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Crack Healing in Polymers

R.P. Wool
Department of Metallurgy and Mining Engineering

University of Illinois
1304 W. Green St.

Urbana, Illinois 61801

ABST ACT bc 7-
hen two similar polymers contact in the melt to form a polymer-polymer

interface, interdiffusion of random-coil chains occurs. For this case, we
determine a set of properties, H, as a function of time, t, and molecular

weight, M. They include the number of chains, n, number of bridges, p,

average monomer interpenetration depth, X, the total monomer depth, Xo, the

center of mass diffusion,-'Xm,the average contour interpen tration length, 1,

the total contour length,_^, and thea yer bridge length,-l The time

dependent, H(t), and equilibrium solutions,T , summarized as

H(t) ~ tr/ 4M-s/ 4 ; H . M(3r-s)/ 4, where r, s = 1,2,3,4,
or

t/.r/4,H(t) H(t/t) r , where t._ M3

The set of properties in terms of integers H(r,s) are as follows: n(1,5),

p(2,6), X(1,1), Xo(2,6), Xcm(2,2), Lo(3,7) and lp(ll). The fracture stress,

a, fracture energy G, and fatigue crack propagation rate, a, depended on thedN'
interdiffusion properties H(t), and a set of deformation mechanisms involving

chain pullout via disentanglement and bond rupture. When disentanglement

dominates the deformation process r = s, and we find that a t1/4M-1/4,

S~ MI 2,G - tl/ 2M- 1 / 2 , G- M, da/dN -t-5/ 4M5/4, and (da/dN) M-5/4. When

chain fracture dominates, s = 3r. For glassy polymer fracture, disentangle-

ment dominates the fracture process but is influenced by bond rupture. The

number of broken bonds per unit surface area was determined exactly for

polystyrene as Nf = 7 x 1017 /m2 and was independent of molecular weight for
M > i05. The critical entanglement molecular weight, Mc9 was described in

terms of a bridge model for vinyl polymers as, Mc = 30.89 (bz/c)2 C MoJ,

where b, c, z, C.M and j are the bond length, c-axis length, number of0'
monomers per c-axis, characteristic ratio, monomer molecular weight, and

number of bonds per monomer, respectively.



Crack Healing in Polymers

The Pioblem

When two similar amorphous polymers make good contact to form a polymer-

polymer interface, we ask how strength develops as a function ofcontact time,

t, and molecular weight, M, of the polymers. Fracture stress,h, shear stress

-4, critical fracture energy, VIC, and fatigue crack propagation rates, da/dN,

are determined as functions of t and M. Solutions to this problem have

application to polymer processing, internal weld-lines, coatings, welding,

lamination and the physics of fracture mechanics.

Solutions

The problem is divided into three parts. The first part consists of

determining a set of molecular properties for the interface, H(t). The second

part relates the properties of the interface to the mechanical properties via

a set of deformation mechanisms involving chain disentanglement and bond

rupture. The third part of the solution consists of determining the fracture

mechanics of a crack propagating through an interface using solutions of the

first two parts This method of solution involves the evaluation of three

different but interconnected problems and results in an understanding of

fracture mechanics of polymers, in terms of the physics and chemistry of the.

interface.

The properties of the interface were determined using the molecular

dynamics model of deGennes and Doi-Edwards. Our version of the reptation

model is shown in Fig. 1, as developed by Wool and Kim for polymer-polymer -j
interdiffusion. Following contact at t = 0, the chains interdiffuse across

the interface as shown in Fig. 2. For this case, we determine a set of

Codes *--

properties, H, as a function of time, t, and molecular weight, M. They . or

lA
- _ _ _ _ _ _ i''



6; ~include the number of chains, n, number of bridges, p, average monomerFY%

interpenetration depth, X, the total monomer depth, X0, the center of mass *

I diffusion, XCm,9 the average contour interpenetration length, 1, the total

contour length, Lo, and the average bridge length, 1,. The time dependent,

H(t), and equilibrium solutions, H., can be summarized as%

H1(t) -tr/1
4M-s14;, H M(3r-s)/4, where r,s =1,2,3,4,

U or as a scaling law,

H(t) H(/ )/

where t. M. The set of properties in terms of integers H(r,s) are as

follws:n(15),p(2 ,6), X(1,1), X0(2,4), L(2,2), L0(3,7) and10.)

