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1. INTRODUCTION

The subject of this research was active vibration damping, with

applications intended for future large space structures (LSS). The research

included complementary experimental and theoretical studies. An important

general objective was to achieve satisfactory agreement between experiment

and theory, thus validating theoretical concepts for practical application or

exposing the reasons why they are inapplicable or ineffective.

A substantial portion of the work was experimental, and it was

conducted on Earth rather than in the weightlessness of space. In order for

the research to be relevant to the dynamics and control of LSS, it was

*' necessary to focus on appropriate laboratory equipment, including a structure

and control devices.

The structure used was a pendulous assemblage of several different

elements; it is illustrated in Figs. 1-4. It consisted of a highly flexible plane

grid of aluminum beams, two rigid eccentric weights, and a steel top beam,

which was supported in low friction bearings that permitted the entire

assemblage to have a very low frequency, nearly rigid body pendulum mode.

The pendulous structure was designed to have structural dynamics similar in

as many respects as possible to those of future LSS. The structure did not

have true rigid body modes, and it could not accommodate large rigid body
Jvp.r

rotation representative of slewing of a spacecraft. But it did have the

,.. important characteristic of relatively high modal density at low frequencies (in 0

the 0-10 Hz range).

In contrast, the control system hardware used was not necessarily

representative of that likely to be found on a LSS. Indeed, it is very -odes
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difficult at present to build a realistic laboratory simulation of a LSS vibration

control system because very few hardware devices' have been qualified for

space application. The controller used in the experiments was a high speed,

programmable array processor, shown in Fig. 2. The sensors, shown in Fig.

4, were noncontacting velocity measuring devices consisting of structure-

borne conducting coils and externally supported magnetic field structures.

The actuators were noncontacting force generators identical in form to the

velocity sensors. Sensor operation was similar to that of a dynamic

microphone, and actuator operation was similar to that of a dynamic

loudspeaker.

The actuator magnetic field structures were externally supported rather

than being borne by the vibrating structure. This was the most serious

deficiency of the control system hardware relative to the objective of

simulating a typical LSS control system. Moreover, the sensors and actuators

essentially had no dynamics of their own; that is, their bandwidth of flat

response was essentially infinite relative to the laboratory structure's low

frequencies of interest. On the other hand, these devices did exhibit levels

of electrical noise typical of standard control system sensing and actuating

" instruments.

Two general active damping approaches were studied, both involving

only rate feedback. The approach studied in greatest detail is modal-space

active damping; versions of this for two fundamentally different modal

* estimation (filtering) techniques were evaluated. The second approach

. studied is uncoupled (direct) rate feedback active damping.

% This report is primarily a summary of the subject research. Most

!1 details relative to the first half (roughly) of the contract period are given in

Ref. 1. Details relative to the second half of the contract period are given

-3
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in the appendices and/or will appear in technical papers presently being

prepared. These future detailed papers are cited among the references.

2. RESEARCH OBJECTIVES

The primary specific objective of the work was active damping of a

number of vibration modes greater than the number of control actuators. An

important supporting objective was development of an effective method for

estimating the responses of individual vibration modes. Two methods,

bandpass spectral filtering and spatial filtering, were evaluated.

In the past, modes of the pendulous structure calculated by the finite

element method did not agree satisfactorily with the measured modes.

Therefore, another objective of this work was to achieve satisfactory

agreement by appropriate modification of both the laboratory structure and its

finite element model.

Subcontractor HR Textron supported this research with the specific

objectives of conducting a review and critical analysis of VPI's work and

using advanced theoretical techniques to design controllers for possible

experimental implementation at VPI.

The final objective was to begin laboratory implementation of active

vibration damping by means of a digital controller, rather than the analog

controllers that were used previously.

3. ACCOMPLISHMENTS OF THE RESEARCH

3.1 SPECTRAL AND SPATIAL MODAL FILTERING

These techniques for estimating the responses of individual vibration

modes were used in conjunction with modal-space active damping. Reference

1 describes in detail the dynamics of the bandpass spectral modal filters and

demonstrates conclusively that they are unsuitable for their intended

44
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function. The significant result, in summary, is: in order to avoid

instability due to mode-filter coupling, the bandwidth of a spectral filter for a

given controlled mode must be so narrow as to reject response from all other

modes; but, by virtue of being so narrow, the bandwidth can reduce the

effective active damping to such a low level as to be useless.

It has become clear that all types of spectral filtering, not just

bandpass filtering, can cause unexpected difficulties if applied to active

vibration damping. The dynamics of spectral filters inevitably influence

system dynamics. Consider, as perhaps the best example, use of a lowpass

spectral filter to eliminate high frequency content from sensor signals in an

* attempt to prevent observation spillover. A lowpass filter is generally

-considered to be a benign device, but it is indeed benign only if the phase

lag it induces is not important. However, phases are extremely important in

feedback control, and even simple one-pole and two-pole lowpass filters

introduce significant phase lags. So spectral filtering should be applied very

cautiously, if at all, to active vibration damping.

The most appropriate simple alternative to bandpass spectral modal

filtering is a technique called spatial modal filtering (Ref. 2) or static

observation (Ref. 3), and this technique was adopted after spectral filtering

proved unsatisfactory. The practical disadvantage of spatial filtering is that

it requires a large number of motion sensors, whereas spectral filtering

requires, in principle, only one sensor. Therefore, it was necessary to

9, fabricate and calibrate the additional sensors required for spatial filtering,

and to replace spectral filtering with spatial filtering in all theoretical

modeling. Several additional velocity sensors were fabricated, a special-

purpose calibration frame was designed and fabricated, and all the additional

sensors were mounted on the laboratory structure. Revision of the

5



theoretical model in computer coding was completed, and computer simulations

were run to provide guidance in the choice of sensor numbers and locations

for the hardware experiments.

Difficulties arose even with spatial modal filtering. The results of

several computer simulations showed that this method of modal estimation

frequently produces spillover instability in residual (uncontrolled) modes. No

instability occurs if the sensors are dual with the actuators, but, contrary

to intuition, increasing the number of sensors beyond the number of actuators

inevitably produces instability in at least one of the residual modes. For this

i* reason, spatial filtering was implemented only for sensors dual with actuators.

3.2 PENDULOUS LABORATORY STRUCTURE

This structure was designed to be dynamically representative in many

respects of a flexible satellite structure. The hardware has been modified

considerably since initial fabrication, resulting in improved dynamic response

relative to the objectives of this research. The design and fabrication are

summarized in Ref. 1 and described in great detail in Refs. 4 and 5.

The finite element model of the structure also has gone through a great

deal of refinement in the quest to calculate modes that match well with

measured modes. Despite this refinement, the most recent reports (Refs. 1

and 5) show that the calculated mode shape of the second mode was

considerably different from the measured mode shape, and that empiricism was

required to make the calculated frequency of the fundamental mode (a simple

pendulum mode!) match the measured frequency.

Subsequent to completion of those reports, the reason was determined

The word "dual" is used rather than the more common but less precise
"colocated". "Dual" implies that a sensor and actuator are not only colocated
but also coaxial, and that they act in the same discrete degree of freedom.

6
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for the perplexing failure of the finite element model to predict accurately the

first and second modes, and the model was revised accordingly. Essentially,

the previous model did not account for all the effects of gravity. The

revision consisted of implementation of an element geometric stiffness matrix

(Ref. 6) that accounts correctly for gravity. A paper is being prepared for

publication which will describe in detail the design and theoretical and

experimental analyses of the pendulous structure (Ref. 7).

The lowest twenty natural frequencies calculated from the revised finite

,. element model are listed in Table 1 (under Open-Loop Roots). These results

are for a 58-DOF model. The first twelve of the calculated frequencies agree

* very well (within a few percent) with the measured natural frequencies. Also

-i shown in Table 1 are the modal inherent viscous damping factors used in the

theoretical model of the pendulous structure for the active damping studies.

The first thirteen inherent damping factors were measured experimentally.

