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W
‘ A binary mixture theory with microstructure is constructed for unidirectionally fiber-reinforced
W

~ elastic composites. Model construction is based on an asymptotic scheme with multiple scales and the
2

-~ application of Reissner’s new mixed variational principle (1984). In order to assess the accuracy of the
e
f. model, comparison of the mixture model predictions with available experimental data on dispersion of
WA
~, harmonic waves is made for boron/epoxy and tungusten/aluminum composites. Formulas for the
o :
:. effective moduli are also presented, and the results are compared with test data and other available
L)

predictions.
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. ) 1. Introduction
5y W)
139
Sy With the advent of high strength and stiffness fibers such as boron and carbon, and the develop-
"3:' ment of techniques for binding such materials to plastic or metal, fibrous composites have become
dil
?: j: important elements of modern structures. Such composites, due to their microstructural heterogeneity,
3
X Fy
%'*«, may exhibit response phenomena for some environments that are not observed for homogeneous
)
%c;@h materials. An example of these phenomena for dynamic environments is wave dispersion, and under-
% . . :
B standing of which is important both from the standpoints of direct response prediction and indirect ana-
3!:} lyses associated with such topics as nondestructive testing. For fibrous composites, wave dispersion has

been amply demonstrated via ultrasonic techniques by such investigators as Tauchert and Guzelse

(1972), and Sutherland and Lingle (1972).

Simulation of response phenomena associated with the material microstructure, such as wave
dispersion, requires a higher-order continuum description. Several such models have been proposed,

some phenomenological, some nonphenomenological.

A higher-order continuum model which simulates wave dispersion was first proposed by Achen-
back and Herrmann (1968) for unidirectionally fiber-reinforced composites. This theory, called the

"effective stiffness theory”, has been further studied and applied to fibrous composites by Bartholomew

Ny
1
i

' and Torvick (1972), Hiavacek (1975), Achenback (1976), and Aboudi (1981). The aforementioned
:-_:::: work concerned linear materials. By modifying the original methodology, Aboudi (1982, 1983)
.,EJ-B extended the linear model to account for inelastic responses of the composite constituents.

£

t 3 In addition to the effective stiffness modeling concept, a mixture approach has been followed by a
\?:. number of investigators. A phenomenological version of this model type was adopted by Martin, Bed-
zt: ford and Stern (1971). Deterministic, nonphenomenological mixture theories were introduced by
_' Hegemier, Gurtman and Na);feh (1973), Hegemier and Gurtman (1974), and Murakami, Maewal and
; z:_' Hegemier (1979). Although capable of simulating nonlinear component responses and interfacial slip,
'E:';- this work was limited to waveguide-type problems. This limitation was removed in the mixture theory
( developed for laminated composites by Hegemier, Murakami and Maewal (1979), and Murakami,
:::': Maewal and Hegemier (1982). In their papers, it was demonstrated that the mixture-type model was
g
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capable of simulating harmonic wave dispersion in laminated composites more accurately than the

> 0h

)
oy
)

effective stiffness theories. Further, the mixture-type mode! requires fewer governing equations. The

>
'

accuracy and efficiency of the mixture theory is due to the use of appropriate displacement and stress
microstructural fields, and a judicious smoothing technique. These are obtained by an asymptotic pro-
redure with multiple scales. This procedure yields a series of microboundary value problems (MBVP’s)
defined over a unit cell, which in turn represents the (periodic) microstructure of a composite. The
lowest order version of the MBVP method is equivalent to the "O(1) homogenization theory” summar-
ized by Bensoussan, Lions, and Papanicolaou (1978), and Sanchez-Palencia (1980). The latter, while it
generates appropriate static moduli, is nondispersive. Simulation of wave dispersion requires at least a
theory which is classified as an O(e) homogenization theory in which ¢ denotes the representative ratio

of micro-to-macrodimensions of a composite.

To date an O(e) mixture theory has not been constructed for fibrous composites subject to arbi-

trary wave motion. Construction and validation of such a 3D model for unidirectional binary compo-
sites with periodic microstructure are the objective of this paper. To facilitate this task, the asymptotic
procedure with multiple scales noted previously is combined with a variational technique (Murakami,
1985). Following development of the basic equations, the dispersion of time-harmonic waves is studied
and the results are compared with experimental data for boron/epoxy (Tauchert and Guzelse, 1972)
and tungusten/aluminum (Sutherland and Lingle, 1972) compositeé. The good correlation obtained
with experimental data indicates that the proposed mixture model furnishes a basic tool by which
dynamic responses of elastic composites can be investigated. While the model cqnslruction procedure
is applicable to inelastic component response and interface slip, extension and investigation of the non-

linear problem is deferred to later publications.

