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Crack Healing in Polymers

R.P. Wool
Department of Metallurgy and Mining Engineering
University of Il1linois
1304 W. Green St.
Urbana, Illinois 61801

ABSTRACT mdben Y Y ko

' R .

hen two similar polymers contact in the melt to form a polymer-poliymer
interface, interdiffusion of random-coil chains occurs. For this case, we
determine a set of properties, H, as a function of time, t, and molecular
weight, M. They include the number of chains, n, number of bridges, p,
average monomer interpenetration depth, X, the total monomer depth, Xo, the
center of mass diffusion;“Xgm,_the average contour interpen tra%jon length, 1,

Qe Subao . — ’ .

the total contour 1ength:¥io, and thekgyerigg prjdge length, p* The time

] [
dependent, H(t), and equilibrium so]utions,Qﬂn:tséalgé summarized.as
\QQMQ

H(t) ~ tF/4m=s/4; H_ ~ M(3r=s}/8 yhere r, s = 1,2,3,4, ...
or
H(t) = H_(t/t )%, where t_~ M3

The set of properties in terms of integers H(r,s) are as follows: n(1,5),
p(2,6), X(1,1), X,(2,6), Xcm(2:2), Ly(3,7) and 1p(1,1). The fracture stress,
o, fracture energy G, and fatigue crack propagation rate, %%, depended on the
interdiffusion properties H(t), and a set of deformation mechanisms involving
chain pullout via disentanglement and bond rupture. When disentanglement
dominates the deformation process r = s, and we find that o ~ t1/4M-1/4,

o ~MU/2, 6 ~t1/2-1/2 G ~ M, da/dN ~ £-5/%5/4, and (da/dN) _~M~5/4. uhen
chain fracture dominates, s = 3r. For glassy polymer fracture, disentangle-
ment dominates the fracture process but is influenced by bond rupture. The
number of broken bonds per unit surface area was determined exactly for
polystyrene as Ng¢ = 7 x 1017/m2 and was independent of molecular weight for
M > 10%, The critical entanglement molecular weight, Mc» was described in
terms of a bridge model for vinyl polymers as, M. = 30.89 (bz/c)2 CMds
where b, ¢, 2z, CuMO and j are the bond length, c-axis length, number of
monomers per c-axis, characteristic ratio, monomer molecular weight, and
number of bonds per monomer, respectively.

.............................................

..........................

e

“te

v
v
(4
v
L

LN e
L]
. "‘I-‘.'

L )
1]
DAL N

......




U

.

¥y

L]
sl

LV

A

(AR
PR,

™

Crack Healing in Polymers

i -
The P¢oblem

‘When two similar amorphous polymers make good contact to form a polymer-

polymer interface, we ask how strength develops as a function,ofmgggtact time,

~Sigha.
t, and molecular weight, M, of the polymers. Fracture stress, ? shear stress
-~ 07:‘) G LupXc

‘4Iﬁcritica1 fracture energy, Gyc, and fatigue crack propagation rates, da/dN,

are determined as functions of t and M. Solutions to this problem have
application to polymer processing, internal weld-lines, coatings, welding,

lamination and the physics of fracture mechanics.

Sotutions

The problem is divided into three parts. The first part consists of
determining a set of molecular properties for the interface, H(t). The second
part relates the properties of the interface to the mechanical properties via
a set of deformation mechanisms involving chain disentanglement and bond
rupture. The third part of the solution consists of determining the fracture
mechanics of a crack propagating through an interface using solutions of the
first two parts, This method of solution involves the evaluation of three

AN

different but interconnected problems and results in an understanding of

fracture mechanics of polymers, in terms of the physics and chemistry of the ' ™

interface.

The properties of the interface were determined using the molecular
dynamics model of deGennes and Doi-Edwards. Our version of the reptation
model is shown in Fig. 1, as developed by Wool and Kim for polymer-polymer
interdiffusion. Following contact at t = O, the chains interdiffuse across
the interface as shown in Fig. 2. For this case, we determine a set of

properties, H, as a function of time, t, and molecular weight, M. They

"'A
/]

-
e

AR BT
, "':l"'l,. .l' 'u "
(Ans Yy o




A S T S pwY s

NS S

RN
.’

A

.

bl

Ve

s il
‘N
.

Pt
e

ﬁl_
s
P

e

- .. ’
4 ¢ . .‘A‘{‘.“,'_.‘ hd .