3.3 ACTIVE DAMPING RESULTS

The results for modal-space active damping with spectral modal filtering

are summarized in Section 3.1 and reported in detail in Ref. 1.

Another version of modal-space active damping was studied since the

first version proved unsuccessful. The second version uses spatial modal

filtering with dual sensors and actuators. The complete theory behind this

approach is presented in Appendix A. The technique not only is stable, but

also produces substantial active damping in several of the residual modes.

Since the number of controlled modes is equal to the number of actuators, it

is clear that this technique achieves the objective of actively damping more

modes that there are actuators. As is shown in Appendix A, this technique

involves a fully populated matrix of feedback gains that includes terms

coupling every velocity sensor with every force actuator; therefore, it is

7
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referred to as "coupled rate feedback."

This coupled rate feedback was evaluated experimentally and

theoretically for the pendulous laboratory structure and with the following

conditions. Velocity sensors and force actuators were located at joints 1, 2,

4, 5, and 8 (see Fig. 1). Modes 2-6 were designated as the controlled

modes, and it was specified that the desired modal active damping factor of

each be 0.1. The damping factors actually achieved (based on a 20-mode

theoretical model -- see Appendix A) are listed in Table 1. Damping factors

achieved for the controlled modes were close to the desired values, and the

damping of every residual mode was positively augmented. In particular,

with the exception of modes 7 and 8 (very low level modes of the steel top

beam), all modes with natural frequencies under 10 Hz received significant

active damping. This excellent performance is especially evident in the

experimental and theoretical frequency response functions of Figs. 5 and 6.

These figures are representative of many frequency response functions that

have been evaluated.

For comparison with coupled rate feedback, a form of uncoupled

(direct) rate feedback also was studied. This technique is comparable to

providing a viscous dashpot at each sensor-actuator degree of freedom. It

involves a diagonal (uncoupled) matrix of feedback gains, which means that

each actuator receives feedback signals only from its own dual sensor.

A linear programming method for choosing the gains is developed in

Appendix A. Candidate dual sensor-actuator degrees of freedom are selected,

and minimum acceptable modal active damping factors are specified for the

controlled modes. Then the linear programming method uses a linearized

analysis to solve for the viscous dashpot constants (same as the gains, but

with opposite signs) such that their sum is minimized, all are nonnegative (to

8
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insure stability of all residual modes), and at least the minimum modal active

damping factors are produced.

This uncoupled rate feedback technique was evaluated for the same

conditions as was coupled rate feedback; namely, joints 1, 2, 4, 5, and 8

were candidates for dual sensor-actuator pairs, and the minimum acceptable

? modal active damping factor of 0.1 was specified for controlled modes 2-6.

The linear programming solution set to zero the feedback gains at joints 1 and

2, leaving active only the dual sensor-actuator pairs at joints 4, 5, and 8.

The modal active damping factors actually achieved theoretically are listed in

Table 1. Figures 7 and 8 are representative experimental and theoretical

* frequency response functions for the uncoupled rate feedback. It is evident

from these results that this active damping technique was very effective in

the application evaluated.

Both coupled and uncoupled rate feedback achieved the objective of

actively damping many more modes than there were control actuators. A

comparative evaluation of the two techniques would require consideration of

additional factors such as control cost, damping of higher residual modes,

failure accommodation, etc. At this writing, such an evaluation has not been

made.

* Figures 5-8 illustrate the general good agreement between experimental

-. measurements and theoretical calculations that has been achieved in this

-r research. Details of the material summarized in this section will be presented

in Ref. 8.

2.3 SUBCONTRACT TO HR TEXTRON

HR Textron supported the research at VPI by performing two principal

tasks: 1) conduct a review and critical analysis of the VPI control design

and experimental setup; 2) apply advanced techniques to design a controller

9



for actively damping six modes of the VPI pendulous structure using five

actuators and existing VPI equipment.

HR Textron's report for the first task is included as Appendix B of

- this report. Appendix B substantiates previous findings concerning the

detrimental effects of bandpass spectral filtering, and it makes several

suggestions for improvements. It demonstrates that the modal-space active

damping used is a special case of linear quadratic optimal control, and it

contends that instability problems arise, at least in part, because state

estimation is performed by techniques other than Kalman filtering. The

report makes a strong case that Kalman filtering would be helpful.

HR Textron's report for the second task is included as Appendix C of

this report. The active damping technique developed in Appendix C is based

on the condition that only dual sensor-actuator pairs are used, just as for

the VPI coupled rate feedback of Section 3.3. But HR Textron's technique is

somewhat more general than VPI's technique inasmuch as explicit requirements

are imposed to limit control spillover into and observation spillover from

residual modes. HR Textron's technique is proven to be stable. Detailed

closed-root roots for HR Textron's technique are given in Appendix C for an

example (HR Textron's Case A, with estimator) that is almost directly

comparable with VPI's coupled rate feedback example of Section 3.3.

Comparison of the two sets of results shows that the active damping factors

achieved by VPI's technique are generally much greater than those achieved

" by HR Textron's technique. A detailed comparative evaluation of the two

techniques has not been made, but a preliminary interpretation is that HR

Textron's more general constraints on the control system design actually

The open-loop structure theoretical models were only slightly different in
the two examples.

10
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suppress the closed-loop effectiveness. At any rate, it is clear that HR

Textron's study was a very useful complement to this research.

3.5 THE PC-1000, A DIGITAL CONTROLLER

All VPI active vibration control experiments conducted before this

contract period used analog controllers. These are complicated circuits based

on analog electronics; they are tedious and difficult to fabricate, highly

susceptible to electrical noise, and difficult to modify. Even an apparently

simple change in a control gain (magnitude or sign) can require some circuit

teardown and reassembly, which consumes an unreasonable amount of time.

Therefore, an appropriate (capable but inexpensive) digital instrument

was sought to replace the analog controllers. Fortunately, such an

instrument recently became available. It is the PC-1000 array processor

designed and marketed by Systolic Systems Inc. of Campbell, CA. It is

essentially a second-generation version of the MCP-100 instrument (Ref. 9)

formerly marketed by Integrated Systems Inc. of Palo Alto, CA. The PC-1000

is a small desktop unit, and it is operated from a host IBM-PC personal

0 computer (see Fig. 2). VPI purchased with state money both a PC-1000 and

an IBM-PC, the former for S20,000 and the latter for around $3,000.

The PC-1000 is a very effective instrument and is well suited for

6 research in active vibration damping. This was established prior to the

purchase in evaluations conducted in the VPI laboratory. Several data

acquisition, processing, and control tasks were attempted, including two

- different strategies for active damping of the VPI beam-cable structure (Refs.

10 and 11). The PC-1000 performed all of the tasks without difficulty and

proved to be very flexible and easy to operate, especially in comparison with

analog controllers.

The PC-1000 has 16 channels for input signals from sensors, a high

A 11
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speed array processor for doing calculations with the sensor signals, and 16

channels for output signals to drive control actuators. The sampling rate is

adjustable, with the maximum rate being very high indeed: 2000 samples per

second. When operated at this high sampling rate with structural vibration

frequencies under about 20 Hz, the PC-1000 appears for most practical

purposes to be a continuous time (analog) instrument rather than a discrete

time (digital) instrument since the phase lag produced by digital data

acquisition and processing is very small. The PC-1000 (set at the maximum

sampling rate) was used as the controller for all experimental evaluations of

coupled and uncoupled rate feedback (see Section 3.3).

The PC-1000's array processor performs one specific operation --

multiplication of a constant 48 x 48 coefficient matrix into a time-varying 48 x

1 vector -- 2000 times per second (if that is the specified sampling rate).

Stated mathematically, the operation is

U11 F21 iF16x1 16x16 16x32 l6xl

X X132xl F1232x16 F2232x32 X032xj

Y is the vector of input signals received from sensors, U is the vector of

output signals sent to actuators, XO is a vector of "current" internal stateS

variables, and Xl is a vector of "updated" internal state variables. The

prefix-F submatrices consist of user-specified constants that determine the

type of control-estimation-filtering being applied.

