fCe. o) for unloading from a masimun <toin
e, The first-tme loadmg cunve sith Changaing damage is o0 = (e o) where e e both the mavimum stran

. af
np'. . (A
4 ‘ “u )

# 1 for some of the damage parameters, T assumed that the stresses are continuous in the displacement

and the current st A pemt on the stressstraim cunve for loadimg o feoep dlve an end potnt on an

unloading or relowdmye cunve o e e Y ate Ce e
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s A potential ©° exists during a damaging process, where :\
L] R_ sl R e
q .- ol =30P/3(ul,) (A3) K
N because .
3ok /3(ul ) =30k /3(uR)). (A4) LV,,‘
P . . . - . . . N
. Equation (A .4) is easily verified for the stresses in (A.2): in evaluating the derivatives of stress, one must first set 'y -'J‘
. F,, = F, and then diffcrentiate both arguments of each ®,. It can also be shown that if at least cne of the t"c:'~:
- functions @, were to depend on more than one damage parameter. (A.4) would not necessarily hold. In order to ,":'.‘r:'.
- fully define the stresses by (3) in Section 2, we write ® = ®< when the damage is constant, ® = ®° for a r_:.' h)
. damaging process, and ® = &€ = ¢D at the transition between the two types of processes. l"._»'._!
As an aid in constructing @2 (rom (A.2) and (A.3) and the transition continuity condition, and in providing a
: physical interpretation of this damage theory, let us rewrite &€ in a different but equally general form.
i Specifically, eliminate @, (n =1....,N) from (A.1) in favor of new functions P, and h,,. where
-, F..
N &, = P(F.E)+ [ "h(E)4F, (A %)
X (i
- and
* P(F, F)=0. (A6)
Notice that (A.6) implies P,(F,,, F.,) =0, and thus the integral in (A.5) is equal to ®, at the transition point.
F, = F,,. The potential for the constant damage process may be written in the form,
N
=0+ Y P(F.F,) (A7)
n=1
where
LA
o P =0, + “*h,( F,)dF,.
% P=0+ T [ ha(F)E, (A8)
o
o The stresses for constant damage are
- a_ 9% N ap, OF, (A9)
. 0, =—F—- o . .
a(“:‘-}) ne=l 3F, a(“ﬁl)
- Requirements of stress and potential continuity at the transition point, F, = F,,, together with (A.3), vield for the .
= damaging process,
. o
- o=+ L [T, (F)AE, (A.10)
2 ne10
& and
- N
E L ar,
ofm—2t Y b (B2 (A1)
.- a(“'-/) nel a("'-/)
where
= h,(F)=3P,(F, F,6)/3F, when E, =F, (AA2)
Observe that 0 = O at F, = F,,. Equations (A 6)-(A.12) constitute the damage theory which will be used in
. the remainder of the Appendix. In using (3) in Section 2 with the damage theory, it should be kept in mind that
- ® = & for constant damage, ® = ®™ for a damaging process, and that stresses are given explicitly hv (A.9) and
- (A1)
G Let us next consider the relationship of ®® and ¢ to mechanical work and dissipation. Without body forces,
"'- the mechanical work input per unit initial volume ior the reference problem in any given time inten adr sty
. 15
WR(1,.1,) = ["[oRa(uR,)/01]ar (A13)
- t
" .
:': which may be readily established by means of the divergence theorem. Take 7, =0 and assume the material 1s
-:' initially in its undeformed state (u,'_‘, = 0) and that it does not age during the period 0 10 7, (i.e. & depends on

time only through u,’f, ). Without loss in physical generality, we may sct &, = ®0 ~ 0 at + ~ 0 Consider next an
arbitrary number of intervals of damaging and constant damage processes, starting with a damaging process

l.b
-t




,,.

" -.. .

et
W et
)

% -.'ﬁ..:'"

- v v « L 4
H ’l- a’. JI.JH';

1

Correspondence principles and a J integral for viscoelastic media 22] 'ﬁ-

&
Substituting (3) into (A.13) and using continuity in ® at the transition point between each process, :‘_':‘;4
WR(0.1,) = 9°(s,) (A14) "'::j
when ¢, falls within a damaging process, and !
Wa(0.1,) = (1) (A15)

when ¢,, falls within a constant damage process. Thus, for nonaging elastic materials with damage, ¢ and ¢
have a very simple physical meaning. Notice that if o,IR(lb) =0 for a period of time during a constant damage
process, (A.9) gives implicitly the residual values of u,'fj. During this period one can think of ® as the mechanical
work “dissipated™ due to damage (in the sense that it is the net work input for one or more cycles of loading and
unloading). If healing occurs during *damaging processes”, the work input could be negative. For uniaxial e
stress-strain behavior, one may view ®P(r,) as the area under a tensile stress-strain curve for loading. and '
(1, as this area less :hat under the curve for unloading.