A
e
'1;.-)_-4 2. Formulation
el
R Consider a domain ¥ which contains a uniaxial periodic array of fibers embedded in the matrix, as
-
‘.;;.:, shown in Fig. 1. Let a rectangular reference system X, X,, X; be selected with X, in the axial direction
-
W
44 of the fibers. In the X;, X;-plane, a typical cell that represents the geometrical microstructure of the
‘
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4 ’ composite is shown in Fig. 2 for a hexogonal array.
tf?.
3 aat
v For notational convenience forms ( )@ o = 1,2 denote quantities associated with material
,ii;“ with o = 1 representing fiber and « = 2 matrix. Cartesian indicial notation will be employed in which
I}
I}.' Latin indices range from 1 to 3 and repeated indices imply the summation convention unless otherwise
i
0 - -
.hj' stated. In addition, the notations (7); = §(7)/9X; and (7), = 9(T)/8: will be employed in which ¢
\'i_\ represents time. Quantities of the form (T) and ( ) denote dimensional and nondimensional variables,
‘ ’
X
p L respectively.
)
The governing relations for the displacement vector % and the stress tensor &’ in the two
ot
‘: constituents are:
E
W (a) Equations of motion
:".u .
o - - -
" (a. - p‘")u,(f,) , a,j('g) - O.'Sa) )
' 3
e where 5 is the mass density;
WY .
" (b) Constitutive relations
:.;:: cru - Ah)s a2 + @ e(a) Q2
e
T where 1, 71’ are Lame’s constants, e/ is the infinitesimal Cauchy strain, and 8 is the Kronecker
;),. delta;
"" A .
i?' (¢) Strain-displacement relations
' n
32 _
hey ’ 1 -
C o) =5 @5 +3%) &)
\j ~
"J
"'j (d) Interface continuity relations
=
el
e - - -
o 50 - g®? | T =F@® on g @)
o
Y -
3 :j where »{! = 0 on the fiber-matrix interface & ;
v
o - -
! g (e) Initial conditions at 7 = 0 and appropriate boundary data along the boundary 9 V.
e Conditions (a) - (e) define a well posed initial boundary value problem. However, due to the
be'*
<.
"' large number of fiber-matrix interfaces the direct solution to this problem is extremely difficuit. The
~
o
e
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objective of the subsequent analysis is to alleviate such difficulties by deriving a set of partial differential
equations with constant coefficients whose solution can be utilized to approximate the solution of the
problem. To this end, it will be convenient to nondimensionalize the basic equations by using the fol-

lowing quantities:

A typical macrosignal wavelength
A typical fiber spacing or cell dimension
E'(,,,) +Pim) reference wave velocity and macrodensity

Em)=p(m Cln  reference modulus
7(,,,) = A/C m) typical macrosignal travel time

€= K/K ratio of micro-to-macrodimensions.

With the aid of the above notation, nondimensional variables are now introduced according to
(xl’xz vx3)-alv}2 9-x’3)/K ’ ’-?/y(m) ’
0@ = ARV Em o= =5Ypm . )

With the variables defined according to (5), the material properties are seen to be periodic in the
x3, x3-plane in which the periodicity of the fiber lattice structure may be defined by the cell. It is
expected that stress and deformation fields will vary significantly with respect to two basic length scales:
(1) a "global" or "macro” length typical of the body size or loading condition, and (2) a "micro” length
typical of "cell" planar dimensions. Further, it is expected that these scales will differ by at least one
order of magnitude in most cases. This suggests the use of multivariable asymptotic techniques (Ben-
soussan, Lion and Papanicolaou, 1978, Hegemier, Murakami and Maewal, 1979, Sanchez-Palencia,

1980). This approach commences by introducing new independent microvariables according to

x = xle . (6)

Therefore, all field variables are considered to be functions of the microvariables x3 and x3, as well as

the macrovariables x, , i = ]-3:

SOy xp x5, 8) = f(x), x5 X3, X3, X3, 1 5 €) (72)
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I' :c Spacial derivatives of a function f then takes the form
*

33 X

D -3 ..
axif(xk,r) ax’/‘(xk.x,,r,c)

< 1 8 .. .

o += 551 G, x,te) (7b)
2 € dx el

AY
) where 3( )/dx; = 0. By introducing the notation ( ),. = 8( )/dx; equation (7b) can be rewritten
TG

N as:
£
> 1
! fJ-f.‘i"':f..i’ . (7e)
_w’_
r‘; In the sequel f* will be written as f for notational simplicity.
B
N T The operations (7), when applied to all field variables, lead to the following "synthesized” govern-
Sy

o

ing field relations:

(a) Equations of motion

N
' 1 .
O’J?fl) + : q.l%i)' - p(a) ui(.‘l'l) ’ o’j‘ia) - 0'45’“’ ’ (8)
s (b) Constitutive relations
T
‘ 0’15") - )@ 3, e + @ eU(a) : )
\'.:' .
N (c) Strain-displacement relations
b |
-
b 1 1
. e = 3 ue + u@ + - @ + e} (10)
¥ )
&N ) .
J-j'.\ (d) Interface continuity conditions
":"Jf
N y® -y @ ey = c},”v,-‘” on . a1
e
g At this point, the variation of field variables which satisfy the periodicity with respect to x; is assumed.
-‘
’ According to this condition field variables take equal values on opposite sides of the cell boundary. The

premise allows one to analyze a single cell in an effort to determine the distribution of any field variable

A
> ) . . . O . . “ . .. . .
o with respect to the microcoordinates x;. The x* -periodicity condition is motivated by the Floquet and
A\
Fa
o
!h"~
N
e
=T
a0
'4‘-‘-
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Block theorems (Brillouin, 1946) for harmonic wave in periodic structures. Certainly, it eliminates
boundary layer effects. However, it is expected to provide a good model for the global wave

phenomena in fibrous composites with periodic microstructure.