The matrix operation above was designed to implement multivariable

optimal control with state estimation by Kalman filtering (Ref. 9). However,

the form is sufficiently general to accommodate many different types of

control-estimation-filtering. For the rate feedback implemented in this

12
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research, only appropriate elements of F11 were nonzero, and all other

elements of the 48 x 48 coefficient were nulled.

4. PUBLICATIONS, ACCEPTED AND ANTICIPATED

References 1 and 11 have been accepted and scheduled for publication

in early 1985. Reference 7, which is derived in large part from Refs. 4 and

5, is in preparation. Reference 8 is in preparation.

5. PROFESSIONAL PERSONNEL

VPI Personnel:

Principal Investigator: William L. Hallauer Jr.

* Graduate Research Assistants:

Russell N. Gehling, M.S. degree received March 1984, M.S. thesis listed

as Ref. 5, presently employed by Martin Marietta Denver Aerospace;

Gary R. Skidmore, Ph.D. candidate

George Schamel, M.S. candidate

Dinesh Trivedi, Ph.D. candidate

HR Textron Personnel:

Project Director: Richard Quartararo

Research Engineer: Arun Nayak

S
6. CONFERENCE PAPERS PRESENTED AND ANTICIPATED

References 1 and 10 were presented and published in conference

proceedings in early 1984. An extended abstract proposal for Ref. 8 has

V been submitted, and the paper is being prepared.
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TABLE 1. Theoretically calculated structure-control system roots

THEORETICAL THEORETICAL CLOSED-LOOP ROOTS
OPEN-LOOP ROOTS

COUPLED UNCOUPLED
RATE FEEDBACK RATE FEEDBACK

Mode Freq. Damping Freq. Damping Freq. Damping
(Hz) Factor (Hz) Factor (Hz) Factor

1 0.5809 0.0443 0.6171 0.444 0.7159 0.233

2 0.8699 0.0287 0.8377 0.0977 0.8060 0.549

3 1.349 0.0281 1.336 0.127 1.236 0.184

4 3.190 0.0116 3.213 0.110 3.205 0.117

5 3.488 0.00596 3.570 0.0990 3.539 0.105

6 4.850 0.00651 4.948 0.0885 4.735 0.115

* 7 5.483 0.00250 5.501 0.00508 5.483 0.00438

8 5.645 0.00215 5.653 0.00303 5.644 0.00335

9 5.952 0.00432 6.505 0.118 5.914 0.0321

10 7.898 0.00325 7.908 0.0273 7.903 0.0186

11 8.182 0.00407 8.468 0.372 8.178 0.0433

12 9.006 0.00405 8.507 0.0470 8.860 0.0328

13 9.457 0.00183 9.159 0.0209 9.422 0.0139

14 11.20 0.002 10.22 0.0403 11.11 0.0313

15 12.87 0.002 12.74 0.0147 12.81 0.0171

16 20.56 0.002 20.56 0.00201 20.56 0.00200

17 24.09 0.002 24.05 0.00648 24.09 0.00371

18 26.37 0.002 26.37 0.00318 26.36 0.00381

19 28.23 0.002 28.23 0.00295 28.23 0.00341

20 29.81 0.002 29.79 0.00453 29.81 0.00270

1
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STEEL TOP BEAM

BALL BEARING ASSEMBLY

SUPPORT
A

9-\.10 11 12 ECCENTRIC

WEIGHTE-/

5_6 7 8SKEWED BEAM

C 2 3 A
HORIZONTAL B &-4--- B--4B ---

BEAM

* Figure 1. Drawing of the laboratory structure. Geometric
parameters: A = 3.96 m; B = 0.610 m; C = 0.591 m;
Y 0.216 m; 0 = 46 degrees. Beam cross-section
dimensions (in mm): steel beams, 63 x 13; aluminum
horizontal beams, 50.8 x 3.2; aluminum skewed beams,
38.1 x 3.2.

V:..

o7

Figure 2. Photograph of laboratory structure. Also
shown is the supporting framework for actuators
and sensors; PC-1000 controller and host IBM-PC
are in the foreground.

0 .16



Figure 3. Closeup photograph of laboratory
', structure. Darker vertical bars are
* supporting framework.

Figure 4. Photograph
from the left side of

-' the structure showing

several sensor-actuator
pairs, with velocity
sensors on the right
and force actuators
on the left.

* o.

I, Photographs on this
page by Mark Hill,

- courtesy of ENGINEERS'
W_ FORUM Magazine of VPI

&US
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APPENDIX A

THEORETICAL ANALYSIS AND DESIGN OF

COUPLED AND UNCOUPLED ACTIVE DAMPING SYSTEMS

A.1 THEORETICAL MODEL

For the purposes of theoretical analysis and control system

design, the subject structure is idealized to be linear, with

viscous inherent damping that does not couple the normal modes of

vibration. It is represented theoretically by an N-degree-of-

freedom (DOF) finite element model with the matrix equation of

__ motion in grid point physical displacements qi(t), i = 1, 2,
O1

N, given by

c
[mlq + [clq + [k]q = e(t) + f. (1)

The N by N matrices [m], [c], and [k] are the mass, noncoupling

- inherent viscous damping, and stiffness matrices, respectively;

e(t) is the vector of all possible grid point excitations or

c
* disturbances; and f is the vector of all grid point control

actions.

The truncated modal expansion,

n t

t t
q = 0 - [1 (2)

. rr r=l

transforms the theoretical model from physical to modal
- coordinates and reduces the order of the model. In Eq.(2), nt 5

N is the number (truncated) of vibration modes assumed to be

active in the response; & (t), r = 1, 2, . . . , nt, are the modal

- coordinates; and 0 are the mode shape vectors. Substituting

Eq.(2) into Eq.(1) and applying standard orthogonality conditions

gives the modal equations of motion,

* 22



[Mt]it + [ct]it + [Kt]t [tT(e + fC (3)

The modal mass, damping, and stiffness matrices are

[Mt ] = [it]T [m][1t diag(M r r = 1, 2, ...EMI. .[... , nt),

[Ct ] = diag(2Mr Wr. r = 1, 2, .... nt), and

t 22
[Kt] = diag(MrWr r = 1, 2, ... , nt) ,

where wr and C r denote, respectively, the natural frequency and
[..-[-"th
inherent viscous damping factor of the r mode.

The control objective is to specify f in Eqs.(1) and (3) so

as to provide stable active damping to the structure. It is

presumed that control sensing and actuation are provided by nd

dual sensor-actuator pairs corresponding to a specific subset qd

of DOF. Accordingly, the nd by 1 actuator submatrix of f is

denoted as f all other elements of f being zero.

It is also necessary to specify a set of n c controlled, or

target, modes that are to be actively damped. All other modes

are referred to as residual modes. The control designs are based

on the controlled modes, but a by-product of this control is some

beneficial active damping in the residual modes. It is assumed

in the following that the modal parameters of the controlled

modes are known.

Both control designs of interest here depend on rate

feedback, so the actuator vector has the fundamental form f (id).

A.2 UNCOUPLED RATE FEEDBACK ACTIVE DAMPING

For uncoupled rate feedback, the actuator vector is

f= - ,[UFi

* -where

[UFI = diag(d. > 0, i over nd

23
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"U' Clearly, [UF] is just a physical viscous active damping matrix

associated with the nd physical DOFs where the dual sensor-

actuator pairs are located. This is a physically uncoupled form

of feedback for which there exists no communication between non-

dual sensors and actuators. It is analogous to the presence of a

viscous dashpot at each of the nd DOFs. Since [UF] is positive

- definite, this form of active damping can only dissipate energy;

it cannot pump energy into the structure. This guarantees the

*. stability of uncoupled rate feedback control, at least for

continuous time control which is free of the delays produced by

* sampling and processing involved in discrete time control.