Pursuing further the physical significance of the damage theory, we find that a special microcracking casc in
[14. (154]) may be obtained from the present theory by settirg
ofi=0, N=l. F,=F, ®=F,

Py= = g(F)(F = Fu). 2(0) =0. (A16)

The damage parameter F, is the maximum value of F}, considering the entire deformation history up to the
current time. Equation (A.12) yields h( F) = — g( F}). Also, we find

N ~ Fm . -
¢ -—-[l—g(lf,,.)][rl-r,“]+f0 [1-g(F))4F, (A17)
and
¥ , .
¢"=/ Tr-s(#)}arr. (A18)
0
The stresses for a constant damage process are "
LN
- .
o, = [1- g(F)]3F, /3(uR,)). (A.19) :::3
-
For a damaging process set £, = F, in (A.19). The function g({ F}) reflects the softening effect of microcracks: for :.\:,.‘
no damage g = 0. and for complete damage (uniform failure) g = 1. Observe from (A.19) that F| is the pseudo .-::.A
strain energy density for an undamaged material. It should also be added that g may vanish over an F, range. ol
0 € F; < Fp,. say. In this case, the “damaging process” would not actually produce damage until th ~ erergy Fpy ie L_j
exceeded. According to (A.17) and (A.18), @¢ = &P = F, for 0 < F, < Fp. as expected. ’ L
A damage parameter which is more genera) than F,, appears in [14,15). It is derived from viscoelastic crack -

growth theory, and may be written in the form of a so-called Lebesgue norm,

{ Lp
L,= “)F{’dl] . (A.20)
If p = o2, (A.20) reduces to L, = Fy,; this case leads to the previous theory, (A.17)-(A.19). Or the other hand. if

p is not infinite but is at least moderately large ( p = 4), and if the deformation history over a period 0 < 71 <1, s
one in which F = F;, then [15].

L, =AFsr (A21)
where A is essentially constant. If (A.21) applies up to t =1, . and Fy < F_ for 1 > 1. then S
: e
L,=AE0," (A-22) F o
at least for a limited period of time beyond r,,,. The damage model for which (A.21) and (A.22) apply may he :'"‘
used to gencralize (A.17)-(A.19): viz., replace g(F,) with g( l-‘ml},{") and g(F)) with g( Fit' 7). Hence, ,-:_.‘
microcracking for which p is finite leads to an “aging” elastic material with damage. :._-:
e
The J, integral :\f
gt
By dividing the continuum into regions of varving damage (1.c. where a damaging process exists) and constant —
- » .
damage. we may casily extend the theory 1n the body of the paper to allow for damage if the displacement field is )
sufficiently smooth. in effcct, the material may be treated as nonhomogeneous whether the nonhomogenenty s -_:.-‘
intrinsic of s due to damage. As justification for this extension, consider first the integral &, (8). We tall allow .'._-_‘
for explicit dependence on x,, x,. and 7 in the potentials @, and £, n (A7) and (A 8) (besides dependence on _-.:_
u® ); but dependence on ;. erther explicitly or in £, ts excluded. ._:,
a”a
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At any given time, let § = 8§ enclose a regron of the bods undergomg a constant damage process Clearks
4 = 01f ®¢ is used for &. M, for example. we were to use @' from the speaial microcraching mode! (A 170, 1
would be necessary for the maximum energy £, to be iadependent of v although £
(distance from the local crack plane) and x,. Now_ let § = Sy, enclose an adjacent region undergoing s damaging
process. Here, F,, = F,. and thus & = 0 if " 15 used for ®. exen though £, may vany with 1. thas dependence is
through F, = F,(uR ) and therefore it causes no problem. Next, take § = 8 + 8§, and consider the interface
where S, and Sy, are adjoining surfaces. The contribution to & along the interface from hoth S and Sy, vanichesif
duf/0x,. O and @, are continuous across the mterface: this follows from the fact that n, and T are
continuous in magnitude at the interface but have opposite wigns on S, and §;,. Consequentls if the transinon
between a damaging process and a constant damage process s sufficiently smooth (R) and (1) hold. and
surface-independence of J,. (11). and path independence of J . (12). exist: as an obvious generalization. § mas
surround an arbitrary number of connected zones with both tvpes of processes