For the construction of a mixture model it is convenient to cast the field equations in a variational
form by using the Reissner new mixed variational principle (Reissner, 1984). In the Reissner varia-
tional principle the variations of displacement, strain with (10) as definition and transverse stresses, i.e.,
all stress-components except o [, a;re considered. Thus, it is convenient to rewrite the constitutive

relation (9) in terms of the axial strain e{§’ and the transverse stresses:

o=+ )@efg ’+A‘"’[ez‘$’("')+e3(§”(-")l .
822 ( )]

a+20@ @ ] fon)® 1
e (- A@ O+ 2#)(.:)] “033] —Alefp) |

Red) (---) , 28 (---) , 28 (- )]

=g lb® .o, o] (12)

Using the equations of motion (8), Gauss’ theorem, and the x"-periodicity condition, it can be
demonstrated that the Reissner mixed variational principle, applied to the synthesized fields by the mul-

tivariable representation, takes the form:
: ) - (@) - (@)
SISz fc'f be ol + B8 615+ b 655+ Be) &8
[ 4 a= A )
+ Bef 6§+ Wel® ¢
+8633 iy + el ufgh — e (- ) + 8665w + -:— uy — e’ (-

+85 8ty + ufy) + T ufy) + L ufh - 2 (o)

+80 Wi + uly + el u@@. = 28 -+))




+85 (9w + uf? + ;‘- ufy.— 2efg (- - »de; dx;

.+ f [(8;4,‘2’ - Su’_(n)"r_,, 8"1;'(u,~‘2’ _ ui(l))]ds' dx, dx, dx,
I

2
=[Sz [[ou@p@u@axs deif ax, dx,ax;
(4 A@)
2 2 v
+fo (2 [f su@ 7@ ax; ax3)da (13)
[] T a=1 Ala)
where 4@ denotes the x3, x3-domain of the cell occupied by material a (Fig. 2), & is used for the

1 4
approximate transverse stresses, T,“" denotes the traction vector on the surface d ¥ where the traction
is specified, ds” is an infinitesimal line element on &, and d4 is an infinitesimal surface element on

the boundary of ¥ :9V. In (13) basic variables are the displacement u;©), the transverse stresses &,5-"’ )

and the interface traction vector l’T,‘ The Euler-Lagrange equations of (13) include (8a), (11a), (12),

and
T = g on & . ‘ (14)

The above variational equation (13) furnishes a tool with which a mixture model can be obtained
with appropriate trial displacement and transverse stress fields. The basic requirement for the variables
is the x" -periodicity condition on the cell boundary 4. The microstructural variation of the trial func-

tions can be obtained by the asymptotic procedure (Murakami, Maewal and Hegemier, 1981).

3. Asymptotic Analysis

The premise that the composite macrodimension is much larger than the microdimension,

A a a

€ << 1, and the form of scaled equations (8) and (10), suggest the expansion of the dependent vari-

" e it]
B

. .
N .

. .

-
O]
T
-

ables in the asymptolic series:

Ly
s

LR ]
R

v, .

» 'r‘:S “
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If (15) is substituted into (8)-(11) and the coefficients of different powers of ¢ are equated to zero, a
sequence of problems defined on the cell is obtained. The first of the equations in this sequence fur-

nishes
4@ =0 , o), =0 . (16)

Equation (16a) implies that 4,2} is independent of x; and yields with the zero-th order expansion of

(11a):
uf) = U G, 1) . a7”n

The remaining systems of equations obtained from (8)-(10) are, forn 2 0:

o'jﬁr)wl).j' = P(a)“i(gvl),u - o-j(ﬁ’)l),j ’ U'js“fr)l) = o'iﬁr)r) ’ (18)
ooy =208y el + uefts) (19)

1
el = 3 WGy, + wfeh, + uehn, + wGins) - (20)

To be added to the foregoing are the interface conditions and the x* -periodicity conditions for n > 0:
ulgl)) - ul'gl)) , a'js'len )Vj(l) = o'j(izen )Vj(l) on & > (21)

u) and of3,w/¥ are x'—periodic ondA . (22)