Table 1 summarizes the molecular aspects of interdiffusion at a polymer-

polymer interface. These relations can be used to test hypotheses of

Table 1. Molecular aspects of interdiffuslon at a polymer-polymer interface.

Molecular Aspect Symbol Dynamic Relation, Hit) Static Relation. H_

Number of Chains nit) t."M-".-
Number of Bridges pit) t'2 M"13 MO
Average Depth X(tl t",M"..M

Total Depth )(.(t) 1IM12Mo
*Center of Mass X",,(ti t'3M

Total Length L"(t) VI.M.". 1
*Average Length li)t"'M'1 2  M

Average Bridge Length 1Im t'IM"11m
Generai Property Hit) tV 4M-s4  M3-/

r, s 1,2,3,4...

strength development by us and others. If a mechanical property is directly

related to H1(t) or a product of several H1(t) properties, then the time

,%



dependence, molecular weight dependence of healing and the molecular weight

dependence of the virgin (healed) state must be simultaneously predicted.

This approach suggests critical experiments to be performed and provides a

method of testing virgin state theories of strength.

When chain disentanglement dominates the strength of the interface, a

microscopic fracture analysis results in o - X(t). From Table 1, substituting

for X(t), we have the following results: I.--

0(t) ~ t1 / 4  (t < t.)

o M-1/4  (constant t)
a ~M1/ 2  (t > t) *' .

Ia ~12 (rate effect)

These results are demonstrated for several polymers in Figs. 3, 4, and 5. .le

The fracture of glassy polymers (healed above the glass transition

temperature) is more complex due to the role of bond rupture and the mechanism

of a crack propagating through a craze-like zone.

Molecular fracture in amorphous polymers produced by a crack propagating

through a craze microstructure was simulated by a microtome slicing method. A

GPC analysis of the polystyrene slices gave exact measures of Nf, the number

of broken bonds per cm2. Nf was found to be

N -- 7 x 101. 0° .'-.'
Nf 2x0' N

m - -

At room temperature, Nf was independent of M but at higher fracture

temperatures, major effects of temperature and M were observed. -

The topology of entangled amorphous polymers was investigated and a

*. description for the onset of entangled behavior at the critical entanglement ..

-.. %

. . . . . . ..- 1 . . . . .. 5 *.*** . . . . . . . . .. :..:.
t ..' -.. . . . ," " " ". . " . . " . - " . - " . . " "'- '. .,, , . .- .- , .. *... ... . . **- .' . , .- ' . .. ', *-- - . . . . . ..- .. . . -.. . . . .-.. -, .. . -



molecular weight, Mr, was obtained as:

30.89 C..M0Mc 2

a jc

where C,, M0, , j and C are the characteristic ratio for random-coil chains,

the monomer molecular weight, the ratio of the contour length to the chain

bond length, the number of bonds per monomer and the concentration of chains, . .

respectively. This relation for Mc was found to be in remarkably good

agreement with experimental values for Mc. The entangled structure suggested

by this theory has many consequences for microscopic aspects of fracture and

rheological behavior of polymer melts.

Wedge-Cleavage methods were used to study the time and molecular weight

dependence of welding. For mixed mechanism (chain pullout and bond rupture)

we find that the Dugdale fracture mechanics model predicts,

GIC t'M" 1/2 - x 1 1

GIC (M M) Mc ' M - M-

GIC MO M M.
(@- ) ~M-5/2.- -'-....

AK'-. .

1/2, h eedneo h

where M* 2 x 105 for polystyrene. Since KIC G the dependence of the

critical stress intensity factor on t and M can be readily derived.

Experimental support for these relations is given in Figures 6-8. We are

continuing to study the fracture mechanics and dynamics of strength

development at polymer-polymer interfaces. References and details of the

results contained in this report are given in the ARO publication list below.

. . .. . "
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