The uncoupled rate feedback damping constants, di , are

selected as follows. The desired modal active damping factor in

mode s is denoted " f is small (less than about 0.3),
S S

then one may use the linearized approximation

nd

EV@2 d.= 2M~c()ZIis di 2MS wSCSI (4)

i

to relate modal damping factors to feedback constants. For the

special case of nc nd (number of controlled modes equal to the

number of sensor-actuator -airs) and with specified values for

CsC the set of Eqs.(4) for s over n can be solved directly for

the required d. values. However, experience with this approach

has shown that it usually produces negative values for one or

J.-N. Aubrun, "Theory of the Control of Structures by Low

Authority Controllers," Journal of Guidance and Control,

Sept.-Oct. 1980, pp. 444-451.
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more of the d.. This is unacceptable, of course, because any d.

< 0 will assuredly produce instability in some residual modes.

Therefore, a linear programming approach for the design of

direct rate feedback active damping has been developed which, in

a sense, minimizes the control cost while keeping all feedback

gains non-negative and somewhat relaxing the constraints on the

desired modal active damping factors. One seeks di (i = 1, 2,

... nd) such that their sum is minimized, subject to the

constraints that all di be non-negative and that the resultant

modal active damping factors equal or exceed the specified

* values. In the usual optimization terminology, this is expressed

as:

nd

minimize Z d.

1

nd
"'- .2 . c

subject to Z X. 2d. > 2Msw ' s over n

and d. 0 , i over nd

It may be necessary in some applications also to place an upper

2bound on Z 1. d. in order to keep the modal damping factors
is 1

sufficiently low that Eq.(4) remains reasonably accurate. This

was not found to be necessary in the present application.

0- Because Eq. (4) is approximate, use of the design method

described above generally produces actual closed-loop modal

-i .active damping factors somewhat different than those predicted by

" the linear programming solution. In our application, the actual

results have been satisfactorily close to or greater than the

.d\. predictions. 25
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A.3 COUPLED RATE FEEDBACK ACTIVE DAMPING

The second control design considered here is based on modal-

space active damping. Using Eqs.(3) and the actuation vector fd

with the disturbance vector e omitted, one writes the modal

equations for the controlled modes alone as

c~ c c ,dcTd.(5
[MC] C + [cC]iC + [KC] C= [dTfd (5)

Superscript c in Eq.(5) denotes appropriate partitions of the

matrices in Eq.(3). In particular, the partition of [ t] with nddn

rows corresponding to the sensed DOFs (q ) and nc columns

corresponding to the controlled modes (&c) is denoted [Idc For

this application of modal-space active damping, we restrict the

number of controlled modes to equal the number of sensor-actuator

- dcpairs (nc = nd), so that [1I is square; moreover, the

parameters must be chosen so that this matrix is nonsingular. It

is clear from Eq.(5) that one can, in principle, produce

specified modal viscous active damping in each controlled mode by

defining the control actuation to be

fd = I dc-T[Dc]C, (6)

where

[Dcl diag(2Msw4 (c s over n )s ss c

But jc in Eq. (6) cannot be inferred exactly, either by

direct measurement or, evidently, by any form of filtering.

Hence, we define next a simple but effective estimate, 4c. From

the modal expansion, Eq.(2), the measured physical velocities are

written as

d dt t = *dcjc + ,drj r (7)

where superscript r denotes residual modes. Equation (7) shows

26
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that, for relatively small residual mode response, a reasonable

estimate for controlled mode response is

I 11dc-d (8)

It cannot, of course, be guaranteed that the response of the

residual modes will be small. Nevertheless, Eq.(8) is a good

choice for an estimate because it contributes greatly to the

stability of the structure-control system, as will be shown next.

The estimate given by Eq.(8) and other versions of this concept

have been used previously, appearing under the names static

observation (Ref. 3 of the report) and modal filtering (Ref. 2 of

the report).

Using Eq.(8) for ic in Eq.(6) gives
:-4-:

fdf -[CF ]q

where the physical, coupled feedback matrix is given by

[dc -T c dc-i[CF] = [§dI-[DC][ I (9)

Viscous active damping matrix [CF] is a nondiagonal, symmetric

matrix which contains coupling terms between all sensors and

actuators. Most importantly, [CF] is always positive definite;

this is evident from the quadratic form of Eq.(9) with a positive

definite, diagonal modal active damping matrix [D ]. Therefore,

this coupled rate feedback form of modal-space active damping,

which has every sensor dual with an actuator, can only increase

the damping in all modes, residual as well as controlled, and is

guaranteed to produce a stable structure-control system. Another

physical interpretation of this active damping technique is that

it produces only beneficial spillover in the residual modes.

Equation (9) demonstrates also that this technique is

27
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stability-robust relative to errors in the modal parameters.

[CF] is positive definite regardless of the accuracy of [§ dc and

of the modal parameters in [DC].

It might be expected that using more sensors than actuators

would improve the accuracy of c and therefore would improve

active damping performance. We have tested this hypothesis

theoretically and have found that modal response accuracy is

indeed improved. However, active damping performance is

inevitably seriously compromised in the sense that some residual

modes become unstable. In this case, the spillover into these

residual modes is detrimental. This type of instability occurs

whenever the control sensors are not completely dual with the

control actuators. For such a case, the physical viscous active

damping matrix is, in general, not positive definite.

Because Eq. (8) is only an estimate for 4 , the actual

closed-loop modal active damping factors achieved by this coupled

rate feedback method generally are somewhat different from those

specified in Eq. (6). In our application, the actual values

achieved have been satisfactorily close to or greater than the

*_ specified values.

* A.4 THEORETICAL ANALYSIS OF THE STRUCTURE-CONTROL SYSTEM

The quantitative theoretical analysis of system dynamic

characteristics consists of calculation of eigenvalues (system

roots) and frequency response functions (FRF). Equation (3) is

rearranged as
Mt]t +[t]t [dtTfd +[t]t tT

EM 14t + [C 14]i - [f d I Tf d+[K 14 [&t 1 I Te (10)

where f d can take on either of the previously derived forms for

28



the closed-loop systems, or can be set equal to zero for the

open-loop case. In general, f d has the form

fd = -[F]d

where [F] is a matrix of physical feedback gains (either [UF] or

[CF]). In terms of the modal response, truncated to nt modes,

this becomes
f$,i: fd = _[ l[I dt 1 ~t

which is substituted into Eq.(10) to give

[Mt]*&t + ([Ct ]I + [I dtIT[(F]( [dt ])it + [Kt] t  = [1t]T e. (11)

For calculation of system eigenvalues, Eq.(11) is written in

* its homogeneous form

[Mt]*t + [AD]4 + [K -= 0 (12)

t dt Twith [AD] = ( I[Ct  + [t I [F[dt] ) representing the total

*damping matrix. A state vector is defined as

-;'.:x = Lit
-I&.

to facilitate the formulation of an equivalent set of 2 nt first-

order differential equations,

[01.L~ [Mt Mt& 1 [01 0
* I ~~I- I I*I - I ,(13)

[MtI [AD it [0)-[Kt L &t 0

which is of the form
[31 - [AIx = 0.

This leads to a standard eigenvalue problem

p[BIX = [AIX,

for which the system roots are given by the complex eigenvalues

, 1p. For each complex conjugate pair, p = a ± iw, one can define a

damping factor

%4%-

.2 + w2
• 29
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and a frequency
~~f = wo__

2v

Frequency response analysis is accomplished with the

nonhomogeneous form of Eq.(12),

I '[M] t + [AD]Zt + [K tt = [t]T e, (14)
^0 A-0

where e usually has only one nonzero term, corresponding to the

driving point of the harmonic excitation. For excitation of unit

magnitude in DOF k, ek = 1, at frequency w, Eq. (14) reduces to

2 t t Tt(-w [M I +iw[ADI + [KtI) t = E (15)
0 hr k i h kth column of [t]T and .

where E is the kf I represents the vector

of frequency responses in the modal coordinates. This nt-vector

is calculated for any specified value of w by direct solution of

Eq. (15). The complex displacement frequency response in DOF j

due to forcing in DOF k is obtained from modal expansion Eq. (2),

t tSDFRFj k(W) = Z Itr ( W).