The first set of microboundary value problems (MBVP's) for o (), and u}, called the O(1)
MBVP’s, is defined by (16b), (18b), (19)-(20), (21b), (22b) with n = 0, and (21a), (22a) withn = 1.
The O(1) MBVP’s are excited by U, . Similarly, a sequency of MBVP’s is defined for each n from
(18)-(22). With appropriate integrability and normalization conditions, higher \order terms may be
computed by solving the MBVP's. In particular, the O(1) MBVP’s are the ones solved for the O(1)
homogenization theory proposed by Bensoussan, Lion and Papanicolaou (1978) and Sanchez-Palencia
(1980), and, also. form the basis of the mixture theory which may be classified as an O(e) homogeniza-
tion theory. The asymptotic approach yields the microstructures of displacement and stress fields after

solving a multitude of MBVP's which are complicated.
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In order to use the approximate solutions of the MBVP’s in the course of developing a mixture

model, and to ease the burden of solving the MBVP’s exactly, a variational procedure was adopted by

Murakami (1985) for laminated composites with the help of the Reissner new mixed variational princi-

o

" ple (Reissner, 1984). A similar approach is adopted here for fibrous composites. To obtain the lowest
Ry

N . . .. e

KL order mixture theory by using (13), it is necessary to obtain trial displacement and transverse stresses
\

. to O(e). In the sequel, the trial functions are obtained for a hexagonal cell with a concentric cylinders
"3)‘:: approximation as shown in Fig. 2. 'In Fig. 2, (r 8) are micropolar coordinates:

!‘ ' . . . .

f"\/X22+X32 , me-X3/X2 ’ (23)

’,‘C by which r = 1 constitutes the cell boundary and r = \/nm, denotes the interface & . The quantities
s
; n indicate the volume fraction of material a and satisfy

<

o nV4+pDay | Q4)
:F:
X -; In terms of the polar coordinates the x *-periodicity conditions for a hexagonal cell with the concentric
gl

cylinders approximation reduce to the form:

Srpt)=flgrm+642) at r=1 . (25)

;J" 4. Trial Displacements and Transverse Stresses

‘J‘:

&Y The O(1) stress and Ofe) displacement fields are obtained by solving the O(1) MBVP’s which are

" defined by (16b), (18b), (19)-(22) and (24). These MBVP's are excited by U,(,),. The exact solution

P of 4§} is fumnished in the Appendix. For the mixture formulation it is convenient to introduce an

;::: O(e) displacement variable which represents U, ), + U;(,), according to:

J

, S0 = = [ uis =L [ uguma (26)
: €A

* g 13

':k where A (=n) is the area of the cell. Due to the fact that (]} is excited by Ui, + Uje), one

Y

e obtains

%

" 32

e =5 "
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Equation (27) can also be obtained if one substitutes the exact 4{} in the Appendix into (26) and
eliminates U;(,);. To render the analysis tractable, it is preferable to utilize an approximate form of
the exact solution for ;{}. The exact solution indicates that the following form of the O(e) displace-

ment yields a good approximation:

2 3
U} Og x0 o) = § (5 ,1)g@ (r) cos @ + § (x ,)g®) (r) sin @ (28a)
oM
:f;\»% where
A8 '
3— \ r. g(l) (") - W R (2) (r) - ——" ( r+ —) . (28b)
-
o Anticipating the O(e?) difference of the average of 1, on 4@, equations (17) and (27) yield the fol-
:" lowing trial displacement field:
L 4 Og xp 1) = U (x ) + € 4} Oy xp.0) (29)
e where 1§} is defined by (28). Equations (29) and (28) indicate that the mixture displacement vari-
X
.4

2 3
ables are UV, U2, §; and S; with the constraint (27).

By using (29) in (19) with n = 0 and considering the O(e?) differences of the average transverse

b

:::f::‘ " stresses, the O(1) trial stress field may be expressed as;
- (@) (@) .
ol G220) 722(x; 1) 5 cos 20 cos 20 sin 26
’.,::: . 73300) = [733(x; 1) + ’Lzz [53) Oy ot) |cos 28] + 153) Gy u1) |—cos 26] + t{}’ (x, 1) |sin 26

, 2{2 - PO t) 0 sin 20 0

Y (30a)
L 3 . - w) ( ) (@)

T 310) 731Xt 8,2 sin 29 cos 20

%, - -2 Q) (

s 7 1260) 7120 1) + 2 132 G t) cos 20| + 13 (e t) —sin 29 (30b)
t

l '(h‘i

] In order to define the O(e) trial stress field it is convenient to define the O(e) stress variable
according to

Ny
P g":
.:' l
,:4 P (g 0)= f oy Vs -7f acldwVas . 31
"53

(*3 If one integrates (8a) over A’ and utilizes the x*-periodicity condition, one obtains the mixture
b -J
o momentum equations:
“_'i}_l