It is important to recall that 3F, /31, = 0 is required in each constant damage process zone For example,

vould vary with +,

suppose the body s loaded and a damaging process zone with nonuniform damage s produced Upon partial
unloading, this zone may become a constant (with respect to ume) damage process zone. but 4F  dy and
therefore & for this zone would not in general vanish

As an illustration of the use of this theory, consider the crack gromth problem of Fig S treated in the hody of
the paper. Locally steady-state crack propagation is assumed. We suppose that a given matenial element in the
process zone b undergoes a dumaging process as the crack up P approaches at, which changes to a constant
damage process by the time the left end of the fatlure zone. £ = a, arnives. Now, by definition, the seady-state
condition is one in which each element in the constant damage part of the process zone has damage parameters
which are independent of ;! e.g.. for the simple microcracking model aF,, /dx, = 0. Path independence in the
process zone b then permits us to evaluate J;, from J,,, (cf. (61)) using the contour C; in Fig. S The resuit for J
is in (68), where /_ is the line integral of — @, at £ = a. (70). The potential &, s actually @} if a constant
damage process exists at § = a above and below the fuilure 7one. [n view of (A 15). the integral. - 718 the net
work input to the process zone per unit volume integrated from the bottom to the top of the process zone If
there is no damage in the process zone (P, = 0) and the pscudo strain energy density vanishes at § - a. then
1, = 0. However, dissipation would still exist for a viscoelastic materialz it is reflected in the speed dependent
creep compliances which appear in (71).

Energy release rate

Equation (17) applies with damage, even if the homogeneity condition in x; needed for J, is not satisfied. This
gencralization may be shown by retracing the proof without damage. but using < and @ for ® where
appropriate. Only the virtual work (13) needs to be examined as the subsequent steps. (14)-(16). are unaflfected.
Self-similar, virtual crack advancement is imposed through application of appropriate surface tractions to derive
(17), even though in an actual crack growth process this type of advancement may not occur.

The validity of (13) may be established using the same procedure as for (8) with damage. Namels, divide the
body 1nto constant damage and damaging process regions. Inasmuch as a change in the displacement field occurs
due to 84, thin layers of thickness on the order of 8a have to be excluded: these are the layers in which the tvpe
of process changes during the crack advancement. However, if @ and 8w, are continuous in « . the work and
pseudo strain energy associated with these layers is of order (8a)°. i.e. thickness x 8u,. and thus the lavers d¢
not affect the result in the limit 8¢ — 0; other contnibutions to (13), including 8W'R in (16). are of order Sa.

Generalization of the damage model
8

So far we have considered only the case in which the potential for constant damage is given by (A T and all of
the damage parameters sausfv E, = F, or clse all are constant. The model may be easily generalized by adding
one or more similar groups of terms to ®@¢, with cach group possibly representing a different physical
mechanism. The regions of constant and varving damage for one group need not be at the came locations as
these for another group.

A constant damage potential which has a direct effect on residual stresses due to damage 1~

ao, -
o =, +(uR - ul) = (A2}
A’

where @, — ‘D,(u,kl) and the subsenipt ¢ indicates that «®, 15 constant duning a constant damage provess The