Finally, the velocity frequency response function is

VFRFj,k(w) = iwDFRFj k().

-M

.3

. ",.4
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INTRODUCTION AND SUMMARY

This report analyzes the control system for the VPI

active vibration suppression experiment.

The test article consists of i gri.2-like structure that

hangs from a pivoted overhead support bar. Five voice coil

actuators apply control forces to the structure, and one

velocity sensor provides measurements for the control system.

The control concept is based on independent control of each

mode, with the actuators applying forces proportional to

modal velocity in order to actively damp structural

oscillations. The reader is referred to Hallauer, et al,

Reference (1) for a more detailed description of the test

conf iguration.

The following sections review the control concept,

analyze the test article control system, interpret the

analytical results and present recommendations for improving
,- performance. The analysis of the existing test setup shows

that there is an instability at 3.27 Hz that apparently is

caused by a structural dynamic/sensor filter interaction.

This result verifies similar analytical and experimental

results obtained by Hallauer, et al, Reference (1).

A discussion and further analysis of the instability

0 indicate that the test article control system uses a Linear

- Quadratic Regulator controller. However, since the

* 32
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filter is not a Kalman filter, the principle of separation of

controller and filter does not apply. Therefore, there is,

in general, no a priori guarantee that the combined

controller and filter will be stable, as there would be with

a Kalman filter and Linear Quadratic Regulator controller.

Suggestions for improving control system performance are

provided. Significant performance improvements could be

obtained by using a Kalman filter to construct modal velocity

. •estimates from the one velocity sensor. An alternate

approach is to use 6 velocity sensors and a spatial filter to

algebraically transform the velocity response at 6 nodes into

6 modal velocities. Spillover effects could be avoided by

"" using a low-pass temporal filter and locating the sensors

near zero displacements of the lowest frequency uncontrolled

modes.

A third approach, which involves minimal changes to the

existing test setup, is analyzed. It uses the existing

narrow band temporal filters and velocity sensor to measure

-' the modal velocities of the first three controlled modes.

- The other two modal velocities are measured by passing the

*" signals from the existing velocity sensor and a new velocity

sensor at node 13 through temporal filters each having ao

bandwidth that includes the natural frequencies of both

modes. The resulting signals are then passed through a 2 x 2

spatial filter to algebraically transform to modal

33415.
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velocities. An analysis of this approach shows that it is

stable; however, the desired active damping values are not

achieved.

It is apparent that the unstable behavior of the

existing test article and the less than desired performance

of the third suggested modification is due to the dynamics of

the narrow band temporal filters.

CONTROL CONCEPT REVIEW

The theory is briefly reviewed here. For more details

refer to the paper by Hallauer, et al, Reference (1).

The equations of the evaluation model can be written as:

where '+ [C]j + [K] = [,a]TCa (1)
" ~whe r e ---

1(t) = Nxl vector of modal coordinates

[C] - diag (2 rwr , r = 1, .. , N)
2[K] - diag ( ,r = 1, .. , N)

:;r and wr - the natural frequency and inherent

viscous damping factor of the rth mode

Ca = the 5xl vector of the actuator forces
*[a]T = the control matrix, which is a submatrix of

the modal matrix [Hp]

N 1 10, the number of modes considered for the

evaluation model.
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Feedback control Ca is assumed to be a function of only

velocity, in accordance with the VPI test article.

Ca = [Cac [€ ]Ic (2)

[Cac ] is a control apportioning matrix that is to be selected

later. [c] is a submatrix of the modal matrix [D] c is

the velocity of the modes to be controlled. The present

study is concerned with controlling 5 modes, modes 2 through

6. The control, as suggested by Equation (2), will add

active damping in modes 2 through 6.

q_ (3)

is the output of the ideal spectral filter corresponding to

the particular modal velocity 4c. The input to this ideal

filter is ii, the velocity of the ith node.

The control apportioning matrix is chosen in the

following way.

[Cac] . [¢ac]T [Dc] [c]-l (4)

* :: V[ac]T is an appropriate submatrix of [ c], corresponding

to the modes to be controlled. [Dc] = diag (2 Cws, s varies

over the controlled modes). ;c is the viscous active damping

factor specified for mode s, and for the purposes of the

stability analysis c is taken to be 0.1 for all modes to be
'I S

controlled.

Since an ideal filter is impossible to make, the output
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4.'

of a real filter is used for the feedback purposes. Let y be

the output of the real spectral filter, then the control Ca

will be given by

,Ca = [C]y (5)

The real spectral filter is modelled as

y + [B] y + EwfI = B-lq (6)

[1] is a vector of ones. Al is the measured velocity of node

1; the VPI test setup can measure only this velocity at

present. [B] is the diagonal matrix of filter half-power

bandwidths and [w2] is the diagonal matrix of the filter
f

center frequencies squared.

STABILITY ANALYSIS OF TE TEST ARTICLE

The new 56 DOF model data supplied by VPI, Reference

(2), was used for the purposes of the stability analysis.

The ten lowest frequency modes were used in the evaluation

model.

The stability analysis results coincide fairly well

with those presented by Hallauer, et al, Reference (1). The

results, which are summarized in Table 1, contain the damping

ratios and frequencies of structural and filter modes for

S_ open- and closed-loop systems. Four different closed-loop

cases are treated. In the first closed-loop case, the

bandwidth of the filter is reduced to 1/10th the original

bandwidth. This case is stable. Hallauer, et al, Reference (1)
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TABLE 1

ONE SENSOR SYSTEM

CLOSED LOOP

OPEN LOOP CASE 1 CASE 2 CASE 3 CASE 4MODE _ _ _ _ _ _

TYPE* fr r f r f r f r fr

SMI .043 .584 .0427 .4535 .1226 .2546 .1406 .2336 .1405 .233!~.1
SM2 .05 .89 .0499 .8789.051 .8787 .0511 .87 .0511 .878'

FM2 .5618 .78 .0611 1.1927 .3264 1.349 .3932 1.352 .3932 1.351!

SM3 .035 1.37 .0228 1.2404 .014 1.323 .0198 1.32 .020 1.326'

FM3 .3642 1.37 .0361 1.4831 .1964 2.284 .2504 2.5016 .2334 2.474E

SM4 .01 3.27 .0075 3.20 .0069 2.952 -.0133 2.9028 .0023 2.955A

FM4 .0503 3.27 .0076 3.36 -.0142 3.432 -.0136 3.4321 .038 3.6091

SM5 .009 3.593 .0066 3.507 .0632 3.4283 .0727 3.4264 .009 3.593

FM5 .0459 3.593 .0069 3.67 .0226 3.8813 .0266 3.9523 .049 3.593

SM6 .013 4.957 .0115 4.797 .0469 4.462 .0575 4.3738 .0524 4.376

FM6 .1009 4.947 .0115 5.1146 .041 5.4034 .0493 5.4621 .0533 5.491

SM7 .0035 5.485 .003 5.486 .006 5.49 .0063 5.4864 .0045 5.479

SM8 .0030 5.654 .003 5.654 .003 5.654 .0030 5.654 .003 5.654

-SM9 .0060 6.194 .006 6.194 .0069 6.194 .0076 6.194 .0053 6.12

SM10 .0060 7.997 .006 7.998 .0061 8.0093 .0062 8.0216 .006 7.99

*SM - Denotes Structure Mode r
r

FM - Denotes Filter Mode r
J." r

• Case 1: - Filter bandwidth is 1/10 of the test article bandwidth

Case 2: - Filter bandwidth is 8/10 of the test article bandwidth

Case 3: - Test article bandwidth

Case 4: - Controlling only 4 modes; system modes 2, 3, 4 and 6
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obtained similar results. In the second closed-loop case,

the bandwidth of the filter is 8/10th of the original

bandwidth. For this case filter mode 4 shows instability.
N2.,

Case 3 is the closed-loop system used in the test article; it

has two unstable modes. A review of the eigenvectors

corresponding to these two modes shows strong interaction

between filter mode 4 and system mode 4. Thus, one may

conclude that these modes might be driving each other to

instability. There is a slight discrepancy here with the

numerical results of Hallauer, et al, Reference (1), probably

because different data sets were used; however, the overall

conclusions are the same. The fourth closed-loop case deals

with controlling only 4 modes, and this system is stable.