o5
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DO
‘,: 1 '
‘-,\: n@ 0’_/(,-‘:7) + (_1)::4-! Pl = pl) p(a) u'gx‘a) 32)
e
A where the average operation is defined by
L)
3 Fe 0 ) = =2 [ [ 7@, x5 1) drsass (33)
::. { £ b ’l(")A ) k rxj ’ 3
s ’
" . N .
Y From (32) it can be seen that P, represents an interaction body force between the two constituents
3& \ across the interface. Also, the form of (32) with P, defined by (31) satisfies the integrability condition
Wiy .
j:: adopted by the O(1) MBVP's for o {4}, which are defined by (18)-(20) with appropriate n’s and (31).
Y]
et As an Ofe) trial stress field which satisfies (31b) one may use the following approximate fields:
.r“- . @)
(o o201 . 3 1
(432 oum| = Y Py(x 1) (r) cost |1] + P;(x ,1)g (r) sin @ |3]} . (34a)
Lo n
f\k 0'23(1) l l
o
$S .
ADED 311 1 sin @
W1 . == Pi(x.1) (")(r)[ ] 34b)
iz & 120) 2 T8 cos 6 (
’3 *
e As a result, the trial transverse stresses are expressed as:
% P = 6y 06 X0 + € 580 06 X7 0) 35
.
S’k where &%), and 6}, are defined by (30) and (34), respectively.
» J‘!
e,
i
r}: .
B 5. Mixture Equations
NS By substituting the displacement and transverse stress trial functions defined by (29) and (35),
C( respectively, into the Reissner variational equation (13), one obtains the following relations as the
N Euler-Lagrange equations:
,t, (a) Equations of motion
o
-’:i§ g 4+ (1P P = n@p@ ) | j=]1-3 (36)
S5
2 2
X ‘._)‘ M+ —’, @i —a{+RMN=1S, ,i=12 , (37a,b)
D :-:S €
oy
o
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A
‘k ; y 1 oa_ _a 3
g My, + 3 @3 = o3+ R =18, ,i=13 , (37¢,d)
K
) 1,3 2 3

; 3 (M, + M) + :'; @f - o+ RP) =15, . (37)
:

Y where

i

9

l| (aa) — 1 J'o.’ ’dx; a; ,

’ UJ n(a)A .{ ) /]

ol

K 2 3 2

e eM; , M) = -‘:— )3 Ja,}“’g(‘”(coso , sing) dx; dxj (38)
5 G-l A )

a3 and
9]

)

s' 1= 22' h(a)p(a) h(l) - ..l_ hQD - _—l_ Q+ n@ + L In n(l)) . (39)
' aml ’ 4" 4n®? n® '
) (b) Constitutive relations

&

K :

. [o_zzl(ad) [722](0) A+ 2“‘ A @) Uz‘(az) + (_1)a+l S’/n(a) +A(°) U(n) 1
% 033 T33 A A 2u Ug("j) + (_1)a+l'§1/n(a) )

Q' .

gl (aa) (@) @) 2;’

2 L #0) ™S Uys+ Us, cnet | 3 2

{ a3 = |73 _“(a) U3J+ Ul.3 + -n“)') sl ’ (40)
) o 12 U, + Uy, él

.lJ

‘. .

@ (1y/.2 2 2 : 3

‘ Py=Bi[(UD = UMY e+ (h/ DS 1+ S0 + 55, + S

3 2 My/,.2 2 2 :

: Py= Bz[(Uz - U; Ve + 2% Sl,l + h(Sz‘2+ 52‘3)]

8 P ) (D)2 4~ & 3 3

q 3= ﬂ;[(U; - U; Vel + Y S“ + h(Sz‘z'F S)J)] 41)

where

N Bi=VIZ W QueN} By=By= VT H/ O +w)®) |

- 2 2

: y= I AN/ +u)® | pa= T op@ (42)

a=| a=}

1%
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1 -15 -
E ' 2 2 h 2 h 3 h
BN Mp=hPy , My= 5 Py My=3 Pr . My=35 P3
5
' 3 3 h 2 2 2 3 3
\ MJJ-hPJ»MJI"'z_Pl»MZJ-MZJ-MJI-MZJ-MH-O (43)
! l where it is understood that
g
. 2 2 3 3
tige) My=M, . M;=M,; ; (44)
)
A0
2 R = @In® RY = (/24 R)n® , RY == tfp/n®
o
i RP = /24 1)@ 45)
:3\ and
‘:(
N 1 ==y @SnD P =@ §/n@
L J
e ) DO _ 2,0 @ Y Y
e t =— A+ p)2(S;— $))/n? [t == u DS, + S3)/n
L ;
e - P == O+ w2 (46)
_}‘ - The remaining constitutive relations associated with o {§’ are obtained from (12a); the results are
‘-
7 ;s
" o=\ + 2u)@UR + A U + UF + 1S+ S/ @t CY))
J
.
o M $ P
o 11 A @2 1.1 2
08 - 2 @0+ )@ - ——s [ ] (48)
3 @ |3 Y
K My = , O +u) Si1 Py

The associated boundary conditions are on 8 V

2 n("”)(rj?’”)vj - ;:(ap) . or SU,(") - 0 N '-1,2,3 . (49)
w
.
7 2 > 2
J‘( bf,-,-vj - 7., or 8& bt o N i-l,Z N (50&)
3 W 3
Mj,'l’j - 7.' or OS, - 0 ) 1-1,3 ’ (SOb)

2= )=

.
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3 2 » b-3 3
(M;‘l‘ MJ)Vj =T+ T; or & 52- 0. (50c)
where

1 4 | 4
men = 2 [ [ T s ax;
L

> W v
e|7 . T,-] - -;14— 21 T@)g@ (cos , sind) dx; dx; . (51
a=-
Equations (36)-(50) and the initial condition

;o
Uuw , U .5 .5, at=0 on ¥ (52)

define a well posed initial boundary value problem with respect time ¢ and the macrocoordinates x; .