stresses corresponding to this potential are constant,

[ ad )
"”g(»'-;«), ‘A\’
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L For a damaging process uf, = R, and a potential exists whose value is ® = &, (u®, ). the associated stresses
- S are given by (A.24), but without the subscript ¢. These potentials may be added to (A.7) and (A.10) to generalize
X . the damage theory. More than one potential @, may be used. with each depending on different combinations of
the displacement derivatives. As one example, we obtain the Hencky deformation theory (26} with linear elastic
: - unloading if (A.23) is added to only ®,. where @, is taken as the strain energy density for an isotropic linear
xi ‘ o elastic material, we use 4R = u, and linear strain-displacement equations, and assume @, depends on displace-
~ ment derivatives through the so-called effective strain invariant: for loading in a plastic state, ®P = @, + ®,.
L. Addition of (A.23) and @, to potentials for the special microcracking model, (A.17) and (A.1R) respectivelw.
. enables one o account for an effect of microcracking on residual stresses.
. The results in the Appendix concerning the interpretation of @ and ®¢ as mechanical work, (A.14) and
- (A.15), as well as the J, integral and encrgy release rate, are valid with these extensions of the damage model
However, cach group in the total potential @ has to be considered separately since. at any given ume and
location, some mayv be for damaging processes and others for constant damage processes.
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N On développe des méthodes d'analvse des déformations et de rupture quasi statiques pour une classe de mileux
(o . visco-&lastiques non linéaires et on itlustre des applications types de ces méthodes. Le choix de la classe est dicté

S par le comporiement rhéologique réel de matériaux monolitiques ou composites. ainsi que par la nécessité de
> s simplifier Mapproche pour comprendre 1'effet des paramétres de base du matériau et du continuum sur leur
comportement vis-a-vis de la croissance de la fissure. On discute en premier licu la pertinence des théories de
I'intégrale J et du taux de refaxation d'énergie. dans le cas de milieux élastiques non linéaires. On établit ensuite
- des équations visco-élastiques non linéaires et on développe les principes de correspondance qui permettent de
mettre en place une relation simple entre les état mécaniques correspondant 3 des milicux élastiques et a des

N nulieux visco-élastiques.
On tire des principes unc base pour étendre la théorie de I'intégrale J & la croissance de fissures dans les
matériaus visco-élastiques. L'accent est placé sur la prédiction du travail mécanique susceptible d'amorcer et

o dentretenir la croissance d'une fissure & Uextrémité de celle-ci. Quelques exemples montrent comment le
-:' comportement i la croissance est influencé par les propriétés visco-élastiques et par intégrale J.

'\-: L'¢tude couvre le cas d'une fissure dans une couche mince présentant des propriétés visco-élastiques
t. distinctes de celles du substrat. En annexe, on présente une théoric apparemment originale sur les matériaux

. élastiques et visco-Slastiques comportant des microstructures évolutives et on indique les conditions selon
iesquetles la théorie de 1a rupture discutée dans le mémoire est applicable.
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DEFORMATION AND FRACTURE CHARACTERIZATION
OF INELASTIC NONLINEAR MATERIALS
USING POTENTIALS®
by
R.A. Schapery
Departssnt of Civil Engineering
Tenas ASM Univereity, College Station, Taxas 77843

Many important resulte on the deformation and fracture
of linear and noslinear slastic materisle have been obtained
by using strain energy potemtisle to characterise materisl
response. Desides serving as the basie for powerful methods
of exact and approximate structural analysie, local and
globsl strain energy functions have been used in the predic-~
tion of effective constitutive propsrtiss (or their upper
aod lower bdounds) of multiphase wedia {n terms of properties
and geometry of the phases; included are studies of the
eoffect of constant damage, 1o the form of emsll distridbuted
cracks and voids, on the global strese-strain behavior of
sooolithic sod composite materisis [e.3., 1,2).

Strain energy concepte sre used widely in fracture
mechanics [3]. Por elastic saterisls, the mechsnical work
available at a crack tip for producing crack growth ie
equal to the decrease in potential energy (consisting of
global strain energy and the boundary work potentisl), and
this relationship hae resulted {n remarksdly successful in-
vestigations of fracture of rubber in its nonlinear range
of behavior [4], as well as linear elastic materfals.

In this talk we discuss inelastic behavior, and con-
sider the question of whether or not potentials which are
snalogous to strain energy may be used to characterize de-
formation and fracture. The ideas are illustrated using
dats on polymeric composite materials. First, elastic
materials, but with timewise conetant and changing die-
tributed "microdamage™, are di d. Then viscoelastic
behavior and macrocrack growth are considered briefly.

Theory: The concept of a potentisl for elastic
saterisls with damage may be introduced through the uniaxial
stress-strain curve in Fig. 1. Let us suppose that a pre-
viously undsmaged specimen is strsined monotonically until
the strain is ¢_. The strain is then reduced, as shown in
Fig. 1. Assuming that the ber is elastic and has constant
damage during the unlosding period, with streess oU, and that
the saximum strain ¢, serves to define the amount and effect
of demsge, ve may wvrite

N (N . w

The maximum strain at say time equals the current strsin on
the loading curve, and thus

ot = f(c,0) (2)
The mechanical work (per unit initisl volume) during losding
to an arbitrary strain e
[ €
oot sy ot ac = [ 1(c, e 3
vhere the prime denotes s dusmmy varisble of integration.