This result coincides with those of Hallauer, et al,

Reference (1).

DISCUSSION OF STABILITY RESULTS

The controller and the filter are usually synthesized on

* the premise that they can be separately designed and, when

they are put together to form a compensator, they will be

stable and perform as expected from the separate analyses.

* This method, sometimes called the principle of separation of

* . controller and filtor, does not always work. The results

,-.. obtained here show that the principle cannot be applied to

0 obtain an optimal compensator in this case.
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The principle of separation of controller and estimator

can be applied to obtain an optimal compensator if the

' problem can be posed as a Linear Quadratic Gaussian (LQG)

problem. The LOG controller is a solution to the Linear

Quadratic Regulator (LQR) problem, and the filter is a Kalman

filter.

The test article controller was devised in an intuitive

way; however, the analysis below shows that it is also a

solution to the LQR problem. But, sin..e the filter is not a

Kalman filter, there is no guarantee that the separation of

controller and filter yields an optimal control. In fact,

- the stability analysis results suggest that the test article

- compensator is not at all close to optimal. Hence, it is

- recommended that the filter be improved.

OPTIMAL VELOCITY FEEDBACK CONTROL USING TE LQR SOLUTION

Consider the following

+ [Ccj c + [Kc1Z = [(acDTca (7)

[Cc ] and [Kc] are proper submatrices of the [C] and [K] matrices

corresponding to 7,c, the modes to be controlled.

The optimality criterion isO

-.j in+ ([ cTJ[ + a adt(8)

where [QI] and [Q3 1 are positive semi-definite weighting
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matrices for Ca.

The optimal control in general is given by

Ca -- -[Kll c - [K2],Zc (9)

But by judicious choice of [Q11, [Q3] and [R] one can

obtain [K1] = 0. Thus

Ca = -{K21zc (10)

is the desired optimal velocity feedback control. By some

trial and error, the values

[Q1] -o0

[Q3] = diag (2.5, 5.0, 20.0, 24.0, 49.0)

[R] _ [,ac] [,ac]T

were found to yield almost identical results as those of the

test article controller.

Thus, if a Kalman filter is implemented instead of the

current filter, optimal control will be achieved.

RECOMMENDATIONS TO IMPR(OE PERFORMANCE

In the present context, in order to improve the

stability of the VPI test article without changing much of

C the existing facilities, the placement of a second velocity

* sensor is suggested. An analysis given below does indeed

show that a second sensor improves the stability of the

system.

It is thought that it will be convenient to put the
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second sensor colocated with some other actuator as was done

*with the first sensor. Thus, the second sensor can be

colocated with any one of the other four actuators. The

analysis presented herein finds a proper colocated position

for the second sensor.

. Earlier it was shown that the controller by itself is

optimal, hence the apportioning matrix [Ca c ] is not changed,

but a new filter output is obtained by using these two sensor

outputs.

Since the instability is believed to be caused by two

closely placed modes, it is attempted to separate them using

two sensor outputs and a modified filter as illustrated on

the following page. _yl andYi are the new filter outputs

corresponding to the measured velocities at node 1 and node

1i. y 4 and yi,l are the components of Y and yi and they are

related to mode 4 and mode 5 as follows:

Y1,4 - L [ 1 , 4  1, [, J (ii)

Yi,I1 = [i,4 i [4 (12)
5J

a reflects the fact that the center frequency of the above

filter is not the frequency of the modes but is the average

of the square of the center frequency of mode 4 and mode 5.V7
But considering the proximity of the frequencies and broad

half-power bandwidth, which is 1, the value of a is assumed

to be 1. ij are proper elements coresponding to ith node and

jth mode.
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ORIGINAL FILTER

Center Half-Power

Frequency Bandwidth

.89 1

1.37 1
yz'- 3.27 .331

3 59 .33

-- , 4.96 1

NEW FILTER

Center Half-Power

Frequency Bandwidth

yl
4%-.89 1

"--G.l 1 .3 7 1 --. :-.~y 3l..
4.96 1

3.44 1

-, i 3 .4 4 1 q i

* -

is the velocity measurement from the second sensor

placed at the ith node.

is the velocity measurement from the 1st sensor located

at the 1st node. 42
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From equations (11) and (12)

t 0 1, (13)

ii,

Thus, knowing y,4 and yi' {44 and 45 can be estimated.

Clearly, if the matrix

O1,4 Oi,5]

is far away from being singular, resolution of - and 5 will

* be better. Hence, the location of the second sensor can be

found by maximizing the determinent of the 2x2 matrix.

Numerical calculations show that node 13 is best suited for

this purpose.

The stability result is presented in Table 2. It

contains the frequencies and the damping ratios of the

structural and filter modes of a modified control system

which has two sensors. The closed loop system is stable;

however, the desired damping ( - 0.10) is not obtained.

*In order to have still better performance controlling 5

modes of the structure with velocity sensors, 6 velocity

sensors could be located at different places. These sensors

must have wide enough bandwidths to cover the 5 modes to be

controlled and the one uncontrolled mode at a lower

'-.-- frequency. Then, a 6x6 spatial filter could be used to

algebraically transform the sensor signals to the 6 lowest
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TABLE 2

TWO SENSOR SYSTEM

ONE SENSOR AT NODE 1, THE OTHER SENSOR AT NODE 13

.4

MD OPEN LOOP CLOSED LOOP- MODE
TYPE r r fr r

SMI .0430 .5840 .1406 .2335
SM2 .0500 .89 .0512 .8782
FM2 .5618 .89 .3931 1.3521
SM3 .035 1.37 .0198 1.32
FM3 .3642 1.37 .2721 2.5297
SM4 .01 3.279 .0072 2.8213

FM4 .1454 3.4396 .0653 3.9397
SM5 .009 3.593 .0867 3.1225
FM5 .1454 3.4396 .0504 4.33224.

SM6 .013 4.957 .0873 3.8597
FM6 .1009 4.957 .0489 5.4714
SM7 .0035 5.485 .0063 5.488
SM8 .003 5.654 .0030 5.6540
SM9 .006 6.194 .0108 6.2311
SM1O .006 7.997 .0068 8.0283

SM - Denotes System Mode r
r

FM Denotes Filter Mode r
r

0- 44
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frequency modal velocities. In order that these sensors do

not pick up the modal velocities of higher frequency modes,

the sensors' signals should be sent through low pass temporal

filters. The response of modes in the filters' roll-off

region could be diminished by placing the sensors near the

nodes of these potentially troublesome modes. This concept

is pictured below.

I L

Six lowest fre- Modes in the roll- High frequency
quency modes off region of the modes suppressed
measured by sen- filter suppressed by low-pass filter
sors and spatial by locating sensors
filter near the node lines

SIX SENSOR CONCEPT

CONCLUSION

It has been shown that the control apportioning matrix

is an optimal solution to the Linear Quadratic Regulator

problem. But, because of the test article filters, the

closed loop system does not behave as expected. If a Kalman

filter is implemented instead of the present filters, an

improved result will be obtained.

* 45
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The stability of the test article can be improved

without many changes, by using a second sensor. An optimal

location for the second sensor has been obtained, and the

numerical analysis shows the stability of the closed loop

system is improved. Further improvement in controlling 5

modes can be achieved by using 6 sensors and a low-pass

filter. A brief description of this method has been provided.