6. Harmonic Wave Dispersion Spectra

In an attempt to test the accuracy of the mixture model, the phase velocity and group velocity
spectra of the mixture theory have been compared with available experimental data for time harmonic
waves. For the comparison harmonic waves which are propagating at an arbitrary angle of incidence in

a full space of the following form are considered:

wo® ,u® v, uP,u,usP sm s,/.k zs,/:k S,/;k]r

= exp {ik (x| cos ¢ + x; sin ¢ cos § + x3 sin ¢ sin ) — ianl U (53)
3t where
:‘-:
- . . ) ( . ( 2 2 3 3 3
;;:.;, Uv=w",u®, U U, U D U(” S1.52,25,85,517 (54)
-":\'b T y (@) J .
o and [ ]7 denotes the transpose of [ ]. In (53) U’ and s; are constant amplitudes, k denotes the
-y
» -V\ . . - . 4
[\ ey wave number, w represents angular frequency, ¢ is the azimuth measured from the x, axis, and @ is
s
the longitude; the direction of the wave propagation may be best represented by the wave vector k:
"l
§
o
i k= klcos & ,sing cosf ,sino sinflT . (55)
t;':
!:..‘.
b3 — e
R R AT O R ST NNy Ly T '-‘.'\-'\.J“'-‘ e A R Nk A el U URAG A R e Vot Xy R
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Substitution of (53) into (36) and (37), which are expressed by the displacement variables with

(40)-(46), yields an eigenvalue problem for ew of the form:

& KIU= (ew)IMIU (56)
-
o where [K] and [M] and are 11 x 11 real symmetric matrices, the elements of which are functions of

! the mixture constants and the wave vector. Furthermore, [M] is a diagonal matrix. Upon calculation

Y
¥
: of the eigenvalue ew for a given ek, one obtains the phase velocity C, as
e
) C, = (ew)/ (k) . (57
s *
7‘ For each computed eigen pairs (ew , Ui, k = 1,2, - - - 11 the group velocity
&
4 do
D Ce= " (58)
¥
: can be obtained by taking the derivative of (56) with respect toek:
s
by . .
i [K‘]k {j;: - {Z(E(»)Cg [M] + (Ew)le'l Uk . (59)
P
, {: For the kth eigenpair equation (59) yields
4 U{IK'] — ) IMNU
“.:- (C, )k - . r . (60)
5 2(ew), (UT M),
!
A0 _
b In the subsequent simulation a typical cell dimension A was chosen to be a cell radius by introducing
[ .
‘A the concentric cylinders approximation of the equal area. The reference elastic modulus and density
; used for the scaling ave

- 2 - _ 2 _
Em= GE‘ nla) pla) . Pem ™ a§| n@ p(a) . ((3))

where £’ is Young’s modulus. The dimensional frequency v (H,) can be computed from ew by

3 ' v = (€N Em/pm/(273) . (62)
N

* L — ——er— ——gy
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Numerical results are presented for a boron-epoxy composite, for which experimental results were
presented by Tauchert and Guzelse (1972) for a waveguide case ¢ = 0° and a waveflect case ¢ = 90°.
The material properties are summarized in Table 1 in which the values for Poisson’s ratio are
estimated. In the simulation A was computed from the fiber diameter (= 2NnA) which was
1.016 x 107* m. The group velocity spectra for a waveguide case ¢ = § = 0° are shown in Fig. 3 for
two acoustic modes: a "gross” longitudinal mode and a "gross” shear mode. In the figure the same sym-
bols as the reference of Tauchert and Guzelse are used for the experimental data points. It is noted
that reasonable agreement is achieved for the waveguide case in which pronounced dispersion is
observed. The group velocity spectra for a wavereflect case ¢ = 90°, 8§ = 0° in which the wave vector is
normal to the fiber axis are shown in Fig. 4 with the experimental data. The figure includes three
acoustic modes: a "gross” longitudinal wave (P-mode), a "gross” vertically polarized shear wave (SV-
mode), and a "gross' horizontally polarized shear wave (SH-mode). The sets of experimental data
correspond to the "gross” P-mode and the "gross” SH-mode. It is noted that there are significant devia-
tions from the "gross” SH-mode, but the overall agreement is not unsatisfactory if one admits the scar-
city of the experimental data and the difficulties associated with the measurement of shear wave veloci-
ties. It was reported by Tauchert and Guzelse (1972) that a shear wave exhibited extremely high
damping of the pulse. A similar observation and the scatter of shear wave data were reported by Sachse
(1974) who conducted modulus measurements of boron/epoxy composites by using pulse-echo tech-
niques. He concluded that "the measurements of the present investigation indicate that shear waves
propagating along and across fibers in the composite materials tested do not always propagate at the

same speed.”