The net work isput to the sample at sny time during unload-
ing 1s the shaded arees in Fig. 1,

[ 4
W Ve £ otiey ¢ L ¥ ac-

o e + 11t ey ac *
‘a

Observe that during loading and unlosding, respectively,
ok = aolrae, oY = 20V/3c ()

It 10 convenient to let ¢ denote & quantity which equals
oL during losding (g, = ¢) and equale oV during unlosding
(u:.). Then, we say write for both losding and ualoading

*Sponsored by the Alr Force Office of Scientific Reeearch

Texas A&M University
Mechanics & Materials Center
Report MM 5034-85-8

May, 1985

procesess,
o= 30/ (6)

and therefore the quantity ¢ fs & "work potentisl” which be-
comes the ususl strsin energy density when the loeding and
unloading curves are identical. Obviously, a work potentisl
¢ can alvays be constructed, given the uniaxial stress-strain
curves, Eqs. (1) and (2).

For characterization of the sultiaxial strese-etrain
behavior, or for other response functions which depend on
more than ons independent imput, & work potentisl does not
necessarily exist. However, that it can be axpected to
axiet for some reslistic situstions will be diecussed here.
For purposes of generality, let us use as independent in-
puts the generalized displacements 9y (3=1,2,...3). The re-
sponsss are the generalized forces Qj. which are defined a
the normal vay by the condition that,” for sach 3,

o= Q,qu (¢))
vhere &V {3 the virtusl work input associsted vith the
virtual displacement dq’. Suppose, for example, ve let each
q, repr an indep P t of a sultably defined
tﬁrn-dhcnuml strain tensor snd let &W be virtusl work
per unit initial volume. Then, J=6 and Eq. (7) tmplies the
set Q, repr s the P s of a stress tensor (for
large or small stratns). In order to chsracterize the be-
havior of laminates, one may want to identify the set q
with the aiddle surface curvatures and strains. In :M.;
case, the Q4 would correspond to moments and in-plane forces
per unit length.

As in the uniaxial example, we assume that wvhen the
damage is constant the body (waterial element, test speci-
aen, or complete structure) ies elastic {n the ueusl sense,
i.e., & strain energy function or work potential 9C exists
with the property that

Q= ao‘/aqj (8)
(Rather than using the terms “loading” and "unloadtog” we
shall instead nov refer to "damaging processes” and “con-
stant damage processes”, since we do not want to {mply
that the damage 1s alvays constant vhen the magnitude of
one or more loads or displacements decreases with time.)
The effect of damage on Q, is aseumed to be fully repre-~
sented by 2 set of paramelers Fen (n*l,2,....N). Following
the arguments in {5) it can be shown that s work potential
¢ exists during- damaging processes such that

q - ao"/:qj )

where o0 (s a function of only the current values of qj. 1f
¢€ has the form, y

c

EENCRE ui_ll O (FLFLD Q0
where ¢_ 1s the work potential without damage. The functions
Fn=Fn(q,) are to be selected such that F .= F, during
damaging’processes. (To recover the uniaxial case, Eqs. (1)
and (2), ve set N1 and take F eq =¢c, F_*c.). It should
be noted that "internal varied u“ are fbt ubed in this
theory. Of course, one could think of the set Fe 08 "in-
ternal parameters” which are constant during constant damage
processes and vhich vary ia such & vay that F., = F  for
damaging processes. For leminates, an F, may E. an invariant
of ply (or ply-pair) strains, vhere the summation fn Eq. (10)
would extend over all plies.