S.4
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DEVELOPMENT OF AN ALTERNATE CONTROL LAW FOR THE

VPI PENDULOUS PLANE GRID

INTRODUCTION AND SUXIY

This report develops alternate control and estimator

laws to suppress vibration of the VPI pendulous plane grid.

The controller and the estimator try to induce active damping

4. in the first six modes of the test article with the help of

five collocated actuators and sensors. The controller is

developed independent of the estimator based on the principle

of certainty equivalence, i.e., the controller is designed on

the premise that the output of the estimator is the true

value of the states that it is estimating. The controller

and the estimator designs are based on the Model Error

Sensitivity Suppression principle described in Reference [1].

The analysis shows that when these particular control

and estimator laws are used, collocated actuators and sensors

always induce active damping in almost all of the controlled

and residual modes. Thus, the closed loop system is always

stable. The analysis further shows that, for these

particular control and estimator laws, the noncollocated

actuators and sensors do not always guarantee stability for

the closed loop system. Simulation results are given for

only the collocated actuators and sensors, and they

corroborate the analytical results.
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A description of the test setup is given in Reference

[21. This analysis assumes that five velocity sensors are

located at the same positions as the five actuators noted in

Reference [2].

The section on Preliminaries sets up the general

framework for the problem, and the sections on Control and

Estimation Laws develop MESS-like control and estimation

laws. The Closed Loop Analysis section derives the

sufficiency condition for the stability of the closed loop

system. The sections on Collocated Actuators and Sensors and

Simulation Results contain the numerical results for the

pendulous plane grid,

05
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PRELIMINARIES

The dynamics of the pendulous plane grid are assumed to

be given by

[M]x + [D] , + [Klx [B]u ... (1)

= 
.. (2)

[M], [D], and [K] are mass, damping and stiffness

.- matrices, respectively. x represents the vector of physical

displacements of the nodes. [B] and [CI are the control and

the observation matrices, respectively. is the observation

vector, and u is the control vector.

Equation (2) represents the fact that only velocity

sensors are used.

The transformation between modal coordinates, q,and

physical coordinates is

x = [O]q ... (3)

which has the following properties

* T

[0-' [...(4)

[0T] [K] [4] = [ 2.] ... (5)
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[M1 is an identity matrix. The columns of [p] represent the

mode shapes, and [wA2 is a diagonal matrix whose diagonal

elements are squares of the natural angular frequencies of

,N. the modes.

Using the above transformation, Equations (1) and (2)

can be written as follows:

q [2 4w] [W2 q T [B] u

[c] [= [ ..[(7)

where (2wl _ [,T] ED] [01 and is assumed to be diagonal. is

th . damping ratio.

Define

[O]A [OT] [B]
(8)S

and [0o0] A [C] [0] ... (9)

- Equations (6) and (7) can be written in terms of the modes to

"- be controlled and the residual modes (or left over modes)

+ [2-w] c + 2  A c u ...(i0)

-52
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q'+ [2wl 4 + [1q = [.A(11' -Y Y YqY Y .(1

* = ~l A + ro 1

The subscripts c and y refer to the modes that are to be

Controlled and to the Residual modes. Thus, q refers to the

modal coordinates of the modes to be controlled and q refers

to the modal coordinates of the residual modes. The matrices

[2Cw], [2 1, ,A 1 , and [1 are partitioned accordingly.

The purpose of the control u is to induce active

damping in controlled modes, i.e.,

[OA] u - [2CAW]c c ... (13)

where 12Cj1c is a diagonal matrix, and 4A is the desired

active damping ratio.

Thus, the purpose here is to generate control u which

is as close to Equation (13) as possible and based on , the

measurements.

-~ -. CONTROL LAW

The following form for the control will be assumed

u = -[K c 4C ...(14)
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The control gain [K] should have the following property:

OAI [ = [2 AW] C ... (15)

This will satisfy the Equation (13), the control requirement.

The control forces, will "spillover" into the residual

modes. Thus, to suppress that, (this is the MESS principle,

Reference [1]), [KC] should be

SA[IY [K [0] .. (16)

Combining Equations (15) and (16) produces

[AI [Kc] = [ ]]. ...(17)

[Kc I can be obtained as a least square solution of Equation

(17) as

[K] [T [T] fcCK 1='A LVA~f [0C] 3... (18)

It is assumed that the rank of OA is equal to the dimension

of the control u.

The above control law may be obtained by the Linear

Quadratic Regulator method by proper choices of weighting
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matrices, as suggested in Reference [3].

NSIRATION LAW

The following form for the estimate will be assumed.

c is the estimate of 4-"

Substituting Equation (12) for , one obtains

% [K] [K o] c 4c + [] [0]y -. (20)

For a good estimate [KE I should be such thatE

[KE] [] = [I] .. (21)

where [I] is an identify matrix.

The term [KE.] [p] represents the observation spillover, and

to suppress that a MESS-like approach will be used, i.e., one

* needs,

IKEl [ 0 [0] ... (22)

Combining Equations (21) and (22), one gets

5
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[KE] [ [0iJ ... (23)

[K .1can be obtained as a least square solution of Equation

(23) as

-1

[KE] = [[I] I [0]] [0] [o ] [0T] 0 .. (24)

It is assumed that the rank of 1o is equal to the dimension

of the observations 9.

-' CLOSED LOOP ANALYSIS

From the implementation point of view, the control u

will be generated by

,U = -[Kc] 4c. (25)

where [Kc] is obtained from Equation (18) and 4-c is obtained0
from Equations (19) and (24).

Substituting Equations (25), (19), (7) and (8) in

Equation (6), produces

2
q + [2 1 ] + [w q [- [C [K 1 1 4 ... (2)

Define
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(2 ]I  Y A [Ku] [KE] 0%00](27)

The matrix [2] I will dictate the stability of the closed

loop system. If the matrix,

[2Cw]M = (24w] + [2 w]I ...(28)

is positive definite, the closed loop system will be

* stable. For details see Appendix A.

In the case of collocated actuators and sensors, closed

loop stability is assured for the above control and

estimation laws. This is shown in the next section.

When actuators and sensors are not collocated, i.e.,

[ T] f [¢ 1, stability condition may not be satisfied. The
A o

system may be stable in two ways; (i) Change the locations

of actuators and sensors, and/or (ii) change [Kc] and [KE I in

the following way:

*.. (K ] = [€1 [Qc] J [-1 ] [J r[2AwA ]

L [0] j...(29)

and [KE.] [ I) [O]j [QE] [ 0JT j[00] T]E I .. (30

* Equations (29) and (30) are generalized pseudo inverse

solutions of Equations (17) and (23), respectively. The

,V arbitrary matrices LOcI and (QEI must be positive-definite
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and symmetric. They can be varied such that [24w]M is a

positive definite matrix, thus stabilizing the closed

loop system.

COLLOCATED ACTUATORS AND SENSORS

Collocation of actuators and sensors implies

T
0o1 = OA ... (31)

Simplifications occur in this special case. Equation

(24) now can be written as

[KE] = [(I] [o(0 A] 1(0 T1 (0 1..(2

Equation (27) can now be written using Equations (31), (32)

and (18) as

[2w]i = [A ]  [ - T [ [ I [0
[0] ... (33)TL T

[2;wj I can be seen to be a positive semidefinite matrix.

Since [2; ] is a positive definite matrix, [2 ;w]M is a

positive definite matrix. Thus, the closed loop system is

stable.

The implication of [2 w)i being positive semidefinite

is that almost all the modes of the system can get active

damping. Thus, the closed loop system is more robust than
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the open loop system.

NUMERICAL ANALYSIS

The above problem of collocated actuators and sensors

was numerically simulated using the data provided by VPI in

Reference [41. Five actuator-sensor pairs are placed at node

locations 1, 4, 10, 13 and 22 of the dynamic model of the

test article. The first 20 modes are used to model the

dynamics of the test article. It is desired to provide

active damping to the first six modes.