Sutherland and Lingle (1972) reported phase velocity measurements for tungusten/aluminum
composites whose material properties are shown in Table 2. The equivalent cell radius A was computed
from the given fiber spacings which yield the area of a typical cell 4 (= 7 A2) 0.579 x 10°¢ m2. Fig-

ure 5 shows the phase velocity vs. frequency relation for the "gross® longitudinal mode. A reasonable

agreement is observed between the experimental data and the theoretical prediction.
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£ 7. Effective Moduli

T
7 The O(1) homogenization theory which yields the effective moduli of composites can be obtained

. by taking the limit of ¢ — 0 and equating the constituents’ displacements

s

j’_: Ul(" - U,-“’ - U: (63)
‘ By introducing the above constraints, equations (36) yield
W

$ ‘7/%") =-p (M)Ui.n (64)
! .

b where

2 2
o.ém) - zl n(a)oéaa) , p(m) - zl n(a)p(a) . 65)
a= a=-

D
]
< Equations (37) yield

(3

4

N o —afl+RP =0, =123 (66a)
“
& off—ofl 4+ RP =0 , =13 . (66b)
& , .

By eliminating S; by (66), equations (65a), (40) and (47) with (63) furnish

g™ = [Em]gm 67
l

b

] where

X g™ =lof . off) ol of) i ),

L\
« e = Uy, Uy, Usy, Usy+ Usay, Usy+ Ups, Ura+ Uy I (68)
< and [E™] is the effective modulus matrix with transverse isotropy due to the concentric cylinders
.

. approximation and is defined in the Appendix.

4

T The formulas for the effective moduli (B2) are assessed by comparing the results with the experi-
" mental data reported by Datta and Ledbetter (1983) for boron/aluminum composites. The results are
-

z shown in Table 3 in which the moduli computed from the effective stiffness theories for the square cell
]

Y by Achenback (1976) and for the hexagonal cell by Hiavacek (1976) are included by using the formulas
L9

1

q
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reported by Datta and Ledbetter (1983). The comparison has revealed that all high-order theories yield
almost similar results. It can be easily shown that the formulas for the effective moduli yield values
which fall between the upper and the lower bounds obtained by Hashin and Rosen (1964) for fiber-

reinforced composites.

8. Concluding Remarks

An asymptotic mixture theory with multiple scales was applied to unidirectionally fiber-reinforced
elastic composites with periodic microstructure. In the model construction, Reissner’s new mixed vari-
ational principle was applied to the synthesized fields with multivariable field representations. In order
to assess the accuracy of the model the mixture dispersion spectra were compared with the experimen-
tal data obtained for the boron/epoxy composite by Tauchert and Guzelse (1972) and for the

tungusten/aluminum composite by Sutherland and Lingle (1972).

A satisfactory correlation with the experimental data indicates that the proposed mixture model

furnishes a basic tool by which dynamic responses of the composite structures can be investigated.
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-
A. Exact 4°;} of the O(1) MBVP's:

:E:::; uith = G g (W12t Usorny 056 + Wiy + Uy )sin ),
:::E" ufth = b, (Uyo) 2 + Uso3 + AUy )8 (r)cos 9

)

i AN + a§°”[{g“’)(r)cos 0+ ;((a) 8/5“)(r) cos 39} (Uz(o;'z - U3(o)‘3)

X

",,'b’ .

‘:;. + [g("‘) (r)sin 6 + l‘((") g,}"‘) (r)sin 39) (Uz(o)‘g + U3(0)2)]
::" +b (a)[{3(1 - R("))g (a)(l')COS 0+ (l + I}h))gIS?)(f)COS 30} (Uz(o).z - U3(o)‘3)
'n:;‘
e
: a:\:- + {3(1 - x“"))g,(") (r)sm 6+ (l + Kk k@ )g,}‘}) (r)sin 30} (Uz(o) 3 + U;(o) 2)]
QO

T u,"{{) = b, (UZ(O),Z + U3t A Ul(o),l)g("‘)(r)sin 6

(‘ + a{"’[{g“’)(r)sin 8 — k) gf’sin 30} (- Uy 2 + Usy.3)

+ {g“(r)cos 8 — kg, (r)cos 36} (U3 + U3(o)‘2)]

' :.‘I + (é(a) (r)cos 9 — k“"g,}") (r)cos 30} (Uz(o)‘g, + U3(0)‘2)]

O

“"[(3(1 — k@)g [ (r)sin 6 — (1 + x @)gfP (r)sin 30} (= U2+ Usi)3)

§:§

Ay

! :::: + {3(1 - x“’”)g,“” (r)coso - (1+ x“”)g,}‘,”(,) cos 30} (U2(0).3 + U}(o)‘z)] (A1)
®

)8 <

o where

4‘.!;

o

o 2

:*_ bo = [(A +#)(2) - +F~)m}/(2dl) , dl = 21 ()H_y_)(a)/n(a) + #(2)/(,,(1)"(2))
R a=

.

s 1. 2
{j G=- W= pu?)d, , dy= )_-_l pn@n@ 4y O (1, @)

b am=
:::‘;.‘

':3 AS QO =AY [A+p)D — (+p)?)