LR A

e e
RN

R AN

IR
RPN

T IR S o et T et et T T e Tt et Nt e e et St - . . DTS e
o Sy A A O R L N Ty S S

include the number of chains, n, number of bridges, p, average monomer
interpenetration depth, X, the total monomer depth, X,, the center of mass
diffusion, X.n, the average contour interpenetration length, 1, the total
contour length, L,, and the average bridge length, lp. The time dependent,

H(t), and equilibrium solutions, H_, can be summarized as

H(t) ~ t"/om-s/4; H, ~ M(3r-s)/4  where r,s = 1,2,3,4, ...

or as a scaling law,

H(t) = H_(t/t )"

where t_ ~ M3. The set of properties in terms of integers H(r,s) are as
follows: n(1,5), p(2,6), X(1,1), X5(2,4), L(2,2), L4(3,7) and 1p(1.1).
Table 1 summarizes the molecular aspects of interdiffusion at a polymer-

polymer interface. These relations can be used to test hypotheses of

Table 1. Molecular aspects of interdiffusion at a polymer-polymer interface.

Molecular Aspect Symbol Dynamic Relation, H(t) Static Relation, H_

Number of Chains nit) A M2

Number of Bridges plit} tIM-2 Mo

Average Depth Xt} (O Y ] M2

Total Depth Xt} M- Mo

Center of Mass Xemit) tm- M2

Total Length L) (bl M2

Average Length "y 1AM M

Average Bridge Length (] M M

General Property Hit) t M4 Mr-ai/4

rs=1234, ...

strength development by us and others. If a mechanical property is directly

related to H(t) or a product of several H(t) properties, then the time
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dependence, molecular weight dependence of healing and the molecular weight

dependence of the virgin (healed) state must be simultaneously predicted.
This approach suggests critical experiments to be performed and provides a
method of testing virgin state theories of strength.

When chain disentanglement dominates the strength of the interface, a
microscopic fracture analysis results in o ~ X(t). From Table 1, substituting

for X(t), we have the following results:

A oft) ~ t1/4 (t <t)

- o ~M-1/4 (constant t)
o ~M/2 (t >t,)
o~ 91/2 (rate effect)

These results are demonstrated for several polymers in Figs. 3, 4, and 5.

The fracture of glassy polymers (healed above the glass transition
temperature) is more complex due to the role of bond rupture and the mechanism
of a crack propagating through a craze-like zone.

Molecular fracture in amorphous polymers produced by a crack propagating
through a craze microstructure was simulated by a microtome slicing method. A
GPC analysis of the polystyrene slices gave exact measures of N¢, the number

of broken bonds per cmz. N¢ was found to be

_1xa0t o
Ixl0

m

Ne

At room temperature, N was independent of M but at higher fracture
temperatures, major effects of temperature and M were observed.
The topology of entangled amorphous polymers was investigated and a

description for the onset of entangied behavior at the critical entanglement
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molecular weight, M., was obtained as:

3089 Cﬂﬂo
Mc = 5
a“jc

where C_, My, a, j and C are the characteristic ratio for random-coil chains,
the monomer molecular weight, the ratio of the contour length to the chain
bond length, the number of bonds per monomer and the concentration of chains,
respectively. This relation for M. was found to be in remarkably good
agreement with experimental values for M.. The entangled structure suggested
by this theory has many consequences for microscopic aspects of fracture and
rheological behavior of polymer melts.

Wedge-Cleavage hethods were used to study the time and molecular weight
dependence of welding. For mixed mechanism (chain pullout and bond rupture)

we find that the Dugdale fracture mechanics model predicts,

GIC ~t1/2M-X 172 < x < 1
*

G1C~(M'MC) MC<M<M

Gye ~ MO M o> MY

2a -5/2

(3y) ~M

WAK

where M* ~ 2 x 10° for polystyrene. Since Kjc ~ Glé/z. the dependence of the
critical stress intensity factor on t and M can be readily derived.
Experimental support for these relations is given in Figures 6-8. We are
continuing to study the fracture mechanics and dynamics of strength
development at polymer-polymer interfaces. References and details of the

results contained in this report are given in the ARD publication list below.
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Figure 1. The reptation model for a chain in an entangled melt is shown relaxing from
its “"tube” at several times t < t,, where t, is the reptation time. That part of the chain
which has refaxed from the original tube (at t = 0) is termed the minor chain and is

shown in its most probable random-coil spherical envelope.
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Figure 2. (a) The behavior of the minor chains at the polymer-polymer interface {one
side is shown for conveniencel is shown at times, t, less than the reptation time, t..
b/ The behavior of the spherical envelopes of the minor chains is shown during the
interdiffusion process.