Figure (1) shows the schematic of the closed loop

system.

u010Plant
y

*FIGURE 1
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The control gain matrix [KcJ and the estimation gain

matrix IKE] were obtained using Equations (18) and (32),

'p respectively.

Table 1 contains the open-loop eigenvalues and closed-

loop eigenvalues for two cases. The results confirm the

analytical observation that collocated actuators and sensors

induce active damping in almost all system modes.

Active damping is provided only to the modes to be

controlled when the controller is used without the estimator.

When the estimator is also used, almost all the residual

modes get some active damping, thereby showing that the

compensator is trying to suppress the observation spillover.

But this takes place at the expense of controlled mode

damping, where the active damping predicted by the controller

only is not achieved. But the overall closed-loop system is

more robust than the open-loop system.

Table 2 contains the control gain matrices [Kc] for

both cases, and the estimation gain matrix [KE], which is the

same in both the cases.

CONCLUSION AND DISCUSSION

MESS-like control and estimation laws are developed to

control the first six modes of the VPI pendulous plane grid.

A general case has been analyzed to study the stability of

the closed-loop system. If the closed-loop system is found

to be unstable, that can be remedied in two ways: (i) change
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TABLE 1

SYSTEM PERFORMANCE

CASE A* CASE B*

CLOSED LOOP CLOSED LOOP CLOSED LOOP CLOSED LOOP
OPEN LOOP (NO ESTIMATOR) (WITH ESTIMATOR) (NO ESTIMATOR) (WITH ESTIMATOR)

Frequency Frequency Frequency Frequency Frequency
(Hz) (Hz) (Hz) (Hz) (Hz)

.58385 .043 .5848 .077 .5856 .109 .5849 .077 .5887 .153

.8898 .05 .8898 .081 .8897 .0077 .8899 .081 .8881 .084

1.3731 .035 1.3724 .104 1.3712 .1115 1.3734 .104 1.370 .137.
3.2792 .01 3.2877 .0563 3.2859 .0354 3.3197 .102 3.3118 .0595

3.593 .009 3.582 .0556 3.5840 .0363 3.5469 .103 3.555 .0618
5' 4.9572 .013 4.955 .0599 4.9557 .03667 4.950 .107 4.9526 .0594

5.4848 .0035 5.4848 .0035 5.4846 .004 5.485 .0035 5.484 .0044

5.6535 .003 5.6535 .003 5.6535 .0032 5.654 .003 5.6533 .0033

6.1941 .006 6.1941 .006 6.1938 .0085 6.1942 .006 6.193 .0105

7.9967 .005 7.9966 .005 7.9966 .0077 7.9966 .005 7.997 .0102

8.3988 .005 8.3988 .005 8.3970 .0098 8.3988 .005 8.3912 .0139

9.393 .005 9.393 .005 9.390 .0113 9.3930 .005 9.386 .0175

9.8065 .005 9.8065 .005 9.806 .0058 9.8065 .005 9.8052 .0065

11.634 .005 11.634 .005 11.634 .0059 11.634 .005 11.633 .0065

13.273 .005 13.273 .005 13.272 .0073 13.273 .005 13.27 .0095

20.556 .005 20.556 .005 20.556 .0050 20.556 .005 20.556 .0050

24.730 .005 24.729 .005 24.729 .0053 24.729 .005 24.73 .0054

26.959 .005 26.959 .005 26.958 .0054 26.959 .005 26.958 .0058

28.856 .005 28.854 .005 28.855 .0054 28.855 .005 28.85 .0057

30.748 .005 30.747 .005 30.747 .0052 30.747 .005 30.747 .0054

Case A: Desired active damping ratio in first six modes (.1, .1, .1, .1, .1, .1)

Case B: Desired active damping ratio in first six modes (.1, .1, .1, .2, .2, .2)
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the actuator and sensor locations, and/or (ii) change the

control gain and/or estimates gain using generalized

pseudoinverses.

It has been shown that for collocated actuators and

sensors, almost all modes - controlled and residual - can get

some active damping; thus, the closed-system is always

stable. The numerical simulation confirms this result.

The estimator developed here does not have any

dynamics. This reduces complexity, on the other hand, there

is no guarantee of closed-loop stability in the general

situation. However, the system will be always stable when

actuators and sensors are collocated. A Kalman filter may be

advisable, but it will introduce estimator dynamics and

complicate implementation somewhat.
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TABLE 2

CONTROLLER AND ESTIMATOR MATRICES

Estimator gain matrix IKE]

*-1 *32960U -1.62230-49 -1.0*73-o -8.3464D-03 - 1. 1465D-oe
3.KE] - * 6.1054D-03 1.72790-02 -3.MlSD-03 1.S691D-02
2K .474aD-02 1.9644D-09 -1.S429D-02 1.4324D-42 -1.3814D-02E1.I2- 5M-02 -3.51920-063 1.6627"-2 1.64750-42 -6.9609D-03

-. 207D-03 -2.34USD-le S. 3355-03 1.849OD-02 1.41170-02
a.012s0-ft -2.50638-03 -7.2069043 2.0980-3 2.2476D-02

0 Controller gain matrix [Kc], Case 1

-9.6390-0 -42010-o 4 aso-o 6.737-01-3.7253D-42 1.2536t01
IR I3 - -. 93-2 66700 3.3223-OZ -3.51060-ae -1.96*4"-1 -1.6263-fc-7.53-3 131-4 -2.6622042 6.86170-ft 2.43160-02 -4.43960-o6V-6.303 -2336040-43 2.679D-f 6.7390-m 3.3434-02 I.e 73O-. B4:110-03 1.7546b-49 -2.3336-02 -a.46e3Ag 6..j329-ge 1.002-

4.96970-03 1.01720-03 -- 67-4 13I O -300
[1.41720-4 3 720 3 -1.31770-63 -1.99319-03 -1.3611D-03

Elz KE] -64.16670-04 -1.31770-03 2.41860-03 1.W740-03 -3.1497D04
1.3218D-03 -1. 9931"-3 1.09740-03 3.13809-0 7.3133-4
1.4386D-043 -1.8611D-03 -3.14970-04 7.31830-4H 4.2943D-03

Controller gain matrix CRCI, Case 2

-9.63920-03 -4.3019346 4.2692-02 1.5470-01 -7.46D-se 2.5073D-01
[K I - 11903D-0S 6:3274-03 3:3722-02 -?.Oell-fe -2. 1296-0 -3.1251-09

c 7.563-03 1.91IDfe 2.6W-f 1.703-61 4.3632-0 -3.97963-02
--4- 237D-03 -3.3604D-43 a.5679-02 1.36730-01 1.6697"-1 2.6149D-02
-8.41190-0 1.7546D-06 -1.33360-02 -4.91270-09 1.2748"-1 2.33-01

8.79S3-03 104320 -03 -6.7735-04 1 * 9970-3 3.3564D-63
1.043O3-0 6.55103-03 -9.3599D-03 -4.56490-03 -3.5W60-03

K~]X(E - .. 776S0-04 -2. 35990-03 4.0124"-3 2358160403 -1.33923-03
cl IK] 1907-43-4.S6499-03 2.58163-03 S.11960-03 1.79960-03

3.3564D-0 -3.59600-03 -1.33920-03 1.79950-63 9.9676-03

63



4R

APPENDIX A

Consider the linear time-invariant system

[A] x + [D] * + [G] * + [K] x = 0

where x is a vector, [A] and [D] are symmetric, positive

definite matrices, (K] is a symmetric matrix and [G] is a

skew symmetric matrix.

The null solution of (A.1) will be asymtotically stable

if all of the Eigenvalues of [K] are positive and unstable if

[K] has at least one negative Eigenvalue.

This theorem is known as the Kelvin-Tait-Chataev

theorem. For more details, see Reference (5].

Note that any matrix can be represented as the sum of a

symmetric matrix and a asymmetric matrix, e.g.,

(E] = [E + E + [E - ET o.(A.2)
2 2

'4 Thus, positive definiteness of the matrix implies positive

definiteness of the symmetric part.
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