Py

- ‘q .

W= 0+%) @@ | k@ = (1-x@)/ (144 @) (A2)
.
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g = gy =r3 | gfP(r) =0

gl(z)(,) -3 ! , 81’2)(’) - (= i+ ,—J)/n(z)

,:,ﬁé g () = r3 = (14 D)2 {4(1—k D4 D=3 - 3(1—x D) 3-Y) | (A3)
E'J;" In Egs. (A1) af®) and b{*) are obtained by solving the linear equations for x= [a{", 5§V, af?,
.;1' b§2) 7

s'. : -
B 4l x = B (Ad)

8 where

By Ap=1,A4y=0,45=pVnV 44 =0

° Aiy= 30—k D)n D | g = (14D ®?

Aoy Ap=—Ag=3n0uO(1—g®) | g m=1, Apy=m—k@Yn® |

- - - 2
» A= “(2)/,,(2){1 - K(a)/n(l)] , A= 3K(2)”_(2)/”(I)

'l‘ }'I“
¥

AM - — 3n(2)(1 + "(I))(l - K(Z))

A= Q1+ xD)nWP = (4= 320)(1 - k@ + k@) (n D (1 + D))

I Sl it

»
Pl

Xoa
-

1,

A= @1 = kD) () = zgQ7p W)

s

Ag=— 3“(2)(1 — kD) 4 3&(2)/,,(1)) + 12#(2)(1 — kD5 K(Z)z)/{n(l)z(l +xD) . (AS)

X

and

-.:-.'.C Bl - Bz - 84 =0 S 83 - Ql,“) - p.a))/z . (A6)

Cph
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T,

It is interesting to note that for most of practical composites b4, a = 1,2 are small compared with

a$.
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oaly " B. The Definition of [E®]in (67)
{ o " EwEy,E; O 0 O "
'v }(:" o, Eyz EnEy 0 0 0 Usa
oy Ep Ep Epy 0 0 0
o |0 O 0 E, O O Us+ U, 1)
. 0 0 0 0 Eg 0 Us,+ Uy,
@ 0 0 0 0 0 Eg |Ui,+ Uy,

where

2
Eff) = T n® 0+ )@~ Q0 —2@W/a,
h"\ 2
\» El(f') - 21 plh @ 0w )\(2))(()\ + I-l-)“)‘ O +“)(2)}/dl
”
2
Q) E{ -a}-_-_] OO+ )@ — (O 4+ 1)V — A+ @) - @D - u PV,

L 2
f“"‘ Eg") - .,El nel) @ _ {()‘ + “)(l)_ O +#)m}2/dl+ Q‘(l)_ #(2))2/42

EZ = (Efp) - EfP)/2

L 8

voay o
[ |

o KR

\'A'.-\' .
o )

2
Es‘?') - ¢§l n")p.")— w(l)_ “(2))2/d3 , (B2)

»

A

and where

e
LS
oS

)
P
e a .8

2
dy = 21 r@/n@ + (\ + 2)?/ 20V a@) | (B3)
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Table 1. Material Properties of the Boron/Epoxy Composite Tested by Tauchert and Guzelse (1972)

T P AR P A AT s 2T 1T 4T AT 17N

Volume Young’s Modulus Poisson's Ratio Mass Density
Fraction n®’ E@ v pe
379.2 GPa 2682 kg/m>
Mporon 0.54 (55 x 106 psi) 0.18 (251 x 1076 b sec?/in*)
5.033 GPa 1261 kg/m>
(Dgpoxy 0.46 0.73 x 106 psi) 0.40 (118 x 1076 b sec¥fin*)

Table 2. Material Properties of the Tungsten/Aluminum Composite Tested by Sutherland and Lingle

(1972)
Volume Young’s Modulus Poisson’s Ratio Mass Density
Fraction @ E@ ya) i)
(M1yngsten 0.022 398 GPa 0.28 19194 kg/m>
@ Atyminum 0.978 71.0 GPa 0.34 2700 kg/m> .
;
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Table 3. Comparison of Effective Moduli of a Boron/Aluminum Unidirectionally Fiber-Reinforced

Composite in Units of 10" N/m?

Data® Mixture Square Cell? Hexagonal Celi?

Model Model Model
E 2.450 2.551 2.480 2.551
Eip 1.825 1.868 1.856 1.872
E{y 0.779 0.661 ———ae 0.661
E{ 0.604 0.578 e 0.578
E{) 0.526 0.604 wmeen 0.606
E 0.566 0.559 0.451 0.561

& After Datta and Ledbetter (1983}
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Figure 2. A typical cell
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Group velocity spectra of waveguide modes
for a boron/epoxy composite(Tauchert and Guzelse,

1972)
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for a boron/epoxy composite(Tauchert and

Guzelse, 1972)
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