Generalizatione of this formulation are discussed in
[5]. For exaaple, at any given time some of the terms ¢
in Eq. (10) may be for constant demage procesees vhile others
are for damaging processes. Also, the potentisls mey depend
explicitly on time, and thue provide for effects of aging or
changing physical envirorments. (The theory in [5], which
sllove for large deformations, uses displacement gradients
and Piola stresses instead of generalited displacements and

This research summary was prepared for publication in Polymer Preprints for the

International Symposium on Non-Linear Deformation, Fracture and Fatigue of Polymeric
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. actually occuring values.

forces. However, the earlier formulation, including its ex-
cension to viscoelastic behavior, carrys over fully in cerms
of the gensralized variables used here.) Thus, as ia Eq.
(6), we may write

Qj - ao/aqj (11)

even if the damsge parsmeters in some components 9, are con~
stant and others are varying in time. Also,

aqilaqj - aqj/aqi -0 (1,3 = 1,2,...0) (12)

except at the points of change from one process to another,
considering all'?,. The derivacives in Eq. (12) are, in
general, discontibuous at these rransition points (¢f. Fig.
1) and thus Eq. (12) does not apply there; ve assume, how-
ever, that the derivatives are continuous functions of dis-
placemants at all other points. Evidence of transition
points may appear in experimental data as non-zero values
of chis difference of derivatives (for i¥j) over short time
intervais.

It is not necessary for the constant-damage potential
to have the form in Eq. (10) for the work potential in Eq.
(11) to exist. For example, a different form for ** was
given in [5] which contains the deformation theory of plas-
ticity (with elastic unloading). We may extend the present
model to account explicitly for stable micro- or macrocrack
growth. (Certain microcrack effects are at least {mplicitly
contained in the 9 discussed so far.) An important extension
is obtained by adding a term which is equal to the mechani-
cal energy required at crack tips to extend any micro- or
macrocracks not already accounted for in 9, For example, 1if
the energy required per unit of surface area A (projected
onto the local crack plane) were constant, with value [, then
one would add the "fracture potential” TA to ¢ to obtain the
total potential. Without assuming the fracture energy [ 1is
coustant or i{s the same for all cracks, let us suppose a
fracture potential 9¢ = 9¢(Ay,t) exists, where Ay
(k®1l,2,...K) represencts the sec of all (oriencted) crack sur-
face areas needed to define the effect of all cracks not
accounted for in 9; time t is shown to indicate that the
required crack-cip work may be affected by material aging,
fatigue, transieat temperuture, etc. The total potencial

is ?

Yoo+ [§%)]
where ¢ is chat im Eq. (11). The mechanical work available
ac the edge of che kth crack area Ay is -BOIGAR. where
ded(q,,A, ), whether or not the damage paramecers Fen vary

{5, p+222]. Thus, for stable quasi-static crack growth or
no growth, respectively,

305/35.‘ - -QO/BA.k or 34./3A > -30/3A (14)

The first relationship is a set of equations for finding all
of the corresponding A, as functions of ay- Using both cases
in Eq. (l4), it is ru}uy shown that

Qj L] ao,/aqj (15)
with constant crack areas, and with growing cracks when the
derivatives aAk/qu exisc. All A, for microcracks which
are uniquely determined as functions of q, by the first ex-
pression in Eq. (l4) may be interpreted d damage parameterse
and thus included (possibly as functions of Ay) in the set
fens the fracture energy of these Ay would not be contained
in 9. When multiple solutions for growing Ay exist, the
dupin-cn: history is needed to de able to predicet the
For this case and for macrocracks
one could not include A (or functions of A.k) in the Fcn‘

Experimental Studies: Farris [6] showed, in effect,
that a particle~filled rubber, with void growth, under axial
stress and confining pressure obeyed Eq. (12) (with q, = ¢,
qa © dilatation) for constant axial strain rates. Thus, at
least in a limited study, the work potential with damage
growth wvas established, Strain-history effects due to vis-
coeiasticity and damage have been taken into saccount in
@ore recent work [7]. We are presently studying the valid-
ity of che elsstic and viscoelastic theory with damage for

graphite/epoxy tube and plate specimens. In some cases
there is a very significant nonlinear effect of axial strain
on shear behavior, as illustrated in Fig. 2. Specimen fail~
ure often occurs by delamination, and this type of macro-
crack is being analyzed using Eq. (14). Recent findings
from this investigation will be described.
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Figure 1. Uniaxial stress-strain curve for elastic material
with increasing damage during loading (aL) and
constant damage during unloading (oU).
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Figurs 2. Shear stress-strain curves with changing axial

strain ¢, from axial-torsion tests of flat rec-
tangular laminates of fiber-reinforced resin.
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MATRIX CONTROLLED DEFORMATION AND
FRACTURE ANALYSIS OF FIBROUS COMPOSITES*