£ 8




. o M ar A A S =AY A T . Dt ial ta i A A e R il AT ) Sl b Aplt ApicAy) 8, N Nl Al g A

CONTACT TIME (SEC)

8! 2
oo 8z
_ eoo- o SBR/SBR ]
(%) e BUTYL/BUTYL
2 s o SBR/BUTYL
x & SBR/GLASS
- o 400}
- 3
i 3 300}
- o
Z 200
x
<
W ool
- @
a o 1 ]
- (¢} 10 20 30 40 50
. ) ]
(CONTACT TIME)“ (SEC)"
(] Fie. 3 —The tack or breaking load versus (' * for several polymer-polymer uncured pairs as investi-
v gated by Skewis''. Tuck measurements were done with a contact load of 1000 g. and a contact area ol
040 cm’ The viscosits average molecular weight of the SBR was 260000 and 225000 for the buty] rubber

250[— r T T T
NATURAL RUBBER

150

100+

STRENGTH (PSI)

1 4
(o] 0.5 1.0 1.5 2.0 2.5
MOLECULAR WEIGHT x 1078

Fie 4 —Tack waardlesy and green strength anangles) as a functuon of siscosin avesage molecula
weight for fracnonated samples of natural subber (Forbes and M Leod: . The sohd hine for green
saength was theoreticalls obtained using Equanon 149 and the dashed hine for ack usang Fquanon
1300 The green saength was evalugted ar a umaxual test speed of 26 67 cm man ar 25°C. and the tack
was evaluated ut a contact tme of 30 s for each sample

[
-“'-.\-..
N e
0 :-."_ »;
-
RN
N _4\ -
._\‘_\.
L] “‘




-
-
-

o
il

13°C

'~ - f".
-21°¢
12} -

-8°C TN
]
. __:h..‘h -

. ._‘- *'v
. ot
4°C =

N
o8- 7 S

LOG COHESIVE STRENGTH (kN/m)

i YN
et
— D
A
PAES
e L
-~ -
Cal &
‘e .
B ~
-
\
.
B

f—
Pr L

I - ==

o~ V R
Sy

e

06 10 14 18 2.2 26 30 :'_;-:-;':-;
LOG RATE (mm/min) R
oy

F16 5 COHESIVE STRENGTH OF SBR RUBBER VS PEEL RATE
(WOOL), HAMED DATA

.......




Catatabe: o g o iatii gt et ot ARSI A RV Va2 2 > A T S B b ¥ A vy e b0 N T il S a2 TR DOTRTOTRCS ORI S S ,{S‘}‘J
n

1 -10- 2SN
! NS
) P i
3 | ol
: petey
- e
- .d-* — '$ ey
; T e
a .:::..‘:\.f
\ :..-:::::',
A _— monodisperse layer "':.::a
/ polydisperse backing
|__— interface
2h
07 T o 3 ) — T 4
- ]
B
. S
- SO
- 1 A
KON
BN
c [ J A1 1 1 " | -
0 2 4 6 8 10 12 14
TIME" (i )
- FIGURE &  The Wedge Cleavage method (top) for determining

strength of a healing interface is shown. Results

of the critical stress intensity factor versus time

to 1/4 power are shown (bottom) for several monodisperse
polystyrene interfaces using the two step thermal history.




e e ™ ol

T

[}

.

[ e AP

o
Ty

XN
Vs
¢"" .’ .
v

43

[ s
. 4

.

20t .

\
\
o\
[ ]

16

12

Kig (MN/m3/2)

: 04

1 [ .,

: 0 1 2 3 4 5 6 7
. (MOLECULAR WEIGHT,M)” x 1072

(¢ o] 8
Vel J
Qo

A FIG 7 The wvirgin critical stress intensity factor., HIC’
versus the square-rocot of mclecular weight is shown for compact

- tensicn experiments with moncdisperse (cirvcles) and polvdisperse

; tequarees) polystyrene. Results chbtained by Wool and Q7 Cornmno .

;

L

._-‘._-,._-{._- e e N e T T SPTRI Vet e .- . KR
= B T el O I IR ST e e e e e L "t o .- - .
P, AL P TP PP G VL AL A A VI PR SROOVAL PR VR AP g PX ¥ T A I S AP I -




FATIGUE CRACK PROPAGATION, -log da/dN

FIG 38

] | |
5 0 15 20

MOLECULAR WEIGHT, My xI04

FATIGUE CRACK PROPAGATION RATE DEPENDENCE ON
MOLECULAR WETGHT OF PVC (WOOL). HERTZBERG DATA




Personnel Supported: J. L. Willett
0. J. McGarel

Degrees Granted: Kevin 0'Connor, Ph.D. " _,-g
D. B. Kline, M.S. PO
D. H. Klosterman, M.S. Xl

e e e e e e e R O e T e T e e e e
L L IR I R I R N A 0 N S A R NSRS G