R.A. Schapery
with Graduate Students
J.R. Weatherby
R.D. Tonda

Mechanics & Materials Center
Texas A&M University
College Station, TX 77843

ABSTRACT

Methods of quasi-static deformation and fracture analysis have been developed for
nonlinear elastic, viscous, and viscoelastic materials with distributed damage [1]. The
crack growth theory, which uses a generalized J integral that allows for viscoelasticity
and distributed microscale damage, is not much more involved than that of nonlinear
elasticity or special cases of linear viscoelasticity. This simplicity, compared to
what one may expect, is a direct result of the particular type of constitutive equations
and mechanical variables selected to characterize rheological behavior. Considering
elastic materials with distributed damage, for example, the constitutive theory is ex-
pressed in terms of one strain energy-like potential for loading and another for unlocad-
ing. The research activity is presently in the early stages of an investigation of the
applicability of the theory to deformation and fracture of fiber-reinforced plastics.

It is anticipated that additional information on its applicability will come from other
AFOSR-sponsored projects at Texas A&M under the direction of Professors Allen, Bradley,
Kinra, and Weitsman.

In this presentation we illustrate some features of the theory for elastic compos-
ite materials with damage and discuss current research activities. One important ques-
tion is concerned with whether or not strain energy-like potentials actually exist; it
has been addressed theoretically in [1] with encouraging results. Some examples of real
nonlinear material behavior which can be characterized in this manner are given in this
presentation, and then our experimental program to study this question for nonlinear be-
havior of unidirectional laminates is described. Another portion of the work is con-
cerned with application of the theory to fracture characterization and analysis,
assuming the requisite potentials exist. 1In this case the finite element methcd is
being used to predict crack initiation and growth in materials with large-scale dis=-
tributed damage, first for initially isotropic and homogeneous media and then for com-
posites (i.,e., delamination initiation and growth). A few years ago we employed linear
elastic fracture mechanics in an investigation of the fracture behavior of a randomly
oriented glass fiber reinforced plastic, SMC-R50 [2]. The data on this nonlinear mate-
rial are reinterpreted here using J integral theory in order to further illustrate its
use. Application of J integral theory to delamination growth when large-scale distrib-
uted damage exists is under study on Professor Bradley's project.
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CONSTITUTIVE THEORY USING POTENTIALS FOR MATERIALS VWITH DAMAGE

N OU\ // /,/ Uniaxial Loading Unloading 5
RN Ry L _ _ as U_ _3%
:-‘ vd ’ / // ag = f(C,E) = —ds [o] -f(el emax) —a—e-

.- e Multiaxial Loading Unloading

R A € ok, = ae%/ae oY, = 20Y/3¢, .
i/ /) [ o "max ij ij ij ij
/7

u; >

i €

e FEATURES
T ® CONVENIENT FORMULATION FOR FRACTURE APPLICATIONS

max

.'“ & DAMAGE PARAMETERS (E.G. € } ARE EXPRESSED IN TERMS OF STRAIN HISTORY AND MAY BE
RELATED TO PHYSICS OF DAMAGE PROCESS

;: ® POTENTIALS ANALOGOUS TO STRAIN ENERGY DENSITY ARE USED FOR LOADING (OL) AND UNLOADING
V. (Y
g; ® ALLOWS FOR TEMPERATURE AND MOISTURE INDUCED STRESSES

@ VISCOELASTIC EFFECTS ARF INTRODUCED BY USING "PSEUDO DISPLACEMENTS" IN PLACE OF
W’ DISPLACEMENTS

- APPLICATIONS
@ EXISTENCE OF POTENTIALS SHOWN IN THE SPECIAL CASES OF PARTICLE-REINFORCED RUBBER,
ELASTO-PLASTIC BEHAVIOR OF METALS AND SECONDARY AND TFRTIARY CREEP OF METALS

’ @ USE FOR FIBER-REINFORCED PLASTICS IS UNDER STUDY
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A SPECIAL PARTICULATE COMPOSITE WITH MICROCRACKING
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ii where ' = STRAIN ENERGY DENSITY WITHOUT DAMAGE (g = 0)
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APPROACH FOR_UNIDIRECTIONAL PLY CHARACTERIZATION

CONSIDER A UNI-AXIALLY LOADED, OFF-AXIS, UNIDIRECTIONAL COMPOSITE
TENSILE SPECIMEN. THE STRESSES IN THE PRINCIPAL MATERIAL DIRECTIONS
ARE WRITTEN IN TERMS OF THE STRAINS IN THOSE DIRECTIONS AS (NEGLECT-
ING EFFECTS OF END CONSTRAINT):

o = «:v]'(!:1 v Eg Yu),
gy = 02(61 . Eq 712).
T12

Yaley v €50 Yigy,

IF A POTENTIAL ¢ 1S TO EXIST, SUCH THAT

9, = :')0/351 ¢ Oy = 30/3:2 ¢ Yt ao/avu

IT IS NECESSARY THAT, FOR EXAMPLE,

aoz . aru
CASY) €) €, = CONST. 3ey €), Yy = CONST.
’

® PERFORM TCSTS ON AS4/3502 MATERIAL USING OFF-AXIS SPECIMENS.

0 = FIBER ANGLE

BY VARYING O, THE r- ‘
NECESSARY DATA CAN BE H ]
CEVELOPED TO EVALUATE -
THE CPOSS-DERIVATIVES

AND DETFRMINE THE EXIST-
ENCE OF ¢.

A

b b

q H
v ' '
O o

2y
24

2

A

™y
p
4.7

-u
}A

' R
oo 8t
XN

A

s
3
)
s
“Ta

'l

THESE DATA ALSO CAN BE USED TN DEVELOP THF POTENTIAL & ITSELF.
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Figure 1. Load-time history used in 30¢ off-axis tests. (tr = 210 sec.)
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FRACTURE EXAMPLE

@ FRACTURE OF EDGE-NOTCHED COUPONS OF A SHORT FIBER COMPOSITE, SMC-R50

LOAD-DISPLACEMENT RELATION:

P=Cun, n=0.78

WHERE

(@]
]

cta) . a = depth of edge notch
LOADING POTENTIAL ("STRAIN ENERGY"):

u
3 =[ Pdu = Cu(n+l)/(n+1)
o

J INTEGRAL ("ENERGY RELEASE RATE"):

20 W oge

= -123®_ dc
J="§3 " (n+1)B da

SET J = Je AND SOLVE FOR FRACTURE DISPLACEMENT ug AND THEN FRACTURE
STRESS 0O,
v £
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Figure 5.
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(notch dispiacement } Goge length
10.2 ¢m

7
77 )

P P

Figure 3. Double edge notch specimen with measured

parameters indicated. (SMC-R50)
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Figure 4. Double edge notch specimen geometry. (SMC-R50) -
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Stress-strain curves based on load-displacement data
for 25.4 mm-wide unnotched tensile specimens. (SMC=P50)
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Figure 6. Critical stress intensity factor for the 50.8 mm-wide
specimens. (SMC-R50)
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Figure 7. Critical stress intensity factor for the 25.4 mm-wide
specimens. (SMC-RS50)
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ANALYSIS OF CRACK GROWTH IN DAMAGED

MEDIA USING A GENERALIZED J INTEGRAL

@ ANALYZE THE INITIATION AND PROPAGATION OF A CRACK IN A MATERIAL WITH
DAMAGE THROUGH THE USE OF A FAILURE ZONE CRACK TIP MODEL AND THE
GENERALIZED J INTEGRAL.

INITIALLY, THE ISOTROPIC MATERIAL MODEL OF J, DEFORMATION THEORY OF
PLASTICITY, MODIFIED BY ELASTIC UNLOADING, IS BEING USED:

2Gd(rs):;j B for 1t = ('s,max

mo_ . _ . .m
9{3 = zc(cij ‘ij) B for T, < (r,)m.‘

3xckk

1
;%3 " F 5i3%x

o (Lo- 4-y1/2
“Z"ij"ij’

EXTENSION TO ORTHOTROPIC COMPOSITES WITH DAMAGE TO FOLLOW

® FAILURE ZONE MODEL FOR THE CRACK TIP:

failure
zone

av

Areda = 2T

I = fracture
energy

@ THE J INTECRAL IS USED TO OBTAIN INFORMATION ABOUT WORK INPUT TO THE FAILURE
ZONE FROM REMOTE FIELD QUANTITIFS:
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Deflections in a cantilever supported by an elastic-plastic foundation in
which the tractions varish above a critical displacement.
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